ffs_softdep.c revision 274305
1/*-
2 * Copyright 1998, 2000 Marshall Kirk McKusick.
3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4 * All rights reserved.
5 *
6 * The soft updates code is derived from the appendix of a University
7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8 * "Soft Updates: A Solution to the Metadata Update Problem in File
9 * Systems", CSE-TR-254-95, August 1995).
10 *
11 * Further information about soft updates can be obtained from:
12 *
13 *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14 *	1614 Oxford Street		mckusick@mckusick.com
15 *	Berkeley, CA 94709-1608		+1-510-843-9542
16 *	USA
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 *
22 * 1. Redistributions of source code must retain the above copyright
23 *    notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 *    notice, this list of conditions and the following disclaimer in the
26 *    documentation and/or other materials provided with the distribution.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 *
39 *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40 */
41
42#include <sys/cdefs.h>
43__FBSDID("$FreeBSD: stable/10/sys/ufs/ffs/ffs_softdep.c 274305 2014-11-09 09:44:09Z kib $");
44
45#include "opt_ffs.h"
46#include "opt_quota.h"
47#include "opt_ddb.h"
48
49/*
50 * For now we want the safety net that the DEBUG flag provides.
51 */
52#ifndef DEBUG
53#define DEBUG
54#endif
55
56#include <sys/param.h>
57#include <sys/kernel.h>
58#include <sys/systm.h>
59#include <sys/bio.h>
60#include <sys/buf.h>
61#include <sys/kdb.h>
62#include <sys/kthread.h>
63#include <sys/ktr.h>
64#include <sys/limits.h>
65#include <sys/lock.h>
66#include <sys/malloc.h>
67#include <sys/mount.h>
68#include <sys/mutex.h>
69#include <sys/namei.h>
70#include <sys/priv.h>
71#include <sys/proc.h>
72#include <sys/rwlock.h>
73#include <sys/stat.h>
74#include <sys/sysctl.h>
75#include <sys/syslog.h>
76#include <sys/vnode.h>
77#include <sys/conf.h>
78
79#include <ufs/ufs/dir.h>
80#include <ufs/ufs/extattr.h>
81#include <ufs/ufs/quota.h>
82#include <ufs/ufs/inode.h>
83#include <ufs/ufs/ufsmount.h>
84#include <ufs/ffs/fs.h>
85#include <ufs/ffs/softdep.h>
86#include <ufs/ffs/ffs_extern.h>
87#include <ufs/ufs/ufs_extern.h>
88
89#include <vm/vm.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_object.h>
92
93#include <geom/geom.h>
94
95#include <ddb/ddb.h>
96
97#define	KTR_SUJ	0	/* Define to KTR_SPARE. */
98
99#ifndef SOFTUPDATES
100
101int
102softdep_flushfiles(oldmnt, flags, td)
103	struct mount *oldmnt;
104	int flags;
105	struct thread *td;
106{
107
108	panic("softdep_flushfiles called");
109}
110
111int
112softdep_mount(devvp, mp, fs, cred)
113	struct vnode *devvp;
114	struct mount *mp;
115	struct fs *fs;
116	struct ucred *cred;
117{
118
119	return (0);
120}
121
122void
123softdep_initialize()
124{
125
126	return;
127}
128
129void
130softdep_uninitialize()
131{
132
133	return;
134}
135
136void
137softdep_unmount(mp)
138	struct mount *mp;
139{
140
141	panic("softdep_unmount called");
142}
143
144void
145softdep_setup_sbupdate(ump, fs, bp)
146	struct ufsmount *ump;
147	struct fs *fs;
148	struct buf *bp;
149{
150
151	panic("softdep_setup_sbupdate called");
152}
153
154void
155softdep_setup_inomapdep(bp, ip, newinum, mode)
156	struct buf *bp;
157	struct inode *ip;
158	ino_t newinum;
159	int mode;
160{
161
162	panic("softdep_setup_inomapdep called");
163}
164
165void
166softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
167	struct buf *bp;
168	struct mount *mp;
169	ufs2_daddr_t newblkno;
170	int frags;
171	int oldfrags;
172{
173
174	panic("softdep_setup_blkmapdep called");
175}
176
177void
178softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
179	struct inode *ip;
180	ufs_lbn_t lbn;
181	ufs2_daddr_t newblkno;
182	ufs2_daddr_t oldblkno;
183	long newsize;
184	long oldsize;
185	struct buf *bp;
186{
187
188	panic("softdep_setup_allocdirect called");
189}
190
191void
192softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
193	struct inode *ip;
194	ufs_lbn_t lbn;
195	ufs2_daddr_t newblkno;
196	ufs2_daddr_t oldblkno;
197	long newsize;
198	long oldsize;
199	struct buf *bp;
200{
201
202	panic("softdep_setup_allocext called");
203}
204
205void
206softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
207	struct inode *ip;
208	ufs_lbn_t lbn;
209	struct buf *bp;
210	int ptrno;
211	ufs2_daddr_t newblkno;
212	ufs2_daddr_t oldblkno;
213	struct buf *nbp;
214{
215
216	panic("softdep_setup_allocindir_page called");
217}
218
219void
220softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
221	struct buf *nbp;
222	struct inode *ip;
223	struct buf *bp;
224	int ptrno;
225	ufs2_daddr_t newblkno;
226{
227
228	panic("softdep_setup_allocindir_meta called");
229}
230
231void
232softdep_journal_freeblocks(ip, cred, length, flags)
233	struct inode *ip;
234	struct ucred *cred;
235	off_t length;
236	int flags;
237{
238
239	panic("softdep_journal_freeblocks called");
240}
241
242void
243softdep_journal_fsync(ip)
244	struct inode *ip;
245{
246
247	panic("softdep_journal_fsync called");
248}
249
250void
251softdep_setup_freeblocks(ip, length, flags)
252	struct inode *ip;
253	off_t length;
254	int flags;
255{
256
257	panic("softdep_setup_freeblocks called");
258}
259
260void
261softdep_freefile(pvp, ino, mode)
262		struct vnode *pvp;
263		ino_t ino;
264		int mode;
265{
266
267	panic("softdep_freefile called");
268}
269
270int
271softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
272	struct buf *bp;
273	struct inode *dp;
274	off_t diroffset;
275	ino_t newinum;
276	struct buf *newdirbp;
277	int isnewblk;
278{
279
280	panic("softdep_setup_directory_add called");
281}
282
283void
284softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
285	struct buf *bp;
286	struct inode *dp;
287	caddr_t base;
288	caddr_t oldloc;
289	caddr_t newloc;
290	int entrysize;
291{
292
293	panic("softdep_change_directoryentry_offset called");
294}
295
296void
297softdep_setup_remove(bp, dp, ip, isrmdir)
298	struct buf *bp;
299	struct inode *dp;
300	struct inode *ip;
301	int isrmdir;
302{
303
304	panic("softdep_setup_remove called");
305}
306
307void
308softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
309	struct buf *bp;
310	struct inode *dp;
311	struct inode *ip;
312	ino_t newinum;
313	int isrmdir;
314{
315
316	panic("softdep_setup_directory_change called");
317}
318
319void
320softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
321	struct mount *mp;
322	struct buf *bp;
323	ufs2_daddr_t blkno;
324	int frags;
325	struct workhead *wkhd;
326{
327
328	panic("%s called", __FUNCTION__);
329}
330
331void
332softdep_setup_inofree(mp, bp, ino, wkhd)
333	struct mount *mp;
334	struct buf *bp;
335	ino_t ino;
336	struct workhead *wkhd;
337{
338
339	panic("%s called", __FUNCTION__);
340}
341
342void
343softdep_setup_unlink(dp, ip)
344	struct inode *dp;
345	struct inode *ip;
346{
347
348	panic("%s called", __FUNCTION__);
349}
350
351void
352softdep_setup_link(dp, ip)
353	struct inode *dp;
354	struct inode *ip;
355{
356
357	panic("%s called", __FUNCTION__);
358}
359
360void
361softdep_revert_link(dp, ip)
362	struct inode *dp;
363	struct inode *ip;
364{
365
366	panic("%s called", __FUNCTION__);
367}
368
369void
370softdep_setup_rmdir(dp, ip)
371	struct inode *dp;
372	struct inode *ip;
373{
374
375	panic("%s called", __FUNCTION__);
376}
377
378void
379softdep_revert_rmdir(dp, ip)
380	struct inode *dp;
381	struct inode *ip;
382{
383
384	panic("%s called", __FUNCTION__);
385}
386
387void
388softdep_setup_create(dp, ip)
389	struct inode *dp;
390	struct inode *ip;
391{
392
393	panic("%s called", __FUNCTION__);
394}
395
396void
397softdep_revert_create(dp, ip)
398	struct inode *dp;
399	struct inode *ip;
400{
401
402	panic("%s called", __FUNCTION__);
403}
404
405void
406softdep_setup_mkdir(dp, ip)
407	struct inode *dp;
408	struct inode *ip;
409{
410
411	panic("%s called", __FUNCTION__);
412}
413
414void
415softdep_revert_mkdir(dp, ip)
416	struct inode *dp;
417	struct inode *ip;
418{
419
420	panic("%s called", __FUNCTION__);
421}
422
423void
424softdep_setup_dotdot_link(dp, ip)
425	struct inode *dp;
426	struct inode *ip;
427{
428
429	panic("%s called", __FUNCTION__);
430}
431
432int
433softdep_prealloc(vp, waitok)
434	struct vnode *vp;
435	int waitok;
436{
437
438	panic("%s called", __FUNCTION__);
439}
440
441int
442softdep_journal_lookup(mp, vpp)
443	struct mount *mp;
444	struct vnode **vpp;
445{
446
447	return (ENOENT);
448}
449
450void
451softdep_change_linkcnt(ip)
452	struct inode *ip;
453{
454
455	panic("softdep_change_linkcnt called");
456}
457
458void
459softdep_load_inodeblock(ip)
460	struct inode *ip;
461{
462
463	panic("softdep_load_inodeblock called");
464}
465
466void
467softdep_update_inodeblock(ip, bp, waitfor)
468	struct inode *ip;
469	struct buf *bp;
470	int waitfor;
471{
472
473	panic("softdep_update_inodeblock called");
474}
475
476int
477softdep_fsync(vp)
478	struct vnode *vp;	/* the "in_core" copy of the inode */
479{
480
481	return (0);
482}
483
484void
485softdep_fsync_mountdev(vp)
486	struct vnode *vp;
487{
488
489	return;
490}
491
492int
493softdep_flushworklist(oldmnt, countp, td)
494	struct mount *oldmnt;
495	int *countp;
496	struct thread *td;
497{
498
499	*countp = 0;
500	return (0);
501}
502
503int
504softdep_sync_metadata(struct vnode *vp)
505{
506
507	panic("softdep_sync_metadata called");
508}
509
510int
511softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
512{
513
514	panic("softdep_sync_buf called");
515}
516
517int
518softdep_slowdown(vp)
519	struct vnode *vp;
520{
521
522	panic("softdep_slowdown called");
523}
524
525int
526softdep_request_cleanup(fs, vp, cred, resource)
527	struct fs *fs;
528	struct vnode *vp;
529	struct ucred *cred;
530	int resource;
531{
532
533	return (0);
534}
535
536int
537softdep_check_suspend(struct mount *mp,
538		      struct vnode *devvp,
539		      int softdep_depcnt,
540		      int softdep_accdepcnt,
541		      int secondary_writes,
542		      int secondary_accwrites)
543{
544	struct bufobj *bo;
545	int error;
546
547	(void) softdep_depcnt,
548	(void) softdep_accdepcnt;
549
550	bo = &devvp->v_bufobj;
551	ASSERT_BO_WLOCKED(bo);
552
553	MNT_ILOCK(mp);
554	while (mp->mnt_secondary_writes != 0) {
555		BO_UNLOCK(bo);
556		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
557		    (PUSER - 1) | PDROP, "secwr", 0);
558		BO_LOCK(bo);
559		MNT_ILOCK(mp);
560	}
561
562	/*
563	 * Reasons for needing more work before suspend:
564	 * - Dirty buffers on devvp.
565	 * - Secondary writes occurred after start of vnode sync loop
566	 */
567	error = 0;
568	if (bo->bo_numoutput > 0 ||
569	    bo->bo_dirty.bv_cnt > 0 ||
570	    secondary_writes != 0 ||
571	    mp->mnt_secondary_writes != 0 ||
572	    secondary_accwrites != mp->mnt_secondary_accwrites)
573		error = EAGAIN;
574	BO_UNLOCK(bo);
575	return (error);
576}
577
578void
579softdep_get_depcounts(struct mount *mp,
580		      int *softdepactivep,
581		      int *softdepactiveaccp)
582{
583	(void) mp;
584	*softdepactivep = 0;
585	*softdepactiveaccp = 0;
586}
587
588void
589softdep_buf_append(bp, wkhd)
590	struct buf *bp;
591	struct workhead *wkhd;
592{
593
594	panic("softdep_buf_appendwork called");
595}
596
597void
598softdep_inode_append(ip, cred, wkhd)
599	struct inode *ip;
600	struct ucred *cred;
601	struct workhead *wkhd;
602{
603
604	panic("softdep_inode_appendwork called");
605}
606
607void
608softdep_freework(wkhd)
609	struct workhead *wkhd;
610{
611
612	panic("softdep_freework called");
613}
614
615#else
616
617FEATURE(softupdates, "FFS soft-updates support");
618
619static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
620    "soft updates stats");
621static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
622    "total dependencies allocated");
623static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
624    "high use dependencies allocated");
625static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
626    "current dependencies allocated");
627static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
628    "current dependencies written");
629
630unsigned long dep_current[D_LAST + 1];
631unsigned long dep_highuse[D_LAST + 1];
632unsigned long dep_total[D_LAST + 1];
633unsigned long dep_write[D_LAST + 1];
634
635#define	SOFTDEP_TYPE(type, str, long)					\
636    static MALLOC_DEFINE(M_ ## type, #str, long);			\
637    SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
638	&dep_total[D_ ## type], 0, "");					\
639    SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
640	&dep_current[D_ ## type], 0, "");				\
641    SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
642	&dep_highuse[D_ ## type], 0, "");				\
643    SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
644	&dep_write[D_ ## type], 0, "");
645
646SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
647SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
648SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
649    "Block or frag allocated from cyl group map");
650SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
651SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
652SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
653SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
654SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
655SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
656SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
657SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
658SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
659SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
660SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
661SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
662SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
663SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
664SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
665SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
666SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
667SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
668SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
669SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
670SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
671SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
672SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
673SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
674
675static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
676
677static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
678static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
679static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
680
681#define M_SOFTDEP_FLAGS	(M_WAITOK)
682
683/*
684 * translate from workitem type to memory type
685 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
686 */
687static struct malloc_type *memtype[] = {
688	M_PAGEDEP,
689	M_INODEDEP,
690	M_BMSAFEMAP,
691	M_NEWBLK,
692	M_ALLOCDIRECT,
693	M_INDIRDEP,
694	M_ALLOCINDIR,
695	M_FREEFRAG,
696	M_FREEBLKS,
697	M_FREEFILE,
698	M_DIRADD,
699	M_MKDIR,
700	M_DIRREM,
701	M_NEWDIRBLK,
702	M_FREEWORK,
703	M_FREEDEP,
704	M_JADDREF,
705	M_JREMREF,
706	M_JMVREF,
707	M_JNEWBLK,
708	M_JFREEBLK,
709	M_JFREEFRAG,
710	M_JSEG,
711	M_JSEGDEP,
712	M_SBDEP,
713	M_JTRUNC,
714	M_JFSYNC,
715	M_SENTINEL
716};
717
718#define DtoM(type) (memtype[type])
719
720/*
721 * Names of malloc types.
722 */
723#define TYPENAME(type)  \
724	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
725/*
726 * End system adaptation definitions.
727 */
728
729#define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
730#define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
731
732/*
733 * Internal function prototypes.
734 */
735static	void check_clear_deps(struct mount *);
736static	void softdep_error(char *, int);
737static	int softdep_process_worklist(struct mount *, int);
738static	int softdep_waitidle(struct mount *, int);
739static	void drain_output(struct vnode *);
740static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
741static	void clear_remove(struct mount *);
742static	void clear_inodedeps(struct mount *);
743static	void unlinked_inodedep(struct mount *, struct inodedep *);
744static	void clear_unlinked_inodedep(struct inodedep *);
745static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
746static	int flush_pagedep_deps(struct vnode *, struct mount *,
747	    struct diraddhd *);
748static	int free_pagedep(struct pagedep *);
749static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
750static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
751static	int flush_deplist(struct allocdirectlst *, int, int *);
752static	int sync_cgs(struct mount *, int);
753static	int handle_written_filepage(struct pagedep *, struct buf *);
754static	int handle_written_sbdep(struct sbdep *, struct buf *);
755static	void initiate_write_sbdep(struct sbdep *);
756static	void diradd_inode_written(struct diradd *, struct inodedep *);
757static	int handle_written_indirdep(struct indirdep *, struct buf *,
758	    struct buf**);
759static	int handle_written_inodeblock(struct inodedep *, struct buf *);
760static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
761	    uint8_t *);
762static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
763static	void handle_written_jaddref(struct jaddref *);
764static	void handle_written_jremref(struct jremref *);
765static	void handle_written_jseg(struct jseg *, struct buf *);
766static	void handle_written_jnewblk(struct jnewblk *);
767static	void handle_written_jblkdep(struct jblkdep *);
768static	void handle_written_jfreefrag(struct jfreefrag *);
769static	void complete_jseg(struct jseg *);
770static	void complete_jsegs(struct jseg *);
771static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
772static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
773static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
774static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
775static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
776static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
777static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
778static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
779static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
780static	inline void inoref_write(struct inoref *, struct jseg *,
781	    struct jrefrec *);
782static	void handle_allocdirect_partdone(struct allocdirect *,
783	    struct workhead *);
784static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
785	    struct workhead *);
786static	void indirdep_complete(struct indirdep *);
787static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
788static	void indirblk_insert(struct freework *);
789static	void indirblk_remove(struct freework *);
790static	void handle_allocindir_partdone(struct allocindir *);
791static	void initiate_write_filepage(struct pagedep *, struct buf *);
792static	void initiate_write_indirdep(struct indirdep*, struct buf *);
793static	void handle_written_mkdir(struct mkdir *, int);
794static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
795	    uint8_t *);
796static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
797static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
798static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
799static	void handle_workitem_freefile(struct freefile *);
800static	int handle_workitem_remove(struct dirrem *, int);
801static	struct dirrem *newdirrem(struct buf *, struct inode *,
802	    struct inode *, int, struct dirrem **);
803static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
804	    struct buf *);
805static	void cancel_indirdep(struct indirdep *, struct buf *,
806	    struct freeblks *);
807static	void free_indirdep(struct indirdep *);
808static	void free_diradd(struct diradd *, struct workhead *);
809static	void merge_diradd(struct inodedep *, struct diradd *);
810static	void complete_diradd(struct diradd *);
811static	struct diradd *diradd_lookup(struct pagedep *, int);
812static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
813	    struct jremref *);
814static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
815	    struct jremref *);
816static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
817	    struct jremref *, struct jremref *);
818static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
819	    struct jremref *);
820static	void cancel_allocindir(struct allocindir *, struct buf *bp,
821	    struct freeblks *, int);
822static	int setup_trunc_indir(struct freeblks *, struct inode *,
823	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
824static	void complete_trunc_indir(struct freework *);
825static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
826	    int);
827static	void complete_mkdir(struct mkdir *);
828static	void free_newdirblk(struct newdirblk *);
829static	void free_jremref(struct jremref *);
830static	void free_jaddref(struct jaddref *);
831static	void free_jsegdep(struct jsegdep *);
832static	void free_jsegs(struct jblocks *);
833static	void rele_jseg(struct jseg *);
834static	void free_jseg(struct jseg *, struct jblocks *);
835static	void free_jnewblk(struct jnewblk *);
836static	void free_jblkdep(struct jblkdep *);
837static	void free_jfreefrag(struct jfreefrag *);
838static	void free_freedep(struct freedep *);
839static	void journal_jremref(struct dirrem *, struct jremref *,
840	    struct inodedep *);
841static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
842static	int cancel_jaddref(struct jaddref *, struct inodedep *,
843	    struct workhead *);
844static	void cancel_jfreefrag(struct jfreefrag *);
845static	inline void setup_freedirect(struct freeblks *, struct inode *,
846	    int, int);
847static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
848static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
849	    ufs_lbn_t, int);
850static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
851static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
852static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
853static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
854static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
855static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
856	    int, int);
857static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
858static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
859static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
860static	void newblk_freefrag(struct newblk*);
861static	void free_newblk(struct newblk *);
862static	void cancel_allocdirect(struct allocdirectlst *,
863	    struct allocdirect *, struct freeblks *);
864static	int check_inode_unwritten(struct inodedep *);
865static	int free_inodedep(struct inodedep *);
866static	void freework_freeblock(struct freework *);
867static	void freework_enqueue(struct freework *);
868static	int handle_workitem_freeblocks(struct freeblks *, int);
869static	int handle_complete_freeblocks(struct freeblks *, int);
870static	void handle_workitem_indirblk(struct freework *);
871static	void handle_written_freework(struct freework *);
872static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
873static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
874	    struct workhead *);
875static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
876	    struct inodedep *, struct allocindir *, ufs_lbn_t);
877static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
878	    ufs2_daddr_t, ufs_lbn_t);
879static	void handle_workitem_freefrag(struct freefrag *);
880static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
881	    ufs_lbn_t);
882static	void allocdirect_merge(struct allocdirectlst *,
883	    struct allocdirect *, struct allocdirect *);
884static	struct freefrag *allocindir_merge(struct allocindir *,
885	    struct allocindir *);
886static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
887	    struct bmsafemap **);
888static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
889	    int cg, struct bmsafemap *);
890static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
891	    struct newblk **);
892static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
893static	int inodedep_find(struct inodedep_hashhead *, ino_t,
894	    struct inodedep **);
895static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
896static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
897	    int, struct pagedep **);
898static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
899	    struct pagedep **);
900static	void pause_timer(void *);
901static	int request_cleanup(struct mount *, int);
902static	int process_worklist_item(struct mount *, int, int);
903static	void process_removes(struct vnode *);
904static	void process_truncates(struct vnode *);
905static	void jwork_move(struct workhead *, struct workhead *);
906static	void jwork_insert(struct workhead *, struct jsegdep *);
907static	void add_to_worklist(struct worklist *, int);
908static	void wake_worklist(struct worklist *);
909static	void wait_worklist(struct worklist *, char *);
910static	void remove_from_worklist(struct worklist *);
911static	void softdep_flush(void *);
912static	void softdep_flushjournal(struct mount *);
913static	int softdep_speedup(struct ufsmount *);
914static	void worklist_speedup(struct mount *);
915static	int journal_mount(struct mount *, struct fs *, struct ucred *);
916static	void journal_unmount(struct ufsmount *);
917static	int journal_space(struct ufsmount *, int);
918static	void journal_suspend(struct ufsmount *);
919static	int journal_unsuspend(struct ufsmount *ump);
920static	void softdep_prelink(struct vnode *, struct vnode *);
921static	void add_to_journal(struct worklist *);
922static	void remove_from_journal(struct worklist *);
923static	void softdep_process_journal(struct mount *, struct worklist *, int);
924static	struct jremref *newjremref(struct dirrem *, struct inode *,
925	    struct inode *ip, off_t, nlink_t);
926static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
927	    uint16_t);
928static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
929	    uint16_t);
930static	inline struct jsegdep *inoref_jseg(struct inoref *);
931static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
932static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
933	    ufs2_daddr_t, int);
934static	void adjust_newfreework(struct freeblks *, int);
935static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
936static	void move_newblock_dep(struct jaddref *, struct inodedep *);
937static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
938static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
939	    ufs2_daddr_t, long, ufs_lbn_t);
940static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
941	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
942static	int jwait(struct worklist *, int);
943static	struct inodedep *inodedep_lookup_ip(struct inode *);
944static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
945static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
946static	void handle_jwork(struct workhead *);
947static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
948	    struct mkdir **);
949static	struct jblocks *jblocks_create(void);
950static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
951static	void jblocks_free(struct jblocks *, struct mount *, int);
952static	void jblocks_destroy(struct jblocks *);
953static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
954
955/*
956 * Exported softdep operations.
957 */
958static	void softdep_disk_io_initiation(struct buf *);
959static	void softdep_disk_write_complete(struct buf *);
960static	void softdep_deallocate_dependencies(struct buf *);
961static	int softdep_count_dependencies(struct buf *bp, int);
962
963/*
964 * Global lock over all of soft updates.
965 */
966static struct mtx lk;
967MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF);
968
969#define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
970#define FREE_GBLLOCK(lk)	mtx_unlock(lk)
971#define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
972
973/*
974 * Per-filesystem soft-updates locking.
975 */
976#define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
977#define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
978#define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
979#define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
980#define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
981				    RA_WLOCKED)
982
983#define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
984#define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
985
986/*
987 * Worklist queue management.
988 * These routines require that the lock be held.
989 */
990#ifndef /* NOT */ DEBUG
991#define WORKLIST_INSERT(head, item) do {	\
992	(item)->wk_state |= ONWORKLIST;		\
993	LIST_INSERT_HEAD(head, item, wk_list);	\
994} while (0)
995#define WORKLIST_REMOVE(item) do {		\
996	(item)->wk_state &= ~ONWORKLIST;	\
997	LIST_REMOVE(item, wk_list);		\
998} while (0)
999#define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1000#define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1001
1002#else /* DEBUG */
1003static	void worklist_insert(struct workhead *, struct worklist *, int);
1004static	void worklist_remove(struct worklist *, int);
1005
1006#define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1007#define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1008#define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1009#define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1010
1011static void
1012worklist_insert(head, item, locked)
1013	struct workhead *head;
1014	struct worklist *item;
1015	int locked;
1016{
1017
1018	if (locked)
1019		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1020	if (item->wk_state & ONWORKLIST)
1021		panic("worklist_insert: %p %s(0x%X) already on list",
1022		    item, TYPENAME(item->wk_type), item->wk_state);
1023	item->wk_state |= ONWORKLIST;
1024	LIST_INSERT_HEAD(head, item, wk_list);
1025}
1026
1027static void
1028worklist_remove(item, locked)
1029	struct worklist *item;
1030	int locked;
1031{
1032
1033	if (locked)
1034		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1035	if ((item->wk_state & ONWORKLIST) == 0)
1036		panic("worklist_remove: %p %s(0x%X) not on list",
1037		    item, TYPENAME(item->wk_type), item->wk_state);
1038	item->wk_state &= ~ONWORKLIST;
1039	LIST_REMOVE(item, wk_list);
1040}
1041#endif /* DEBUG */
1042
1043/*
1044 * Merge two jsegdeps keeping only the oldest one as newer references
1045 * can't be discarded until after older references.
1046 */
1047static inline struct jsegdep *
1048jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1049{
1050	struct jsegdep *swp;
1051
1052	if (two == NULL)
1053		return (one);
1054
1055	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1056		swp = one;
1057		one = two;
1058		two = swp;
1059	}
1060	WORKLIST_REMOVE(&two->jd_list);
1061	free_jsegdep(two);
1062
1063	return (one);
1064}
1065
1066/*
1067 * If two freedeps are compatible free one to reduce list size.
1068 */
1069static inline struct freedep *
1070freedep_merge(struct freedep *one, struct freedep *two)
1071{
1072	if (two == NULL)
1073		return (one);
1074
1075	if (one->fd_freework == two->fd_freework) {
1076		WORKLIST_REMOVE(&two->fd_list);
1077		free_freedep(two);
1078	}
1079	return (one);
1080}
1081
1082/*
1083 * Move journal work from one list to another.  Duplicate freedeps and
1084 * jsegdeps are coalesced to keep the lists as small as possible.
1085 */
1086static void
1087jwork_move(dst, src)
1088	struct workhead *dst;
1089	struct workhead *src;
1090{
1091	struct freedep *freedep;
1092	struct jsegdep *jsegdep;
1093	struct worklist *wkn;
1094	struct worklist *wk;
1095
1096	KASSERT(dst != src,
1097	    ("jwork_move: dst == src"));
1098	freedep = NULL;
1099	jsegdep = NULL;
1100	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1101		if (wk->wk_type == D_JSEGDEP)
1102			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1103		if (wk->wk_type == D_FREEDEP)
1104			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1105	}
1106
1107	while ((wk = LIST_FIRST(src)) != NULL) {
1108		WORKLIST_REMOVE(wk);
1109		WORKLIST_INSERT(dst, wk);
1110		if (wk->wk_type == D_JSEGDEP) {
1111			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1112			continue;
1113		}
1114		if (wk->wk_type == D_FREEDEP)
1115			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1116	}
1117}
1118
1119static void
1120jwork_insert(dst, jsegdep)
1121	struct workhead *dst;
1122	struct jsegdep *jsegdep;
1123{
1124	struct jsegdep *jsegdepn;
1125	struct worklist *wk;
1126
1127	LIST_FOREACH(wk, dst, wk_list)
1128		if (wk->wk_type == D_JSEGDEP)
1129			break;
1130	if (wk == NULL) {
1131		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1132		return;
1133	}
1134	jsegdepn = WK_JSEGDEP(wk);
1135	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1136		WORKLIST_REMOVE(wk);
1137		free_jsegdep(jsegdepn);
1138		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1139	} else
1140		free_jsegdep(jsegdep);
1141}
1142
1143/*
1144 * Routines for tracking and managing workitems.
1145 */
1146static	void workitem_free(struct worklist *, int);
1147static	void workitem_alloc(struct worklist *, int, struct mount *);
1148static	void workitem_reassign(struct worklist *, int);
1149
1150#define	WORKITEM_FREE(item, type) \
1151	workitem_free((struct worklist *)(item), (type))
1152#define	WORKITEM_REASSIGN(item, type) \
1153	workitem_reassign((struct worklist *)(item), (type))
1154
1155static void
1156workitem_free(item, type)
1157	struct worklist *item;
1158	int type;
1159{
1160	struct ufsmount *ump;
1161
1162#ifdef DEBUG
1163	if (item->wk_state & ONWORKLIST)
1164		panic("workitem_free: %s(0x%X) still on list",
1165		    TYPENAME(item->wk_type), item->wk_state);
1166	if (item->wk_type != type && type != D_NEWBLK)
1167		panic("workitem_free: type mismatch %s != %s",
1168		    TYPENAME(item->wk_type), TYPENAME(type));
1169#endif
1170	if (item->wk_state & IOWAITING)
1171		wakeup(item);
1172	ump = VFSTOUFS(item->wk_mp);
1173	LOCK_OWNED(ump);
1174	KASSERT(ump->softdep_deps > 0,
1175	    ("workitem_free: %s: softdep_deps going negative",
1176	    ump->um_fs->fs_fsmnt));
1177	if (--ump->softdep_deps == 0 && ump->softdep_req)
1178		wakeup(&ump->softdep_deps);
1179	KASSERT(dep_current[item->wk_type] > 0,
1180	    ("workitem_free: %s: dep_current[%s] going negative",
1181	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1182	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1183	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1184	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1185	atomic_subtract_long(&dep_current[item->wk_type], 1);
1186	ump->softdep_curdeps[item->wk_type] -= 1;
1187	free(item, DtoM(type));
1188}
1189
1190static void
1191workitem_alloc(item, type, mp)
1192	struct worklist *item;
1193	int type;
1194	struct mount *mp;
1195{
1196	struct ufsmount *ump;
1197
1198	item->wk_type = type;
1199	item->wk_mp = mp;
1200	item->wk_state = 0;
1201
1202	ump = VFSTOUFS(mp);
1203	ACQUIRE_GBLLOCK(&lk);
1204	dep_current[type]++;
1205	if (dep_current[type] > dep_highuse[type])
1206		dep_highuse[type] = dep_current[type];
1207	dep_total[type]++;
1208	FREE_GBLLOCK(&lk);
1209	ACQUIRE_LOCK(ump);
1210	ump->softdep_curdeps[type] += 1;
1211	ump->softdep_deps++;
1212	ump->softdep_accdeps++;
1213	FREE_LOCK(ump);
1214}
1215
1216static void
1217workitem_reassign(item, newtype)
1218	struct worklist *item;
1219	int newtype;
1220{
1221	struct ufsmount *ump;
1222
1223	ump = VFSTOUFS(item->wk_mp);
1224	LOCK_OWNED(ump);
1225	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1226	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1227	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1228	ump->softdep_curdeps[item->wk_type] -= 1;
1229	ump->softdep_curdeps[newtype] += 1;
1230	KASSERT(dep_current[item->wk_type] > 0,
1231	    ("workitem_reassign: %s: dep_current[%s] going negative",
1232	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1233	ACQUIRE_GBLLOCK(&lk);
1234	dep_current[newtype]++;
1235	dep_current[item->wk_type]--;
1236	if (dep_current[newtype] > dep_highuse[newtype])
1237		dep_highuse[newtype] = dep_current[newtype];
1238	dep_total[newtype]++;
1239	FREE_GBLLOCK(&lk);
1240	item->wk_type = newtype;
1241}
1242
1243/*
1244 * Workitem queue management
1245 */
1246static int max_softdeps;	/* maximum number of structs before slowdown */
1247static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1248static int proc_waiting;	/* tracks whether we have a timeout posted */
1249static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1250static struct callout softdep_callout;
1251static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1252static int req_clear_remove;	/* syncer process flush some freeblks */
1253static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1254
1255/*
1256 * runtime statistics
1257 */
1258static int stat_flush_threads;	/* number of softdep flushing threads */
1259static int stat_worklist_push;	/* number of worklist cleanups */
1260static int stat_blk_limit_push;	/* number of times block limit neared */
1261static int stat_ino_limit_push;	/* number of times inode limit neared */
1262static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1263static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1264static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1265static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1266static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1267static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1268static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1269static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1270static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1271static int stat_journal_min;	/* Times hit journal min threshold */
1272static int stat_journal_low;	/* Times hit journal low threshold */
1273static int stat_journal_wait;	/* Times blocked in jwait(). */
1274static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1275static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1276static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1277static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1278static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1279static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1280static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1281static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1282static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1283static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1284
1285SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1286    &max_softdeps, 0, "");
1287SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1288    &tickdelay, 0, "");
1289SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1290    &stat_flush_threads, 0, "");
1291SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1292    &stat_worklist_push, 0,"");
1293SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1294    &stat_blk_limit_push, 0,"");
1295SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1296    &stat_ino_limit_push, 0,"");
1297SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1298    &stat_blk_limit_hit, 0, "");
1299SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1300    &stat_ino_limit_hit, 0, "");
1301SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1302    &stat_sync_limit_hit, 0, "");
1303SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1304    &stat_indir_blk_ptrs, 0, "");
1305SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1306    &stat_inode_bitmap, 0, "");
1307SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1308    &stat_direct_blk_ptrs, 0, "");
1309SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1310    &stat_dir_entry, 0, "");
1311SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1312    &stat_jaddref, 0, "");
1313SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1314    &stat_jnewblk, 0, "");
1315SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1316    &stat_journal_low, 0, "");
1317SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1318    &stat_journal_min, 0, "");
1319SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1320    &stat_journal_wait, 0, "");
1321SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1322    &stat_jwait_filepage, 0, "");
1323SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1324    &stat_jwait_freeblks, 0, "");
1325SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1326    &stat_jwait_inode, 0, "");
1327SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1328    &stat_jwait_newblk, 0, "");
1329SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1330    &stat_cleanup_blkrequests, 0, "");
1331SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1332    &stat_cleanup_inorequests, 0, "");
1333SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1334    &stat_cleanup_high_delay, 0, "");
1335SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1336    &stat_cleanup_retries, 0, "");
1337SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1338    &stat_cleanup_failures, 0, "");
1339SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1340    &softdep_flushcache, 0, "");
1341SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1342    &stat_emptyjblocks, 0, "");
1343
1344SYSCTL_DECL(_vfs_ffs);
1345
1346/* Whether to recompute the summary at mount time */
1347static int compute_summary_at_mount = 0;
1348SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1349	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1350static int print_threads = 0;
1351SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1352    &print_threads, 0, "Notify flusher thread start/stop");
1353
1354/* List of all filesystems mounted with soft updates */
1355static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1356
1357/*
1358 * This function cleans the worklist for a filesystem.
1359 * Each filesystem running with soft dependencies gets its own
1360 * thread to run in this function. The thread is started up in
1361 * softdep_mount and shutdown in softdep_unmount. They show up
1362 * as part of the kernel "bufdaemon" process whose process
1363 * entry is available in bufdaemonproc.
1364 */
1365static int searchfailed;
1366extern struct proc *bufdaemonproc;
1367static void
1368softdep_flush(addr)
1369	void *addr;
1370{
1371	struct mount *mp;
1372	struct thread *td;
1373	struct ufsmount *ump;
1374
1375	td = curthread;
1376	td->td_pflags |= TDP_NORUNNINGBUF;
1377	mp = (struct mount *)addr;
1378	ump = VFSTOUFS(mp);
1379	atomic_add_int(&stat_flush_threads, 1);
1380	if (print_threads) {
1381		if (stat_flush_threads == 1)
1382			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1383			    bufdaemonproc->p_pid);
1384		printf("Start thread %s\n", td->td_name);
1385	}
1386	for (;;) {
1387		while (softdep_process_worklist(mp, 0) > 0 ||
1388		    (MOUNTEDSUJ(mp) &&
1389		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1390			kthread_suspend_check();
1391		ACQUIRE_LOCK(ump);
1392		if ((ump->softdep_flags & FLUSH_CLEANUP) == 0)
1393			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1394			    "sdflush", hz / 2);
1395		ump->softdep_flags &= ~FLUSH_CLEANUP;
1396		/*
1397		 * Check to see if we are done and need to exit.
1398		 */
1399		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1400			FREE_LOCK(ump);
1401			continue;
1402		}
1403		ump->softdep_flags &= ~FLUSH_EXIT;
1404		FREE_LOCK(ump);
1405		wakeup(&ump->softdep_flags);
1406		if (print_threads)
1407			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1408		atomic_subtract_int(&stat_flush_threads, 1);
1409		kthread_exit();
1410		panic("kthread_exit failed\n");
1411	}
1412}
1413
1414static void
1415worklist_speedup(mp)
1416	struct mount *mp;
1417{
1418	struct ufsmount *ump;
1419
1420	ump = VFSTOUFS(mp);
1421	LOCK_OWNED(ump);
1422	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) {
1423		ump->softdep_flags |= FLUSH_CLEANUP;
1424		if (ump->softdep_flushtd->td_wchan == &ump->softdep_flushtd)
1425			wakeup(&ump->softdep_flushtd);
1426	}
1427}
1428
1429static int
1430softdep_speedup(ump)
1431	struct ufsmount *ump;
1432{
1433	struct ufsmount *altump;
1434	struct mount_softdeps *sdp;
1435
1436	LOCK_OWNED(ump);
1437	worklist_speedup(ump->um_mountp);
1438	bd_speedup();
1439	/*
1440	 * If we have global shortages, then we need other
1441	 * filesystems to help with the cleanup. Here we wakeup a
1442	 * flusher thread for a filesystem that is over its fair
1443	 * share of resources.
1444	 */
1445	if (req_clear_inodedeps || req_clear_remove) {
1446		ACQUIRE_GBLLOCK(&lk);
1447		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1448			if ((altump = sdp->sd_ump) == ump)
1449				continue;
1450			if (((req_clear_inodedeps &&
1451			    altump->softdep_curdeps[D_INODEDEP] >
1452			    max_softdeps / stat_flush_threads) ||
1453			    (req_clear_remove &&
1454			    altump->softdep_curdeps[D_DIRREM] >
1455			    (max_softdeps / 2) / stat_flush_threads)) &&
1456			    TRY_ACQUIRE_LOCK(altump))
1457				break;
1458		}
1459		if (sdp == NULL) {
1460			searchfailed++;
1461			FREE_GBLLOCK(&lk);
1462		} else {
1463			/*
1464			 * Move to the end of the list so we pick a
1465			 * different one on out next try.
1466			 */
1467			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1468			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1469			FREE_GBLLOCK(&lk);
1470			if ((altump->softdep_flags &
1471			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) {
1472				altump->softdep_flags |= FLUSH_CLEANUP;
1473				altump->um_softdep->sd_cleanups++;
1474				if (altump->softdep_flushtd->td_wchan ==
1475				    &altump->softdep_flushtd) {
1476					wakeup(&altump->softdep_flushtd);
1477				}
1478			}
1479			FREE_LOCK(altump);
1480		}
1481	}
1482	return (speedup_syncer());
1483}
1484
1485/*
1486 * Add an item to the end of the work queue.
1487 * This routine requires that the lock be held.
1488 * This is the only routine that adds items to the list.
1489 * The following routine is the only one that removes items
1490 * and does so in order from first to last.
1491 */
1492
1493#define	WK_HEAD		0x0001	/* Add to HEAD. */
1494#define	WK_NODELAY	0x0002	/* Process immediately. */
1495
1496static void
1497add_to_worklist(wk, flags)
1498	struct worklist *wk;
1499	int flags;
1500{
1501	struct ufsmount *ump;
1502
1503	ump = VFSTOUFS(wk->wk_mp);
1504	LOCK_OWNED(ump);
1505	if (wk->wk_state & ONWORKLIST)
1506		panic("add_to_worklist: %s(0x%X) already on list",
1507		    TYPENAME(wk->wk_type), wk->wk_state);
1508	wk->wk_state |= ONWORKLIST;
1509	if (ump->softdep_on_worklist == 0) {
1510		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1511		ump->softdep_worklist_tail = wk;
1512	} else if (flags & WK_HEAD) {
1513		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1514	} else {
1515		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1516		ump->softdep_worklist_tail = wk;
1517	}
1518	ump->softdep_on_worklist += 1;
1519	if (flags & WK_NODELAY)
1520		worklist_speedup(wk->wk_mp);
1521}
1522
1523/*
1524 * Remove the item to be processed. If we are removing the last
1525 * item on the list, we need to recalculate the tail pointer.
1526 */
1527static void
1528remove_from_worklist(wk)
1529	struct worklist *wk;
1530{
1531	struct ufsmount *ump;
1532
1533	ump = VFSTOUFS(wk->wk_mp);
1534	WORKLIST_REMOVE(wk);
1535	if (ump->softdep_worklist_tail == wk)
1536		ump->softdep_worklist_tail =
1537		    (struct worklist *)wk->wk_list.le_prev;
1538	ump->softdep_on_worklist -= 1;
1539}
1540
1541static void
1542wake_worklist(wk)
1543	struct worklist *wk;
1544{
1545	if (wk->wk_state & IOWAITING) {
1546		wk->wk_state &= ~IOWAITING;
1547		wakeup(wk);
1548	}
1549}
1550
1551static void
1552wait_worklist(wk, wmesg)
1553	struct worklist *wk;
1554	char *wmesg;
1555{
1556	struct ufsmount *ump;
1557
1558	ump = VFSTOUFS(wk->wk_mp);
1559	wk->wk_state |= IOWAITING;
1560	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1561}
1562
1563/*
1564 * Process that runs once per second to handle items in the background queue.
1565 *
1566 * Note that we ensure that everything is done in the order in which they
1567 * appear in the queue. The code below depends on this property to ensure
1568 * that blocks of a file are freed before the inode itself is freed. This
1569 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1570 * until all the old ones have been purged from the dependency lists.
1571 */
1572static int
1573softdep_process_worklist(mp, full)
1574	struct mount *mp;
1575	int full;
1576{
1577	int cnt, matchcnt;
1578	struct ufsmount *ump;
1579	long starttime;
1580
1581	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1582	if (MOUNTEDSOFTDEP(mp) == 0)
1583		return (0);
1584	matchcnt = 0;
1585	ump = VFSTOUFS(mp);
1586	ACQUIRE_LOCK(ump);
1587	starttime = time_second;
1588	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1589	check_clear_deps(mp);
1590	while (ump->softdep_on_worklist > 0) {
1591		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1592			break;
1593		else
1594			matchcnt += cnt;
1595		check_clear_deps(mp);
1596		/*
1597		 * We do not generally want to stop for buffer space, but if
1598		 * we are really being a buffer hog, we will stop and wait.
1599		 */
1600		if (should_yield()) {
1601			FREE_LOCK(ump);
1602			kern_yield(PRI_USER);
1603			bwillwrite();
1604			ACQUIRE_LOCK(ump);
1605		}
1606		/*
1607		 * Never allow processing to run for more than one
1608		 * second. This gives the syncer thread the opportunity
1609		 * to pause if appropriate.
1610		 */
1611		if (!full && starttime != time_second)
1612			break;
1613	}
1614	if (full == 0)
1615		journal_unsuspend(ump);
1616	FREE_LOCK(ump);
1617	return (matchcnt);
1618}
1619
1620/*
1621 * Process all removes associated with a vnode if we are running out of
1622 * journal space.  Any other process which attempts to flush these will
1623 * be unable as we have the vnodes locked.
1624 */
1625static void
1626process_removes(vp)
1627	struct vnode *vp;
1628{
1629	struct inodedep *inodedep;
1630	struct dirrem *dirrem;
1631	struct ufsmount *ump;
1632	struct mount *mp;
1633	ino_t inum;
1634
1635	mp = vp->v_mount;
1636	ump = VFSTOUFS(mp);
1637	LOCK_OWNED(ump);
1638	inum = VTOI(vp)->i_number;
1639	for (;;) {
1640top:
1641		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1642			return;
1643		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1644			/*
1645			 * If another thread is trying to lock this vnode
1646			 * it will fail but we must wait for it to do so
1647			 * before we can proceed.
1648			 */
1649			if (dirrem->dm_state & INPROGRESS) {
1650				wait_worklist(&dirrem->dm_list, "pwrwait");
1651				goto top;
1652			}
1653			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1654			    (COMPLETE | ONWORKLIST))
1655				break;
1656		}
1657		if (dirrem == NULL)
1658			return;
1659		remove_from_worklist(&dirrem->dm_list);
1660		FREE_LOCK(ump);
1661		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1662			panic("process_removes: suspended filesystem");
1663		handle_workitem_remove(dirrem, 0);
1664		vn_finished_secondary_write(mp);
1665		ACQUIRE_LOCK(ump);
1666	}
1667}
1668
1669/*
1670 * Process all truncations associated with a vnode if we are running out
1671 * of journal space.  This is called when the vnode lock is already held
1672 * and no other process can clear the truncation.  This function returns
1673 * a value greater than zero if it did any work.
1674 */
1675static void
1676process_truncates(vp)
1677	struct vnode *vp;
1678{
1679	struct inodedep *inodedep;
1680	struct freeblks *freeblks;
1681	struct ufsmount *ump;
1682	struct mount *mp;
1683	ino_t inum;
1684	int cgwait;
1685
1686	mp = vp->v_mount;
1687	ump = VFSTOUFS(mp);
1688	LOCK_OWNED(ump);
1689	inum = VTOI(vp)->i_number;
1690	for (;;) {
1691		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1692			return;
1693		cgwait = 0;
1694		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1695			/* Journal entries not yet written.  */
1696			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1697				jwait(&LIST_FIRST(
1698				    &freeblks->fb_jblkdephd)->jb_list,
1699				    MNT_WAIT);
1700				break;
1701			}
1702			/* Another thread is executing this item. */
1703			if (freeblks->fb_state & INPROGRESS) {
1704				wait_worklist(&freeblks->fb_list, "ptrwait");
1705				break;
1706			}
1707			/* Freeblks is waiting on a inode write. */
1708			if ((freeblks->fb_state & COMPLETE) == 0) {
1709				FREE_LOCK(ump);
1710				ffs_update(vp, 1);
1711				ACQUIRE_LOCK(ump);
1712				break;
1713			}
1714			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1715			    (ALLCOMPLETE | ONWORKLIST)) {
1716				remove_from_worklist(&freeblks->fb_list);
1717				freeblks->fb_state |= INPROGRESS;
1718				FREE_LOCK(ump);
1719				if (vn_start_secondary_write(NULL, &mp,
1720				    V_NOWAIT))
1721					panic("process_truncates: "
1722					    "suspended filesystem");
1723				handle_workitem_freeblocks(freeblks, 0);
1724				vn_finished_secondary_write(mp);
1725				ACQUIRE_LOCK(ump);
1726				break;
1727			}
1728			if (freeblks->fb_cgwait)
1729				cgwait++;
1730		}
1731		if (cgwait) {
1732			FREE_LOCK(ump);
1733			sync_cgs(mp, MNT_WAIT);
1734			ffs_sync_snap(mp, MNT_WAIT);
1735			ACQUIRE_LOCK(ump);
1736			continue;
1737		}
1738		if (freeblks == NULL)
1739			break;
1740	}
1741	return;
1742}
1743
1744/*
1745 * Process one item on the worklist.
1746 */
1747static int
1748process_worklist_item(mp, target, flags)
1749	struct mount *mp;
1750	int target;
1751	int flags;
1752{
1753	struct worklist sentinel;
1754	struct worklist *wk;
1755	struct ufsmount *ump;
1756	int matchcnt;
1757	int error;
1758
1759	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1760	/*
1761	 * If we are being called because of a process doing a
1762	 * copy-on-write, then it is not safe to write as we may
1763	 * recurse into the copy-on-write routine.
1764	 */
1765	if (curthread->td_pflags & TDP_COWINPROGRESS)
1766		return (-1);
1767	PHOLD(curproc);	/* Don't let the stack go away. */
1768	ump = VFSTOUFS(mp);
1769	LOCK_OWNED(ump);
1770	matchcnt = 0;
1771	sentinel.wk_mp = NULL;
1772	sentinel.wk_type = D_SENTINEL;
1773	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1774	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1775	    wk = LIST_NEXT(&sentinel, wk_list)) {
1776		if (wk->wk_type == D_SENTINEL) {
1777			LIST_REMOVE(&sentinel, wk_list);
1778			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1779			continue;
1780		}
1781		if (wk->wk_state & INPROGRESS)
1782			panic("process_worklist_item: %p already in progress.",
1783			    wk);
1784		wk->wk_state |= INPROGRESS;
1785		remove_from_worklist(wk);
1786		FREE_LOCK(ump);
1787		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1788			panic("process_worklist_item: suspended filesystem");
1789		switch (wk->wk_type) {
1790		case D_DIRREM:
1791			/* removal of a directory entry */
1792			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1793			break;
1794
1795		case D_FREEBLKS:
1796			/* releasing blocks and/or fragments from a file */
1797			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1798			    flags);
1799			break;
1800
1801		case D_FREEFRAG:
1802			/* releasing a fragment when replaced as a file grows */
1803			handle_workitem_freefrag(WK_FREEFRAG(wk));
1804			error = 0;
1805			break;
1806
1807		case D_FREEFILE:
1808			/* releasing an inode when its link count drops to 0 */
1809			handle_workitem_freefile(WK_FREEFILE(wk));
1810			error = 0;
1811			break;
1812
1813		default:
1814			panic("%s_process_worklist: Unknown type %s",
1815			    "softdep", TYPENAME(wk->wk_type));
1816			/* NOTREACHED */
1817		}
1818		vn_finished_secondary_write(mp);
1819		ACQUIRE_LOCK(ump);
1820		if (error == 0) {
1821			if (++matchcnt == target)
1822				break;
1823			continue;
1824		}
1825		/*
1826		 * We have to retry the worklist item later.  Wake up any
1827		 * waiters who may be able to complete it immediately and
1828		 * add the item back to the head so we don't try to execute
1829		 * it again.
1830		 */
1831		wk->wk_state &= ~INPROGRESS;
1832		wake_worklist(wk);
1833		add_to_worklist(wk, WK_HEAD);
1834	}
1835	LIST_REMOVE(&sentinel, wk_list);
1836	/* Sentinal could've become the tail from remove_from_worklist. */
1837	if (ump->softdep_worklist_tail == &sentinel)
1838		ump->softdep_worklist_tail =
1839		    (struct worklist *)sentinel.wk_list.le_prev;
1840	PRELE(curproc);
1841	return (matchcnt);
1842}
1843
1844/*
1845 * Move dependencies from one buffer to another.
1846 */
1847int
1848softdep_move_dependencies(oldbp, newbp)
1849	struct buf *oldbp;
1850	struct buf *newbp;
1851{
1852	struct worklist *wk, *wktail;
1853	struct ufsmount *ump;
1854	int dirty;
1855
1856	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1857		return (0);
1858	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1859	    ("softdep_move_dependencies called on non-softdep filesystem"));
1860	dirty = 0;
1861	wktail = NULL;
1862	ump = VFSTOUFS(wk->wk_mp);
1863	ACQUIRE_LOCK(ump);
1864	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1865		LIST_REMOVE(wk, wk_list);
1866		if (wk->wk_type == D_BMSAFEMAP &&
1867		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1868			dirty = 1;
1869		if (wktail == 0)
1870			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1871		else
1872			LIST_INSERT_AFTER(wktail, wk, wk_list);
1873		wktail = wk;
1874	}
1875	FREE_LOCK(ump);
1876
1877	return (dirty);
1878}
1879
1880/*
1881 * Purge the work list of all items associated with a particular mount point.
1882 */
1883int
1884softdep_flushworklist(oldmnt, countp, td)
1885	struct mount *oldmnt;
1886	int *countp;
1887	struct thread *td;
1888{
1889	struct vnode *devvp;
1890	int count, error = 0;
1891	struct ufsmount *ump;
1892
1893	/*
1894	 * Alternately flush the block device associated with the mount
1895	 * point and process any dependencies that the flushing
1896	 * creates. We continue until no more worklist dependencies
1897	 * are found.
1898	 */
1899	*countp = 0;
1900	ump = VFSTOUFS(oldmnt);
1901	devvp = ump->um_devvp;
1902	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1903		*countp += count;
1904		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1905		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1906		VOP_UNLOCK(devvp, 0);
1907		if (error)
1908			break;
1909	}
1910	return (error);
1911}
1912
1913static int
1914softdep_waitidle(struct mount *mp, int flags __unused)
1915{
1916	struct ufsmount *ump;
1917	int error;
1918	int i;
1919
1920	ump = VFSTOUFS(mp);
1921	ACQUIRE_LOCK(ump);
1922	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1923		ump->softdep_req = 1;
1924		KASSERT((flags & FORCECLOSE) == 0 ||
1925		    ump->softdep_on_worklist == 0,
1926		    ("softdep_waitidle: work added after flush"));
1927		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM, "softdeps", 1);
1928	}
1929	ump->softdep_req = 0;
1930	FREE_LOCK(ump);
1931	error = 0;
1932	if (i == 10) {
1933		error = EBUSY;
1934		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1935		    mp);
1936	}
1937
1938	return (error);
1939}
1940
1941/*
1942 * Flush all vnodes and worklist items associated with a specified mount point.
1943 */
1944int
1945softdep_flushfiles(oldmnt, flags, td)
1946	struct mount *oldmnt;
1947	int flags;
1948	struct thread *td;
1949{
1950#ifdef QUOTA
1951	struct ufsmount *ump;
1952	int i;
1953#endif
1954	int error, early, depcount, loopcnt, retry_flush_count, retry;
1955	int morework;
1956
1957	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1958	    ("softdep_flushfiles called on non-softdep filesystem"));
1959	loopcnt = 10;
1960	retry_flush_count = 3;
1961retry_flush:
1962	error = 0;
1963
1964	/*
1965	 * Alternately flush the vnodes associated with the mount
1966	 * point and process any dependencies that the flushing
1967	 * creates. In theory, this loop can happen at most twice,
1968	 * but we give it a few extra just to be sure.
1969	 */
1970	for (; loopcnt > 0; loopcnt--) {
1971		/*
1972		 * Do another flush in case any vnodes were brought in
1973		 * as part of the cleanup operations.
1974		 */
1975		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1976		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1977		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1978			break;
1979		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1980		    depcount == 0)
1981			break;
1982	}
1983	/*
1984	 * If we are unmounting then it is an error to fail. If we
1985	 * are simply trying to downgrade to read-only, then filesystem
1986	 * activity can keep us busy forever, so we just fail with EBUSY.
1987	 */
1988	if (loopcnt == 0) {
1989		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1990			panic("softdep_flushfiles: looping");
1991		error = EBUSY;
1992	}
1993	if (!error)
1994		error = softdep_waitidle(oldmnt, flags);
1995	if (!error) {
1996		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1997			retry = 0;
1998			MNT_ILOCK(oldmnt);
1999			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
2000			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
2001			morework = oldmnt->mnt_nvnodelistsize > 0;
2002#ifdef QUOTA
2003			ump = VFSTOUFS(oldmnt);
2004			UFS_LOCK(ump);
2005			for (i = 0; i < MAXQUOTAS; i++) {
2006				if (ump->um_quotas[i] != NULLVP)
2007					morework = 1;
2008			}
2009			UFS_UNLOCK(ump);
2010#endif
2011			if (morework) {
2012				if (--retry_flush_count > 0) {
2013					retry = 1;
2014					loopcnt = 3;
2015				} else
2016					error = EBUSY;
2017			}
2018			MNT_IUNLOCK(oldmnt);
2019			if (retry)
2020				goto retry_flush;
2021		}
2022	}
2023	return (error);
2024}
2025
2026/*
2027 * Structure hashing.
2028 *
2029 * There are four types of structures that can be looked up:
2030 *	1) pagedep structures identified by mount point, inode number,
2031 *	   and logical block.
2032 *	2) inodedep structures identified by mount point and inode number.
2033 *	3) newblk structures identified by mount point and
2034 *	   physical block number.
2035 *	4) bmsafemap structures identified by mount point and
2036 *	   cylinder group number.
