vm_machdep.c revision 36865
1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 *	$Id: vm_machdep.c,v 1.1 1998/06/10 10:53:40 dfr Exp $
42 */
43/*
44 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Author: Chris G. Demetriou
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/proc.h>
73#include <sys/malloc.h>
74#include <sys/buf.h>
75#include <sys/vnode.h>
76#include <sys/vmmeter.h>
77#include <sys/kernel.h>
78#include <sys/sysctl.h>
79
80#include <machine/clock.h>
81#include <machine/cpu.h>
82#include <machine/md_var.h>
83#include <machine/prom.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/vm_prot.h>
88#include <sys/lock.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_page.h>
91#include <vm/vm_map.h>
92#include <vm/vm_extern.h>
93
94#include <sys/user.h>
95
96/*
97 * quick version of vm_fault
98 */
99void
100vm_fault_quick(v, prot)
101	caddr_t v;
102	int prot;
103{
104	if (prot & VM_PROT_WRITE)
105		subyte(v, fubyte(v));
106	else
107		fubyte(v);
108}
109
110/*
111 * Finish a fork operation, with process p2 nearly set up.
112 * Copy and update the pcb, set up the stack so that the child
113 * ready to run and return to user mode.
114 */
115void
116cpu_fork(p1, p2)
117	register struct proc *p1, *p2;
118{
119	struct user *up = p2->p_addr;
120	int i;
121
122	p2->p_md.md_tf = p1->p_md.md_tf;
123	p2->p_md.md_flags = p1->p_md.md_flags & MDP_FPUSED;
124
125	/*
126	 * Cache the physical address of the pcb, so we can
127	 * swap to it easily.
128	 */
129	p2->p_md.md_pcbpaddr = (void*) vtophys((vm_offset_t) &up->u_pcb);
130
131	/*
132	 * Simulate a write to the process's U-area pages,
133	 * so that the system doesn't lose badly.
134	 * (If this isn't done, the kernel can't read or
135	 * write the kernel stack.  "Ouch!")
136	 */
137	for (i = 0; i < UPAGES; i++)
138		pmap_emulate_reference(p2, (vm_offset_t)up + i * PAGE_SIZE,
139		    0, 1);
140
141	/*
142	 * Copy floating point state from the FP chip to the PCB
143	 * if this process has state stored there.
144	 */
145	if (p1 == fpcurproc) {
146		alpha_pal_wrfen(1);
147		savefpstate(&fpcurproc->p_addr->u_pcb.pcb_fp);
148		alpha_pal_wrfen(0);
149	}
150
151	/*
152	 * Copy pcb and stack from proc p1 to p2.
153	 * We do this as cheaply as possible, copying only the active
154	 * part of the stack.  The stack and pcb need to agree;
155	 */
156	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
157	p2->p_addr->u_pcb.pcb_hw.apcb_usp = alpha_pal_rdusp();
158
159	/*
160	 * Arrange for a non-local goto when the new process
161	 * is started, to resume here, returning nonzero from setjmp.
162	 */
163#ifdef DIAGNOSTIC
164	if (p1 != curproc)
165		panic("cpu_fork: curproc");
166	if ((up->u_pcb.pcb_hw.apcb_flags & ALPHA_PCB_FLAGS_FEN) != 0)
167		printf("DANGER WILL ROBINSON: FEN SET IN cpu_fork!\n");
168#endif
169
170	/*
171	 * create the child's kernel stack, from scratch.
172	 */
173	{
174		struct trapframe *p2tf;
175
176		/*
177		 * Pick a stack pointer, leaving room for a trapframe;
178		 * copy trapframe from parent so return to user mode
179		 * will be to right address, with correct registers.
180		 */
181		p2tf = p2->p_md.md_tf = (struct trapframe *)
182		    ((char *)p2->p_addr + USPACE - sizeof(struct trapframe));
183		bcopy(p1->p_md.md_tf, p2->p_md.md_tf,
184		    sizeof(struct trapframe));
185
186		/*
187		 * Set up return-value registers as fork() libc stub expects.
188		 */
189		p2tf->tf_regs[FRAME_V0] = p1->p_pid;	/* parent's pid */
190		p2tf->tf_regs[FRAME_A3] = 0;		/* no error */
191		p2tf->tf_regs[FRAME_A4] = 1;		/* is child */
192
193		/*
194		 * Arrange for continuation at child_return(), which
195		 * will return to exception_return().  Note that the child
196		 * process doesn't stay in the kernel for long!
197		 *
198		 * This is an inlined version of cpu_set_kpc.
199		 */
200		up->u_pcb.pcb_hw.apcb_ksp = (u_int64_t)p2tf;
201		up->u_pcb.pcb_context[0] =
202		    (u_int64_t)child_return;		/* s0: pc */
203		up->u_pcb.pcb_context[1] =
204		    (u_int64_t)exception_return;	/* s1: ra */
205		up->u_pcb.pcb_context[2] = (u_long) p2;	/* s2: a0 */
206		up->u_pcb.pcb_context[7] =
207		    (u_int64_t)switch_trampoline;	/* ra: assembly magic */
208	}
209}
210
211/*
212 * Intercept the return address from a freshly forked process that has NOT
213 * been scheduled yet.
