1148456Spjd/*-
2213073Spjd * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3148456Spjd * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4148456Spjd * All rights reserved.
5148456Spjd *
6148456Spjd * Redistribution and use in source and binary forms, with or without
7148456Spjd * modification, are permitted provided that the following conditions
8148456Spjd * are met:
9148456Spjd * 1. Redistributions of source code must retain the above copyright
10148456Spjd *    notice, this list of conditions and the following disclaimer.
11148456Spjd * 2. Redistributions in binary form must reproduce the above copyright
12148456Spjd *    notice, this list of conditions and the following disclaimer in the
13155175Spjd *    documentation and/or other materials provided with the distribution.
14148456Spjd *
15148456Spjd * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16148456Spjd * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17148456Spjd * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18148456Spjd * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19148456Spjd * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20148456Spjd * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21148456Spjd * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22148456Spjd * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23148456Spjd * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24148456Spjd * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25148456Spjd *
26148456Spjd * Some hw specific parts of this pmap were derived or influenced
27148456Spjd * by NetBSD's ibm4xx pmap module. More generic code is shared with
28148456Spjd * a few other pmap modules from the FreeBSD tree.
29148456Spjd */
30226715Spjd
31226715Spjd /*
32213060Spjd  * VM layout notes:
33226715Spjd  *
34226715Spjd  * Kernel and user threads run within one common virtual address space
35213060Spjd  * defined by AS=0.
36226715Spjd  *
37226715Spjd  * Virtual address space layout:
38226715Spjd  * -----------------------------
39226715Spjd  * 0x0000_0000 - 0xafff_ffff	: user process
40226715Spjd  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41226715Spjd  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42226715Spjd  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43213172Spjd  * 0xc100_0000 - 0xfeef_ffff	: KVA
44226715Spjd  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45148456Spjd  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46148456Spjd  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47148456Spjd  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48148456Spjd  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49226715Spjd  */
50148456Spjd
51148456Spjd#include <sys/cdefs.h>
52148456Spjd__FBSDID("$FreeBSD$");
53148456Spjd
54148456Spjd#include <sys/param.h>
55148456Spjd#include <sys/malloc.h>
56148456Spjd#include <sys/ktr.h>
57148456Spjd#include <sys/proc.h>
58148456Spjd#include <sys/user.h>
59148456Spjd#include <sys/queue.h>
60148456Spjd#include <sys/systm.h>
61182452Spjd#include <sys/kernel.h>
62212547Spjd#include <sys/linker.h>
63182452Spjd#include <sys/msgbuf.h>
64148456Spjd#include <sys/lock.h>
65148456Spjd#include <sys/mutex.h>
66148456Spjd#include <sys/rwlock.h>
67162353Spjd#include <sys/sched.h>
68148456Spjd#include <sys/smp.h>
69148456Spjd#include <sys/vmmeter.h>
70214118Spjd
71148456Spjd#include <vm/vm.h>
72148456Spjd#include <vm/vm_page.h>
73148456Spjd#include <vm/vm_kern.h>
74212934Sbrian#include <vm/vm_pageout.h>
75226723Spjd#include <vm/vm_extern.h>
76148456Spjd#include <vm/vm_object.h>
77148456Spjd#include <vm/vm_param.h>
78148456Spjd#include <vm/vm_map.h>
79182452Spjd#include <vm/vm_pager.h>
80182452Spjd#include <vm/uma.h>
81182452Spjd
82148456Spjd#include <machine/cpu.h>
83148456Spjd#include <machine/pcb.h>
84148456Spjd#include <machine/platform.h>
85226733Spjd
86148456Spjd#include <machine/tlb.h>
87213172Spjd#include <machine/spr.h>
88148456Spjd#include <machine/md_var.h>
89148456Spjd#include <machine/mmuvar.h>
90181639Spjd#include <machine/pmap.h>
91162353Spjd#include <machine/pte.h>
92213172Spjd
93148456Spjd#include "mmu_if.h"
94214118Spjd
95214118Spjd#ifdef  DEBUG
96148456Spjd#define debugf(fmt, args...) printf(fmt, ##args)
97148456Spjd#else
98212934Sbrian#define debugf(fmt, args...)
99212934Sbrian#endif
100226723Spjd
101148456Spjd#define TODO			panic("%s: not implemented", __func__);
102148456Spjd
103148456Spjdextern int dumpsys_minidump;
104148456Spjd
105148456Spjdextern unsigned char _etext[];
106148456Spjdextern unsigned char _end[];
107212547Spjd
108162868Spjdextern uint32_t *bootinfo;
109212547Spjd
110226733Spjd#ifdef SMP
111212554Spjdextern uint32_t bp_ntlb1s;
112213172Spjd#endif
113213172Spjd
114212554Spjdvm_paddr_t kernload;
115162868Spjdvm_offset_t kernstart;
116212554Spjdvm_size_t kernsize;
117226733Spjd
118148456Spjd/* Message buffer and tables. */
119148456Spjdstatic vm_offset_t data_start;
120226733Spjdstatic vm_size_t data_end;
121148456Spjd
122148456Spjd/* Phys/avail memory regions. */
123148456Spjdstatic struct mem_region *availmem_regions;
124212547Spjdstatic int availmem_regions_sz;
125162868Spjdstatic struct mem_region *physmem_regions;
126212547Spjdstatic int physmem_regions_sz;
127226733Spjd
128212554Spjd/* Reserved KVA space and mutex for mmu_booke_zero_page. */
129213172Spjdstatic vm_offset_t zero_page_va;
130213172Spjdstatic struct mtx zero_page_mutex;
131212554Spjd
132162868Spjdstatic struct mtx tlbivax_mutex;
133212554Spjd
134226733Spjd/*
135148456Spjd * Reserved KVA space for mmu_booke_zero_page_idle. This is used
136148456Spjd * by idle thred only, no lock required.
137212554Spjd */
138148456Spjdstatic vm_offset_t zero_page_idle_va;
139148456Spjd
140148456Spjd/* Reserved KVA space and mutex for mmu_booke_copy_page. */
141162868Spjdstatic vm_offset_t copy_page_src_va;
142213172Spjdstatic vm_offset_t copy_page_dst_va;
143213172Spjdstatic struct mtx copy_page_mutex;
144162868Spjd
145162868Spjd/**************************************************************************/
146148456Spjd/* PMAP */
147148456Spjd/**************************************************************************/
148213172Spjd
149148456Spjdstatic int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
150148456Spjd    vm_prot_t, u_int flags, int8_t psind);
151148456Spjd
152162868Spjdunsigned int kptbl_min;		/* Index of the first kernel ptbl. */
153162868Spjdunsigned int kernel_ptbls;	/* Number of KVA ptbls. */
154148456Spjd
155148456Spjd/*
156212554Spjd * If user pmap is processed with mmu_booke_remove and the resident count
157148456Spjd * drops to 0, there are no more pages to remove, so we need not continue.
158148456Spjd */
159148456Spjd#define PMAP_REMOVE_DONE(pmap) \
160162868Spjd	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
161162868Spjd
162148456Spjdextern void tid_flush(tlbtid_t);
163148456Spjd
164212554Spjd/**************************************************************************/
165148456Spjd/* TLB and TID handling */
166148456Spjd/**************************************************************************/
167148456Spjd
168212547Spjd/* Translation ID busy table */
169162868Spjdstatic volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
170212547Spjd
171212554Spjd/*
172212554Spjd * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
173148456Spjd * core revisions and should be read from h/w registers during early config.
174148456Spjd */
175212554Spjduint32_t tlb0_entries;
176148456Spjduint32_t tlb0_ways;
177162353Spjduint32_t tlb0_entries_per_way;
178162353Spjd
179162868Spjd#define TLB0_ENTRIES		(tlb0_entries)
180162868Spjd#define TLB0_WAYS		(tlb0_ways)
181162353Spjd#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
182162353Spjd
183212554Spjd#define TLB1_ENTRIES 16
184162353Spjd
185148456Spjd/* In-ram copy of the TLB1 */
186148456Spjdstatic tlb_entry_t tlb1[TLB1_ENTRIES];
187212554Spjd
188213172Spjd/* Next free entry in the TLB1 */
189213172Spjdstatic unsigned int tlb1_idx;
190213172Spjdstatic vm_offset_t tlb1_map_base = VM_MAX_KERNEL_ADDRESS;
191213172Spjd
192212554Spjdstatic tlbtid_t tid_alloc(struct pmap *);
193162868Spjd
194162868Spjdstatic void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
195148456Spjd
196148456Spjdstatic int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
197213172Spjdstatic void tlb1_write_entry(unsigned int);
198148456Spjdstatic int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
199148456Spjdstatic vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
200148456Spjd
201162868Spjdstatic vm_size_t tsize2size(unsigned int);
202162868Spjdstatic unsigned int size2tsize(vm_size_t);
203212554Spjdstatic unsigned int ilog2(unsigned int);
204148456Spjd
205148456Spjdstatic void set_mas4_defaults(void);
206212554Spjd
207148456Spjdstatic inline void tlb0_flush_entry(vm_offset_t);
208214118Spjdstatic inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
209214118Spjd
210214118Spjd/**************************************************************************/
211214118Spjd/* Page table management */
212214118Spjd/**************************************************************************/
213214118Spjd
214214118Spjdstatic struct rwlock_padalign pvh_global_lock;
215214118Spjd
216214118Spjd/* Data for the pv entry allocation mechanism */
217214118Spjdstatic uma_zone_t pvzone;
218214118Spjdstatic int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
219214118Spjd
220214118Spjd#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
221214118Spjd
222214118Spjd#ifndef PMAP_SHPGPERPROC
223214118Spjd#define PMAP_SHPGPERPROC	200
224148456Spjd#endif
225148456Spjd
226162868Spjdstatic void ptbl_init(void);
227148456Spjdstatic struct ptbl_buf *ptbl_buf_alloc(void);
228148456Spjdstatic void ptbl_buf_free(struct ptbl_buf *);
229212554Spjdstatic void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
230148456Spjd
231212554Spjdstatic pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t);
232148456Spjdstatic void ptbl_free(mmu_t, pmap_t, unsigned int);
233148456Spjdstatic void ptbl_hold(mmu_t, pmap_t, unsigned int);
234212934Sbrianstatic int ptbl_unhold(mmu_t, pmap_t, unsigned int);
235212934Sbrian
236212934Sbrianstatic vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
237212934Sbrianstatic pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
238212934Sbrianstatic int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
239212934Sbrianstatic int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
240148456Spjd
241212934Sbrianstatic pv_entry_t pv_alloc(void);
242212934Sbrianstatic void pv_free(pv_entry_t);
243212934Sbrianstatic void pv_insert(pmap_t, vm_offset_t, vm_page_t);
244212934Sbrianstatic void pv_remove(pmap_t, vm_offset_t, vm_page_t);
245212934Sbrian
246212934Sbrian/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
247212934Sbrian#define PTBL_BUFS		(128 * 16)
248226723Spjd
249226723Spjdstruct ptbl_buf {
250226723Spjd	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
251212554Spjd	vm_offset_t kva;		/* va of mapping */
252148456Spjd};
253148456Spjd
254212554Spjd/* ptbl free list and a lock used for access synchronization. */
255148456Spjdstatic TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
256148456Spjdstatic struct mtx ptbl_buf_freelist_lock;
257148456Spjd
258148456Spjd/* Base address of kva space allocated fot ptbl bufs. */
259148456Spjdstatic vm_offset_t ptbl_buf_pool_vabase;
260148456Spjd
261148456Spjd/* Pointer to ptbl_buf structures. */
262248475Spjdstatic struct ptbl_buf *ptbl_bufs;
263248475Spjd
264148456Spjdvoid pmap_bootstrap_ap(volatile uint32_t *);
265148456Spjd
266148456Spjd/*
267148456Spjd * Kernel MMU interface
268148456Spjd */
269148456Spjdstatic void		mmu_booke_clear_modify(mmu_t, vm_page_t);
270148456Spjdstatic void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
271148456Spjd    vm_size_t, vm_offset_t);
272148456Spjdstatic void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
273148456Spjdstatic void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
274148456Spjd    vm_offset_t, vm_page_t *, vm_offset_t, int);
275148456Spjdstatic int		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
276148456Spjd    vm_prot_t, u_int flags, int8_t psind);
277148456Spjdstatic void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
278148456Spjd    vm_page_t, vm_prot_t);
279148456Spjdstatic void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
280148456Spjd    vm_prot_t);
281148456Spjdstatic vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
282148456Spjdstatic vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
283148456Spjd    vm_prot_t);
284148456Spjdstatic void		mmu_booke_init(mmu_t);
285148456Spjdstatic boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
286213172Spjdstatic boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
287148456Spjdstatic boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
288148456Spjdstatic int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
289148456Spjdstatic vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
290148456Spjd    int);
291148456Spjdstatic int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
292148456Spjd    vm_paddr_t *);
293148456Spjdstatic void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
294148456Spjd    vm_object_t, vm_pindex_t, vm_size_t);
295148456Spjdstatic boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
296153190Spjdstatic void		mmu_booke_page_init(mmu_t, vm_page_t);
297148456Spjdstatic int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
298148456Spjdstatic void		mmu_booke_pinit(mmu_t, pmap_t);
299148456Spjdstatic void		mmu_booke_pinit0(mmu_t, pmap_t);
300148456Spjdstatic void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
301148456Spjd    vm_prot_t);
302148456Spjdstatic void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
303148456Spjdstatic void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
304148456Spjdstatic void		mmu_booke_release(mmu_t, pmap_t);
305162353Spjdstatic void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
306162353Spjdstatic void		mmu_booke_remove_all(mmu_t, vm_page_t);
307148456Spjdstatic void		mmu_booke_remove_write(mmu_t, vm_page_t);
308148456Spjdstatic void		mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
309148456Spjdstatic void		mmu_booke_zero_page(mmu_t, vm_page_t);
310148456Spjdstatic void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
311214118Spjdstatic void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
312214118Spjdstatic void		mmu_booke_activate(mmu_t, struct thread *);
313148456Spjdstatic void		mmu_booke_deactivate(mmu_t, struct thread *);
314148456Spjdstatic void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
315148456Spjdstatic void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
316148456Spjdstatic void		*mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
317148456Spjdstatic void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
318148456Spjdstatic vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
319212934Sbrianstatic void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
320212934Sbrianstatic void		mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
321226723Spjdstatic void		mmu_booke_kremove(mmu_t, vm_offset_t);
322226723Spjdstatic boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
323148456Spjdstatic void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
324148456Spjd    vm_size_t);
325148456Spjdstatic vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
326148456Spjd    vm_size_t, vm_size_t *);
327148456Spjdstatic void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
328148456Spjd    vm_size_t, vm_offset_t);
329148456Spjdstatic struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
330148456Spjd
331226717Spjdstatic mmu_method_t mmu_booke_methods[] = {
332148456Spjd	/* pmap dispatcher interface */
333148456Spjd	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
334148456Spjd	MMUMETHOD(mmu_copy,		mmu_booke_copy),
335148456Spjd	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
336148456Spjd	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
337148456Spjd	MMUMETHOD(mmu_enter,		mmu_booke_enter),
338148456Spjd	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
339148456Spjd	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
340148456Spjd	MMUMETHOD(mmu_extract,		mmu_booke_extract),
341148456Spjd	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
342226717Spjd	MMUMETHOD(mmu_init,		mmu_booke_init),
343148456Spjd	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
344148456Spjd	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
345213172Spjd	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
346213172Spjd	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
347213172Spjd	MMUMETHOD(mmu_map,		mmu_booke_map),
348148456Spjd	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
349248475Spjd	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
350213172Spjd	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
351213172Spjd	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
352213172Spjd	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
353148456Spjd	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
354213172Spjd	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
355213172Spjd	MMUMETHOD(mmu_protect,		mmu_booke_protect),
356213172Spjd	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
357213172Spjd	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
358213172Spjd	MMUMETHOD(mmu_release,		mmu_booke_release),
359148456Spjd	MMUMETHOD(mmu_remove,		mmu_booke_remove),
360213172Spjd	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
361213172Spjd	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
362213172Spjd	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
363148456Spjd	MMUMETHOD(mmu_unwire,		mmu_booke_unwire),
364213172Spjd	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
365213172Spjd	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
366213172Spjd	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
367148456Spjd	MMUMETHOD(mmu_activate,		mmu_booke_activate),
368215704Sbrucec	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
369213172Spjd
370213172Spjd	/* Internal interfaces */
371213172Spjd	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
372148456Spjd	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
373148456Spjd	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
374213172Spjd	MMUMETHOD(mmu_mapdev_attr,	mmu_booke_mapdev_attr),
375148456Spjd	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
376213172Spjd	MMUMETHOD(mmu_kenter_attr,	mmu_booke_kenter_attr),
377213172Spjd	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
378213172Spjd/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
379148456Spjd	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
380148456Spjd
381213172Spjd	/* dumpsys() support */
382213172Spjd	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
383213172Spjd	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
384213172Spjd	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
385246621Spjd
386246621Spjd	{ 0, 0 }
387213172Spjd};
388213172Spjd
389213172SpjdMMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
390213172Spjd
391213172Spjdstatic __inline uint32_t
392213172Spjdtlb_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
393213172Spjd{
394213172Spjd	uint32_t attrib;
395213172Spjd	int i;
396213172Spjd
397213172Spjd	if (ma != VM_MEMATTR_DEFAULT) {
398213172Spjd		switch (ma) {
399213172Spjd		case VM_MEMATTR_UNCACHEABLE:
400213172Spjd			return (PTE_I | PTE_G);
401213172Spjd		case VM_MEMATTR_WRITE_COMBINING:
402213172Spjd		case VM_MEMATTR_WRITE_BACK:
403213172Spjd		case VM_MEMATTR_PREFETCHABLE:
404213172Spjd			return (PTE_I);
405148456Spjd		case VM_MEMATTR_WRITE_THROUGH:
406213172Spjd			return (PTE_W | PTE_M);
407148456Spjd		}
408148456Spjd	}
409148456Spjd
410213172Spjd	/*
411213172Spjd	 * Assume the page is cache inhibited and access is guarded unless
412213172Spjd	 * it's in our available memory array.