2037 *
2038 * The "pagedep" and "inodedep" dependency structures are hashed
2039 * separately from the file blocks and inodes to which they correspond.
2040 * This separation helps when the in-memory copy of an inode or
2041 * file block must be replaced. It also obviates the need to access
2042 * an inode or file page when simply updating (or de-allocating)
2043 * dependency structures. Lookup of newblk structures is needed to
2044 * find newly allocated blocks when trying to associate them with
2045 * their allocdirect or allocindir structure.
2046 *
2047 * The lookup routines optionally create and hash a new instance when
2048 * an existing entry is not found. The bmsafemap lookup routine always
2049 * allocates a new structure if an existing one is not found.
2050 */
2051#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2052#define NODELAY		0x0002	/* cannot do background work */
2053
2054/*
2055 * Structures and routines associated with pagedep caching.
2056 */
2057#define	PAGEDEP_HASH(ump, inum, lbn) \
2058	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2059
2060static int
2061pagedep_find(pagedephd, ino, lbn, pagedeppp)
2062	struct pagedep_hashhead *pagedephd;
2063	ino_t ino;
2064	ufs_lbn_t lbn;
2065	struct pagedep **pagedeppp;
2066{
2067	struct pagedep *pagedep;
2068
2069	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2070		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2071			*pagedeppp = pagedep;
2072			return (1);
2073		}
2074	}
2075	*pagedeppp = NULL;
2076	return (0);
2077}
2078/*
2079 * Look up a pagedep. Return 1 if found, 0 otherwise.
2080 * If not found, allocate if DEPALLOC flag is passed.
2081 * Found or allocated entry is returned in pagedeppp.
2082 * This routine must be called with splbio interrupts blocked.
2083 */
2084static int
2085pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2086	struct mount *mp;
2087	struct buf *bp;
2088	ino_t ino;
2089	ufs_lbn_t lbn;
2090	int flags;
2091	struct pagedep **pagedeppp;
2092{
2093	struct pagedep *pagedep;
2094	struct pagedep_hashhead *pagedephd;
2095	struct worklist *wk;
2096	struct ufsmount *ump;
2097	int ret;
2098	int i;
2099
2100	ump = VFSTOUFS(mp);
2101	LOCK_OWNED(ump);
2102	if (bp) {
2103		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2104			if (wk->wk_type == D_PAGEDEP) {
2105				*pagedeppp = WK_PAGEDEP(wk);
2106				return (1);
2107			}
2108		}
2109	}
2110	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2111	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2112	if (ret) {
2113		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2114			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2115		return (1);
2116	}
2117	if ((flags & DEPALLOC) == 0)
2118		return (0);
2119	FREE_LOCK(ump);
2120	pagedep = malloc(sizeof(struct pagedep),
2121	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2122	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2123	ACQUIRE_LOCK(ump);
2124	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2125	if (*pagedeppp) {
2126		/*
2127		 * This should never happen since we only create pagedeps
2128		 * with the vnode lock held.  Could be an assert.
2129		 */
2130		WORKITEM_FREE(pagedep, D_PAGEDEP);
2131		return (ret);
2132	}
2133	pagedep->pd_ino = ino;
2134	pagedep->pd_lbn = lbn;
2135	LIST_INIT(&pagedep->pd_dirremhd);
2136	LIST_INIT(&pagedep->pd_pendinghd);
2137	for (i = 0; i < DAHASHSZ; i++)
2138		LIST_INIT(&pagedep->pd_diraddhd[i]);
2139	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2140	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2141	*pagedeppp = pagedep;
2142	return (0);
2143}
2144
2145/*
2146 * Structures and routines associated with inodedep caching.
2147 */
2148#define	INODEDEP_HASH(ump, inum) \
2149      (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2150
2151static int
2152inodedep_find(inodedephd, inum, inodedeppp)
2153	struct inodedep_hashhead *inodedephd;
2154	ino_t inum;
2155	struct inodedep **inodedeppp;
2156{
2157	struct inodedep *inodedep;
2158
2159	LIST_FOREACH(inodedep, inodedephd, id_hash)
2160		if (inum == inodedep->id_ino)
2161			break;
2162	if (inodedep) {
2163		*inodedeppp = inodedep;
2164		return (1);
2165	}
2166	*inodedeppp = NULL;
2167
2168	return (0);
2169}
2170/*
2171 * Look up an inodedep. Return 1 if found, 0 if not found.
2172 * If not found, allocate if DEPALLOC flag is passed.
2173 * Found or allocated entry is returned in inodedeppp.
2174 * This routine must be called with splbio interrupts blocked.
2175 */
2176static int
2177inodedep_lookup(mp, inum, flags, inodedeppp)
2178	struct mount *mp;
2179	ino_t inum;
2180	int flags;
2181	struct inodedep **inodedeppp;
2182{
2183	struct inodedep *inodedep;
2184	struct inodedep_hashhead *inodedephd;
2185	struct ufsmount *ump;
2186	struct fs *fs;
2187
2188	ump = VFSTOUFS(mp);
2189	LOCK_OWNED(ump);
2190	fs = ump->um_fs;
2191	inodedephd = INODEDEP_HASH(ump, inum);
2192
2193	if (inodedep_find(inodedephd, inum, inodedeppp))
2194		return (1);
2195	if ((flags & DEPALLOC) == 0)
2196		return (0);
2197	/*
2198	 * If the system is over its limit and our filesystem is
2199	 * responsible for more than our share of that usage and
2200	 * we are not in a rush, request some inodedep cleanup.
2201	 */
2202	while (dep_current[D_INODEDEP] > max_softdeps &&
2203	    (flags & NODELAY) == 0 &&
2204	    ump->softdep_curdeps[D_INODEDEP] >
2205	    max_softdeps / stat_flush_threads)
2206		request_cleanup(mp, FLUSH_INODES);
2207	FREE_LOCK(ump);
2208	inodedep = malloc(sizeof(struct inodedep),
2209		M_INODEDEP, M_SOFTDEP_FLAGS);
2210	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2211	ACQUIRE_LOCK(ump);
2212	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2213		WORKITEM_FREE(inodedep, D_INODEDEP);
2214		return (1);
2215	}
2216	inodedep->id_fs = fs;
2217	inodedep->id_ino = inum;
2218	inodedep->id_state = ALLCOMPLETE;
2219	inodedep->id_nlinkdelta = 0;
2220	inodedep->id_savedino1 = NULL;
2221	inodedep->id_savedsize = -1;
2222	inodedep->id_savedextsize = -1;
2223	inodedep->id_savednlink = -1;
2224	inodedep->id_bmsafemap = NULL;
2225	inodedep->id_mkdiradd = NULL;
2226	LIST_INIT(&inodedep->id_dirremhd);
2227	LIST_INIT(&inodedep->id_pendinghd);
2228	LIST_INIT(&inodedep->id_inowait);
2229	LIST_INIT(&inodedep->id_bufwait);
2230	TAILQ_INIT(&inodedep->id_inoreflst);
2231	TAILQ_INIT(&inodedep->id_inoupdt);
2232	TAILQ_INIT(&inodedep->id_newinoupdt);
2233	TAILQ_INIT(&inodedep->id_extupdt);
2234	TAILQ_INIT(&inodedep->id_newextupdt);
2235	TAILQ_INIT(&inodedep->id_freeblklst);
2236	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2237	*inodedeppp = inodedep;
2238	return (0);
2239}
2240
2241/*
2242 * Structures and routines associated with newblk caching.
2243 */
2244#define	NEWBLK_HASH(ump, inum) \
2245	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2246
2247static int
2248newblk_find(newblkhd, newblkno, flags, newblkpp)
2249	struct newblk_hashhead *newblkhd;
2250	ufs2_daddr_t newblkno;
2251	int flags;
2252	struct newblk **newblkpp;
2253{
2254	struct newblk *newblk;
2255
2256	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2257		if (newblkno != newblk->nb_newblkno)
2258			continue;
2259		/*
2260		 * If we're creating a new dependency don't match those that
2261		 * have already been converted to allocdirects.  This is for
2262		 * a frag extend.
2263		 */
2264		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2265			continue;
2266		break;
2267	}
2268	if (newblk) {
2269		*newblkpp = newblk;
2270		return (1);
2271	}
2272	*newblkpp = NULL;
2273	return (0);
2274}
2275
2276/*
2277 * Look up a newblk. Return 1 if found, 0 if not found.
2278 * If not found, allocate if DEPALLOC flag is passed.
2279 * Found or allocated entry is returned in newblkpp.
2280 */
2281static int
2282newblk_lookup(mp, newblkno, flags, newblkpp)
2283	struct mount *mp;
2284	ufs2_daddr_t newblkno;
2285	int flags;
2286	struct newblk **newblkpp;
2287{
2288	struct newblk *newblk;
2289	struct newblk_hashhead *newblkhd;
2290	struct ufsmount *ump;
2291
2292	ump = VFSTOUFS(mp);
2293	LOCK_OWNED(ump);
2294	newblkhd = NEWBLK_HASH(ump, newblkno);
2295	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2296		return (1);
2297	if ((flags & DEPALLOC) == 0)
2298		return (0);
2299	FREE_LOCK(ump);
2300	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2301	    M_SOFTDEP_FLAGS | M_ZERO);
2302	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2303	ACQUIRE_LOCK(ump);
2304	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2305		WORKITEM_FREE(newblk, D_NEWBLK);
2306		return (1);
2307	}
2308	newblk->nb_freefrag = NULL;
2309	LIST_INIT(&newblk->nb_indirdeps);
2310	LIST_INIT(&newblk->nb_newdirblk);
2311	LIST_INIT(&newblk->nb_jwork);
2312	newblk->nb_state = ATTACHED;
2313	newblk->nb_newblkno = newblkno;
2314	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2315	*newblkpp = newblk;
2316	return (0);
2317}
2318
2319/*
2320 * Structures and routines associated with freed indirect block caching.
2321 */
2322#define	INDIR_HASH(ump, blkno) \
2323	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2324
2325/*
2326 * Lookup an indirect block in the indir hash table.  The freework is
2327 * removed and potentially freed.  The caller must do a blocking journal
2328 * write before writing to the blkno.
2329 */
2330static int
2331indirblk_lookup(mp, blkno)
2332	struct mount *mp;
2333	ufs2_daddr_t blkno;
2334{
2335	struct freework *freework;
2336	struct indir_hashhead *wkhd;
2337	struct ufsmount *ump;
2338
2339	ump = VFSTOUFS(mp);
2340	wkhd = INDIR_HASH(ump, blkno);
2341	TAILQ_FOREACH(freework, wkhd, fw_next) {
2342		if (freework->fw_blkno != blkno)
2343			continue;
2344		indirblk_remove(freework);
2345		return (1);
2346	}
2347	return (0);
2348}
2349
2350/*
2351 * Insert an indirect block represented by freework into the indirblk
2352 * hash table so that it may prevent the block from being re-used prior
2353 * to the journal being written.
2354 */
2355static void
2356indirblk_insert(freework)
2357	struct freework *freework;
2358{
2359	struct jblocks *jblocks;
2360	struct jseg *jseg;
2361	struct ufsmount *ump;
2362
2363	ump = VFSTOUFS(freework->fw_list.wk_mp);
2364	jblocks = ump->softdep_jblocks;
2365	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2366	if (jseg == NULL)
2367		return;
2368
2369	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2370	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2371	    fw_next);
2372	freework->fw_state &= ~DEPCOMPLETE;
2373}
2374
2375static void
2376indirblk_remove(freework)
2377	struct freework *freework;
2378{
2379	struct ufsmount *ump;
2380
2381	ump = VFSTOUFS(freework->fw_list.wk_mp);
2382	LIST_REMOVE(freework, fw_segs);
2383	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2384	freework->fw_state |= DEPCOMPLETE;
2385	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2386		WORKITEM_FREE(freework, D_FREEWORK);
2387}
2388
2389/*
2390 * Executed during filesystem system initialization before
2391 * mounting any filesystems.
2392 */
2393void
2394softdep_initialize()
2395{
2396
2397	TAILQ_INIT(&softdepmounts);
2398	max_softdeps = desiredvnodes * 4;
2399
2400	/* initialise bioops hack */
2401	bioops.io_start = softdep_disk_io_initiation;
2402	bioops.io_complete = softdep_disk_write_complete;
2403	bioops.io_deallocate = softdep_deallocate_dependencies;
2404	bioops.io_countdeps = softdep_count_dependencies;
2405
2406	/* Initialize the callout with an mtx. */
2407	callout_init_mtx(&softdep_callout, &lk, 0);
2408}
2409
2410/*
2411 * Executed after all filesystems have been unmounted during
2412 * filesystem module unload.
2413 */
2414void
2415softdep_uninitialize()
2416{
2417
2418	/* clear bioops hack */
2419	bioops.io_start = NULL;
2420	bioops.io_complete = NULL;
2421	bioops.io_deallocate = NULL;
2422	bioops.io_countdeps = NULL;
2423
2424	callout_drain(&softdep_callout);
2425}
2426
2427/*
2428 * Called at mount time to notify the dependency code that a
2429 * filesystem wishes to use it.
2430 */
2431int
2432softdep_mount(devvp, mp, fs, cred)
2433	struct vnode *devvp;
2434	struct mount *mp;
2435	struct fs *fs;
2436	struct ucred *cred;
2437{
2438	struct csum_total cstotal;
2439	struct mount_softdeps *sdp;
2440	struct ufsmount *ump;
2441	struct cg *cgp;
2442	struct buf *bp;
2443	int i, error, cyl;
2444
2445	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2446	    M_WAITOK | M_ZERO);
2447	MNT_ILOCK(mp);
2448	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2449	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2450		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2451			MNTK_SOFTDEP | MNTK_NOASYNC;
2452	}
2453	ump = VFSTOUFS(mp);
2454	ump->um_softdep = sdp;
2455	MNT_IUNLOCK(mp);
2456	rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock");
2457	sdp->sd_ump = ump;
2458	LIST_INIT(&ump->softdep_workitem_pending);
2459	LIST_INIT(&ump->softdep_journal_pending);
2460	TAILQ_INIT(&ump->softdep_unlinked);
2461	LIST_INIT(&ump->softdep_dirtycg);
2462	ump->softdep_worklist_tail = NULL;
2463	ump->softdep_on_worklist = 0;
2464	ump->softdep_deps = 0;
2465	LIST_INIT(&ump->softdep_mkdirlisthd);
2466	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2467	    &ump->pagedep_hash_size);
2468	ump->pagedep_nextclean = 0;
2469	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2470	    &ump->inodedep_hash_size);
2471	ump->inodedep_nextclean = 0;
2472	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2473	    &ump->newblk_hash_size);
2474	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2475	    &ump->bmsafemap_hash_size);
2476	i = 1 << (ffs(desiredvnodes / 10) - 1);
2477	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2478	    M_FREEWORK, M_WAITOK);
2479	ump->indir_hash_size = i - 1;
2480	for (i = 0; i <= ump->indir_hash_size; i++)
2481		TAILQ_INIT(&ump->indir_hashtbl[i]);
2482	ACQUIRE_GBLLOCK(&lk);
2483	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2484	FREE_GBLLOCK(&lk);
2485	if ((fs->fs_flags & FS_SUJ) &&
2486	    (error = journal_mount(mp, fs, cred)) != 0) {
2487		printf("Failed to start journal: %d\n", error);
2488		softdep_unmount(mp);
2489		return (error);
2490	}
2491	/*
2492	 * Start our flushing thread in the bufdaemon process.
2493	 */
2494	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2495	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2496	    mp->mnt_stat.f_mntonname);
2497	/*
2498	 * When doing soft updates, the counters in the
2499	 * superblock may have gotten out of sync. Recomputation
2500	 * can take a long time and can be deferred for background
2501	 * fsck.  However, the old behavior of scanning the cylinder
2502	 * groups and recalculating them at mount time is available
2503	 * by setting vfs.ffs.compute_summary_at_mount to one.
2504	 */
2505	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2506		return (0);
2507	bzero(&cstotal, sizeof cstotal);
2508	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2509		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2510		    fs->fs_cgsize, cred, &bp)) != 0) {
2511			brelse(bp);
2512			softdep_unmount(mp);
2513			return (error);
2514		}
2515		cgp = (struct cg *)bp->b_data;
2516		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2517		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2518		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2519		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2520		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2521		brelse(bp);
2522	}
2523#ifdef DEBUG
2524	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2525		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2526#endif
2527	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2528	return (0);
2529}
2530
2531void
2532softdep_unmount(mp)
2533	struct mount *mp;
2534{
2535	struct ufsmount *ump;
2536#ifdef INVARIANTS
2537	int i;
2538#endif
2539
2540	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2541	    ("softdep_unmount called on non-softdep filesystem"));
2542	ump = VFSTOUFS(mp);
2543	MNT_ILOCK(mp);
2544	mp->mnt_flag &= ~MNT_SOFTDEP;
2545	if (MOUNTEDSUJ(mp) == 0) {
2546		MNT_IUNLOCK(mp);
2547	} else {
2548		mp->mnt_flag &= ~MNT_SUJ;
2549		MNT_IUNLOCK(mp);
2550		journal_unmount(ump);
2551	}
2552	/*
2553	 * Shut down our flushing thread. Check for NULL is if
2554	 * softdep_mount errors out before the thread has been created.
2555	 */
2556	if (ump->softdep_flushtd != NULL) {
2557		ACQUIRE_LOCK(ump);
2558		ump->softdep_flags |= FLUSH_EXIT;
2559		wakeup(&ump->softdep_flushtd);
2560		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2561		    "sdwait", 0);
2562		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2563		    ("Thread shutdown failed"));
2564	}
2565	/*
2566	 * Free up our resources.
2567	 */
2568	ACQUIRE_GBLLOCK(&lk);
2569	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2570	FREE_GBLLOCK(&lk);
2571	rw_destroy(LOCK_PTR(ump));
2572	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2573	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2574	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2575	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2576	    ump->bmsafemap_hash_size);
2577	free(ump->indir_hashtbl, M_FREEWORK);
2578#ifdef INVARIANTS
2579	for (i = 0; i <= D_LAST; i++)
2580		KASSERT(ump->softdep_curdeps[i] == 0,
2581		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2582		    TYPENAME(i), ump->softdep_curdeps[i]));
2583#endif
2584	free(ump->um_softdep, M_MOUNTDATA);
2585}
2586
2587static struct jblocks *
2588jblocks_create(void)
2589{
2590	struct jblocks *jblocks;
2591
2592	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2593	TAILQ_INIT(&jblocks->jb_segs);
2594	jblocks->jb_avail = 10;
2595	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2596	    M_JBLOCKS, M_WAITOK | M_ZERO);
2597
2598	return (jblocks);
2599}
2600
2601static ufs2_daddr_t
2602jblocks_alloc(jblocks, bytes, actual)
2603	struct jblocks *jblocks;
2604	int bytes;
2605	int *actual;
2606{
2607	ufs2_daddr_t daddr;
2608	struct jextent *jext;
2609	int freecnt;
2610	int blocks;
2611
2612	blocks = bytes / DEV_BSIZE;
2613	jext = &jblocks->jb_extent[jblocks->jb_head];
2614	freecnt = jext->je_blocks - jblocks->jb_off;
2615	if (freecnt == 0) {
2616		jblocks->jb_off = 0;
2617		if (++jblocks->jb_head > jblocks->jb_used)
2618			jblocks->jb_head = 0;
2619		jext = &jblocks->jb_extent[jblocks->jb_head];
2620		freecnt = jext->je_blocks;
2621	}
2622	if (freecnt > blocks)
2623		freecnt = blocks;
2624	*actual = freecnt * DEV_BSIZE;
2625	daddr = jext->je_daddr + jblocks->jb_off;
2626	jblocks->jb_off += freecnt;
2627	jblocks->jb_free -= freecnt;
2628
2629	return (daddr);
2630}
2631
2632static void
2633jblocks_free(jblocks, mp, bytes)
2634	struct jblocks *jblocks;
2635	struct mount *mp;
2636	int bytes;
2637{
2638
2639	LOCK_OWNED(VFSTOUFS(mp));
2640	jblocks->jb_free += bytes / DEV_BSIZE;
2641	if (jblocks->jb_suspended)
2642		worklist_speedup(mp);
2643	wakeup(jblocks);
2644}
2645
2646static void
2647jblocks_destroy(jblocks)
2648	struct jblocks *jblocks;
2649{
2650
2651	if (jblocks->jb_extent)
2652		free(jblocks->jb_extent, M_JBLOCKS);
2653	free(jblocks, M_JBLOCKS);
2654}
2655
2656static void
2657jblocks_add(jblocks, daddr, blocks)
2658	struct jblocks *jblocks;
2659	ufs2_daddr_t daddr;
2660	int blocks;
2661{
2662	struct jextent *jext;
2663
2664	jblocks->jb_blocks += blocks;
2665	jblocks->jb_free += blocks;
2666	jext = &jblocks->jb_extent[jblocks->jb_used];
2667	/* Adding the first block. */
2668	if (jext->je_daddr == 0) {
2669		jext->je_daddr = daddr;
2670		jext->je_blocks = blocks;
2671		return;
2672	}
2673	/* Extending the last extent. */
2674	if (jext->je_daddr + jext->je_blocks == daddr) {
2675		jext->je_blocks += blocks;
2676		return;
2677	}
2678	/* Adding a new extent. */
2679	if (++jblocks->jb_used == jblocks->jb_avail) {
2680		jblocks->jb_avail *= 2;
2681		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2682		    M_JBLOCKS, M_WAITOK | M_ZERO);
2683		memcpy(jext, jblocks->jb_extent,
2684		    sizeof(struct jextent) * jblocks->jb_used);
2685		free(jblocks->jb_extent, M_JBLOCKS);
2686		jblocks->jb_extent = jext;
2687	}
2688	jext = &jblocks->jb_extent[jblocks->jb_used];
2689	jext->je_daddr = daddr;
2690	jext->je_blocks = blocks;
2691	return;
2692}
2693
2694int
2695softdep_journal_lookup(mp, vpp)
2696	struct mount *mp;
2697	struct vnode **vpp;
2698{
2699	struct componentname cnp;
2700	struct vnode *dvp;
2701	ino_t sujournal;
2702	int error;
2703
2704	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2705	if (error)
2706		return (error);
2707	bzero(&cnp, sizeof(cnp));
2708	cnp.cn_nameiop = LOOKUP;
2709	cnp.cn_flags = ISLASTCN;
2710	cnp.cn_thread = curthread;
2711	cnp.cn_cred = curthread->td_ucred;
2712	cnp.cn_pnbuf = SUJ_FILE;
2713	cnp.cn_nameptr = SUJ_FILE;
2714	cnp.cn_namelen = strlen(SUJ_FILE);
2715	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2716	vput(dvp);
2717	if (error != 0)
2718		return (error);
2719	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2720	return (error);
2721}
2722
2723/*
2724 * Open and verify the journal file.
2725 */
2726static int
2727journal_mount(mp, fs, cred)
2728	struct mount *mp;
2729	struct fs *fs;
2730	struct ucred *cred;
2731{
2732	struct jblocks *jblocks;
2733	struct ufsmount *ump;
2734	struct vnode *vp;
2735	struct inode *ip;
2736	ufs2_daddr_t blkno;
2737	int bcount;
2738	int error;
2739	int i;
2740
2741	ump = VFSTOUFS(mp);
2742	ump->softdep_journal_tail = NULL;
2743	ump->softdep_on_journal = 0;
2744	ump->softdep_accdeps = 0;
2745	ump->softdep_req = 0;
2746	ump->softdep_jblocks = NULL;
2747	error = softdep_journal_lookup(mp, &vp);
2748	if (error != 0) {
2749		printf("Failed to find journal.  Use tunefs to create one\n");
2750		return (error);
2751	}
2752	ip = VTOI(vp);
2753	if (ip->i_size < SUJ_MIN) {
2754		error = ENOSPC;
2755		goto out;
2756	}
2757	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2758	jblocks = jblocks_create();
2759	for (i = 0; i < bcount; i++) {
2760		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2761		if (error)
2762			break;
2763		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2764	}
2765	if (error) {
2766		jblocks_destroy(jblocks);
2767		goto out;
2768	}
2769	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2770	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2771	ump->softdep_jblocks = jblocks;
2772out:
2773	if (error == 0) {
2774		MNT_ILOCK(mp);
2775		mp->mnt_flag |= MNT_SUJ;
2776		mp->mnt_flag &= ~MNT_SOFTDEP;
2777		MNT_IUNLOCK(mp);
2778		/*
2779		 * Only validate the journal contents if the
2780		 * filesystem is clean, otherwise we write the logs
2781		 * but they'll never be used.  If the filesystem was
2782		 * still dirty when we mounted it the journal is
2783		 * invalid and a new journal can only be valid if it
2784		 * starts from a clean mount.
2785		 */
2786		if (fs->fs_clean) {
2787			DIP_SET(ip, i_modrev, fs->fs_mtime);
2788			ip->i_flags |= IN_MODIFIED;
2789			ffs_update(vp, 1);
2790		}
2791	}
2792	vput(vp);
2793	return (error);
2794}
2795
2796static void
2797journal_unmount(ump)
2798	struct ufsmount *ump;
2799{
2800
2801	if (ump->softdep_jblocks)
2802		jblocks_destroy(ump->softdep_jblocks);
2803	ump->softdep_jblocks = NULL;
2804}
2805
2806/*
2807 * Called when a journal record is ready to be written.  Space is allocated
2808 * and the journal entry is created when the journal is flushed to stable
2809 * store.
2810 */
2811static void
2812add_to_journal(wk)
2813	struct worklist *wk;
2814{
2815	struct ufsmount *ump;
2816
2817	ump = VFSTOUFS(wk->wk_mp);
2818	LOCK_OWNED(ump);
2819	if (wk->wk_state & ONWORKLIST)
2820		panic("add_to_journal: %s(0x%X) already on list",
2821		    TYPENAME(wk->wk_type), wk->wk_state);
2822	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2823	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2824		ump->softdep_jblocks->jb_age = ticks;
2825		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2826	} else
2827		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2828	ump->softdep_journal_tail = wk;
2829	ump->softdep_on_journal += 1;
2830}
2831
2832/*
2833 * Remove an arbitrary item for the journal worklist maintain the tail
2834 * pointer.  This happens when a new operation obviates the need to
2835 * journal an old operation.
2836 */
2837static void
2838remove_from_journal(wk)
2839	struct worklist *wk;
2840{
2841	struct ufsmount *ump;
2842
2843	ump = VFSTOUFS(wk->wk_mp);
2844	LOCK_OWNED(ump);
2845#ifdef SUJ_DEBUG
2846	{
2847		struct worklist *wkn;
2848
2849		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2850			if (wkn == wk)
2851				break;
2852		if (wkn == NULL)
2853			panic("remove_from_journal: %p is not in journal", wk);
2854	}
2855#endif
2856	/*
2857	 * We emulate a TAILQ to save space in most structures which do not
2858	 * require TAILQ semantics.  Here we must update the tail position
2859	 * when removing the tail which is not the final entry. This works
2860	 * only if the worklist linkage are at the beginning of the structure.
2861	 */
2862	if (ump->softdep_journal_tail == wk)
2863		ump->softdep_journal_tail =
2864		    (struct worklist *)wk->wk_list.le_prev;
2865
2866	WORKLIST_REMOVE(wk);
2867	ump->softdep_on_journal -= 1;
2868}
2869
2870/*
2871 * Check for journal space as well as dependency limits so the prelink
2872 * code can throttle both journaled and non-journaled filesystems.
2873 * Threshold is 0 for low and 1 for min.
2874 */
2875static int
2876journal_space(ump, thresh)
2877	struct ufsmount *ump;
2878	int thresh;
2879{
2880	struct jblocks *jblocks;
2881	int limit, avail;
2882
2883	jblocks = ump->softdep_jblocks;
2884	if (jblocks == NULL)
2885		return (1);
2886	/*
2887	 * We use a tighter restriction here to prevent request_cleanup()
2888	 * running in threads from running into locks we currently hold.
2889	 * We have to be over the limit and our filesystem has to be
2890	 * responsible for more than our share of that usage.
2891	 */
2892	limit = (max_softdeps / 10) * 9;
2893	if (dep_current[D_INODEDEP] > limit &&
2894	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2895		return (0);
2896	if (thresh)
2897		thresh = jblocks->jb_min;
2898	else
2899		thresh = jblocks->jb_low;
2900	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2901	avail = jblocks->jb_free - avail;
2902
2903	return (avail > thresh);
2904}
2905
2906static void
2907journal_suspend(ump)
2908	struct ufsmount *ump;
2909{
2910	struct jblocks *jblocks;
2911	struct mount *mp;
2912
2913	mp = UFSTOVFS(ump);
2914	jblocks = ump->softdep_jblocks;
2915	MNT_ILOCK(mp);
2916	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2917		stat_journal_min++;
2918		mp->mnt_kern_flag |= MNTK_SUSPEND;
2919		mp->mnt_susp_owner = ump->softdep_flushtd;
2920	}
2921	jblocks->jb_suspended = 1;
2922	MNT_IUNLOCK(mp);
2923}
2924
2925static int
2926journal_unsuspend(struct ufsmount *ump)
2927{
2928	struct jblocks *jblocks;
2929	struct mount *mp;
2930
2931	mp = UFSTOVFS(ump);
2932	jblocks = ump->softdep_jblocks;
2933
2934	if (jblocks != NULL && jblocks->jb_suspended &&
2935	    journal_space(ump, jblocks->jb_min)) {
2936		jblocks->jb_suspended = 0;
2937		FREE_LOCK(ump);
2938		mp->mnt_susp_owner = curthread;
2939		vfs_write_resume(mp, 0);
2940		ACQUIRE_LOCK(ump);
2941		return (1);
2942	}
2943	return (0);
2944}
2945
2946/*
2947 * Called before any allocation function to be certain that there is
2948 * sufficient space in the journal prior to creating any new records.
2949 * Since in the case of block allocation we may have multiple locked
2950 * buffers at the time of the actual allocation we can not block
2951 * when the journal records are created.  Doing so would create a deadlock
2952 * if any of these buffers needed to be flushed to reclaim space.  Instead
2953 * we require a sufficiently large amount of available space such that
2954 * each thread in the system could have passed this allocation check and
2955 * still have sufficient free space.  With 20% of a minimum journal size
2956 * of 1MB we have 6553 records available.
2957 */
2958int
2959softdep_prealloc(vp, waitok)
2960	struct vnode *vp;
2961	int waitok;
2962{
2963	struct ufsmount *ump;
2964
2965	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
2966	    ("softdep_prealloc called on non-softdep filesystem"));
2967	/*
2968	 * Nothing to do if we are not running journaled soft updates.
2969	 * If we currently hold the snapshot lock, we must avoid handling
2970	 * other resources that could cause deadlock.
2971	 */
2972	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2973		return (0);
2974	ump = VFSTOUFS(vp->v_mount);
2975	ACQUIRE_LOCK(ump);
2976	if (journal_space(ump, 0)) {
2977		FREE_LOCK(ump);
2978		return (0);
2979	}
2980	stat_journal_low++;
2981	FREE_LOCK(ump);
2982	if (waitok == MNT_NOWAIT)
2983		return (ENOSPC);
2984	/*
2985	 * Attempt to sync this vnode once to flush any journal
2986	 * work attached to it.
2987	 */
2988	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2989		ffs_syncvnode(vp, waitok, 0);
2990	ACQUIRE_LOCK(ump);
2991	process_removes(vp);
2992	process_truncates(vp);
2993	if (journal_space(ump, 0) == 0) {
2994		softdep_speedup(ump);
2995		if (journal_space(ump, 1) == 0)
2996			journal_suspend(ump);
2997	}
2998	FREE_LOCK(ump);
2999
3000	return (0);
3001}
3002
3003/*
3004 * Before adjusting a link count on a vnode verify that we have sufficient
3005 * journal space.  If not, process operations that depend on the currently
3006 * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3007 * and softdep flush threads can not acquire these locks to reclaim space.
3008 */
3009static void
3010softdep_prelink(dvp, vp)
3011	struct vnode *dvp;
3012	struct vnode *vp;
3013{
3014	struct ufsmount *ump;
3015
3016	ump = VFSTOUFS(dvp->v_mount);
3017	LOCK_OWNED(ump);
3018	/*
3019	 * Nothing to do if we have sufficient journal space.
3020	 * If we currently hold the snapshot lock, we must avoid
3021	 * handling other resources that could cause deadlock.
3022	 */
3023	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3024		return;
3025	stat_journal_low++;
3026	FREE_LOCK(ump);
3027	if (vp)
3028		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3029	ffs_syncvnode(dvp, MNT_WAIT, 0);
3030	ACQUIRE_LOCK(ump);
3031	/* Process vp before dvp as it may create .. removes. */
3032	if (vp) {
3033		process_removes(vp);
3034		process_truncates(vp);
3035	}
3036	process_removes(dvp);
3037	process_truncates(dvp);
3038	softdep_speedup(ump);
3039	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3040	if (journal_space(ump, 0) == 0) {
3041		softdep_speedup(ump);
3042		if (journal_space(ump, 1) == 0)
3043			journal_suspend(ump);
3044	}
3045}
3046
3047static void
3048jseg_write(ump, jseg, data)
3049	struct ufsmount *ump;
3050	struct jseg *jseg;
3051	uint8_t *data;
3052{
3053	struct jsegrec *rec;
3054
3055	rec = (struct jsegrec *)data;
3056	rec->jsr_seq = jseg->js_seq;
3057	rec->jsr_oldest = jseg->js_oldseq;
3058	rec->jsr_cnt = jseg->js_cnt;
3059	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3060	rec->jsr_crc = 0;
3061	rec->jsr_time = ump->um_fs->fs_mtime;
3062}
3063
3064static inline void
3065inoref_write(inoref, jseg, rec)
3066	struct inoref *inoref;
3067	struct jseg *jseg;
3068	struct jrefrec *rec;
3069{
3070
3071	inoref->if_jsegdep->jd_seg = jseg;
3072	rec->jr_ino = inoref->if_ino;
3073	rec->jr_parent = inoref->if_parent;
3074	rec->jr_nlink = inoref->if_nlink;
3075	rec->jr_mode = inoref->if_mode;
3076	rec->jr_diroff = inoref->if_diroff;
3077}
3078
3079static void
3080jaddref_write(jaddref, jseg, data)
3081	struct jaddref *jaddref;
3082	struct jseg *jseg;
3083	uint8_t *data;
3084{
3085	struct jrefrec *rec;
3086
3087	rec = (struct jrefrec *)data;
3088	rec->jr_op = JOP_ADDREF;
3089	inoref_write(&jaddref->ja_ref, jseg, rec);
3090}
3091
3092static void
3093jremref_write(jremref, jseg, data)
3094	struct jremref *jremref;
3095	struct jseg *jseg;
3096	uint8_t *data;
3097{
3098	struct jrefrec *rec;
3099
3100	rec = (struct jrefrec *)data;
3101	rec->jr_op = JOP_REMREF;
3102	inoref_write(&jremref->jr_ref, jseg, rec);
3103}
3104
3105static void
3106jmvref_write(jmvref, jseg, data)
3107	struct jmvref *jmvref;
3108	struct jseg *jseg;
3109	uint8_t *data;
3110{
3111	struct jmvrec *rec;
3112
3113	rec = (struct jmvrec *)data;
3114	rec->jm_op = JOP_MVREF;
3115	rec->jm_ino = jmvref->jm_ino;
3116	rec->jm_parent = jmvref->jm_parent;
3117	rec->jm_oldoff = jmvref->jm_oldoff;
3118	rec->jm_newoff = jmvref->jm_newoff;
3119}
3120
3121static void
3122jnewblk_write(jnewblk, jseg, data)
3123	struct jnewblk *jnewblk;
3124	struct jseg *jseg;
3125	uint8_t *data;
3126{
3127	struct jblkrec *rec;
3128
3129	jnewblk->jn_jsegdep->jd_seg = jseg;
3130	rec = (struct jblkrec *)data;
3131	rec->jb_op = JOP_NEWBLK;
3132	rec->jb_ino = jnewblk->jn_ino;
3133	rec->jb_blkno = jnewblk->jn_blkno;
3134	rec->jb_lbn = jnewblk->jn_lbn;
3135	rec->jb_frags = jnewblk->jn_frags;
3136	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3137}
3138
3139static void
3140jfreeblk_write(jfreeblk, jseg, data)
3141	struct jfreeblk *jfreeblk;
3142	struct jseg *jseg;
3143	uint8_t *data;
3144{
3145	struct jblkrec *rec;
3146
3147	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3148	rec = (struct jblkrec *)data;
3149	rec->jb_op = JOP_FREEBLK;
3150	rec->jb_ino = jfreeblk->jf_ino;
3151	rec->jb_blkno = jfreeblk->jf_blkno;
3152	rec->jb_lbn = jfreeblk->jf_lbn;
3153	rec->jb_frags = jfreeblk->jf_frags;
3154	rec->jb_oldfrags = 0;
3155}
3156
3157static void
3158jfreefrag_write(jfreefrag, jseg, data)
3159	struct jfreefrag *jfreefrag;
3160	struct jseg *jseg;
3161	uint8_t *data;
3162{
3163	struct jblkrec *rec;
3164
3165	jfreefrag->fr_jsegdep->jd_seg = jseg;
3166	rec = (struct jblkrec *)data;
3167	rec->jb_op = JOP_FREEBLK;
3168	rec->jb_ino = jfreefrag->fr_ino;
3169	rec->jb_blkno = jfreefrag->fr_blkno;
3170	rec->jb_lbn = jfreefrag->fr_lbn;
3171	rec->jb_frags = jfreefrag->fr_frags;
3172	rec->jb_oldfrags = 0;
3173}
3174
3175static void
3176jtrunc_write(jtrunc, jseg, data)
3177	struct jtrunc *jtrunc;
3178	struct jseg *jseg;
3179	uint8_t *data;
3180{
3181	struct jtrncrec *rec;
3182
3183	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3184	rec = (struct jtrncrec *)data;
3185	rec->jt_op = JOP_TRUNC;
3186	rec->jt_ino = jtrunc->jt_ino;
3187	rec->jt_size = jtrunc->jt_size;
3188	rec->jt_extsize = jtrunc->jt_extsize;
3189}
3190
3191static void
3192jfsync_write(jfsync, jseg, data)
3193	struct jfsync *jfsync;
3194	struct jseg *jseg;
3195	uint8_t *data;
3196{
3197	struct jtrncrec *rec;
3198
3199	rec = (struct jtrncrec *)data;
3200	rec->jt_op = JOP_SYNC;
3201	rec->jt_ino = jfsync->jfs_ino;
3202	rec->jt_size = jfsync->jfs_size;
3203	rec->jt_extsize = jfsync->jfs_extsize;
3204}
3205
3206static void
3207softdep_flushjournal(mp)
3208	struct mount *mp;
3209{
3210	struct jblocks *jblocks;
3211	struct ufsmount *ump;
3212
3213	if (MOUNTEDSUJ(mp) == 0)
3214		return;
3215	ump = VFSTOUFS(mp);
3216	jblocks = ump->softdep_jblocks;
3217	ACQUIRE_LOCK(ump);
3218	while (ump->softdep_on_journal) {
3219		jblocks->jb_needseg = 1;
3220		softdep_process_journal(mp, NULL, MNT_WAIT);
3221	}
3222	FREE_LOCK(ump);
3223}
3224
3225static void softdep_synchronize_completed(struct bio *);
3226static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3227
3228static void
3229softdep_synchronize_completed(bp)
3230        struct bio *bp;
3231{
3232	struct jseg *oldest;
3233	struct jseg *jseg;
3234	struct ufsmount *ump;
3235
3236	/*
3237	 * caller1 marks the last segment written before we issued the
3238	 * synchronize cache.
3239	 */
3240	jseg = bp->bio_caller1;
3241	if (jseg == NULL) {
3242		g_destroy_bio(bp);
3243		return;
3244	}
3245	ump = VFSTOUFS(jseg->js_list.wk_mp);
3246	ACQUIRE_LOCK(ump);
3247	oldest = NULL;
3248	/*
3249	 * Mark all the journal entries waiting on the synchronize cache
3250	 * as completed so they may continue on.
3251	 */
3252	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3253		jseg->js_state |= COMPLETE;
3254		oldest = jseg;
3255		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3256	}
3257	/*
3258	 * Restart deferred journal entry processing from the oldest
3259	 * completed jseg.
3260	 */
3261	if (oldest)
3262		complete_jsegs(oldest);
3263
3264	FREE_LOCK(ump);
3265	g_destroy_bio(bp);
3266}
3267
3268/*
3269 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3270 * barriers.  The journal must be written prior to any blocks that depend
3271 * on it and the journal can not be released until the blocks have be
3272 * written.  This code handles both barriers simultaneously.
3273 */
3274static void
3275softdep_synchronize(bp, ump, caller1)
3276	struct bio *bp;
3277	struct ufsmount *ump;
3278	void *caller1;
3279{
3280
3281	bp->bio_cmd = BIO_FLUSH;
3282	bp->bio_flags |= BIO_ORDERED;
3283	bp->bio_data = NULL;
3284	bp->bio_offset = ump->um_cp->provider->mediasize;
3285	bp->bio_length = 0;
3286	bp->bio_done = softdep_synchronize_completed;
3287	bp->bio_caller1 = caller1;
3288	g_io_request(bp,
3289	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3290}
3291
3292/*
3293 * Flush some journal records to disk.
3294 */
3295static void
3296softdep_process_journal(mp, needwk, flags)
3297	struct mount *mp;
3298	struct worklist *needwk;
3299	int flags;
3300{
3301	struct jblocks *jblocks;
3302	struct ufsmount *ump;
3303	struct worklist *wk;
3304	struct jseg *jseg;
3305	struct buf *bp;
3306	struct bio *bio;
3307	uint8_t *data;
3308	struct fs *fs;
3309	int shouldflush;
3310	int segwritten;
3311	int jrecmin;	/* Minimum records per block. */
3312	int jrecmax;	/* Maximum records per block. */
3313	int size;
3314	int cnt;
3315	int off;
3316	int devbsize;
3317
3318	if (MOUNTEDSUJ(mp) == 0)
3319		return;
3320	shouldflush = softdep_flushcache;
3321	bio = NULL;
3322	jseg = NULL;
3323	ump = VFSTOUFS(mp);
3324	LOCK_OWNED(ump);
3325	fs = ump->um_fs;
3326	jblocks = ump->softdep_jblocks;
3327	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3328	/*
3329	 * We write anywhere between a disk block and fs block.  The upper
3330	 * bound is picked to prevent buffer cache fragmentation and limit
3331	 * processing time per I/O.
3332	 */
3333	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3334	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3335	segwritten = 0;
3336	for (;;) {
3337		cnt = ump->softdep_on_journal;
3338		/*
3339		 * Criteria for writing a segment:
3340		 * 1) We have a full block.
3341		 * 2) We're called from jwait() and haven't found the
3342		 *    journal item yet.
3343		 * 3) Always write if needseg is set.
3344		 * 4) If we are called from process_worklist and have
3345		 *    not yet written anything we write a partial block
3346		 *    to enforce a 1 second maximum latency on journal
3347		 *    entries.
3348		 */
3349		if (cnt < (jrecmax - 1) && needwk == NULL &&
3350		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3351			break;
3352		cnt++;
3353		/*
3354		 * Verify some free journal space.  softdep_prealloc() should
3355		 * guarantee that we don't run out so this is indicative of
3356		 * a problem with the flow control.  Try to recover
3357		 * gracefully in any event.
3358		 */
3359		while (jblocks->jb_free == 0) {
3360			if (flags != MNT_WAIT)
3361				break;
3362			printf("softdep: Out of journal space!\n");
3363			softdep_speedup(ump);
3364			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3365		}
3366		FREE_LOCK(ump);
3367		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3368		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3369		LIST_INIT(&jseg->js_entries);
3370		LIST_INIT(&jseg->js_indirs);
3371		jseg->js_state = ATTACHED;
3372		if (shouldflush == 0)
3373			jseg->js_state |= COMPLETE;
3374		else if (bio == NULL)
3375			bio = g_alloc_bio();
3376		jseg->js_jblocks = jblocks;
3377		bp = geteblk(fs->fs_bsize, 0);
3378		ACQUIRE_LOCK(ump);
3379		/*
3380		 * If there was a race while we were allocating the block
3381		 * and jseg the entry we care about was likely written.
3382		 * We bail out in both the WAIT and NOWAIT case and assume
3383		 * the caller will loop if the entry it cares about is
3384		 * not written.
3385		 */
3386		cnt = ump->softdep_on_journal;
3387		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3388			bp->b_flags |= B_INVAL | B_NOCACHE;
3389			WORKITEM_FREE(jseg, D_JSEG);
3390			FREE_LOCK(ump);
3391			brelse(bp);
3392			ACQUIRE_LOCK(ump);
3393			break;
3394		}
3395		/*
3396		 * Calculate the disk block size required for the available
3397		 * records rounded to the min size.
3398		 */
3399		if (cnt == 0)
3400			size = devbsize;
3401		else if (cnt < jrecmax)
3402			size = howmany(cnt, jrecmin) * devbsize;
3403		else
3404			size = fs->fs_bsize;
3405		/*
3406		 * Allocate a disk block for this journal data and account
3407		 * for truncation of the requested size if enough contiguous
3408		 * space was not available.
3409		 */
3410		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3411		bp->b_lblkno = bp->b_blkno;
3412		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3413		bp->b_bcount = size;
3414		bp->b_flags &= ~B_INVAL;
3415		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3416		/*
3417		 * Initialize our jseg with cnt records.  Assign the next
3418		 * sequence number to it and link it in-order.
3419		 */
3420		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3421		jseg->js_buf = bp;
3422		jseg->js_cnt = cnt;
3423		jseg->js_refs = cnt + 1;	/* Self ref. */
3424		jseg->js_size = size;
3425		jseg->js_seq = jblocks->jb_nextseq++;
3426		if (jblocks->jb_oldestseg == NULL)
3427			jblocks->jb_oldestseg = jseg;
3428		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3429		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3430		if (jblocks->jb_writeseg == NULL)
3431			jblocks->jb_writeseg = jseg;
3432		/*
3433		 * Start filling in records from the pending list.
3434		 */
3435		data = bp->b_data;
3436		off = 0;
3437
3438		/*
3439		 * Always put a header on the first block.
3440		 * XXX As with below, there might not be a chance to get
3441		 * into the loop.  Ensure that something valid is written.
3442		 */
3443		jseg_write(ump, jseg, data);
3444		off += JREC_SIZE;
3445		data = bp->b_data + off;
3446
3447		/*
3448		 * XXX Something is wrong here.  There's no work to do,
3449		 * but we need to perform and I/O and allow it to complete
3450		 * anyways.
3451		 */
3452		if (LIST_EMPTY(&ump->softdep_journal_pending))
3453			stat_emptyjblocks++;
3454
3455		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3456		    != NULL) {
3457			if (cnt == 0)
3458				break;
3459			/* Place a segment header on every device block. */
3460			if ((off % devbsize) == 0) {
3461				jseg_write(ump, jseg, data);
3462				off += JREC_SIZE;
3463				data = bp->b_data + off;
3464			}
3465			if (wk == needwk)
3466				needwk = NULL;
3467			remove_from_journal(wk);
3468			wk->wk_state |= INPROGRESS;
3469			WORKLIST_INSERT(&jseg->js_entries, wk);
3470			switch (wk->wk_type) {
3471			case D_JADDREF:
3472				jaddref_write(WK_JADDREF(wk), jseg, data);
3473				break;
3474			case D_JREMREF:
3475				jremref_write(WK_JREMREF(wk), jseg, data);
3476				break;
3477			case D_JMVREF:
3478				jmvref_write(WK_JMVREF(wk), jseg, data);
3479				break;
3480			case D_JNEWBLK:
3481				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3482				break;
3483			case D_JFREEBLK:
3484				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3485				break;
3486			case D_JFREEFRAG:
3487				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3488				break;
3489			case D_JTRUNC:
3490				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3491				break;
3492			case D_JFSYNC:
3493				jfsync_write(WK_JFSYNC(wk), jseg, data);
3494				break;
3495			default:
3496				panic("process_journal: Unknown type %s",
3497				    TYPENAME(wk->wk_type));
3498				/* NOTREACHED */
3499			}
3500			off += JREC_SIZE;
3501			data = bp->b_data + off;
3502			cnt--;
3503		}
3504
3505		/* Clear any remaining space so we don't leak kernel data */
3506		if (size > off)
3507			bzero(data, size - off);
3508
3509		/*
3510		 * Write this one buffer and continue.
3511		 */
3512		segwritten = 1;
3513		jblocks->jb_needseg = 0;
3514		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3515		FREE_LOCK(ump);
3516		pbgetvp(ump->um_devvp, bp);
3517		/*
3518		 * We only do the blocking wait once we find the journal
3519		 * entry we're looking for.
3520		 */
3521		if (needwk == NULL && flags == MNT_WAIT)
3522			bwrite(bp);
3523		else
3524			bawrite(bp);
3525		ACQUIRE_LOCK(ump);
3526	}
3527	/*
3528	 * If we wrote a segment issue a synchronize cache so the journal
3529	 * is reflected on disk before the data is written.  Since reclaiming
3530	 * journal space also requires writing a journal record this
3531	 * process also enforces a barrier before reclamation.
3532	 */
3533	if (segwritten && shouldflush) {
3534		softdep_synchronize(bio, ump,
3535		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3536	} else if (bio)
3537		g_destroy_bio(bio);
3538	/*
3539	 * If we've suspended the filesystem because we ran out of journal
3540	 * space either try to sync it here to make some progress or
3541	 * unsuspend it if we already have.
3542	 */
3543	if (flags == 0 && jblocks->jb_suspended) {
3544		if (journal_unsuspend(ump))
3545			return;
3546		FREE_LOCK(ump);
3547		VFS_SYNC(mp, MNT_NOWAIT);
3548		ffs_sbupdate(ump, MNT_WAIT, 0);
3549		ACQUIRE_LOCK(ump);
3550	}
3551}
3552
3553/*
3554 * Complete a jseg, allowing all dependencies awaiting journal writes
3555 * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3556 * structures so that the journal segment can be freed to reclaim space.
3557 */
3558static void
3559complete_jseg(jseg)
3560	struct jseg *jseg;
3561{
3562	struct worklist *wk;
3563	struct jmvref *jmvref;
3564	int waiting;
3565#ifdef INVARIANTS
3566	int i = 0;
3567#endif
3568
3569	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3570		WORKLIST_REMOVE(wk);
3571		waiting = wk->wk_state & IOWAITING;
3572		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3573		wk->wk_state |= COMPLETE;
3574		KASSERT(i++ < jseg->js_cnt,
3575		    ("handle_written_jseg: overflow %d >= %d",
3576		    i - 1, jseg->js_cnt));
3577		switch (wk->wk_type) {
3578		case D_JADDREF:
3579			handle_written_jaddref(WK_JADDREF(wk));
3580			break;
3581		case D_JREMREF:
3582			handle_written_jremref(WK_JREMREF(wk));
3583			break;
3584		case D_JMVREF:
3585			rele_jseg(jseg);	/* No jsegdep. */
3586			jmvref = WK_JMVREF(wk);
3587			LIST_REMOVE(jmvref, jm_deps);
3588			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3589				free_pagedep(jmvref->jm_pagedep);
3590			WORKITEM_FREE(jmvref, D_JMVREF);
3591			break;
3592		case D_JNEWBLK:
3593			handle_written_jnewblk(WK_JNEWBLK(wk));
3594			break;
3595		case D_JFREEBLK:
3596			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3597			break;
3598		case D_JTRUNC:
3599			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3600			break;
3601		case D_JFSYNC:
3602			rele_jseg(jseg);	/* No jsegdep. */
3603			WORKITEM_FREE(wk, D_JFSYNC);
3604			break;
3605		case D_JFREEFRAG:
3606			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3607			break;
3608		default:
3609			panic("handle_written_jseg: Unknown type %s",
3610			    TYPENAME(wk->wk_type));
3611			/* NOTREACHED */
3612		}
3613		if (waiting)
3614			wakeup(wk);
3615	}
3616	/* Release the self reference so the structure may be freed. */
3617	rele_jseg(jseg);
3618}
3619
3620/*
3621 * Determine which jsegs are ready for completion processing.  Waits for
3622 * synchronize cache to complete as well as forcing in-order completion
3623 * of journal entries.
3624 */
3625static void
3626complete_jsegs(jseg)
3627	struct jseg *jseg;
3628{
3629	struct jblocks *jblocks;
3630	struct jseg *jsegn;
3631
3632	jblocks = jseg->js_jblocks;
3633	/*
3634	 * Don't allow out of order completions.  If this isn't the first
3635	 * block wait for it to write before we're done.
3636	 */
3637	if (jseg != jblocks->jb_writeseg)
3638		return;
3639	/* Iterate through available jsegs processing their entries. */
3640	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3641		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3642		jsegn = TAILQ_NEXT(jseg, js_next);
3643		complete_jseg(jseg);
3644		jseg = jsegn;
3645	}
3646	jblocks->jb_writeseg = jseg;
3647	/*
3648	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3649	 */
3650	free_jsegs(jblocks);
3651}
3652
3653/*
3654 * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3655 * the final completions.
3656 */
3657static void
3658handle_written_jseg(jseg, bp)
3659	struct jseg *jseg;
3660	struct buf *bp;
3661{
3662
3663	if (jseg->js_refs == 0)
3664		panic("handle_written_jseg: No self-reference on %p", jseg);
3665	jseg->js_state |= DEPCOMPLETE;
3666	/*
3667	 * We'll never need this buffer again, set flags so it will be
3668	 * discarded.
3669	 */
3670	bp->b_flags |= B_INVAL | B_NOCACHE;
3671	pbrelvp(bp);
3672	complete_jsegs(jseg);
3673}
3674
3675static inline struct jsegdep *
3676inoref_jseg(inoref)
3677	struct inoref *inoref;
3678{
3679	struct jsegdep *jsegdep;
3680
3681	jsegdep = inoref->if_jsegdep;
3682	inoref->if_jsegdep = NULL;
3683
3684	return (jsegdep);
3685}
3686
3687/*
3688 * Called once a jremref has made it to stable store.  The jremref is marked
3689 * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3690 * for the jremref to complete will be awoken by free_jremref.
3691 */
3692static void
3693handle_written_jremref(jremref)
3694	struct jremref *jremref;
3695{
3696	struct inodedep *inodedep;
3697	struct jsegdep *jsegdep;
3698	struct dirrem *dirrem;
3699
3700	/* Grab the jsegdep. */
3701	jsegdep = inoref_jseg(&jremref->jr_ref);
3702	/*
3703	 * Remove us from the inoref list.
3704	 */
3705	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3706	    0, &inodedep) == 0)
3707		panic("handle_written_jremref: Lost inodedep");
3708	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3709	/*
3710	 * Complete the dirrem.
3711	 */
3712	dirrem = jremref->jr_dirrem;
3713	jremref->jr_dirrem = NULL;
3714	LIST_REMOVE(jremref, jr_deps);
3715	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3716	jwork_insert(&dirrem->dm_jwork, jsegdep);
3717	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3718	    (dirrem->dm_state & COMPLETE) != 0)
3719		add_to_worklist(&dirrem->dm_list, 0);
3720	free_jremref(jremref);
3721}
3722
3723/*
3724 * Called once a jaddref has made it to stable store.  The dependency is
3725 * marked complete and any dependent structures are added to the inode
3726 * bufwait list to be completed as soon as it is written.  If a bitmap write
3727 * depends on this entry we move the inode into the inodedephd of the
3728 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3729 */
3730static void
3731handle_written_jaddref(jaddref)
3732	struct jaddref *jaddref;
3733{
3734	struct jsegdep *jsegdep;
3735	struct inodedep *inodedep;
3736	struct diradd *diradd;
3737	struct mkdir *mkdir;
3738
3739	/* Grab the jsegdep. */
3740	jsegdep = inoref_jseg(&jaddref->ja_ref);
3741	mkdir = NULL;
3742	diradd = NULL;
3743	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3744	    0, &inodedep) == 0)
3745		panic("handle_written_jaddref: Lost inodedep.");
3746	if (jaddref->ja_diradd == NULL)
3747		panic("handle_written_jaddref: No dependency");
3748	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3749		diradd = jaddref->ja_diradd;
3750		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3751	} else if (jaddref->ja_state & MKDIR_PARENT) {
3752		mkdir = jaddref->ja_mkdir;
3753		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3754	} else if (jaddref->ja_state & MKDIR_BODY)
3755		mkdir = jaddref->ja_mkdir;
3756	else
3757		panic("handle_written_jaddref: Unknown dependency %p",
3758		    jaddref->ja_diradd);
3759	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3760	/*
3761	 * Remove us from the inode list.
3762	 */
3763	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3764	/*
3765	 * The mkdir may be waiting on the jaddref to clear before freeing.
3766	 */
3767	if (mkdir) {
3768		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3769		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3770		    TYPENAME(mkdir->md_list.wk_type)));
3771		mkdir->md_jaddref = NULL;
3772		diradd = mkdir->md_diradd;
3773		mkdir->md_state |= DEPCOMPLETE;
3774		complete_mkdir(mkdir);
3775	}
3776	jwork_insert(&diradd->da_jwork, jsegdep);
3777	if (jaddref->ja_state & NEWBLOCK) {
3778		inodedep->id_state |= ONDEPLIST;
3779		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3780		    inodedep, id_deps);
3781	}
3782	free_jaddref(jaddref);
3783}
3784
3785/*
3786 * Called once a jnewblk journal is written.  The allocdirect or allocindir
3787 * is placed in the bmsafemap to await notification of a written bitmap.  If
3788 * the operation was canceled we add the segdep to the appropriate
3789 * dependency to free the journal space once the canceling operation
3790 * completes.