214 *
215 * This is needed to make kernel threads stay in kernel mode.
216 */
217void
218cpu_set_fork_handler(p, func, arg)
219	struct proc *p;
220	void (*func) __P((void *));
221	void *arg;
222{
223	/*
224	 * Note that the trap frame follows the args, so the function
225	 * is really called like this:  func(arg, frame);
226	 */
227	p->p_addr->u_pcb.pcb_context[0] = (u_long) func;
228	p->p_addr->u_pcb.pcb_context[2] = (u_long) arg;
229}
230
231/*
232 * cpu_exit is called as the last action during exit.
233 * We release the address space of the process, block interrupts,
234 * and call switch_exit.  switch_exit switches to proc0's PCB and stack,
235 * then jumps into the middle of cpu_switch, as if it were switching
236 * from proc0.
237 */
238void
239cpu_exit(p)
240	register struct proc *p;
241{
242	if (p == fpcurproc)
243		fpcurproc = NULL;
244
245	(void) splhigh();
246	cnt.v_swtch++;
247	cpu_switch(p);
248	panic("cpu_exit");
249}
250
251void
252cpu_wait(p)
253	struct proc *p;
254{
255	/* drop per-process resources */
256	pmap_dispose_proc(p);
257
258	/* and clean-out the vmspace */
259	vmspace_free(p->p_vmspace);
260}
261
262/*
263 * Dump the machine specific header information at the start of a core dump.
264 */
265int
266cpu_coredump(p, vp, cred)
267	struct proc *p;
268	struct vnode *vp;
269	struct ucred *cred;
270{
271
272	return (vn_rdwr(UIO_WRITE, vp, (caddr_t) p->p_addr, ctob(UPAGES),
273	    (off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)NULL,
274	    p));
275}
276
277#ifdef notyet
278static void
279setredzone(pte, vaddr)
280	u_short *pte;
281	caddr_t vaddr;
282{
283/* eventually do this by setting up an expand-down stack segment
284   for ss0: selector, allowing stack access down to top of u.
285   this means though that protection violations need to be handled
286   thru a double fault exception that must do an integral task
287   switch to a known good context, within which a dump can be
288   taken. a sensible scheme might be to save the initial context
289   used by sched (that has physical memory mapped 1:1 at bottom)
290   and take the dump while still in mapped mode */
291}
292#endif
293
294/*
295 * Map an IO request into kernel virtual address space.
296 *
297 * All requests are (re)mapped into kernel VA space.
298 * Notice that we use b_bufsize for the size of the buffer
299 * to be mapped.  b_bcount might be modified by the driver.
300 */
301void
302vmapbuf(bp)
303	register struct buf *bp;
304{
305	register caddr_t addr, v, kva;
306	vm_offset_t pa;
307
308	if ((bp->b_flags & B_PHYS) == 0)
309		panic("vmapbuf");
310
311	for (v = bp->b_saveaddr, addr = (caddr_t)trunc_page(bp->b_data);
312	    addr < bp->b_data + bp->b_bufsize;
313	    addr += PAGE_SIZE, v += PAGE_SIZE) {
314		/*
315		 * Do the vm_fault if needed; do the copy-on-write thing
316		 * when reading stuff off device into memory.
317		 */
318		vm_fault_quick(addr,
319			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
320		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
321		if (pa == 0)
322			panic("vmapbuf: page not present");
323		vm_page_hold(PHYS_TO_VM_PAGE(pa));
324		pmap_kenter((vm_offset_t) v, pa);
325	}
326
327	kva = bp->b_saveaddr;
328	bp->b_saveaddr = bp->b_data;
329	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
330}
331
332/*
333 * Free the io map PTEs associated with this IO operation.
334 * We also invalidate the TLB entries and restore the original b_addr.
335 */
336void
337vunmapbuf(bp)
338	register struct buf *bp;
339{
340	register caddr_t addr;
341	vm_offset_t pa;
342
343	if ((bp->b_flags & B_PHYS) == 0)
344		panic("vunmapbuf");
345
346	for (addr = (caddr_t)trunc_page(bp->b_data);
347	    addr < bp->b_data + bp->b_bufsize;
348	    addr += PAGE_SIZE) {
349		pa = trunc_page(pmap_kextract((vm_offset_t) addr));
350		pmap_kremove((vm_offset_t) addr);
351		vm_page_unhold(PHYS_TO_VM_PAGE(pa));
352	}
353
354	bp->b_data = bp->b_saveaddr;
355}
356
357/*
358 * Force reset the processor by invalidating the entire address space!
359 */
360void
361cpu_reset()
362{
363	prom_halt(0);
364}
365
366/*
367 * Grow the user stack to allow for 'sp'. This version grows the stack in
368 *	chunks of SGROWSIZ.