413148456Spjd	 */
414148456Spjd	attrib = _TLB_ENTRY_IO;
415213172Spjd	for (i = 0; i < physmem_regions_sz; i++) {
416213172Spjd		if ((pa >= physmem_regions[i].mr_start) &&
417148456Spjd		    (pa < (physmem_regions[i].mr_start +
418213172Spjd		     physmem_regions[i].mr_size))) {
419213172Spjd			attrib = _TLB_ENTRY_MEM;
420213172Spjd			break;
421213172Spjd		}
422213172Spjd	}
423148456Spjd
424213172Spjd	return (attrib);
425213172Spjd}
426284752Sbrueffer
427213172Spjdstatic inline void
428213172Spjdtlb_miss_lock(void)
429213172Spjd{
430213172Spjd#ifdef SMP
431213172Spjd	struct pcpu *pc;
432213172Spjd
433149047Spjd	if (!smp_started)
434213172Spjd		return;
435213172Spjd
436248475Spjd	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
437213172Spjd		if (pc != pcpup) {
438213172Spjd
439213172Spjd			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
440213172Spjd			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
441148456Spjd
442213172Spjd			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
443213172Spjd			    ("tlb_miss_lock: tried to lock self"));
444213172Spjd
445148456Spjd			tlb_lock(pc->pc_booke_tlb_lock);
446213172Spjd
447148456Spjd			CTR1(KTR_PMAP, "%s: locked", __func__);
448213172Spjd		}
449213172Spjd	}
450213172Spjd#endif
451213172Spjd}
452213172Spjd
453148456Spjdstatic inline void
454213172Spjdtlb_miss_unlock(void)
455148456Spjd{
456213172Spjd#ifdef SMP
457213172Spjd	struct pcpu *pc;
458213172Spjd
459213172Spjd	if (!smp_started)
460213172Spjd		return;
461213172Spjd
462213172Spjd	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
463213172Spjd		if (pc != pcpup) {
464213172Spjd			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
465248475Spjd			    __func__, pc->pc_cpuid);
466213172Spjd
467213172Spjd			tlb_unlock(pc->pc_booke_tlb_lock);
468213172Spjd
469213172Spjd			CTR1(KTR_PMAP, "%s: unlocked", __func__);
470213172Spjd		}
471213172Spjd	}
472213172Spjd#endif
473213172Spjd}
474213172Spjd
475213172Spjd/* Return number of entries in TLB0. */
476213172Spjdstatic __inline void
477148456Spjdtlb0_get_tlbconf(void)
478213172Spjd{
479213172Spjd	uint32_t tlb0_cfg;
480148456Spjd
481213172Spjd	tlb0_cfg = mfspr(SPR_TLB0CFG);
482213172Spjd	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
483213172Spjd	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
484213172Spjd	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
485213172Spjd}
486213172Spjd
487213172Spjd/* Initialize pool of kva ptbl buffers. */
488213172Spjdstatic void
489213172Spjdptbl_init(void)
490213172Spjd{
491213172Spjd	int i;
492213172Spjd
493213172Spjd	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
494148456Spjd	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
495148456Spjd	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
496213172Spjd	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
497213172Spjd
498213172Spjd	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
499213172Spjd	TAILQ_INIT(&ptbl_buf_freelist);
500213172Spjd
501213172Spjd	for (i = 0; i < PTBL_BUFS; i++) {
502213172Spjd		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
503213172Spjd		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
504213172Spjd	}
505213172Spjd}
506213172Spjd
507213172Spjd/* Get a ptbl_buf from the freelist. */
508213172Spjdstatic struct ptbl_buf *
509213172Spjdptbl_buf_alloc(void)
510213172Spjd{
511213172Spjd	struct ptbl_buf *buf;
512213172Spjd
513213172Spjd	mtx_lock(&ptbl_buf_freelist_lock);
514213172Spjd	buf = TAILQ_FIRST(&ptbl_buf_freelist);
515213172Spjd	if (buf != NULL)
516213172Spjd		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
517213172Spjd	mtx_unlock(&ptbl_buf_freelist_lock);
518213172Spjd
519213172Spjd	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
520213172Spjd
521213172Spjd	return (buf);
522213172Spjd}
523213172Spjd
524213172Spjd/* Return ptbl buff to free pool. */
525213172Spjdstatic void
526213172Spjdptbl_buf_free(struct ptbl_buf *buf)
527213172Spjd{
528213172Spjd
529213172Spjd	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
530213172Spjd
531213172Spjd	mtx_lock(&ptbl_buf_freelist_lock);
532213172Spjd	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
533213172Spjd	mtx_unlock(&ptbl_buf_freelist_lock);
534213172Spjd}
535213172Spjd
536213172Spjd/*
537213172Spjd * Search the list of allocated ptbl bufs and find on list of allocated ptbls
538213172Spjd */
539213172Spjdstatic void
540213172Spjdptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
541213172Spjd{
542213172Spjd	struct ptbl_buf *pbuf;
543213172Spjd
544213172Spjd	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
545213172Spjd
546213172Spjd	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
547213172Spjd
548213172Spjd	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
549213172Spjd		if (pbuf->kva == (vm_offset_t)ptbl) {
550213172Spjd			/* Remove from pmap ptbl buf list. */
551213172Spjd			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
552213172Spjd
553213172Spjd			/* Free corresponding ptbl buf. */
554213172Spjd			ptbl_buf_free(pbuf);
555148456Spjd			break;
556213172Spjd		}
557148456Spjd}
558148456Spjd
559148456Spjd/* Allocate page table. */
560148456Spjdstatic pte_t *
561148456Spjdptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep)
562148456Spjd{
563148456Spjd	vm_page_t mtbl[PTBL_PAGES];
564148456Spjd	vm_page_t m;
565148456Spjd	struct ptbl_buf *pbuf;
566148456Spjd	unsigned int pidx;
567148456Spjd	pte_t *ptbl;
568148456Spjd	int i, j;
569148456Spjd
570148456Spjd	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
571148456Spjd	    (pmap == kernel_pmap), pdir_idx);
572148456Spjd
573148456Spjd	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
574148456Spjd	    ("ptbl_alloc: invalid pdir_idx"));
575148456Spjd	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
576148456Spjd	    ("pte_alloc: valid ptbl entry exists!"));
577148456Spjd
578148456Spjd	pbuf = ptbl_buf_alloc();
579148456Spjd	if (pbuf == NULL)
580148456Spjd		panic("pte_alloc: couldn't alloc kernel virtual memory");
581148456Spjd
582148456Spjd	ptbl = (pte_t *)pbuf->kva;
583148456Spjd
584148456Spjd	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
585148456Spjd
586148456Spjd	/* Allocate ptbl pages, this will sleep! */
587148456Spjd	for (i = 0; i < PTBL_PAGES; i++) {
588148456Spjd		pidx = (PTBL_PAGES * pdir_idx) + i;
589148456Spjd		while ((m = vm_page_alloc(NULL, pidx,
590148456Spjd		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
591148456Spjd			PMAP_UNLOCK(pmap);
592148456Spjd			rw_wunlock(&pvh_global_lock);
593148456Spjd			if (nosleep) {
594226722Spjd				ptbl_free_pmap_ptbl(pmap, ptbl);
595226722Spjd				for (j = 0; j < i; j++)
596226722Spjd					vm_page_free(mtbl[j]);
597226722Spjd				atomic_subtract_int(&cnt.v_wire_count, i);
598226722Spjd				return (NULL);
599226722Spjd			}
600226722Spjd			VM_WAIT;
601226722Spjd			rw_wlock(&pvh_global_lock);
602226722Spjd			PMAP_LOCK(pmap);
603148456Spjd		}
604226722Spjd		mtbl[i] = m;
605226722Spjd	}
606226722Spjd
607226722Spjd	/* Map allocated pages into kernel_pmap. */
608226722Spjd	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
609226722Spjd
610226722Spjd	/* Zero whole ptbl. */
611226722Spjd	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
612148456Spjd
613148456Spjd	/* Add pbuf to the pmap ptbl bufs list. */
614148456Spjd	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
615148456Spjd
616148456Spjd	return (ptbl);
617148456Spjd}
618148456Spjd
619148456Spjd/* Free ptbl pages and invalidate pdir entry. */
620148456Spjdstatic void
621148456Spjdptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
622148456Spjd{
623148456Spjd	pte_t *ptbl;
624148456Spjd	vm_paddr_t pa;
625148456Spjd	vm_offset_t va;
626148456Spjd	vm_page_t m;
627148456Spjd	int i;
628148456Spjd
629148456Spjd	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
630148456Spjd	    (pmap == kernel_pmap), pdir_idx);
631148456Spjd
632148456Spjd	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
633148456Spjd	    ("ptbl_free: invalid pdir_idx"));
634148456Spjd
635148456Spjd	ptbl = pmap->pm_pdir[pdir_idx];
636148456Spjd
637148456Spjd	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
638148456Spjd
639148456Spjd	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
640148456Spjd
641148456Spjd	/*
642148456Spjd	 * Invalidate the pdir entry as soon as possible, so that other CPUs
643148456Spjd	 * don't attempt to look up the page tables we are releasing.
644148456Spjd	 */
645148456Spjd	mtx_lock_spin(&tlbivax_mutex);
646148456Spjd	tlb_miss_lock();
647148456Spjd
648148456Spjd	pmap->pm_pdir[pdir_idx] = NULL;
649148456Spjd
650148456Spjd	tlb_miss_unlock();
651148456Spjd	mtx_unlock_spin(&tlbivax_mutex);
652148456Spjd
653148456Spjd	for (i = 0; i < PTBL_PAGES; i++) {
654148456Spjd		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
655148456Spjd		pa = pte_vatopa(mmu, kernel_pmap, va);
656148456Spjd		m = PHYS_TO_VM_PAGE(pa);
657148456Spjd		vm_page_free_zero(m);
658148456Spjd		atomic_subtract_int(&cnt.v_wire_count, 1);
659148456Spjd		mmu_booke_kremove(mmu, va);
660148456Spjd	}
661148456Spjd
662148456Spjd	ptbl_free_pmap_ptbl(pmap, ptbl);
663182452Spjd}
664148456Spjd
665226733Spjd/*
666148456Spjd * Decrement ptbl pages hold count and attempt to free ptbl pages.
667153190Spjd * Called when removing pte entry from ptbl.
668155536Spjd *
669148456Spjd * Return 1 if ptbl pages were freed.
670153190Spjd */
671153190Spjdstatic int
672158214Spjdptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
673148456Spjd{
674148456Spjd	pte_t *ptbl;
675153190Spjd	vm_paddr_t pa;
676148456Spjd	vm_page_t m;
677148456Spjd	int i;
678148456Spjd
679148456Spjd	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
680148456Spjd	    (pmap == kernel_pmap), pdir_idx);
681148456Spjd
682148456Spjd	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
683148456Spjd	    ("ptbl_unhold: invalid pdir_idx"));
684148456Spjd	KASSERT((pmap != kernel_pmap),
685148456Spjd	    ("ptbl_unhold: unholding kernel ptbl!"));
686226733Spjd
687226733Spjd	ptbl = pmap->pm_pdir[pdir_idx];
688226733Spjd
689226733Spjd	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
690226733Spjd	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
691226733Spjd	    ("ptbl_unhold: non kva ptbl"));
692226733Spjd
693226733Spjd	/* decrement hold count */
694226733Spjd	for (i = 0; i < PTBL_PAGES; i++) {
695226733Spjd		pa = pte_vatopa(mmu, kernel_pmap,
696226733Spjd		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
697226733Spjd		m = PHYS_TO_VM_PAGE(pa);
698148456Spjd		m->wire_count--;
699155536Spjd	}
700148456Spjd
701159361Spjd	/*
702159308Spjd	 * Free ptbl pages if there are no pte etries in this ptbl.
703212547Spjd	 * wire_count has the same value for all ptbl pages, so check the last
704226733Spjd	 * page.