3791 */
3792static void
3793handle_written_jnewblk(jnewblk)
3794	struct jnewblk *jnewblk;
3795{
3796	struct bmsafemap *bmsafemap;
3797	struct freefrag *freefrag;
3798	struct freework *freework;
3799	struct jsegdep *jsegdep;
3800	struct newblk *newblk;
3801
3802	/* Grab the jsegdep. */
3803	jsegdep = jnewblk->jn_jsegdep;
3804	jnewblk->jn_jsegdep = NULL;
3805	if (jnewblk->jn_dep == NULL)
3806		panic("handle_written_jnewblk: No dependency for the segdep.");
3807	switch (jnewblk->jn_dep->wk_type) {
3808	case D_NEWBLK:
3809	case D_ALLOCDIRECT:
3810	case D_ALLOCINDIR:
3811		/*
3812		 * Add the written block to the bmsafemap so it can
3813		 * be notified when the bitmap is on disk.
3814		 */
3815		newblk = WK_NEWBLK(jnewblk->jn_dep);
3816		newblk->nb_jnewblk = NULL;
3817		if ((newblk->nb_state & GOINGAWAY) == 0) {
3818			bmsafemap = newblk->nb_bmsafemap;
3819			newblk->nb_state |= ONDEPLIST;
3820			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3821			    nb_deps);
3822		}
3823		jwork_insert(&newblk->nb_jwork, jsegdep);
3824		break;
3825	case D_FREEFRAG:
3826		/*
3827		 * A newblock being removed by a freefrag when replaced by
3828		 * frag extension.
3829		 */
3830		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3831		freefrag->ff_jdep = NULL;
3832		jwork_insert(&freefrag->ff_jwork, jsegdep);
3833		break;
3834	case D_FREEWORK:
3835		/*
3836		 * A direct block was removed by truncate.
3837		 */
3838		freework = WK_FREEWORK(jnewblk->jn_dep);
3839		freework->fw_jnewblk = NULL;
3840		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3841		break;
3842	default:
3843		panic("handle_written_jnewblk: Unknown type %d.",
3844		    jnewblk->jn_dep->wk_type);
3845	}
3846	jnewblk->jn_dep = NULL;
3847	free_jnewblk(jnewblk);
3848}
3849
3850/*
3851 * Cancel a jfreefrag that won't be needed, probably due to colliding with
3852 * an in-flight allocation that has not yet been committed.  Divorce us
3853 * from the freefrag and mark it DEPCOMPLETE so that it may be added
3854 * to the worklist.
3855 */
3856static void
3857cancel_jfreefrag(jfreefrag)
3858	struct jfreefrag *jfreefrag;
3859{
3860	struct freefrag *freefrag;
3861
3862	if (jfreefrag->fr_jsegdep) {
3863		free_jsegdep(jfreefrag->fr_jsegdep);
3864		jfreefrag->fr_jsegdep = NULL;
3865	}
3866	freefrag = jfreefrag->fr_freefrag;
3867	jfreefrag->fr_freefrag = NULL;
3868	free_jfreefrag(jfreefrag);
3869	freefrag->ff_state |= DEPCOMPLETE;
3870	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3871}
3872
3873/*
3874 * Free a jfreefrag when the parent freefrag is rendered obsolete.
3875 */
3876static void
3877free_jfreefrag(jfreefrag)
3878	struct jfreefrag *jfreefrag;
3879{
3880
3881	if (jfreefrag->fr_state & INPROGRESS)
3882		WORKLIST_REMOVE(&jfreefrag->fr_list);
3883	else if (jfreefrag->fr_state & ONWORKLIST)
3884		remove_from_journal(&jfreefrag->fr_list);
3885	if (jfreefrag->fr_freefrag != NULL)
3886		panic("free_jfreefrag:  Still attached to a freefrag.");
3887	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3888}
3889
3890/*
3891 * Called when the journal write for a jfreefrag completes.  The parent
3892 * freefrag is added to the worklist if this completes its dependencies.
3893 */
3894static void
3895handle_written_jfreefrag(jfreefrag)
3896	struct jfreefrag *jfreefrag;
3897{
3898	struct jsegdep *jsegdep;
3899	struct freefrag *freefrag;
3900
3901	/* Grab the jsegdep. */
3902	jsegdep = jfreefrag->fr_jsegdep;
3903	jfreefrag->fr_jsegdep = NULL;
3904	freefrag = jfreefrag->fr_freefrag;
3905	if (freefrag == NULL)
3906		panic("handle_written_jfreefrag: No freefrag.");
3907	freefrag->ff_state |= DEPCOMPLETE;
3908	freefrag->ff_jdep = NULL;
3909	jwork_insert(&freefrag->ff_jwork, jsegdep);
3910	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3911		add_to_worklist(&freefrag->ff_list, 0);
3912	jfreefrag->fr_freefrag = NULL;
3913	free_jfreefrag(jfreefrag);
3914}
3915
3916/*
3917 * Called when the journal write for a jfreeblk completes.  The jfreeblk
3918 * is removed from the freeblks list of pending journal writes and the
3919 * jsegdep is moved to the freeblks jwork to be completed when all blocks
3920 * have been reclaimed.
3921 */
3922static void
3923handle_written_jblkdep(jblkdep)
3924	struct jblkdep *jblkdep;
3925{
3926	struct freeblks *freeblks;
3927	struct jsegdep *jsegdep;
3928
3929	/* Grab the jsegdep. */
3930	jsegdep = jblkdep->jb_jsegdep;
3931	jblkdep->jb_jsegdep = NULL;
3932	freeblks = jblkdep->jb_freeblks;
3933	LIST_REMOVE(jblkdep, jb_deps);
3934	jwork_insert(&freeblks->fb_jwork, jsegdep);
3935	/*
3936	 * If the freeblks is all journaled, we can add it to the worklist.
3937	 */
3938	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3939	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3940		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3941
3942	free_jblkdep(jblkdep);
3943}
3944
3945static struct jsegdep *
3946newjsegdep(struct worklist *wk)
3947{
3948	struct jsegdep *jsegdep;
3949
3950	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3951	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3952	jsegdep->jd_seg = NULL;
3953
3954	return (jsegdep);
3955}
3956
3957static struct jmvref *
3958newjmvref(dp, ino, oldoff, newoff)
3959	struct inode *dp;
3960	ino_t ino;
3961	off_t oldoff;
3962	off_t newoff;
3963{
3964	struct jmvref *jmvref;
3965
3966	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3967	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3968	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3969	jmvref->jm_parent = dp->i_number;
3970	jmvref->jm_ino = ino;
3971	jmvref->jm_oldoff = oldoff;
3972	jmvref->jm_newoff = newoff;
3973
3974	return (jmvref);
3975}
3976
3977/*
3978 * Allocate a new jremref that tracks the removal of ip from dp with the
3979 * directory entry offset of diroff.  Mark the entry as ATTACHED and
3980 * DEPCOMPLETE as we have all the information required for the journal write
3981 * and the directory has already been removed from the buffer.  The caller
3982 * is responsible for linking the jremref into the pagedep and adding it
3983 * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3984 * a DOTDOT addition so handle_workitem_remove() can properly assign
3985 * the jsegdep when we're done.
3986 */
3987static struct jremref *
3988newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3989    off_t diroff, nlink_t nlink)
3990{
3991	struct jremref *jremref;
3992
3993	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3994	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3995	jremref->jr_state = ATTACHED;
3996	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3997	   nlink, ip->i_mode);
3998	jremref->jr_dirrem = dirrem;
3999
4000	return (jremref);
4001}
4002
4003static inline void
4004newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4005    nlink_t nlink, uint16_t mode)
4006{
4007
4008	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4009	inoref->if_diroff = diroff;
4010	inoref->if_ino = ino;
4011	inoref->if_parent = parent;
4012	inoref->if_nlink = nlink;
4013	inoref->if_mode = mode;
4014}
4015
4016/*
4017 * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4018 * directory offset may not be known until later.  The caller is responsible
4019 * adding the entry to the journal when this information is available.  nlink
4020 * should be the link count prior to the addition and mode is only required
4021 * to have the correct FMT.
4022 */
4023static struct jaddref *
4024newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4025    uint16_t mode)
4026{
4027	struct jaddref *jaddref;
4028
4029	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4030	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
4031	jaddref->ja_state = ATTACHED;
4032	jaddref->ja_mkdir = NULL;
4033	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4034
4035	return (jaddref);
4036}
4037
4038/*
4039 * Create a new free dependency for a freework.  The caller is responsible
4040 * for adjusting the reference count when it has the lock held.  The freedep
4041 * will track an outstanding bitmap write that will ultimately clear the
4042 * freework to continue.
4043 */
4044static struct freedep *
4045newfreedep(struct freework *freework)
4046{
4047	struct freedep *freedep;
4048
4049	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4050	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4051	freedep->fd_freework = freework;
4052
4053	return (freedep);
4054}
4055
4056/*
4057 * Free a freedep structure once the buffer it is linked to is written.  If
4058 * this is the last reference to the freework schedule it for completion.
4059 */
4060static void
4061free_freedep(freedep)
4062	struct freedep *freedep;
4063{
4064	struct freework *freework;
4065
4066	freework = freedep->fd_freework;
4067	freework->fw_freeblks->fb_cgwait--;
4068	if (--freework->fw_ref == 0)
4069		freework_enqueue(freework);
4070	WORKITEM_FREE(freedep, D_FREEDEP);
4071}
4072
4073/*
4074 * Allocate a new freework structure that may be a level in an indirect
4075 * when parent is not NULL or a top level block when it is.  The top level
4076 * freework structures are allocated without the per-filesystem lock held
4077 * and before the freeblks is visible outside of softdep_setup_freeblocks().
4078 */
4079static struct freework *
4080newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4081	struct ufsmount *ump;
4082	struct freeblks *freeblks;
4083	struct freework *parent;
4084	ufs_lbn_t lbn;
4085	ufs2_daddr_t nb;
4086	int frags;
4087	int off;
4088	int journal;
4089{
4090	struct freework *freework;
4091
4092	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4093	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4094	freework->fw_state = ATTACHED;
4095	freework->fw_jnewblk = NULL;
4096	freework->fw_freeblks = freeblks;
4097	freework->fw_parent = parent;
4098	freework->fw_lbn = lbn;
4099	freework->fw_blkno = nb;
4100	freework->fw_frags = frags;
4101	freework->fw_indir = NULL;
4102	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
4103		? 0 : NINDIR(ump->um_fs) + 1;
4104	freework->fw_start = freework->fw_off = off;
4105	if (journal)
4106		newjfreeblk(freeblks, lbn, nb, frags);
4107	if (parent == NULL) {
4108		ACQUIRE_LOCK(ump);
4109		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4110		freeblks->fb_ref++;
4111		FREE_LOCK(ump);
4112	}
4113
4114	return (freework);
4115}
4116
4117/*
4118 * Eliminate a jfreeblk for a block that does not need journaling.
4119 */
4120static void
4121cancel_jfreeblk(freeblks, blkno)
4122	struct freeblks *freeblks;
4123	ufs2_daddr_t blkno;
4124{
4125	struct jfreeblk *jfreeblk;
4126	struct jblkdep *jblkdep;
4127
4128	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4129		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4130			continue;
4131		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4132		if (jfreeblk->jf_blkno == blkno)
4133			break;
4134	}
4135	if (jblkdep == NULL)
4136		return;
4137	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4138	free_jsegdep(jblkdep->jb_jsegdep);
4139	LIST_REMOVE(jblkdep, jb_deps);
4140	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4141}
4142
4143/*
4144 * Allocate a new jfreeblk to journal top level block pointer when truncating
4145 * a file.  The caller must add this to the worklist when the per-filesystem
4146 * lock is held.
4147 */
4148static struct jfreeblk *
4149newjfreeblk(freeblks, lbn, blkno, frags)
4150	struct freeblks *freeblks;
4151	ufs_lbn_t lbn;
4152	ufs2_daddr_t blkno;
4153	int frags;
4154{
4155	struct jfreeblk *jfreeblk;
4156
4157	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4158	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4159	    freeblks->fb_list.wk_mp);
4160	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4161	jfreeblk->jf_dep.jb_freeblks = freeblks;
4162	jfreeblk->jf_ino = freeblks->fb_inum;
4163	jfreeblk->jf_lbn = lbn;
4164	jfreeblk->jf_blkno = blkno;
4165	jfreeblk->jf_frags = frags;
4166	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4167
4168	return (jfreeblk);
4169}
4170
4171/*
4172 * The journal is only prepared to handle full-size block numbers, so we
4173 * have to adjust the record to reflect the change to a full-size block.
4174 * For example, suppose we have a block made up of fragments 8-15 and
4175 * want to free its last two fragments. We are given a request that says:
4176 *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4177 * where frags are the number of fragments to free and oldfrags are the
4178 * number of fragments to keep. To block align it, we have to change it to
4179 * have a valid full-size blkno, so it becomes:
4180 *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4181 */
4182static void
4183adjust_newfreework(freeblks, frag_offset)
4184	struct freeblks *freeblks;
4185	int frag_offset;
4186{
4187	struct jfreeblk *jfreeblk;
4188
4189	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4190	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4191	    ("adjust_newfreework: Missing freeblks dependency"));
4192
4193	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4194	jfreeblk->jf_blkno -= frag_offset;
4195	jfreeblk->jf_frags += frag_offset;
4196}
4197
4198/*
4199 * Allocate a new jtrunc to track a partial truncation.
4200 */
4201static struct jtrunc *
4202newjtrunc(freeblks, size, extsize)
4203	struct freeblks *freeblks;
4204	off_t size;
4205	int extsize;
4206{
4207	struct jtrunc *jtrunc;
4208
4209	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4210	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4211	    freeblks->fb_list.wk_mp);
4212	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4213	jtrunc->jt_dep.jb_freeblks = freeblks;
4214	jtrunc->jt_ino = freeblks->fb_inum;
4215	jtrunc->jt_size = size;
4216	jtrunc->jt_extsize = extsize;
4217	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4218
4219	return (jtrunc);
4220}
4221
4222/*
4223 * If we're canceling a new bitmap we have to search for another ref
4224 * to move into the bmsafemap dep.  This might be better expressed
4225 * with another structure.
4226 */
4227static void
4228move_newblock_dep(jaddref, inodedep)
4229	struct jaddref *jaddref;
4230	struct inodedep *inodedep;
4231{
4232	struct inoref *inoref;
4233	struct jaddref *jaddrefn;
4234
4235	jaddrefn = NULL;
4236	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4237	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4238		if ((jaddref->ja_state & NEWBLOCK) &&
4239		    inoref->if_list.wk_type == D_JADDREF) {
4240			jaddrefn = (struct jaddref *)inoref;
4241			break;
4242		}
4243	}
4244	if (jaddrefn == NULL)
4245		return;
4246	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4247	jaddrefn->ja_state |= jaddref->ja_state &
4248	    (ATTACHED | UNDONE | NEWBLOCK);
4249	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4250	jaddref->ja_state |= ATTACHED;
4251	LIST_REMOVE(jaddref, ja_bmdeps);
4252	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4253	    ja_bmdeps);
4254}
4255
4256/*
4257 * Cancel a jaddref either before it has been written or while it is being
4258 * written.  This happens when a link is removed before the add reaches
4259 * the disk.  The jaddref dependency is kept linked into the bmsafemap
4260 * and inode to prevent the link count or bitmap from reaching the disk
4261 * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4262 * required.
4263 *
4264 * Returns 1 if the canceled addref requires journaling of the remove and
4265 * 0 otherwise.
4266 */
4267static int
4268cancel_jaddref(jaddref, inodedep, wkhd)
4269	struct jaddref *jaddref;
4270	struct inodedep *inodedep;
4271	struct workhead *wkhd;
4272{
4273	struct inoref *inoref;
4274	struct jsegdep *jsegdep;
4275	int needsj;
4276
4277	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4278	    ("cancel_jaddref: Canceling complete jaddref"));
4279	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4280		needsj = 1;
4281	else
4282		needsj = 0;
4283	if (inodedep == NULL)
4284		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4285		    0, &inodedep) == 0)
4286			panic("cancel_jaddref: Lost inodedep");
4287	/*
4288	 * We must adjust the nlink of any reference operation that follows
4289	 * us so that it is consistent with the in-memory reference.  This
4290	 * ensures that inode nlink rollbacks always have the correct link.
4291	 */
4292	if (needsj == 0) {
4293		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4294		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4295			if (inoref->if_state & GOINGAWAY)
4296				break;
4297			inoref->if_nlink--;
4298		}
4299	}
4300	jsegdep = inoref_jseg(&jaddref->ja_ref);
4301	if (jaddref->ja_state & NEWBLOCK)
4302		move_newblock_dep(jaddref, inodedep);
4303	wake_worklist(&jaddref->ja_list);
4304	jaddref->ja_mkdir = NULL;
4305	if (jaddref->ja_state & INPROGRESS) {
4306		jaddref->ja_state &= ~INPROGRESS;
4307		WORKLIST_REMOVE(&jaddref->ja_list);
4308		jwork_insert(wkhd, jsegdep);
4309	} else {
4310		free_jsegdep(jsegdep);
4311		if (jaddref->ja_state & DEPCOMPLETE)
4312			remove_from_journal(&jaddref->ja_list);
4313	}
4314	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4315	/*
4316	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4317	 * can arrange for them to be freed with the bitmap.  Otherwise we
4318	 * no longer need this addref attached to the inoreflst and it
4319	 * will incorrectly adjust nlink if we leave it.
4320	 */
4321	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4322		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4323		    if_deps);
4324		jaddref->ja_state |= COMPLETE;
4325		free_jaddref(jaddref);
4326		return (needsj);
4327	}
4328	/*
4329	 * Leave the head of the list for jsegdeps for fast merging.
4330	 */
4331	if (LIST_FIRST(wkhd) != NULL) {
4332		jaddref->ja_state |= ONWORKLIST;
4333		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4334	} else
4335		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4336
4337	return (needsj);
4338}
4339
4340/*
4341 * Attempt to free a jaddref structure when some work completes.  This
4342 * should only succeed once the entry is written and all dependencies have
4343 * been notified.
4344 */
4345static void
4346free_jaddref(jaddref)
4347	struct jaddref *jaddref;
4348{
4349
4350	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4351		return;
4352	if (jaddref->ja_ref.if_jsegdep)
4353		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4354		    jaddref, jaddref->ja_state);
4355	if (jaddref->ja_state & NEWBLOCK)
4356		LIST_REMOVE(jaddref, ja_bmdeps);
4357	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4358		panic("free_jaddref: Bad state %p(0x%X)",
4359		    jaddref, jaddref->ja_state);
4360	if (jaddref->ja_mkdir != NULL)
4361		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4362	WORKITEM_FREE(jaddref, D_JADDREF);
4363}
4364
4365/*
4366 * Free a jremref structure once it has been written or discarded.
4367 */
4368static void
4369free_jremref(jremref)
4370	struct jremref *jremref;
4371{
4372
4373	if (jremref->jr_ref.if_jsegdep)
4374		free_jsegdep(jremref->jr_ref.if_jsegdep);
4375	if (jremref->jr_state & INPROGRESS)
4376		panic("free_jremref: IO still pending");
4377	WORKITEM_FREE(jremref, D_JREMREF);
4378}
4379
4380/*
4381 * Free a jnewblk structure.
4382 */
4383static void
4384free_jnewblk(jnewblk)
4385	struct jnewblk *jnewblk;
4386{
4387
4388	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4389		return;
4390	LIST_REMOVE(jnewblk, jn_deps);
4391	if (jnewblk->jn_dep != NULL)
4392		panic("free_jnewblk: Dependency still attached.");
4393	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4394}
4395
4396/*
4397 * Cancel a jnewblk which has been been made redundant by frag extension.
4398 */
4399static void
4400cancel_jnewblk(jnewblk, wkhd)
4401	struct jnewblk *jnewblk;
4402	struct workhead *wkhd;
4403{
4404	struct jsegdep *jsegdep;
4405
4406	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4407	jsegdep = jnewblk->jn_jsegdep;
4408	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4409		panic("cancel_jnewblk: Invalid state");
4410	jnewblk->jn_jsegdep  = NULL;
4411	jnewblk->jn_dep = NULL;
4412	jnewblk->jn_state |= GOINGAWAY;
4413	if (jnewblk->jn_state & INPROGRESS) {
4414		jnewblk->jn_state &= ~INPROGRESS;
4415		WORKLIST_REMOVE(&jnewblk->jn_list);
4416		jwork_insert(wkhd, jsegdep);
4417	} else {
4418		free_jsegdep(jsegdep);
4419		remove_from_journal(&jnewblk->jn_list);
4420	}
4421	wake_worklist(&jnewblk->jn_list);
4422	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4423}
4424
4425static void
4426free_jblkdep(jblkdep)
4427	struct jblkdep *jblkdep;
4428{
4429
4430	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4431		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4432	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4433		WORKITEM_FREE(jblkdep, D_JTRUNC);
4434	else
4435		panic("free_jblkdep: Unexpected type %s",
4436		    TYPENAME(jblkdep->jb_list.wk_type));
4437}
4438
4439/*
4440 * Free a single jseg once it is no longer referenced in memory or on
4441 * disk.  Reclaim journal blocks and dependencies waiting for the segment
4442 * to disappear.
4443 */
4444static void
4445free_jseg(jseg, jblocks)
4446	struct jseg *jseg;
4447	struct jblocks *jblocks;
4448{
4449	struct freework *freework;
4450
4451	/*
4452	 * Free freework structures that were lingering to indicate freed
4453	 * indirect blocks that forced journal write ordering on reallocate.
4454	 */
4455	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4456		indirblk_remove(freework);
4457	if (jblocks->jb_oldestseg == jseg)
4458		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4459	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4460	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4461	KASSERT(LIST_EMPTY(&jseg->js_entries),
4462	    ("free_jseg: Freed jseg has valid entries."));
4463	WORKITEM_FREE(jseg, D_JSEG);
4464}
4465
4466/*
4467 * Free all jsegs that meet the criteria for being reclaimed and update
4468 * oldestseg.
4469 */
4470static void
4471free_jsegs(jblocks)
4472	struct jblocks *jblocks;
4473{
4474	struct jseg *jseg;
4475
4476	/*
4477	 * Free only those jsegs which have none allocated before them to
4478	 * preserve the journal space ordering.
4479	 */
4480	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4481		/*
4482		 * Only reclaim space when nothing depends on this journal
4483		 * set and another set has written that it is no longer
4484		 * valid.
4485		 */
4486		if (jseg->js_refs != 0) {
4487			jblocks->jb_oldestseg = jseg;
4488			return;
4489		}
4490		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4491			break;
4492		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4493			break;
4494		/*
4495		 * We can free jsegs that didn't write entries when
4496		 * oldestwrseq == js_seq.
4497		 */
4498		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4499		    jseg->js_cnt != 0)
4500			break;
4501		free_jseg(jseg, jblocks);
4502	}
4503	/*
4504	 * If we exited the loop above we still must discover the
4505	 * oldest valid segment.
4506	 */
4507	if (jseg)
4508		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4509		     jseg = TAILQ_NEXT(jseg, js_next))
4510			if (jseg->js_refs != 0)
4511				break;
4512	jblocks->jb_oldestseg = jseg;
4513	/*
4514	 * The journal has no valid records but some jsegs may still be
4515	 * waiting on oldestwrseq to advance.  We force a small record
4516	 * out to permit these lingering records to be reclaimed.
4517	 */
4518	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4519		jblocks->jb_needseg = 1;
4520}
4521
4522/*
4523 * Release one reference to a jseg and free it if the count reaches 0.  This
4524 * should eventually reclaim journal space as well.
4525 */
4526static void
4527rele_jseg(jseg)
4528	struct jseg *jseg;
4529{
4530
4531	KASSERT(jseg->js_refs > 0,
4532	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4533	if (--jseg->js_refs != 0)
4534		return;
4535	free_jsegs(jseg->js_jblocks);
4536}
4537
4538/*
4539 * Release a jsegdep and decrement the jseg count.
4540 */
4541static void
4542free_jsegdep(jsegdep)
4543	struct jsegdep *jsegdep;
4544{
4545
4546	if (jsegdep->jd_seg)
4547		rele_jseg(jsegdep->jd_seg);
4548	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4549}
4550
4551/*
4552 * Wait for a journal item to make it to disk.  Initiate journal processing
4553 * if required.
4554 */
4555static int
4556jwait(wk, waitfor)
4557	struct worklist *wk;
4558	int waitfor;
4559{
4560
4561	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4562	/*
4563	 * Blocking journal waits cause slow synchronous behavior.  Record
4564	 * stats on the frequency of these blocking operations.
4565	 */
4566	if (waitfor == MNT_WAIT) {
4567		stat_journal_wait++;
4568		switch (wk->wk_type) {
4569		case D_JREMREF:
4570		case D_JMVREF:
4571			stat_jwait_filepage++;
4572			break;
4573		case D_JTRUNC:
4574		case D_JFREEBLK:
4575			stat_jwait_freeblks++;
4576			break;
4577		case D_JNEWBLK:
4578			stat_jwait_newblk++;
4579			break;
4580		case D_JADDREF:
4581			stat_jwait_inode++;
4582			break;
4583		default:
4584			break;
4585		}
4586	}
4587	/*
4588	 * If IO has not started we process the journal.  We can't mark the
4589	 * worklist item as IOWAITING because we drop the lock while
4590	 * processing the journal and the worklist entry may be freed after
4591	 * this point.  The caller may call back in and re-issue the request.
4592	 */
4593	if ((wk->wk_state & INPROGRESS) == 0) {
4594		softdep_process_journal(wk->wk_mp, wk, waitfor);
4595		if (waitfor != MNT_WAIT)
4596			return (EBUSY);
4597		return (0);
4598	}
4599	if (waitfor != MNT_WAIT)
4600		return (EBUSY);
4601	wait_worklist(wk, "jwait");
4602	return (0);
4603}
4604
4605/*
4606 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4607 * appropriate.  This is a convenience function to reduce duplicate code
4608 * for the setup and revert functions below.
4609 */
4610static struct inodedep *
4611inodedep_lookup_ip(ip)
4612	struct inode *ip;
4613{
4614	struct inodedep *inodedep;
4615	int dflags;
4616
4617	KASSERT(ip->i_nlink >= ip->i_effnlink,
4618	    ("inodedep_lookup_ip: bad delta"));
4619	dflags = DEPALLOC;
4620	if (IS_SNAPSHOT(ip))
4621		dflags |= NODELAY;
4622	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags,
4623	    &inodedep);
4624	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4625	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4626
4627	return (inodedep);
4628}
4629
4630/*
4631 * Called prior to creating a new inode and linking it to a directory.  The
4632 * jaddref structure must already be allocated by softdep_setup_inomapdep
4633 * and it is discovered here so we can initialize the mode and update
4634 * nlinkdelta.
4635 */
4636void
4637softdep_setup_create(dp, ip)
4638	struct inode *dp;
4639	struct inode *ip;
4640{
4641	struct inodedep *inodedep;
4642	struct jaddref *jaddref;
4643	struct vnode *dvp;
4644
4645	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4646	    ("softdep_setup_create called on non-softdep filesystem"));
4647	KASSERT(ip->i_nlink == 1,
4648	    ("softdep_setup_create: Invalid link count."));
4649	dvp = ITOV(dp);
4650	ACQUIRE_LOCK(dp->i_ump);
4651	inodedep = inodedep_lookup_ip(ip);
4652	if (DOINGSUJ(dvp)) {
4653		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4654		    inoreflst);
4655		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4656		    ("softdep_setup_create: No addref structure present."));
4657	}
4658	softdep_prelink(dvp, NULL);
4659	FREE_LOCK(dp->i_ump);
4660}
4661
4662/*
4663 * Create a jaddref structure to track the addition of a DOTDOT link when
4664 * we are reparenting an inode as part of a rename.  This jaddref will be
4665 * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4666 * non-journaling softdep.
4667 */
4668void
4669softdep_setup_dotdot_link(dp, ip)
4670	struct inode *dp;
4671	struct inode *ip;
4672{
4673	struct inodedep *inodedep;
4674	struct jaddref *jaddref;
4675	struct vnode *dvp;
4676	struct vnode *vp;
4677
4678	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4679	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4680	dvp = ITOV(dp);
4681	vp = ITOV(ip);
4682	jaddref = NULL;
4683	/*
4684	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4685	 * is used as a normal link would be.
4686	 */
4687	if (DOINGSUJ(dvp))
4688		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4689		    dp->i_effnlink - 1, dp->i_mode);
4690	ACQUIRE_LOCK(dp->i_ump);
4691	inodedep = inodedep_lookup_ip(dp);
4692	if (jaddref)
4693		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4694		    if_deps);
4695	softdep_prelink(dvp, ITOV(ip));
4696	FREE_LOCK(dp->i_ump);
4697}
4698
4699/*
4700 * Create a jaddref structure to track a new link to an inode.  The directory
4701 * offset is not known until softdep_setup_directory_add or
4702 * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4703 * softdep.
4704 */
4705void
4706softdep_setup_link(dp, ip)
4707	struct inode *dp;
4708	struct inode *ip;
4709{
4710	struct inodedep *inodedep;
4711	struct jaddref *jaddref;
4712	struct vnode *dvp;
4713
4714	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4715	    ("softdep_setup_link called on non-softdep filesystem"));
4716	dvp = ITOV(dp);
4717	jaddref = NULL;
4718	if (DOINGSUJ(dvp))
4719		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4720		    ip->i_mode);
4721	ACQUIRE_LOCK(dp->i_ump);
4722	inodedep = inodedep_lookup_ip(ip);
4723	if (jaddref)
4724		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4725		    if_deps);
4726	softdep_prelink(dvp, ITOV(ip));
4727	FREE_LOCK(dp->i_ump);
4728}
4729
4730/*
4731 * Called to create the jaddref structures to track . and .. references as
4732 * well as lookup and further initialize the incomplete jaddref created
4733 * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4734 * nlinkdelta for non-journaling softdep.
4735 */
4736void
4737softdep_setup_mkdir(dp, ip)
4738	struct inode *dp;
4739	struct inode *ip;
4740{
4741	struct inodedep *inodedep;
4742	struct jaddref *dotdotaddref;
4743	struct jaddref *dotaddref;
4744	struct jaddref *jaddref;
4745	struct vnode *dvp;
4746
4747	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4748	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4749	dvp = ITOV(dp);
4750	dotaddref = dotdotaddref = NULL;
4751	if (DOINGSUJ(dvp)) {
4752		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4753		    ip->i_mode);
4754		dotaddref->ja_state |= MKDIR_BODY;
4755		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4756		    dp->i_effnlink - 1, dp->i_mode);
4757		dotdotaddref->ja_state |= MKDIR_PARENT;
4758	}
4759	ACQUIRE_LOCK(dp->i_ump);
4760	inodedep = inodedep_lookup_ip(ip);
4761	if (DOINGSUJ(dvp)) {
4762		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4763		    inoreflst);
4764		KASSERT(jaddref != NULL,
4765		    ("softdep_setup_mkdir: No addref structure present."));
4766		KASSERT(jaddref->ja_parent == dp->i_number,
4767		    ("softdep_setup_mkdir: bad parent %ju",
4768		    (uintmax_t)jaddref->ja_parent));
4769		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4770		    if_deps);
4771	}
4772	inodedep = inodedep_lookup_ip(dp);
4773	if (DOINGSUJ(dvp))
4774		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4775		    &dotdotaddref->ja_ref, if_deps);
4776	softdep_prelink(ITOV(dp), NULL);
4777	FREE_LOCK(dp->i_ump);
4778}
4779
4780/*
4781 * Called to track nlinkdelta of the inode and parent directories prior to
4782 * unlinking a directory.
4783 */
4784void
4785softdep_setup_rmdir(dp, ip)
4786	struct inode *dp;
4787	struct inode *ip;
4788{
4789	struct vnode *dvp;
4790
4791	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4792	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4793	dvp = ITOV(dp);
4794	ACQUIRE_LOCK(dp->i_ump);
4795	(void) inodedep_lookup_ip(ip);
4796	(void) inodedep_lookup_ip(dp);
4797	softdep_prelink(dvp, ITOV(ip));
4798	FREE_LOCK(dp->i_ump);
4799}
4800
4801/*
4802 * Called to track nlinkdelta of the inode and parent directories prior to
4803 * unlink.
4804 */
4805void
4806softdep_setup_unlink(dp, ip)
4807	struct inode *dp;
4808	struct inode *ip;
4809{
4810	struct vnode *dvp;
4811
4812	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4813	    ("softdep_setup_unlink called on non-softdep filesystem"));
4814	dvp = ITOV(dp);
4815	ACQUIRE_LOCK(dp->i_ump);
4816	(void) inodedep_lookup_ip(ip);
4817	(void) inodedep_lookup_ip(dp);
4818	softdep_prelink(dvp, ITOV(ip));
4819	FREE_LOCK(dp->i_ump);
4820}
4821
4822/*
4823 * Called to release the journal structures created by a failed non-directory
4824 * creation.  Adjusts nlinkdelta for non-journaling softdep.
4825 */
4826void
4827softdep_revert_create(dp, ip)
4828	struct inode *dp;
4829	struct inode *ip;
4830{
4831	struct inodedep *inodedep;
4832	struct jaddref *jaddref;
4833	struct vnode *dvp;
4834
4835	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4836	    ("softdep_revert_create called on non-softdep filesystem"));
4837	dvp = ITOV(dp);
4838	ACQUIRE_LOCK(dp->i_ump);
4839	inodedep = inodedep_lookup_ip(ip);
4840	if (DOINGSUJ(dvp)) {
4841		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4842		    inoreflst);
4843		KASSERT(jaddref->ja_parent == dp->i_number,
4844		    ("softdep_revert_create: addref parent mismatch"));
4845		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4846	}
4847	FREE_LOCK(dp->i_ump);
4848}
4849
4850/*
4851 * Called to release the journal structures created by a failed link
4852 * addition.  Adjusts nlinkdelta for non-journaling softdep.
4853 */
4854void
4855softdep_revert_link(dp, ip)
4856	struct inode *dp;
4857	struct inode *ip;
4858{
4859	struct inodedep *inodedep;
4860	struct jaddref *jaddref;
4861	struct vnode *dvp;
4862
4863	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4864	    ("softdep_revert_link called on non-softdep filesystem"));
4865	dvp = ITOV(dp);
4866	ACQUIRE_LOCK(dp->i_ump);
4867	inodedep = inodedep_lookup_ip(ip);
4868	if (DOINGSUJ(dvp)) {
4869		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4870		    inoreflst);
4871		KASSERT(jaddref->ja_parent == dp->i_number,
4872		    ("softdep_revert_link: addref parent mismatch"));
4873		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4874	}
4875	FREE_LOCK(dp->i_ump);
4876}
4877
4878/*
4879 * Called to release the journal structures created by a failed mkdir
4880 * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4881 */
4882void
4883softdep_revert_mkdir(dp, ip)
4884	struct inode *dp;
4885	struct inode *ip;
4886{
4887	struct inodedep *inodedep;
4888	struct jaddref *jaddref;
4889	struct jaddref *dotaddref;
4890	struct vnode *dvp;
4891
4892	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4893	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4894	dvp = ITOV(dp);
4895
4896	ACQUIRE_LOCK(dp->i_ump);
4897	inodedep = inodedep_lookup_ip(dp);
4898	if (DOINGSUJ(dvp)) {
4899		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4900		    inoreflst);
4901		KASSERT(jaddref->ja_parent == ip->i_number,
4902		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4903		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4904	}
4905	inodedep = inodedep_lookup_ip(ip);
4906	if (DOINGSUJ(dvp)) {
4907		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4908		    inoreflst);
4909		KASSERT(jaddref->ja_parent == dp->i_number,
4910		    ("softdep_revert_mkdir: addref parent mismatch"));
4911		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4912		    inoreflst, if_deps);
4913		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4914		KASSERT(dotaddref->ja_parent == ip->i_number,
4915		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4916		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4917	}
4918	FREE_LOCK(dp->i_ump);
4919}
4920
4921/*
4922 * Called to correct nlinkdelta after a failed rmdir.
4923 */
4924void
4925softdep_revert_rmdir(dp, ip)
4926	struct inode *dp;
4927	struct inode *ip;
4928{
4929
4930	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4931	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4932	ACQUIRE_LOCK(dp->i_ump);
4933	(void) inodedep_lookup_ip(ip);
4934	(void) inodedep_lookup_ip(dp);
4935	FREE_LOCK(dp->i_ump);
4936}
4937
4938/*
4939 * Protecting the freemaps (or bitmaps).
4940 *
4941 * To eliminate the need to execute fsck before mounting a filesystem
4942 * after a power failure, one must (conservatively) guarantee that the
4943 * on-disk copy of the bitmaps never indicate that a live inode or block is
4944 * free.  So, when a block or inode is allocated, the bitmap should be
4945 * updated (on disk) before any new pointers.  When a block or inode is
4946 * freed, the bitmap should not be updated until all pointers have been
4947 * reset.  The latter dependency is handled by the delayed de-allocation
4948 * approach described below for block and inode de-allocation.  The former
4949 * dependency is handled by calling the following procedure when a block or
4950 * inode is allocated. When an inode is allocated an "inodedep" is created
4951 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4952 * Each "inodedep" is also inserted into the hash indexing structure so
4953 * that any additional link additions can be made dependent on the inode
4954 * allocation.
4955 *
4956 * The ufs filesystem maintains a number of free block counts (e.g., per
4957 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4958 * in addition to the bitmaps.  These counts are used to improve efficiency
4959 * during allocation and therefore must be consistent with the bitmaps.
4960 * There is no convenient way to guarantee post-crash consistency of these
4961 * counts with simple update ordering, for two main reasons: (1) The counts
4962 * and bitmaps for a single cylinder group block are not in the same disk
4963 * sector.  If a disk write is interrupted (e.g., by power failure), one may
4964 * be written and the other not.  (2) Some of the counts are located in the
4965 * superblock rather than the cylinder group block. So, we focus our soft
4966 * updates implementation on protecting the bitmaps. When mounting a
4967 * filesystem, we recompute the auxiliary counts from the bitmaps.
4968 */
4969
4970/*
4971 * Called just after updating the cylinder group block to allocate an inode.
4972 */
4973void
4974softdep_setup_inomapdep(bp, ip, newinum, mode)
4975	struct buf *bp;		/* buffer for cylgroup block with inode map */
4976	struct inode *ip;	/* inode related to allocation */
4977	ino_t newinum;		/* new inode number being allocated */
4978	int mode;
4979{
4980	struct inodedep *inodedep;
4981	struct bmsafemap *bmsafemap;
4982	struct jaddref *jaddref;
4983	struct mount *mp;
4984	struct fs *fs;
4985
4986	mp = UFSTOVFS(ip->i_ump);
4987	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
4988	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
4989	fs = ip->i_ump->um_fs;
4990	jaddref = NULL;
4991
4992	/*
4993	 * Allocate the journal reference add structure so that the bitmap
4994	 * can be dependent on it.
4995	 */
4996	if (MOUNTEDSUJ(mp)) {
4997		jaddref = newjaddref(ip, newinum, 0, 0, mode);
4998		jaddref->ja_state |= NEWBLOCK;
4999	}
5000
5001	/*
5002	 * Create a dependency for the newly allocated inode.
5003	 * Panic if it already exists as something is seriously wrong.
5004	 * Otherwise add it to the dependency list for the buffer holding
5005	 * the cylinder group map from which it was allocated.
5006	 *
5007	 * We have to preallocate a bmsafemap entry in case it is needed
5008	 * in bmsafemap_lookup since once we allocate the inodedep, we
5009	 * have to finish initializing it before we can FREE_LOCK().
5010	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5011	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5012	 * creating the inodedep as it can be freed during the time
5013	 * that we FREE_LOCK() while allocating the inodedep. We must
5014	 * call workitem_alloc() before entering the locked section as
5015	 * it also acquires the lock and we must avoid trying doing so
5016	 * recursively.
5017	 */
5018	bmsafemap = malloc(sizeof(struct bmsafemap),
5019	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5020	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5021	ACQUIRE_LOCK(ip->i_ump);
5022	if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep)))
5023		panic("softdep_setup_inomapdep: dependency %p for new"
5024		    "inode already exists", inodedep);
5025	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5026	if (jaddref) {
5027		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5028		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5029		    if_deps);
5030	} else {
5031		inodedep->id_state |= ONDEPLIST;
5032		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5033	}
5034	inodedep->id_bmsafemap = bmsafemap;
5035	inodedep->id_state &= ~DEPCOMPLETE;
5036	FREE_LOCK(ip->i_ump);
5037}
5038
5039/*
5040 * Called just after updating the cylinder group block to
5041 * allocate block or fragment.
5042 */
5043void
5044softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5045	struct buf *bp;		/* buffer for cylgroup block with block map */
5046	struct mount *mp;	/* filesystem doing allocation */
5047	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5048	int frags;		/* Number of fragments. */
5049	int oldfrags;		/* Previous number of fragments for extend. */
5050{
5051	struct newblk *newblk;
5052	struct bmsafemap *bmsafemap;
5053	struct jnewblk *jnewblk;
5054	struct ufsmount *ump;
5055	struct fs *fs;
5056
5057	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5058	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5059	ump = VFSTOUFS(mp);
5060	fs = ump->um_fs;
5061	jnewblk = NULL;
5062	/*
5063	 * Create a dependency for the newly allocated block.
5064	 * Add it to the dependency list for the buffer holding
5065	 * the cylinder group map from which it was allocated.
5066	 */
5067	if (MOUNTEDSUJ(mp)) {
5068		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5069		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5070		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5071		jnewblk->jn_state = ATTACHED;
5072		jnewblk->jn_blkno = newblkno;
5073		jnewblk->jn_frags = frags;
5074		jnewblk->jn_oldfrags = oldfrags;
5075#ifdef SUJ_DEBUG
5076		{
5077			struct cg *cgp;
5078			uint8_t *blksfree;
5079			long bno;
5080			int i;
5081
5082			cgp = (struct cg *)bp->b_data;
5083			blksfree = cg_blksfree(cgp);
5084			bno = dtogd(fs, jnewblk->jn_blkno);
5085			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5086			    i++) {
5087				if (isset(blksfree, bno + i))
5088					panic("softdep_setup_blkmapdep: "
5089					    "free fragment %d from %d-%d "
5090					    "state 0x%X dep %p", i,
5091					    jnewblk->jn_oldfrags,
5092					    jnewblk->jn_frags,
5093					    jnewblk->jn_state,
5094					    jnewblk->jn_dep);
5095			}
5096		}
5097#endif
5098	}
5099
5100	CTR3(KTR_SUJ,
5101	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5102	    newblkno, frags, oldfrags);
5103	ACQUIRE_LOCK(ump);
5104	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5105		panic("softdep_setup_blkmapdep: found block");
5106	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5107	    dtog(fs, newblkno), NULL);
5108	if (jnewblk) {
5109		jnewblk->jn_dep = (struct worklist *)newblk;
5110		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5111	} else {
5112		newblk->nb_state |= ONDEPLIST;
5113		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5114	}
5115	newblk->nb_bmsafemap = bmsafemap;
5116	newblk->nb_jnewblk = jnewblk;
5117	FREE_LOCK(ump);
5118}
5119
5120#define	BMSAFEMAP_HASH(ump, cg) \
5121      (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5122
5123static int
5124bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5125	struct bmsafemap_hashhead *bmsafemaphd;
5126	int cg;
5127	struct bmsafemap **bmsafemapp;
5128{
5129	struct bmsafemap *bmsafemap;
5130
5131	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5132		if (bmsafemap->sm_cg == cg)
5133			break;
5134	if (bmsafemap) {
5135		*bmsafemapp = bmsafemap;
5136		return (1);
5137	}
5138	*bmsafemapp = NULL;
5139
5140	return (0);
5141}
5142
5143/*
5144 * Find the bmsafemap associated with a cylinder group buffer.
5145 * If none exists, create one. The buffer must be locked when
5146 * this routine is called and this routine must be called with
5147 * the softdep lock held. To avoid giving up the lock while
5148 * allocating a new bmsafemap, a preallocated bmsafemap may be
5149 * provided. If it is provided but not needed, it is freed.
5150 */
5151static struct bmsafemap *
5152bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5153	struct mount *mp;
5154	struct buf *bp;
5155	int cg;
5156	struct bmsafemap *newbmsafemap;
5157{
5158	struct bmsafemap_hashhead *bmsafemaphd;
5159	struct bmsafemap *bmsafemap, *collision;
5160	struct worklist *wk;
5161	struct ufsmount *ump;
5162
5163	ump = VFSTOUFS(mp);
5164	LOCK_OWNED(ump);
5165	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5166	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5167		if (wk->wk_type == D_BMSAFEMAP) {
5168			if (newbmsafemap)
5169				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5170			return (WK_BMSAFEMAP(wk));
5171		}
5172	}
5173	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5174	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5175		if (newbmsafemap)
5176			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5177		return (bmsafemap);
5178	}
5179	if (newbmsafemap) {
5180		bmsafemap = newbmsafemap;
5181	} else {
5182		FREE_LOCK(ump);
5183		bmsafemap = malloc(sizeof(struct bmsafemap),
5184			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5185		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5186		ACQUIRE_LOCK(ump);
5187	}
5188	bmsafemap->sm_buf = bp;
5189	LIST_INIT(&bmsafemap->sm_inodedephd);
5190	LIST_INIT(&bmsafemap->sm_inodedepwr);
5191	LIST_INIT(&bmsafemap->sm_newblkhd);
5192	LIST_INIT(&bmsafemap->sm_newblkwr);
5193	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5194	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5195	LIST_INIT(&bmsafemap->sm_freehd);
5196	LIST_INIT(&bmsafemap->sm_freewr);
5197	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5198		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5199		return (collision);
5200	}
5201	bmsafemap->sm_cg = cg;
5202	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5203	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5204	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5205	return (bmsafemap);
5206}
5207
5208/*
5209 * Direct block allocation dependencies.
5210 *
5211 * When a new block is allocated, the corresponding disk locations must be
5212 * initialized (with zeros or new data) before the on-disk inode points to
5213 * them.  Also, the freemap from which the block was allocated must be
5214 * updated (on disk) before the inode's pointer. These two dependencies are
5215 * independent of each other and are needed for all file blocks and indirect
5216 * blocks that are pointed to directly by the inode.  Just before the
5217 * "in-core" version of the inode is updated with a newly allocated block
5218 * number, a procedure (below) is called to setup allocation dependency
5219 * structures.  These structures are removed when the corresponding
5220 * dependencies are satisfied or when the block allocation becomes obsolete
5221 * (i.e., the file is deleted, the block is de-allocated, or the block is a
5222 * fragment that gets upgraded).  All of these cases are handled in
5223 * procedures described later.
5224 *
5225 * When a file extension causes a fragment to be upgraded, either to a larger
5226 * fragment or to a full block, the on-disk location may change (if the
5227 * previous fragment could not simply be extended). In this case, the old
5228 * fragment must be de-allocated, but not until after the inode's pointer has
5229 * been updated. In most cases, this is handled by later procedures, which
5230 * will construct a "freefrag" structure to be added to the workitem queue
5231 * when the inode update is complete (or obsolete).  The main exception to
5232 * this is when an allocation occurs while a pending allocation dependency
5233 * (for the same block pointer) remains.  This case is handled in the main
5234 * allocation dependency setup procedure by immediately freeing the
5235 * unreferenced fragments.
5236 */
5237void
5238softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5239	struct inode *ip;	/* inode to which block is being added */
5240	ufs_lbn_t off;		/* block pointer within inode */
5241	ufs2_daddr_t newblkno;	/* disk block number being added */
5242	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5243	long newsize;		/* size of new block */
5244	long oldsize;		/* size of new block */
5245	struct buf *bp;		/* bp for allocated block */
5246{
5247	struct allocdirect *adp, *oldadp;
5248	struct allocdirectlst *adphead;
5249	struct freefrag *freefrag;
5250	struct inodedep *inodedep;
5251	struct pagedep *pagedep;
5252	struct jnewblk *jnewblk;
5253	struct newblk *newblk;
5254	struct mount *mp;
5255	ufs_lbn_t lbn;
5256
5257	lbn = bp->b_lblkno;
5258	mp = UFSTOVFS(ip->i_ump);
5259	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5260	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5261	if (oldblkno && oldblkno != newblkno)
5262		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5263	else
5264		freefrag = NULL;
5265
5266	CTR6(KTR_SUJ,
5267	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5268	    "off %jd newsize %ld oldsize %d",
5269	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5270	ACQUIRE_LOCK(ip->i_ump);
5271	if (off >= NDADDR) {
5272		if (lbn > 0)
5273			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5274			    lbn, off);
5275		/* allocating an indirect block */
5276		if (oldblkno != 0)
5277			panic("softdep_setup_allocdirect: non-zero indir");
5278	} else {
5279		if (off != lbn)
5280			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5281			    lbn, off);
5282		/*
5283		 * Allocating a direct block.
5284		 *
5285		 * If we are allocating a directory block, then we must
5286		 * allocate an associated pagedep to track additions and
5287		 * deletions.
5288		 */
5289		if ((ip->i_mode & IFMT) == IFDIR)
5290			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5291			    &pagedep);
5292	}
5293	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5294		panic("softdep_setup_allocdirect: lost block");
5295	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5296	    ("softdep_setup_allocdirect: newblk already initialized"));
5297	/*
5298	 * Convert the newblk to an allocdirect.
5299	 */
5300	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5301	adp = (struct allocdirect *)newblk;
5302	newblk->nb_freefrag = freefrag;
5303	adp->ad_offset = off;
5304	adp->ad_oldblkno = oldblkno;
5305	adp->ad_newsize = newsize;
5306	adp->ad_oldsize = oldsize;
5307
5308	/*
5309	 * Finish initializing the journal.
5310	 */
5311	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5312		jnewblk->jn_ino = ip->i_number;
5313		jnewblk->jn_lbn = lbn;
5314		add_to_journal(&jnewblk->jn_list);
5315	}
5316	if (freefrag && freefrag->ff_jdep != NULL &&
5317	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5318		add_to_journal(freefrag->ff_jdep);
5319	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5320	adp->ad_inodedep = inodedep;
5321
5322	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5323	/*
5324	 * The list of allocdirects must be kept in sorted and ascending
5325	 * order so that the rollback routines can quickly determine the
5326	 * first uncommitted block (the size of the file stored on disk
5327	 * ends at the end of the lowest committed fragment, or if there
5328	 * are no fragments, at the end of the highest committed block).
5329	 * Since files generally grow, the typical case is that the new
5330	 * block is to be added at the end of the list. We speed this
5331	 * special case by checking against the last allocdirect in the
5332	 * list before laboriously traversing the list looking for the
5333	 * insertion point.
5334	 */
5335	adphead = &inodedep->id_newinoupdt;
5336	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5337	if (oldadp == NULL || oldadp->ad_offset <= off) {
5338		/* insert at end of list */
5339		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5340		if (oldadp != NULL && oldadp->ad_offset == off)
5341			allocdirect_merge(adphead, adp, oldadp);
5342		FREE_LOCK(ip->i_ump);
5343		return;
5344	}
5345	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5346		if (oldadp->ad_offset >= off)
5347			break;
5348	}
5349	if (oldadp == NULL)
5350		panic("softdep_setup_allocdirect: lost entry");
5351	/* insert in middle of list */
5352	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5353	if (oldadp->ad_offset == off)
5354		allocdirect_merge(adphead, adp, oldadp);
5355
5356	FREE_LOCK(ip->i_ump);
5357}
5358
5359/*
5360 * Merge a newer and older journal record to be stored either in a
5361 * newblock or freefrag.  This handles aggregating journal records for
5362 * fragment allocation into a second record as well as replacing a
5363 * journal free with an aborted journal allocation.  A segment for the
5364 * oldest record will be placed on wkhd if it has been written.  If not
5365 * the segment for the newer record will suffice.
5366 */
5367static struct worklist *
5368jnewblk_merge(new, old, wkhd)
5369	struct worklist *new;
5370	struct worklist *old;
5371	struct workhead *wkhd;
5372{
5373	struct jnewblk *njnewblk;
5374	struct jnewblk *jnewblk;
5375
5376	/* Handle NULLs to simplify callers. */
5377	if (new == NULL)
5378		return (old);
5379	if (old == NULL)
5380		return (new);
5381	/* Replace a jfreefrag with a jnewblk. */
5382	if (new->wk_type == D_JFREEFRAG) {
5383		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5384			panic("jnewblk_merge: blkno mismatch: %p, %p",
5385			    old, new);
5386		cancel_jfreefrag(WK_JFREEFRAG(new));
5387		return (old);
5388	}
5389	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5390		panic("jnewblk_merge: Bad type: old %d new %d\n",
5391		    old->wk_type, new->wk_type);
5392	/*
5393	 * Handle merging of two jnewblk records that describe
5394	 * different sets of fragments in the same block.
5395	 */
5396	jnewblk = WK_JNEWBLK(old);
5397	njnewblk = WK_JNEWBLK(new);
5398	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5399		panic("jnewblk_merge: Merging disparate blocks.");
5400	/*
5401	 * The record may be rolled back in the cg.
5402	 */
5403	if (jnewblk->jn_state & UNDONE) {
5404		jnewblk->jn_state &= ~UNDONE;
5405		njnewblk->jn_state |= UNDONE;
5406		njnewblk->jn_state &= ~ATTACHED;
5407	}
5408	/*
5409	 * We modify the newer addref and free the older so that if neither
5410	 * has been written the most up-to-date copy will be on disk.  If
5411	 * both have been written but rolled back we only temporarily need
5412	 * one of them to fix the bits when the cg write completes.
5413	 */
5414	jnewblk->jn_state |= ATTACHED | COMPLETE;
5415	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5416	cancel_jnewblk(jnewblk, wkhd);
5417	WORKLIST_REMOVE(&jnewblk->jn_list);
5418	free_jnewblk(jnewblk);
5419	return (new);
5420}
5421
5422/*
5423 * Replace an old allocdirect dependency with a newer one.
5424 * This routine must be called with splbio interrupts blocked.
5425 */
5426static void
5427allocdirect_merge(adphead, newadp, oldadp)
5428	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5429	struct allocdirect *newadp;	/* allocdirect being added */
5430	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5431{
5432	struct worklist *wk;
5433	struct freefrag *freefrag;
5434
5435	freefrag = NULL;
5436	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5437	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5438	    newadp->ad_oldsize != oldadp->ad_newsize ||
5439	    newadp->ad_offset >= NDADDR)
5440		panic("%s %jd != new %jd || old size %ld != new %ld",
5441		    "allocdirect_merge: old blkno",
5442		    (intmax_t)newadp->ad_oldblkno,
5443		    (intmax_t)oldadp->ad_newblkno,
5444		    newadp->ad_oldsize, oldadp->ad_newsize);
5445	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5446	newadp->ad_oldsize = oldadp->ad_oldsize;
5447	/*
5448	 * If the old dependency had a fragment to free or had never
5449	 * previously had a block allocated, then the new dependency
5450	 * can immediately post its freefrag and adopt the old freefrag.
5451	 * This action is done by swapping the freefrag dependencies.
5452	 * The new dependency gains the old one's freefrag, and the
5453	 * old one gets the new one and then immediately puts it on
5454	 * the worklist when it is freed by free_newblk. It is
5455	 * not possible to do this swap when the old dependency had a
5456	 * non-zero size but no previous fragment to free. This condition
5457	 * arises when the new block is an extension of the old block.
5458	 * Here, the first part of the fragment allocated to the new
5459	 * dependency is part of the block currently claimed on disk by
5460	 * the old dependency, so cannot legitimately be freed until the
5461	 * conditions for the new dependency are fulfilled.
5462	 */
5463	freefrag = newadp->ad_freefrag;
5464	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5465		newadp->ad_freefrag = oldadp->ad_freefrag;
5466		oldadp->ad_freefrag = freefrag;
5467	}
5468	/*
5469	 * If we are tracking a new directory-block allocation,
5470	 * move it from the old allocdirect to the new allocdirect.
5471	 */
5472	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5473		WORKLIST_REMOVE(wk);
5474		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5475			panic("allocdirect_merge: extra newdirblk");
5476		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5477	}
5478	TAILQ_REMOVE(adphead, oldadp, ad_next);
5479	/*
5480	 * We need to move any journal dependencies over to the freefrag
5481	 * that releases this block if it exists.  Otherwise we are
5482	 * extending an existing block and we'll wait until that is
5483	 * complete to release the journal space and extend the
5484	 * new journal to cover this old space as well.
5485	 */
5486	if (freefrag == NULL) {
5487		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5488			panic("allocdirect_merge: %jd != %jd",
5489			    oldadp->ad_newblkno, newadp->ad_newblkno);
5490		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5491		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5492		    &oldadp->ad_block.nb_jnewblk->jn_list,
5493		    &newadp->ad_block.nb_jwork);
5494		oldadp->ad_block.nb_jnewblk = NULL;
5495		cancel_newblk(&oldadp->ad_block, NULL,
5496		    &newadp->ad_block.nb_jwork);
5497	} else {
5498		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5499		    &freefrag->ff_list, &freefrag->ff_jwork);
5500		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5501		    &freefrag->ff_jwork);
5502	}
5503	free_newblk(&oldadp->ad_block);
5504}
5505
5506/*
5507 * Allocate a jfreefrag structure to journal a single block free.