369 */
370int
371grow(p, sp)
372	struct proc *p;
373	size_t sp;
374{
375	unsigned int nss;
376	caddr_t v;
377	struct vmspace *vm = p->p_vmspace;
378
379	if ((caddr_t)sp <= vm->vm_maxsaddr || sp >= (size_t) USRSTACK)
380	    return (1);
381
382	nss = roundup(USRSTACK - (unsigned)sp, PAGE_SIZE);
383
384	if (nss > p->p_rlimit[RLIMIT_STACK].rlim_cur)
385		return (0);
386
387	if (vm->vm_ssize && roundup(vm->vm_ssize << PAGE_SHIFT,
388	    SGROWSIZ) < nss) {
389		int grow_amount;
390		/*
391		 * If necessary, grow the VM that the stack occupies
392		 * to allow for the rlimit. This allows us to not have
393		 * to allocate all of the VM up-front in execve (which
394		 * is expensive).
395		 * Grow the VM by the amount requested rounded up to
396		 * the nearest SGROWSIZ to provide for some hysteresis.
397		 */
398		grow_amount = roundup((nss - (vm->vm_ssize << PAGE_SHIFT)), SGROWSIZ);
399		v = (char *)USRSTACK - roundup(vm->vm_ssize << PAGE_SHIFT,
400		    SGROWSIZ) - grow_amount;
401		/*
402		 * If there isn't enough room to extend by SGROWSIZ, then
403		 * just extend to the maximum size
404		 */
405		if (v < vm->vm_maxsaddr) {
406			v = vm->vm_maxsaddr;
407			grow_amount = MAXSSIZ - (vm->vm_ssize << PAGE_SHIFT);
408		}
409		if ((grow_amount == 0) || (vm_map_find(&vm->vm_map, NULL, 0, (vm_offset_t *)&v,
410		    grow_amount, FALSE, VM_PROT_ALL, VM_PROT_ALL, 0) != KERN_SUCCESS)) {
411			return (0);
412		}
413		vm->vm_ssize += grow_amount >> PAGE_SHIFT;
414	}
415
416	return (1);
417}
418
419static int cnt_prezero;
420
421SYSCTL_INT(_machdep, OID_AUTO, cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, "");
422
423/*
424 * Implement the pre-zeroed page mechanism.
425 * This routine is called from the idle loop.
426 */
427int
428vm_page_zero_idle()
429{
430	static int free_rover;
431	vm_page_t m;
432	int s;
433
434	/*
435	 * XXX
436	 * We stop zeroing pages when there are sufficent prezeroed pages.
437	 * This threshold isn't really needed, except we want to
438	 * bypass unneeded calls to vm_page_list_find, and the
439	 * associated cache flush and latency.  The pre-zero will
440	 * still be called when there are significantly more
441	 * non-prezeroed pages than zeroed pages.  The threshold
442	 * of half the number of reserved pages is arbitrary, but
443	 * approximately the right amount.  Eventually, we should
444	 * perhaps interrupt the zero operation when a process
445	 * is found to be ready to run.
446	 */
447	if (cnt.v_free_count - vm_page_zero_count <= cnt.v_free_reserved / 2)
448		return (0);
449#ifdef SMP
450	if (try_mplock()) {
451#endif
452		s = splvm();
453		m = vm_page_list_find(PQ_FREE, free_rover);
454		if (m != NULL) {
455			--(*vm_page_queues[m->queue].lcnt);
456			TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq);
457			m->queue = PQ_NONE;
458			splx(s);
459#if 0
460			rel_mplock();
461#endif
462			pmap_zero_page(VM_PAGE_TO_PHYS(m));
463#if 0
464			get_mplock();
465#endif
466			(void)splvm();
467			m->queue = PQ_ZERO + m->pc;
468			++(*vm_page_queues[m->queue].lcnt);
469			TAILQ_INSERT_HEAD(vm_page_queues[m->queue].pl, m,
470			    pageq);
471			free_rover = (free_rover + PQ_PRIME3) & PQ_L2_MASK;
472			++vm_page_zero_count;
473			++cnt_prezero;
474		}
475		splx(s);
476#ifdef SMP
477		rel_mplock();
478#endif
479		return (1);
480#ifdef SMP
481	}
482#endif
483	return (0);
484}
485
486/*
487 * Software interrupt handler for queued VM system processing.
488 */
489void
490swi_vm()
491{
492#if 0
493	if (busdma_swi_pending != 0)
494		busdma_swi();
495#endif
496}
497
498/*
499 * Tell whether this address is in some physical memory region.
500 * Currently used by the kernel coredump code in order to avoid
501 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
502 * or other unpredictable behaviour.
503 */
504
505
506int
507is_physical_memory(addr)
508	vm_offset_t addr;
509{
510	/*
511	 * stuff other tests for known memory-mapped devices (PCI?)
512	 * here
513	 */
514
515	return 1;
516}
517