705226733Spjd	 */
706226733Spjd	if (m->wire_count == 0) {
707226733Spjd		ptbl_free(mmu, pmap, pdir_idx);
708226733Spjd
709226733Spjd		//debugf("ptbl_unhold: e (freed ptbl)\n");
710159308Spjd		return (1);
711159361Spjd	}
712159361Spjd
713159361Spjd	return (0);
714159361Spjd}
715159361Spjd
716159361Spjd/*
717159361Spjd * Increment hold count for ptbl pages. This routine is used when a new pte
718159361Spjd * entry is being inserted into the ptbl.
719159361Spjd */
720159361Spjdstatic void
721159361Spjdptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
722159361Spjd{
723159361Spjd	vm_paddr_t pa;
724159361Spjd	pte_t *ptbl;
725159361Spjd	vm_page_t m;
726159361Spjd	int i;
727159361Spjd
728159361Spjd	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
729159361Spjd	    pdir_idx);
730159308Spjd
731159308Spjd	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
732159308Spjd	    ("ptbl_hold: invalid pdir_idx"));
733159308Spjd	KASSERT((pmap != kernel_pmap),
734159361Spjd	    ("ptbl_hold: holding kernel ptbl!"));
735226733Spjd
736226733Spjd	ptbl = pmap->pm_pdir[pdir_idx];
737226733Spjd
738226733Spjd	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
739226733Spjd
740226733Spjd	for (i = 0; i < PTBL_PAGES; i++) {
741159361Spjd		pa = pte_vatopa(mmu, kernel_pmap,
742159361Spjd		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
743159361Spjd		m = PHYS_TO_VM_PAGE(pa);
744159361Spjd		m->wire_count++;
745159361Spjd	}
746159361Spjd}
747226733Spjd
748226733Spjd/* Allocate pv_entry structure. */
749226733Spjdpv_entry_t
750226733Spjdpv_alloc(void)
751226733Spjd{
752226733Spjd	pv_entry_t pv;
753226733Spjd
754226733Spjd	pv_entry_count++;
755226733Spjd	if (pv_entry_count > pv_entry_high_water)
756226733Spjd		pagedaemon_wakeup();
757226733Spjd	pv = uma_zalloc(pvzone, M_NOWAIT);
758226733Spjd
759226733Spjd	return (pv);
760226733Spjd}
761148456Spjd
762153190Spjd/* Free pv_entry structure. */
763153190Spjdstatic __inline void
764159308Spjdpv_free(pv_entry_t pve)
765148456Spjd{
766148456Spjd
767148456Spjd	pv_entry_count--;
768148456Spjd	uma_zfree(pvzone, pve);
769148456Spjd}
770148456Spjd
771153190Spjd
772155536Spjd/* Allocate and initialize pv_entry structure. */
773155536Spjdstatic void
774155536Spjdpv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
775155536Spjd{
776155536Spjd	pv_entry_t pve;
777155536Spjd
778155536Spjd	//int su = (pmap == kernel_pmap);
779155536Spjd	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
780155536Spjd	//	(u_int32_t)pmap, va, (u_int32_t)m);
781155536Spjd
782155536Spjd	pve = pv_alloc();
783155536Spjd	if (pve == NULL)
784155536Spjd		panic("pv_insert: no pv entries!");
785155536Spjd
786153190Spjd	pve->pv_pmap = pmap;
787148456Spjd	pve->pv_va = va;
788153190Spjd
789153190Spjd	/* add to pv_list */
790148456Spjd	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
791148456Spjd	rw_assert(&pvh_global_lock, RA_WLOCKED);
792153190Spjd
793148456Spjd	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
794148456Spjd
795148456Spjd	//debugf("pv_insert: e\n");
796167229Spjd}
797214404Spjd
798214404Spjd/* Destroy pv entry. */
799167229Spjdstatic void
800153190Spjdpv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
801148456Spjd{
802148456Spjd	pv_entry_t pve;
803148456Spjd
804246620Spjd	//int su = (pmap == kernel_pmap);
805246620Spjd	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
806148456Spjd
807148456Spjd	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
808213172Spjd	rw_assert(&pvh_global_lock, RA_WLOCKED);
809148456Spjd
810148456Spjd	/* find pv entry */
811148456Spjd	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
812148456Spjd		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
813148456Spjd			/* remove from pv_list */
814148456Spjd			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
815159308Spjd			if (TAILQ_EMPTY(&m->md.pv_list))
816148456Spjd				vm_page_aflag_clear(m, PGA_WRITEABLE);
817148456Spjd
818148456Spjd			/* free pv entry struct */
819148456Spjd			pv_free(pve);
820148456Spjd			break;
821148456Spjd		}
822148456Spjd	}
823148456Spjd
824148456Spjd	//debugf("pv_remove: e\n");
825148456Spjd}
826148456Spjd
827148456Spjd/*
828148456Spjd * Clean pte entry, try to free page table page if requested.
829148456Spjd *
830148456Spjd * Return 1 if ptbl pages were freed, otherwise return 0.
831148456Spjd */
832148456Spjdstatic int
833148456Spjdpte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
834148456Spjd{
835182452Spjd	unsigned int pdir_idx = PDIR_IDX(va);
836182452Spjd	unsigned int ptbl_idx = PTBL_IDX(va);
837182452Spjd	vm_page_t m;
838182452Spjd	pte_t *ptbl;
839182452Spjd	pte_t *pte;
840182452Spjd
841182452Spjd	//int su = (pmap == kernel_pmap);
842182452Spjd	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
843182452Spjd	//		su, (u_int32_t)pmap, va, flags);
844182452Spjd
845213662Sae	ptbl = pmap->pm_pdir[pdir_idx];
846213662Sae	KASSERT(ptbl, ("pte_remove: null ptbl"));
847182452Spjd
848182452Spjd	pte = &ptbl[ptbl_idx];
849182452Spjd
850182452Spjd	if (pte == NULL || !PTE_ISVALID(pte))
851182452Spjd		return (0);
852182452Spjd
853182452Spjd	if (PTE_ISWIRED(pte))
854182452Spjd		pmap->pm_stats.wired_count--;
855182452Spjd
856182452Spjd	/* Handle managed entry. */
857182452Spjd	if (PTE_ISMANAGED(pte)) {
858182452Spjd		/* Get vm_page_t for mapped pte. */
859182452Spjd		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
860182452Spjd
861148456Spjd		if (PTE_ISMODIFIED(pte))
862148456Spjd			vm_page_dirty(m);
863148456Spjd
864148456Spjd		if (PTE_ISREFERENCED(pte))
865148456Spjd			vm_page_aflag_set(m, PGA_REFERENCED);
866148456Spjd
867148456Spjd		pv_remove(pmap, va, m);
868148456Spjd	}
869212934Sbrian
870153190Spjd	mtx_lock_spin(&tlbivax_mutex);
871148456Spjd	tlb_miss_lock();
872153190Spjd
873153190Spjd	tlb0_flush_entry(va);
874158214Spjd	pte->flags = 0;
875148456Spjd	pte->rpn = 0;
876148456Spjd
877153190Spjd	tlb_miss_unlock();
878148456Spjd	mtx_unlock_spin(&tlbivax_mutex);
879148456Spjd
880148456Spjd	pmap->pm_stats.resident_count--;
881148456Spjd
882212934Sbrian	if (flags & PTBL_UNHOLD) {
883212934Sbrian		//debugf("pte_remove: e (unhold)\n");
884212934Sbrian		return (ptbl_unhold(mmu, pmap, pdir_idx));
885212934Sbrian	}
886212934Sbrian
887212934Sbrian	//debugf("pte_remove: e\n");
888213172Spjd	return (0);
889148456Spjd}
890148456Spjd
891148456Spjd/*
892148456Spjd * Insert PTE for a given page and virtual address.
893148456Spjd */
894148456Spjdstatic int
895148456Spjdpte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
896166892Spjd    boolean_t nosleep)
897148456Spjd{
898148456Spjd	unsigned int pdir_idx = PDIR_IDX(va);
899148456Spjd	unsigned int ptbl_idx = PTBL_IDX(va);
900148456Spjd	pte_t *ptbl, *pte;
901148456Spjd
902213172Spjd	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
903162353Spjd	    pmap == kernel_pmap, pmap, va);
904162353Spjd
905162353Spjd	/* Get the page table pointer. */
906162353Spjd	ptbl = pmap->pm_pdir[pdir_idx];
907162353Spjd
908162353Spjd	if (ptbl == NULL) {
909162353Spjd		/* Allocate page table pages. */
910162353Spjd		ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep);
911162353Spjd		if (ptbl == NULL) {
912162353Spjd			KASSERT(nosleep, ("nosleep and NULL ptbl"));
913162353Spjd			return (ENOMEM);
914162353Spjd		}
915162353Spjd	} else {
916162353Spjd		/*
917162353Spjd		 * Check if there is valid mapping for requested
918162353Spjd		 * va, if there is, remove it.
919162353Spjd		 */
920162353Spjd		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
921162353Spjd		if (PTE_ISVALID(pte)) {
922162353Spjd			pte_remove(mmu, pmap, va, PTBL_HOLD);
923162353Spjd		} else {
924162353Spjd			/*
925162353Spjd			 * pte is not used, increment hold count
926162353Spjd			 * for ptbl pages.
927162353Spjd			 */
928162353Spjd			if (pmap != kernel_pmap)
929213172Spjd				ptbl_hold(mmu, pmap, pdir_idx);
930213172Spjd		}
931162353Spjd	}
932162353Spjd
933162353Spjd	/*
934162353Spjd	 * Insert pv_entry into pv_list for mapped page if part of managed
935162353Spjd	 * memory.
936162353Spjd	 */
937162353Spjd	if ((m->oflags & VPO_UNMANAGED) == 0) {
938162353Spjd		flags |= PTE_MANAGED;
939162353Spjd
940162353Spjd		/* Create and insert pv entry. */
941162353Spjd		pv_insert(pmap, va, m);
942162353Spjd	}
943162353Spjd
944162353Spjd	pmap->pm_stats.resident_count++;
945162353Spjd
946162353Spjd	mtx_lock_spin(&tlbivax_mutex);
947162353Spjd	tlb_miss_lock();
948162353Spjd
949162353Spjd	tlb0_flush_entry(va);
950162353Spjd	if (pmap->pm_pdir[pdir_idx] == NULL) {
951162353Spjd		/*
952162353Spjd		 * If we just allocated a new page table, hook it in
953162353Spjd		 * the pdir.
954162353Spjd		 */
955162353Spjd		pmap->pm_pdir[pdir_idx] = ptbl;
956162353Spjd	}
957162353Spjd	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
958162353Spjd	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
959162353Spjd	pte->flags |= (PTE_VALID | flags);
960162353Spjd
961155101Spjd	tlb_miss_unlock();
962148456Spjd	mtx_unlock_spin(&tlbivax_mutex);
963148456Spjd	return (0);
964166216Spjd}
965166216Spjd
966148456Spjd/* Return the pa for the given pmap/va. */
967153190Spjdstatic vm_paddr_t
968149304Spjdpte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
969153190Spjd{
970153190Spjd	vm_paddr_t pa = 0;
971166216Spjd	pte_t *pte;
972166216Spjd
973148456Spjd	pte = pte_find(mmu, pmap, va);
974148456Spjd	if ((pte != NULL) && PTE_ISVALID(pte))
975213172Spjd		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
976148456Spjd	return (pa);
977148456Spjd}
978148456Spjd
979166216Spjd/* Get a pointer to a PTE in a page table. */
980166216Spjdstatic pte_t *
981166216Spjdpte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
982166216Spjd{
983166216Spjd	unsigned int pdir_idx = PDIR_IDX(va);
984166216Spjd	unsigned int ptbl_idx = PTBL_IDX(va);
985166216Spjd
986166216Spjd	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
987166216Spjd
988148456Spjd	if (pmap->pm_pdir[pdir_idx])
989148456Spjd		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
990148456Spjd
991148456Spjd	return (NULL);
992148456Spjd}
993148456Spjd
994148456Spjd/**************************************************************************/
995149304Spjd/* PMAP related */
996149304Spjd/**************************************************************************/
997148456Spjd
998148456Spjd/*
999148456Spjd * This is called during booke_init, before the system is really initialized.
1000213172Spjd */
1001153190Spjdstatic void
1002148456Spjdmmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
1003148456Spjd{
1004149928Spjd	vm_offset_t phys_kernelend;
1005149928Spjd	struct mem_region *mp, *mp1;
1006149928Spjd	int cnt, i, j;
1007149928Spjd	u_int s, e, sz;
1008149928Spjd	u_int phys_avail_count;
1009148456Spjd	vm_size_t physsz, hwphyssz, kstack0_sz;
1010213172Spjd	vm_offset_t kernel_pdir, kstack0, va;
1011148456Spjd	vm_paddr_t kstack0_phys;
1012148456Spjd	void *dpcpu;
1013148456Spjd	pte_t *pte;
1014148456Spjd
1015148456Spjd	debugf("mmu_booke_bootstrap: entered\n");
1016149304Spjd
1017148456Spjd	/* Initialize invalidation mutex */
1018148456Spjd	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1019149304Spjd
1020148456Spjd	/* Read TLB0 size and associativity. */
1021148456Spjd	tlb0_get_tlbconf();
1022148456Spjd
1023148456Spjd	/*
1024148456Spjd	 * Align kernel start and end address (kernel image).
1025148456Spjd	 * Note that kernel end does not necessarily relate to kernsize.
1026148456Spjd	 * kernsize is the size of the kernel that is actually mapped.
1027148456Spjd	 * Also note that "start - 1" is deliberate. With SMP, the
1028148456Spjd	 * entry point is exactly a page from the actual load address.
1029148456Spjd	 * As such, trunc_page() has no effect and we're off by a page.
1030148456Spjd	 * Since we always have the ELF header between the load address
1031153190Spjd	 * and the entry point, we can safely subtract 1 to compensate.
1032153190Spjd	 */
1033153190Spjd	kernstart = trunc_page(start - 1);
1034148456Spjd	data_start = round_page(kernelend);
1035148456Spjd	data_end = data_start;
1036148456Spjd
1037148456Spjd	/*
1038148456Spjd	 * Addresses of preloaded modules (like file systems) use
1039148456Spjd	 * physical addresses. Make sure we relocate those into
1040148456Spjd	 * virtual addresses.