5508 */
5509static struct jfreefrag *
5510newjfreefrag(freefrag, ip, blkno, size, lbn)
5511	struct freefrag *freefrag;
5512	struct inode *ip;
5513	ufs2_daddr_t blkno;
5514	long size;
5515	ufs_lbn_t lbn;
5516{
5517	struct jfreefrag *jfreefrag;
5518	struct fs *fs;
5519
5520	fs = ip->i_fs;
5521	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5522	    M_SOFTDEP_FLAGS);
5523	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5524	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5525	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5526	jfreefrag->fr_ino = ip->i_number;
5527	jfreefrag->fr_lbn = lbn;
5528	jfreefrag->fr_blkno = blkno;
5529	jfreefrag->fr_frags = numfrags(fs, size);
5530	jfreefrag->fr_freefrag = freefrag;
5531
5532	return (jfreefrag);
5533}
5534
5535/*
5536 * Allocate a new freefrag structure.
5537 */
5538static struct freefrag *
5539newfreefrag(ip, blkno, size, lbn)
5540	struct inode *ip;
5541	ufs2_daddr_t blkno;
5542	long size;
5543	ufs_lbn_t lbn;
5544{
5545	struct freefrag *freefrag;
5546	struct fs *fs;
5547
5548	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5549	    ip->i_number, blkno, size, lbn);
5550	fs = ip->i_fs;
5551	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5552		panic("newfreefrag: frag size");
5553	freefrag = malloc(sizeof(struct freefrag),
5554	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5555	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5556	freefrag->ff_state = ATTACHED;
5557	LIST_INIT(&freefrag->ff_jwork);
5558	freefrag->ff_inum = ip->i_number;
5559	freefrag->ff_vtype = ITOV(ip)->v_type;
5560	freefrag->ff_blkno = blkno;
5561	freefrag->ff_fragsize = size;
5562
5563	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5564		freefrag->ff_jdep = (struct worklist *)
5565		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5566	} else {
5567		freefrag->ff_state |= DEPCOMPLETE;
5568		freefrag->ff_jdep = NULL;
5569	}
5570
5571	return (freefrag);
5572}
5573
5574/*
5575 * This workitem de-allocates fragments that were replaced during
5576 * file block allocation.
5577 */
5578static void
5579handle_workitem_freefrag(freefrag)
5580	struct freefrag *freefrag;
5581{
5582	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5583	struct workhead wkhd;
5584
5585	CTR3(KTR_SUJ,
5586	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5587	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5588	/*
5589	 * It would be illegal to add new completion items to the
5590	 * freefrag after it was schedule to be done so it must be
5591	 * safe to modify the list head here.
5592	 */
5593	LIST_INIT(&wkhd);
5594	ACQUIRE_LOCK(ump);
5595	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5596	/*
5597	 * If the journal has not been written we must cancel it here.
5598	 */
5599	if (freefrag->ff_jdep) {
5600		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5601			panic("handle_workitem_freefrag: Unexpected type %d\n",
5602			    freefrag->ff_jdep->wk_type);
5603		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5604	}
5605	FREE_LOCK(ump);
5606	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5607	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5608	ACQUIRE_LOCK(ump);
5609	WORKITEM_FREE(freefrag, D_FREEFRAG);
5610	FREE_LOCK(ump);
5611}
5612
5613/*
5614 * Set up a dependency structure for an external attributes data block.
5615 * This routine follows much of the structure of softdep_setup_allocdirect.
5616 * See the description of softdep_setup_allocdirect above for details.
5617 */
5618void
5619softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5620	struct inode *ip;
5621	ufs_lbn_t off;
5622	ufs2_daddr_t newblkno;
5623	ufs2_daddr_t oldblkno;
5624	long newsize;
5625	long oldsize;
5626	struct buf *bp;
5627{
5628	struct allocdirect *adp, *oldadp;
5629	struct allocdirectlst *adphead;
5630	struct freefrag *freefrag;
5631	struct inodedep *inodedep;
5632	struct jnewblk *jnewblk;
5633	struct newblk *newblk;
5634	struct mount *mp;
5635	ufs_lbn_t lbn;
5636
5637	mp = UFSTOVFS(ip->i_ump);
5638	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5639	    ("softdep_setup_allocext called on non-softdep filesystem"));
5640	KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR",
5641		    (long long)off));
5642
5643	lbn = bp->b_lblkno;
5644	if (oldblkno && oldblkno != newblkno)
5645		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5646	else
5647		freefrag = NULL;
5648
5649	ACQUIRE_LOCK(ip->i_ump);
5650	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5651		panic("softdep_setup_allocext: lost block");
5652	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5653	    ("softdep_setup_allocext: newblk already initialized"));
5654	/*
5655	 * Convert the newblk to an allocdirect.
5656	 */
5657	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5658	adp = (struct allocdirect *)newblk;
5659	newblk->nb_freefrag = freefrag;
5660	adp->ad_offset = off;
5661	adp->ad_oldblkno = oldblkno;
5662	adp->ad_newsize = newsize;
5663	adp->ad_oldsize = oldsize;
5664	adp->ad_state |=  EXTDATA;
5665
5666	/*
5667	 * Finish initializing the journal.
5668	 */
5669	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5670		jnewblk->jn_ino = ip->i_number;
5671		jnewblk->jn_lbn = lbn;
5672		add_to_journal(&jnewblk->jn_list);
5673	}
5674	if (freefrag && freefrag->ff_jdep != NULL &&
5675	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5676		add_to_journal(freefrag->ff_jdep);
5677	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5678	adp->ad_inodedep = inodedep;
5679
5680	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5681	/*
5682	 * The list of allocdirects must be kept in sorted and ascending
5683	 * order so that the rollback routines can quickly determine the
5684	 * first uncommitted block (the size of the file stored on disk
5685	 * ends at the end of the lowest committed fragment, or if there
5686	 * are no fragments, at the end of the highest committed block).
5687	 * Since files generally grow, the typical case is that the new
5688	 * block is to be added at the end of the list. We speed this
5689	 * special case by checking against the last allocdirect in the
5690	 * list before laboriously traversing the list looking for the
5691	 * insertion point.
5692	 */
5693	adphead = &inodedep->id_newextupdt;
5694	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5695	if (oldadp == NULL || oldadp->ad_offset <= off) {
5696		/* insert at end of list */
5697		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5698		if (oldadp != NULL && oldadp->ad_offset == off)
5699			allocdirect_merge(adphead, adp, oldadp);
5700		FREE_LOCK(ip->i_ump);
5701		return;
5702	}
5703	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5704		if (oldadp->ad_offset >= off)
5705			break;
5706	}
5707	if (oldadp == NULL)
5708		panic("softdep_setup_allocext: lost entry");
5709	/* insert in middle of list */
5710	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5711	if (oldadp->ad_offset == off)
5712		allocdirect_merge(adphead, adp, oldadp);
5713	FREE_LOCK(ip->i_ump);
5714}
5715
5716/*
5717 * Indirect block allocation dependencies.
5718 *
5719 * The same dependencies that exist for a direct block also exist when
5720 * a new block is allocated and pointed to by an entry in a block of
5721 * indirect pointers. The undo/redo states described above are also
5722 * used here. Because an indirect block contains many pointers that
5723 * may have dependencies, a second copy of the entire in-memory indirect
5724 * block is kept. The buffer cache copy is always completely up-to-date.
5725 * The second copy, which is used only as a source for disk writes,
5726 * contains only the safe pointers (i.e., those that have no remaining
5727 * update dependencies). The second copy is freed when all pointers
5728 * are safe. The cache is not allowed to replace indirect blocks with
5729 * pending update dependencies. If a buffer containing an indirect
5730 * block with dependencies is written, these routines will mark it
5731 * dirty again. It can only be successfully written once all the
5732 * dependencies are removed. The ffs_fsync routine in conjunction with
5733 * softdep_sync_metadata work together to get all the dependencies
5734 * removed so that a file can be successfully written to disk. Three
5735 * procedures are used when setting up indirect block pointer
5736 * dependencies. The division is necessary because of the organization
5737 * of the "balloc" routine and because of the distinction between file
5738 * pages and file metadata blocks.
5739 */
5740
5741/*
5742 * Allocate a new allocindir structure.
5743 */
5744static struct allocindir *
5745newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5746	struct inode *ip;	/* inode for file being extended */
5747	int ptrno;		/* offset of pointer in indirect block */
5748	ufs2_daddr_t newblkno;	/* disk block number being added */
5749	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5750	ufs_lbn_t lbn;
5751{
5752	struct newblk *newblk;
5753	struct allocindir *aip;
5754	struct freefrag *freefrag;
5755	struct jnewblk *jnewblk;
5756
5757	if (oldblkno)
5758		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5759	else
5760		freefrag = NULL;
5761	ACQUIRE_LOCK(ip->i_ump);
5762	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5763		panic("new_allocindir: lost block");
5764	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5765	    ("newallocindir: newblk already initialized"));
5766	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5767	newblk->nb_freefrag = freefrag;
5768	aip = (struct allocindir *)newblk;
5769	aip->ai_offset = ptrno;
5770	aip->ai_oldblkno = oldblkno;
5771	aip->ai_lbn = lbn;
5772	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5773		jnewblk->jn_ino = ip->i_number;
5774		jnewblk->jn_lbn = lbn;
5775		add_to_journal(&jnewblk->jn_list);
5776	}
5777	if (freefrag && freefrag->ff_jdep != NULL &&
5778	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5779		add_to_journal(freefrag->ff_jdep);
5780	return (aip);
5781}
5782
5783/*
5784 * Called just before setting an indirect block pointer
5785 * to a newly allocated file page.
5786 */
5787void
5788softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5789	struct inode *ip;	/* inode for file being extended */
5790	ufs_lbn_t lbn;		/* allocated block number within file */
5791	struct buf *bp;		/* buffer with indirect blk referencing page */
5792	int ptrno;		/* offset of pointer in indirect block */
5793	ufs2_daddr_t newblkno;	/* disk block number being added */
5794	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5795	struct buf *nbp;	/* buffer holding allocated page */
5796{
5797	struct inodedep *inodedep;
5798	struct freefrag *freefrag;
5799	struct allocindir *aip;
5800	struct pagedep *pagedep;
5801	struct mount *mp;
5802	int dflags;
5803
5804	mp = UFSTOVFS(ip->i_ump);
5805	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5806	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5807	KASSERT(lbn == nbp->b_lblkno,
5808	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5809	    lbn, bp->b_lblkno));
5810	CTR4(KTR_SUJ,
5811	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5812	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5813	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5814	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5815	dflags = DEPALLOC;
5816	if (IS_SNAPSHOT(ip))
5817		dflags |= NODELAY;
5818	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
5819	/*
5820	 * If we are allocating a directory page, then we must
5821	 * allocate an associated pagedep to track additions and
5822	 * deletions.
5823	 */
5824	if ((ip->i_mode & IFMT) == IFDIR)
5825		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5826	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5827	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5828	FREE_LOCK(ip->i_ump);
5829	if (freefrag)
5830		handle_workitem_freefrag(freefrag);
5831}
5832
5833/*
5834 * Called just before setting an indirect block pointer to a
5835 * newly allocated indirect block.
5836 */
5837void
5838softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5839	struct buf *nbp;	/* newly allocated indirect block */
5840	struct inode *ip;	/* inode for file being extended */
5841	struct buf *bp;		/* indirect block referencing allocated block */
5842	int ptrno;		/* offset of pointer in indirect block */
5843	ufs2_daddr_t newblkno;	/* disk block number being added */
5844{
5845	struct inodedep *inodedep;
5846	struct allocindir *aip;
5847	ufs_lbn_t lbn;
5848	int dflags;
5849
5850	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
5851	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5852	CTR3(KTR_SUJ,
5853	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5854	    ip->i_number, newblkno, ptrno);
5855	lbn = nbp->b_lblkno;
5856	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5857	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5858	dflags = DEPALLOC;
5859	if (IS_SNAPSHOT(ip))
5860		dflags |= NODELAY;
5861	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
5862	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5863	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5864		panic("softdep_setup_allocindir_meta: Block already existed");
5865	FREE_LOCK(ip->i_ump);
5866}
5867
5868static void
5869indirdep_complete(indirdep)
5870	struct indirdep *indirdep;
5871{
5872	struct allocindir *aip;
5873
5874	LIST_REMOVE(indirdep, ir_next);
5875	indirdep->ir_state |= DEPCOMPLETE;
5876
5877	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5878		LIST_REMOVE(aip, ai_next);
5879		free_newblk(&aip->ai_block);
5880	}
5881	/*
5882	 * If this indirdep is not attached to a buf it was simply waiting
5883	 * on completion to clear completehd.  free_indirdep() asserts
5884	 * that nothing is dangling.
5885	 */
5886	if ((indirdep->ir_state & ONWORKLIST) == 0)
5887		free_indirdep(indirdep);
5888}
5889
5890static struct indirdep *
5891indirdep_lookup(mp, ip, bp)
5892	struct mount *mp;
5893	struct inode *ip;
5894	struct buf *bp;
5895{
5896	struct indirdep *indirdep, *newindirdep;
5897	struct newblk *newblk;
5898	struct ufsmount *ump;
5899	struct worklist *wk;
5900	struct fs *fs;
5901	ufs2_daddr_t blkno;
5902
5903	ump = VFSTOUFS(mp);
5904	LOCK_OWNED(ump);
5905	indirdep = NULL;
5906	newindirdep = NULL;
5907	fs = ip->i_fs;
5908	for (;;) {
5909		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5910			if (wk->wk_type != D_INDIRDEP)
5911				continue;
5912			indirdep = WK_INDIRDEP(wk);
5913			break;
5914		}
5915		/* Found on the buffer worklist, no new structure to free. */
5916		if (indirdep != NULL && newindirdep == NULL)
5917			return (indirdep);
5918		if (indirdep != NULL && newindirdep != NULL)
5919			panic("indirdep_lookup: simultaneous create");
5920		/* None found on the buffer and a new structure is ready. */
5921		if (indirdep == NULL && newindirdep != NULL)
5922			break;
5923		/* None found and no new structure available. */
5924		FREE_LOCK(ump);
5925		newindirdep = malloc(sizeof(struct indirdep),
5926		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5927		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5928		newindirdep->ir_state = ATTACHED;
5929		if (ip->i_ump->um_fstype == UFS1)
5930			newindirdep->ir_state |= UFS1FMT;
5931		TAILQ_INIT(&newindirdep->ir_trunc);
5932		newindirdep->ir_saveddata = NULL;
5933		LIST_INIT(&newindirdep->ir_deplisthd);
5934		LIST_INIT(&newindirdep->ir_donehd);
5935		LIST_INIT(&newindirdep->ir_writehd);
5936		LIST_INIT(&newindirdep->ir_completehd);
5937		if (bp->b_blkno == bp->b_lblkno) {
5938			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5939			    NULL, NULL);
5940			bp->b_blkno = blkno;
5941		}
5942		newindirdep->ir_freeblks = NULL;
5943		newindirdep->ir_savebp =
5944		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5945		newindirdep->ir_bp = bp;
5946		BUF_KERNPROC(newindirdep->ir_savebp);
5947		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5948		ACQUIRE_LOCK(ump);
5949	}
5950	indirdep = newindirdep;
5951	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5952	/*
5953	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5954	 * that we don't free dependencies until the pointers are valid.
5955	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5956	 * than using the hash.
5957	 */
5958	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5959		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5960	else
5961		indirdep->ir_state |= DEPCOMPLETE;
5962	return (indirdep);
5963}
5964
5965/*
5966 * Called to finish the allocation of the "aip" allocated
5967 * by one of the two routines above.
5968 */
5969static struct freefrag *
5970setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5971	struct buf *bp;		/* in-memory copy of the indirect block */
5972	struct inode *ip;	/* inode for file being extended */
5973	struct inodedep *inodedep; /* Inodedep for ip */
5974	struct allocindir *aip;	/* allocindir allocated by the above routines */
5975	ufs_lbn_t lbn;		/* Logical block number for this block. */
5976{
5977	struct fs *fs;
5978	struct indirdep *indirdep;
5979	struct allocindir *oldaip;
5980	struct freefrag *freefrag;
5981	struct mount *mp;
5982
5983	LOCK_OWNED(ip->i_ump);
5984	mp = UFSTOVFS(ip->i_ump);
5985	fs = ip->i_fs;
5986	if (bp->b_lblkno >= 0)
5987		panic("setup_allocindir_phase2: not indir blk");
5988	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5989	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5990	indirdep = indirdep_lookup(mp, ip, bp);
5991	KASSERT(indirdep->ir_savebp != NULL,
5992	    ("setup_allocindir_phase2 NULL ir_savebp"));
5993	aip->ai_indirdep = indirdep;
5994	/*
5995	 * Check for an unwritten dependency for this indirect offset.  If
5996	 * there is, merge the old dependency into the new one.  This happens
5997	 * as a result of reallocblk only.
5998	 */
5999	freefrag = NULL;
6000	if (aip->ai_oldblkno != 0) {
6001		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6002			if (oldaip->ai_offset == aip->ai_offset) {
6003				freefrag = allocindir_merge(aip, oldaip);
6004				goto done;
6005			}
6006		}
6007		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6008			if (oldaip->ai_offset == aip->ai_offset) {
6009				freefrag = allocindir_merge(aip, oldaip);
6010				goto done;
6011			}
6012		}
6013	}
6014done:
6015	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6016	return (freefrag);
6017}
6018
6019/*
6020 * Merge two allocindirs which refer to the same block.  Move newblock
6021 * dependencies and setup the freefrags appropriately.
6022 */
6023static struct freefrag *
6024allocindir_merge(aip, oldaip)
6025	struct allocindir *aip;
6026	struct allocindir *oldaip;
6027{
6028	struct freefrag *freefrag;
6029	struct worklist *wk;
6030
6031	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6032		panic("allocindir_merge: blkno");
6033	aip->ai_oldblkno = oldaip->ai_oldblkno;
6034	freefrag = aip->ai_freefrag;
6035	aip->ai_freefrag = oldaip->ai_freefrag;
6036	oldaip->ai_freefrag = NULL;
6037	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6038	/*
6039	 * If we are tracking a new directory-block allocation,
6040	 * move it from the old allocindir to the new allocindir.
6041	 */
6042	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6043		WORKLIST_REMOVE(wk);
6044		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6045			panic("allocindir_merge: extra newdirblk");
6046		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6047	}
6048	/*
6049	 * We can skip journaling for this freefrag and just complete
6050	 * any pending journal work for the allocindir that is being
6051	 * removed after the freefrag completes.
6052	 */
6053	if (freefrag->ff_jdep)
6054		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6055	LIST_REMOVE(oldaip, ai_next);
6056	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6057	    &freefrag->ff_list, &freefrag->ff_jwork);
6058	free_newblk(&oldaip->ai_block);
6059
6060	return (freefrag);
6061}
6062
6063static inline void
6064setup_freedirect(freeblks, ip, i, needj)
6065	struct freeblks *freeblks;
6066	struct inode *ip;
6067	int i;
6068	int needj;
6069{
6070	ufs2_daddr_t blkno;
6071	int frags;
6072
6073	blkno = DIP(ip, i_db[i]);
6074	if (blkno == 0)
6075		return;
6076	DIP_SET(ip, i_db[i], 0);
6077	frags = sblksize(ip->i_fs, ip->i_size, i);
6078	frags = numfrags(ip->i_fs, frags);
6079	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
6080}
6081
6082static inline void
6083setup_freeext(freeblks, ip, i, needj)
6084	struct freeblks *freeblks;
6085	struct inode *ip;
6086	int i;
6087	int needj;
6088{
6089	ufs2_daddr_t blkno;
6090	int frags;
6091
6092	blkno = ip->i_din2->di_extb[i];
6093	if (blkno == 0)
6094		return;
6095	ip->i_din2->di_extb[i] = 0;
6096	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
6097	frags = numfrags(ip->i_fs, frags);
6098	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6099}
6100
6101static inline void
6102setup_freeindir(freeblks, ip, i, lbn, needj)
6103	struct freeblks *freeblks;
6104	struct inode *ip;
6105	int i;
6106	ufs_lbn_t lbn;
6107	int needj;
6108{
6109	ufs2_daddr_t blkno;
6110
6111	blkno = DIP(ip, i_ib[i]);
6112	if (blkno == 0)
6113		return;
6114	DIP_SET(ip, i_ib[i], 0);
6115	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
6116	    0, needj);
6117}
6118
6119static inline struct freeblks *
6120newfreeblks(mp, ip)
6121	struct mount *mp;
6122	struct inode *ip;
6123{
6124	struct freeblks *freeblks;
6125
6126	freeblks = malloc(sizeof(struct freeblks),
6127		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6128	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6129	LIST_INIT(&freeblks->fb_jblkdephd);
6130	LIST_INIT(&freeblks->fb_jwork);
6131	freeblks->fb_ref = 0;
6132	freeblks->fb_cgwait = 0;
6133	freeblks->fb_state = ATTACHED;
6134	freeblks->fb_uid = ip->i_uid;
6135	freeblks->fb_inum = ip->i_number;
6136	freeblks->fb_vtype = ITOV(ip)->v_type;
6137	freeblks->fb_modrev = DIP(ip, i_modrev);
6138	freeblks->fb_devvp = ip->i_devvp;
6139	freeblks->fb_chkcnt = 0;
6140	freeblks->fb_len = 0;
6141
6142	return (freeblks);
6143}
6144
6145static void
6146trunc_indirdep(indirdep, freeblks, bp, off)
6147	struct indirdep *indirdep;
6148	struct freeblks *freeblks;
6149	struct buf *bp;
6150	int off;
6151{
6152	struct allocindir *aip, *aipn;
6153
6154	/*
6155	 * The first set of allocindirs won't be in savedbp.
6156	 */
6157	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6158		if (aip->ai_offset > off)
6159			cancel_allocindir(aip, bp, freeblks, 1);
6160	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6161		if (aip->ai_offset > off)
6162			cancel_allocindir(aip, bp, freeblks, 1);
6163	/*
6164	 * These will exist in savedbp.
6165	 */
6166	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6167		if (aip->ai_offset > off)
6168			cancel_allocindir(aip, NULL, freeblks, 0);
6169	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6170		if (aip->ai_offset > off)
6171			cancel_allocindir(aip, NULL, freeblks, 0);
6172}
6173
6174/*
6175 * Follow the chain of indirects down to lastlbn creating a freework
6176 * structure for each.  This will be used to start indir_trunc() at
6177 * the right offset and create the journal records for the parrtial
6178 * truncation.  A second step will handle the truncated dependencies.
6179 */
6180static int
6181setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6182	struct freeblks *freeblks;
6183	struct inode *ip;
6184	ufs_lbn_t lbn;
6185	ufs_lbn_t lastlbn;
6186	ufs2_daddr_t blkno;
6187{
6188	struct indirdep *indirdep;
6189	struct indirdep *indirn;
6190	struct freework *freework;
6191	struct newblk *newblk;
6192	struct mount *mp;
6193	struct buf *bp;
6194	uint8_t *start;
6195	uint8_t *end;
6196	ufs_lbn_t lbnadd;
6197	int level;
6198	int error;
6199	int off;
6200
6201
6202	freework = NULL;
6203	if (blkno == 0)
6204		return (0);
6205	mp = freeblks->fb_list.wk_mp;
6206	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6207	if ((bp->b_flags & B_CACHE) == 0) {
6208		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6209		bp->b_iocmd = BIO_READ;
6210		bp->b_flags &= ~B_INVAL;
6211		bp->b_ioflags &= ~BIO_ERROR;
6212		vfs_busy_pages(bp, 0);
6213		bp->b_iooffset = dbtob(bp->b_blkno);
6214		bstrategy(bp);
6215		curthread->td_ru.ru_inblock++;
6216		error = bufwait(bp);
6217		if (error) {
6218			brelse(bp);
6219			return (error);
6220		}
6221	}
6222	level = lbn_level(lbn);
6223	lbnadd = lbn_offset(ip->i_fs, level);
6224	/*
6225	 * Compute the offset of the last block we want to keep.  Store
6226	 * in the freework the first block we want to completely free.
6227	 */
6228	off = (lastlbn - -(lbn + level)) / lbnadd;
6229	if (off + 1 == NINDIR(ip->i_fs))
6230		goto nowork;
6231	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6232	    0);
6233	/*
6234	 * Link the freework into the indirdep.  This will prevent any new
6235	 * allocations from proceeding until we are finished with the
6236	 * truncate and the block is written.
6237	 */
6238	ACQUIRE_LOCK(ip->i_ump);
6239	indirdep = indirdep_lookup(mp, ip, bp);
6240	if (indirdep->ir_freeblks)
6241		panic("setup_trunc_indir: indirdep already truncated.");
6242	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6243	freework->fw_indir = indirdep;
6244	/*
6245	 * Cancel any allocindirs that will not make it to disk.
6246	 * We have to do this for all copies of the indirdep that
6247	 * live on this newblk.
6248	 */
6249	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6250		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6251		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6252			trunc_indirdep(indirn, freeblks, bp, off);
6253	} else
6254		trunc_indirdep(indirdep, freeblks, bp, off);
6255	FREE_LOCK(ip->i_ump);
6256	/*
6257	 * Creation is protected by the buf lock. The saveddata is only
6258	 * needed if a full truncation follows a partial truncation but it
6259	 * is difficult to allocate in that case so we fetch it anyway.
6260	 */
6261	if (indirdep->ir_saveddata == NULL)
6262		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6263		    M_SOFTDEP_FLAGS);
6264nowork:
6265	/* Fetch the blkno of the child and the zero start offset. */
6266	if (ip->i_ump->um_fstype == UFS1) {
6267		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6268		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6269	} else {
6270		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6271		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6272	}
6273	if (freework) {
6274		/* Zero the truncated pointers. */
6275		end = bp->b_data + bp->b_bcount;
6276		bzero(start, end - start);
6277		bdwrite(bp);
6278	} else
6279		bqrelse(bp);
6280	if (level == 0)
6281		return (0);
6282	lbn++; /* adjust level */
6283	lbn -= (off * lbnadd);
6284	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6285}
6286
6287/*
6288 * Complete the partial truncation of an indirect block setup by
6289 * setup_trunc_indir().  This zeros the truncated pointers in the saved
6290 * copy and writes them to disk before the freeblks is allowed to complete.
6291 */
6292static void
6293complete_trunc_indir(freework)
6294	struct freework *freework;
6295{
6296	struct freework *fwn;
6297	struct indirdep *indirdep;
6298	struct ufsmount *ump;
6299	struct buf *bp;
6300	uintptr_t start;
6301	int count;
6302
6303	ump = VFSTOUFS(freework->fw_list.wk_mp);
6304	LOCK_OWNED(ump);
6305	indirdep = freework->fw_indir;
6306	for (;;) {
6307		bp = indirdep->ir_bp;
6308		/* See if the block was discarded. */
6309		if (bp == NULL)
6310			break;
6311		/* Inline part of getdirtybuf().  We dont want bremfree. */
6312		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6313			break;
6314		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6315		    LOCK_PTR(ump)) == 0)
6316			BUF_UNLOCK(bp);
6317		ACQUIRE_LOCK(ump);
6318	}
6319	freework->fw_state |= DEPCOMPLETE;
6320	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6321	/*
6322	 * Zero the pointers in the saved copy.
6323	 */
6324	if (indirdep->ir_state & UFS1FMT)
6325		start = sizeof(ufs1_daddr_t);
6326	else
6327		start = sizeof(ufs2_daddr_t);
6328	start *= freework->fw_start;
6329	count = indirdep->ir_savebp->b_bcount - start;
6330	start += (uintptr_t)indirdep->ir_savebp->b_data;
6331	bzero((char *)start, count);
6332	/*
6333	 * We need to start the next truncation in the list if it has not
6334	 * been started yet.
6335	 */
6336	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6337	if (fwn != NULL) {
6338		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6339			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6340		if ((fwn->fw_state & ONWORKLIST) == 0)
6341			freework_enqueue(fwn);
6342	}
6343	/*
6344	 * If bp is NULL the block was fully truncated, restore
6345	 * the saved block list otherwise free it if it is no
6346	 * longer needed.
6347	 */
6348	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6349		if (bp == NULL)
6350			bcopy(indirdep->ir_saveddata,
6351			    indirdep->ir_savebp->b_data,
6352			    indirdep->ir_savebp->b_bcount);
6353		free(indirdep->ir_saveddata, M_INDIRDEP);
6354		indirdep->ir_saveddata = NULL;
6355	}
6356	/*
6357	 * When bp is NULL there is a full truncation pending.  We
6358	 * must wait for this full truncation to be journaled before
6359	 * we can release this freework because the disk pointers will
6360	 * never be written as zero.
6361	 */
6362	if (bp == NULL)  {
6363		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6364			handle_written_freework(freework);
6365		else
6366			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6367			   &freework->fw_list);
6368	} else {
6369		/* Complete when the real copy is written. */
6370		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6371		BUF_UNLOCK(bp);
6372	}
6373}
6374
6375/*
6376 * Calculate the number of blocks we are going to release where datablocks
6377 * is the current total and length is the new file size.
6378 */
6379static ufs2_daddr_t
6380blkcount(fs, datablocks, length)
6381	struct fs *fs;
6382	ufs2_daddr_t datablocks;
6383	off_t length;
6384{
6385	off_t totblks, numblks;
6386
6387	totblks = 0;
6388	numblks = howmany(length, fs->fs_bsize);
6389	if (numblks <= NDADDR) {
6390		totblks = howmany(length, fs->fs_fsize);
6391		goto out;
6392	}
6393        totblks = blkstofrags(fs, numblks);
6394	numblks -= NDADDR;
6395	/*
6396	 * Count all single, then double, then triple indirects required.
6397	 * Subtracting one indirects worth of blocks for each pass
6398	 * acknowledges one of each pointed to by the inode.
6399	 */
6400	for (;;) {
6401		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6402		numblks -= NINDIR(fs);
6403		if (numblks <= 0)
6404			break;
6405		numblks = howmany(numblks, NINDIR(fs));
6406	}
6407out:
6408	totblks = fsbtodb(fs, totblks);
6409	/*
6410	 * Handle sparse files.  We can't reclaim more blocks than the inode
6411	 * references.  We will correct it later in handle_complete_freeblks()
6412	 * when we know the real count.
6413	 */
6414	if (totblks > datablocks)
6415		return (0);
6416	return (datablocks - totblks);
6417}
6418
6419/*
6420 * Handle freeblocks for journaled softupdate filesystems.
6421 *
6422 * Contrary to normal softupdates, we must preserve the block pointers in
6423 * indirects until their subordinates are free.  This is to avoid journaling
6424 * every block that is freed which may consume more space than the journal
6425 * itself.  The recovery program will see the free block journals at the
6426 * base of the truncated area and traverse them to reclaim space.  The
6427 * pointers in the inode may be cleared immediately after the journal
6428 * records are written because each direct and indirect pointer in the
6429 * inode is recorded in a journal.  This permits full truncation to proceed
6430 * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6431 *
6432 * The algorithm is as follows:
6433 * 1) Traverse the in-memory state and create journal entries to release
6434 *    the relevant blocks and full indirect trees.
6435 * 2) Traverse the indirect block chain adding partial truncation freework
6436 *    records to indirects in the path to lastlbn.  The freework will
6437 *    prevent new allocation dependencies from being satisfied in this
6438 *    indirect until the truncation completes.
6439 * 3) Read and lock the inode block, performing an update with the new size
6440 *    and pointers.  This prevents truncated data from becoming valid on
6441 *    disk through step 4.
6442 * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6443 *    eliminate journal work for those records that do not require it.
6444 * 5) Schedule the journal records to be written followed by the inode block.
6445 * 6) Allocate any necessary frags for the end of file.
6446 * 7) Zero any partially truncated blocks.
6447 *
6448 * From this truncation proceeds asynchronously using the freework and
6449 * indir_trunc machinery.  The file will not be extended again into a
6450 * partially truncated indirect block until all work is completed but
6451 * the normal dependency mechanism ensures that it is rolled back/forward
6452 * as appropriate.  Further truncation may occur without delay and is
6453 * serialized in indir_trunc().
6454 */
6455void
6456softdep_journal_freeblocks(ip, cred, length, flags)
6457	struct inode *ip;	/* The inode whose length is to be reduced */
6458	struct ucred *cred;
6459	off_t length;		/* The new length for the file */
6460	int flags;		/* IO_EXT and/or IO_NORMAL */
6461{
6462	struct freeblks *freeblks, *fbn;
6463	struct worklist *wk, *wkn;
6464	struct inodedep *inodedep;
6465	struct jblkdep *jblkdep;
6466	struct allocdirect *adp, *adpn;
6467	struct ufsmount *ump;
6468	struct fs *fs;
6469	struct buf *bp;
6470	struct vnode *vp;
6471	struct mount *mp;
6472	ufs2_daddr_t extblocks, datablocks;
6473	ufs_lbn_t tmpval, lbn, lastlbn;
6474	int frags, lastoff, iboff, allocblock, needj, dflags, error, i;
6475
6476	fs = ip->i_fs;
6477	ump = ip->i_ump;
6478	mp = UFSTOVFS(ump);
6479	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6480	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6481	vp = ITOV(ip);
6482	needj = 1;
6483	iboff = -1;
6484	allocblock = 0;
6485	extblocks = 0;
6486	datablocks = 0;
6487	frags = 0;
6488	freeblks = newfreeblks(mp, ip);
6489	ACQUIRE_LOCK(ump);
6490	/*
6491	 * If we're truncating a removed file that will never be written
6492	 * we don't need to journal the block frees.  The canceled journals
6493	 * for the allocations will suffice.
6494	 */
6495	dflags = DEPALLOC;
6496	if (IS_SNAPSHOT(ip))
6497		dflags |= NODELAY;
6498	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6499	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6500	    length == 0)
6501		needj = 0;
6502	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6503	    ip->i_number, length, needj);
6504	FREE_LOCK(ump);
6505	/*
6506	 * Calculate the lbn that we are truncating to.  This results in -1
6507	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6508	 * to keep, not the first lbn we want to truncate.
6509	 */
6510	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6511	lastoff = blkoff(fs, length);
6512	/*
6513	 * Compute frags we are keeping in lastlbn.  0 means all.
6514	 */
6515	if (lastlbn >= 0 && lastlbn < NDADDR) {
6516		frags = fragroundup(fs, lastoff);
6517		/* adp offset of last valid allocdirect. */
6518		iboff = lastlbn;
6519	} else if (lastlbn > 0)
6520		iboff = NDADDR;
6521	if (fs->fs_magic == FS_UFS2_MAGIC)
6522		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6523	/*
6524	 * Handle normal data blocks and indirects.  This section saves
6525	 * values used after the inode update to complete frag and indirect
6526	 * truncation.
6527	 */
6528	if ((flags & IO_NORMAL) != 0) {
6529		/*
6530		 * Handle truncation of whole direct and indirect blocks.
6531		 */
6532		for (i = iboff + 1; i < NDADDR; i++)
6533			setup_freedirect(freeblks, ip, i, needj);
6534		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6535		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6536			/* Release a whole indirect tree. */
6537			if (lbn > lastlbn) {
6538				setup_freeindir(freeblks, ip, i, -lbn -i,
6539				    needj);
6540				continue;
6541			}
6542			iboff = i + NDADDR;
6543			/*
6544			 * Traverse partially truncated indirect tree.
6545			 */
6546			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6547				setup_trunc_indir(freeblks, ip, -lbn - i,
6548				    lastlbn, DIP(ip, i_ib[i]));
6549		}
6550		/*
6551		 * Handle partial truncation to a frag boundary.
6552		 */
6553		if (frags) {
6554			ufs2_daddr_t blkno;
6555			long oldfrags;
6556
6557			oldfrags = blksize(fs, ip, lastlbn);
6558			blkno = DIP(ip, i_db[lastlbn]);
6559			if (blkno && oldfrags != frags) {
6560				oldfrags -= frags;
6561				oldfrags = numfrags(ip->i_fs, oldfrags);
6562				blkno += numfrags(ip->i_fs, frags);
6563				newfreework(ump, freeblks, NULL, lastlbn,
6564				    blkno, oldfrags, 0, needj);
6565				if (needj)
6566					adjust_newfreework(freeblks,
6567					    numfrags(ip->i_fs, frags));
6568			} else if (blkno == 0)
6569				allocblock = 1;
6570		}
6571		/*
6572		 * Add a journal record for partial truncate if we are
6573		 * handling indirect blocks.  Non-indirects need no extra
6574		 * journaling.
6575		 */
6576		if (length != 0 && lastlbn >= NDADDR) {
6577			ip->i_flag |= IN_TRUNCATED;
6578			newjtrunc(freeblks, length, 0);
6579		}
6580		ip->i_size = length;
6581		DIP_SET(ip, i_size, ip->i_size);
6582		datablocks = DIP(ip, i_blocks) - extblocks;
6583		if (length != 0)
6584			datablocks = blkcount(ip->i_fs, datablocks, length);
6585		freeblks->fb_len = length;
6586	}
6587	if ((flags & IO_EXT) != 0) {
6588		for (i = 0; i < NXADDR; i++)
6589			setup_freeext(freeblks, ip, i, needj);
6590		ip->i_din2->di_extsize = 0;
6591		datablocks += extblocks;
6592	}
6593#ifdef QUOTA
6594	/* Reference the quotas in case the block count is wrong in the end. */
6595	quotaref(vp, freeblks->fb_quota);
6596	(void) chkdq(ip, -datablocks, NOCRED, 0);
6597#endif
6598	freeblks->fb_chkcnt = -datablocks;
6599	UFS_LOCK(ump);
6600	fs->fs_pendingblocks += datablocks;
6601	UFS_UNLOCK(ump);
6602	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6603	/*
6604	 * Handle truncation of incomplete alloc direct dependencies.  We
6605	 * hold the inode block locked to prevent incomplete dependencies
6606	 * from reaching the disk while we are eliminating those that
6607	 * have been truncated.  This is a partially inlined ffs_update().
6608	 */
6609	ufs_itimes(vp);
6610	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6611	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6612	    (int)fs->fs_bsize, cred, &bp);
6613	if (error) {
6614		brelse(bp);
6615		softdep_error("softdep_journal_freeblocks", error);
6616		return;
6617	}
6618	if (bp->b_bufsize == fs->fs_bsize)
6619		bp->b_flags |= B_CLUSTEROK;
6620	softdep_update_inodeblock(ip, bp, 0);
6621	if (ump->um_fstype == UFS1)
6622		*((struct ufs1_dinode *)bp->b_data +
6623		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6624	else
6625		*((struct ufs2_dinode *)bp->b_data +
6626		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6627	ACQUIRE_LOCK(ump);
6628	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6629	if ((inodedep->id_state & IOSTARTED) != 0)
6630		panic("softdep_setup_freeblocks: inode busy");
6631	/*
6632	 * Add the freeblks structure to the list of operations that
6633	 * must await the zero'ed inode being written to disk. If we
6634	 * still have a bitmap dependency (needj), then the inode
6635	 * has never been written to disk, so we can process the
6636	 * freeblks below once we have deleted the dependencies.
6637	 */
6638	if (needj)
6639		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6640	else
6641		freeblks->fb_state |= COMPLETE;
6642	if ((flags & IO_NORMAL) != 0) {
6643		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6644			if (adp->ad_offset > iboff)
6645				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6646				    freeblks);
6647			/*
6648			 * Truncate the allocdirect.  We could eliminate
6649			 * or modify journal records as well.
6650			 */
6651			else if (adp->ad_offset == iboff && frags)
6652				adp->ad_newsize = frags;
6653		}
6654	}
6655	if ((flags & IO_EXT) != 0)
6656		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6657			cancel_allocdirect(&inodedep->id_extupdt, adp,
6658			    freeblks);
6659	/*
6660	 * Scan the bufwait list for newblock dependencies that will never
6661	 * make it to disk.
6662	 */
6663	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6664		if (wk->wk_type != D_ALLOCDIRECT)
6665			continue;
6666		adp = WK_ALLOCDIRECT(wk);
6667		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6668		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6669			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6670			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6671			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6672		}
6673	}
6674	/*
6675	 * Add journal work.
6676	 */
6677	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6678		add_to_journal(&jblkdep->jb_list);
6679	FREE_LOCK(ump);
6680	bdwrite(bp);
6681	/*
6682	 * Truncate dependency structures beyond length.
6683	 */
6684	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6685	/*
6686	 * This is only set when we need to allocate a fragment because
6687	 * none existed at the end of a frag-sized file.  It handles only
6688	 * allocating a new, zero filled block.
6689	 */
6690	if (allocblock) {
6691		ip->i_size = length - lastoff;
6692		DIP_SET(ip, i_size, ip->i_size);
6693		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6694		if (error != 0) {
6695			softdep_error("softdep_journal_freeblks", error);
6696			return;
6697		}
6698		ip->i_size = length;
6699		DIP_SET(ip, i_size, length);
6700		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6701		allocbuf(bp, frags);
6702		ffs_update(vp, 0);
6703		bawrite(bp);
6704	} else if (lastoff != 0 && vp->v_type != VDIR) {
6705		int size;
6706
6707		/*
6708		 * Zero the end of a truncated frag or block.
6709		 */
6710		size = sblksize(fs, length, lastlbn);
6711		error = bread(vp, lastlbn, size, cred, &bp);
6712		if (error) {
6713			softdep_error("softdep_journal_freeblks", error);
6714			return;
6715		}
6716		bzero((char *)bp->b_data + lastoff, size - lastoff);
6717		bawrite(bp);
6718
6719	}
6720	ACQUIRE_LOCK(ump);
6721	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6722	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6723	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6724	/*
6725	 * We zero earlier truncations so they don't erroneously
6726	 * update i_blocks.
6727	 */
6728	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6729		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6730			fbn->fb_len = 0;
6731	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6732	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6733		freeblks->fb_state |= INPROGRESS;
6734	else
6735		freeblks = NULL;
6736	FREE_LOCK(ump);
6737	if (freeblks)
6738		handle_workitem_freeblocks(freeblks, 0);
6739	trunc_pages(ip, length, extblocks, flags);
6740
6741}
6742
6743/*
6744 * Flush a JOP_SYNC to the journal.
6745 */
6746void
6747softdep_journal_fsync(ip)
6748	struct inode *ip;
6749{
6750	struct jfsync *jfsync;
6751
6752	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
6753	    ("softdep_journal_fsync called on non-softdep filesystem"));
6754	if ((ip->i_flag & IN_TRUNCATED) == 0)
6755		return;
6756	ip->i_flag &= ~IN_TRUNCATED;
6757	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6758	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6759	jfsync->jfs_size = ip->i_size;
6760	jfsync->jfs_ino = ip->i_number;
6761	ACQUIRE_LOCK(ip->i_ump);
6762	add_to_journal(&jfsync->jfs_list);
6763	jwait(&jfsync->jfs_list, MNT_WAIT);
6764	FREE_LOCK(ip->i_ump);
6765}
6766
6767/*
6768 * Block de-allocation dependencies.
6769 *
6770 * When blocks are de-allocated, the on-disk pointers must be nullified before
6771 * the blocks are made available for use by other files.  (The true
6772 * requirement is that old pointers must be nullified before new on-disk
6773 * pointers are set.  We chose this slightly more stringent requirement to
6774 * reduce complexity.) Our implementation handles this dependency by updating
6775 * the inode (or indirect block) appropriately but delaying the actual block
6776 * de-allocation (i.e., freemap and free space count manipulation) until
6777 * after the updated versions reach stable storage.  After the disk is
6778 * updated, the blocks can be safely de-allocated whenever it is convenient.
6779 * This implementation handles only the common case of reducing a file's
6780 * length to zero. Other cases are handled by the conventional synchronous
6781 * write approach.
6782 *
6783 * The ffs implementation with which we worked double-checks
6784 * the state of the block pointers and file size as it reduces
6785 * a file's length.  Some of this code is replicated here in our
6786 * soft updates implementation.  The freeblks->fb_chkcnt field is
6787 * used to transfer a part of this information to the procedure
6788 * that eventually de-allocates the blocks.
6789 *
6790 * This routine should be called from the routine that shortens
6791 * a file's length, before the inode's size or block pointers
6792 * are modified. It will save the block pointer information for
6793 * later release and zero the inode so that the calling routine
6794 * can release it.
6795 */
6796void
6797softdep_setup_freeblocks(ip, length, flags)
6798	struct inode *ip;	/* The inode whose length is to be reduced */
6799	off_t length;		/* The new length for the file */
6800	int flags;		/* IO_EXT and/or IO_NORMAL */
6801{
6802	struct ufs1_dinode *dp1;
6803	struct ufs2_dinode *dp2;
6804	struct freeblks *freeblks;
6805	struct inodedep *inodedep;
6806	struct allocdirect *adp;
6807	struct ufsmount *ump;
6808	struct buf *bp;
6809	struct fs *fs;
6810	ufs2_daddr_t extblocks, datablocks;
6811	struct mount *mp;
6812	int i, delay, error, dflags;
6813	ufs_lbn_t tmpval;
6814	ufs_lbn_t lbn;
6815
6816	ump = ip->i_ump;
6817	mp = UFSTOVFS(ump);
6818	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6819	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6820	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6821	    ip->i_number, length);
6822	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6823	fs = ip->i_fs;
6824	freeblks = newfreeblks(mp, ip);
6825	extblocks = 0;
6826	datablocks = 0;
6827	if (fs->fs_magic == FS_UFS2_MAGIC)
6828		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6829	if ((flags & IO_NORMAL) != 0) {
6830		for (i = 0; i < NDADDR; i++)
6831			setup_freedirect(freeblks, ip, i, 0);
6832		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6833		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6834			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6835		ip->i_size = 0;
6836		DIP_SET(ip, i_size, 0);
6837		datablocks = DIP(ip, i_blocks) - extblocks;
6838	}
6839	if ((flags & IO_EXT) != 0) {
6840		for (i = 0; i < NXADDR; i++)
6841			setup_freeext(freeblks, ip, i, 0);
6842		ip->i_din2->di_extsize = 0;
6843		datablocks += extblocks;
6844	}
6845#ifdef QUOTA
6846	/* Reference the quotas in case the block count is wrong in the end. */
6847	quotaref(ITOV(ip), freeblks->fb_quota);
6848	(void) chkdq(ip, -datablocks, NOCRED, 0);
6849#endif
6850	freeblks->fb_chkcnt = -datablocks;
6851	UFS_LOCK(ump);
6852	fs->fs_pendingblocks += datablocks;
6853	UFS_UNLOCK(ump);
6854	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6855	/*
6856	 * Push the zero'ed inode to to its disk buffer so that we are free
6857	 * to delete its dependencies below. Once the dependencies are gone
6858	 * the buffer can be safely released.
6859	 */
6860	if ((error = bread(ip->i_devvp,
6861	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6862	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6863		brelse(bp);
6864		softdep_error("softdep_setup_freeblocks", error);
6865	}
6866	if (ump->um_fstype == UFS1) {
6867		dp1 = ((struct ufs1_dinode *)bp->b_data +
6868		    ino_to_fsbo(fs, ip->i_number));
6869		ip->i_din1->di_freelink = dp1->di_freelink;
6870		*dp1 = *ip->i_din1;
6871	} else {
6872		dp2 = ((struct ufs2_dinode *)bp->b_data +
6873		    ino_to_fsbo(fs, ip->i_number));
6874		ip->i_din2->di_freelink = dp2->di_freelink;
6875		*dp2 = *ip->i_din2;
6876	}
6877	/*
6878	 * Find and eliminate any inode dependencies.
6879	 */
6880	ACQUIRE_LOCK(ump);
6881	dflags = DEPALLOC;
6882	if (IS_SNAPSHOT(ip))
6883		dflags |= NODELAY;
6884	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6885	if ((inodedep->id_state & IOSTARTED) != 0)
6886		panic("softdep_setup_freeblocks: inode busy");
6887	/*
6888	 * Add the freeblks structure to the list of operations that
6889	 * must await the zero'ed inode being written to disk. If we
6890	 * still have a bitmap dependency (delay == 0), then the inode
6891	 * has never been written to disk, so we can process the
6892	 * freeblks below once we have deleted the dependencies.
6893	 */
6894	delay = (inodedep->id_state & DEPCOMPLETE);
6895	if (delay)
6896		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6897	else
6898		freeblks->fb_state |= COMPLETE;
6899	/*
6900	 * Because the file length has been truncated to zero, any
6901	 * pending block allocation dependency structures associated
6902	 * with this inode are obsolete and can simply be de-allocated.
6903	 * We must first merge the two dependency lists to get rid of
6904	 * any duplicate freefrag structures, then purge the merged list.
6905	 * If we still have a bitmap dependency, then the inode has never
6906	 * been written to disk, so we can free any fragments without delay.
6907	 */
6908	if (flags & IO_NORMAL) {
6909		merge_inode_lists(&inodedep->id_newinoupdt,
6910		    &inodedep->id_inoupdt);
6911		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6912			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6913			    freeblks);
6914	}
6915	if (flags & IO_EXT) {
6916		merge_inode_lists(&inodedep->id_newextupdt,
6917		    &inodedep->id_extupdt);
6918		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6919			cancel_allocdirect(&inodedep->id_extupdt, adp,
6920			    freeblks);
6921	}
6922	FREE_LOCK(ump);
6923	bdwrite(bp);
6924	trunc_dependencies(ip, freeblks, -1, 0, flags);
6925	ACQUIRE_LOCK(ump);
6926	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6927		(void) free_inodedep(inodedep);
6928	freeblks->fb_state |= DEPCOMPLETE;
6929	/*
6930	 * If the inode with zeroed block pointers is now on disk
6931	 * we can start freeing blocks.
6932	 */
6933	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6934		freeblks->fb_state |= INPROGRESS;
6935	else
6936		freeblks = NULL;
6937	FREE_LOCK(ump);
6938	if (freeblks)
6939		handle_workitem_freeblocks(freeblks, 0);
6940	trunc_pages(ip, length, extblocks, flags);
6941}
6942
6943/*
6944 * Eliminate pages from the page cache that back parts of this inode and
6945 * adjust the vnode pager's idea of our size.  This prevents stale data
6946 * from hanging around in the page cache.
6947 */
6948static void
6949trunc_pages(ip, length, extblocks, flags)
6950	struct inode *ip;
6951	off_t length;
6952	ufs2_daddr_t extblocks;
6953	int flags;
6954{
6955	struct vnode *vp;
6956	struct fs *fs;
6957	ufs_lbn_t lbn;
6958	off_t end, extend;
6959
6960	vp = ITOV(ip);
6961	fs = ip->i_fs;
6962	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6963	if ((flags & IO_EXT) != 0)
6964		vn_pages_remove(vp, extend, 0);
6965	if ((flags & IO_NORMAL) == 0)
6966		return;
6967	BO_LOCK(&vp->v_bufobj);
6968	drain_output(vp);
6969	BO_UNLOCK(&vp->v_bufobj);
6970	/*
6971	 * The vnode pager eliminates file pages we eliminate indirects
6972	 * below.
6973	 */
6974	vnode_pager_setsize(vp, length);
6975	/*
6976	 * Calculate the end based on the last indirect we want to keep.  If
6977	 * the block extends into indirects we can just use the negative of
6978	 * its lbn.  Doubles and triples exist at lower numbers so we must
6979	 * be careful not to remove those, if they exist.  double and triple
6980	 * indirect lbns do not overlap with others so it is not important
6981	 * to verify how many levels are required.
6982	 */
6983	lbn = lblkno(fs, length);
6984	if (lbn >= NDADDR) {
6985		/* Calculate the virtual lbn of the triple indirect. */
6986		lbn = -lbn - (NIADDR - 1);
6987		end = OFF_TO_IDX(lblktosize(fs, lbn));
6988	} else
6989		end = extend;
6990	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6991}
6992
6993/*
6994 * See if the buf bp is in the range eliminated by truncation.
6995 */
6996static int
6997trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
6998	struct buf *bp;
6999	int *blkoffp;
7000	ufs_lbn_t lastlbn;
7001	int lastoff;
7002	int flags;
7003{
7004	ufs_lbn_t lbn;
7005
7006	*blkoffp = 0;
7007	/* Only match ext/normal blocks as appropriate. */
7008	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7009	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7010		return (0);
7011	/* ALTDATA is always a full truncation. */
7012	if ((bp->b_xflags & BX_ALTDATA) != 0)
7013		return (1);
7014	/* -1 is full truncation. */
7015	if (lastlbn == -1)
7016		return (1);
7017	/*
7018	 * If this is a partial truncate we only want those
7019	 * blocks and indirect blocks that cover the range
7020	 * we're after.
7021	 */
7022	lbn = bp->b_lblkno;
7023	if (lbn < 0)
7024		lbn = -(lbn + lbn_level(lbn));
7025	if (lbn < lastlbn)
7026		return (0);
7027	/* Here we only truncate lblkno if it's partial. */
7028	if (lbn == lastlbn) {
7029		if (lastoff == 0)
7030			return (0);
7031		*blkoffp = lastoff;
7032	}
7033	return (1);
7034}
7035
7036/*
7037 * Eliminate any dependencies that exist in memory beyond lblkno:off
7038 */
7039static void
7040trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7041	struct inode *ip;
7042	struct freeblks *freeblks;
7043	ufs_lbn_t lastlbn;
7044	int lastoff;
7045	int flags;
7046{
7047	struct bufobj *bo;
7048	struct vnode *vp;
7049	struct buf *bp;
7050	struct fs *fs;
7051	int blkoff;
7052
7053	/*
7054	 * We must wait for any I/O in progress to finish so that
7055	 * all potential buffers on the dirty list will be visible.
7056	 * Once they are all there, walk the list and get rid of
7057	 * any dependencies.
7058	 */
7059	fs = ip->i_fs;
7060	vp = ITOV(ip);
7061	bo = &vp->v_bufobj;
7062	BO_LOCK(bo);
7063	drain_output(vp);
7064	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7065		bp->b_vflags &= ~BV_SCANNED;
7066restart:
7067	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7068		if (bp->b_vflags & BV_SCANNED)
7069			continue;
7070		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7071			bp->b_vflags |= BV_SCANNED;
7072			continue;
7073		}
7074		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7075		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7076			goto restart;
7077		BO_UNLOCK(bo);
7078		if (deallocate_dependencies(bp, freeblks, blkoff))
7079			bqrelse(bp);
7080		else
7081			brelse(bp);
7082		BO_LOCK(bo);
7083		goto restart;
7084	}
7085	/*
7086	 * Now do the work of vtruncbuf while also matching indirect blocks.
7087	 */
7088	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7089		bp->b_vflags &= ~BV_SCANNED;
7090cleanrestart:
7091	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7092		if (bp->b_vflags & BV_SCANNED)
7093			continue;
7094		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7095			bp->b_vflags |= BV_SCANNED;
7096			continue;
7097		}
7098		if (BUF_LOCK(bp,
7099		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7100		    BO_LOCKPTR(bo)) == ENOLCK) {
7101			BO_LOCK(bo);
7102			goto cleanrestart;
7103		}
7104		bp->b_vflags |= BV_SCANNED;
7105		bremfree(bp);
7106		if (blkoff != 0) {
7107			allocbuf(bp, blkoff);
7108			bqrelse(bp);
7109		} else {
7110			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7111			brelse(bp);
7112		}
7113		BO_LOCK(bo);
7114		goto cleanrestart;
7115	}
7116	drain_output(vp);
7117	BO_UNLOCK(bo);
7118}
7119
7120static int
7121cancel_pagedep(pagedep, freeblks, blkoff)
7122	struct pagedep *pagedep;
7123	struct freeblks *freeblks;
7124	int blkoff;
7125{
7126	struct jremref *jremref;
7127	struct jmvref *jmvref;
7128	struct dirrem *dirrem, *tmp;
7129	int i;
7130
7131	/*
7132	 * Copy any directory remove dependencies to the list
7133	 * to be processed after the freeblks proceeds.  If
7134	 * directory entry never made it to disk they
7135	 * can be dumped directly onto the work list.
7136	 */
7137	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7138		/* Skip this directory removal if it is intended to remain. */
7139		if (dirrem->dm_offset < blkoff)
7140			continue;
7141		/*
7142		 * If there are any dirrems we wait for the journal write
7143		 * to complete and then restart the buf scan as the lock
7144		 * has been dropped.
7145		 */
7146		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7147			jwait(&jremref->jr_list, MNT_WAIT);
7148			return (ERESTART);
7149		}
7150		LIST_REMOVE(dirrem, dm_next);
7151		dirrem->dm_dirinum = pagedep->pd_ino;
7152		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7153	}
7154	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7155		jwait(&jmvref->jm_list, MNT_WAIT);
7156		return (ERESTART);
7157	}
7158	/*
7159	 * When we're partially truncating a pagedep we just want to flush
7160	 * journal entries and return.  There can not be any adds in the
7161	 * truncated portion of the directory and newblk must remain if
7162	 * part of the block remains.
7163	 */
7164	if (blkoff != 0) {
7165		struct diradd *dap;
7166
7167		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7168			if (dap->da_offset > blkoff)
7169				panic("cancel_pagedep: diradd %p off %d > %d",
7170				    dap, dap->da_offset, blkoff);
7171		for (i = 0; i < DAHASHSZ; i++)
7172			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7173				if (dap->da_offset > blkoff)
7174					panic("cancel_pagedep: diradd %p off %d > %d",
7175					    dap, dap->da_offset, blkoff);
7176		return (0);
7177	}
7178	/*
7179	 * There should be no directory add dependencies present
7180	 * as the directory could not be truncated until all
7181	 * children were removed.