1041148456Spjd	 */
1042148456Spjd	preload_addr_relocate = kernstart - kernload;
1043153190Spjd
1044149304Spjd	/* Allocate the dynamic per-cpu area. */
1045153190Spjd	dpcpu = (void *)data_end;
1046149304Spjd	data_end += DPCPU_SIZE;
1047149304Spjd
1048149304Spjd	/* Allocate space for the message buffer. */
1049149304Spjd	msgbufp = (struct msgbuf *)data_end;
1050149304Spjd	data_end += msgbufsize;
1051149304Spjd	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1052149304Spjd	    data_end);
1053149304Spjd
1054149304Spjd	data_end = round_page(data_end);
1055149304Spjd
1056153190Spjd	/* Allocate space for ptbl_bufs. */
1057149304Spjd	ptbl_bufs = (struct ptbl_buf *)data_end;
1058148456Spjd	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1059149304Spjd	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1060149304Spjd	    data_end);
1061149304Spjd
1062148456Spjd	data_end = round_page(data_end);
1063148456Spjd
1064148456Spjd	/* Allocate PTE tables for kernel KVA. */
1065148456Spjd	kernel_pdir = data_end;
1066213172Spjd	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1067148456Spjd	    PDIR_SIZE - 1) / PDIR_SIZE;
1068149304Spjd	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1069148456Spjd	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1070148456Spjd	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1071148456Spjd
1072148456Spjd	debugf(" data_end: 0x%08x\n", data_end);
1073159308Spjd	if (data_end - kernstart > kernsize) {
1074148456Spjd		kernsize += tlb1_mapin_region(kernstart + kernsize,
1075148456Spjd		    kernload + kernsize, (data_end - kernstart) - kernsize);
1076149304Spjd	}
1077148456Spjd	data_end = kernstart + kernsize;
1078148456Spjd	debugf(" updated data_end: 0x%08x\n", data_end);
1079148456Spjd
1080148456Spjd	/*
1081148456Spjd	 * Clear the structures - note we can only do it safely after the
1082148456Spjd	 * possible additional TLB1 translations are in place (above) so that
1083149304Spjd	 * all range up to the currently calculated 'data_end' is covered.
1084149304Spjd	 */
1085148456Spjd	dpcpu_init(dpcpu, 0);
1086148456Spjd	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1087148456Spjd	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1088148456Spjd
1089148456Spjd	/*******************************************************/
1090149304Spjd	/* Set the start and end of kva. */
1091148456Spjd	/*******************************************************/
1092153190Spjd	virtual_avail = round_page(data_end);
1093148456Spjd	virtual_end = VM_MAX_KERNEL_ADDRESS;
1094153190Spjd
1095153190Spjd	/* Allocate KVA space for page zero/copy operations. */
1096158214Spjd	zero_page_va = virtual_avail;
1097148456Spjd	virtual_avail += PAGE_SIZE;
1098148456Spjd	zero_page_idle_va = virtual_avail;
1099153190Spjd	virtual_avail += PAGE_SIZE;
1100148456Spjd	copy_page_src_va = virtual_avail;
1101149304Spjd	virtual_avail += PAGE_SIZE;
1102149304Spjd	copy_page_dst_va = virtual_avail;
1103149304Spjd	virtual_avail += PAGE_SIZE;
1104148456Spjd	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1105155101Spjd	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1106148456Spjd	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1107149304Spjd	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1108182452Spjd
1109182452Spjd	/* Initialize page zero/copy mutexes. */
1110182452Spjd	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1111182452Spjd	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1112182452Spjd
1113182452Spjd	/* Allocate KVA space for ptbl bufs. */
1114148456Spjd	ptbl_buf_pool_vabase = virtual_avail;
1115148456Spjd	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1116148456Spjd	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1117148456Spjd	    ptbl_buf_pool_vabase, virtual_avail);
1118148456Spjd
1119148456Spjd	/* Calculate corresponding physical addresses for the kernel region. */
1120148456Spjd	phys_kernelend = kernload + kernsize;
1121148456Spjd	debugf("kernel image and allocated data:\n");
1122148456Spjd	debugf(" kernload    = 0x%08x\n", kernload);
1123148456Spjd	debugf(" kernstart   = 0x%08x\n", kernstart);
1124148456Spjd	debugf(" kernsize    = 0x%08x\n", kernsize);
1125148456Spjd
1126148456Spjd	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1127148456Spjd		panic("mmu_booke_bootstrap: phys_avail too small");
1128213172Spjd
1129153190Spjd	/*
1130213172Spjd	 * Remove kernel physical address range from avail regions list. Page
1131148456Spjd	 * align all regions.  Non-page aligned memory isn't very interesting
1132148456Spjd	 * to us.  Also, sort the entries for ascending addresses.
1133148456Spjd	 */
1134148456Spjd
1135153190Spjd	/* Retrieve phys/avail mem regions */
1136153190Spjd	mem_regions(&physmem_regions, &physmem_regions_sz,
1137246620Spjd	    &availmem_regions, &availmem_regions_sz);
1138148456Spjd	sz = 0;
1139153190Spjd	cnt = availmem_regions_sz;
1140153190Spjd	debugf("processing avail regions:\n");
1141153190Spjd	for (mp = availmem_regions; mp->mr_size; mp++) {
1142148456Spjd		s = mp->mr_start;
1143148456Spjd		e = mp->mr_start + mp->mr_size;
1144148456Spjd		debugf(" %08x-%08x -> ", s, e);
1145153190Spjd		/* Check whether this region holds all of the kernel. */
1146148456Spjd		if (s < kernload && e > phys_kernelend) {
1147148456Spjd			availmem_regions[cnt].mr_start = phys_kernelend;
1148148456Spjd			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1149148456Spjd			e = kernload;
1150153190Spjd		}
1151148456Spjd		/* Look whether this regions starts within the kernel. */
1152148456Spjd		if (s >= kernload && s < phys_kernelend) {
1153148456Spjd			if (e <= phys_kernelend)
1154148456Spjd				goto empty;
1155153190Spjd			s = phys_kernelend;
1156148456Spjd		}
1157148456Spjd		/* Now look whether this region ends within the kernel. */
1158148456Spjd		if (e > kernload && e <= phys_kernelend) {
1159148456Spjd			if (s >= kernload)
1160148456Spjd				goto empty;
1161246620Spjd			e = kernload;
1162148456Spjd		}
1163148456Spjd		/* Now page align the start and size of the region. */
1164148456Spjd		s = round_page(s);
1165148456Spjd		e = trunc_page(e);
1166148456Spjd		if (e < s)
1167148456Spjd			e = s;
1168148456Spjd		sz = e - s;
1169148456Spjd		debugf("%08x-%08x = %x\n", s, e, sz);
1170148456Spjd
1171148456Spjd		/* Check whether some memory is left here. */
1172153190Spjd		if (sz == 0) {
1173148456Spjd		empty:
1174153190Spjd			memmove(mp, mp + 1,
1175153190Spjd			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1176158214Spjd			cnt--;
1177148456Spjd			mp--;
1178148456Spjd			continue;
1179153190Spjd		}
1180148456Spjd
1181148456Spjd		/* Do an insertion sort. */
1182148456Spjd		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1183148456Spjd			if (s < mp1->mr_start)
1184148456Spjd				break;
1185148456Spjd		if (mp1 < mp) {
1186148456Spjd			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1187214118Spjd			mp1->mr_start = s;
1188214118Spjd			mp1->mr_size = sz;
1189214118Spjd		} else {
1190214118Spjd			mp->mr_start = s;
1191214118Spjd			mp->mr_size = sz;
1192214118Spjd		}
1193214118Spjd	}
1194214118Spjd	availmem_regions_sz = cnt;
1195214118Spjd
1196214118Spjd	/*******************************************************/
1197214118Spjd	/* Steal physical memory for kernel stack from the end */
1198214118Spjd	/* of the first avail region                           */
1199214118Spjd	/*******************************************************/
1200214118Spjd	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1201214118Spjd	kstack0_phys = availmem_regions[0].mr_start +
1202214118Spjd	    availmem_regions[0].mr_size;
1203214118Spjd	kstack0_phys -= kstack0_sz;
1204214118Spjd	availmem_regions[0].mr_size -= kstack0_sz;
1205214118Spjd
1206214118Spjd	/*******************************************************/
1207214118Spjd	/* Fill in phys_avail table, based on availmem_regions */
1208214118Spjd	/*******************************************************/
1209214118Spjd	phys_avail_count = 0;
1210214118Spjd	physsz = 0;
1211214118Spjd	hwphyssz = 0;
1212214118Spjd	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1213214118Spjd
1214214118Spjd	debugf("fill in phys_avail:\n");
1215214118Spjd	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1216214118Spjd
1217214118Spjd		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1218214118Spjd		    availmem_regions[i].mr_start,
1219214118Spjd		    availmem_regions[i].mr_start +
1220214118Spjd		        availmem_regions[i].mr_size,
1221214118Spjd		    availmem_regions[i].mr_size);
1222214118Spjd
1223214118Spjd		if (hwphyssz != 0 &&
1224214118Spjd		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1225213060Spjd			debugf(" hw.physmem adjust\n");
1226213060Spjd			if (physsz < hwphyssz) {
1227213060Spjd				phys_avail[j] = availmem_regions[i].mr_start;
1228213060Spjd				phys_avail[j + 1] =
1229213060Spjd				    availmem_regions[i].mr_start +
1230213060Spjd				    hwphyssz - physsz;
1231213060Spjd				physsz = hwphyssz;
1232213060Spjd				phys_avail_count++;
1233213060Spjd			}
1234213060Spjd			break;
1235213060Spjd		}
1236213060Spjd
1237213060Spjd		phys_avail[j] = availmem_regions[i].mr_start;
1238213060Spjd		phys_avail[j + 1] = availmem_regions[i].mr_start +
1239213060Spjd		    availmem_regions[i].mr_size;
1240213060Spjd		phys_avail_count++;
1241213060Spjd		physsz += availmem_regions[i].mr_size;
1242213060Spjd	}
1243213060Spjd	physmem = btoc(physsz);
1244213060Spjd
1245213060Spjd	/* Calculate the last available physical address. */
1246213060Spjd	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1247213060Spjd		;
1248213060Spjd	Maxmem = powerpc_btop(phys_avail[i + 1]);
1249213060Spjd
1250213060Spjd	debugf("Maxmem = 0x%08lx\n", Maxmem);
1251213060Spjd	debugf("phys_avail_count = %d\n", phys_avail_count);
1252213060Spjd	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1253246620Spjd	    physmem);
1254213060Spjd
1255213060Spjd	/*******************************************************/
1256213060Spjd	/* Initialize (statically allocated) kernel pmap. */
1257213060Spjd	/*******************************************************/
1258213060Spjd	PMAP_LOCK_INIT(kernel_pmap);
1259213060Spjd	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1260246622Spjd
1261213060Spjd	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1262213060Spjd	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1263213060Spjd	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1264213060Spjd	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1265213060Spjd
1266213060Spjd	/* Initialize kernel pdir */
1267213060Spjd	for (i = 0; i < kernel_ptbls; i++)
1268213060Spjd		kernel_pmap->pm_pdir[kptbl_min + i] =
1269148456Spjd		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1270148456Spjd
1271148456Spjd	for (i = 0; i < MAXCPU; i++) {
1272213060Spjd		kernel_pmap->pm_tid[i] = TID_KERNEL;
1273213060Spjd
1274148456Spjd		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1275148456Spjd		tidbusy[i][0] = kernel_pmap;
1276148456Spjd	}
1277148456Spjd
1278148456Spjd	/*
1279148456Spjd	 * Fill in PTEs covering kernel code and data. They are not required
1280148456Spjd	 * for address translation, as this area is covered by static TLB1
1281148456Spjd	 * entries, but for pte_vatopa() to work correctly with kernel area
1282148456Spjd	 * addresses.
1283148456Spjd	 */
1284148456Spjd	for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1285148456Spjd		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1286148456Spjd		pte->rpn = kernload + (va - kernstart);
1287148456Spjd		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1288148456Spjd		    PTE_VALID;
1289148456Spjd	}
1290213060Spjd	/* Mark kernel_pmap active on all CPUs */
1291213060Spjd	CPU_FILL(&kernel_pmap->pm_active);
1292213060Spjd
1293213060Spjd 	/*
1294213060Spjd	 * Initialize the global pv list lock.
1295148456Spjd	 */
1296213060Spjd	rw_init(&pvh_global_lock, "pmap pv global");
1297213060Spjd
1298213060Spjd	/*******************************************************/
1299213060Spjd	/* Final setup */
1300213060Spjd	/*******************************************************/
1301213060Spjd
1302213060Spjd	/* Enter kstack0 into kernel map, provide guard page */
1303213060Spjd	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1304213060Spjd	thread0.td_kstack = kstack0;
1305213060Spjd	thread0.td_kstack_pages = KSTACK_PAGES;
1306148456Spjd
1307148456Spjd	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1308148456Spjd	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1309148456Spjd	    kstack0_phys, kstack0_phys + kstack0_sz);
1310148456Spjd	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1311148456Spjd
1312153190Spjd	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1313148456Spjd	for (i = 0; i < KSTACK_PAGES; i++) {
1314153190Spjd		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1315153190Spjd		kstack0 += PAGE_SIZE;
1316153190Spjd		kstack0_phys += PAGE_SIZE;
1317148456Spjd	}
1318148456Spjd
1319148456Spjd	debugf("virtual_avail = %08x\n", virtual_avail);
1320148456Spjd	debugf("virtual_end   = %08x\n", virtual_end);
1321148456Spjd
1322148456Spjd	debugf("mmu_booke_bootstrap: exit\n");
1323148456Spjd}
1324169312Spjd
1325148456Spjdvoid
1326148456Spjdpmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1327148456Spjd{
1328148456Spjd	int i;
1329148456Spjd
1330148456Spjd	/*
1331169312Spjd	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1332153190Spjd	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1333153190Spjd	 * these values directly to (re)program AP's TLB1 hardware.
1334148456Spjd	 */
1335148456Spjd	for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1336148456Spjd		/* Skip invalid entries */
1337162347Spjd		if (!(tlb1[i].mas1 & MAS1_VALID))
1338162347Spjd			continue;
1339148456Spjd
1340148456Spjd		tlb1_write_entry(i);
1341182452Spjd	}
1342182452Spjd
1343148456Spjd	set_mas4_defaults();
1344148456Spjd}
1345213059Spjd
1346226716Spjd/*
1347148456Spjd * Get the physical page address for the given pmap/virtual address.
1348182452Spjd */
1349226716Spjdstatic vm_paddr_t
1350148456Spjdmmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1351148456Spjd{
1352148456Spjd	vm_paddr_t pa;
1353226716Spjd
1354226716Spjd	PMAP_LOCK(pmap);
1355148456Spjd	pa = pte_vatopa(mmu, pmap, va);
1356148456Spjd	PMAP_UNLOCK(pmap);
1357169193Spjd
1358148456Spjd	return (pa);
1359148456Spjd}
1360148456Spjd
1361148456Spjd/*
1362169193Spjd * Extract the physical page address associated with the given
1363148456Spjd * kernel virtual address.
1364148456Spjd */
1365226716Spjdstatic vm_paddr_t
1366226716Spjdmmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1367226716Spjd{
1368226716Spjd	int i;
1369148456Spjd
1370148456Spjd	/* Check TLB1 mappings */
1371226716Spjd	for (i = 0; i < tlb1_idx; i++) {
1372226716Spjd		if (!(tlb1[i].mas1 & MAS1_VALID))
1373226716Spjd			continue;
1374226716Spjd		if (va >= tlb1[i].virt && va < tlb1[i].virt + tlb1[i].size)
1375226716Spjd			return (tlb1[i].phys + (va - tlb1[i].virt));
1376148456Spjd	}
1377148456Spjd
1378148456Spjd	return (pte_vatopa(mmu, kernel_pmap, va));
1379213059Spjd}
1380226716Spjd
1381148456Spjd/*
1382226716Spjd * Initialize the pmap module.
1383226716Spjd * Called by vm_init, to initialize any structures that the pmap
1384148456Spjd * system needs to map virtual memory.
1385148456Spjd */
1386213059Spjdstatic void
1387226716Spjdmmu_booke_init(mmu_t mmu)
1388182452Spjd{
1389182452Spjd	int shpgperproc = PMAP_SHPGPERPROC;
1390148456Spjd
1391148456Spjd	/*
1392148456Spjd	 * Initialize the address space (zone) for the pv entries.  Set a
1393148456Spjd	 * high water mark so that the system can recover from excessive
1394148456Spjd	 * numbers of pv entries.
1395182452Spjd	 */
1396148456Spjd	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1397148456Spjd	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1398148456Spjd
1399182452Spjd	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1400182452Spjd	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1401182452Spjd
1402182452Spjd	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1403182452Spjd	pv_entry_high_water = 9 * (pv_entry_max / 10);
1404182452Spjd
1405182452Spjd	uma_zone_reserve_kva(pvzone, pv_entry_max);
1406182452Spjd
1407182452Spjd	/* Pre-fill pvzone with initial number of pv entries. */
1408182452Spjd	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1409182452Spjd
1410182452Spjd	/* Initialize ptbl allocation. */
1411182452Spjd	ptbl_init();
1412182452Spjd}
1413182452Spjd
1414182452Spjd/*
1415182452Spjd * Map a list of wired pages into kernel virtual address space.  This is
1416148456Spjd * intended for temporary mappings which do not need page modification or
1417148456Spjd * references recorded.  Existing mappings in the region are overwritten.
1418148456Spjd */
1419148456Spjdstatic void
1420148456Spjdmmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1421226716Spjd{
1422148456Spjd	vm_offset_t va;
1423153190Spjd
1424153190Spjd	va = sva;
1425148456Spjd	while (count-- > 0) {
1426148456Spjd		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1427148456Spjd		va += PAGE_SIZE;
1428153190Spjd		m++;
1429153190Spjd	}
1430148456Spjd}
1431226716Spjd
1432226716Spjd/*
1433226716Spjd * Remove page mappings from kernel virtual address space.  Intended for
1434226716Spjd * temporary mappings entered by mmu_booke_qenter.
1435226716Spjd */
1436226716Spjdstatic void
1437148456Spjdmmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1438148456Spjd{
1439226716Spjd	vm_offset_t va;
1440148456Spjd
1441212934Sbrian	va = sva;
1442212934Sbrian	while (count-- > 0) {
1443212934Sbrian		mmu_booke_kremove(mmu, va);
1444212934Sbrian		va += PAGE_SIZE;
1445212934Sbrian	}
1446212934Sbrian}
1447212934Sbrian
1448226716Spjd/*
1449212934Sbrian * Map a wired page into kernel virtual address space.
1450212934Sbrian */
1451226716Spjdstatic void
1452226716Spjdmmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1453148456Spjd{
1454148456Spjd
1455148456Spjd	mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1456212934Sbrian}
1457212934Sbrian
1458212934Sbrianstatic void
1459212934Sbrianmmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1460212934Sbrian{
1461213056Spjd	unsigned int pdir_idx = PDIR_IDX(va);
1462212934Sbrian	unsigned int ptbl_idx = PTBL_IDX(va);
1463226722Spjd	uint32_t flags;
1464212934Sbrian	pte_t *pte;
1465212934Sbrian
1466212934Sbrian	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1467212934Sbrian	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1468212934Sbrian
1469212934Sbrian	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1470212934Sbrian	flags |= tlb_calc_wimg(pa, ma);
1471212934Sbrian
1472212934Sbrian	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1473212934Sbrian
1474212934Sbrian	mtx_lock_spin(&tlbivax_mutex);
1475212934Sbrian	tlb_miss_lock();
1476213056Spjd
1477212934Sbrian	if (PTE_ISVALID(pte)) {
1478212934Sbrian
1479212934Sbrian		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1480212934Sbrian
1481212934Sbrian		/* Flush entry from TLB0 */
1482213056Spjd		tlb0_flush_entry(va);
1483213056Spjd	}
1484213056Spjd
1485212934Sbrian	pte->rpn = pa & ~PTE_PA_MASK;
1486212934Sbrian	pte->flags = flags;
1487212934Sbrian
1488212934Sbrian	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1489212934Sbrian	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1490212934Sbrian	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1491212934Sbrian
1492212934Sbrian	/* Flush the real memory from the instruction cache. */
1493212934Sbrian	if ((flags & (PTE_I | PTE_G)) == 0) {
1494212934Sbrian		__syncicache((void *)va, PAGE_SIZE);
1495212934Sbrian	}
1496212934Sbrian
1497212934Sbrian	tlb_miss_unlock();
1498212934Sbrian	mtx_unlock_spin(&tlbivax_mutex);
1499212934Sbrian}
1500212934Sbrian
1501213058Spjd/*
1502213058Spjd * Remove a page from kernel page table.
1503213058Spjd */
1504213058Spjdstatic void
1505212934Sbrianmmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1506212934Sbrian{
1507213056Spjd	unsigned int pdir_idx = PDIR_IDX(va);
1508212934Sbrian	unsigned int ptbl_idx = PTBL_IDX(va);
1509212934Sbrian	pte_t *pte;
1510212934Sbrian
1511212934Sbrian//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1512212934Sbrian
1513212934Sbrian	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1514226722Spjd	    (va <= VM_MAX_KERNEL_ADDRESS)),
1515226722Spjd	    ("mmu_booke_kremove: invalid va"));
1516226722Spjd
1517226722Spjd	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1518226722Spjd
1519226722Spjd	if (!PTE_ISVALID(pte)) {
1520226722Spjd
1521226722Spjd		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1522226722Spjd
1523212934Sbrian		return;
1524226722Spjd	}
1525226722Spjd
1526226722Spjd	mtx_lock_spin(&tlbivax_mutex);
1527226722Spjd	tlb_miss_lock();
1528226722Spjd
1529226722Spjd	/* Invalidate entry in TLB0, update PTE. */
1530226722Spjd	tlb0_flush_entry(va);
1531226722Spjd	pte->flags = 0;
1532212934Sbrian	pte->rpn = 0;
1533212934Sbrian
1534212934Sbrian	tlb_miss_unlock();
1535212934Sbrian	mtx_unlock_spin(&tlbivax_mutex);
1536212934Sbrian}
1537212934Sbrian
1538212934Sbrian/*
1539212934Sbrian * Initialize pmap associated with process 0.
1540212934Sbrian */
1541212934Sbrianstatic void
1542212934Sbrianmmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1543212934Sbrian{
1544212934Sbrian
1545212934Sbrian	PMAP_LOCK_INIT(pmap);
1546212934Sbrian	mmu_booke_pinit(mmu, pmap);
1547212934Sbrian	PCPU_SET(curpmap, pmap);
1548226720Spjd}
1549226720Spjd
1550212934Sbrian/*
1551226720Spjd * Initialize a preallocated and zeroed pmap structure,
1552212934Sbrian * such as one in a vmspace structure.
1553226720Spjd */
1554213056Spjdstatic void
1555212934Sbrianmmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1556212934Sbrian{
1557212934Sbrian	int i;
1558212934Sbrian
1559212934Sbrian	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1560212934Sbrian	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1561212934Sbrian
1562226723Spjd	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1563226723Spjd
1564226723Spjd	for (i = 0; i < MAXCPU; i++)
1565226723Spjd		pmap->pm_tid[i] = TID_NONE;
1566226723Spjd	CPU_ZERO(&kernel_pmap->pm_active);
1567226723Spjd	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1568226723Spjd	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1569226723Spjd	TAILQ_INIT(&pmap->pm_ptbl_list);
1570226723Spjd}
1571226723Spjd
1572226723Spjd/*
1573226723Spjd * Release any resources held by the given physical map.
1574226723Spjd * Called when a pmap initialized by mmu_booke_pinit is being released.
1575226723Spjd * Should only be called if the map contains no valid mappings.
1576226723Spjd */
1577226723Spjdstatic void
1578226723Spjdmmu_booke_release(mmu_t mmu, pmap_t pmap)
1579226723Spjd{
1580226723Spjd
1581226723Spjd	KASSERT(pmap->pm_stats.resident_count == 0,
1582226723Spjd	    ("pmap_release: pmap resident count %ld != 0",
1583226723Spjd	    pmap->pm_stats.resident_count));
1584226723Spjd}
1585226723Spjd
1586226723Spjd/*
1587226723Spjd * Insert the given physical page at the specified virtual address in the
1588226723Spjd * target physical map with the protection requested. If specified the page
1589226723Spjd * will be wired down.
1590226723Spjd */
1591226723Spjdstatic int
1592226723Spjdmmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1593226723Spjd    vm_prot_t prot, u_int flags, int8_t psind)
1594226723Spjd{
1595226723Spjd	int error;
1596226723Spjd
1597226723Spjd	rw_wlock(&pvh_global_lock);
1598226723Spjd	PMAP_LOCK(pmap);
1599226723Spjd	error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind);
1600226723Spjd	rw_wunlock(&pvh_global_lock);
1601226723Spjd	PMAP_UNLOCK(pmap);
1602148456Spjd	return (error);
1603148456Spjd}
1604148456Spjd
1605153190Spjdstatic int
1606148456Spjdmmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1607153190Spjd    vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
1608153190Spjd{
1609148456Spjd	pte_t *pte;
1610148456Spjd	vm_paddr_t pa;
1611148456Spjd	uint32_t flags;
1612148456Spjd	int error, su, sync;
1613153190Spjd
1614153190Spjd	pa = VM_PAGE_TO_PHYS(m);
1615148456Spjd	su = (pmap == kernel_pmap);
1616148456Spjd	sync = 0;
1617148456Spjd
1618148456Spjd	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1619148456Spjd	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
1620148456Spjd	//		(u_int32_t)pmap, su, pmap->pm_tid,
1621148456Spjd	//		(u_int32_t)m, va, pa, prot, flags);
1622148456Spjd
1623155175Spjd	if (su) {
1624148456Spjd		KASSERT(((va >= virtual_avail) &&
1625148456Spjd		    (va <= VM_MAX_KERNEL_ADDRESS)),
1626148456Spjd		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1627148456Spjd	} else {
1628148456Spjd		KASSERT((va <= VM_MAXUSER_ADDRESS),
1629148456Spjd		    ("mmu_booke_enter_locked: user pmap, non user va"));
1630226719Spjd	}
1631148456Spjd	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1632226719Spjd		VM_OBJECT_ASSERT_LOCKED(m->object);
1633148456Spjd
1634153190Spjd	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1635153190Spjd
1636148456Spjd	/*
1637148456Spjd	 * If there is an existing mapping, and the physical address has not
1638148456Spjd	 * changed, must be protection or wiring change.
1639148456Spjd	 */
1640153190Spjd	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1641153190Spjd	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1642226719Spjd
1643148456Spjd		/*
1644148456Spjd		 * Before actually updating pte->flags we calculate and
1645148456Spjd		 * prepare its new value in a helper var.
1646148456Spjd		 */
1647148456Spjd		flags = pte->flags;
1648148456Spjd		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1649148456Spjd
1650148456Spjd		/* Wiring change, just update stats. */
1651		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
1652			if (!PTE_ISWIRED(pte)) {
1653				flags |= PTE_WIRED;
1654				pmap->pm_stats.wired_count++;
1655			}
1656		} else {
1657			if (PTE_ISWIRED(pte)) {
1658				flags &= ~PTE_WIRED;
1659				pmap->pm_stats.wired_count--;
1660			}
1661		}
1662
1663		if (prot & VM_PROT_WRITE) {
1664			/* Add write permissions. */
1665			flags |= PTE_SW;
1666			if (!su)
1667				flags |= PTE_UW;
1668
1669			if ((flags & PTE_MANAGED) != 0)
1670				vm_page_aflag_set(m, PGA_WRITEABLE);
1671		} else {
1672			/* Handle modified pages, sense modify status. */
1673
1674			/*
1675			 * The PTE_MODIFIED flag could be set by underlying
1676			 * TLB misses since we last read it (above), possibly
1677			 * other CPUs could update it so we check in the PTE
1678			 * directly rather than rely on that saved local flags
1679			 * copy.
1680			 */
1681			if (PTE_ISMODIFIED(pte))
1682				vm_page_dirty(m);
1683		}
1684
1685		if (prot & VM_PROT_EXECUTE) {
1686			flags |= PTE_SX;
1687			if (!su)
1688				flags |= PTE_UX;
1689
1690			/*
1691			 * Check existing flags for execute permissions: if we
1692			 * are turning execute permissions on, icache should
1693			 * be flushed.
1694			 */
1695			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1696				sync++;
1697		}
1698
1699		flags &= ~PTE_REFERENCED;
1700
1701		/*
1702		 * The new flags value is all calculated -- only now actually
1703		 * update the PTE.
1704		 */
1705		mtx_lock_spin(&tlbivax_mutex);
1706		tlb_miss_lock();
1707
1708		tlb0_flush_entry(va);
1709		pte->flags = flags;
1710
1711		tlb_miss_unlock();
1712		mtx_unlock_spin(&tlbivax_mutex);
1713
1714	} else {
1715		/*
1716		 * If there is an existing mapping, but it's for a different
1717		 * physical address, pte_enter() will delete the old mapping.
1718		 */
1719		//if ((pte != NULL) && PTE_ISVALID(pte))
1720		//	debugf("mmu_booke_enter_locked: replace\n");
1721		//else
1722		//	debugf("mmu_booke_enter_locked: new\n");
1723
1724		/* Now set up the flags and install the new mapping. */
1725		flags = (PTE_SR | PTE_VALID);
1726		flags |= PTE_M;
1727
1728		if (!su)
1729			flags |= PTE_UR;
1730
1731		if (prot & VM_PROT_WRITE) {
1732			flags |= PTE_SW;
1733			if (!su)
1734				flags |= PTE_UW;
1735
1736			if ((m->oflags & VPO_UNMANAGED) == 0)
1737				vm_page_aflag_set(m, PGA_WRITEABLE);
1738		}
1739
1740		if (prot & VM_PROT_EXECUTE) {
1741			flags |= PTE_SX;
1742			if (!su)
1743				flags |= PTE_UX;
1744		}
1745
1746		/* If its wired update stats. */
1747		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
1748			flags |= PTE_WIRED;
1749
1750		error = pte_enter(mmu, pmap, m, va, flags,
1751		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
1752		if (error != 0)
1753			return (KERN_RESOURCE_SHORTAGE);
1754
1755		if ((flags & PMAP_ENTER_WIRED) != 0)
1756			pmap->pm_stats.wired_count++;
1757
1758		/* Flush the real memory from the instruction cache. */
1759		if (prot & VM_PROT_EXECUTE)
1760			sync++;
1761	}
1762
1763	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1764		__syncicache((void *)va, PAGE_SIZE);
1765		sync = 0;
1766	}
1767
1768	return (KERN_SUCCESS);
1769}
1770
1771/*
1772 * Maps a sequence of resident pages belonging to the same object.