7182	 */
7183	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7184	    ("deallocate_dependencies: pendinghd != NULL"));
7185	for (i = 0; i < DAHASHSZ; i++)
7186		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7187		    ("deallocate_dependencies: diraddhd != NULL"));
7188	if ((pagedep->pd_state & NEWBLOCK) != 0)
7189		free_newdirblk(pagedep->pd_newdirblk);
7190	if (free_pagedep(pagedep) == 0)
7191		panic("Failed to free pagedep %p", pagedep);
7192	return (0);
7193}
7194
7195/*
7196 * Reclaim any dependency structures from a buffer that is about to
7197 * be reallocated to a new vnode. The buffer must be locked, thus,
7198 * no I/O completion operations can occur while we are manipulating
7199 * its associated dependencies. The mutex is held so that other I/O's
7200 * associated with related dependencies do not occur.
7201 */
7202static int
7203deallocate_dependencies(bp, freeblks, off)
7204	struct buf *bp;
7205	struct freeblks *freeblks;
7206	int off;
7207{
7208	struct indirdep *indirdep;
7209	struct pagedep *pagedep;
7210	struct allocdirect *adp;
7211	struct worklist *wk, *wkn;
7212	struct ufsmount *ump;
7213
7214	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
7215		goto done;
7216	ump = VFSTOUFS(wk->wk_mp);
7217	ACQUIRE_LOCK(ump);
7218	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7219		switch (wk->wk_type) {
7220		case D_INDIRDEP:
7221			indirdep = WK_INDIRDEP(wk);
7222			if (bp->b_lblkno >= 0 ||
7223			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7224				panic("deallocate_dependencies: not indir");
7225			cancel_indirdep(indirdep, bp, freeblks);
7226			continue;
7227
7228		case D_PAGEDEP:
7229			pagedep = WK_PAGEDEP(wk);
7230			if (cancel_pagedep(pagedep, freeblks, off)) {
7231				FREE_LOCK(ump);
7232				return (ERESTART);
7233			}
7234			continue;
7235
7236		case D_ALLOCINDIR:
7237			/*
7238			 * Simply remove the allocindir, we'll find it via
7239			 * the indirdep where we can clear pointers if
7240			 * needed.
7241			 */
7242			WORKLIST_REMOVE(wk);
7243			continue;
7244
7245		case D_FREEWORK:
7246			/*
7247			 * A truncation is waiting for the zero'd pointers
7248			 * to be written.  It can be freed when the freeblks
7249			 * is journaled.
7250			 */
7251			WORKLIST_REMOVE(wk);
7252			wk->wk_state |= ONDEPLIST;
7253			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7254			break;
7255
7256		case D_ALLOCDIRECT:
7257			adp = WK_ALLOCDIRECT(wk);
7258			if (off != 0)
7259				continue;
7260			/* FALLTHROUGH */
7261		default:
7262			panic("deallocate_dependencies: Unexpected type %s",
7263			    TYPENAME(wk->wk_type));
7264			/* NOTREACHED */
7265		}
7266	}
7267	FREE_LOCK(ump);
7268done:
7269	/*
7270	 * Don't throw away this buf, we were partially truncating and
7271	 * some deps may always remain.
7272	 */
7273	if (off) {
7274		allocbuf(bp, off);
7275		bp->b_vflags |= BV_SCANNED;
7276		return (EBUSY);
7277	}
7278	bp->b_flags |= B_INVAL | B_NOCACHE;
7279
7280	return (0);
7281}
7282
7283/*
7284 * An allocdirect is being canceled due to a truncate.  We must make sure
7285 * the journal entry is released in concert with the blkfree that releases
7286 * the storage.  Completed journal entries must not be released until the
7287 * space is no longer pointed to by the inode or in the bitmap.
7288 */
7289static void
7290cancel_allocdirect(adphead, adp, freeblks)
7291	struct allocdirectlst *adphead;
7292	struct allocdirect *adp;
7293	struct freeblks *freeblks;
7294{
7295	struct freework *freework;
7296	struct newblk *newblk;
7297	struct worklist *wk;
7298
7299	TAILQ_REMOVE(adphead, adp, ad_next);
7300	newblk = (struct newblk *)adp;
7301	freework = NULL;
7302	/*
7303	 * Find the correct freework structure.
7304	 */
7305	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7306		if (wk->wk_type != D_FREEWORK)
7307			continue;
7308		freework = WK_FREEWORK(wk);
7309		if (freework->fw_blkno == newblk->nb_newblkno)
7310			break;
7311	}
7312	if (freework == NULL)
7313		panic("cancel_allocdirect: Freework not found");
7314	/*
7315	 * If a newblk exists at all we still have the journal entry that
7316	 * initiated the allocation so we do not need to journal the free.
7317	 */
7318	cancel_jfreeblk(freeblks, freework->fw_blkno);
7319	/*
7320	 * If the journal hasn't been written the jnewblk must be passed
7321	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7322	 * this by linking the journal dependency into the freework to be
7323	 * freed when freework_freeblock() is called.  If the journal has
7324	 * been written we can simply reclaim the journal space when the
7325	 * freeblks work is complete.
7326	 */
7327	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7328	    &freeblks->fb_jwork);
7329	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7330}
7331
7332
7333/*
7334 * Cancel a new block allocation.  May be an indirect or direct block.  We
7335 * remove it from various lists and return any journal record that needs to
7336 * be resolved by the caller.
7337 *
7338 * A special consideration is made for indirects which were never pointed
7339 * at on disk and will never be found once this block is released.
7340 */
7341static struct jnewblk *
7342cancel_newblk(newblk, wk, wkhd)
7343	struct newblk *newblk;
7344	struct worklist *wk;
7345	struct workhead *wkhd;
7346{
7347	struct jnewblk *jnewblk;
7348
7349	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7350
7351	newblk->nb_state |= GOINGAWAY;
7352	/*
7353	 * Previously we traversed the completedhd on each indirdep
7354	 * attached to this newblk to cancel them and gather journal
7355	 * work.  Since we need only the oldest journal segment and
7356	 * the lowest point on the tree will always have the oldest
7357	 * journal segment we are free to release the segments
7358	 * of any subordinates and may leave the indirdep list to
7359	 * indirdep_complete() when this newblk is freed.
7360	 */
7361	if (newblk->nb_state & ONDEPLIST) {
7362		newblk->nb_state &= ~ONDEPLIST;
7363		LIST_REMOVE(newblk, nb_deps);
7364	}
7365	if (newblk->nb_state & ONWORKLIST)
7366		WORKLIST_REMOVE(&newblk->nb_list);
7367	/*
7368	 * If the journal entry hasn't been written we save a pointer to
7369	 * the dependency that frees it until it is written or the
7370	 * superseding operation completes.
7371	 */
7372	jnewblk = newblk->nb_jnewblk;
7373	if (jnewblk != NULL && wk != NULL) {
7374		newblk->nb_jnewblk = NULL;
7375		jnewblk->jn_dep = wk;
7376	}
7377	if (!LIST_EMPTY(&newblk->nb_jwork))
7378		jwork_move(wkhd, &newblk->nb_jwork);
7379	/*
7380	 * When truncating we must free the newdirblk early to remove
7381	 * the pagedep from the hash before returning.
7382	 */
7383	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7384		free_newdirblk(WK_NEWDIRBLK(wk));
7385	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7386		panic("cancel_newblk: extra newdirblk");
7387
7388	return (jnewblk);
7389}
7390
7391/*
7392 * Schedule the freefrag associated with a newblk to be released once
7393 * the pointers are written and the previous block is no longer needed.
7394 */
7395static void
7396newblk_freefrag(newblk)
7397	struct newblk *newblk;
7398{
7399	struct freefrag *freefrag;
7400
7401	if (newblk->nb_freefrag == NULL)
7402		return;
7403	freefrag = newblk->nb_freefrag;
7404	newblk->nb_freefrag = NULL;
7405	freefrag->ff_state |= COMPLETE;
7406	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7407		add_to_worklist(&freefrag->ff_list, 0);
7408}
7409
7410/*
7411 * Free a newblk. Generate a new freefrag work request if appropriate.
7412 * This must be called after the inode pointer and any direct block pointers
7413 * are valid or fully removed via truncate or frag extension.
7414 */
7415static void
7416free_newblk(newblk)
7417	struct newblk *newblk;
7418{
7419	struct indirdep *indirdep;
7420	struct worklist *wk;
7421
7422	KASSERT(newblk->nb_jnewblk == NULL,
7423	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7424	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7425	    ("free_newblk: unclaimed newblk"));
7426	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7427	newblk_freefrag(newblk);
7428	if (newblk->nb_state & ONDEPLIST)
7429		LIST_REMOVE(newblk, nb_deps);
7430	if (newblk->nb_state & ONWORKLIST)
7431		WORKLIST_REMOVE(&newblk->nb_list);
7432	LIST_REMOVE(newblk, nb_hash);
7433	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7434		free_newdirblk(WK_NEWDIRBLK(wk));
7435	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7436		panic("free_newblk: extra newdirblk");
7437	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7438		indirdep_complete(indirdep);
7439	handle_jwork(&newblk->nb_jwork);
7440	WORKITEM_FREE(newblk, D_NEWBLK);
7441}
7442
7443/*
7444 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7445 * This routine must be called with splbio interrupts blocked.
7446 */
7447static void
7448free_newdirblk(newdirblk)
7449	struct newdirblk *newdirblk;
7450{
7451	struct pagedep *pagedep;
7452	struct diradd *dap;
7453	struct worklist *wk;
7454
7455	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7456	WORKLIST_REMOVE(&newdirblk->db_list);
7457	/*
7458	 * If the pagedep is still linked onto the directory buffer
7459	 * dependency chain, then some of the entries on the
7460	 * pd_pendinghd list may not be committed to disk yet. In
7461	 * this case, we will simply clear the NEWBLOCK flag and
7462	 * let the pd_pendinghd list be processed when the pagedep
7463	 * is next written. If the pagedep is no longer on the buffer
7464	 * dependency chain, then all the entries on the pd_pending
7465	 * list are committed to disk and we can free them here.
7466	 */
7467	pagedep = newdirblk->db_pagedep;
7468	pagedep->pd_state &= ~NEWBLOCK;
7469	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7470		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7471			free_diradd(dap, NULL);
7472		/*
7473		 * If no dependencies remain, the pagedep will be freed.
7474		 */
7475		free_pagedep(pagedep);
7476	}
7477	/* Should only ever be one item in the list. */
7478	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7479		WORKLIST_REMOVE(wk);
7480		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7481	}
7482	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7483}
7484
7485/*
7486 * Prepare an inode to be freed. The actual free operation is not
7487 * done until the zero'ed inode has been written to disk.
7488 */
7489void
7490softdep_freefile(pvp, ino, mode)
7491	struct vnode *pvp;
7492	ino_t ino;
7493	int mode;
7494{
7495	struct inode *ip = VTOI(pvp);
7496	struct inodedep *inodedep;
7497	struct freefile *freefile;
7498	struct freeblks *freeblks;
7499	struct ufsmount *ump;
7500
7501	ump = ip->i_ump;
7502	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7503	    ("softdep_freefile called on non-softdep filesystem"));
7504	/*
7505	 * This sets up the inode de-allocation dependency.
7506	 */
7507	freefile = malloc(sizeof(struct freefile),
7508		M_FREEFILE, M_SOFTDEP_FLAGS);
7509	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7510	freefile->fx_mode = mode;
7511	freefile->fx_oldinum = ino;
7512	freefile->fx_devvp = ip->i_devvp;
7513	LIST_INIT(&freefile->fx_jwork);
7514	UFS_LOCK(ump);
7515	ip->i_fs->fs_pendinginodes += 1;
7516	UFS_UNLOCK(ump);
7517
7518	/*
7519	 * If the inodedep does not exist, then the zero'ed inode has
7520	 * been written to disk. If the allocated inode has never been
7521	 * written to disk, then the on-disk inode is zero'ed. In either
7522	 * case we can free the file immediately.  If the journal was
7523	 * canceled before being written the inode will never make it to
7524	 * disk and we must send the canceled journal entrys to
7525	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7526	 * Any blocks waiting on the inode to write can be safely freed
7527	 * here as it will never been written.
7528	 */
7529	ACQUIRE_LOCK(ump);
7530	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7531	if (inodedep) {
7532		/*
7533		 * Clear out freeblks that no longer need to reference
7534		 * this inode.
7535		 */
7536		while ((freeblks =
7537		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7538			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7539			    fb_next);
7540			freeblks->fb_state &= ~ONDEPLIST;
7541		}
7542		/*
7543		 * Remove this inode from the unlinked list.
7544		 */
7545		if (inodedep->id_state & UNLINKED) {
7546			/*
7547			 * Save the journal work to be freed with the bitmap
7548			 * before we clear UNLINKED.  Otherwise it can be lost
7549			 * if the inode block is written.
7550			 */
7551			handle_bufwait(inodedep, &freefile->fx_jwork);
7552			clear_unlinked_inodedep(inodedep);
7553			/*
7554			 * Re-acquire inodedep as we've dropped the
7555			 * per-filesystem lock in clear_unlinked_inodedep().
7556			 */
7557			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7558		}
7559	}
7560	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7561		FREE_LOCK(ump);
7562		handle_workitem_freefile(freefile);
7563		return;
7564	}
7565	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7566		inodedep->id_state |= GOINGAWAY;
7567	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7568	FREE_LOCK(ump);
7569	if (ip->i_number == ino)
7570		ip->i_flag |= IN_MODIFIED;
7571}
7572
7573/*
7574 * Check to see if an inode has never been written to disk. If
7575 * so free the inodedep and return success, otherwise return failure.
7576 * This routine must be called with splbio interrupts blocked.
7577 *
7578 * If we still have a bitmap dependency, then the inode has never
7579 * been written to disk. Drop the dependency as it is no longer
7580 * necessary since the inode is being deallocated. We set the
7581 * ALLCOMPLETE flags since the bitmap now properly shows that the
7582 * inode is not allocated. Even if the inode is actively being
7583 * written, it has been rolled back to its zero'ed state, so we
7584 * are ensured that a zero inode is what is on the disk. For short
7585 * lived files, this change will usually result in removing all the
7586 * dependencies from the inode so that it can be freed immediately.
7587 */
7588static int
7589check_inode_unwritten(inodedep)
7590	struct inodedep *inodedep;
7591{
7592
7593	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7594
7595	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7596	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7597	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7598	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7599	    !LIST_EMPTY(&inodedep->id_inowait) ||
7600	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7601	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7602	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7603	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7604	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7605	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7606	    inodedep->id_mkdiradd != NULL ||
7607	    inodedep->id_nlinkdelta != 0)
7608		return (0);
7609	/*
7610	 * Another process might be in initiate_write_inodeblock_ufs[12]
7611	 * trying to allocate memory without holding "Softdep Lock".
7612	 */
7613	if ((inodedep->id_state & IOSTARTED) != 0 &&
7614	    inodedep->id_savedino1 == NULL)
7615		return (0);
7616
7617	if (inodedep->id_state & ONDEPLIST)
7618		LIST_REMOVE(inodedep, id_deps);
7619	inodedep->id_state &= ~ONDEPLIST;
7620	inodedep->id_state |= ALLCOMPLETE;
7621	inodedep->id_bmsafemap = NULL;
7622	if (inodedep->id_state & ONWORKLIST)
7623		WORKLIST_REMOVE(&inodedep->id_list);
7624	if (inodedep->id_savedino1 != NULL) {
7625		free(inodedep->id_savedino1, M_SAVEDINO);
7626		inodedep->id_savedino1 = NULL;
7627	}
7628	if (free_inodedep(inodedep) == 0)
7629		panic("check_inode_unwritten: busy inode");
7630	return (1);
7631}
7632
7633/*
7634 * Try to free an inodedep structure. Return 1 if it could be freed.
7635 */
7636static int
7637free_inodedep(inodedep)
7638	struct inodedep *inodedep;
7639{
7640
7641	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7642	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7643	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7644	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7645	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7646	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7647	    !LIST_EMPTY(&inodedep->id_inowait) ||
7648	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7649	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7650	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7651	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7652	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7653	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7654	    inodedep->id_mkdiradd != NULL ||
7655	    inodedep->id_nlinkdelta != 0 ||
7656	    inodedep->id_savedino1 != NULL)
7657		return (0);
7658	if (inodedep->id_state & ONDEPLIST)
7659		LIST_REMOVE(inodedep, id_deps);
7660	LIST_REMOVE(inodedep, id_hash);
7661	WORKITEM_FREE(inodedep, D_INODEDEP);
7662	return (1);
7663}
7664
7665/*
7666 * Free the block referenced by a freework structure.  The parent freeblks
7667 * structure is released and completed when the final cg bitmap reaches
7668 * the disk.  This routine may be freeing a jnewblk which never made it to
7669 * disk in which case we do not have to wait as the operation is undone
7670 * in memory immediately.
7671 */
7672static void
7673freework_freeblock(freework)
7674	struct freework *freework;
7675{
7676	struct freeblks *freeblks;
7677	struct jnewblk *jnewblk;
7678	struct ufsmount *ump;
7679	struct workhead wkhd;
7680	struct fs *fs;
7681	int bsize;
7682	int needj;
7683
7684	ump = VFSTOUFS(freework->fw_list.wk_mp);
7685	LOCK_OWNED(ump);
7686	/*
7687	 * Handle partial truncate separately.
7688	 */
7689	if (freework->fw_indir) {
7690		complete_trunc_indir(freework);
7691		return;
7692	}
7693	freeblks = freework->fw_freeblks;
7694	fs = ump->um_fs;
7695	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7696	bsize = lfragtosize(fs, freework->fw_frags);
7697	LIST_INIT(&wkhd);
7698	/*
7699	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7700	 * on the indirblk hashtable and prevents premature freeing.
7701	 */
7702	freework->fw_state |= DEPCOMPLETE;
7703	/*
7704	 * SUJ needs to wait for the segment referencing freed indirect
7705	 * blocks to expire so that we know the checker will not confuse
7706	 * a re-allocated indirect block with its old contents.
7707	 */
7708	if (needj && freework->fw_lbn <= -NDADDR)
7709		indirblk_insert(freework);
7710	/*
7711	 * If we are canceling an existing jnewblk pass it to the free
7712	 * routine, otherwise pass the freeblk which will ultimately
7713	 * release the freeblks.  If we're not journaling, we can just
7714	 * free the freeblks immediately.
7715	 */
7716	jnewblk = freework->fw_jnewblk;
7717	if (jnewblk != NULL) {
7718		cancel_jnewblk(jnewblk, &wkhd);
7719		needj = 0;
7720	} else if (needj) {
7721		freework->fw_state |= DELAYEDFREE;
7722		freeblks->fb_cgwait++;
7723		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7724	}
7725	FREE_LOCK(ump);
7726	freeblks_free(ump, freeblks, btodb(bsize));
7727	CTR4(KTR_SUJ,
7728	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7729	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7730	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7731	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7732	ACQUIRE_LOCK(ump);
7733	/*
7734	 * The jnewblk will be discarded and the bits in the map never
7735	 * made it to disk.  We can immediately free the freeblk.
7736	 */
7737	if (needj == 0)
7738		handle_written_freework(freework);
7739}
7740
7741/*
7742 * We enqueue freework items that need processing back on the freeblks and
7743 * add the freeblks to the worklist.  This makes it easier to find all work
7744 * required to flush a truncation in process_truncates().
7745 */
7746static void
7747freework_enqueue(freework)
7748	struct freework *freework;
7749{
7750	struct freeblks *freeblks;
7751
7752	freeblks = freework->fw_freeblks;
7753	if ((freework->fw_state & INPROGRESS) == 0)
7754		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7755	if ((freeblks->fb_state &
7756	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7757	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7758		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7759}
7760
7761/*
7762 * Start, continue, or finish the process of freeing an indirect block tree.
7763 * The free operation may be paused at any point with fw_off containing the
7764 * offset to restart from.  This enables us to implement some flow control
7765 * for large truncates which may fan out and generate a huge number of
7766 * dependencies.
7767 */
7768static void
7769handle_workitem_indirblk(freework)
7770	struct freework *freework;
7771{
7772	struct freeblks *freeblks;
7773	struct ufsmount *ump;
7774	struct fs *fs;
7775
7776	freeblks = freework->fw_freeblks;
7777	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7778	fs = ump->um_fs;
7779	if (freework->fw_state & DEPCOMPLETE) {
7780		handle_written_freework(freework);
7781		return;
7782	}
7783	if (freework->fw_off == NINDIR(fs)) {
7784		freework_freeblock(freework);
7785		return;
7786	}
7787	freework->fw_state |= INPROGRESS;
7788	FREE_LOCK(ump);
7789	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7790	    freework->fw_lbn);
7791	ACQUIRE_LOCK(ump);
7792}
7793
7794/*
7795 * Called when a freework structure attached to a cg buf is written.  The
7796 * ref on either the parent or the freeblks structure is released and
7797 * the freeblks is added back to the worklist if there is more work to do.
7798 */
7799static void
7800handle_written_freework(freework)
7801	struct freework *freework;
7802{
7803	struct freeblks *freeblks;
7804	struct freework *parent;
7805
7806	freeblks = freework->fw_freeblks;
7807	parent = freework->fw_parent;
7808	if (freework->fw_state & DELAYEDFREE)
7809		freeblks->fb_cgwait--;
7810	freework->fw_state |= COMPLETE;
7811	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7812		WORKITEM_FREE(freework, D_FREEWORK);
7813	if (parent) {
7814		if (--parent->fw_ref == 0)
7815			freework_enqueue(parent);
7816		return;
7817	}
7818	if (--freeblks->fb_ref != 0)
7819		return;
7820	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7821	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7822		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7823}
7824
7825/*
7826 * This workitem routine performs the block de-allocation.
7827 * The workitem is added to the pending list after the updated
7828 * inode block has been written to disk.  As mentioned above,
7829 * checks regarding the number of blocks de-allocated (compared
7830 * to the number of blocks allocated for the file) are also
7831 * performed in this function.
7832 */
7833static int
7834handle_workitem_freeblocks(freeblks, flags)
7835	struct freeblks *freeblks;
7836	int flags;
7837{
7838	struct freework *freework;
7839	struct newblk *newblk;
7840	struct allocindir *aip;
7841	struct ufsmount *ump;
7842	struct worklist *wk;
7843
7844	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7845	    ("handle_workitem_freeblocks: Journal entries not written."));
7846	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7847	ACQUIRE_LOCK(ump);
7848	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7849		WORKLIST_REMOVE(wk);
7850		switch (wk->wk_type) {
7851		case D_DIRREM:
7852			wk->wk_state |= COMPLETE;
7853			add_to_worklist(wk, 0);
7854			continue;
7855
7856		case D_ALLOCDIRECT:
7857			free_newblk(WK_NEWBLK(wk));
7858			continue;
7859
7860		case D_ALLOCINDIR:
7861			aip = WK_ALLOCINDIR(wk);
7862			freework = NULL;
7863			if (aip->ai_state & DELAYEDFREE) {
7864				FREE_LOCK(ump);
7865				freework = newfreework(ump, freeblks, NULL,
7866				    aip->ai_lbn, aip->ai_newblkno,
7867				    ump->um_fs->fs_frag, 0, 0);
7868				ACQUIRE_LOCK(ump);
7869			}
7870			newblk = WK_NEWBLK(wk);
7871			if (newblk->nb_jnewblk) {
7872				freework->fw_jnewblk = newblk->nb_jnewblk;
7873				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7874				newblk->nb_jnewblk = NULL;
7875			}
7876			free_newblk(newblk);
7877			continue;
7878
7879		case D_FREEWORK:
7880			freework = WK_FREEWORK(wk);
7881			if (freework->fw_lbn <= -NDADDR)
7882				handle_workitem_indirblk(freework);
7883			else
7884				freework_freeblock(freework);
7885			continue;
7886		default:
7887			panic("handle_workitem_freeblocks: Unknown type %s",
7888			    TYPENAME(wk->wk_type));
7889		}
7890	}
7891	if (freeblks->fb_ref != 0) {
7892		freeblks->fb_state &= ~INPROGRESS;
7893		wake_worklist(&freeblks->fb_list);
7894		freeblks = NULL;
7895	}
7896	FREE_LOCK(ump);
7897	if (freeblks)
7898		return handle_complete_freeblocks(freeblks, flags);
7899	return (0);
7900}
7901
7902/*
7903 * Handle completion of block free via truncate.  This allows fs_pending
7904 * to track the actual free block count more closely than if we only updated
7905 * it at the end.  We must be careful to handle cases where the block count
7906 * on free was incorrect.
7907 */
7908static void
7909freeblks_free(ump, freeblks, blocks)
7910	struct ufsmount *ump;
7911	struct freeblks *freeblks;
7912	int blocks;
7913{
7914	struct fs *fs;
7915	ufs2_daddr_t remain;
7916
7917	UFS_LOCK(ump);
7918	remain = -freeblks->fb_chkcnt;
7919	freeblks->fb_chkcnt += blocks;
7920	if (remain > 0) {
7921		if (remain < blocks)
7922			blocks = remain;
7923		fs = ump->um_fs;
7924		fs->fs_pendingblocks -= blocks;
7925	}
7926	UFS_UNLOCK(ump);
7927}
7928
7929/*
7930 * Once all of the freework workitems are complete we can retire the
7931 * freeblocks dependency and any journal work awaiting completion.  This
7932 * can not be called until all other dependencies are stable on disk.
7933 */
7934static int
7935handle_complete_freeblocks(freeblks, flags)
7936	struct freeblks *freeblks;
7937	int flags;
7938{
7939	struct inodedep *inodedep;
7940	struct inode *ip;
7941	struct vnode *vp;
7942	struct fs *fs;
7943	struct ufsmount *ump;
7944	ufs2_daddr_t spare;
7945
7946	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7947	fs = ump->um_fs;
7948	flags = LK_EXCLUSIVE | flags;
7949	spare = freeblks->fb_chkcnt;
7950
7951	/*
7952	 * If we did not release the expected number of blocks we may have
7953	 * to adjust the inode block count here.  Only do so if it wasn't
7954	 * a truncation to zero and the modrev still matches.
7955	 */
7956	if (spare && freeblks->fb_len != 0) {
7957		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7958		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7959			return (EBUSY);
7960		ip = VTOI(vp);
7961		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7962			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7963			ip->i_flag |= IN_CHANGE;
7964			/*
7965			 * We must wait so this happens before the
7966			 * journal is reclaimed.
7967			 */
7968			ffs_update(vp, 1);
7969		}
7970		vput(vp);
7971	}
7972	if (spare < 0) {
7973		UFS_LOCK(ump);
7974		fs->fs_pendingblocks += spare;
7975		UFS_UNLOCK(ump);
7976	}
7977#ifdef QUOTA
7978	/* Handle spare. */
7979	if (spare)
7980		quotaadj(freeblks->fb_quota, ump, -spare);
7981	quotarele(freeblks->fb_quota);
7982#endif
7983	ACQUIRE_LOCK(ump);
7984	if (freeblks->fb_state & ONDEPLIST) {
7985		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7986		    0, &inodedep);
7987		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7988		freeblks->fb_state &= ~ONDEPLIST;
7989		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
7990			free_inodedep(inodedep);
7991	}
7992	/*
7993	 * All of the freeblock deps must be complete prior to this call
7994	 * so it's now safe to complete earlier outstanding journal entries.
7995	 */
7996	handle_jwork(&freeblks->fb_jwork);
7997	WORKITEM_FREE(freeblks, D_FREEBLKS);
7998	FREE_LOCK(ump);
7999	return (0);
8000}
8001
8002/*
8003 * Release blocks associated with the freeblks and stored in the indirect
8004 * block dbn. If level is greater than SINGLE, the block is an indirect block
8005 * and recursive calls to indirtrunc must be used to cleanse other indirect
8006 * blocks.
8007 *
8008 * This handles partial and complete truncation of blocks.  Partial is noted
8009 * with goingaway == 0.  In this case the freework is completed after the
8010 * zero'd indirects are written to disk.  For full truncation the freework
8011 * is completed after the block is freed.
8012 */
8013static void
8014indir_trunc(freework, dbn, lbn)
8015	struct freework *freework;
8016	ufs2_daddr_t dbn;
8017	ufs_lbn_t lbn;
8018{
8019	struct freework *nfreework;
8020	struct workhead wkhd;
8021	struct freeblks *freeblks;
8022	struct buf *bp;
8023	struct fs *fs;
8024	struct indirdep *indirdep;
8025	struct ufsmount *ump;
8026	ufs1_daddr_t *bap1 = 0;
8027	ufs2_daddr_t nb, nnb, *bap2 = 0;
8028	ufs_lbn_t lbnadd, nlbn;
8029	int i, nblocks, ufs1fmt;
8030	int freedblocks;
8031	int goingaway;
8032	int freedeps;
8033	int needj;
8034	int level;
8035	int cnt;
8036
8037	freeblks = freework->fw_freeblks;
8038	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8039	fs = ump->um_fs;
8040	/*
8041	 * Get buffer of block pointers to be freed.  There are three cases:
8042	 *
8043	 * 1) Partial truncate caches the indirdep pointer in the freework
8044	 *    which provides us a back copy to the save bp which holds the
8045	 *    pointers we want to clear.  When this completes the zero
8046	 *    pointers are written to the real copy.
8047	 * 2) The indirect is being completely truncated, cancel_indirdep()
8048	 *    eliminated the real copy and placed the indirdep on the saved
8049	 *    copy.  The indirdep and buf are discarded when this completes.
8050	 * 3) The indirect was not in memory, we read a copy off of the disk
8051	 *    using the devvp and drop and invalidate the buffer when we're
8052	 *    done.
8053	 */
8054	goingaway = 1;
8055	indirdep = NULL;
8056	if (freework->fw_indir != NULL) {
8057		goingaway = 0;
8058		indirdep = freework->fw_indir;
8059		bp = indirdep->ir_savebp;
8060		if (bp == NULL || bp->b_blkno != dbn)
8061			panic("indir_trunc: Bad saved buf %p blkno %jd",
8062			    bp, (intmax_t)dbn);
8063	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8064		/*
8065		 * The lock prevents the buf dep list from changing and
8066	 	 * indirects on devvp should only ever have one dependency.
8067		 */
8068		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8069		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8070			panic("indir_trunc: Bad indirdep %p from buf %p",
8071			    indirdep, bp);
8072	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
8073	    NOCRED, &bp) != 0) {
8074		brelse(bp);
8075		return;
8076	}
8077	ACQUIRE_LOCK(ump);
8078	/* Protects against a race with complete_trunc_indir(). */
8079	freework->fw_state &= ~INPROGRESS;
8080	/*
8081	 * If we have an indirdep we need to enforce the truncation order
8082	 * and discard it when it is complete.
8083	 */
8084	if (indirdep) {
8085		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8086		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8087			/*
8088			 * Add the complete truncate to the list on the
8089			 * indirdep to enforce in-order processing.
8090			 */
8091			if (freework->fw_indir == NULL)
8092				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8093				    freework, fw_next);
8094			FREE_LOCK(ump);
8095			return;
8096		}
8097		/*
8098		 * If we're goingaway, free the indirdep.  Otherwise it will
8099		 * linger until the write completes.
8100		 */
8101		if (goingaway)
8102			free_indirdep(indirdep);
8103	}
8104	FREE_LOCK(ump);
8105	/* Initialize pointers depending on block size. */
8106	if (ump->um_fstype == UFS1) {
8107		bap1 = (ufs1_daddr_t *)bp->b_data;
8108		nb = bap1[freework->fw_off];
8109		ufs1fmt = 1;
8110	} else {
8111		bap2 = (ufs2_daddr_t *)bp->b_data;
8112		nb = bap2[freework->fw_off];
8113		ufs1fmt = 0;
8114	}
8115	level = lbn_level(lbn);
8116	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8117	lbnadd = lbn_offset(fs, level);
8118	nblocks = btodb(fs->fs_bsize);
8119	nfreework = freework;
8120	freedeps = 0;
8121	cnt = 0;
8122	/*
8123	 * Reclaim blocks.  Traverses into nested indirect levels and
8124	 * arranges for the current level to be freed when subordinates
8125	 * are free when journaling.
8126	 */
8127	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8128		if (i != NINDIR(fs) - 1) {
8129			if (ufs1fmt)
8130				nnb = bap1[i+1];
8131			else
8132				nnb = bap2[i+1];
8133		} else
8134			nnb = 0;
8135		if (nb == 0)
8136			continue;
8137		cnt++;
8138		if (level != 0) {
8139			nlbn = (lbn + 1) - (i * lbnadd);
8140			if (needj != 0) {
8141				nfreework = newfreework(ump, freeblks, freework,
8142				    nlbn, nb, fs->fs_frag, 0, 0);
8143				freedeps++;
8144			}
8145			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8146		} else {
8147			struct freedep *freedep;
8148
8149			/*
8150			 * Attempt to aggregate freedep dependencies for
8151			 * all blocks being released to the same CG.
8152			 */
8153			LIST_INIT(&wkhd);
8154			if (needj != 0 &&
8155			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8156				freedep = newfreedep(freework);
8157				WORKLIST_INSERT_UNLOCKED(&wkhd,
8158				    &freedep->fd_list);
8159				freedeps++;
8160			}
8161			CTR3(KTR_SUJ,
8162			    "indir_trunc: ino %d blkno %jd size %ld",
8163			    freeblks->fb_inum, nb, fs->fs_bsize);
8164			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8165			    fs->fs_bsize, freeblks->fb_inum,
8166			    freeblks->fb_vtype, &wkhd);
8167		}
8168	}
8169	if (goingaway) {
8170		bp->b_flags |= B_INVAL | B_NOCACHE;
8171		brelse(bp);
8172	}
8173	freedblocks = 0;
8174	if (level == 0)
8175		freedblocks = (nblocks * cnt);
8176	if (needj == 0)
8177		freedblocks += nblocks;
8178	freeblks_free(ump, freeblks, freedblocks);
8179	/*
8180	 * If we are journaling set up the ref counts and offset so this
8181	 * indirect can be completed when its children are free.
8182	 */
8183	if (needj) {
8184		ACQUIRE_LOCK(ump);
8185		freework->fw_off = i;
8186		freework->fw_ref += freedeps;
8187		freework->fw_ref -= NINDIR(fs) + 1;
8188		if (level == 0)
8189			freeblks->fb_cgwait += freedeps;
8190		if (freework->fw_ref == 0)
8191			freework_freeblock(freework);
8192		FREE_LOCK(ump);
8193		return;
8194	}
8195	/*
8196	 * If we're not journaling we can free the indirect now.
8197	 */
8198	dbn = dbtofsb(fs, dbn);
8199	CTR3(KTR_SUJ,
8200	    "indir_trunc 2: ino %d blkno %jd size %ld",
8201	    freeblks->fb_inum, dbn, fs->fs_bsize);
8202	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8203	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
8204	/* Non SUJ softdep does single-threaded truncations. */
8205	if (freework->fw_blkno == dbn) {
8206		freework->fw_state |= ALLCOMPLETE;
8207		ACQUIRE_LOCK(ump);
8208		handle_written_freework(freework);
8209		FREE_LOCK(ump);
8210	}
8211	return;
8212}
8213
8214/*
8215 * Cancel an allocindir when it is removed via truncation.  When bp is not
8216 * NULL the indirect never appeared on disk and is scheduled to be freed
8217 * independently of the indir so we can more easily track journal work.
8218 */
8219static void
8220cancel_allocindir(aip, bp, freeblks, trunc)
8221	struct allocindir *aip;
8222	struct buf *bp;
8223	struct freeblks *freeblks;
8224	int trunc;
8225{
8226	struct indirdep *indirdep;
8227	struct freefrag *freefrag;
8228	struct newblk *newblk;
8229
8230	newblk = (struct newblk *)aip;
8231	LIST_REMOVE(aip, ai_next);
8232	/*
8233	 * We must eliminate the pointer in bp if it must be freed on its
8234	 * own due to partial truncate or pending journal work.
8235	 */
8236	if (bp && (trunc || newblk->nb_jnewblk)) {
8237		/*
8238		 * Clear the pointer and mark the aip to be freed
8239		 * directly if it never existed on disk.
8240		 */
8241		aip->ai_state |= DELAYEDFREE;
8242		indirdep = aip->ai_indirdep;
8243		if (indirdep->ir_state & UFS1FMT)
8244			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8245		else
8246			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8247	}
8248	/*
8249	 * When truncating the previous pointer will be freed via
8250	 * savedbp.  Eliminate the freefrag which would dup free.
8251	 */
8252	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8253		newblk->nb_freefrag = NULL;
8254		if (freefrag->ff_jdep)
8255			cancel_jfreefrag(
8256			    WK_JFREEFRAG(freefrag->ff_jdep));
8257		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8258		WORKITEM_FREE(freefrag, D_FREEFRAG);
8259	}
8260	/*
8261	 * If the journal hasn't been written the jnewblk must be passed
8262	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8263	 * this by leaving the journal dependency on the newblk to be freed
8264	 * when a freework is created in handle_workitem_freeblocks().
8265	 */
8266	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8267	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8268}
8269
8270/*
8271 * Create the mkdir dependencies for . and .. in a new directory.  Link them
8272 * in to a newdirblk so any subsequent additions are tracked properly.  The
8273 * caller is responsible for adding the mkdir1 dependency to the journal
8274 * and updating id_mkdiradd.  This function returns with the per-filesystem
8275 * lock held.
8276 */
8277static struct mkdir *
8278setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8279	struct diradd *dap;
8280	ino_t newinum;
8281	ino_t dinum;
8282	struct buf *newdirbp;
8283	struct mkdir **mkdirp;
8284{
8285	struct newblk *newblk;
8286	struct pagedep *pagedep;
8287	struct inodedep *inodedep;
8288	struct newdirblk *newdirblk = 0;
8289	struct mkdir *mkdir1, *mkdir2;
8290	struct worklist *wk;
8291	struct jaddref *jaddref;
8292	struct ufsmount *ump;
8293	struct mount *mp;
8294
8295	mp = dap->da_list.wk_mp;
8296	ump = VFSTOUFS(mp);
8297	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8298	    M_SOFTDEP_FLAGS);
8299	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8300	LIST_INIT(&newdirblk->db_mkdir);
8301	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8302	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8303	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8304	mkdir1->md_diradd = dap;
8305	mkdir1->md_jaddref = NULL;
8306	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8307	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8308	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8309	mkdir2->md_diradd = dap;
8310	mkdir2->md_jaddref = NULL;
8311	if (MOUNTEDSUJ(mp) == 0) {
8312		mkdir1->md_state |= DEPCOMPLETE;
8313		mkdir2->md_state |= DEPCOMPLETE;
8314	}
8315	/*
8316	 * Dependency on "." and ".." being written to disk.
8317	 */
8318	mkdir1->md_buf = newdirbp;
8319	ACQUIRE_LOCK(VFSTOUFS(mp));
8320	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8321	/*
8322	 * We must link the pagedep, allocdirect, and newdirblk for
8323	 * the initial file page so the pointer to the new directory
8324	 * is not written until the directory contents are live and
8325	 * any subsequent additions are not marked live until the
8326	 * block is reachable via the inode.
8327	 */
8328	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8329		panic("setup_newdir: lost pagedep");
8330	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8331		if (wk->wk_type == D_ALLOCDIRECT)
8332			break;
8333	if (wk == NULL)
8334		panic("setup_newdir: lost allocdirect");
8335	if (pagedep->pd_state & NEWBLOCK)
8336		panic("setup_newdir: NEWBLOCK already set");
8337	newblk = WK_NEWBLK(wk);
8338	pagedep->pd_state |= NEWBLOCK;
8339	pagedep->pd_newdirblk = newdirblk;
8340	newdirblk->db_pagedep = pagedep;
8341	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8342	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8343	/*
8344	 * Look up the inodedep for the parent directory so that we
8345	 * can link mkdir2 into the pending dotdot jaddref or
8346	 * the inode write if there is none.  If the inode is
8347	 * ALLCOMPLETE and no jaddref is present all dependencies have
8348	 * been satisfied and mkdir2 can be freed.
8349	 */
8350	inodedep_lookup(mp, dinum, 0, &inodedep);
8351	if (MOUNTEDSUJ(mp)) {
8352		if (inodedep == NULL)
8353			panic("setup_newdir: Lost parent.");
8354		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8355		    inoreflst);
8356		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8357		    (jaddref->ja_state & MKDIR_PARENT),
8358		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8359		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8360		mkdir2->md_jaddref = jaddref;
8361		jaddref->ja_mkdir = mkdir2;
8362	} else if (inodedep == NULL ||
8363	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8364		dap->da_state &= ~MKDIR_PARENT;
8365		WORKITEM_FREE(mkdir2, D_MKDIR);
8366		mkdir2 = NULL;
8367	} else {
8368		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8369		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8370	}
8371	*mkdirp = mkdir2;
8372
8373	return (mkdir1);
8374}
8375
8376/*
8377 * Directory entry addition dependencies.
8378 *
8379 * When adding a new directory entry, the inode (with its incremented link
8380 * count) must be written to disk before the directory entry's pointer to it.
8381 * Also, if the inode is newly allocated, the corresponding freemap must be
8382 * updated (on disk) before the directory entry's pointer. These requirements
8383 * are met via undo/redo on the directory entry's pointer, which consists
8384 * simply of the inode number.
8385 *
8386 * As directory entries are added and deleted, the free space within a
8387 * directory block can become fragmented.  The ufs filesystem will compact
8388 * a fragmented directory block to make space for a new entry. When this
8389 * occurs, the offsets of previously added entries change. Any "diradd"
8390 * dependency structures corresponding to these entries must be updated with
8391 * the new offsets.
8392 */
8393
8394/*
8395 * This routine is called after the in-memory inode's link
8396 * count has been incremented, but before the directory entry's
8397 * pointer to the inode has been set.
8398 */
8399int
8400softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8401	struct buf *bp;		/* buffer containing directory block */
8402	struct inode *dp;	/* inode for directory */
8403	off_t diroffset;	/* offset of new entry in directory */
8404	ino_t newinum;		/* inode referenced by new directory entry */
8405	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8406	int isnewblk;		/* entry is in a newly allocated block */
8407{
8408	int offset;		/* offset of new entry within directory block */
8409	ufs_lbn_t lbn;		/* block in directory containing new entry */
8410	struct fs *fs;
8411	struct diradd *dap;
8412	struct newblk *newblk;
8413	struct pagedep *pagedep;
8414	struct inodedep *inodedep;
8415	struct newdirblk *newdirblk = 0;
8416	struct mkdir *mkdir1, *mkdir2;
8417	struct jaddref *jaddref;
8418	struct ufsmount *ump;
8419	struct mount *mp;
8420	int isindir;
8421
8422	ump = dp->i_ump;
8423	mp = UFSTOVFS(ump);
8424	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8425	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8426	/*
8427	 * Whiteouts have no dependencies.
8428	 */
8429	if (newinum == WINO) {
8430		if (newdirbp != NULL)
8431			bdwrite(newdirbp);
8432		return (0);
8433	}
8434	jaddref = NULL;
8435	mkdir1 = mkdir2 = NULL;
8436	fs = dp->i_fs;
8437	lbn = lblkno(fs, diroffset);
8438	offset = blkoff(fs, diroffset);
8439	dap = malloc(sizeof(struct diradd), M_DIRADD,
8440		M_SOFTDEP_FLAGS|M_ZERO);
8441	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8442	dap->da_offset = offset;
8443	dap->da_newinum = newinum;
8444	dap->da_state = ATTACHED;
8445	LIST_INIT(&dap->da_jwork);
8446	isindir = bp->b_lblkno >= NDADDR;
8447	if (isnewblk &&
8448	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8449		newdirblk = malloc(sizeof(struct newdirblk),
8450		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8451		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8452		LIST_INIT(&newdirblk->db_mkdir);
8453	}
8454	/*
8455	 * If we're creating a new directory setup the dependencies and set
8456	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8457	 * we can move on.
8458	 */
8459	if (newdirbp == NULL) {
8460		dap->da_state |= DEPCOMPLETE;
8461		ACQUIRE_LOCK(ump);
8462	} else {
8463		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8464		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8465		    &mkdir2);
8466	}
8467	/*
8468	 * Link into parent directory pagedep to await its being written.
8469	 */
8470	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8471#ifdef DEBUG
8472	if (diradd_lookup(pagedep, offset) != NULL)
8473		panic("softdep_setup_directory_add: %p already at off %d\n",
8474		    diradd_lookup(pagedep, offset), offset);
8475#endif
8476	dap->da_pagedep = pagedep;
8477	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8478	    da_pdlist);
8479	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8480	/*
8481	 * If we're journaling, link the diradd into the jaddref so it
8482	 * may be completed after the journal entry is written.  Otherwise,
8483	 * link the diradd into its inodedep.  If the inode is not yet
8484	 * written place it on the bufwait list, otherwise do the post-inode
8485	 * write processing to put it on the id_pendinghd list.
8486	 */
8487	if (MOUNTEDSUJ(mp)) {
8488		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8489		    inoreflst);
8490		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8491		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8492		jaddref->ja_diroff = diroffset;
8493		jaddref->ja_diradd = dap;
8494		add_to_journal(&jaddref->ja_list);
8495	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8496		diradd_inode_written(dap, inodedep);
8497	else
8498		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8499	/*
8500	 * Add the journal entries for . and .. links now that the primary
8501	 * link is written.
8502	 */
8503	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8504		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8505		    inoreflst, if_deps);
8506		KASSERT(jaddref != NULL &&
8507		    jaddref->ja_ino == jaddref->ja_parent &&
8508		    (jaddref->ja_state & MKDIR_BODY),
8509		    ("softdep_setup_directory_add: bad dot jaddref %p",
8510		    jaddref));
8511		mkdir1->md_jaddref = jaddref;
8512		jaddref->ja_mkdir = mkdir1;
8513		/*
8514		 * It is important that the dotdot journal entry
8515		 * is added prior to the dot entry since dot writes
8516		 * both the dot and dotdot links.  These both must
8517		 * be added after the primary link for the journal
8518		 * to remain consistent.
8519		 */
8520		add_to_journal(&mkdir2->md_jaddref->ja_list);
8521		add_to_journal(&jaddref->ja_list);
8522	}
8523	/*
8524	 * If we are adding a new directory remember this diradd so that if
8525	 * we rename it we can keep the dot and dotdot dependencies.  If
8526	 * we are adding a new name for an inode that has a mkdiradd we
8527	 * must be in rename and we have to move the dot and dotdot
8528	 * dependencies to this new name.  The old name is being orphaned
8529	 * soon.
8530	 */
8531	if (mkdir1 != NULL) {
8532		if (inodedep->id_mkdiradd != NULL)
8533			panic("softdep_setup_directory_add: Existing mkdir");
8534		inodedep->id_mkdiradd = dap;
8535	} else if (inodedep->id_mkdiradd)
8536		merge_diradd(inodedep, dap);
8537	if (newdirblk) {
8538		/*
8539		 * There is nothing to do if we are already tracking
8540		 * this block.
8541		 */
8542		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8543			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8544			FREE_LOCK(ump);
8545			return (0);
8546		}
8547		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8548		    == 0)
8549			panic("softdep_setup_directory_add: lost entry");
8550		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8551		pagedep->pd_state |= NEWBLOCK;
8552		pagedep->pd_newdirblk = newdirblk;
8553		newdirblk->db_pagedep = pagedep;
8554		FREE_LOCK(ump);
8555		/*
8556		 * If we extended into an indirect signal direnter to sync.
8557		 */
8558		if (isindir)
8559			return (1);
8560		return (0);
8561	}
8562	FREE_LOCK(ump);
8563	return (0);
8564}
8565
8566/*
8567 * This procedure is called to change the offset of a directory
8568 * entry when compacting a directory block which must be owned
8569 * exclusively by the caller. Note that the actual entry movement
8570 * must be done in this procedure to ensure that no I/O completions
8571 * occur while the move is in progress.
8572 */
8573void
8574softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8575	struct buf *bp;		/* Buffer holding directory block. */
8576	struct inode *dp;	/* inode for directory */
8577	caddr_t base;		/* address of dp->i_offset */
8578	caddr_t oldloc;		/* address of old directory location */
8579	caddr_t newloc;		/* address of new directory location */
8580	int entrysize;		/* size of directory entry */
8581{
8582	int offset, oldoffset, newoffset;
8583	struct pagedep *pagedep;
8584	struct jmvref *jmvref;
8585	struct diradd *dap;
8586	struct direct *de;
8587	struct mount *mp;
8588	ufs_lbn_t lbn;
8589	int flags;
8590
8591	mp = UFSTOVFS(dp->i_ump);
8592	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8593	    ("softdep_change_directoryentry_offset called on "
8594	     "non-softdep filesystem"));
8595	de = (struct direct *)oldloc;
8596	jmvref = NULL;
8597	flags = 0;
8598	/*
8599	 * Moves are always journaled as it would be too complex to
8600	 * determine if any affected adds or removes are present in the
8601	 * journal.
8602	 */
8603	if (MOUNTEDSUJ(mp)) {
8604		flags = DEPALLOC;
8605		jmvref = newjmvref(dp, de->d_ino,
8606		    dp->i_offset + (oldloc - base),
8607		    dp->i_offset + (newloc - base));
8608	}
8609	lbn = lblkno(dp->i_fs, dp->i_offset);
8610	offset = blkoff(dp->i_fs, dp->i_offset);
8611	oldoffset = offset + (oldloc - base);
8612	newoffset = offset + (newloc - base);
8613	ACQUIRE_LOCK(dp->i_ump);
8614	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8615		goto done;
8616	dap = diradd_lookup(pagedep, oldoffset);
8617	if (dap) {
8618		dap->da_offset = newoffset;
8619		newoffset = DIRADDHASH(newoffset);
8620		oldoffset = DIRADDHASH(oldoffset);
8621		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8622		    newoffset != oldoffset) {
8623			LIST_REMOVE(dap, da_pdlist);
8624			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8625			    dap, da_pdlist);
8626		}
8627	}
8628done:
8629	if (jmvref) {
8630		jmvref->jm_pagedep = pagedep;
8631		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8632		add_to_journal(&jmvref->jm_list);
8633	}
8634	bcopy(oldloc, newloc, entrysize);
8635	FREE_LOCK(dp->i_ump);
8636}
8637
8638/*
8639 * Move the mkdir dependencies and journal work from one diradd to another
8640 * when renaming a directory.  The new name must depend on the mkdir deps
8641 * completing as the old name did.  Directories can only have one valid link
8642 * at a time so one must be canonical.
8643 */
8644static void
8645merge_diradd(inodedep, newdap)
8646	struct inodedep *inodedep;
8647	struct diradd *newdap;
8648{
8649	struct diradd *olddap;
8650	struct mkdir *mkdir, *nextmd;
8651	struct ufsmount *ump;
8652	short state;
8653
8654	olddap = inodedep->id_mkdiradd;
8655	inodedep->id_mkdiradd = newdap;
8656	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8657		newdap->da_state &= ~DEPCOMPLETE;
8658		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8659		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8660		     mkdir = nextmd) {
8661			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8662			if (mkdir->md_diradd != olddap)
8663				continue;
8664			mkdir->md_diradd = newdap;
8665			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8666			newdap->da_state |= state;
8667			olddap->da_state &= ~state;
8668			if ((olddap->da_state &
8669			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8670				break;
8671		}
8672		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8673			panic("merge_diradd: unfound ref");
8674	}
8675	/*
8676	 * Any mkdir related journal items are not safe to be freed until
8677	 * the new name is stable.
8678	 */
8679	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8680	olddap->da_state |= DEPCOMPLETE;
8681	complete_diradd(olddap);
8682}
8683
8684/*
8685 * Move the diradd to the pending list when all diradd dependencies are
8686 * complete.
8687 */
8688static void
8689complete_diradd(dap)
8690	struct diradd *dap;
8691{
8692	struct pagedep *pagedep;
8693
8694	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8695		if (dap->da_state & DIRCHG)
8696			pagedep = dap->da_previous->dm_pagedep;
8697		else
8698			pagedep = dap->da_pagedep;
8699		LIST_REMOVE(dap, da_pdlist);
8700		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8701	}
8702}
8703
8704/*
8705 * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8706 * add entries and conditonally journal the remove.
8707 */
8708static void
8709cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8710	struct diradd *dap;
8711	struct dirrem *dirrem;
8712	struct jremref *jremref;
8713	struct jremref *dotremref;
8714	struct jremref *dotdotremref;
8715{
8716	struct inodedep *inodedep;
8717	struct jaddref *jaddref;
8718	struct inoref *inoref;
8719	struct ufsmount *ump;
8720	struct mkdir *mkdir;
8721
8722	/*
8723	 * If no remove references were allocated we're on a non-journaled
8724	 * filesystem and can skip the cancel step.
8725	 */
8726	if (jremref == NULL) {
8727		free_diradd(dap, NULL);
8728		return;
8729	}
8730	/*
8731	 * Cancel the primary name an free it if it does not require
8732	 * journaling.
8733	 */
8734	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8735	    0, &inodedep) != 0) {
8736		/* Abort the addref that reference this diradd.  */
8737		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8738			if (inoref->if_list.wk_type != D_JADDREF)
8739				continue;
8740			jaddref = (struct jaddref *)inoref;
8741			if (jaddref->ja_diradd != dap)
8742				continue;
8743			if (cancel_jaddref(jaddref, inodedep,
8744			    &dirrem->dm_jwork) == 0) {
8745				free_jremref(jremref);
8746				jremref = NULL;
8747			}
8748			break;
8749		}
8750	}
8751	/*
8752	 * Cancel subordinate names and free them if they do not require
8753	 * journaling.
8754	 */
8755	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8756		ump = VFSTOUFS(dap->da_list.wk_mp);
8757		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8758			if (mkdir->md_diradd != dap)
8759				continue;
8760			if ((jaddref = mkdir->md_jaddref) == NULL)
8761				continue;
8762			mkdir->md_jaddref = NULL;
8763			if (mkdir->md_state & MKDIR_PARENT) {
8764				if (cancel_jaddref(jaddref, NULL,
8765				    &dirrem->dm_jwork) == 0) {
8766					free_jremref(dotdotremref);
8767					dotdotremref = NULL;
8768				}
8769			} else {
8770				if (cancel_jaddref(jaddref, inodedep,
8771				    &dirrem->dm_jwork) == 0) {
8772					free_jremref(dotremref);
8773					dotremref = NULL;
8774				}
8775			}
8776		}
8777	}
8778
8779	if (jremref)
8780		journal_jremref(dirrem, jremref, inodedep);
8781	if (dotremref)
8782		journal_jremref(dirrem, dotremref, inodedep);
8783	if (dotdotremref)
8784		journal_jremref(dirrem, dotdotremref, NULL);
8785	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8786	free_diradd(dap, &dirrem->dm_jwork);
8787}
8788
8789/*
8790 * Free a diradd dependency structure. This routine must be called
8791 * with splbio interrupts blocked.
8792 */
8793static void
8794free_diradd(dap, wkhd)
8795	struct diradd *dap;
8796	struct workhead *wkhd;
8797{
8798	struct dirrem *dirrem;
8799	struct pagedep *pagedep;
8800	struct inodedep *inodedep;
8801	struct mkdir *mkdir, *nextmd;
8802	struct ufsmount *ump;
8803
8804	ump = VFSTOUFS(dap->da_list.wk_mp);
8805	LOCK_OWNED(ump);
8806	LIST_REMOVE(dap, da_pdlist);
8807	if (dap->da_state & ONWORKLIST)
8808		WORKLIST_REMOVE(&dap->da_list);
8809	if ((dap->da_state & DIRCHG) == 0) {
8810		pagedep = dap->da_pagedep;
8811	} else {
8812		dirrem = dap->da_previous;
8813		pagedep = dirrem->dm_pagedep;
8814		dirrem->dm_dirinum = pagedep->pd_ino;
8815		dirrem->dm_state |= COMPLETE;
8816		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8817			add_to_worklist(&dirrem->dm_list, 0);
8818	}
8819	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8820	    0, &inodedep) != 0)
8821		if (inodedep->id_mkdiradd == dap)
8822			inodedep->id_mkdiradd = NULL;
8823	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8824		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8825		     mkdir = nextmd) {
8826			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8827			if (mkdir->md_diradd != dap)
8828				continue;
8829			dap->da_state &=
8830			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8831			LIST_REMOVE(mkdir, md_mkdirs);
8832			if (mkdir->md_state & ONWORKLIST)
8833				WORKLIST_REMOVE(&mkdir->md_list);
8834			if (mkdir->md_jaddref != NULL)
8835				panic("free_diradd: Unexpected jaddref");
8836			WORKITEM_FREE(mkdir, D_MKDIR);
8837			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8838				break;
8839		}
8840		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8841			panic("free_diradd: unfound ref");
8842	}
8843	if (inodedep)
8844		free_inodedep(inodedep);
8845	/*
8846	 * Free any journal segments waiting for the directory write.
8847	 */
8848	handle_jwork(&dap->da_jwork);
8849	WORKITEM_FREE(dap, D_DIRADD);
8850}
8851
8852/*
8853 * Directory entry removal dependencies.
8854 *
8855 * When removing a directory entry, the entry's inode pointer must be
8856 * zero'ed on disk before the corresponding inode's link count is decremented
8857 * (possibly freeing the inode for re-use). This dependency is handled by
8858 * updating the directory entry but delaying the inode count reduction until
8859 * after the directory block has been written to disk. After this point, the
8860 * inode count can be decremented whenever it is convenient.
8861 */
8862
8863/*
8864 * This routine should be called immediately after removing
8865 * a directory entry.  The inode's link count should not be
8866 * decremented by the calling procedure -- the soft updates
8867 * code will do this task when it is safe.