1773 * The sequence begins with the given page m_start.  This page is
1774 * mapped at the given virtual address start.  Each subsequent page is
1775 * mapped at a virtual address that is offset from start by the same
1776 * amount as the page is offset from m_start within the object.  The
1777 * last page in the sequence is the page with the largest offset from
1778 * m_start that can be mapped at a virtual address less than the given
1779 * virtual address end.  Not every virtual page between start and end
1780 * is mapped; only those for which a resident page exists with the
1781 * corresponding offset from m_start are mapped.
1782 */
1783static void
1784mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1785    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1786{
1787	vm_page_t m;
1788	vm_pindex_t diff, psize;
1789
1790	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1791
1792	psize = atop(end - start);
1793	m = m_start;
1794	rw_wlock(&pvh_global_lock);
1795	PMAP_LOCK(pmap);
1796	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1797		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1798		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1799		    PMAP_ENTER_NOSLEEP, 0);
1800		m = TAILQ_NEXT(m, listq);
1801	}
1802	rw_wunlock(&pvh_global_lock);
1803	PMAP_UNLOCK(pmap);
1804}
1805
1806static void
1807mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1808    vm_prot_t prot)
1809{
1810
1811	rw_wlock(&pvh_global_lock);
1812	PMAP_LOCK(pmap);
1813	mmu_booke_enter_locked(mmu, pmap, va, m,
1814	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP,
1815	    0);
1816	rw_wunlock(&pvh_global_lock);
1817	PMAP_UNLOCK(pmap);
1818}
1819
1820/*
1821 * Remove the given range of addresses from the specified map.
1822 *
1823 * It is assumed that the start and end are properly rounded to the page size.
1824 */
1825static void
1826mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1827{
1828	pte_t *pte;
1829	uint8_t hold_flag;
1830
1831	int su = (pmap == kernel_pmap);
1832
1833	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1834	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1835
1836	if (su) {
1837		KASSERT(((va >= virtual_avail) &&
1838		    (va <= VM_MAX_KERNEL_ADDRESS)),
1839		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1840	} else {
1841		KASSERT((va <= VM_MAXUSER_ADDRESS),
1842		    ("mmu_booke_remove: user pmap, non user va"));
1843	}
1844
1845	if (PMAP_REMOVE_DONE(pmap)) {
1846		//debugf("mmu_booke_remove: e (empty)\n");
1847		return;
1848	}
1849
1850	hold_flag = PTBL_HOLD_FLAG(pmap);
1851	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1852
1853	rw_wlock(&pvh_global_lock);
1854	PMAP_LOCK(pmap);
1855	for (; va < endva; va += PAGE_SIZE) {
1856		pte = pte_find(mmu, pmap, va);
1857		if ((pte != NULL) && PTE_ISVALID(pte))
1858			pte_remove(mmu, pmap, va, hold_flag);
1859	}
1860	PMAP_UNLOCK(pmap);
1861	rw_wunlock(&pvh_global_lock);
1862
1863	//debugf("mmu_booke_remove: e\n");
1864}
1865
1866/*
1867 * Remove physical page from all pmaps in which it resides.
1868 */
1869static void
1870mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1871{
1872	pv_entry_t pv, pvn;
1873	uint8_t hold_flag;
1874
1875	rw_wlock(&pvh_global_lock);
1876	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1877		pvn = TAILQ_NEXT(pv, pv_link);
1878
1879		PMAP_LOCK(pv->pv_pmap);
1880		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1881		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1882		PMAP_UNLOCK(pv->pv_pmap);
1883	}
1884	vm_page_aflag_clear(m, PGA_WRITEABLE);
1885	rw_wunlock(&pvh_global_lock);
1886}
1887
1888/*
1889 * Map a range of physical addresses into kernel virtual address space.
1890 */
1891static vm_offset_t
1892mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1893    vm_paddr_t pa_end, int prot)
1894{
1895	vm_offset_t sva = *virt;
1896	vm_offset_t va = sva;
1897
1898	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1899	//		sva, pa_start, pa_end);
1900
1901	while (pa_start < pa_end) {
1902		mmu_booke_kenter(mmu, va, pa_start);
1903		va += PAGE_SIZE;
1904		pa_start += PAGE_SIZE;
1905	}
1906	*virt = va;
1907
1908	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1909	return (sva);
1910}
1911
1912/*
1913 * The pmap must be activated before it's address space can be accessed in any
1914 * way.
1915 */
1916static void
1917mmu_booke_activate(mmu_t mmu, struct thread *td)
1918{
1919	pmap_t pmap;
1920	u_int cpuid;
1921
1922	pmap = &td->td_proc->p_vmspace->vm_pmap;
1923
1924	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1925	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1926
1927	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1928
1929	sched_pin();
1930
1931	cpuid = PCPU_GET(cpuid);
1932	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1933	PCPU_SET(curpmap, pmap);
1934
1935	if (pmap->pm_tid[cpuid] == TID_NONE)
1936		tid_alloc(pmap);
1937
1938	/* Load PID0 register with pmap tid value. */
1939	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1940	__asm __volatile("isync");
1941
1942	sched_unpin();
1943
1944	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1945	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1946}
1947
1948/*
1949 * Deactivate the specified process's address space.
1950 */
1951static void
1952mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1953{
1954	pmap_t pmap;
1955
1956	pmap = &td->td_proc->p_vmspace->vm_pmap;
1957
1958	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1959	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1960
1961	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1962	PCPU_SET(curpmap, NULL);
1963}
1964
1965/*
1966 * Copy the range specified by src_addr/len
1967 * from the source map to the range dst_addr/len
1968 * in the destination map.
1969 *
1970 * This routine is only advisory and need not do anything.
1971 */
1972static void
1973mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1974    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1975{
1976
1977}
1978
1979/*
1980 * Set the physical protection on the specified range of this map as requested.
1981 */
1982static void
1983mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1984    vm_prot_t prot)
1985{
1986	vm_offset_t va;
1987	vm_page_t m;
1988	pte_t *pte;
1989
1990	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1991		mmu_booke_remove(mmu, pmap, sva, eva);
1992		return;
1993	}
1994
1995	if (prot & VM_PROT_WRITE)
1996		return;
1997
1998	PMAP_LOCK(pmap);
1999	for (va = sva; va < eva; va += PAGE_SIZE) {
2000		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2001			if (PTE_ISVALID(pte)) {
2002				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2003
2004				mtx_lock_spin(&tlbivax_mutex);
2005				tlb_miss_lock();
2006
2007				/* Handle modified pages. */
2008				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
2009					vm_page_dirty(m);
2010
2011				tlb0_flush_entry(va);
2012				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2013
2014				tlb_miss_unlock();
2015				mtx_unlock_spin(&tlbivax_mutex);
2016			}
2017		}
2018	}
2019	PMAP_UNLOCK(pmap);
2020}
2021
2022/*
2023 * Clear the write and modified bits in each of the given page's mappings.
2024 */
2025static void
2026mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2027{
2028	pv_entry_t pv;
2029	pte_t *pte;
2030
2031	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2032	    ("mmu_booke_remove_write: page %p is not managed", m));
2033
2034	/*
2035	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2036	 * set by another thread while the object is locked.  Thus,
2037	 * if PGA_WRITEABLE is clear, no page table entries need updating.
2038	 */
2039	VM_OBJECT_ASSERT_WLOCKED(m->object);
2040	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2041		return;
2042	rw_wlock(&pvh_global_lock);
2043	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2044		PMAP_LOCK(pv->pv_pmap);
2045		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2046			if (PTE_ISVALID(pte)) {
2047				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2048
2049				mtx_lock_spin(&tlbivax_mutex);
2050				tlb_miss_lock();
2051
2052				/* Handle modified pages. */
2053				if (PTE_ISMODIFIED(pte))
2054					vm_page_dirty(m);
2055
2056				/* Flush mapping from TLB0. */
2057				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2058
2059				tlb_miss_unlock();
2060				mtx_unlock_spin(&tlbivax_mutex);
2061			}
2062		}
2063		PMAP_UNLOCK(pv->pv_pmap);
2064	}
2065	vm_page_aflag_clear(m, PGA_WRITEABLE);
2066	rw_wunlock(&pvh_global_lock);
2067}
2068
2069static void
2070mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2071{
2072	pte_t *pte;
2073	pmap_t pmap;
2074	vm_page_t m;
2075	vm_offset_t addr;
2076	vm_paddr_t pa;
2077	int active, valid;
2078
2079	va = trunc_page(va);
2080	sz = round_page(sz);
2081
2082	rw_wlock(&pvh_global_lock);
2083	pmap = PCPU_GET(curpmap);
2084	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2085	while (sz > 0) {
2086		PMAP_LOCK(pm);
2087		pte = pte_find(mmu, pm, va);
2088		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2089		if (valid)
2090			pa = PTE_PA(pte);
2091		PMAP_UNLOCK(pm);
2092		if (valid) {
2093			if (!active) {
2094				/* Create a mapping in the active pmap. */
2095				addr = 0;
2096				m = PHYS_TO_VM_PAGE(pa);
2097				PMAP_LOCK(pmap);
2098				pte_enter(mmu, pmap, m, addr,
2099				    PTE_SR | PTE_VALID | PTE_UR, FALSE);
2100				__syncicache((void *)addr, PAGE_SIZE);
2101				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2102				PMAP_UNLOCK(pmap);
2103			} else
2104				__syncicache((void *)va, PAGE_SIZE);
2105		}
2106		va += PAGE_SIZE;
2107		sz -= PAGE_SIZE;
2108	}
2109	rw_wunlock(&pvh_global_lock);
2110}
2111
2112/*
2113 * Atomically extract and hold the physical page with the given
2114 * pmap and virtual address pair if that mapping permits the given
2115 * protection.
2116 */
2117static vm_page_t
2118mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2119    vm_prot_t prot)
2120{
2121	pte_t *pte;
2122	vm_page_t m;
2123	uint32_t pte_wbit;
2124	vm_paddr_t pa;
2125
2126	m = NULL;
2127	pa = 0;
2128	PMAP_LOCK(pmap);
2129retry:
2130	pte = pte_find(mmu, pmap, va);
2131	if ((pte != NULL) && PTE_ISVALID(pte)) {
2132		if (pmap == kernel_pmap)
2133			pte_wbit = PTE_SW;
2134		else
2135			pte_wbit = PTE_UW;
2136
2137		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2138			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2139				goto retry;
2140			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2141			vm_page_hold(m);
2142		}
2143	}
2144
2145	PA_UNLOCK_COND(pa);
2146	PMAP_UNLOCK(pmap);
2147	return (m);
2148}
2149
2150/*
2151 * Initialize a vm_page's machine-dependent fields.
2152 */
2153static void
2154mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2155{
2156
2157	TAILQ_INIT(&m->md.pv_list);
2158}
2159
2160/*
2161 * mmu_booke_zero_page_area zeros the specified hardware page by
2162 * mapping it into virtual memory and using bzero to clear
2163 * its contents.
2164 *
2165 * off and size must reside within a single page.
2166 */
2167static void
2168mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2169{
2170	vm_offset_t va;
2171
2172	/* XXX KASSERT off and size are within a single page? */
2173
2174	mtx_lock(&zero_page_mutex);
2175	va = zero_page_va;
2176
2177	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2178	bzero((caddr_t)va + off, size);
2179	mmu_booke_kremove(mmu, va);
2180
2181	mtx_unlock(&zero_page_mutex);
2182}
2183
2184/*
2185 * mmu_booke_zero_page zeros the specified hardware page.
2186 */
2187static void
2188mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2189{
2190
2191	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2192}
2193
2194/*
2195 * mmu_booke_copy_page copies the specified (machine independent) page by
2196 * mapping the page into virtual memory and using memcopy to copy the page,
2197 * one machine dependent page at a time.
2198 */
2199static void
2200mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2201{
2202	vm_offset_t sva, dva;
2203
2204	sva = copy_page_src_va;
2205	dva = copy_page_dst_va;
2206
2207	mtx_lock(&copy_page_mutex);
2208	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2209	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2210	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2211	mmu_booke_kremove(mmu, dva);
2212	mmu_booke_kremove(mmu, sva);
2213	mtx_unlock(&copy_page_mutex);
2214}
2215
2216static inline void
2217mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2218    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2219{
2220	void *a_cp, *b_cp;
2221	vm_offset_t a_pg_offset, b_pg_offset;
2222	int cnt;
2223
2224	mtx_lock(&copy_page_mutex);
2225	while (xfersize > 0) {
2226		a_pg_offset = a_offset & PAGE_MASK;
2227		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2228		mmu_booke_kenter(mmu, copy_page_src_va,
2229		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2230		a_cp = (char *)copy_page_src_va + a_pg_offset;
2231		b_pg_offset = b_offset & PAGE_MASK;
2232		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2233		mmu_booke_kenter(mmu, copy_page_dst_va,
2234		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2235		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2236		bcopy(a_cp, b_cp, cnt);
2237		mmu_booke_kremove(mmu, copy_page_dst_va);
2238		mmu_booke_kremove(mmu, copy_page_src_va);
2239		a_offset += cnt;
2240		b_offset += cnt;
2241		xfersize -= cnt;
2242	}
2243	mtx_unlock(&copy_page_mutex);
2244}
2245
2246/*
2247 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2248 * into virtual memory and using bzero to clear its contents. This is intended
2249 * to be called from the vm_pagezero process only and outside of Giant. No
2250 * lock is required.
2251 */
2252static void
2253mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2254{
2255	vm_offset_t va;
2256
2257	va = zero_page_idle_va;
2258	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2259	bzero((caddr_t)va, PAGE_SIZE);
2260	mmu_booke_kremove(mmu, va);
2261}
2262
2263/*
2264 * Return whether or not the specified physical page was modified
2265 * in any of physical maps.
2266 */
2267static boolean_t
2268mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2269{
2270	pte_t *pte;
2271	pv_entry_t pv;
2272	boolean_t rv;
2273
2274	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2275	    ("mmu_booke_is_modified: page %p is not managed", m));
2276	rv = FALSE;
2277
2278	/*
2279	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2280	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2281	 * is clear, no PTEs can be modified.
2282	 */
2283	VM_OBJECT_ASSERT_WLOCKED(m->object);
2284	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2285		return (rv);
2286	rw_wlock(&pvh_global_lock);
2287	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2288		PMAP_LOCK(pv->pv_pmap);
2289		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2290		    PTE_ISVALID(pte)) {
2291			if (PTE_ISMODIFIED(pte))
2292				rv = TRUE;
2293		}
2294		PMAP_UNLOCK(pv->pv_pmap);
2295		if (rv)
2296			break;
2297	}
2298	rw_wunlock(&pvh_global_lock);
2299	return (rv);
2300}
2301
2302/*
2303 * Return whether or not the specified virtual address is eligible
2304 * for prefault.