8868 */
8869void
8870softdep_setup_remove(bp, dp, ip, isrmdir)
8871	struct buf *bp;		/* buffer containing directory block */
8872	struct inode *dp;	/* inode for the directory being modified */
8873	struct inode *ip;	/* inode for directory entry being removed */
8874	int isrmdir;		/* indicates if doing RMDIR */
8875{
8876	struct dirrem *dirrem, *prevdirrem;
8877	struct inodedep *inodedep;
8878	int direct;
8879
8880	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
8881	    ("softdep_setup_remove called on non-softdep filesystem"));
8882	/*
8883	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8884	 * newdirrem() to setup the full directory remove which requires
8885	 * isrmdir > 1.
8886	 */
8887	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8888	/*
8889	 * Add the dirrem to the inodedep's pending remove list for quick
8890	 * discovery later.
8891	 */
8892	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8893	    &inodedep) == 0)
8894		panic("softdep_setup_remove: Lost inodedep.");
8895	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8896	dirrem->dm_state |= ONDEPLIST;
8897	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8898
8899	/*
8900	 * If the COMPLETE flag is clear, then there were no active
8901	 * entries and we want to roll back to a zeroed entry until
8902	 * the new inode is committed to disk. If the COMPLETE flag is
8903	 * set then we have deleted an entry that never made it to
8904	 * disk. If the entry we deleted resulted from a name change,
8905	 * then the old name still resides on disk. We cannot delete
8906	 * its inode (returned to us in prevdirrem) until the zeroed
8907	 * directory entry gets to disk. The new inode has never been
8908	 * referenced on the disk, so can be deleted immediately.
8909	 */
8910	if ((dirrem->dm_state & COMPLETE) == 0) {
8911		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8912		    dm_next);
8913		FREE_LOCK(ip->i_ump);
8914	} else {
8915		if (prevdirrem != NULL)
8916			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8917			    prevdirrem, dm_next);
8918		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8919		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8920		FREE_LOCK(ip->i_ump);
8921		if (direct)
8922			handle_workitem_remove(dirrem, 0);
8923	}
8924}
8925
8926/*
8927 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8928 * pd_pendinghd list of a pagedep.
8929 */
8930static struct diradd *
8931diradd_lookup(pagedep, offset)
8932	struct pagedep *pagedep;
8933	int offset;
8934{
8935	struct diradd *dap;
8936
8937	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8938		if (dap->da_offset == offset)
8939			return (dap);
8940	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8941		if (dap->da_offset == offset)
8942			return (dap);
8943	return (NULL);
8944}
8945
8946/*
8947 * Search for a .. diradd dependency in a directory that is being removed.
8948 * If the directory was renamed to a new parent we have a diradd rather
8949 * than a mkdir for the .. entry.  We need to cancel it now before
8950 * it is found in truncate().
8951 */
8952static struct jremref *
8953cancel_diradd_dotdot(ip, dirrem, jremref)
8954	struct inode *ip;
8955	struct dirrem *dirrem;
8956	struct jremref *jremref;
8957{
8958	struct pagedep *pagedep;
8959	struct diradd *dap;
8960	struct worklist *wk;
8961
8962	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8963	    &pagedep) == 0)
8964		return (jremref);
8965	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8966	if (dap == NULL)
8967		return (jremref);
8968	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8969	/*
8970	 * Mark any journal work as belonging to the parent so it is freed
8971	 * with the .. reference.
8972	 */
8973	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8974		wk->wk_state |= MKDIR_PARENT;
8975	return (NULL);
8976}
8977
8978/*
8979 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8980 * replace it with a dirrem/diradd pair as a result of re-parenting a
8981 * directory.  This ensures that we don't simultaneously have a mkdir and
8982 * a diradd for the same .. entry.
8983 */
8984static struct jremref *
8985cancel_mkdir_dotdot(ip, dirrem, jremref)
8986	struct inode *ip;
8987	struct dirrem *dirrem;
8988	struct jremref *jremref;
8989{
8990	struct inodedep *inodedep;
8991	struct jaddref *jaddref;
8992	struct ufsmount *ump;
8993	struct mkdir *mkdir;
8994	struct diradd *dap;
8995
8996	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8997	    &inodedep) == 0)
8998		return (jremref);
8999	dap = inodedep->id_mkdiradd;
9000	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9001		return (jremref);
9002	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9003	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9004	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9005		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9006			break;
9007	if (mkdir == NULL)
9008		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9009	if ((jaddref = mkdir->md_jaddref) != NULL) {
9010		mkdir->md_jaddref = NULL;
9011		jaddref->ja_state &= ~MKDIR_PARENT;
9012		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
9013		    &inodedep) == 0)
9014			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9015		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9016			journal_jremref(dirrem, jremref, inodedep);
9017			jremref = NULL;
9018		}
9019	}
9020	if (mkdir->md_state & ONWORKLIST)
9021		WORKLIST_REMOVE(&mkdir->md_list);
9022	mkdir->md_state |= ALLCOMPLETE;
9023	complete_mkdir(mkdir);
9024	return (jremref);
9025}
9026
9027static void
9028journal_jremref(dirrem, jremref, inodedep)
9029	struct dirrem *dirrem;
9030	struct jremref *jremref;
9031	struct inodedep *inodedep;
9032{
9033
9034	if (inodedep == NULL)
9035		if (inodedep_lookup(jremref->jr_list.wk_mp,
9036		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9037			panic("journal_jremref: Lost inodedep");
9038	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9039	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9040	add_to_journal(&jremref->jr_list);
9041}
9042
9043static void
9044dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9045	struct dirrem *dirrem;
9046	struct jremref *jremref;
9047	struct jremref *dotremref;
9048	struct jremref *dotdotremref;
9049{
9050	struct inodedep *inodedep;
9051
9052
9053	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9054	    &inodedep) == 0)
9055		panic("dirrem_journal: Lost inodedep");
9056	journal_jremref(dirrem, jremref, inodedep);
9057	if (dotremref)
9058		journal_jremref(dirrem, dotremref, inodedep);
9059	if (dotdotremref)
9060		journal_jremref(dirrem, dotdotremref, NULL);
9061}
9062
9063/*
9064 * Allocate a new dirrem if appropriate and return it along with
9065 * its associated pagedep. Called without a lock, returns with lock.
9066 */
9067static struct dirrem *
9068newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9069	struct buf *bp;		/* buffer containing directory block */
9070	struct inode *dp;	/* inode for the directory being modified */
9071	struct inode *ip;	/* inode for directory entry being removed */
9072	int isrmdir;		/* indicates if doing RMDIR */
9073	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9074{
9075	int offset;
9076	ufs_lbn_t lbn;
9077	struct diradd *dap;
9078	struct dirrem *dirrem;
9079	struct pagedep *pagedep;
9080	struct jremref *jremref;
9081	struct jremref *dotremref;
9082	struct jremref *dotdotremref;
9083	struct vnode *dvp;
9084
9085	/*
9086	 * Whiteouts have no deletion dependencies.
9087	 */
9088	if (ip == NULL)
9089		panic("newdirrem: whiteout");
9090	dvp = ITOV(dp);
9091	/*
9092	 * If the system is over its limit and our filesystem is
9093	 * responsible for more than our share of that usage and
9094	 * we are not a snapshot, request some inodedep cleanup.
9095	 * Limiting the number of dirrem structures will also limit
9096	 * the number of freefile and freeblks structures.
9097	 */
9098	ACQUIRE_LOCK(ip->i_ump);
9099	while (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2 &&
9100	    ip->i_ump->softdep_curdeps[D_DIRREM] >
9101	    (max_softdeps / 2) / stat_flush_threads)
9102		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
9103	FREE_LOCK(ip->i_ump);
9104	dirrem = malloc(sizeof(struct dirrem),
9105		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
9106	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9107	LIST_INIT(&dirrem->dm_jremrefhd);
9108	LIST_INIT(&dirrem->dm_jwork);
9109	dirrem->dm_state = isrmdir ? RMDIR : 0;
9110	dirrem->dm_oldinum = ip->i_number;
9111	*prevdirremp = NULL;
9112	/*
9113	 * Allocate remove reference structures to track journal write
9114	 * dependencies.  We will always have one for the link and
9115	 * when doing directories we will always have one more for dot.
9116	 * When renaming a directory we skip the dotdot link change so
9117	 * this is not needed.
9118	 */
9119	jremref = dotremref = dotdotremref = NULL;
9120	if (DOINGSUJ(dvp)) {
9121		if (isrmdir) {
9122			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9123			    ip->i_effnlink + 2);
9124			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9125			    ip->i_effnlink + 1);
9126			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9127			    dp->i_effnlink + 1);
9128			dotdotremref->jr_state |= MKDIR_PARENT;
9129		} else
9130			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9131			    ip->i_effnlink + 1);
9132	}
9133	ACQUIRE_LOCK(ip->i_ump);
9134	lbn = lblkno(dp->i_fs, dp->i_offset);
9135	offset = blkoff(dp->i_fs, dp->i_offset);
9136	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
9137	    &pagedep);
9138	dirrem->dm_pagedep = pagedep;
9139	dirrem->dm_offset = offset;
9140	/*
9141	 * If we're renaming a .. link to a new directory, cancel any
9142	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9143	 * the jremref is preserved for any potential diradd in this
9144	 * location.  This can not coincide with a rmdir.
9145	 */
9146	if (dp->i_offset == DOTDOT_OFFSET) {
9147		if (isrmdir)
9148			panic("newdirrem: .. directory change during remove?");
9149		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9150	}
9151	/*
9152	 * If we're removing a directory search for the .. dependency now and
9153	 * cancel it.  Any pending journal work will be added to the dirrem
9154	 * to be completed when the workitem remove completes.
9155	 */
9156	if (isrmdir)
9157		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9158	/*
9159	 * Check for a diradd dependency for the same directory entry.
9160	 * If present, then both dependencies become obsolete and can
9161	 * be de-allocated.
9162	 */
9163	dap = diradd_lookup(pagedep, offset);
9164	if (dap == NULL) {
9165		/*
9166		 * Link the jremref structures into the dirrem so they are
9167		 * written prior to the pagedep.
9168		 */
9169		if (jremref)
9170			dirrem_journal(dirrem, jremref, dotremref,
9171			    dotdotremref);
9172		return (dirrem);
9173	}
9174	/*
9175	 * Must be ATTACHED at this point.
9176	 */
9177	if ((dap->da_state & ATTACHED) == 0)
9178		panic("newdirrem: not ATTACHED");
9179	if (dap->da_newinum != ip->i_number)
9180		panic("newdirrem: inum %ju should be %ju",
9181		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9182	/*
9183	 * If we are deleting a changed name that never made it to disk,
9184	 * then return the dirrem describing the previous inode (which
9185	 * represents the inode currently referenced from this entry on disk).
9186	 */
9187	if ((dap->da_state & DIRCHG) != 0) {
9188		*prevdirremp = dap->da_previous;
9189		dap->da_state &= ~DIRCHG;
9190		dap->da_pagedep = pagedep;
9191	}
9192	/*
9193	 * We are deleting an entry that never made it to disk.
9194	 * Mark it COMPLETE so we can delete its inode immediately.
9195	 */
9196	dirrem->dm_state |= COMPLETE;
9197	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9198#ifdef SUJ_DEBUG
9199	if (isrmdir == 0) {
9200		struct worklist *wk;
9201
9202		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9203			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9204				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9205	}
9206#endif
9207
9208	return (dirrem);
9209}
9210
9211/*
9212 * Directory entry change dependencies.
9213 *
9214 * Changing an existing directory entry requires that an add operation
9215 * be completed first followed by a deletion. The semantics for the addition
9216 * are identical to the description of adding a new entry above except
9217 * that the rollback is to the old inode number rather than zero. Once
9218 * the addition dependency is completed, the removal is done as described
9219 * in the removal routine above.
9220 */
9221
9222/*
9223 * This routine should be called immediately after changing
9224 * a directory entry.  The inode's link count should not be
9225 * decremented by the calling procedure -- the soft updates
9226 * code will perform this task when it is safe.
9227 */
9228void
9229softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9230	struct buf *bp;		/* buffer containing directory block */
9231	struct inode *dp;	/* inode for the directory being modified */
9232	struct inode *ip;	/* inode for directory entry being removed */
9233	ino_t newinum;		/* new inode number for changed entry */
9234	int isrmdir;		/* indicates if doing RMDIR */
9235{
9236	int offset;
9237	struct diradd *dap = NULL;
9238	struct dirrem *dirrem, *prevdirrem;
9239	struct pagedep *pagedep;
9240	struct inodedep *inodedep;
9241	struct jaddref *jaddref;
9242	struct mount *mp;
9243
9244	offset = blkoff(dp->i_fs, dp->i_offset);
9245	mp = UFSTOVFS(dp->i_ump);
9246	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9247	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9248
9249	/*
9250	 * Whiteouts do not need diradd dependencies.
9251	 */
9252	if (newinum != WINO) {
9253		dap = malloc(sizeof(struct diradd),
9254		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9255		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9256		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9257		dap->da_offset = offset;
9258		dap->da_newinum = newinum;
9259		LIST_INIT(&dap->da_jwork);
9260	}
9261
9262	/*
9263	 * Allocate a new dirrem and ACQUIRE_LOCK.
9264	 */
9265	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9266	pagedep = dirrem->dm_pagedep;
9267	/*
9268	 * The possible values for isrmdir:
9269	 *	0 - non-directory file rename
9270	 *	1 - directory rename within same directory
9271	 *   inum - directory rename to new directory of given inode number
9272	 * When renaming to a new directory, we are both deleting and
9273	 * creating a new directory entry, so the link count on the new
9274	 * directory should not change. Thus we do not need the followup
9275	 * dirrem which is usually done in handle_workitem_remove. We set
9276	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9277	 * followup dirrem.
9278	 */
9279	if (isrmdir > 1)
9280		dirrem->dm_state |= DIRCHG;
9281
9282	/*
9283	 * Whiteouts have no additional dependencies,
9284	 * so just put the dirrem on the correct list.
9285	 */
9286	if (newinum == WINO) {
9287		if ((dirrem->dm_state & COMPLETE) == 0) {
9288			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9289			    dm_next);
9290		} else {
9291			dirrem->dm_dirinum = pagedep->pd_ino;
9292			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9293				add_to_worklist(&dirrem->dm_list, 0);
9294		}
9295		FREE_LOCK(dp->i_ump);
9296		return;
9297	}
9298	/*
9299	 * Add the dirrem to the inodedep's pending remove list for quick
9300	 * discovery later.  A valid nlinkdelta ensures that this lookup
9301	 * will not fail.
9302	 */
9303	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9304		panic("softdep_setup_directory_change: Lost inodedep.");
9305	dirrem->dm_state |= ONDEPLIST;
9306	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9307
9308	/*
9309	 * If the COMPLETE flag is clear, then there were no active
9310	 * entries and we want to roll back to the previous inode until
9311	 * the new inode is committed to disk. If the COMPLETE flag is
9312	 * set, then we have deleted an entry that never made it to disk.
9313	 * If the entry we deleted resulted from a name change, then the old
9314	 * inode reference still resides on disk. Any rollback that we do
9315	 * needs to be to that old inode (returned to us in prevdirrem). If
9316	 * the entry we deleted resulted from a create, then there is
9317	 * no entry on the disk, so we want to roll back to zero rather
9318	 * than the uncommitted inode. In either of the COMPLETE cases we
9319	 * want to immediately free the unwritten and unreferenced inode.
9320	 */
9321	if ((dirrem->dm_state & COMPLETE) == 0) {
9322		dap->da_previous = dirrem;
9323	} else {
9324		if (prevdirrem != NULL) {
9325			dap->da_previous = prevdirrem;
9326		} else {
9327			dap->da_state &= ~DIRCHG;
9328			dap->da_pagedep = pagedep;
9329		}
9330		dirrem->dm_dirinum = pagedep->pd_ino;
9331		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9332			add_to_worklist(&dirrem->dm_list, 0);
9333	}
9334	/*
9335	 * Lookup the jaddref for this journal entry.  We must finish
9336	 * initializing it and make the diradd write dependent on it.
9337	 * If we're not journaling, put it on the id_bufwait list if the
9338	 * inode is not yet written. If it is written, do the post-inode
9339	 * write processing to put it on the id_pendinghd list.
9340	 */
9341	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
9342	if (MOUNTEDSUJ(mp)) {
9343		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9344		    inoreflst);
9345		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9346		    ("softdep_setup_directory_change: bad jaddref %p",
9347		    jaddref));
9348		jaddref->ja_diroff = dp->i_offset;
9349		jaddref->ja_diradd = dap;
9350		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9351		    dap, da_pdlist);
9352		add_to_journal(&jaddref->ja_list);
9353	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9354		dap->da_state |= COMPLETE;
9355		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9356		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9357	} else {
9358		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9359		    dap, da_pdlist);
9360		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9361	}
9362	/*
9363	 * If we're making a new name for a directory that has not been
9364	 * committed when need to move the dot and dotdot references to
9365	 * this new name.
9366	 */
9367	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9368		merge_diradd(inodedep, dap);
9369	FREE_LOCK(dp->i_ump);
9370}
9371
9372/*
9373 * Called whenever the link count on an inode is changed.
9374 * It creates an inode dependency so that the new reference(s)
9375 * to the inode cannot be committed to disk until the updated
9376 * inode has been written.
9377 */
9378void
9379softdep_change_linkcnt(ip)
9380	struct inode *ip;	/* the inode with the increased link count */
9381{
9382	struct inodedep *inodedep;
9383	int dflags;
9384
9385	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
9386	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9387	ACQUIRE_LOCK(ip->i_ump);
9388	dflags = DEPALLOC;
9389	if (IS_SNAPSHOT(ip))
9390		dflags |= NODELAY;
9391	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
9392	if (ip->i_nlink < ip->i_effnlink)
9393		panic("softdep_change_linkcnt: bad delta");
9394	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9395	FREE_LOCK(ip->i_ump);
9396}
9397
9398/*
9399 * Attach a sbdep dependency to the superblock buf so that we can keep
9400 * track of the head of the linked list of referenced but unlinked inodes.
9401 */
9402void
9403softdep_setup_sbupdate(ump, fs, bp)
9404	struct ufsmount *ump;
9405	struct fs *fs;
9406	struct buf *bp;
9407{
9408	struct sbdep *sbdep;
9409	struct worklist *wk;
9410
9411	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9412	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9413	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9414		if (wk->wk_type == D_SBDEP)
9415			break;
9416	if (wk != NULL)
9417		return;
9418	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9419	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9420	sbdep->sb_fs = fs;
9421	sbdep->sb_ump = ump;
9422	ACQUIRE_LOCK(ump);
9423	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9424	FREE_LOCK(ump);
9425}
9426
9427/*
9428 * Return the first unlinked inodedep which is ready to be the head of the
9429 * list.  The inodedep and all those after it must have valid next pointers.
9430 */
9431static struct inodedep *
9432first_unlinked_inodedep(ump)
9433	struct ufsmount *ump;
9434{
9435	struct inodedep *inodedep;
9436	struct inodedep *idp;
9437
9438	LOCK_OWNED(ump);
9439	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9440	    inodedep; inodedep = idp) {
9441		if ((inodedep->id_state & UNLINKNEXT) == 0)
9442			return (NULL);
9443		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9444		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9445			break;
9446		if ((inodedep->id_state & UNLINKPREV) == 0)
9447			break;
9448	}
9449	return (inodedep);
9450}
9451
9452/*
9453 * Set the sujfree unlinked head pointer prior to writing a superblock.
9454 */
9455static void
9456initiate_write_sbdep(sbdep)
9457	struct sbdep *sbdep;
9458{
9459	struct inodedep *inodedep;
9460	struct fs *bpfs;
9461	struct fs *fs;
9462
9463	bpfs = sbdep->sb_fs;
9464	fs = sbdep->sb_ump->um_fs;
9465	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9466	if (inodedep) {
9467		fs->fs_sujfree = inodedep->id_ino;
9468		inodedep->id_state |= UNLINKPREV;
9469	} else
9470		fs->fs_sujfree = 0;
9471	bpfs->fs_sujfree = fs->fs_sujfree;
9472}
9473
9474/*
9475 * After a superblock is written determine whether it must be written again
9476 * due to a changing unlinked list head.
9477 */
9478static int
9479handle_written_sbdep(sbdep, bp)
9480	struct sbdep *sbdep;
9481	struct buf *bp;
9482{
9483	struct inodedep *inodedep;
9484	struct mount *mp;
9485	struct fs *fs;
9486
9487	LOCK_OWNED(sbdep->sb_ump);
9488	fs = sbdep->sb_fs;
9489	mp = UFSTOVFS(sbdep->sb_ump);
9490	/*
9491	 * If the superblock doesn't match the in-memory list start over.
9492	 */
9493	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9494	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9495	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9496		bdirty(bp);
9497		return (1);
9498	}
9499	WORKITEM_FREE(sbdep, D_SBDEP);
9500	if (fs->fs_sujfree == 0)
9501		return (0);
9502	/*
9503	 * Now that we have a record of this inode in stable store allow it
9504	 * to be written to free up pending work.  Inodes may see a lot of
9505	 * write activity after they are unlinked which we must not hold up.
9506	 */
9507	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9508		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9509			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9510			    inodedep, inodedep->id_state);
9511		if (inodedep->id_state & UNLINKONLIST)
9512			break;
9513		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9514	}
9515
9516	return (0);
9517}
9518
9519/*
9520 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9521 */
9522static void
9523unlinked_inodedep(mp, inodedep)
9524	struct mount *mp;
9525	struct inodedep *inodedep;
9526{
9527	struct ufsmount *ump;
9528
9529	ump = VFSTOUFS(mp);
9530	LOCK_OWNED(ump);
9531	if (MOUNTEDSUJ(mp) == 0)
9532		return;
9533	ump->um_fs->fs_fmod = 1;
9534	if (inodedep->id_state & UNLINKED)
9535		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9536	inodedep->id_state |= UNLINKED;
9537	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9538}
9539
9540/*
9541 * Remove an inodedep from the unlinked inodedep list.  This may require
9542 * disk writes if the inode has made it that far.
9543 */
9544static void
9545clear_unlinked_inodedep(inodedep)
9546	struct inodedep *inodedep;
9547{
9548	struct ufsmount *ump;
9549	struct inodedep *idp;
9550	struct inodedep *idn;
9551	struct fs *fs;
9552	struct buf *bp;
9553	ino_t ino;
9554	ino_t nino;
9555	ino_t pino;
9556	int error;
9557
9558	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9559	fs = ump->um_fs;
9560	ino = inodedep->id_ino;
9561	error = 0;
9562	for (;;) {
9563		LOCK_OWNED(ump);
9564		KASSERT((inodedep->id_state & UNLINKED) != 0,
9565		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9566		    inodedep));
9567		/*
9568		 * If nothing has yet been written simply remove us from
9569		 * the in memory list and return.  This is the most common
9570		 * case where handle_workitem_remove() loses the final
9571		 * reference.
9572		 */
9573		if ((inodedep->id_state & UNLINKLINKS) == 0)
9574			break;
9575		/*
9576		 * If we have a NEXT pointer and no PREV pointer we can simply
9577		 * clear NEXT's PREV and remove ourselves from the list.  Be
9578		 * careful not to clear PREV if the superblock points at
9579		 * next as well.
9580		 */
9581		idn = TAILQ_NEXT(inodedep, id_unlinked);
9582		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9583			if (idn && fs->fs_sujfree != idn->id_ino)
9584				idn->id_state &= ~UNLINKPREV;
9585			break;
9586		}
9587		/*
9588		 * Here we have an inodedep which is actually linked into
9589		 * the list.  We must remove it by forcing a write to the
9590		 * link before us, whether it be the superblock or an inode.
9591		 * Unfortunately the list may change while we're waiting
9592		 * on the buf lock for either resource so we must loop until
9593		 * we lock the right one.  If both the superblock and an
9594		 * inode point to this inode we must clear the inode first
9595		 * followed by the superblock.
9596		 */
9597		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9598		pino = 0;
9599		if (idp && (idp->id_state & UNLINKNEXT))
9600			pino = idp->id_ino;
9601		FREE_LOCK(ump);
9602		if (pino == 0) {
9603			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9604			    (int)fs->fs_sbsize, 0, 0, 0);
9605		} else {
9606			error = bread(ump->um_devvp,
9607			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9608			    (int)fs->fs_bsize, NOCRED, &bp);
9609			if (error)
9610				brelse(bp);
9611		}
9612		ACQUIRE_LOCK(ump);
9613		if (error)
9614			break;
9615		/* If the list has changed restart the loop. */
9616		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9617		nino = 0;
9618		if (idp && (idp->id_state & UNLINKNEXT))
9619			nino = idp->id_ino;
9620		if (nino != pino ||
9621		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9622			FREE_LOCK(ump);
9623			brelse(bp);
9624			ACQUIRE_LOCK(ump);
9625			continue;
9626		}
9627		nino = 0;
9628		idn = TAILQ_NEXT(inodedep, id_unlinked);
9629		if (idn)
9630			nino = idn->id_ino;
9631		/*
9632		 * Remove us from the in memory list.  After this we cannot
9633		 * access the inodedep.
9634		 */
9635		KASSERT((inodedep->id_state & UNLINKED) != 0,
9636		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9637		    inodedep));
9638		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9639		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9640		FREE_LOCK(ump);
9641		/*
9642		 * The predecessor's next pointer is manually updated here
9643		 * so that the NEXT flag is never cleared for an element
9644		 * that is in the list.
9645		 */
9646		if (pino == 0) {
9647			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9648			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9649			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9650			    bp);
9651		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9652			((struct ufs1_dinode *)bp->b_data +
9653			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9654		else
9655			((struct ufs2_dinode *)bp->b_data +
9656			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9657		/*
9658		 * If the bwrite fails we have no recourse to recover.  The
9659		 * filesystem is corrupted already.
9660		 */
9661		bwrite(bp);
9662		ACQUIRE_LOCK(ump);
9663		/*
9664		 * If the superblock pointer still needs to be cleared force
9665		 * a write here.
9666		 */
9667		if (fs->fs_sujfree == ino) {
9668			FREE_LOCK(ump);
9669			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9670			    (int)fs->fs_sbsize, 0, 0, 0);
9671			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9672			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9673			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9674			    bp);
9675			bwrite(bp);
9676			ACQUIRE_LOCK(ump);
9677		}
9678
9679		if (fs->fs_sujfree != ino)
9680			return;
9681		panic("clear_unlinked_inodedep: Failed to clear free head");
9682	}
9683	if (inodedep->id_ino == fs->fs_sujfree)
9684		panic("clear_unlinked_inodedep: Freeing head of free list");
9685	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9686	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9687	return;
9688}
9689
9690/*
9691 * This workitem decrements the inode's link count.
9692 * If the link count reaches zero, the file is removed.
9693 */
9694static int
9695handle_workitem_remove(dirrem, flags)
9696	struct dirrem *dirrem;
9697	int flags;
9698{
9699	struct inodedep *inodedep;
9700	struct workhead dotdotwk;
9701	struct worklist *wk;
9702	struct ufsmount *ump;
9703	struct mount *mp;
9704	struct vnode *vp;
9705	struct inode *ip;
9706	ino_t oldinum;
9707
9708	if (dirrem->dm_state & ONWORKLIST)
9709		panic("handle_workitem_remove: dirrem %p still on worklist",
9710		    dirrem);
9711	oldinum = dirrem->dm_oldinum;
9712	mp = dirrem->dm_list.wk_mp;
9713	ump = VFSTOUFS(mp);
9714	flags |= LK_EXCLUSIVE;
9715	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9716		return (EBUSY);
9717	ip = VTOI(vp);
9718	ACQUIRE_LOCK(ump);
9719	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9720		panic("handle_workitem_remove: lost inodedep");
9721	if (dirrem->dm_state & ONDEPLIST)
9722		LIST_REMOVE(dirrem, dm_inonext);
9723	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9724	    ("handle_workitem_remove:  Journal entries not written."));
9725
9726	/*
9727	 * Move all dependencies waiting on the remove to complete
9728	 * from the dirrem to the inode inowait list to be completed
9729	 * after the inode has been updated and written to disk.  Any
9730	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9731	 * is removed.
9732	 */
9733	LIST_INIT(&dotdotwk);
9734	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9735		WORKLIST_REMOVE(wk);
9736		if (wk->wk_state & MKDIR_PARENT) {
9737			wk->wk_state &= ~MKDIR_PARENT;
9738			WORKLIST_INSERT(&dotdotwk, wk);
9739			continue;
9740		}
9741		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9742	}
9743	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9744	/*
9745	 * Normal file deletion.
9746	 */
9747	if ((dirrem->dm_state & RMDIR) == 0) {
9748		ip->i_nlink--;
9749		DIP_SET(ip, i_nlink, ip->i_nlink);
9750		ip->i_flag |= IN_CHANGE;
9751		if (ip->i_nlink < ip->i_effnlink)
9752			panic("handle_workitem_remove: bad file delta");
9753		if (ip->i_nlink == 0)
9754			unlinked_inodedep(mp, inodedep);
9755		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9756		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9757		    ("handle_workitem_remove: worklist not empty. %s",
9758		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9759		WORKITEM_FREE(dirrem, D_DIRREM);
9760		FREE_LOCK(ump);
9761		goto out;
9762	}
9763	/*
9764	 * Directory deletion. Decrement reference count for both the
9765	 * just deleted parent directory entry and the reference for ".".
9766	 * Arrange to have the reference count on the parent decremented
9767	 * to account for the loss of "..".
9768	 */
9769	ip->i_nlink -= 2;
9770	DIP_SET(ip, i_nlink, ip->i_nlink);
9771	ip->i_flag |= IN_CHANGE;
9772	if (ip->i_nlink < ip->i_effnlink)
9773		panic("handle_workitem_remove: bad dir delta");
9774	if (ip->i_nlink == 0)
9775		unlinked_inodedep(mp, inodedep);
9776	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9777	/*
9778	 * Rename a directory to a new parent. Since, we are both deleting
9779	 * and creating a new directory entry, the link count on the new
9780	 * directory should not change. Thus we skip the followup dirrem.
9781	 */
9782	if (dirrem->dm_state & DIRCHG) {
9783		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9784		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9785		WORKITEM_FREE(dirrem, D_DIRREM);
9786		FREE_LOCK(ump);
9787		goto out;
9788	}
9789	dirrem->dm_state = ONDEPLIST;
9790	dirrem->dm_oldinum = dirrem->dm_dirinum;
9791	/*
9792	 * Place the dirrem on the parent's diremhd list.
9793	 */
9794	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9795		panic("handle_workitem_remove: lost dir inodedep");
9796	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9797	/*
9798	 * If the allocated inode has never been written to disk, then
9799	 * the on-disk inode is zero'ed and we can remove the file
9800	 * immediately.  When journaling if the inode has been marked
9801	 * unlinked and not DEPCOMPLETE we know it can never be written.
9802	 */
9803	inodedep_lookup(mp, oldinum, 0, &inodedep);
9804	if (inodedep == NULL ||
9805	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9806	    check_inode_unwritten(inodedep)) {
9807		FREE_LOCK(ump);
9808		vput(vp);
9809		return handle_workitem_remove(dirrem, flags);
9810	}
9811	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9812	FREE_LOCK(ump);
9813	ip->i_flag |= IN_CHANGE;
9814out:
9815	ffs_update(vp, 0);
9816	vput(vp);
9817	return (0);
9818}
9819
9820/*
9821 * Inode de-allocation dependencies.
9822 *
9823 * When an inode's link count is reduced to zero, it can be de-allocated. We
9824 * found it convenient to postpone de-allocation until after the inode is
9825 * written to disk with its new link count (zero).  At this point, all of the
9826 * on-disk inode's block pointers are nullified and, with careful dependency
9827 * list ordering, all dependencies related to the inode will be satisfied and
9828 * the corresponding dependency structures de-allocated.  So, if/when the
9829 * inode is reused, there will be no mixing of old dependencies with new
9830 * ones.  This artificial dependency is set up by the block de-allocation
9831 * procedure above (softdep_setup_freeblocks) and completed by the
9832 * following procedure.
9833 */
9834static void
9835handle_workitem_freefile(freefile)
9836	struct freefile *freefile;
9837{
9838	struct workhead wkhd;
9839	struct fs *fs;
9840	struct inodedep *idp;
9841	struct ufsmount *ump;
9842	int error;
9843
9844	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9845	fs = ump->um_fs;
9846#ifdef DEBUG
9847	ACQUIRE_LOCK(ump);
9848	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9849	FREE_LOCK(ump);
9850	if (error)
9851		panic("handle_workitem_freefile: inodedep %p survived", idp);
9852#endif
9853	UFS_LOCK(ump);
9854	fs->fs_pendinginodes -= 1;
9855	UFS_UNLOCK(ump);
9856	LIST_INIT(&wkhd);
9857	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9858	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9859	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9860		softdep_error("handle_workitem_freefile", error);
9861	ACQUIRE_LOCK(ump);
9862	WORKITEM_FREE(freefile, D_FREEFILE);
9863	FREE_LOCK(ump);
9864}
9865
9866
9867/*
9868 * Helper function which unlinks marker element from work list and returns
9869 * the next element on the list.
9870 */
9871static __inline struct worklist *
9872markernext(struct worklist *marker)
9873{
9874	struct worklist *next;
9875
9876	next = LIST_NEXT(marker, wk_list);
9877	LIST_REMOVE(marker, wk_list);
9878	return next;
9879}
9880
9881/*
9882 * Disk writes.
9883 *
9884 * The dependency structures constructed above are most actively used when file
9885 * system blocks are written to disk.  No constraints are placed on when a
9886 * block can be written, but unsatisfied update dependencies are made safe by
9887 * modifying (or replacing) the source memory for the duration of the disk
9888 * write.  When the disk write completes, the memory block is again brought
9889 * up-to-date.
9890 *
9891 * In-core inode structure reclamation.
9892 *
9893 * Because there are a finite number of "in-core" inode structures, they are
9894 * reused regularly.  By transferring all inode-related dependencies to the
9895 * in-memory inode block and indexing them separately (via "inodedep"s), we
9896 * can allow "in-core" inode structures to be reused at any time and avoid
9897 * any increase in contention.
9898 *
9899 * Called just before entering the device driver to initiate a new disk I/O.
9900 * The buffer must be locked, thus, no I/O completion operations can occur
9901 * while we are manipulating its associated dependencies.
9902 */
9903static void
9904softdep_disk_io_initiation(bp)
9905	struct buf *bp;		/* structure describing disk write to occur */
9906{
9907	struct worklist *wk;
9908	struct worklist marker;
9909	struct inodedep *inodedep;
9910	struct freeblks *freeblks;
9911	struct jblkdep *jblkdep;
9912	struct newblk *newblk;
9913	struct ufsmount *ump;
9914
9915	/*
9916	 * We only care about write operations. There should never
9917	 * be dependencies for reads.
9918	 */
9919	if (bp->b_iocmd != BIO_WRITE)
9920		panic("softdep_disk_io_initiation: not write");
9921
9922	if (bp->b_vflags & BV_BKGRDINPROG)
9923		panic("softdep_disk_io_initiation: Writing buffer with "
9924		    "background write in progress: %p", bp);
9925
9926	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
9927		return;
9928	ump = VFSTOUFS(wk->wk_mp);
9929
9930	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9931	PHOLD(curproc);			/* Don't swap out kernel stack */
9932	ACQUIRE_LOCK(ump);
9933	/*
9934	 * Do any necessary pre-I/O processing.
9935	 */
9936	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9937	     wk = markernext(&marker)) {
9938		LIST_INSERT_AFTER(wk, &marker, wk_list);
9939		switch (wk->wk_type) {
9940
9941		case D_PAGEDEP:
9942			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9943			continue;
9944
9945		case D_INODEDEP:
9946			inodedep = WK_INODEDEP(wk);
9947			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9948				initiate_write_inodeblock_ufs1(inodedep, bp);
9949			else
9950				initiate_write_inodeblock_ufs2(inodedep, bp);
9951			continue;
9952
9953		case D_INDIRDEP:
9954			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9955			continue;
9956
9957		case D_BMSAFEMAP:
9958			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9959			continue;
9960
9961		case D_JSEG:
9962			WK_JSEG(wk)->js_buf = NULL;
9963			continue;
9964
9965		case D_FREEBLKS:
9966			freeblks = WK_FREEBLKS(wk);
9967			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9968			/*
9969			 * We have to wait for the freeblks to be journaled
9970			 * before we can write an inodeblock with updated
9971			 * pointers.  Be careful to arrange the marker so
9972			 * we revisit the freeblks if it's not removed by
9973			 * the first jwait().
9974			 */
9975			if (jblkdep != NULL) {
9976				LIST_REMOVE(&marker, wk_list);
9977				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9978				jwait(&jblkdep->jb_list, MNT_WAIT);
9979			}
9980			continue;
9981		case D_ALLOCDIRECT:
9982		case D_ALLOCINDIR:
9983			/*
9984			 * We have to wait for the jnewblk to be journaled
9985			 * before we can write to a block if the contents
9986			 * may be confused with an earlier file's indirect
9987			 * at recovery time.  Handle the marker as described
9988			 * above.
9989			 */
9990			newblk = WK_NEWBLK(wk);
9991			if (newblk->nb_jnewblk != NULL &&
9992			    indirblk_lookup(newblk->nb_list.wk_mp,
9993			    newblk->nb_newblkno)) {
9994				LIST_REMOVE(&marker, wk_list);
9995				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9996				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
9997			}
9998			continue;
9999
10000		case D_SBDEP:
10001			initiate_write_sbdep(WK_SBDEP(wk));
10002			continue;
10003
10004		case D_MKDIR:
10005		case D_FREEWORK:
10006		case D_FREEDEP:
10007		case D_JSEGDEP:
10008			continue;
10009
10010		default:
10011			panic("handle_disk_io_initiation: Unexpected type %s",
10012			    TYPENAME(wk->wk_type));
10013			/* NOTREACHED */
10014		}
10015	}
10016	FREE_LOCK(ump);
10017	PRELE(curproc);			/* Allow swapout of kernel stack */
10018}
10019
10020/*
10021 * Called from within the procedure above to deal with unsatisfied
10022 * allocation dependencies in a directory. The buffer must be locked,
10023 * thus, no I/O completion operations can occur while we are
10024 * manipulating its associated dependencies.
10025 */
10026static void
10027initiate_write_filepage(pagedep, bp)
10028	struct pagedep *pagedep;
10029	struct buf *bp;
10030{
10031	struct jremref *jremref;
10032	struct jmvref *jmvref;
10033	struct dirrem *dirrem;
10034	struct diradd *dap;
10035	struct direct *ep;
10036	int i;
10037
10038	if (pagedep->pd_state & IOSTARTED) {
10039		/*
10040		 * This can only happen if there is a driver that does not
10041		 * understand chaining. Here biodone will reissue the call
10042		 * to strategy for the incomplete buffers.
10043		 */
10044		printf("initiate_write_filepage: already started\n");
10045		return;
10046	}
10047	pagedep->pd_state |= IOSTARTED;
10048	/*
10049	 * Wait for all journal remove dependencies to hit the disk.
10050	 * We can not allow any potentially conflicting directory adds
10051	 * to be visible before removes and rollback is too difficult.
10052	 * The per-filesystem lock may be dropped and re-acquired, however
10053	 * we hold the buf locked so the dependency can not go away.
10054	 */
10055	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10056		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10057			jwait(&jremref->jr_list, MNT_WAIT);
10058	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10059		jwait(&jmvref->jm_list, MNT_WAIT);
10060	for (i = 0; i < DAHASHSZ; i++) {
10061		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10062			ep = (struct direct *)
10063			    ((char *)bp->b_data + dap->da_offset);
10064			if (ep->d_ino != dap->da_newinum)
10065				panic("%s: dir inum %ju != new %ju",
10066				    "initiate_write_filepage",
10067				    (uintmax_t)ep->d_ino,
10068				    (uintmax_t)dap->da_newinum);
10069			if (dap->da_state & DIRCHG)
10070				ep->d_ino = dap->da_previous->dm_oldinum;
10071			else
10072				ep->d_ino = 0;
10073			dap->da_state &= ~ATTACHED;
10074			dap->da_state |= UNDONE;
10075		}
10076	}
10077}
10078
10079/*
10080 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10081 * Note that any bug fixes made to this routine must be done in the
10082 * version found below.
10083 *
10084 * Called from within the procedure above to deal with unsatisfied
10085 * allocation dependencies in an inodeblock. The buffer must be
10086 * locked, thus, no I/O completion operations can occur while we
10087 * are manipulating its associated dependencies.
10088 */
10089static void
10090initiate_write_inodeblock_ufs1(inodedep, bp)
10091	struct inodedep *inodedep;
10092	struct buf *bp;			/* The inode block */
10093{
10094	struct allocdirect *adp, *lastadp;
10095	struct ufs1_dinode *dp;
10096	struct ufs1_dinode *sip;
10097	struct inoref *inoref;
10098	struct ufsmount *ump;
10099	struct fs *fs;
10100	ufs_lbn_t i;
10101#ifdef INVARIANTS
10102	ufs_lbn_t prevlbn = 0;
10103#endif
10104	int deplist;
10105
10106	if (inodedep->id_state & IOSTARTED)
10107		panic("initiate_write_inodeblock_ufs1: already started");
10108	inodedep->id_state |= IOSTARTED;
10109	fs = inodedep->id_fs;
10110	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10111	LOCK_OWNED(ump);
10112	dp = (struct ufs1_dinode *)bp->b_data +
10113	    ino_to_fsbo(fs, inodedep->id_ino);
10114
10115	/*
10116	 * If we're on the unlinked list but have not yet written our
10117	 * next pointer initialize it here.
10118	 */
10119	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10120		struct inodedep *inon;
10121
10122		inon = TAILQ_NEXT(inodedep, id_unlinked);
10123		dp->di_freelink = inon ? inon->id_ino : 0;
10124	}
10125	/*
10126	 * If the bitmap is not yet written, then the allocated
10127	 * inode cannot be written to disk.
10128	 */
10129	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10130		if (inodedep->id_savedino1 != NULL)
10131			panic("initiate_write_inodeblock_ufs1: I/O underway");
10132		FREE_LOCK(ump);
10133		sip = malloc(sizeof(struct ufs1_dinode),
10134		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10135		ACQUIRE_LOCK(ump);
10136		inodedep->id_savedino1 = sip;
10137		*inodedep->id_savedino1 = *dp;
10138		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10139		dp->di_gen = inodedep->id_savedino1->di_gen;
10140		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10141		return;
10142	}
10143	/*
10144	 * If no dependencies, then there is nothing to roll back.
10145	 */
10146	inodedep->id_savedsize = dp->di_size;
10147	inodedep->id_savedextsize = 0;
10148	inodedep->id_savednlink = dp->di_nlink;
10149	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10150	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10151		return;
10152	/*
10153	 * Revert the link count to that of the first unwritten journal entry.
10154	 */
10155	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10156	if (inoref)
10157		dp->di_nlink = inoref->if_nlink;
10158	/*
10159	 * Set the dependencies to busy.
10160	 */
10161	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10162	     adp = TAILQ_NEXT(adp, ad_next)) {
10163#ifdef INVARIANTS
10164		if (deplist != 0 && prevlbn >= adp->ad_offset)
10165			panic("softdep_write_inodeblock: lbn order");
10166		prevlbn = adp->ad_offset;
10167		if (adp->ad_offset < NDADDR &&
10168		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10169			panic("%s: direct pointer #%jd mismatch %d != %jd",
10170			    "softdep_write_inodeblock",
10171			    (intmax_t)adp->ad_offset,
10172			    dp->di_db[adp->ad_offset],
10173			    (intmax_t)adp->ad_newblkno);
10174		if (adp->ad_offset >= NDADDR &&
10175		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10176			panic("%s: indirect pointer #%jd mismatch %d != %jd",
10177			    "softdep_write_inodeblock",
10178			    (intmax_t)adp->ad_offset - NDADDR,
10179			    dp->di_ib[adp->ad_offset - NDADDR],
10180			    (intmax_t)adp->ad_newblkno);
10181		deplist |= 1 << adp->ad_offset;
10182		if ((adp->ad_state & ATTACHED) == 0)
10183			panic("softdep_write_inodeblock: Unknown state 0x%x",
10184			    adp->ad_state);
10185#endif /* INVARIANTS */
10186		adp->ad_state &= ~ATTACHED;
10187		adp->ad_state |= UNDONE;
10188	}
10189	/*
10190	 * The on-disk inode cannot claim to be any larger than the last
10191	 * fragment that has been written. Otherwise, the on-disk inode
10192	 * might have fragments that were not the last block in the file
10193	 * which would corrupt the filesystem.
10194	 */
10195	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10196	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10197		if (adp->ad_offset >= NDADDR)
10198			break;
10199		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10200		/* keep going until hitting a rollback to a frag */
10201		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10202			continue;
10203		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10204		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10205#ifdef INVARIANTS
10206			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10207				panic("softdep_write_inodeblock: lost dep1");
10208#endif /* INVARIANTS */
10209			dp->di_db[i] = 0;
10210		}
10211		for (i = 0; i < NIADDR; i++) {
10212#ifdef INVARIANTS
10213			if (dp->di_ib[i] != 0 &&
10214			    (deplist & ((1 << NDADDR) << i)) == 0)
10215				panic("softdep_write_inodeblock: lost dep2");
10216#endif /* INVARIANTS */
10217			dp->di_ib[i] = 0;
10218		}
10219		return;
10220	}
10221	/*
10222	 * If we have zero'ed out the last allocated block of the file,
10223	 * roll back the size to the last currently allocated block.
10224	 * We know that this last allocated block is a full-sized as
10225	 * we already checked for fragments in the loop above.
10226	 */
10227	if (lastadp != NULL &&
10228	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10229		for (i = lastadp->ad_offset; i >= 0; i--)
10230			if (dp->di_db[i] != 0)
10231				break;
10232		dp->di_size = (i + 1) * fs->fs_bsize;
10233	}
10234	/*
10235	 * The only dependencies are for indirect blocks.
10236	 *
10237	 * The file size for indirect block additions is not guaranteed.
10238	 * Such a guarantee would be non-trivial to achieve. The conventional
10239	 * synchronous write implementation also does not make this guarantee.
10240	 * Fsck should catch and fix discrepancies. Arguably, the file size
10241	 * can be over-estimated without destroying integrity when the file
10242	 * moves into the indirect blocks (i.e., is large). If we want to
10243	 * postpone fsck, we are stuck with this argument.
10244	 */
10245	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10246		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10247}
10248
10249/*
10250 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10251 * Note that any bug fixes made to this routine must be done in the
10252 * version found above.
10253 *
10254 * Called from within the procedure above to deal with unsatisfied
10255 * allocation dependencies in an inodeblock. The buffer must be
10256 * locked, thus, no I/O completion operations can occur while we
10257 * are manipulating its associated dependencies.
10258 */
10259static void
10260initiate_write_inodeblock_ufs2(inodedep, bp)
10261	struct inodedep *inodedep;
10262	struct buf *bp;			/* The inode block */
10263{
10264	struct allocdirect *adp, *lastadp;
10265	struct ufs2_dinode *dp;
10266	struct ufs2_dinode *sip;
10267	struct inoref *inoref;
10268	struct ufsmount *ump;
10269	struct fs *fs;
10270	ufs_lbn_t i;
10271#ifdef INVARIANTS
10272	ufs_lbn_t prevlbn = 0;
10273#endif
10274	int deplist;
10275
10276	if (inodedep->id_state & IOSTARTED)
10277		panic("initiate_write_inodeblock_ufs2: already started");
10278	inodedep->id_state |= IOSTARTED;
10279	fs = inodedep->id_fs;
10280	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10281	LOCK_OWNED(ump);
10282	dp = (struct ufs2_dinode *)bp->b_data +
10283	    ino_to_fsbo(fs, inodedep->id_ino);
10284
10285	/*
10286	 * If we're on the unlinked list but have not yet written our
10287	 * next pointer initialize it here.
10288	 */
10289	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10290		struct inodedep *inon;
10291
10292		inon = TAILQ_NEXT(inodedep, id_unlinked);
10293		dp->di_freelink = inon ? inon->id_ino : 0;
10294	}
10295	/*
10296	 * If the bitmap is not yet written, then the allocated
10297	 * inode cannot be written to disk.
10298	 */
10299	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10300		if (inodedep->id_savedino2 != NULL)
10301			panic("initiate_write_inodeblock_ufs2: I/O underway");
10302		FREE_LOCK(ump);
10303		sip = malloc(sizeof(struct ufs2_dinode),
10304		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10305		ACQUIRE_LOCK(ump);
10306		inodedep->id_savedino2 = sip;
10307		*inodedep->id_savedino2 = *dp;
10308		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10309		dp->di_gen = inodedep->id_savedino2->di_gen;
10310		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10311		return;
10312	}
10313	/*
10314	 * If no dependencies, then there is nothing to roll back.
10315	 */
10316	inodedep->id_savedsize = dp->di_size;
10317	inodedep->id_savedextsize = dp->di_extsize;
10318	inodedep->id_savednlink = dp->di_nlink;
10319	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10320	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10321	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10322		return;
10323	/*
10324	 * Revert the link count to that of the first unwritten journal entry.
10325	 */
10326	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10327	if (inoref)
10328		dp->di_nlink = inoref->if_nlink;
10329
10330	/*
10331	 * Set the ext data dependencies to busy.
10332	 */
10333	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10334	     adp = TAILQ_NEXT(adp, ad_next)) {
10335#ifdef INVARIANTS
10336		if (deplist != 0 && prevlbn >= adp->ad_offset)
10337			panic("softdep_write_inodeblock: lbn order");
10338		prevlbn = adp->ad_offset;
10339		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10340			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10341			    "softdep_write_inodeblock",
10342			    (intmax_t)adp->ad_offset,
10343			    (intmax_t)dp->di_extb[adp->ad_offset],
10344			    (intmax_t)adp->ad_newblkno);
10345		deplist |= 1 << adp->ad_offset;
10346		if ((adp->ad_state & ATTACHED) == 0)
10347			panic("softdep_write_inodeblock: Unknown state 0x%x",
10348			    adp->ad_state);
10349#endif /* INVARIANTS */
10350		adp->ad_state &= ~ATTACHED;
10351		adp->ad_state |= UNDONE;
10352	}
10353	/*
10354	 * The on-disk inode cannot claim to be any larger than the last
10355	 * fragment that has been written. Otherwise, the on-disk inode
10356	 * might have fragments that were not the last block in the ext
10357	 * data which would corrupt the filesystem.
10358	 */
10359	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10360	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10361		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10362		/* keep going until hitting a rollback to a frag */
10363		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10364			continue;
10365		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10366		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10367#ifdef INVARIANTS
10368			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10369				panic("softdep_write_inodeblock: lost dep1");
10370#endif /* INVARIANTS */
10371			dp->di_extb[i] = 0;
10372		}
10373		lastadp = NULL;
10374		break;
10375	}
10376	/*
10377	 * If we have zero'ed out the last allocated block of the ext
10378	 * data, roll back the size to the last currently allocated block.
10379	 * We know that this last allocated block is a full-sized as
10380	 * we already checked for fragments in the loop above.
10381	 */
10382	if (lastadp != NULL &&
10383	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10384		for (i = lastadp->ad_offset; i >= 0; i--)
10385			if (dp->di_extb[i] != 0)
10386				break;
10387		dp->di_extsize = (i + 1) * fs->fs_bsize;
10388	}
10389	/*
10390	 * Set the file data dependencies to busy.
10391	 */
10392	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10393	     adp = TAILQ_NEXT(adp, ad_next)) {
10394#ifdef INVARIANTS
10395		if (deplist != 0 && prevlbn >= adp->ad_offset)
10396			panic("softdep_write_inodeblock: lbn order");
10397		if ((adp->ad_state & ATTACHED) == 0)
10398			panic("inodedep %p and adp %p not attached", inodedep, adp);
10399		prevlbn = adp->ad_offset;
10400		if (adp->ad_offset < NDADDR &&
10401		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10402			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10403			    "softdep_write_inodeblock",
10404			    (intmax_t)adp->ad_offset,
10405			    (intmax_t)dp->di_db[adp->ad_offset],
10406			    (intmax_t)adp->ad_newblkno);
10407		if (adp->ad_offset >= NDADDR &&
10408		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10409			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10410			    "softdep_write_inodeblock:",
10411			    (intmax_t)adp->ad_offset - NDADDR,
10412			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10413			    (intmax_t)adp->ad_newblkno);
10414		deplist |= 1 << adp->ad_offset;
10415		if ((adp->ad_state & ATTACHED) == 0)
10416			panic("softdep_write_inodeblock: Unknown state 0x%x",
10417			    adp->ad_state);
10418#endif /* INVARIANTS */
10419		adp->ad_state &= ~ATTACHED;
10420		adp->ad_state |= UNDONE;
10421	}
10422	/*
10423	 * The on-disk inode cannot claim to be any larger than the last
10424	 * fragment that has been written. Otherwise, the on-disk inode
10425	 * might have fragments that were not the last block in the file
10426	 * which would corrupt the filesystem.
10427	 */
10428	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10429	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10430		if (adp->ad_offset >= NDADDR)
10431			break;
10432		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10433		/* keep going until hitting a rollback to a frag */
10434		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10435			continue;
10436		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10437		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10438#ifdef INVARIANTS
10439			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10440				panic("softdep_write_inodeblock: lost dep2");
10441#endif /* INVARIANTS */
10442			dp->di_db[i] = 0;
10443		}
10444		for (i = 0; i < NIADDR; i++) {
10445#ifdef INVARIANTS
10446			if (dp->di_ib[i] != 0 &&
10447			    (deplist & ((1 << NDADDR) << i)) == 0)
10448				panic("softdep_write_inodeblock: lost dep3");
10449#endif /* INVARIANTS */
10450			dp->di_ib[i] = 0;
10451		}
10452		return;
10453	}
10454	/*
10455	 * If we have zero'ed out the last allocated block of the file,
10456	 * roll back the size to the last currently allocated block.
10457	 * We know that this last allocated block is a full-sized as
10458	 * we already checked for fragments in the loop above.
10459	 */
10460	if (lastadp != NULL &&
10461	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10462		for (i = lastadp->ad_offset; i >= 0; i--)
10463			if (dp->di_db[i] != 0)
10464				break;
10465		dp->di_size = (i + 1) * fs->fs_bsize;
10466	}
10467	/*
10468	 * The only dependencies are for indirect blocks.
10469	 *
10470	 * The file size for indirect block additions is not guaranteed.
10471	 * Such a guarantee would be non-trivial to achieve. The conventional
10472	 * synchronous write implementation also does not make this guarantee.
10473	 * Fsck should catch and fix discrepancies. Arguably, the file size
10474	 * can be over-estimated without destroying integrity when the file
10475	 * moves into the indirect blocks (i.e., is large). If we want to
10476	 * postpone fsck, we are stuck with this argument.
10477	 */
10478	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10479		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10480}
10481
10482/*
10483 * Cancel an indirdep as a result of truncation.  Release all of the
10484 * children allocindirs and place their journal work on the appropriate
10485 * list.
10486 */
10487static void
10488cancel_indirdep(indirdep, bp, freeblks)
10489	struct indirdep *indirdep;
10490	struct buf *bp;
10491	struct freeblks *freeblks;
10492{
10493	struct allocindir *aip;
10494
10495	/*
10496	 * None of the indirect pointers will ever be visible,
10497	 * so they can simply be tossed. GOINGAWAY ensures
10498	 * that allocated pointers will be saved in the buffer
10499	 * cache until they are freed. Note that they will
10500	 * only be able to be found by their physical address
10501	 * since the inode mapping the logical address will
10502	 * be gone. The save buffer used for the safe copy
10503	 * was allocated in setup_allocindir_phase2 using
10504	 * the physical address so it could be used for this
10505	 * purpose. Hence we swap the safe copy with the real
10506	 * copy, allowing the safe copy to be freed and holding
10507	 * on to the real copy for later use in indir_trunc.
10508	 */
10509	if (indirdep->ir_state & GOINGAWAY)
10510		panic("cancel_indirdep: already gone");
10511	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10512		indirdep->ir_state |= DEPCOMPLETE;
10513		LIST_REMOVE(indirdep, ir_next);
10514	}
10515	indirdep->ir_state |= GOINGAWAY;
10516	/*
10517	 * Pass in bp for blocks still have journal writes
10518	 * pending so we can cancel them on their own.
10519	 */
10520	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10521		cancel_allocindir(aip, bp, freeblks, 0);
10522	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10523		cancel_allocindir(aip, NULL, freeblks, 0);
10524	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10525		cancel_allocindir(aip, NULL, freeblks, 0);
10526	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10527		cancel_allocindir(aip, NULL, freeblks, 0);
10528	/*
10529	 * If there are pending partial truncations we need to keep the
10530	 * old block copy around until they complete.  This is because
10531	 * the current b_data is not a perfect superset of the available
10532	 * blocks.
10533	 */
10534	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10535		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10536	else
10537		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10538	WORKLIST_REMOVE(&indirdep->ir_list);
10539	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10540	indirdep->ir_bp = NULL;
10541	indirdep->ir_freeblks = freeblks;
10542}
10543
10544/*
10545 * Free an indirdep once it no longer has new pointers to track.