2305 */
2306static boolean_t
2307mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2308{
2309
2310	return (FALSE);
2311}
2312
2313/*
2314 * Return whether or not the specified physical page was referenced
2315 * in any physical maps.
2316 */
2317static boolean_t
2318mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2319{
2320	pte_t *pte;
2321	pv_entry_t pv;
2322	boolean_t rv;
2323
2324	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2325	    ("mmu_booke_is_referenced: page %p is not managed", m));
2326	rv = FALSE;
2327	rw_wlock(&pvh_global_lock);
2328	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2329		PMAP_LOCK(pv->pv_pmap);
2330		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2331		    PTE_ISVALID(pte)) {
2332			if (PTE_ISREFERENCED(pte))
2333				rv = TRUE;
2334		}
2335		PMAP_UNLOCK(pv->pv_pmap);
2336		if (rv)
2337			break;
2338	}
2339	rw_wunlock(&pvh_global_lock);
2340	return (rv);
2341}
2342
2343/*
2344 * Clear the modify bits on the specified physical page.
2345 */
2346static void
2347mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2348{
2349	pte_t *pte;
2350	pv_entry_t pv;
2351
2352	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2353	    ("mmu_booke_clear_modify: page %p is not managed", m));
2354	VM_OBJECT_ASSERT_WLOCKED(m->object);
2355	KASSERT(!vm_page_xbusied(m),
2356	    ("mmu_booke_clear_modify: page %p is exclusive busied", m));
2357
2358	/*
2359	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2360	 * If the object containing the page is locked and the page is not
2361	 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
2362	 */
2363	if ((m->aflags & PGA_WRITEABLE) == 0)
2364		return;
2365	rw_wlock(&pvh_global_lock);
2366	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2367		PMAP_LOCK(pv->pv_pmap);
2368		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2369		    PTE_ISVALID(pte)) {
2370			mtx_lock_spin(&tlbivax_mutex);
2371			tlb_miss_lock();
2372
2373			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2374				tlb0_flush_entry(pv->pv_va);
2375				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2376				    PTE_REFERENCED);
2377			}
2378
2379			tlb_miss_unlock();
2380			mtx_unlock_spin(&tlbivax_mutex);
2381		}
2382		PMAP_UNLOCK(pv->pv_pmap);
2383	}
2384	rw_wunlock(&pvh_global_lock);
2385}
2386
2387/*
2388 * Return a count of reference bits for a page, clearing those bits.
2389 * It is not necessary for every reference bit to be cleared, but it
2390 * is necessary that 0 only be returned when there are truly no
2391 * reference bits set.
2392 *
2393 * XXX: The exact number of bits to check and clear is a matter that
2394 * should be tested and standardized at some point in the future for
2395 * optimal aging of shared pages.
2396 */
2397static int
2398mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2399{
2400	pte_t *pte;
2401	pv_entry_t pv;
2402	int count;
2403
2404	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2405	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2406	count = 0;
2407	rw_wlock(&pvh_global_lock);
2408	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2409		PMAP_LOCK(pv->pv_pmap);
2410		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2411		    PTE_ISVALID(pte)) {
2412			if (PTE_ISREFERENCED(pte)) {
2413				mtx_lock_spin(&tlbivax_mutex);
2414				tlb_miss_lock();
2415
2416				tlb0_flush_entry(pv->pv_va);
2417				pte->flags &= ~PTE_REFERENCED;
2418
2419				tlb_miss_unlock();
2420				mtx_unlock_spin(&tlbivax_mutex);
2421
2422				if (++count > 4) {
2423					PMAP_UNLOCK(pv->pv_pmap);
2424					break;
2425				}
2426			}
2427		}
2428		PMAP_UNLOCK(pv->pv_pmap);
2429	}
2430	rw_wunlock(&pvh_global_lock);
2431	return (count);
2432}
2433
2434/*
2435 * Clear the wired attribute from the mappings for the specified range of
2436 * addresses in the given pmap.  Every valid mapping within that range must
2437 * have the wired attribute set.  In contrast, invalid mappings cannot have
2438 * the wired attribute set, so they are ignored.
2439 *
2440 * The wired attribute of the page table entry is not a hardware feature, so
2441 * there is no need to invalidate any TLB entries.
2442 */
2443static void
2444mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2445{
2446	vm_offset_t va;
2447	pte_t *pte;
2448
2449	PMAP_LOCK(pmap);
2450	for (va = sva; va < eva; va += PAGE_SIZE) {
2451		if ((pte = pte_find(mmu, pmap, va)) != NULL &&
2452		    PTE_ISVALID(pte)) {
2453			if (!PTE_ISWIRED(pte))
2454				panic("mmu_booke_unwire: pte %p isn't wired",
2455				    pte);
2456			pte->flags &= ~PTE_WIRED;
2457			pmap->pm_stats.wired_count--;
2458		}
2459	}
2460	PMAP_UNLOCK(pmap);
2461
2462}
2463
2464/*
2465 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2466 * page.  This count may be changed upwards or downwards in the future; it is
2467 * only necessary that true be returned for a small subset of pmaps for proper
2468 * page aging.
2469 */
2470static boolean_t
2471mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2472{
2473	pv_entry_t pv;
2474	int loops;
2475	boolean_t rv;
2476
2477	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2478	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2479	loops = 0;
2480	rv = FALSE;
2481	rw_wlock(&pvh_global_lock);
2482	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2483		if (pv->pv_pmap == pmap) {
2484			rv = TRUE;
2485			break;
2486		}
2487		if (++loops >= 16)
2488			break;
2489	}
2490	rw_wunlock(&pvh_global_lock);
2491	return (rv);
2492}
2493
2494/*
2495 * Return the number of managed mappings to the given physical page that are
2496 * wired.
2497 */
2498static int
2499mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2500{
2501	pv_entry_t pv;
2502	pte_t *pte;
2503	int count = 0;
2504
2505	if ((m->oflags & VPO_UNMANAGED) != 0)
2506		return (count);
2507	rw_wlock(&pvh_global_lock);
2508	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2509		PMAP_LOCK(pv->pv_pmap);
2510		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2511			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2512				count++;
2513		PMAP_UNLOCK(pv->pv_pmap);
2514	}
2515	rw_wunlock(&pvh_global_lock);
2516	return (count);
2517}
2518
2519static int
2520mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2521{
2522	int i;
2523	vm_offset_t va;
2524
2525	/*
2526	 * This currently does not work for entries that
2527	 * overlap TLB1 entries.
2528	 */
2529	for (i = 0; i < tlb1_idx; i ++) {
2530		if (tlb1_iomapped(i, pa, size, &va) == 0)
2531			return (0);
2532	}
2533
2534	return (EFAULT);
2535}
2536
2537vm_offset_t
2538mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2539    vm_size_t *sz)
2540{
2541	vm_paddr_t pa, ppa;
2542	vm_offset_t va;
2543	vm_size_t gran;
2544
2545	/* Raw physical memory dumps don't have a virtual address. */
2546	if (md->md_vaddr == ~0UL) {
2547		/* We always map a 256MB page at 256M. */
2548		gran = 256 * 1024 * 1024;
2549		pa = md->md_paddr + ofs;
2550		ppa = pa & ~(gran - 1);
2551		ofs = pa - ppa;
2552		va = gran;
2553		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2554		if (*sz > (gran - ofs))
2555			*sz = gran - ofs;
2556		return (va + ofs);
2557	}
2558
2559	/* Minidumps are based on virtual memory addresses. */
2560	va = md->md_vaddr + ofs;
2561	if (va >= kernstart + kernsize) {
2562		gran = PAGE_SIZE - (va & PAGE_MASK);
2563		if (*sz > gran)
2564			*sz = gran;
2565	}
2566	return (va);
2567}
2568
2569void
2570mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2571    vm_offset_t va)
2572{
2573
2574	/* Raw physical memory dumps don't have a virtual address. */
2575	if (md->md_vaddr == ~0UL) {
2576		tlb1_idx--;
2577		tlb1[tlb1_idx].mas1 = 0;
2578		tlb1[tlb1_idx].mas2 = 0;
2579		tlb1[tlb1_idx].mas3 = 0;
2580		tlb1_write_entry(tlb1_idx);
2581		return;
2582	}
2583
2584	/* Minidumps are based on virtual memory addresses. */
2585	/* Nothing to do... */
2586}
2587
2588struct pmap_md *
2589mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2590{
2591	static struct pmap_md md;
2592	pte_t *pte;
2593	vm_offset_t va;
2594
2595	if (dumpsys_minidump) {
2596		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2597		if (prev == NULL) {
2598			/* 1st: kernel .data and .bss. */
2599			md.md_index = 1;
2600			md.md_vaddr = trunc_page((uintptr_t)_etext);
2601			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2602			return (&md);
2603		}
2604		switch (prev->md_index) {
2605		case 1:
2606			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2607			md.md_index = 2;
2608			md.md_vaddr = data_start;
2609			md.md_size = data_end - data_start;
2610			break;
2611		case 2:
2612			/* 3rd: kernel VM. */
2613			va = prev->md_vaddr + prev->md_size;
2614			/* Find start of next chunk (from va). */
2615			while (va < virtual_end) {
2616				/* Don't dump the buffer cache. */
2617				if (va >= kmi.buffer_sva &&
2618				    va < kmi.buffer_eva) {
2619					va = kmi.buffer_eva;
2620					continue;
2621				}
2622				pte = pte_find(mmu, kernel_pmap, va);
2623				if (pte != NULL && PTE_ISVALID(pte))
2624					break;
2625				va += PAGE_SIZE;
2626			}
2627			if (va < virtual_end) {
2628				md.md_vaddr = va;
2629				va += PAGE_SIZE;
2630				/* Find last page in chunk. */
2631				while (va < virtual_end) {
2632					/* Don't run into the buffer cache. */
2633					if (va == kmi.buffer_sva)
2634						break;
2635					pte = pte_find(mmu, kernel_pmap, va);
2636					if (pte == NULL || !PTE_ISVALID(pte))
2637						break;
2638					va += PAGE_SIZE;
2639				}
2640				md.md_size = va - md.md_vaddr;
2641				break;
2642			}
2643			md.md_index = 3;
2644			/* FALLTHROUGH */
2645		default:
2646			return (NULL);
2647		}
2648	} else { /* minidumps */
2649		mem_regions(&physmem_regions, &physmem_regions_sz,
2650		    &availmem_regions, &availmem_regions_sz);
2651
2652		if (prev == NULL) {
2653			/* first physical chunk. */
2654			md.md_paddr = physmem_regions[0].mr_start;
2655			md.md_size = physmem_regions[0].mr_size;
2656			md.md_vaddr = ~0UL;
2657			md.md_index = 1;
2658		} else if (md.md_index < physmem_regions_sz) {
2659			md.md_paddr = physmem_regions[md.md_index].mr_start;
2660			md.md_size = physmem_regions[md.md_index].mr_size;
2661			md.md_vaddr = ~0UL;
2662			md.md_index++;
2663		} else {
2664			/* There's no next physical chunk. */
2665			return (NULL);
2666		}
2667	}
2668
2669	return (&md);
2670}
2671
2672/*
2673 * Map a set of physical memory pages into the kernel virtual address space.
2674 * Return a pointer to where it is mapped. This routine is intended to be used
2675 * for mapping device memory, NOT real memory.
2676 */
2677static void *
2678mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2679{
2680
2681	return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2682}
2683
2684static void *
2685mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2686{
2687	void *res;
2688	uintptr_t va;
2689	vm_size_t sz;
2690	int i;
2691
2692	/*
2693	 * Check if this is premapped in TLB1. Note: this should probably also
2694	 * check whether a sequence of TLB1 entries exist that match the
2695	 * requirement, but now only checks the easy case.
2696	 */
2697	if (ma == VM_MEMATTR_DEFAULT) {
2698		for (i = 0; i < tlb1_idx; i++) {
2699			if (!(tlb1[i].mas1 & MAS1_VALID))
2700				continue;
2701			if (pa >= tlb1[i].phys &&
2702			    (pa + size) <= (tlb1[i].phys + tlb1[i].size))
2703				return (void *)(tlb1[i].virt +
2704				    (pa - tlb1[i].phys));
2705		}
2706	}
2707
2708	size = roundup(size, PAGE_SIZE);
2709
2710	/*
2711	 * We leave a hole for device direct mapping between the maximum user
2712	 * address (0x8000000) and the minimum KVA address (0xc0000000). If
2713	 * devices are in there, just map them 1:1. If not, map them to the
2714	 * device mapping area about VM_MAX_KERNEL_ADDRESS. These mapped
2715	 * addresses should be pulled from an allocator, but since we do not
2716	 * ever free TLB1 entries, it is safe just to increment a counter.
2717	 * Note that there isn't a lot of address space here (128 MB) and it
2718	 * is not at all difficult to imagine running out, since that is a 4:1
2719	 * compression from the 0xc0000000 - 0xf0000000 address space that gets
2720	 * mapped there.
2721	 */
2722	if (pa >= (VM_MAXUSER_ADDRESS + PAGE_SIZE) &&
2723	    (pa + size - 1) < VM_MIN_KERNEL_ADDRESS)
2724		va = pa;
2725	else
2726		va = atomic_fetchadd_int(&tlb1_map_base, size);
2727	res = (void *)va;
2728
2729	do {
2730		sz = 1 << (ilog2(size) & ~1);
2731		if (bootverbose)
2732			printf("Wiring VA=%x to PA=%x (size=%x), "
2733			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2734		tlb1_set_entry(va, pa, sz, tlb_calc_wimg(pa, ma));
2735		size -= sz;
2736		pa += sz;
2737		va += sz;
2738	} while (size > 0);
2739
2740	return (res);
2741}
2742
2743/*
2744 * 'Unmap' a range mapped by mmu_booke_mapdev().
2745 */
2746static void
2747mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2748{
2749#ifdef SUPPORTS_SHRINKING_TLB1
2750	vm_offset_t base, offset;
2751
2752	/*
2753	 * Unmap only if this is inside kernel virtual space.
2754	 */
2755	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2756		base = trunc_page(va);
2757		offset = va & PAGE_MASK;
2758		size = roundup(offset + size, PAGE_SIZE);
2759		kva_free(base, size);
2760	}
2761#endif
2762}
2763
2764/*
2765 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2766 * specified pmap. This eliminates the blast of soft faults on process startup
2767 * and immediately after an mmap.
2768 */
2769static void
2770mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2771    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2772{
2773
2774	VM_OBJECT_ASSERT_WLOCKED(object);
2775	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2776	    ("mmu_booke_object_init_pt: non-device object"));
2777}
2778
2779/*
2780 * Perform the pmap work for mincore.
2781 */
2782static int
2783mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2784    vm_paddr_t *locked_pa)
2785{
2786
2787	/* XXX: this should be implemented at some point */
2788	return (0);
2789}
2790
2791/**************************************************************************/
2792/* TID handling */
2793/**************************************************************************/
2794
2795/*
2796 * Allocate a TID. If necessary, steal one from someone else.
2797 * The new TID is flushed from the TLB before returning.
2798 */
2799static tlbtid_t
2800tid_alloc(pmap_t pmap)
2801{
2802	tlbtid_t tid;
2803	int thiscpu;
2804
2805	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2806
2807	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2808
2809	thiscpu = PCPU_GET(cpuid);
2810
2811	tid = PCPU_GET(tid_next);
2812	if (tid > TID_MAX)
2813		tid = TID_MIN;
2814	PCPU_SET(tid_next, tid + 1);
2815
2816	/* If we are stealing TID then clear the relevant pmap's field */
2817	if (tidbusy[thiscpu][tid] != NULL) {
2818
2819		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2820
2821		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2822
2823		/* Flush all entries from TLB0 matching this TID. */
2824		tid_flush(tid);
2825	}
2826
2827	tidbusy[thiscpu][tid] = pmap;
2828	pmap->pm_tid[thiscpu] = tid;
2829	__asm __volatile("msync; isync");
2830
2831	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2832	    PCPU_GET(tid_next));
2833
2834	return (tid);
2835}
2836
2837/**************************************************************************/
2838/* TLB0 handling */
2839/**************************************************************************/
2840
2841static void
2842tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2843    uint32_t mas7)
2844{
2845	int as;
2846	char desc[3];
2847	tlbtid_t tid;
2848	vm_size_t size;
2849	unsigned int tsize;
2850
2851	desc[2] = '\0';
2852	if (mas1 & MAS1_VALID)
2853		desc[0] = 'V';
2854	else
2855		desc[0] = ' ';
2856
2857	if (mas1 & MAS1_IPROT)
2858		desc[1] = 'P';
2859	else
2860		desc[1] = ' ';
2861
2862	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2863	tid = MAS1_GETTID(mas1);
2864
2865	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2866	size = 0;
2867	if (tsize)
2868		size = tsize2size(tsize);
2869
2870	debugf("%3d: (%s) [AS=%d] "
2871	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2872	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2873	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2874}
2875
2876/* Convert TLB0 va and way number to tlb0[] table index. */
2877static inline unsigned int
2878tlb0_tableidx(vm_offset_t va, unsigned int way)
2879{
2880	unsigned int idx;
2881
2882	idx = (way * TLB0_ENTRIES_PER_WAY);
2883	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2884	return (idx);
2885}
2886
2887/*
2888 * Invalidate TLB0 entry.
2889 */
2890static inline void
2891tlb0_flush_entry(vm_offset_t va)
2892{
2893
2894	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2895
2896	mtx_assert(&tlbivax_mutex, MA_OWNED);
2897
2898	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2899	__asm __volatile("isync; msync");
2900	__asm __volatile("tlbsync; msync");
2901
2902	CTR1(KTR_PMAP, "%s: e", __func__);
2903}
2904
2905/* Print out contents of the MAS registers for each TLB0 entry */
2906void
2907tlb0_print_tlbentries(void)
2908{
2909	uint32_t mas0, mas1, mas2, mas3, mas7;
2910	int entryidx, way, idx;
2911
2912	debugf("TLB0 entries:\n");
2913	for (way = 0; way < TLB0_WAYS; way ++)
2914		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2915
2916			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2917			mtspr(SPR_MAS0, mas0);
2918			__asm __volatile("isync");
2919
2920			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2921			mtspr(SPR_MAS2, mas2);
2922
2923			__asm __volatile("isync; tlbre");
2924
2925			mas1 = mfspr(SPR_MAS1);
2926			mas2 = mfspr(SPR_MAS2);
2927			mas3 = mfspr(SPR_MAS3);
2928			mas7 = mfspr(SPR_MAS7);
2929
2930			idx = tlb0_tableidx(mas2, way);
2931			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2932		}
2933}
2934
2935/**************************************************************************/
2936/* TLB1 handling */
2937/**************************************************************************/
2938
2939/*
2940 * TLB1 mapping notes:
2941 *
2942 * TLB1[0]	Kernel text and data.
2943 * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
2944 *		windows, other devices mappings.
2945 */
2946
2947/*
2948 * Write given entry to TLB1 hardware.
2949 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2950 */
2951static void
2952tlb1_write_entry(unsigned int idx)
2953{
2954	uint32_t mas0, mas7;
2955
2956	//debugf("tlb1_write_entry: s\n");
2957
2958	/* Clear high order RPN bits */
2959	mas7 = 0;
2960
2961	/* Select entry */
2962	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2963	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2964
2965	mtspr(SPR_MAS0, mas0);
2966	__asm __volatile("isync");
2967	mtspr(SPR_MAS1, tlb1[idx].mas1);
2968	__asm __volatile("isync");
2969	mtspr(SPR_MAS2, tlb1[idx].mas2);
2970	__asm __volatile("isync");
2971	mtspr(SPR_MAS3, tlb1[idx].mas3);
2972	__asm __volatile("isync");
2973	mtspr(SPR_MAS7, mas7);
2974	__asm __volatile("isync; tlbwe; isync; msync");
2975
2976	//debugf("tlb1_write_entry: e\n");
2977}
2978
2979/*
2980 * Return the largest uint value log such that 2^log <= num.
2981 */
2982static unsigned int
2983ilog2(unsigned int num)
2984{
2985	int lz;
2986
2987	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2988	return (31 - lz);
2989}
2990
2991/*
2992 * Convert TLB TSIZE value to mapped region size.
2993 */
2994static vm_size_t
2995tsize2size(unsigned int tsize)
2996{
2997
2998	/*
2999	 * size = 4^tsize KB
3000	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
3001	 */
3002
3003	return ((1 << (2 * tsize)) * 1024);
3004}
3005
3006/*
3007 * Convert region size (must be power of 4) to TLB TSIZE value.
3008 */
3009static unsigned int
3010size2tsize(vm_size_t size)
3011{
3012
3013	return (ilog2(size) / 2 - 5);
3014}
3015
3016/*
3017 * Register permanent kernel mapping in TLB1.
3018 *
3019 * Entries are created starting from index 0 (current free entry is
3020 * kept in tlb1_idx) and are not supposed to be invalidated.
3021 */
3022static int
3023tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
3024    uint32_t flags)
3025{
3026	uint32_t ts, tid;
3027	int tsize, index;
3028
3029	index = atomic_fetchadd_int(&tlb1_idx, 1);
3030	if (index >= TLB1_ENTRIES) {
3031		printf("tlb1_set_entry: TLB1 full!\n");
3032		return (-1);
3033	}
3034
3035	/* Convert size to TSIZE */
3036	tsize = size2tsize(size);
3037
3038	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3039	/* XXX TS is hard coded to 0 for now as we only use single address space */
3040	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3041
3042	/*
3043	 * Atomicity is preserved by the atomic increment above since nothing
3044	 * is ever removed from tlb1.
3045	 */
3046
3047	tlb1[index].phys = pa;
3048	tlb1[index].virt = va;
3049	tlb1[index].size = size;
3050	tlb1[index].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
3051	tlb1[index].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
3052	tlb1[index].mas2 = (va & MAS2_EPN_MASK) | flags;
3053
3054	/* Set supervisor RWX permission bits */
3055	tlb1[index].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
3056
3057	tlb1_write_entry(index);
3058
3059	/*
3060	 * XXX in general TLB1 updates should be propagated between CPUs,
3061	 * since current design assumes to have the same TLB1 set-up on all
3062	 * cores.
3063	 */
3064	return (0);
3065}
3066
3067/*
3068 * Map in contiguous RAM region into the TLB1 using maximum of
3069 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
3070 *
3071 * If necessary round up last entry size and return total size
3072 * used by all allocated entries.
3073 */
3074vm_size_t
3075tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
3076{
3077	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
3078	vm_size_t mapped, pgsz, base, mask;
3079	int idx, nents;
3080
3081	/* Round up to the next 1M */
3082	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
3083
3084	mapped = 0;
3085	idx = 0;
3086	base = va;
3087	pgsz = 64*1024*1024;
3088	while (mapped < size) {
3089		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3090			while (pgsz > (size - mapped))
3091				pgsz >>= 2;
3092			pgs[idx++] = pgsz;
3093			mapped += pgsz;
3094		}
3095
3096		/* We under-map. Correct for this. */
3097		if (mapped < size) {
3098			while (pgs[idx - 1] == pgsz) {
3099				idx--;
3100				mapped -= pgsz;
3101			}
3102			/* XXX We may increase beyond out starting point. */
3103			pgsz <<= 2;
3104			pgs[idx++] = pgsz;
3105			mapped += pgsz;
3106		}
3107	}
3108
3109	nents = idx;
3110	mask = pgs[0] - 1;
3111	/* Align address to the boundary */
3112	if (va & mask) {
3113		va = (va + mask) & ~mask;
3114		pa = (pa + mask) & ~mask;
3115	}
3116
3117	for (idx = 0; idx < nents; idx++) {
3118		pgsz = pgs[idx];
3119		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3120		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3121		pa += pgsz;
3122		va += pgsz;
3123	}
3124
3125	mapped = (va - base);
3126	printf("mapped size 0x%08x (wasted space 0x%08x)\n",
3127	    mapped, mapped - size);
3128	return (mapped);
3129}
3130
3131/*
3132 * TLB1 initialization routine, to be called after the very first
3133 * assembler level setup done in locore.S.
3134 */
3135void
3136tlb1_init()
3137{
3138	uint32_t mas0, mas1, mas2, mas3;
3139	uint32_t tsz;
3140	u_int i;
3141
3142	if (bootinfo != NULL && bootinfo[0] != 1) {
3143		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3144	} else
3145		tlb1_idx = 1;
3146
3147	/* The first entry/entries are used to map the kernel. */
3148	for (i = 0; i < tlb1_idx; i++) {
3149		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3150		mtspr(SPR_MAS0, mas0);
3151		__asm __volatile("isync; tlbre");
3152
3153		mas1 = mfspr(SPR_MAS1);
3154		if ((mas1 & MAS1_VALID) == 0)
3155			continue;
3156
3157		mas2 = mfspr(SPR_MAS2);
3158		mas3 = mfspr(SPR_MAS3);
3159
3160		tlb1[i].mas1 = mas1;
3161		tlb1[i].mas2 = mfspr(SPR_MAS2);
3162		tlb1[i].mas3 = mas3;
3163		tlb1[i].virt = mas2 & MAS2_EPN_MASK;
3164		tlb1[i].phys = mas3 & MAS3_RPN;
3165
3166		if (i == 0)
3167			kernload = mas3 & MAS3_RPN;
3168
3169		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3170		tlb1[i].size = (tsz > 0) ? tsize2size(tsz) : 0;
3171		kernsize += tlb1[i].size;
3172	}
3173
3174#ifdef SMP
3175	bp_ntlb1s = tlb1_idx;
3176#endif
3177
3178	/* Purge the remaining entries */
3179	for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3180		tlb1_write_entry(i);
3181
3182	/* Setup TLB miss defaults */
3183	set_mas4_defaults();
3184}
3185
3186vm_offset_t
3187pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
3188{
3189	vm_paddr_t pa_base;
3190	vm_offset_t va, sz;
3191	int i;
3192
3193	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
3194
3195	for (i = 0; i < tlb1_idx; i++) {
3196		if (!(tlb1[i].mas1 & MAS1_VALID))
3197			continue;
3198		if (pa >= tlb1[i].phys && (pa + size) <=
3199		    (tlb1[i].phys + tlb1[i].size))
3200			return (tlb1[i].virt + (pa - tlb1[i].phys));
3201	}
3202
3203	pa_base = trunc_page(pa);
3204	size = roundup(size + (pa - pa_base), PAGE_SIZE);
3205	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
3206	va = tlb1_map_base + (pa - pa_base);
3207
3208	do {
3209		sz = 1 << (ilog2(size) & ~1);
3210		tlb1_set_entry(tlb1_map_base, pa_base, sz, _TLB_ENTRY_IO);
3211		size -= sz;
3212		pa_base += sz;
3213		tlb1_map_base += sz;
3214	} while (size > 0);
3215
3216#ifdef SMP
3217	bp_ntlb1s = tlb1_idx;
3218#endif
3219
3220	return (va);
3221}
3222
3223/*
3224 * Setup MAS4 defaults.
3225 * These values are loaded to MAS0-2 on a TLB miss.
3226 */
3227static void
3228set_mas4_defaults(void)
3229{
3230	uint32_t mas4;
3231
3232	/* Defaults: TLB0, PID0, TSIZED=4K */
3233	mas4 = MAS4_TLBSELD0;
3234	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3235#ifdef SMP
3236	mas4 |= MAS4_MD;
3237#endif
3238	mtspr(SPR_MAS4, mas4);
3239	__asm __volatile("isync");
3240}
3241
3242/*
3243 * Print out contents of the MAS registers for each TLB1 entry
3244 */
3245void
3246tlb1_print_tlbentries(void)
3247{
3248	uint32_t mas0, mas1, mas2, mas3, mas7;
3249	int i;
3250
3251	debugf("TLB1 entries:\n");
3252	for (i = 0; i < TLB1_ENTRIES; i++) {
3253
3254		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3255		mtspr(SPR_MAS0, mas0);
3256
3257		__asm __volatile("isync; tlbre");
3258
3259		mas1 = mfspr(SPR_MAS1);
3260		mas2 = mfspr(SPR_MAS2);
3261		mas3 = mfspr(SPR_MAS3);
3262		mas7 = mfspr(SPR_MAS7);
3263
3264		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3265	}
3266}
3267
3268/*
3269 * Print out contents of the in-ram tlb1 table.
3270 */
3271void
3272tlb1_print_entries(void)
3273{
3274	int i;
3275
3276	debugf("tlb1[] table entries:\n");
3277	for (i = 0; i < TLB1_ENTRIES; i++)
3278		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3279}
3280
3281/*
3282 * Return 0 if the physical IO range is encompassed by one of the
3283 * the TLB1 entries, otherwise return related error code.
3284 */
3285static int
3286tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3287{
3288	uint32_t prot;
3289	vm_paddr_t pa_start;
3290	vm_paddr_t pa_end;
3291	unsigned int entry_tsize;
3292	vm_size_t entry_size;
3293
3294	*va = (vm_offset_t)NULL;
3295
3296	/* Skip invalid entries */
3297	if (!(tlb1[i].mas1 & MAS1_VALID))
3298		return (EINVAL);
3299
3300	/*
3301	 * The entry must be cache-inhibited, guarded, and r/w
3302	 * so it can function as an i/o page
3303	 */
3304	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3305	if (prot != (MAS2_I | MAS2_G))
3306		return (EPERM);
3307
3308	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3309	if (prot != (MAS3_SR | MAS3_SW))
3310		return (EPERM);
3311
3312	/* The address should be within the entry range. */
3313	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3314	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3315
3316	entry_size = tsize2size(entry_tsize);
3317	pa_start = tlb1[i].mas3 & MAS3_RPN;
3318	pa_end = pa_start + entry_size - 1;
3319
3320	if ((pa < pa_start) || ((pa + size) > pa_end))
3321		return (ERANGE);
3322
3323	/* Return virtual address of this mapping. */
3324	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3325	return (0);
3326}
3327