10546 */
10547static void
10548free_indirdep(indirdep)
10549	struct indirdep *indirdep;
10550{
10551
10552	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10553	    ("free_indirdep: Indir trunc list not empty."));
10554	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10555	    ("free_indirdep: Complete head not empty."));
10556	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10557	    ("free_indirdep: write head not empty."));
10558	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10559	    ("free_indirdep: done head not empty."));
10560	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10561	    ("free_indirdep: deplist head not empty."));
10562	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10563	    ("free_indirdep: %p still on newblk list.", indirdep));
10564	KASSERT(indirdep->ir_saveddata == NULL,
10565	    ("free_indirdep: %p still has saved data.", indirdep));
10566	if (indirdep->ir_state & ONWORKLIST)
10567		WORKLIST_REMOVE(&indirdep->ir_list);
10568	WORKITEM_FREE(indirdep, D_INDIRDEP);
10569}
10570
10571/*
10572 * Called before a write to an indirdep.  This routine is responsible for
10573 * rolling back pointers to a safe state which includes only those
10574 * allocindirs which have been completed.
10575 */
10576static void
10577initiate_write_indirdep(indirdep, bp)
10578	struct indirdep *indirdep;
10579	struct buf *bp;
10580{
10581	struct ufsmount *ump;
10582
10583	indirdep->ir_state |= IOSTARTED;
10584	if (indirdep->ir_state & GOINGAWAY)
10585		panic("disk_io_initiation: indirdep gone");
10586	/*
10587	 * If there are no remaining dependencies, this will be writing
10588	 * the real pointers.
10589	 */
10590	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10591	    TAILQ_EMPTY(&indirdep->ir_trunc))
10592		return;
10593	/*
10594	 * Replace up-to-date version with safe version.
10595	 */
10596	if (indirdep->ir_saveddata == NULL) {
10597		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10598		LOCK_OWNED(ump);
10599		FREE_LOCK(ump);
10600		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10601		    M_SOFTDEP_FLAGS);
10602		ACQUIRE_LOCK(ump);
10603	}
10604	indirdep->ir_state &= ~ATTACHED;
10605	indirdep->ir_state |= UNDONE;
10606	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10607	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10608	    bp->b_bcount);
10609}
10610
10611/*
10612 * Called when an inode has been cleared in a cg bitmap.  This finally
10613 * eliminates any canceled jaddrefs
10614 */
10615void
10616softdep_setup_inofree(mp, bp, ino, wkhd)
10617	struct mount *mp;
10618	struct buf *bp;
10619	ino_t ino;
10620	struct workhead *wkhd;
10621{
10622	struct worklist *wk, *wkn;
10623	struct inodedep *inodedep;
10624	struct ufsmount *ump;
10625	uint8_t *inosused;
10626	struct cg *cgp;
10627	struct fs *fs;
10628
10629	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10630	    ("softdep_setup_inofree called on non-softdep filesystem"));
10631	ump = VFSTOUFS(mp);
10632	ACQUIRE_LOCK(ump);
10633	fs = ump->um_fs;
10634	cgp = (struct cg *)bp->b_data;
10635	inosused = cg_inosused(cgp);
10636	if (isset(inosused, ino % fs->fs_ipg))
10637		panic("softdep_setup_inofree: inode %ju not freed.",
10638		    (uintmax_t)ino);
10639	if (inodedep_lookup(mp, ino, 0, &inodedep))
10640		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10641		    (uintmax_t)ino, inodedep);
10642	if (wkhd) {
10643		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10644			if (wk->wk_type != D_JADDREF)
10645				continue;
10646			WORKLIST_REMOVE(wk);
10647			/*
10648			 * We can free immediately even if the jaddref
10649			 * isn't attached in a background write as now
10650			 * the bitmaps are reconciled.
10651			 */
10652			wk->wk_state |= COMPLETE | ATTACHED;
10653			free_jaddref(WK_JADDREF(wk));
10654		}
10655		jwork_move(&bp->b_dep, wkhd);
10656	}
10657	FREE_LOCK(ump);
10658}
10659
10660
10661/*
10662 * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10663 * map.  Any dependencies waiting for the write to clear are added to the
10664 * buf's list and any jnewblks that are being canceled are discarded
10665 * immediately.
10666 */
10667void
10668softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10669	struct mount *mp;
10670	struct buf *bp;
10671	ufs2_daddr_t blkno;
10672	int frags;
10673	struct workhead *wkhd;
10674{
10675	struct bmsafemap *bmsafemap;
10676	struct jnewblk *jnewblk;
10677	struct ufsmount *ump;
10678	struct worklist *wk;
10679	struct fs *fs;
10680#ifdef SUJ_DEBUG
10681	uint8_t *blksfree;
10682	struct cg *cgp;
10683	ufs2_daddr_t jstart;
10684	ufs2_daddr_t jend;
10685	ufs2_daddr_t end;
10686	long bno;
10687	int i;
10688#endif
10689
10690	CTR3(KTR_SUJ,
10691	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10692	    blkno, frags, wkhd);
10693
10694	ump = VFSTOUFS(mp);
10695	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10696	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10697	ACQUIRE_LOCK(ump);
10698	/* Lookup the bmsafemap so we track when it is dirty. */
10699	fs = ump->um_fs;
10700	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10701	/*
10702	 * Detach any jnewblks which have been canceled.  They must linger
10703	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10704	 * an unjournaled allocation from hitting the disk.
10705	 */
10706	if (wkhd) {
10707		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10708			CTR2(KTR_SUJ,
10709			    "softdep_setup_blkfree: blkno %jd wk type %d",
10710			    blkno, wk->wk_type);
10711			WORKLIST_REMOVE(wk);
10712			if (wk->wk_type != D_JNEWBLK) {
10713				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10714				continue;
10715			}
10716			jnewblk = WK_JNEWBLK(wk);
10717			KASSERT(jnewblk->jn_state & GOINGAWAY,
10718			    ("softdep_setup_blkfree: jnewblk not canceled."));
10719#ifdef SUJ_DEBUG
10720			/*
10721			 * Assert that this block is free in the bitmap
10722			 * before we discard the jnewblk.
10723			 */
10724			cgp = (struct cg *)bp->b_data;
10725			blksfree = cg_blksfree(cgp);
10726			bno = dtogd(fs, jnewblk->jn_blkno);
10727			for (i = jnewblk->jn_oldfrags;
10728			    i < jnewblk->jn_frags; i++) {
10729				if (isset(blksfree, bno + i))
10730					continue;
10731				panic("softdep_setup_blkfree: not free");
10732			}
10733#endif
10734			/*
10735			 * Even if it's not attached we can free immediately
10736			 * as the new bitmap is correct.
10737			 */
10738			wk->wk_state |= COMPLETE | ATTACHED;
10739			free_jnewblk(jnewblk);
10740		}
10741	}
10742
10743#ifdef SUJ_DEBUG
10744	/*
10745	 * Assert that we are not freeing a block which has an outstanding
10746	 * allocation dependency.
10747	 */
10748	fs = VFSTOUFS(mp)->um_fs;
10749	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10750	end = blkno + frags;
10751	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10752		/*
10753		 * Don't match against blocks that will be freed when the
10754		 * background write is done.
10755		 */
10756		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10757		    (COMPLETE | DEPCOMPLETE))
10758			continue;
10759		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10760		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10761		if ((blkno >= jstart && blkno < jend) ||
10762		    (end > jstart && end <= jend)) {
10763			printf("state 0x%X %jd - %d %d dep %p\n",
10764			    jnewblk->jn_state, jnewblk->jn_blkno,
10765			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10766			    jnewblk->jn_dep);
10767			panic("softdep_setup_blkfree: "
10768			    "%jd-%jd(%d) overlaps with %jd-%jd",
10769			    blkno, end, frags, jstart, jend);
10770		}
10771	}
10772#endif
10773	FREE_LOCK(ump);
10774}
10775
10776/*
10777 * Revert a block allocation when the journal record that describes it
10778 * is not yet written.
10779 */
10780static int
10781jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10782	struct jnewblk *jnewblk;
10783	struct fs *fs;
10784	struct cg *cgp;
10785	uint8_t *blksfree;
10786{
10787	ufs1_daddr_t fragno;
10788	long cgbno, bbase;
10789	int frags, blk;
10790	int i;
10791
10792	frags = 0;
10793	cgbno = dtogd(fs, jnewblk->jn_blkno);
10794	/*
10795	 * We have to test which frags need to be rolled back.  We may
10796	 * be operating on a stale copy when doing background writes.
10797	 */
10798	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10799		if (isclr(blksfree, cgbno + i))
10800			frags++;
10801	if (frags == 0)
10802		return (0);
10803	/*
10804	 * This is mostly ffs_blkfree() sans some validation and
10805	 * superblock updates.
10806	 */
10807	if (frags == fs->fs_frag) {
10808		fragno = fragstoblks(fs, cgbno);
10809		ffs_setblock(fs, blksfree, fragno);
10810		ffs_clusteracct(fs, cgp, fragno, 1);
10811		cgp->cg_cs.cs_nbfree++;
10812	} else {
10813		cgbno += jnewblk->jn_oldfrags;
10814		bbase = cgbno - fragnum(fs, cgbno);
10815		/* Decrement the old frags.  */
10816		blk = blkmap(fs, blksfree, bbase);
10817		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10818		/* Deallocate the fragment */
10819		for (i = 0; i < frags; i++)
10820			setbit(blksfree, cgbno + i);
10821		cgp->cg_cs.cs_nffree += frags;
10822		/* Add back in counts associated with the new frags */
10823		blk = blkmap(fs, blksfree, bbase);
10824		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10825		/* If a complete block has been reassembled, account for it. */
10826		fragno = fragstoblks(fs, bbase);
10827		if (ffs_isblock(fs, blksfree, fragno)) {
10828			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10829			ffs_clusteracct(fs, cgp, fragno, 1);
10830			cgp->cg_cs.cs_nbfree++;
10831		}
10832	}
10833	stat_jnewblk++;
10834	jnewblk->jn_state &= ~ATTACHED;
10835	jnewblk->jn_state |= UNDONE;
10836
10837	return (frags);
10838}
10839
10840static void
10841initiate_write_bmsafemap(bmsafemap, bp)
10842	struct bmsafemap *bmsafemap;
10843	struct buf *bp;			/* The cg block. */
10844{
10845	struct jaddref *jaddref;
10846	struct jnewblk *jnewblk;
10847	uint8_t *inosused;
10848	uint8_t *blksfree;
10849	struct cg *cgp;
10850	struct fs *fs;
10851	ino_t ino;
10852
10853	if (bmsafemap->sm_state & IOSTARTED)
10854		return;
10855	bmsafemap->sm_state |= IOSTARTED;
10856	/*
10857	 * Clear any inode allocations which are pending journal writes.
10858	 */
10859	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10860		cgp = (struct cg *)bp->b_data;
10861		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10862		inosused = cg_inosused(cgp);
10863		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10864			ino = jaddref->ja_ino % fs->fs_ipg;
10865			if (isset(inosused, ino)) {
10866				if ((jaddref->ja_mode & IFMT) == IFDIR)
10867					cgp->cg_cs.cs_ndir--;
10868				cgp->cg_cs.cs_nifree++;
10869				clrbit(inosused, ino);
10870				jaddref->ja_state &= ~ATTACHED;
10871				jaddref->ja_state |= UNDONE;
10872				stat_jaddref++;
10873			} else
10874				panic("initiate_write_bmsafemap: inode %ju "
10875				    "marked free", (uintmax_t)jaddref->ja_ino);
10876		}
10877	}
10878	/*
10879	 * Clear any block allocations which are pending journal writes.
10880	 */
10881	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10882		cgp = (struct cg *)bp->b_data;
10883		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10884		blksfree = cg_blksfree(cgp);
10885		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10886			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10887				continue;
10888			panic("initiate_write_bmsafemap: block %jd "
10889			    "marked free", jnewblk->jn_blkno);
10890		}
10891	}
10892	/*
10893	 * Move allocation lists to the written lists so they can be
10894	 * cleared once the block write is complete.
10895	 */
10896	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10897	    inodedep, id_deps);
10898	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10899	    newblk, nb_deps);
10900	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10901	    wk_list);
10902}
10903
10904/*
10905 * This routine is called during the completion interrupt
10906 * service routine for a disk write (from the procedure called
10907 * by the device driver to inform the filesystem caches of
10908 * a request completion).  It should be called early in this
10909 * procedure, before the block is made available to other
10910 * processes or other routines are called.
10911 *
10912 */
10913static void
10914softdep_disk_write_complete(bp)
10915	struct buf *bp;		/* describes the completed disk write */
10916{
10917	struct worklist *wk;
10918	struct worklist *owk;
10919	struct ufsmount *ump;
10920	struct workhead reattach;
10921	struct freeblks *freeblks;
10922	struct buf *sbp;
10923
10924	/*
10925	 * If an error occurred while doing the write, then the data
10926	 * has not hit the disk and the dependencies cannot be unrolled.
10927	 */
10928	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10929		return;
10930	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
10931		return;
10932	ump = VFSTOUFS(wk->wk_mp);
10933	LIST_INIT(&reattach);
10934	/*
10935	 * This lock must not be released anywhere in this code segment.
10936	 */
10937	sbp = NULL;
10938	owk = NULL;
10939	ACQUIRE_LOCK(ump);
10940	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10941		WORKLIST_REMOVE(wk);
10942		atomic_add_long(&dep_write[wk->wk_type], 1);
10943		if (wk == owk)
10944			panic("duplicate worklist: %p\n", wk);
10945		owk = wk;
10946		switch (wk->wk_type) {
10947
10948		case D_PAGEDEP:
10949			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10950				WORKLIST_INSERT(&reattach, wk);
10951			continue;
10952
10953		case D_INODEDEP:
10954			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10955				WORKLIST_INSERT(&reattach, wk);
10956			continue;
10957
10958		case D_BMSAFEMAP:
10959			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10960				WORKLIST_INSERT(&reattach, wk);
10961			continue;
10962
10963		case D_MKDIR:
10964			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10965			continue;
10966
10967		case D_ALLOCDIRECT:
10968			wk->wk_state |= COMPLETE;
10969			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10970			continue;
10971
10972		case D_ALLOCINDIR:
10973			wk->wk_state |= COMPLETE;
10974			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10975			continue;
10976
10977		case D_INDIRDEP:
10978			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10979				WORKLIST_INSERT(&reattach, wk);
10980			continue;
10981
10982		case D_FREEBLKS:
10983			wk->wk_state |= COMPLETE;
10984			freeblks = WK_FREEBLKS(wk);
10985			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10986			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10987				add_to_worklist(wk, WK_NODELAY);
10988			continue;
10989
10990		case D_FREEWORK:
10991			handle_written_freework(WK_FREEWORK(wk));
10992			break;
10993
10994		case D_JSEGDEP:
10995			free_jsegdep(WK_JSEGDEP(wk));
10996			continue;
10997
10998		case D_JSEG:
10999			handle_written_jseg(WK_JSEG(wk), bp);
11000			continue;
11001
11002		case D_SBDEP:
11003			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11004				WORKLIST_INSERT(&reattach, wk);
11005			continue;
11006
11007		case D_FREEDEP:
11008			free_freedep(WK_FREEDEP(wk));
11009			continue;
11010
11011		default:
11012			panic("handle_disk_write_complete: Unknown type %s",
11013			    TYPENAME(wk->wk_type));
11014			/* NOTREACHED */
11015		}
11016	}
11017	/*
11018	 * Reattach any requests that must be redone.
11019	 */
11020	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11021		WORKLIST_REMOVE(wk);
11022		WORKLIST_INSERT(&bp->b_dep, wk);
11023	}
11024	FREE_LOCK(ump);
11025	if (sbp)
11026		brelse(sbp);
11027}
11028
11029/*
11030 * Called from within softdep_disk_write_complete above. Note that
11031 * this routine is always called from interrupt level with further
11032 * splbio interrupts blocked.
11033 */
11034static void
11035handle_allocdirect_partdone(adp, wkhd)
11036	struct allocdirect *adp;	/* the completed allocdirect */
11037	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11038{
11039	struct allocdirectlst *listhead;
11040	struct allocdirect *listadp;
11041	struct inodedep *inodedep;
11042	long bsize;
11043
11044	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11045		return;
11046	/*
11047	 * The on-disk inode cannot claim to be any larger than the last
11048	 * fragment that has been written. Otherwise, the on-disk inode
11049	 * might have fragments that were not the last block in the file
11050	 * which would corrupt the filesystem. Thus, we cannot free any
11051	 * allocdirects after one whose ad_oldblkno claims a fragment as
11052	 * these blocks must be rolled back to zero before writing the inode.
11053	 * We check the currently active set of allocdirects in id_inoupdt
11054	 * or id_extupdt as appropriate.
11055	 */
11056	inodedep = adp->ad_inodedep;
11057	bsize = inodedep->id_fs->fs_bsize;
11058	if (adp->ad_state & EXTDATA)
11059		listhead = &inodedep->id_extupdt;
11060	else
11061		listhead = &inodedep->id_inoupdt;
11062	TAILQ_FOREACH(listadp, listhead, ad_next) {
11063		/* found our block */
11064		if (listadp == adp)
11065			break;
11066		/* continue if ad_oldlbn is not a fragment */
11067		if (listadp->ad_oldsize == 0 ||
11068		    listadp->ad_oldsize == bsize)
11069			continue;
11070		/* hit a fragment */
11071		return;
11072	}
11073	/*
11074	 * If we have reached the end of the current list without
11075	 * finding the just finished dependency, then it must be
11076	 * on the future dependency list. Future dependencies cannot
11077	 * be freed until they are moved to the current list.
11078	 */
11079	if (listadp == NULL) {
11080#ifdef DEBUG
11081		if (adp->ad_state & EXTDATA)
11082			listhead = &inodedep->id_newextupdt;
11083		else
11084			listhead = &inodedep->id_newinoupdt;
11085		TAILQ_FOREACH(listadp, listhead, ad_next)
11086			/* found our block */
11087			if (listadp == adp)
11088				break;
11089		if (listadp == NULL)
11090			panic("handle_allocdirect_partdone: lost dep");
11091#endif /* DEBUG */
11092		return;
11093	}
11094	/*
11095	 * If we have found the just finished dependency, then queue
11096	 * it along with anything that follows it that is complete.
11097	 * Since the pointer has not yet been written in the inode
11098	 * as the dependency prevents it, place the allocdirect on the
11099	 * bufwait list where it will be freed once the pointer is
11100	 * valid.
11101	 */
11102	if (wkhd == NULL)
11103		wkhd = &inodedep->id_bufwait;
11104	for (; adp; adp = listadp) {
11105		listadp = TAILQ_NEXT(adp, ad_next);
11106		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11107			return;
11108		TAILQ_REMOVE(listhead, adp, ad_next);
11109		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11110	}
11111}
11112
11113/*
11114 * Called from within softdep_disk_write_complete above.  This routine
11115 * completes successfully written allocindirs.
11116 */
11117static void
11118handle_allocindir_partdone(aip)
11119	struct allocindir *aip;		/* the completed allocindir */
11120{
11121	struct indirdep *indirdep;
11122
11123	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11124		return;
11125	indirdep = aip->ai_indirdep;
11126	LIST_REMOVE(aip, ai_next);
11127	/*
11128	 * Don't set a pointer while the buffer is undergoing IO or while
11129	 * we have active truncations.
11130	 */
11131	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11132		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11133		return;
11134	}
11135	if (indirdep->ir_state & UFS1FMT)
11136		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11137		    aip->ai_newblkno;
11138	else
11139		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11140		    aip->ai_newblkno;
11141	/*
11142	 * Await the pointer write before freeing the allocindir.
11143	 */
11144	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11145}
11146
11147/*
11148 * Release segments held on a jwork list.
11149 */
11150static void
11151handle_jwork(wkhd)
11152	struct workhead *wkhd;
11153{
11154	struct worklist *wk;
11155
11156	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11157		WORKLIST_REMOVE(wk);
11158		switch (wk->wk_type) {
11159		case D_JSEGDEP:
11160			free_jsegdep(WK_JSEGDEP(wk));
11161			continue;
11162		case D_FREEDEP:
11163			free_freedep(WK_FREEDEP(wk));
11164			continue;
11165		case D_FREEFRAG:
11166			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11167			WORKITEM_FREE(wk, D_FREEFRAG);
11168			continue;
11169		case D_FREEWORK:
11170			handle_written_freework(WK_FREEWORK(wk));
11171			continue;
11172		default:
11173			panic("handle_jwork: Unknown type %s\n",
11174			    TYPENAME(wk->wk_type));
11175		}
11176	}
11177}
11178
11179/*
11180 * Handle the bufwait list on an inode when it is safe to release items
11181 * held there.  This normally happens after an inode block is written but
11182 * may be delayed and handled later if there are pending journal items that
11183 * are not yet safe to be released.
11184 */
11185static struct freefile *
11186handle_bufwait(inodedep, refhd)
11187	struct inodedep *inodedep;
11188	struct workhead *refhd;
11189{
11190	struct jaddref *jaddref;
11191	struct freefile *freefile;
11192	struct worklist *wk;
11193
11194	freefile = NULL;
11195	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11196		WORKLIST_REMOVE(wk);
11197		switch (wk->wk_type) {
11198		case D_FREEFILE:
11199			/*
11200			 * We defer adding freefile to the worklist
11201			 * until all other additions have been made to
11202			 * ensure that it will be done after all the
11203			 * old blocks have been freed.
11204			 */
11205			if (freefile != NULL)
11206				panic("handle_bufwait: freefile");
11207			freefile = WK_FREEFILE(wk);
11208			continue;
11209
11210		case D_MKDIR:
11211			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11212			continue;
11213
11214		case D_DIRADD:
11215			diradd_inode_written(WK_DIRADD(wk), inodedep);
11216			continue;
11217
11218		case D_FREEFRAG:
11219			wk->wk_state |= COMPLETE;
11220			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11221				add_to_worklist(wk, 0);
11222			continue;
11223
11224		case D_DIRREM:
11225			wk->wk_state |= COMPLETE;
11226			add_to_worklist(wk, 0);
11227			continue;
11228
11229		case D_ALLOCDIRECT:
11230		case D_ALLOCINDIR:
11231			free_newblk(WK_NEWBLK(wk));
11232			continue;
11233
11234		case D_JNEWBLK:
11235			wk->wk_state |= COMPLETE;
11236			free_jnewblk(WK_JNEWBLK(wk));
11237			continue;
11238
11239		/*
11240		 * Save freed journal segments and add references on
11241		 * the supplied list which will delay their release
11242		 * until the cg bitmap is cleared on disk.
11243		 */
11244		case D_JSEGDEP:
11245			if (refhd == NULL)
11246				free_jsegdep(WK_JSEGDEP(wk));
11247			else
11248				WORKLIST_INSERT(refhd, wk);
11249			continue;
11250
11251		case D_JADDREF:
11252			jaddref = WK_JADDREF(wk);
11253			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11254			    if_deps);
11255			/*
11256			 * Transfer any jaddrefs to the list to be freed with
11257			 * the bitmap if we're handling a removed file.
11258			 */
11259			if (refhd == NULL) {
11260				wk->wk_state |= COMPLETE;
11261				free_jaddref(jaddref);
11262			} else
11263				WORKLIST_INSERT(refhd, wk);
11264			continue;
11265
11266		default:
11267			panic("handle_bufwait: Unknown type %p(%s)",
11268			    wk, TYPENAME(wk->wk_type));
11269			/* NOTREACHED */
11270		}
11271	}
11272	return (freefile);
11273}
11274/*
11275 * Called from within softdep_disk_write_complete above to restore
11276 * in-memory inode block contents to their most up-to-date state. Note
11277 * that this routine is always called from interrupt level with further
11278 * splbio interrupts blocked.
11279 */
11280static int
11281handle_written_inodeblock(inodedep, bp)
11282	struct inodedep *inodedep;
11283	struct buf *bp;		/* buffer containing the inode block */
11284{
11285	struct freefile *freefile;
11286	struct allocdirect *adp, *nextadp;
11287	struct ufs1_dinode *dp1 = NULL;
11288	struct ufs2_dinode *dp2 = NULL;
11289	struct workhead wkhd;
11290	int hadchanges, fstype;
11291	ino_t freelink;
11292
11293	LIST_INIT(&wkhd);
11294	hadchanges = 0;
11295	freefile = NULL;
11296	if ((inodedep->id_state & IOSTARTED) == 0)
11297		panic("handle_written_inodeblock: not started");
11298	inodedep->id_state &= ~IOSTARTED;
11299	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11300		fstype = UFS1;
11301		dp1 = (struct ufs1_dinode *)bp->b_data +
11302		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11303		freelink = dp1->di_freelink;
11304	} else {
11305		fstype = UFS2;
11306		dp2 = (struct ufs2_dinode *)bp->b_data +
11307		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11308		freelink = dp2->di_freelink;
11309	}
11310	/*
11311	 * Leave this inodeblock dirty until it's in the list.
11312	 */
11313	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
11314		struct inodedep *inon;
11315
11316		inon = TAILQ_NEXT(inodedep, id_unlinked);
11317		if ((inon == NULL && freelink == 0) ||
11318		    (inon && inon->id_ino == freelink)) {
11319			if (inon)
11320				inon->id_state |= UNLINKPREV;
11321			inodedep->id_state |= UNLINKNEXT;
11322		}
11323		hadchanges = 1;
11324	}
11325	/*
11326	 * If we had to rollback the inode allocation because of
11327	 * bitmaps being incomplete, then simply restore it.
11328	 * Keep the block dirty so that it will not be reclaimed until
11329	 * all associated dependencies have been cleared and the
11330	 * corresponding updates written to disk.
11331	 */
11332	if (inodedep->id_savedino1 != NULL) {
11333		hadchanges = 1;
11334		if (fstype == UFS1)
11335			*dp1 = *inodedep->id_savedino1;
11336		else
11337			*dp2 = *inodedep->id_savedino2;
11338		free(inodedep->id_savedino1, M_SAVEDINO);
11339		inodedep->id_savedino1 = NULL;
11340		if ((bp->b_flags & B_DELWRI) == 0)
11341			stat_inode_bitmap++;
11342		bdirty(bp);
11343		/*
11344		 * If the inode is clear here and GOINGAWAY it will never
11345		 * be written.  Process the bufwait and clear any pending
11346		 * work which may include the freefile.
11347		 */
11348		if (inodedep->id_state & GOINGAWAY)
11349			goto bufwait;
11350		return (1);
11351	}
11352	inodedep->id_state |= COMPLETE;
11353	/*
11354	 * Roll forward anything that had to be rolled back before
11355	 * the inode could be updated.
11356	 */
11357	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11358		nextadp = TAILQ_NEXT(adp, ad_next);
11359		if (adp->ad_state & ATTACHED)
11360			panic("handle_written_inodeblock: new entry");
11361		if (fstype == UFS1) {
11362			if (adp->ad_offset < NDADDR) {
11363				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11364					panic("%s %s #%jd mismatch %d != %jd",
11365					    "handle_written_inodeblock:",
11366					    "direct pointer",
11367					    (intmax_t)adp->ad_offset,
11368					    dp1->di_db[adp->ad_offset],
11369					    (intmax_t)adp->ad_oldblkno);
11370				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11371			} else {
11372				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11373					panic("%s: %s #%jd allocated as %d",
11374					    "handle_written_inodeblock",
11375					    "indirect pointer",
11376					    (intmax_t)adp->ad_offset - NDADDR,
11377					    dp1->di_ib[adp->ad_offset - NDADDR]);
11378				dp1->di_ib[adp->ad_offset - NDADDR] =
11379				    adp->ad_newblkno;
11380			}
11381		} else {
11382			if (adp->ad_offset < NDADDR) {
11383				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11384					panic("%s: %s #%jd %s %jd != %jd",
11385					    "handle_written_inodeblock",
11386					    "direct pointer",
11387					    (intmax_t)adp->ad_offset, "mismatch",
11388					    (intmax_t)dp2->di_db[adp->ad_offset],
11389					    (intmax_t)adp->ad_oldblkno);
11390				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11391			} else {
11392				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11393					panic("%s: %s #%jd allocated as %jd",
11394					    "handle_written_inodeblock",
11395					    "indirect pointer",
11396					    (intmax_t)adp->ad_offset - NDADDR,
11397					    (intmax_t)
11398					    dp2->di_ib[adp->ad_offset - NDADDR]);
11399				dp2->di_ib[adp->ad_offset - NDADDR] =
11400				    adp->ad_newblkno;
11401			}
11402		}
11403		adp->ad_state &= ~UNDONE;
11404		adp->ad_state |= ATTACHED;
11405		hadchanges = 1;
11406	}
11407	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11408		nextadp = TAILQ_NEXT(adp, ad_next);
11409		if (adp->ad_state & ATTACHED)
11410			panic("handle_written_inodeblock: new entry");
11411		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11412			panic("%s: direct pointers #%jd %s %jd != %jd",
11413			    "handle_written_inodeblock",
11414			    (intmax_t)adp->ad_offset, "mismatch",
11415			    (intmax_t)dp2->di_extb[adp->ad_offset],
11416			    (intmax_t)adp->ad_oldblkno);
11417		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11418		adp->ad_state &= ~UNDONE;
11419		adp->ad_state |= ATTACHED;
11420		hadchanges = 1;
11421	}
11422	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11423		stat_direct_blk_ptrs++;
11424	/*
11425	 * Reset the file size to its most up-to-date value.
11426	 */
11427	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11428		panic("handle_written_inodeblock: bad size");
11429	if (inodedep->id_savednlink > LINK_MAX)
11430		panic("handle_written_inodeblock: Invalid link count "
11431		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11432	if (fstype == UFS1) {
11433		if (dp1->di_nlink != inodedep->id_savednlink) {
11434			dp1->di_nlink = inodedep->id_savednlink;
11435			hadchanges = 1;
11436		}
11437		if (dp1->di_size != inodedep->id_savedsize) {
11438			dp1->di_size = inodedep->id_savedsize;
11439			hadchanges = 1;
11440		}
11441	} else {
11442		if (dp2->di_nlink != inodedep->id_savednlink) {
11443			dp2->di_nlink = inodedep->id_savednlink;
11444			hadchanges = 1;
11445		}
11446		if (dp2->di_size != inodedep->id_savedsize) {
11447			dp2->di_size = inodedep->id_savedsize;
11448			hadchanges = 1;
11449		}
11450		if (dp2->di_extsize != inodedep->id_savedextsize) {
11451			dp2->di_extsize = inodedep->id_savedextsize;
11452			hadchanges = 1;
11453		}
11454	}
11455	inodedep->id_savedsize = -1;
11456	inodedep->id_savedextsize = -1;
11457	inodedep->id_savednlink = -1;
11458	/*
11459	 * If there were any rollbacks in the inode block, then it must be
11460	 * marked dirty so that its will eventually get written back in
11461	 * its correct form.
11462	 */
11463	if (hadchanges)
11464		bdirty(bp);
11465bufwait:
11466	/*
11467	 * Process any allocdirects that completed during the update.
11468	 */
11469	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11470		handle_allocdirect_partdone(adp, &wkhd);
11471	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11472		handle_allocdirect_partdone(adp, &wkhd);
11473	/*
11474	 * Process deallocations that were held pending until the
11475	 * inode had been written to disk. Freeing of the inode
11476	 * is delayed until after all blocks have been freed to
11477	 * avoid creation of new <vfsid, inum, lbn> triples
11478	 * before the old ones have been deleted.  Completely
11479	 * unlinked inodes are not processed until the unlinked
11480	 * inode list is written or the last reference is removed.
11481	 */
11482	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11483		freefile = handle_bufwait(inodedep, NULL);
11484		if (freefile && !LIST_EMPTY(&wkhd)) {
11485			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11486			freefile = NULL;
11487		}
11488	}
11489	/*
11490	 * Move rolled forward dependency completions to the bufwait list
11491	 * now that those that were already written have been processed.
11492	 */
11493	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11494		panic("handle_written_inodeblock: bufwait but no changes");
11495	jwork_move(&inodedep->id_bufwait, &wkhd);
11496
11497	if (freefile != NULL) {
11498		/*
11499		 * If the inode is goingaway it was never written.  Fake up
11500		 * the state here so free_inodedep() can succeed.
11501		 */
11502		if (inodedep->id_state & GOINGAWAY)
11503			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11504		if (free_inodedep(inodedep) == 0)
11505			panic("handle_written_inodeblock: live inodedep %p",
11506			    inodedep);
11507		add_to_worklist(&freefile->fx_list, 0);
11508		return (0);
11509	}
11510
11511	/*
11512	 * If no outstanding dependencies, free it.
11513	 */
11514	if (free_inodedep(inodedep) ||
11515	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11516	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11517	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11518	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11519		return (0);
11520	return (hadchanges);
11521}
11522
11523static int
11524handle_written_indirdep(indirdep, bp, bpp)
11525	struct indirdep *indirdep;
11526	struct buf *bp;
11527	struct buf **bpp;
11528{
11529	struct allocindir *aip;
11530	struct buf *sbp;
11531	int chgs;
11532
11533	if (indirdep->ir_state & GOINGAWAY)
11534		panic("handle_written_indirdep: indirdep gone");
11535	if ((indirdep->ir_state & IOSTARTED) == 0)
11536		panic("handle_written_indirdep: IO not started");
11537	chgs = 0;
11538	/*
11539	 * If there were rollbacks revert them here.
11540	 */
11541	if (indirdep->ir_saveddata) {
11542		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11543		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11544			free(indirdep->ir_saveddata, M_INDIRDEP);
11545			indirdep->ir_saveddata = NULL;
11546		}
11547		chgs = 1;
11548	}
11549	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11550	indirdep->ir_state |= ATTACHED;
11551	/*
11552	 * Move allocindirs with written pointers to the completehd if
11553	 * the indirdep's pointer is not yet written.  Otherwise
11554	 * free them here.
11555	 */
11556	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11557		LIST_REMOVE(aip, ai_next);
11558		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11559			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11560			    ai_next);
11561			newblk_freefrag(&aip->ai_block);
11562			continue;
11563		}
11564		free_newblk(&aip->ai_block);
11565	}
11566	/*
11567	 * Move allocindirs that have finished dependency processing from
11568	 * the done list to the write list after updating the pointers.
11569	 */
11570	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11571		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11572			handle_allocindir_partdone(aip);
11573			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11574				panic("disk_write_complete: not gone");
11575			chgs = 1;
11576		}
11577	}
11578	/*
11579	 * Preserve the indirdep if there were any changes or if it is not
11580	 * yet valid on disk.
11581	 */
11582	if (chgs) {
11583		stat_indir_blk_ptrs++;
11584		bdirty(bp);
11585		return (1);
11586	}
11587	/*
11588	 * If there were no changes we can discard the savedbp and detach
11589	 * ourselves from the buf.  We are only carrying completed pointers
11590	 * in this case.
11591	 */
11592	sbp = indirdep->ir_savebp;
11593	sbp->b_flags |= B_INVAL | B_NOCACHE;
11594	indirdep->ir_savebp = NULL;
11595	indirdep->ir_bp = NULL;
11596	if (*bpp != NULL)
11597		panic("handle_written_indirdep: bp already exists.");
11598	*bpp = sbp;
11599	/*
11600	 * The indirdep may not be freed until its parent points at it.
11601	 */
11602	if (indirdep->ir_state & DEPCOMPLETE)
11603		free_indirdep(indirdep);
11604
11605	return (0);
11606}
11607
11608/*
11609 * Process a diradd entry after its dependent inode has been written.
11610 * This routine must be called with splbio interrupts blocked.
11611 */
11612static void
11613diradd_inode_written(dap, inodedep)
11614	struct diradd *dap;
11615	struct inodedep *inodedep;
11616{
11617
11618	dap->da_state |= COMPLETE;
11619	complete_diradd(dap);
11620	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11621}
11622
11623/*
11624 * Returns true if the bmsafemap will have rollbacks when written.  Must only
11625 * be called with the per-filesystem lock and the buf lock on the cg held.
11626 */
11627static int
11628bmsafemap_backgroundwrite(bmsafemap, bp)
11629	struct bmsafemap *bmsafemap;
11630	struct buf *bp;
11631{
11632	int dirty;
11633
11634	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11635	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11636	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11637	/*
11638	 * If we're initiating a background write we need to process the
11639	 * rollbacks as they exist now, not as they exist when IO starts.
11640	 * No other consumers will look at the contents of the shadowed
11641	 * buf so this is safe to do here.
11642	 */
11643	if (bp->b_xflags & BX_BKGRDMARKER)
11644		initiate_write_bmsafemap(bmsafemap, bp);
11645
11646	return (dirty);
11647}
11648
11649/*
11650 * Re-apply an allocation when a cg write is complete.
11651 */
11652static int
11653jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11654	struct jnewblk *jnewblk;
11655	struct fs *fs;
11656	struct cg *cgp;
11657	uint8_t *blksfree;
11658{
11659	ufs1_daddr_t fragno;
11660	ufs2_daddr_t blkno;
11661	long cgbno, bbase;
11662	int frags, blk;
11663	int i;
11664
11665	frags = 0;
11666	cgbno = dtogd(fs, jnewblk->jn_blkno);
11667	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11668		if (isclr(blksfree, cgbno + i))
11669			panic("jnewblk_rollforward: re-allocated fragment");
11670		frags++;
11671	}
11672	if (frags == fs->fs_frag) {
11673		blkno = fragstoblks(fs, cgbno);
11674		ffs_clrblock(fs, blksfree, (long)blkno);
11675		ffs_clusteracct(fs, cgp, blkno, -1);
11676		cgp->cg_cs.cs_nbfree--;
11677	} else {
11678		bbase = cgbno - fragnum(fs, cgbno);
11679		cgbno += jnewblk->jn_oldfrags;
11680                /* If a complete block had been reassembled, account for it. */
11681		fragno = fragstoblks(fs, bbase);
11682		if (ffs_isblock(fs, blksfree, fragno)) {
11683			cgp->cg_cs.cs_nffree += fs->fs_frag;
11684			ffs_clusteracct(fs, cgp, fragno, -1);
11685			cgp->cg_cs.cs_nbfree--;
11686		}
11687		/* Decrement the old frags.  */
11688		blk = blkmap(fs, blksfree, bbase);
11689		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11690		/* Allocate the fragment */
11691		for (i = 0; i < frags; i++)
11692			clrbit(blksfree, cgbno + i);
11693		cgp->cg_cs.cs_nffree -= frags;
11694		/* Add back in counts associated with the new frags */
11695		blk = blkmap(fs, blksfree, bbase);
11696		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11697	}
11698	return (frags);
11699}
11700
11701/*
11702 * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11703 * changes if it's not a background write.  Set all written dependencies
11704 * to DEPCOMPLETE and free the structure if possible.
11705 */
11706static int
11707handle_written_bmsafemap(bmsafemap, bp)
11708	struct bmsafemap *bmsafemap;
11709	struct buf *bp;
11710{
11711	struct newblk *newblk;
11712	struct inodedep *inodedep;
11713	struct jaddref *jaddref, *jatmp;
11714	struct jnewblk *jnewblk, *jntmp;
11715	struct ufsmount *ump;
11716	uint8_t *inosused;
11717	uint8_t *blksfree;
11718	struct cg *cgp;
11719	struct fs *fs;
11720	ino_t ino;
11721	int foreground;
11722	int chgs;
11723
11724	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11725		panic("initiate_write_bmsafemap: Not started\n");
11726	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11727	chgs = 0;
11728	bmsafemap->sm_state &= ~IOSTARTED;
11729	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11730	/*
11731	 * Release journal work that was waiting on the write.
11732	 */
11733	handle_jwork(&bmsafemap->sm_freewr);
11734
11735	/*
11736	 * Restore unwritten inode allocation pending jaddref writes.
11737	 */
11738	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11739		cgp = (struct cg *)bp->b_data;
11740		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11741		inosused = cg_inosused(cgp);
11742		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11743		    ja_bmdeps, jatmp) {
11744			if ((jaddref->ja_state & UNDONE) == 0)
11745				continue;
11746			ino = jaddref->ja_ino % fs->fs_ipg;
11747			if (isset(inosused, ino))
11748				panic("handle_written_bmsafemap: "
11749				    "re-allocated inode");
11750			/* Do the roll-forward only if it's a real copy. */
11751			if (foreground) {
11752				if ((jaddref->ja_mode & IFMT) == IFDIR)
11753					cgp->cg_cs.cs_ndir++;
11754				cgp->cg_cs.cs_nifree--;
11755				setbit(inosused, ino);
11756				chgs = 1;
11757			}
11758			jaddref->ja_state &= ~UNDONE;
11759			jaddref->ja_state |= ATTACHED;
11760			free_jaddref(jaddref);
11761		}
11762	}
11763	/*
11764	 * Restore any block allocations which are pending journal writes.
11765	 */
11766	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11767		cgp = (struct cg *)bp->b_data;
11768		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11769		blksfree = cg_blksfree(cgp);
11770		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11771		    jntmp) {
11772			if ((jnewblk->jn_state & UNDONE) == 0)
11773				continue;
11774			/* Do the roll-forward only if it's a real copy. */
11775			if (foreground &&
11776			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11777				chgs = 1;
11778			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11779			jnewblk->jn_state |= ATTACHED;
11780			free_jnewblk(jnewblk);
11781		}
11782	}
11783	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11784		newblk->nb_state |= DEPCOMPLETE;
11785		newblk->nb_state &= ~ONDEPLIST;
11786		newblk->nb_bmsafemap = NULL;
11787		LIST_REMOVE(newblk, nb_deps);
11788		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11789			handle_allocdirect_partdone(
11790			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11791		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11792			handle_allocindir_partdone(
11793			    WK_ALLOCINDIR(&newblk->nb_list));
11794		else if (newblk->nb_list.wk_type != D_NEWBLK)
11795			panic("handle_written_bmsafemap: Unexpected type: %s",
11796			    TYPENAME(newblk->nb_list.wk_type));
11797	}
11798	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11799		inodedep->id_state |= DEPCOMPLETE;
11800		inodedep->id_state &= ~ONDEPLIST;
11801		LIST_REMOVE(inodedep, id_deps);
11802		inodedep->id_bmsafemap = NULL;
11803	}
11804	LIST_REMOVE(bmsafemap, sm_next);
11805	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11806	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11807	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11808	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11809	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11810		LIST_REMOVE(bmsafemap, sm_hash);
11811		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11812		return (0);
11813	}
11814	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11815	if (foreground)
11816		bdirty(bp);
11817	return (1);
11818}
11819
11820/*
11821 * Try to free a mkdir dependency.
11822 */
11823static void
11824complete_mkdir(mkdir)
11825	struct mkdir *mkdir;
11826{
11827	struct diradd *dap;
11828
11829	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11830		return;
11831	LIST_REMOVE(mkdir, md_mkdirs);
11832	dap = mkdir->md_diradd;
11833	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11834	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11835		dap->da_state |= DEPCOMPLETE;
11836		complete_diradd(dap);
11837	}
11838	WORKITEM_FREE(mkdir, D_MKDIR);
11839}
11840
11841/*
11842 * Handle the completion of a mkdir dependency.
11843 */
11844static void
11845handle_written_mkdir(mkdir, type)
11846	struct mkdir *mkdir;
11847	int type;
11848{
11849
11850	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11851		panic("handle_written_mkdir: bad type");
11852	mkdir->md_state |= COMPLETE;
11853	complete_mkdir(mkdir);
11854}
11855
11856static int
11857free_pagedep(pagedep)
11858	struct pagedep *pagedep;
11859{
11860	int i;
11861
11862	if (pagedep->pd_state & NEWBLOCK)
11863		return (0);
11864	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11865		return (0);
11866	for (i = 0; i < DAHASHSZ; i++)
11867		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11868			return (0);
11869	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11870		return (0);
11871	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11872		return (0);
11873	if (pagedep->pd_state & ONWORKLIST)
11874		WORKLIST_REMOVE(&pagedep->pd_list);
11875	LIST_REMOVE(pagedep, pd_hash);
11876	WORKITEM_FREE(pagedep, D_PAGEDEP);
11877
11878	return (1);
11879}
11880
11881/*
11882 * Called from within softdep_disk_write_complete above.
11883 * A write operation was just completed. Removed inodes can
11884 * now be freed and associated block pointers may be committed.
11885 * Note that this routine is always called from interrupt level
11886 * with further splbio interrupts blocked.
11887 */
11888static int
11889handle_written_filepage(pagedep, bp)
11890	struct pagedep *pagedep;
11891	struct buf *bp;		/* buffer containing the written page */
11892{
11893	struct dirrem *dirrem;
11894	struct diradd *dap, *nextdap;
11895	struct direct *ep;
11896	int i, chgs;
11897
11898	if ((pagedep->pd_state & IOSTARTED) == 0)
11899		panic("handle_written_filepage: not started");
11900	pagedep->pd_state &= ~IOSTARTED;
11901	/*
11902	 * Process any directory removals that have been committed.
11903	 */
11904	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11905		LIST_REMOVE(dirrem, dm_next);
11906		dirrem->dm_state |= COMPLETE;
11907		dirrem->dm_dirinum = pagedep->pd_ino;
11908		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11909		    ("handle_written_filepage: Journal entries not written."));
11910		add_to_worklist(&dirrem->dm_list, 0);
11911	}
11912	/*
11913	 * Free any directory additions that have been committed.
11914	 * If it is a newly allocated block, we have to wait until
11915	 * the on-disk directory inode claims the new block.
11916	 */
11917	if ((pagedep->pd_state & NEWBLOCK) == 0)
11918		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11919			free_diradd(dap, NULL);
11920	/*
11921	 * Uncommitted directory entries must be restored.
11922	 */
11923	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11924		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11925		     dap = nextdap) {
11926			nextdap = LIST_NEXT(dap, da_pdlist);
11927			if (dap->da_state & ATTACHED)
11928				panic("handle_written_filepage: attached");
11929			ep = (struct direct *)
11930			    ((char *)bp->b_data + dap->da_offset);
11931			ep->d_ino = dap->da_newinum;
11932			dap->da_state &= ~UNDONE;
11933			dap->da_state |= ATTACHED;
11934			chgs = 1;
11935			/*
11936			 * If the inode referenced by the directory has
11937			 * been written out, then the dependency can be
11938			 * moved to the pending list.
11939			 */
11940			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11941				LIST_REMOVE(dap, da_pdlist);
11942				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11943				    da_pdlist);
11944			}
11945		}
11946	}
11947	/*
11948	 * If there were any rollbacks in the directory, then it must be
11949	 * marked dirty so that its will eventually get written back in
11950	 * its correct form.
11951	 */
11952	if (chgs) {
11953		if ((bp->b_flags & B_DELWRI) == 0)
11954			stat_dir_entry++;
11955		bdirty(bp);
11956		return (1);
11957	}
11958	/*
11959	 * If we are not waiting for a new directory block to be
11960	 * claimed by its inode, then the pagedep will be freed.
11961	 * Otherwise it will remain to track any new entries on
11962	 * the page in case they are fsync'ed.
11963	 */
11964	free_pagedep(pagedep);
11965	return (0);
11966}
11967
11968/*
11969 * Writing back in-core inode structures.
11970 *
11971 * The filesystem only accesses an inode's contents when it occupies an
11972 * "in-core" inode structure.  These "in-core" structures are separate from
11973 * the page frames used to cache inode blocks.  Only the latter are
11974 * transferred to/from the disk.  So, when the updated contents of the
11975 * "in-core" inode structure are copied to the corresponding in-memory inode
11976 * block, the dependencies are also transferred.  The following procedure is
11977 * called when copying a dirty "in-core" inode to a cached inode block.
11978 */
11979
11980/*
11981 * Called when an inode is loaded from disk. If the effective link count
11982 * differed from the actual link count when it was last flushed, then we
11983 * need to ensure that the correct effective link count is put back.
11984 */
11985void
11986softdep_load_inodeblock(ip)
11987	struct inode *ip;	/* the "in_core" copy of the inode */
11988{
11989	struct inodedep *inodedep;
11990
11991	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
11992	    ("softdep_load_inodeblock called on non-softdep filesystem"));
11993	/*
11994	 * Check for alternate nlink count.
11995	 */
11996	ip->i_effnlink = ip->i_nlink;
11997	ACQUIRE_LOCK(ip->i_ump);
11998	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
11999	    &inodedep) == 0) {
12000		FREE_LOCK(ip->i_ump);
12001		return;
12002	}
12003	ip->i_effnlink -= inodedep->id_nlinkdelta;
12004	FREE_LOCK(ip->i_ump);
12005}
12006
12007/*
12008 * This routine is called just before the "in-core" inode
12009 * information is to be copied to the in-memory inode block.
12010 * Recall that an inode block contains several inodes. If
12011 * the force flag is set, then the dependencies will be
12012 * cleared so that the update can always be made. Note that
12013 * the buffer is locked when this routine is called, so we
12014 * will never be in the middle of writing the inode block
12015 * to disk.
12016 */
12017void
12018softdep_update_inodeblock(ip, bp, waitfor)
12019	struct inode *ip;	/* the "in_core" copy of the inode */
12020	struct buf *bp;		/* the buffer containing the inode block */
12021	int waitfor;		/* nonzero => update must be allowed */
12022{
12023	struct inodedep *inodedep;
12024	struct inoref *inoref;
12025	struct ufsmount *ump;
12026	struct worklist *wk;
12027	struct mount *mp;
12028	struct buf *ibp;
12029	struct fs *fs;
12030	int error;
12031
12032	ump = ip->i_ump;
12033	mp = UFSTOVFS(ump);
12034	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12035	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12036	fs = ip->i_fs;
12037	/*
12038	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12039	 * does not have access to the in-core ip so must write directly into
12040	 * the inode block buffer when setting freelink.
12041	 */
12042	if (fs->fs_magic == FS_UFS1_MAGIC)
12043		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12044		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12045	else
12046		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12047		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12048	/*
12049	 * If the effective link count is not equal to the actual link
12050	 * count, then we must track the difference in an inodedep while
12051	 * the inode is (potentially) tossed out of the cache. Otherwise,
12052	 * if there is no existing inodedep, then there are no dependencies
12053	 * to track.
12054	 */
12055	ACQUIRE_LOCK(ump);
12056again:
12057	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12058		FREE_LOCK(ump);
12059		if (ip->i_effnlink != ip->i_nlink)
12060			panic("softdep_update_inodeblock: bad link count");
12061		return;
12062	}
12063	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12064		panic("softdep_update_inodeblock: bad delta");
12065	/*
12066	 * If we're flushing all dependencies we must also move any waiting
12067	 * for journal writes onto the bufwait list prior to I/O.
12068	 */
12069	if (waitfor) {
12070		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12071			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12072			    == DEPCOMPLETE) {
12073				jwait(&inoref->if_list, MNT_WAIT);
12074				goto again;
12075			}
12076		}
12077	}
12078	/*
12079	 * Changes have been initiated. Anything depending on these
12080	 * changes cannot occur until this inode has been written.
12081	 */
12082	inodedep->id_state &= ~COMPLETE;
12083	if ((inodedep->id_state & ONWORKLIST) == 0)
12084		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12085	/*
12086	 * Any new dependencies associated with the incore inode must
12087	 * now be moved to the list associated with the buffer holding
12088	 * the in-memory copy of the inode. Once merged process any
12089	 * allocdirects that are completed by the merger.
12090	 */
12091	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12092	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12093		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12094		    NULL);
12095	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12096	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12097		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12098		    NULL);
12099	/*
12100	 * Now that the inode has been pushed into the buffer, the
12101	 * operations dependent on the inode being written to disk
12102	 * can be moved to the id_bufwait so that they will be
12103	 * processed when the buffer I/O completes.
12104	 */
12105	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12106		WORKLIST_REMOVE(wk);
12107		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12108	}
12109	/*
12110	 * Newly allocated inodes cannot be written until the bitmap
12111	 * that allocates them have been written (indicated by
12112	 * DEPCOMPLETE being set in id_state). If we are doing a
12113	 * forced sync (e.g., an fsync on a file), we force the bitmap
12114	 * to be written so that the update can be done.
12115	 */
12116	if (waitfor == 0) {
12117		FREE_LOCK(ump);
12118		return;
12119	}
12120retry:
12121	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12122		FREE_LOCK(ump);
12123		return;
12124	}
12125	ibp = inodedep->id_bmsafemap->sm_buf;
12126	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12127	if (ibp == NULL) {
12128		/*
12129		 * If ibp came back as NULL, the dependency could have been
12130		 * freed while we slept.  Look it up again, and check to see
12131		 * that it has completed.
12132		 */
12133		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12134			goto retry;
12135		FREE_LOCK(ump);
12136		return;
12137	}
12138	FREE_LOCK(ump);
12139	if ((error = bwrite(ibp)) != 0)
12140		softdep_error("softdep_update_inodeblock: bwrite", error);
12141}
12142
12143/*
12144 * Merge the a new inode dependency list (such as id_newinoupdt) into an
12145 * old inode dependency list (such as id_inoupdt). This routine must be
12146 * called with splbio interrupts blocked.
12147 */
12148static void
12149merge_inode_lists(newlisthead, oldlisthead)
12150	struct allocdirectlst *newlisthead;
12151	struct allocdirectlst *oldlisthead;
12152{
12153	struct allocdirect *listadp, *newadp;
12154
12155	newadp = TAILQ_FIRST(newlisthead);
12156	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12157		if (listadp->ad_offset < newadp->ad_offset) {
12158			listadp = TAILQ_NEXT(listadp, ad_next);
12159			continue;
12160		}
12161		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12162		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12163		if (listadp->ad_offset == newadp->ad_offset) {
12164			allocdirect_merge(oldlisthead, newadp,
12165			    listadp);
12166			listadp = newadp;
12167		}
12168		newadp = TAILQ_FIRST(newlisthead);
12169	}
12170	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12171		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12172		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12173	}
12174}
12175
12176/*
12177 * If we are doing an fsync, then we must ensure that any directory
12178 * entries for the inode have been written after the inode gets to disk.
12179 */
12180int
12181softdep_fsync(vp)
12182	struct vnode *vp;	/* the "in_core" copy of the inode */
12183{
12184	struct inodedep *inodedep;
12185	struct pagedep *pagedep;
12186	struct inoref *inoref;
12187	struct ufsmount *ump;
12188	struct worklist *wk;
12189	struct diradd *dap;
12190	struct mount *mp;
12191	struct vnode *pvp;
12192	struct inode *ip;
12193	struct buf *bp;
12194	struct fs *fs;
12195	struct thread *td = curthread;
12196	int error, flushparent, pagedep_new_block;
12197	ino_t parentino;
12198	ufs_lbn_t lbn;
12199
12200	ip = VTOI(vp);
12201	fs = ip->i_fs;
12202	ump = ip->i_ump;
12203	mp = vp->v_mount;
12204	if (MOUNTEDSOFTDEP(mp) == 0)
12205		return (0);
12206	ACQUIRE_LOCK(ump);
12207restart:
12208	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12209		FREE_LOCK(ump);
12210		return (0);
12211	}
12212	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12213		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12214		    == DEPCOMPLETE) {
12215			jwait(&inoref->if_list, MNT_WAIT);
12216			goto restart;
12217		}
12218	}
12219	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12220	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12221	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12222	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12223	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12224		panic("softdep_fsync: pending ops %p", inodedep);
12225	for (error = 0, flushparent = 0; ; ) {
12226		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12227			break;
12228		if (wk->wk_type != D_DIRADD)
12229			panic("softdep_fsync: Unexpected type %s",
12230			    TYPENAME(wk->wk_type));
12231		dap = WK_DIRADD(wk);
12232		/*
12233		 * Flush our parent if this directory entry has a MKDIR_PARENT
12234		 * dependency or is contained in a newly allocated block.
12235		 */
12236		if (dap->da_state & DIRCHG)
12237			pagedep = dap->da_previous->dm_pagedep;
12238		else
12239			pagedep = dap->da_pagedep;
12240		parentino = pagedep->pd_ino;
12241		lbn = pagedep->pd_lbn;
12242		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12243			panic("softdep_fsync: dirty");
12244		if ((dap->da_state & MKDIR_PARENT) ||
12245		    (pagedep->pd_state & NEWBLOCK))
12246			flushparent = 1;
12247		else
12248			flushparent = 0;
12249		/*
12250		 * If we are being fsync'ed as part of vgone'ing this vnode,
12251		 * then we will not be able to release and recover the
12252		 * vnode below, so we just have to give up on writing its
12253		 * directory entry out. It will eventually be written, just
12254		 * not now, but then the user was not asking to have it
12255		 * written, so we are not breaking any promises.
12256		 */
12257		if (vp->v_iflag & VI_DOOMED)
12258			break;
12259		/*
12260		 * We prevent deadlock by always fetching inodes from the
12261		 * root, moving down the directory tree. Thus, when fetching
12262		 * our parent directory, we first try to get the lock. If
12263		 * that fails, we must unlock ourselves before requesting
12264		 * the lock on our parent. See the comment in ufs_lookup
12265		 * for details on possible races.
12266		 */
12267		FREE_LOCK(ump);
12268		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12269		    FFSV_FORCEINSMQ)) {
12270			error = vfs_busy(mp, MBF_NOWAIT);
12271			if (error != 0) {
12272				vfs_ref(mp);
12273				VOP_UNLOCK(vp, 0);
12274				error = vfs_busy(mp, 0);
12275				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12276				vfs_rel(mp);
12277				if (error != 0)
12278					return (ENOENT);
12279				if (vp->v_iflag & VI_DOOMED) {
12280					vfs_unbusy(mp);
12281					return (ENOENT);
12282				}
12283			}
12284			VOP_UNLOCK(vp, 0);
12285			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12286			    &pvp, FFSV_FORCEINSMQ);
12287			vfs_unbusy(mp);
12288			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12289			if (vp->v_iflag & VI_DOOMED) {
12290				if (error == 0)
12291					vput(pvp);
12292				error = ENOENT;
12293			}
12294			if (error != 0)
12295				return (error);
12296		}
12297		/*
12298		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12299		 * that are contained in direct blocks will be resolved by
12300		 * doing a ffs_update. Pagedeps contained in indirect blocks
12301		 * may require a complete sync'ing of the directory. So, we
12302		 * try the cheap and fast ffs_update first, and if that fails,
12303		 * then we do the slower ffs_syncvnode of the directory.
12304		 */
12305		if (flushparent) {
12306			int locked;
12307
12308			if ((error = ffs_update(pvp, 1)) != 0) {
12309				vput(pvp);
12310				return (error);
12311			}
12312			ACQUIRE_LOCK(ump);
12313			locked = 1;
12314			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12315				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12316					if (wk->wk_type != D_DIRADD)
12317						panic("softdep_fsync: Unexpected type %s",
12318						      TYPENAME(wk->wk_type));
12319					dap = WK_DIRADD(wk);
12320					if (dap->da_state & DIRCHG)
12321						pagedep = dap->da_previous->dm_pagedep;
12322					else
12323						pagedep = dap->da_pagedep;
12324					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12325					FREE_LOCK(ump);
12326					locked = 0;
12327					if (pagedep_new_block && (error =
12328					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12329						vput(pvp);
12330						return (error);
12331					}
12332				}
12333			}
12334			if (locked)
12335				FREE_LOCK(ump);
12336		}
12337		/*
12338		 * Flush directory page containing the inode's name.
12339		 */
12340		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12341		    &bp);
12342		if (error == 0)
12343			error = bwrite(bp);
12344		else
12345			brelse(bp);
12346		vput(pvp);
12347		if (error != 0)
12348			return (error);
12349		ACQUIRE_LOCK(ump);
12350		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12351			break;
12352	}
12353	FREE_LOCK(ump);
12354	return (0);
12355}
12356
12357/*
12358 * Flush all the dirty bitmaps associated with the block device
12359 * before flushing the rest of the dirty blocks so as to reduce
12360 * the number of dependencies that will have to be rolled back.
12361 *
12362 * XXX Unused?
12363 */
12364void
12365softdep_fsync_mountdev(vp)
12366	struct vnode *vp;
12367{
12368	struct buf *bp, *nbp;
12369	struct worklist *wk;
12370	struct bufobj *bo;
12371
12372	if (!vn_isdisk(vp, NULL))
12373		panic("softdep_fsync_mountdev: vnode not a disk");
12374	bo = &vp->v_bufobj;
12375restart:
12376	BO_LOCK(bo);
12377	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12378		/*
12379		 * If it is already scheduled, skip to the next buffer.
12380		 */
12381		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12382			continue;
12383
12384		if ((bp->b_flags & B_DELWRI) == 0)
12385			panic("softdep_fsync_mountdev: not dirty");
12386		/*
12387		 * We are only interested in bitmaps with outstanding
12388		 * dependencies.
12389		 */
12390		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12391		    wk->wk_type != D_BMSAFEMAP ||
12392		    (bp->b_vflags & BV_BKGRDINPROG)) {
12393			BUF_UNLOCK(bp);
12394			continue;
12395		}
12396		BO_UNLOCK(bo);
12397		bremfree(bp);
12398		(void) bawrite(bp);
12399		goto restart;
12400	}
12401	drain_output(vp);
12402	BO_UNLOCK(bo);
12403}
12404
12405/*
12406 * Sync all cylinder groups that were dirty at the time this function is
12407 * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12408 * is used to flush freedep activity that may be holding up writes to a
12409 * indirect block.
12410 */
12411static int
12412sync_cgs(mp, waitfor)
12413	struct mount *mp;
12414	int waitfor;
12415{
12416	struct bmsafemap *bmsafemap;
12417	struct bmsafemap *sentinel;
12418	struct ufsmount *ump;
12419	struct buf *bp;
12420	int error;
12421
12422	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12423	sentinel->sm_cg = -1;
12424	ump = VFSTOUFS(mp);
12425	error = 0;
12426	ACQUIRE_LOCK(ump);
12427	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12428	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12429	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12430		/* Skip sentinels and cgs with no work to release. */
12431		if (bmsafemap->sm_cg == -1 ||
12432		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12433		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12434			LIST_REMOVE(sentinel, sm_next);
12435			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12436			continue;
12437		}
12438		/*
12439		 * If we don't get the lock and we're waiting try again, if
12440		 * not move on to the next buf and try to sync it.
12441		 */
12442		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12443		if (bp == NULL && waitfor == MNT_WAIT)
12444			continue;
12445		LIST_REMOVE(sentinel, sm_next);
12446		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12447		if (bp == NULL)
12448			continue;
12449		FREE_LOCK(ump);
12450		if (waitfor == MNT_NOWAIT)
12451			bawrite(bp);
12452		else
12453			error = bwrite(bp);
12454		ACQUIRE_LOCK(ump);
12455		if (error)
12456			break;
12457	}
12458	LIST_REMOVE(sentinel, sm_next);
12459	FREE_LOCK(ump);
12460	free(sentinel, M_BMSAFEMAP);
12461	return (error);
12462}
12463
12464/*
12465 * This routine is called when we are trying to synchronously flush a
12466 * file. This routine must eliminate any filesystem metadata dependencies
12467 * so that the syncing routine can succeed.
12468 */
12469int
12470softdep_sync_metadata(struct vnode *vp)
12471{
12472	struct inode *ip;
12473	int error;
12474
12475	ip = VTOI(vp);
12476	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
12477	    ("softdep_sync_metadata called on non-softdep filesystem"));
12478	/*
12479	 * Ensure that any direct block dependencies have been cleared,
12480	 * truncations are started, and inode references are journaled.
12481	 */
12482	ACQUIRE_LOCK(ip->i_ump);
12483	/*
12484	 * Write all journal records to prevent rollbacks on devvp.
12485	 */
12486	if (vp->v_type == VCHR)
12487		softdep_flushjournal(vp->v_mount);
12488	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12489	/*
12490	 * Ensure that all truncates are written so we won't find deps on
12491	 * indirect blocks.
12492	 */
12493	process_truncates(vp);
12494	FREE_LOCK(ip->i_ump);
12495
12496	return (error);
12497}
12498
12499/*
12500 * This routine is called when we are attempting to sync a buf with
12501 * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12502 * other IO it can but returns EBUSY if the buffer is not yet able to
12503 * be written.  Dependencies which will not cause rollbacks will always
12504 * return 0.
12505 */
12506int
12507softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12508{
12509	struct indirdep *indirdep;
12510	struct pagedep *pagedep;
12511	struct allocindir *aip;
12512	struct newblk *newblk;
12513	struct ufsmount *ump;
12514	struct buf *nbp;
12515	struct worklist *wk;
12516	int i, error;
12517
12518	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12519	    ("softdep_sync_buf called on non-softdep filesystem"));
12520	/*
12521	 * For VCHR we just don't want to force flush any dependencies that
12522	 * will cause rollbacks.
12523	 */
12524	if (vp->v_type == VCHR) {
12525		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12526			return (EBUSY);
12527		return (0);
12528	}
12529	ump = VTOI(vp)->i_ump;
12530	ACQUIRE_LOCK(ump);
12531	/*
12532	 * As we hold the buffer locked, none of its dependencies
12533	 * will disappear.
12534	 */
12535	error = 0;
12536top:
12537	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12538		switch (wk->wk_type) {
12539
12540		case D_ALLOCDIRECT:
12541		case D_ALLOCINDIR:
12542			newblk = WK_NEWBLK(wk);
12543			if (newblk->nb_jnewblk != NULL) {
12544				if (waitfor == MNT_NOWAIT) {
12545					error = EBUSY;
12546					goto out_unlock;
12547				}
12548				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12549				goto top;
12550			}
12551			if (newblk->nb_state & DEPCOMPLETE ||
12552			    waitfor == MNT_NOWAIT)
12553				continue;
12554			nbp = newblk->nb_bmsafemap->sm_buf;
12555			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12556			if (nbp == NULL)
12557				goto top;
12558			FREE_LOCK(ump);
12559			if ((error = bwrite(nbp)) != 0)
12560				goto out;
12561			ACQUIRE_LOCK(ump);
12562			continue;
12563
12564		case D_INDIRDEP:
12565			indirdep = WK_INDIRDEP(wk);
12566			if (waitfor == MNT_NOWAIT) {
12567				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12568				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12569					error = EBUSY;
12570					goto out_unlock;
12571				}
12572			}
12573			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12574				panic("softdep_sync_buf: truncation pending.");
12575		restart:
12576			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12577				newblk = (struct newblk *)aip;
12578				if (newblk->nb_jnewblk != NULL) {
12579					jwait(&newblk->nb_jnewblk->jn_list,
12580					    waitfor);
12581					goto restart;
12582				}
12583				if (newblk->nb_state & DEPCOMPLETE)
12584					continue;
12585				nbp = newblk->nb_bmsafemap->sm_buf;
12586				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12587				if (nbp == NULL)
12588					goto restart;
12589				FREE_LOCK(ump);
12590				if ((error = bwrite(nbp)) != 0)
12591					goto out;
12592				ACQUIRE_LOCK(ump);
12593				goto restart;
12594			}
12595			continue;
12596
12597		case D_PAGEDEP:
12598			/*
12599			 * Only flush directory entries in synchronous passes.
12600			 */
12601			if (waitfor != MNT_WAIT) {
12602				error = EBUSY;
12603				goto out_unlock;
12604			}
12605			/*
12606			 * While syncing snapshots, we must allow recursive
12607			 * lookups.
12608			 */
12609			BUF_AREC(bp);
12610			/*
12611			 * We are trying to sync a directory that may
12612			 * have dependencies on both its own metadata
12613			 * and/or dependencies on the inodes of any
12614			 * recently allocated files. We walk its diradd
12615			 * lists pushing out the associated inode.
12616			 */
12617			pagedep = WK_PAGEDEP(wk);
12618			for (i = 0; i < DAHASHSZ; i++) {
12619				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12620					continue;
12621				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12622				    &pagedep->pd_diraddhd[i]))) {
12623					BUF_NOREC(bp);
12624					goto out_unlock;
12625				}
12626			}
12627			BUF_NOREC(bp);
12628			continue;
12629
12630		case D_FREEWORK:
12631		case D_FREEDEP:
12632		case D_JSEGDEP:
12633		case D_JNEWBLK:
12634			continue;
12635
12636		default:
12637			panic("softdep_sync_buf: Unknown type %s",
12638			    TYPENAME(wk->wk_type));
12639			/* NOTREACHED */
12640		}
12641	}
12642out_unlock:
12643	FREE_LOCK(ump);
12644out:
12645	return (error);
12646}
12647
12648/*
12649 * Flush the dependencies associated with an inodedep.
12650 * Called with splbio blocked.
12651 */
12652static int
12653flush_inodedep_deps(vp, mp, ino)
12654	struct vnode *vp;
12655	struct mount *mp;
12656	ino_t ino;
12657{
12658	struct inodedep *inodedep;
12659	struct inoref *inoref;
12660	struct ufsmount *ump;
12661	int error, waitfor;
12662
12663	/*
12664	 * This work is done in two passes. The first pass grabs most
12665	 * of the buffers and begins asynchronously writing them. The
12666	 * only way to wait for these asynchronous writes is to sleep
12667	 * on the filesystem vnode which may stay busy for a long time
12668	 * if the filesystem is active. So, instead, we make a second
12669	 * pass over the dependencies blocking on each write. In the
12670	 * usual case we will be blocking against a write that we
12671	 * initiated, so when it is done the dependency will have been
12672	 * resolved. Thus the second pass is expected to end quickly.
12673	 * We give a brief window at the top of the loop to allow
12674	 * any pending I/O to complete.
12675	 */
12676	ump = VFSTOUFS(mp);
12677	LOCK_OWNED(ump);
12678	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12679		if (error)
12680			return (error);
12681		FREE_LOCK(ump);
12682		ACQUIRE_LOCK(ump);
12683restart:
12684		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12685			return (0);
12686		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12687			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12688			    == DEPCOMPLETE) {
12689				jwait(&inoref->if_list, MNT_WAIT);
12690				goto restart;
12691			}
12692		}
12693		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12694		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12695		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12696		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12697			continue;
12698		/*
12699		 * If pass2, we are done, otherwise do pass 2.
12700		 */
12701		if (waitfor == MNT_WAIT)
12702			break;
12703		waitfor = MNT_WAIT;
12704	}
12705	/*
12706	 * Try freeing inodedep in case all dependencies have been removed.
12707	 */
12708	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12709		(void) free_inodedep(inodedep);
12710	return (0);
12711}
12712
12713/*
12714 * Flush an inode dependency list.
12715 * Called with splbio blocked.
12716 */
12717static int
12718flush_deplist(listhead, waitfor, errorp)
12719	struct allocdirectlst *listhead;
12720	int waitfor;
12721	int *errorp;
12722{
12723	struct allocdirect *adp;
12724	struct newblk *newblk;
12725	struct ufsmount *ump;
12726	struct buf *bp;
12727
12728	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12729		return (0);
12730	ump = VFSTOUFS(adp->ad_list.wk_mp);
12731	LOCK_OWNED(ump);
12732	TAILQ_FOREACH(adp, listhead, ad_next) {
12733		newblk = (struct newblk *)adp;
12734		if (newblk->nb_jnewblk != NULL) {
12735			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12736			return (1);
12737		}
12738		if (newblk->nb_state & DEPCOMPLETE)
12739			continue;
12740		bp = newblk->nb_bmsafemap->sm_buf;
12741		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12742		if (bp == NULL) {
12743			if (waitfor == MNT_NOWAIT)
12744				continue;
12745			return (1);
12746		}
12747		FREE_LOCK(ump);
12748		if (waitfor == MNT_NOWAIT)
12749			bawrite(bp);
12750		else
12751			*errorp = bwrite(bp);
12752		ACQUIRE_LOCK(ump);
12753		return (1);
12754	}
12755	return (0);
12756}
12757
12758/*
12759 * Flush dependencies associated with an allocdirect block.
12760 */
12761static int
12762flush_newblk_dep(vp, mp, lbn)
12763	struct vnode *vp;
12764	struct mount *mp;
12765	ufs_lbn_t lbn;
12766{
12767	struct newblk *newblk;
12768	struct ufsmount *ump;
12769	struct bufobj *bo;
12770	struct inode *ip;
12771	struct buf *bp;
12772	ufs2_daddr_t blkno;
12773	int error;
12774
12775	error = 0;
12776	bo = &vp->v_bufobj;
12777	ip = VTOI(vp);
12778	blkno = DIP(ip, i_db[lbn]);
12779	if (blkno == 0)
12780		panic("flush_newblk_dep: Missing block");
12781	ump = VFSTOUFS(mp);
12782	ACQUIRE_LOCK(ump);
12783	/*
12784	 * Loop until all dependencies related to this block are satisfied.
12785	 * We must be careful to restart after each sleep in case a write
12786	 * completes some part of this process for us.
12787	 */
12788	for (;;) {
12789		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12790			FREE_LOCK(ump);
12791			break;
12792		}
12793		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12794			panic("flush_newblk_deps: Bad newblk %p", newblk);
12795		/*
12796		 * Flush the journal.
12797		 */
12798		if (newblk->nb_jnewblk != NULL) {
12799			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12800			continue;
12801		}
12802		/*
12803		 * Write the bitmap dependency.
12804		 */
12805		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12806			bp = newblk->nb_bmsafemap->sm_buf;
12807			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12808			if (bp == NULL)
12809				continue;
12810			FREE_LOCK(ump);
12811			error = bwrite(bp);
12812			if (error)
12813				break;
12814			ACQUIRE_LOCK(ump);
12815			continue;
12816		}
12817		/*
12818		 * Write the buffer.
12819		 */
12820		FREE_LOCK(ump);
12821		BO_LOCK(bo);
12822		bp = gbincore(bo, lbn);
12823		if (bp != NULL) {
12824			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12825			    LK_INTERLOCK, BO_LOCKPTR(bo));
12826			if (error == ENOLCK) {
12827				ACQUIRE_LOCK(ump);
12828				continue; /* Slept, retry */
12829			}
12830			if (error != 0)
12831				break;	/* Failed */
12832			if (bp->b_flags & B_DELWRI) {
12833				bremfree(bp);
12834				error = bwrite(bp);
12835				if (error)
12836					break;
12837			} else
12838				BUF_UNLOCK(bp);
12839		} else
12840			BO_UNLOCK(bo);
12841		/*
12842		 * We have to wait for the direct pointers to
12843		 * point at the newdirblk before the dependency
12844		 * will go away.
12845		 */
12846		error = ffs_update(vp, 1);
12847		if (error)
12848			break;
12849		ACQUIRE_LOCK(ump);
12850	}
12851	return (error);
12852}
12853
12854/*
12855 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12856 * Called with splbio blocked.
12857 */
12858static int
12859flush_pagedep_deps(pvp, mp, diraddhdp)
12860	struct vnode *pvp;
12861	struct mount *mp;
12862	struct diraddhd *diraddhdp;
12863{
12864	struct inodedep *inodedep;
12865	struct inoref *inoref;
12866	struct ufsmount *ump;
12867	struct diradd *dap;
12868	struct vnode *vp;
12869	int error = 0;
12870	struct buf *bp;
12871	ino_t inum;
12872	struct diraddhd unfinished;
12873
12874	LIST_INIT(&unfinished);
12875	ump = VFSTOUFS(mp);
12876	LOCK_OWNED(ump);
12877restart:
12878	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12879		/*
12880		 * Flush ourselves if this directory entry
12881		 * has a MKDIR_PARENT dependency.
12882		 */
12883		if (dap->da_state & MKDIR_PARENT) {
12884			FREE_LOCK(ump);
12885			if ((error = ffs_update(pvp, 1)) != 0)
12886				break;
12887			ACQUIRE_LOCK(ump);
12888			/*
12889			 * If that cleared dependencies, go on to next.
12890			 */
12891			if (dap != LIST_FIRST(diraddhdp))
12892				continue;
12893			/*
12894			 * All MKDIR_PARENT dependencies and all the
12895			 * NEWBLOCK pagedeps that are contained in direct
12896			 * blocks were resolved by doing above ffs_update.
12897			 * Pagedeps contained in indirect blocks may
12898			 * require a complete sync'ing of the directory.
12899			 * We are in the midst of doing a complete sync,
12900			 * so if they are not resolved in this pass we
12901			 * defer them for now as they will be sync'ed by
12902			 * our caller shortly.
12903			 */
12904			LIST_REMOVE(dap, da_pdlist);
12905			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
12906			continue;
12907		}
12908		/*
12909		 * A newly allocated directory must have its "." and
12910		 * ".." entries written out before its name can be
12911		 * committed in its parent.
12912		 */
12913		inum = dap->da_newinum;
12914		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12915			panic("flush_pagedep_deps: lost inode1");
12916		/*
12917		 * Wait for any pending journal adds to complete so we don't
12918		 * cause rollbacks while syncing.
12919		 */
12920		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12921			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12922			    == DEPCOMPLETE) {
12923				jwait(&inoref->if_list, MNT_WAIT);
12924				goto restart;
12925			}
12926		}
12927		if (dap->da_state & MKDIR_BODY) {
12928			FREE_LOCK(ump);
12929			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12930			    FFSV_FORCEINSMQ)))
12931				break;
12932			error = flush_newblk_dep(vp, mp, 0);
12933			/*
12934			 * If we still have the dependency we might need to
12935			 * update the vnode to sync the new link count to
12936			 * disk.
12937			 */
12938			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12939				error = ffs_update(vp, 1);
12940			vput(vp);
12941			if (error != 0)
12942				break;
12943			ACQUIRE_LOCK(ump);
12944			/*
12945			 * If that cleared dependencies, go on to next.
12946			 */
12947			if (dap != LIST_FIRST(diraddhdp))
12948				continue;
12949			if (dap->da_state & MKDIR_BODY) {
12950				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12951				    &inodedep);
12952				panic("flush_pagedep_deps: MKDIR_BODY "
12953				    "inodedep %p dap %p vp %p",
12954				    inodedep, dap, vp);
12955			}
12956		}
12957		/*
12958		 * Flush the inode on which the directory entry depends.
12959		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12960		 * the only remaining dependency is that the updated inode
12961		 * count must get pushed to disk. The inode has already
12962		 * been pushed into its inode buffer (via VOP_UPDATE) at
12963		 * the time of the reference count change. So we need only
12964		 * locate that buffer, ensure that there will be no rollback
12965		 * caused by a bitmap dependency, then write the inode buffer.
12966		 */
12967retry:
12968		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12969			panic("flush_pagedep_deps: lost inode");
12970		/*
12971		 * If the inode still has bitmap dependencies,
12972		 * push them to disk.
12973		 */
12974		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12975			bp = inodedep->id_bmsafemap->sm_buf;
12976			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12977			if (bp == NULL)
12978				goto retry;
12979			FREE_LOCK(ump);
12980			if ((error = bwrite(bp)) != 0)
12981				break;
12982			ACQUIRE_LOCK(ump);
12983			if (dap != LIST_FIRST(diraddhdp))
12984				continue;
12985		}
12986		/*
12987		 * If the inode is still sitting in a buffer waiting
12988		 * to be written or waiting for the link count to be
12989		 * adjusted update it here to flush it to disk.
12990		 */
12991		if (dap == LIST_FIRST(diraddhdp)) {
12992			FREE_LOCK(ump);
12993			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12994			    FFSV_FORCEINSMQ)))
12995				break;
12996			error = ffs_update(vp, 1);
12997			vput(vp);
12998			if (error)
12999				break;
13000			ACQUIRE_LOCK(ump);
13001		}
13002		/*
13003		 * If we have failed to get rid of all the dependencies
13004		 * then something is seriously wrong.
13005		 */
13006		if (dap == LIST_FIRST(diraddhdp)) {
13007			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13008			panic("flush_pagedep_deps: failed to flush "
13009			    "inodedep %p ino %ju dap %p",
13010			    inodedep, (uintmax_t)inum, dap);
13011		}
13012	}
13013	if (error)
13014		ACQUIRE_LOCK(ump);
13015	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13016		LIST_REMOVE(dap, da_pdlist);
13017		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13018	}
13019	return (error);
13020}
13021
13022/*
13023 * A large burst of file addition or deletion activity can drive the
13024 * memory load excessively high. First attempt to slow things down
13025 * using the techniques below. If that fails, this routine requests
13026 * the offending operations to fall back to running synchronously
13027 * until the memory load returns to a reasonable level.
13028 */
13029int
13030softdep_slowdown(vp)
13031	struct vnode *vp;
13032{
13033	struct ufsmount *ump;
13034	int jlow;
13035	int max_softdeps_hard;
13036
13037	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13038	    ("softdep_slowdown called on non-softdep filesystem"));
13039	ump = VFSTOUFS(vp->v_mount);
13040	ACQUIRE_LOCK(ump);
13041	jlow = 0;
13042	/*
13043	 * Check for journal space if needed.
13044	 */
13045	if (DOINGSUJ(vp)) {
13046		if (journal_space(ump, 0) == 0)
13047			jlow = 1;
13048	}
13049	/*
13050	 * If the system is under its limits and our filesystem is
13051	 * not responsible for more than our share of the usage and
13052	 * we are not low on journal space, then no need to slow down.
13053	 */
13054	max_softdeps_hard = max_softdeps * 11 / 10;
13055	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13056	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13057	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13058	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13059	    ump->softdep_curdeps[D_DIRREM] <
13060	    (max_softdeps_hard / 2) / stat_flush_threads &&
13061	    ump->softdep_curdeps[D_INODEDEP] <
13062	    max_softdeps_hard / stat_flush_threads &&
13063	    ump->softdep_curdeps[D_INDIRDEP] <
13064	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13065	    ump->softdep_curdeps[D_FREEBLKS] <
13066	    max_softdeps_hard / stat_flush_threads) {
13067		FREE_LOCK(ump);
13068  		return (0);
13069	}
13070	/*
13071	 * If the journal is low or our filesystem is over its limit
13072	 * then speedup the cleanup.
13073	 */
13074	if (ump->softdep_curdeps[D_INDIRDEP] <
13075	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13076		softdep_speedup(ump);
13077	stat_sync_limit_hit += 1;
13078	FREE_LOCK(ump);
13079	/*
13080	 * We only slow down the rate at which new dependencies are
13081	 * generated if we are not using journaling. With journaling,
13082	 * the cleanup should always be sufficient to keep things
13083	 * under control.
13084	 */
13085	if (DOINGSUJ(vp))
13086		return (0);
13087	return (1);
13088}
13089
13090/*
13091 * Called by the allocation routines when they are about to fail
13092 * in the hope that we can free up the requested resource (inodes
13093 * or disk space).
13094 *
13095 * First check to see if the work list has anything on it. If it has,
13096 * clean up entries until we successfully free the requested resource.
13097 * Because this process holds inodes locked, we cannot handle any remove
13098 * requests that might block on a locked inode as that could lead to
13099 * deadlock. If the worklist yields none of the requested resource,
13100 * start syncing out vnodes to free up the needed space.
13101 */
13102int
13103softdep_request_cleanup(fs, vp, cred, resource)
13104	struct fs *fs;
13105	struct vnode *vp;
13106	struct ucred *cred;
13107	int resource;
13108{
13109	struct ufsmount *ump;
13110	struct mount *mp;
13111	struct vnode *lvp, *mvp;
13112	long starttime;
13113	ufs2_daddr_t needed;
13114	int error;
13115
13116	/*
13117	 * If we are being called because of a process doing a
13118	 * copy-on-write, then it is not safe to process any
13119	 * worklist items as we will recurse into the copyonwrite
13120	 * routine.  This will result in an incoherent snapshot.
13121	 * If the vnode that we hold is a snapshot, we must avoid
13122	 * handling other resources that could cause deadlock.
13123	 */
13124	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13125		return (0);
13126
13127	if (resource == FLUSH_BLOCKS_WAIT)
13128		stat_cleanup_blkrequests += 1;
13129	else
13130		stat_cleanup_inorequests += 1;
13131
13132	mp = vp->v_mount;
13133	ump = VFSTOUFS(mp);
13134	mtx_assert(UFS_MTX(ump), MA_OWNED);
13135	UFS_UNLOCK(ump);
13136	error = ffs_update(vp, 1);
13137	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13138		UFS_LOCK(ump);
13139		return (0);
13140	}
13141	/*
13142	 * If we are in need of resources, start by cleaning up
13143	 * any block removals associated with our inode.
13144	 */
13145	ACQUIRE_LOCK(ump);
13146	process_removes(vp);
13147	process_truncates(vp);
13148	FREE_LOCK(ump);
13149	/*
13150	 * Now clean up at least as many resources as we will need.
13151	 *
13152	 * When requested to clean up inodes, the number that are needed
13153	 * is set by the number of simultaneous writers (mnt_writeopcount)
13154	 * plus a bit of slop (2) in case some more writers show up while
13155	 * we are cleaning.
13156	 *
13157	 * When requested to free up space, the amount of space that
13158	 * we need is enough blocks to allocate a full-sized segment
13159	 * (fs_contigsumsize). The number of such segments that will
13160	 * be needed is set by the number of simultaneous writers
13161	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13162	 * writers show up while we are cleaning.
13163	 *
13164	 * Additionally, if we are unpriviledged and allocating space,
13165	 * we need to ensure that we clean up enough blocks to get the
13166	 * needed number of blocks over the threshhold of the minimum
13167	 * number of blocks required to be kept free by the filesystem
13168	 * (fs_minfree).
13169	 */
13170	if (resource == FLUSH_INODES_WAIT) {
13171		needed = vp->v_mount->mnt_writeopcount + 2;
13172	} else if (resource == FLUSH_BLOCKS_WAIT) {
13173		needed = (vp->v_mount->mnt_writeopcount + 2) *
13174		    fs->fs_contigsumsize;
13175		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
13176			needed += fragstoblks(fs,
13177			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13178			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13179	} else {
13180		UFS_LOCK(ump);
13181		printf("softdep_request_cleanup: Unknown resource type %d\n",
13182		    resource);
13183		return (0);
13184	}
13185	starttime = time_second;
13186retry:
13187	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13188	    fs->fs_cstotal.cs_nbfree <= needed) ||
13189	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13190	    fs->fs_cstotal.cs_nifree <= needed)) {
13191		ACQUIRE_LOCK(ump);
13192		if (ump->softdep_on_worklist > 0 &&
13193		    process_worklist_item(UFSTOVFS(ump),
13194		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13195			stat_worklist_push += 1;
13196		FREE_LOCK(ump);
13197	}
13198	/*
13199	 * If we still need resources and there are no more worklist
13200	 * entries to process to obtain them, we have to start flushing
13201	 * the dirty vnodes to force the release of additional requests
13202	 * to the worklist that we can then process to reap addition
13203	 * resources. We walk the vnodes associated with the mount point
13204	 * until we get the needed worklist requests that we can reap.
13205	 */
13206	if ((resource == FLUSH_BLOCKS_WAIT &&
13207	     fs->fs_cstotal.cs_nbfree <= needed) ||
13208	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13209	     fs->fs_cstotal.cs_nifree <= needed)) {
13210		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13211			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13212				VI_UNLOCK(lvp);
13213				continue;
13214			}
13215			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13216			    curthread))
13217				continue;
13218			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13219				vput(lvp);
13220				continue;
13221			}
13222			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13223			vput(lvp);
13224		}
13225		lvp = ump->um_devvp;
13226		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13227			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
13228			VOP_UNLOCK(lvp, 0);
13229		}
13230		if (ump->softdep_on_worklist > 0) {
13231			stat_cleanup_retries += 1;
13232			goto retry;
13233		}
13234		stat_cleanup_failures += 1;
13235	}
13236	if (time_second - starttime > stat_cleanup_high_delay)
13237		stat_cleanup_high_delay = time_second - starttime;
13238	UFS_LOCK(ump);
13239	return (1);
13240}
13241
13242/*
13243 * If memory utilization has gotten too high, deliberately slow things
13244 * down and speed up the I/O processing.
13245 */
13246static int
13247request_cleanup(mp, resource)
13248	struct mount *mp;
13249	int resource;
13250{
13251	struct thread *td = curthread;
13252	struct ufsmount *ump;
13253
13254	ump = VFSTOUFS(mp);
13255	LOCK_OWNED(ump);
13256	/*
13257	 * We never hold up the filesystem syncer or buf daemon.
13258	 */
13259	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13260		return (0);
13261	/*
13262	 * First check to see if the work list has gotten backlogged.
13263	 * If it has, co-opt this process to help clean up two entries.
13264	 * Because this process may hold inodes locked, we cannot
13265	 * handle any remove requests that might block on a locked
13266	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13267	 * to avoid recursively processing the worklist.
13268	 */
13269	if (ump->softdep_on_worklist > max_softdeps / 10) {
13270		td->td_pflags |= TDP_SOFTDEP;
13271		process_worklist_item(mp, 2, LK_NOWAIT);
13272		td->td_pflags &= ~TDP_SOFTDEP;
13273		stat_worklist_push += 2;
13274		return(1);
13275	}
13276	/*
13277	 * Next, we attempt to speed up the syncer process. If that
13278	 * is successful, then we allow the process to continue.
13279	 */
13280	if (softdep_speedup(ump) &&
13281	    resource != FLUSH_BLOCKS_WAIT &&
13282	    resource != FLUSH_INODES_WAIT)
13283		return(0);
13284	/*
13285	 * If we are resource constrained on inode dependencies, try
13286	 * flushing some dirty inodes. Otherwise, we are constrained
13287	 * by file deletions, so try accelerating flushes of directories
13288	 * with removal dependencies. We would like to do the cleanup
13289	 * here, but we probably hold an inode locked at this point and
13290	 * that might deadlock against one that we try to clean. So,
13291	 * the best that we can do is request the syncer daemon to do
13292	 * the cleanup for us.
13293	 */
13294	switch (resource) {
13295
13296	case FLUSH_INODES:
13297	case FLUSH_INODES_WAIT:
13298		ACQUIRE_GBLLOCK(&lk);
13299		stat_ino_limit_push += 1;
13300		req_clear_inodedeps += 1;
13301		FREE_GBLLOCK(&lk);
13302		stat_countp = &stat_ino_limit_hit;
13303		break;
13304
13305	case FLUSH_BLOCKS:
13306	case FLUSH_BLOCKS_WAIT:
13307		ACQUIRE_GBLLOCK(&lk);
13308		stat_blk_limit_push += 1;
13309		req_clear_remove += 1;
13310		FREE_GBLLOCK(&lk);
13311		stat_countp = &stat_blk_limit_hit;
13312		break;
13313
13314	default:
13315		panic("request_cleanup: unknown type");
13316	}
13317	/*
13318	 * Hopefully the syncer daemon will catch up and awaken us.
13319	 * We wait at most tickdelay before proceeding in any case.
13320	 */
13321	ACQUIRE_GBLLOCK(&lk);
13322	FREE_LOCK(ump);
13323	proc_waiting += 1;
13324	if (callout_pending(&softdep_callout) == FALSE)
13325		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13326		    pause_timer, 0);
13327
13328	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13329	proc_waiting -= 1;
13330	FREE_GBLLOCK(&lk);
13331	ACQUIRE_LOCK(ump);
13332	return (1);
13333}
13334
13335/*
13336 * Awaken processes pausing in request_cleanup and clear proc_waiting
13337 * to indicate that there is no longer a timer running. Pause_timer
13338 * will be called with the global softdep mutex (&lk) locked.
13339 */
13340static void
13341pause_timer(arg)
13342	void *arg;
13343{
13344
13345	GBLLOCK_OWNED(&lk);
13346	/*
13347	 * The callout_ API has acquired mtx and will hold it around this
13348	 * function call.
13349	 */
13350	*stat_countp += proc_waiting;
13351	wakeup(&proc_waiting);
13352}
13353
13354/*
13355 * If requested, try removing inode or removal dependencies.
13356 */
13357static void
13358check_clear_deps(mp)
13359	struct mount *mp;
13360{
13361
13362	/*
13363	 * If we are suspended, it may be because of our using
13364	 * too many inodedeps, so help clear them out.
13365	 */
13366	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13367		clear_inodedeps(mp);
13368	/*
13369	 * General requests for cleanup of backed up dependencies
13370	 */
13371	ACQUIRE_GBLLOCK(&lk);
13372	if (req_clear_inodedeps) {
13373		req_clear_inodedeps -= 1;
13374		FREE_GBLLOCK(&lk);
13375		clear_inodedeps(mp);
13376		ACQUIRE_GBLLOCK(&lk);
13377		wakeup(&proc_waiting);
13378	}
13379	if (req_clear_remove) {
13380		req_clear_remove -= 1;
13381		FREE_GBLLOCK(&lk);
13382		clear_remove(mp);
13383		ACQUIRE_GBLLOCK(&lk);
13384		wakeup(&proc_waiting);
13385	}
13386	FREE_GBLLOCK(&lk);
13387}
13388
13389/*
13390 * Flush out a directory with at least one removal dependency in an effort to
13391 * reduce the number of dirrem, freefile, and freeblks dependency structures.
13392 */
13393static void
13394clear_remove(mp)
13395	struct mount *mp;
13396{
13397	struct pagedep_hashhead *pagedephd;
13398	struct pagedep *pagedep;
13399	struct ufsmount *ump;
13400	struct vnode *vp;
13401	struct bufobj *bo;
13402	int error, cnt;
13403	ino_t ino;
13404
13405	ump = VFSTOUFS(mp);
13406	LOCK_OWNED(ump);
13407
13408	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13409		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13410		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13411			ump->pagedep_nextclean = 0;
13412		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13413			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13414				continue;
13415			ino = pagedep->pd_ino;
13416			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13417				continue;
13418			FREE_LOCK(ump);
13419
13420			/*
13421			 * Let unmount clear deps
13422			 */
13423			error = vfs_busy(mp, MBF_NOWAIT);
13424			if (error != 0)
13425				goto finish_write;
13426			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13427			     FFSV_FORCEINSMQ);
13428			vfs_unbusy(mp);
13429			if (error != 0) {
13430				softdep_error("clear_remove: vget", error);
13431				goto finish_write;
13432			}
13433			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13434				softdep_error("clear_remove: fsync", error);
13435			bo = &vp->v_bufobj;
13436			BO_LOCK(bo);
13437			drain_output(vp);
13438			BO_UNLOCK(bo);
13439			vput(vp);
13440		finish_write:
13441			vn_finished_write(mp);
13442			ACQUIRE_LOCK(ump);
13443			return;
13444		}
13445	}
13446}
13447
13448/*
13449 * Clear out a block of dirty inodes in an effort to reduce
13450 * the number of inodedep dependency structures.
13451 */
13452static void
13453clear_inodedeps(mp)
13454	struct mount *mp;
13455{
13456	struct inodedep_hashhead *inodedephd;
13457	struct inodedep *inodedep;
13458	struct ufsmount *ump;
13459	struct vnode *vp;
13460	struct fs *fs;
13461	int error, cnt;
13462	ino_t firstino, lastino, ino;
13463
13464	ump = VFSTOUFS(mp);
13465	fs = ump->um_fs;
13466	LOCK_OWNED(ump);
13467	/*
13468	 * Pick a random inode dependency to be cleared.
13469	 * We will then gather up all the inodes in its block
13470	 * that have dependencies and flush them out.
13471	 */
13472	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13473		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13474		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13475			ump->inodedep_nextclean = 0;
13476		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13477			break;
13478	}
13479	if (inodedep == NULL)
13480		return;
13481	/*
13482	 * Find the last inode in the block with dependencies.
13483	 */
13484	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
13485	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13486		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13487			break;
13488	/*
13489	 * Asynchronously push all but the last inode with dependencies.
13490	 * Synchronously push the last inode with dependencies to ensure
13491	 * that the inode block gets written to free up the inodedeps.
13492	 */
13493	for (ino = firstino; ino <= lastino; ino++) {
13494		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13495			continue;
13496		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13497			continue;
13498		FREE_LOCK(ump);
13499		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13500		if (error != 0) {
13501			vn_finished_write(mp);
13502			ACQUIRE_LOCK(ump);
13503			return;
13504		}
13505		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13506		    FFSV_FORCEINSMQ)) != 0) {
13507			softdep_error("clear_inodedeps: vget", error);
13508			vfs_unbusy(mp);
13509			vn_finished_write(mp);
13510			ACQUIRE_LOCK(ump);
13511			return;
13512		}
13513		vfs_unbusy(mp);
13514		if (ino == lastino) {
13515			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13516				softdep_error("clear_inodedeps: fsync1", error);
13517		} else {
13518			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13519				softdep_error("clear_inodedeps: fsync2", error);
13520			BO_LOCK(&vp->v_bufobj);
13521			drain_output(vp);
13522			BO_UNLOCK(&vp->v_bufobj);
13523		}
13524		vput(vp);
13525		vn_finished_write(mp);
13526		ACQUIRE_LOCK(ump);
13527	}
13528}
13529
13530void
13531softdep_buf_append(bp, wkhd)
13532	struct buf *bp;
13533	struct workhead *wkhd;
13534{
13535	struct worklist *wk;
13536	struct ufsmount *ump;
13537
13538	if ((wk = LIST_FIRST(wkhd)) == NULL)
13539		return;
13540	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13541	    ("softdep_buf_append called on non-softdep filesystem"));
13542	ump = VFSTOUFS(wk->wk_mp);
13543	ACQUIRE_LOCK(ump);
13544	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13545		WORKLIST_REMOVE(wk);
13546		WORKLIST_INSERT(&bp->b_dep, wk);
13547	}
13548	FREE_LOCK(ump);
13549
13550}
13551
13552void
13553softdep_inode_append(ip, cred, wkhd)
13554	struct inode *ip;
13555	struct ucred *cred;
13556	struct workhead *wkhd;
13557{
13558	struct buf *bp;
13559	struct fs *fs;
13560	int error;
13561
13562	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
13563	    ("softdep_inode_append called on non-softdep filesystem"));
13564	fs = ip->i_fs;
13565	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13566	    (int)fs->fs_bsize, cred, &bp);
13567	if (error) {
13568		bqrelse(bp);
13569		softdep_freework(wkhd);
13570		return;
13571	}
13572	softdep_buf_append(bp, wkhd);
13573	bqrelse(bp);
13574}
13575
13576void
13577softdep_freework(wkhd)
13578	struct workhead *wkhd;
13579{
13580	struct worklist *wk;
13581	struct ufsmount *ump;
13582
13583	if ((wk = LIST_FIRST(wkhd)) == NULL)
13584		return;
13585	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13586	    ("softdep_freework called on non-softdep filesystem"));
13587	ump = VFSTOUFS(wk->wk_mp);
13588	ACQUIRE_LOCK(ump);
13589	handle_jwork(wkhd);
13590	FREE_LOCK(ump);
13591}
13592
13593/*
13594 * Function to determine if the buffer has outstanding dependencies
13595 * that will cause a roll-back if the buffer is written. If wantcount
13596 * is set, return number of dependencies, otherwise just yes or no.
13597 */
13598static int
13599softdep_count_dependencies(bp, wantcount)
13600	struct buf *bp;
13601	int wantcount;
13602{
13603	struct worklist *wk;
13604	struct ufsmount *ump;
13605	struct bmsafemap *bmsafemap;
13606	struct freework *freework;
13607	struct inodedep *inodedep;
13608	struct indirdep *indirdep;
13609	struct freeblks *freeblks;
13610	struct allocindir *aip;
13611	struct pagedep *pagedep;
13612	struct dirrem *dirrem;
13613	struct newblk *newblk;
13614	struct mkdir *mkdir;
13615	struct diradd *dap;
13616	int i, retval;
13617
13618	retval = 0;
13619	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
13620		return (0);
13621	ump = VFSTOUFS(wk->wk_mp);
13622	ACQUIRE_LOCK(ump);
13623	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13624		switch (wk->wk_type) {
13625
13626		case D_INODEDEP:
13627			inodedep = WK_INODEDEP(wk);
13628			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13629				/* bitmap allocation dependency */
13630				retval += 1;
13631				if (!wantcount)
13632					goto out;
13633			}
13634			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13635				/* direct block pointer dependency */
13636				retval += 1;
13637				if (!wantcount)
13638					goto out;
13639			}
13640			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13641				/* direct block pointer dependency */
13642				retval += 1;
13643				if (!wantcount)
13644					goto out;
13645			}
13646			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13647				/* Add reference dependency. */
13648				retval += 1;
13649				if (!wantcount)
13650					goto out;
13651			}
13652			continue;
13653
13654		case D_INDIRDEP:
13655			indirdep = WK_INDIRDEP(wk);
13656
13657			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13658				/* indirect truncation dependency */
13659				retval += 1;
13660				if (!wantcount)
13661					goto out;
13662			}
13663
13664			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13665				/* indirect block pointer dependency */
13666				retval += 1;
13667				if (!wantcount)
13668					goto out;
13669			}
13670			continue;
13671
13672		case D_PAGEDEP:
13673			pagedep = WK_PAGEDEP(wk);
13674			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13675				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13676					/* Journal remove ref dependency. */
13677					retval += 1;
13678					if (!wantcount)
13679						goto out;
13680				}
13681			}
13682			for (i = 0; i < DAHASHSZ; i++) {
13683
13684				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13685					/* directory entry dependency */
13686					retval += 1;
13687					if (!wantcount)
13688						goto out;
13689				}
13690			}
13691			continue;
13692
13693		case D_BMSAFEMAP:
13694			bmsafemap = WK_BMSAFEMAP(wk);
13695			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13696				/* Add reference dependency. */
13697				retval += 1;
13698				if (!wantcount)
13699					goto out;
13700			}
13701			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13702				/* Allocate block dependency. */
13703				retval += 1;
13704				if (!wantcount)
13705					goto out;
13706			}
13707			continue;
13708
13709		case D_FREEBLKS:
13710			freeblks = WK_FREEBLKS(wk);
13711			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13712				/* Freeblk journal dependency. */
13713				retval += 1;
13714				if (!wantcount)
13715					goto out;
13716			}
13717			continue;
13718
13719		case D_ALLOCDIRECT:
13720		case D_ALLOCINDIR:
13721			newblk = WK_NEWBLK(wk);
13722			if (newblk->nb_jnewblk) {
13723				/* Journal allocate dependency. */
13724				retval += 1;
13725				if (!wantcount)
13726					goto out;
13727			}
13728			continue;
13729
13730		case D_MKDIR:
13731			mkdir = WK_MKDIR(wk);
13732			if (mkdir->md_jaddref) {
13733				/* Journal reference dependency. */
13734				retval += 1;
13735				if (!wantcount)
13736					goto out;
13737			}
13738			continue;
13739
13740		case D_FREEWORK:
13741		case D_FREEDEP:
13742		case D_JSEGDEP:
13743		case D_JSEG:
13744		case D_SBDEP:
13745			/* never a dependency on these blocks */
13746			continue;
13747
13748		default:
13749			panic("softdep_count_dependencies: Unexpected type %s",
13750			    TYPENAME(wk->wk_type));
13751			/* NOTREACHED */
13752		}
13753	}
13754out:
13755	FREE_LOCK(ump);
13756	return retval;
13757}
13758
13759/*
13760 * Acquire exclusive access to a buffer.
13761 * Must be called with a locked mtx parameter.
13762 * Return acquired buffer or NULL on failure.
13763 */
13764static struct buf *
13765getdirtybuf(bp, lock, waitfor)
13766	struct buf *bp;
13767	struct rwlock *lock;
13768	int waitfor;
13769{
13770	int error;
13771
13772	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13773		if (waitfor != MNT_WAIT)
13774			return (NULL);
13775		error = BUF_LOCK(bp,
13776		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
13777		/*
13778		 * Even if we sucessfully acquire bp here, we have dropped
13779		 * lock, which may violates our guarantee.
13780		 */
13781		if (error == 0)
13782			BUF_UNLOCK(bp);
13783		else if (error != ENOLCK)
13784			panic("getdirtybuf: inconsistent lock: %d", error);
13785		rw_wlock(lock);
13786		return (NULL);
13787	}
13788	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13789		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
13790			rw_wunlock(lock);
13791			BO_LOCK(bp->b_bufobj);
13792			BUF_UNLOCK(bp);
13793			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13794				bp->b_vflags |= BV_BKGRDWAIT;
13795				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
13796				       PRIBIO | PDROP, "getbuf", 0);
13797			} else
13798				BO_UNLOCK(bp->b_bufobj);
13799			rw_wlock(lock);
13800			return (NULL);
13801		}
13802		BUF_UNLOCK(bp);
13803		if (waitfor != MNT_WAIT)
13804			return (NULL);
13805		/*
13806		 * The lock argument must be bp->b_vp's mutex in
13807		 * this case.
13808		 */
13809#ifdef	DEBUG_VFS_LOCKS
13810		if (bp->b_vp->v_type != VCHR)
13811			ASSERT_BO_WLOCKED(bp->b_bufobj);
13812#endif
13813		bp->b_vflags |= BV_BKGRDWAIT;
13814		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
13815		return (NULL);
13816	}
13817	if ((bp->b_flags & B_DELWRI) == 0) {
13818		BUF_UNLOCK(bp);
13819		return (NULL);
13820	}
13821	bremfree(bp);
13822	return (bp);
13823}
13824
13825
13826/*
13827 * Check if it is safe to suspend the file system now.  On entry,
13828 * the vnode interlock for devvp should be held.  Return 0 with
13829 * the mount interlock held if the file system can be suspended now,
13830 * otherwise return EAGAIN with the mount interlock held.
13831 */
13832int
13833softdep_check_suspend(struct mount *mp,
13834		      struct vnode *devvp,
13835		      int softdep_depcnt,
13836		      int softdep_accdepcnt,
13837		      int secondary_writes,
13838		      int secondary_accwrites)
13839{
13840	struct bufobj *bo;
13841	struct ufsmount *ump;
13842	int error;
13843
13844	bo = &devvp->v_bufobj;
13845	ASSERT_BO_WLOCKED(bo);
13846
13847	/*
13848	 * If we are not running with soft updates, then we need only
13849	 * deal with secondary writes as we try to suspend.
13850	 */
13851	if (MOUNTEDSOFTDEP(mp) == 0) {
13852		MNT_ILOCK(mp);
13853		while (mp->mnt_secondary_writes != 0) {
13854			BO_UNLOCK(bo);
13855			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
13856			    (PUSER - 1) | PDROP, "secwr", 0);
13857			BO_LOCK(bo);
13858			MNT_ILOCK(mp);
13859		}
13860
13861		/*
13862		 * Reasons for needing more work before suspend:
13863		 * - Dirty buffers on devvp.
13864		 * - Secondary writes occurred after start of vnode sync loop
13865		 */
13866		error = 0;
13867		if (bo->bo_numoutput > 0 ||
13868		    bo->bo_dirty.bv_cnt > 0 ||
13869		    secondary_writes != 0 ||
13870		    mp->mnt_secondary_writes != 0 ||
13871		    secondary_accwrites != mp->mnt_secondary_accwrites)
13872			error = EAGAIN;
13873		BO_UNLOCK(bo);
13874		return (error);
13875	}
13876
13877	/*
13878	 * If we are running with soft updates, then we need to coordinate
13879	 * with them as we try to suspend.
13880	 */
13881	ump = VFSTOUFS(mp);
13882	for (;;) {
13883		if (!TRY_ACQUIRE_LOCK(ump)) {
13884			BO_UNLOCK(bo);
13885			ACQUIRE_LOCK(ump);
13886			FREE_LOCK(ump);
13887			BO_LOCK(bo);
13888			continue;
13889		}
13890		MNT_ILOCK(mp);
13891		if (mp->mnt_secondary_writes != 0) {
13892			FREE_LOCK(ump);
13893			BO_UNLOCK(bo);
13894			msleep(&mp->mnt_secondary_writes,
13895			       MNT_MTX(mp),
13896			       (PUSER - 1) | PDROP, "secwr", 0);
13897			BO_LOCK(bo);
13898			continue;
13899		}
13900		break;
13901	}
13902
13903	/*
13904	 * Reasons for needing more work before suspend:
13905	 * - Dirty buffers on devvp.
13906	 * - Softdep activity occurred after start of vnode sync loop
13907	 * - Secondary writes occurred after start of vnode sync loop
13908	 */
13909	error = 0;
13910	if (bo->bo_numoutput > 0 ||
13911	    bo->bo_dirty.bv_cnt > 0 ||
13912	    softdep_depcnt != 0 ||
13913	    ump->softdep_deps != 0 ||
13914	    softdep_accdepcnt != ump->softdep_accdeps ||
13915	    secondary_writes != 0 ||
13916	    mp->mnt_secondary_writes != 0 ||
13917	    secondary_accwrites != mp->mnt_secondary_accwrites)
13918		error = EAGAIN;
13919	FREE_LOCK(ump);
13920	BO_UNLOCK(bo);
13921	return (error);
13922}
13923
13924
13925/*
13926 * Get the number of dependency structures for the file system, both
13927 * the current number and the total number allocated.  These will
13928 * later be used to detect that softdep processing has occurred.
13929 */
13930void
13931softdep_get_depcounts(struct mount *mp,
13932		      int *softdep_depsp,
13933		      int *softdep_accdepsp)
13934{
13935	struct ufsmount *ump;
13936
13937	if (MOUNTEDSOFTDEP(mp) == 0) {
13938		*softdep_depsp = 0;
13939		*softdep_accdepsp = 0;
13940		return;
13941	}
13942	ump = VFSTOUFS(mp);
13943	ACQUIRE_LOCK(ump);
13944	*softdep_depsp = ump->softdep_deps;
13945	*softdep_accdepsp = ump->softdep_accdeps;
13946	FREE_LOCK(ump);
13947}
13948
13949/*
13950 * Wait for pending output on a vnode to complete.
13951 * Must be called with vnode lock and interlock locked.
13952 *
13953 * XXX: Should just be a call to bufobj_wwait().
13954 */
13955static void
13956drain_output(vp)
13957	struct vnode *vp;
13958{
13959	struct bufobj *bo;
13960
13961	bo = &vp->v_bufobj;
13962	ASSERT_VOP_LOCKED(vp, "drain_output");
13963	ASSERT_BO_WLOCKED(bo);
13964
13965	while (bo->bo_numoutput) {
13966		bo->bo_flag |= BO_WWAIT;
13967		msleep((caddr_t)&bo->bo_numoutput,
13968		    BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0);
13969	}
13970}
13971
13972/*
13973 * Called whenever a buffer that is being invalidated or reallocated
13974 * contains dependencies. This should only happen if an I/O error has
13975 * occurred. The routine is called with the buffer locked.
13976 */
13977static void
13978softdep_deallocate_dependencies(bp)
13979	struct buf *bp;
13980{
13981
13982	if ((bp->b_ioflags & BIO_ERROR) == 0)
13983		panic("softdep_deallocate_dependencies: dangling deps");
13984	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
13985		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
13986	else
13987		printf("softdep_deallocate_dependencies: "
13988		    "got error %d while accessing filesystem\n", bp->b_error);
13989	if (bp->b_error != ENXIO)
13990		panic("softdep_deallocate_dependencies: unrecovered I/O error");
13991}
13992
13993/*
13994 * Function to handle asynchronous write errors in the filesystem.
13995 */
13996static void
13997softdep_error(func, error)
13998	char *func;
13999	int error;
14000{
14001
14002	/* XXX should do something better! */
14003	printf("%s: got error %d while accessing filesystem\n", func, error);
14004}
14005
14006#ifdef DDB
14007
14008static void
14009inodedep_print(struct inodedep *inodedep, int verbose)
14010{
14011	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
14012	    " saveino %p\n",
14013	    inodedep, inodedep->id_fs, inodedep->id_state,
14014	    (intmax_t)inodedep->id_ino,
14015	    (intmax_t)fsbtodb(inodedep->id_fs,
14016	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14017	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
14018	    inodedep->id_savedino1);
14019
14020	if (verbose == 0)
14021		return;
14022
14023	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
14024	    "mkdiradd %p\n",
14025	    LIST_FIRST(&inodedep->id_pendinghd),
14026	    LIST_FIRST(&inodedep->id_bufwait),
14027	    LIST_FIRST(&inodedep->id_inowait),
14028	    TAILQ_FIRST(&inodedep->id_inoreflst),
14029	    inodedep->id_mkdiradd);
14030	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
14031	    TAILQ_FIRST(&inodedep->id_inoupdt),
14032	    TAILQ_FIRST(&inodedep->id_newinoupdt),
14033	    TAILQ_FIRST(&inodedep->id_extupdt),
14034	    TAILQ_FIRST(&inodedep->id_newextupdt));
14035}
14036
14037DB_SHOW_COMMAND(inodedep, db_show_inodedep)
14038{
14039
14040	if (have_addr == 0) {
14041		db_printf("Address required\n");
14042		return;
14043	}
14044	inodedep_print((struct inodedep*)addr, 1);
14045}
14046
14047DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
14048{
14049	struct inodedep_hashhead *inodedephd;
14050	struct inodedep *inodedep;
14051	struct ufsmount *ump;
14052	int cnt;
14053
14054	if (have_addr == 0) {
14055		db_printf("Address required\n");
14056		return;
14057	}
14058	ump = (struct ufsmount *)addr;
14059	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14060		inodedephd = &ump->inodedep_hashtbl[cnt];
14061		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14062			inodedep_print(inodedep, 0);
14063		}
14064	}
14065}
14066
14067DB_SHOW_COMMAND(worklist, db_show_worklist)
14068{
14069	struct worklist *wk;
14070
14071	if (have_addr == 0) {
14072		db_printf("Address required\n");
14073		return;
14074	}
14075	wk = (struct worklist *)addr;
14076	printf("worklist: %p type %s state 0x%X\n",
14077	    wk, TYPENAME(wk->wk_type), wk->wk_state);
14078}
14079
14080DB_SHOW_COMMAND(workhead, db_show_workhead)
14081{
14082	struct workhead *wkhd;
14083	struct worklist *wk;
14084	int i;
14085
14086	if (have_addr == 0) {
14087		db_printf("Address required\n");
14088		return;
14089	}
14090	wkhd = (struct workhead *)addr;
14091	wk = LIST_FIRST(wkhd);
14092	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
14093		db_printf("worklist: %p type %s state 0x%X",
14094		    wk, TYPENAME(wk->wk_type), wk->wk_state);
14095	if (i == 100)
14096		db_printf("workhead overflow");
14097	printf("\n");
14098}
14099
14100
14101DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
14102{
14103	struct mkdirlist *mkdirlisthd;
14104	struct jaddref *jaddref;
14105	struct diradd *diradd;
14106	struct mkdir *mkdir;
14107
14108	if (have_addr == 0) {
14109		db_printf("Address required\n");
14110		return;
14111	}
14112	mkdirlisthd = (struct mkdirlist *)addr;
14113	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14114		diradd = mkdir->md_diradd;
14115		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
14116		    mkdir, mkdir->md_state, diradd, diradd->da_state);
14117		if ((jaddref = mkdir->md_jaddref) != NULL)
14118			db_printf(" jaddref %p jaddref state 0x%X",
14119			    jaddref, jaddref->ja_state);
14120		db_printf("\n");
14121	}
14122}
14123
14124/* exported to ffs_vfsops.c */
14125extern void db_print_ffs(struct ufsmount *ump);
14126void
14127db_print_ffs(struct ufsmount *ump)
14128{
14129	db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n",
14130	    ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname,
14131	    ump->um_devvp, ump->um_fs, ump->softdep_on_worklist,
14132	    ump->softdep_deps, ump->softdep_req);
14133}
14134
14135#endif /* DDB */
14136
14137#endif /* SOFTUPDATES */
14138