key.c revision 301780
1/*	$FreeBSD: stable/10/sys/netipsec/key.c 301780 2016-06-10 13:57:56Z ngie $	*/
2/*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*
34 * This code is referd to RFC 2367
35 */
36
37#include "opt_inet.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40
41#include <sys/types.h>
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/lock.h>
46#include <sys/mutex.h>
47#include <sys/mbuf.h>
48#include <sys/domain.h>
49#include <sys/protosw.h>
50#include <sys/malloc.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53#include <sys/sysctl.h>
54#include <sys/errno.h>
55#include <sys/proc.h>
56#include <sys/queue.h>
57#include <sys/refcount.h>
58#include <sys/syslog.h>
59
60#include <net/if.h>
61#include <net/raw_cb.h>
62#include <net/vnet.h>
63
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#include <netinet/in_var.h>
68
69#ifdef INET6
70#include <netinet/ip6.h>
71#include <netinet6/in6_var.h>
72#include <netinet6/ip6_var.h>
73#endif /* INET6 */
74
75#if defined(INET) || defined(INET6)
76#include <netinet/in_pcb.h>
77#endif
78#ifdef INET6
79#include <netinet6/in6_pcb.h>
80#endif /* INET6 */
81
82#include <net/pfkeyv2.h>
83#include <netipsec/keydb.h>
84#include <netipsec/key.h>
85#include <netipsec/keysock.h>
86#include <netipsec/key_debug.h>
87
88#include <netipsec/ipsec.h>
89#ifdef INET6
90#include <netipsec/ipsec6.h>
91#endif
92
93#include <netipsec/xform.h>
94
95#include <machine/stdarg.h>
96
97/* randomness */
98#include <sys/random.h>
99
100#define FULLMASK	0xff
101#define	_BITS(bytes)	((bytes) << 3)
102
103/*
104 * Note on SA reference counting:
105 * - SAs that are not in DEAD state will have (total external reference + 1)
106 *   following value in reference count field.  they cannot be freed and are
107 *   referenced from SA header.
108 * - SAs that are in DEAD state will have (total external reference)
109 *   in reference count field.  they are ready to be freed.  reference from
110 *   SA header will be removed in key_delsav(), when the reference count
111 *   field hits 0 (= no external reference other than from SA header.
112 */
113
114VNET_DEFINE(u_int32_t, key_debug_level) = 0;
115static VNET_DEFINE(u_int, key_spi_trycnt) = 1000;
116static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100;
117static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff;	/* XXX */
118static VNET_DEFINE(u_int32_t, policy_id) = 0;
119/*interval to initialize randseed,1(m)*/
120static VNET_DEFINE(u_int, key_int_random) = 60;
121/* interval to expire acquiring, 30(s)*/
122static VNET_DEFINE(u_int, key_larval_lifetime) = 30;
123/* counter for blocking SADB_ACQUIRE.*/
124static VNET_DEFINE(int, key_blockacq_count) = 10;
125/* lifetime for blocking SADB_ACQUIRE.*/
126static VNET_DEFINE(int, key_blockacq_lifetime) = 20;
127/* preferred old sa rather than new sa.*/
128static VNET_DEFINE(int, key_preferred_oldsa) = 1;
129#define	V_key_spi_trycnt	VNET(key_spi_trycnt)
130#define	V_key_spi_minval	VNET(key_spi_minval)
131#define	V_key_spi_maxval	VNET(key_spi_maxval)
132#define	V_policy_id		VNET(policy_id)
133#define	V_key_int_random	VNET(key_int_random)
134#define	V_key_larval_lifetime	VNET(key_larval_lifetime)
135#define	V_key_blockacq_count	VNET(key_blockacq_count)
136#define	V_key_blockacq_lifetime	VNET(key_blockacq_lifetime)
137#define	V_key_preferred_oldsa	VNET(key_preferred_oldsa)
138
139static VNET_DEFINE(u_int32_t, acq_seq) = 0;
140#define	V_acq_seq		VNET(acq_seq)
141
142								/* SPD */
143static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]);
144#define	V_sptree		VNET(sptree)
145static struct mtx sptree_lock;
146#define	SPTREE_LOCK_INIT() \
147	mtx_init(&sptree_lock, "sptree", \
148		"fast ipsec security policy database", MTX_DEF)
149#define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
150#define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
151#define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
152#define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
153
154static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree);	/* SAD */
155#define	V_sahtree		VNET(sahtree)
156static struct mtx sahtree_lock;
157#define	SAHTREE_LOCK_INIT() \
158	mtx_init(&sahtree_lock, "sahtree", \
159		"fast ipsec security association database", MTX_DEF)
160#define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
161#define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
162#define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
163#define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
164
165							/* registed list */
166static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
167#define	V_regtree		VNET(regtree)
168static struct mtx regtree_lock;
169#define	REGTREE_LOCK_INIT() \
170	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
171#define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
172#define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
173#define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
174#define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
175
176static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */
177#define	V_acqtree		VNET(acqtree)
178static struct mtx acq_lock;
179#define	ACQ_LOCK_INIT() \
180	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
181#define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
182#define	ACQ_LOCK()		mtx_lock(&acq_lock)
183#define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
184#define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
185
186							/* SP acquiring list */
187static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree);
188#define	V_spacqtree		VNET(spacqtree)
189static struct mtx spacq_lock;
190#define	SPACQ_LOCK_INIT() \
191	mtx_init(&spacq_lock, "spacqtree", \
192		"fast ipsec security policy acquire list", MTX_DEF)
193#define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
194#define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
195#define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
196#define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
197
198/* search order for SAs */
199static const u_int saorder_state_valid_prefer_old[] = {
200	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
201};
202static const u_int saorder_state_valid_prefer_new[] = {
203	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
204};
205static const u_int saorder_state_alive[] = {
206	/* except DEAD */
207	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
208};
209static const u_int saorder_state_any[] = {
210	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
211	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
212};
213
214static const int minsize[] = {
215	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
216	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
217	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
218	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
219	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
220	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
221	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
222	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
223	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
224	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
225	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
226	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
227	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
228	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
229	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
230	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
231	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
232	0,				/* SADB_X_EXT_KMPRIVATE */
233	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
234	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
235	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
236	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
237	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
238	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAI */
239	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAR */
240	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
241};
242static const int maxsize[] = {
243	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
244	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
245	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
246	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
247	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
248	0,				/* SADB_EXT_ADDRESS_SRC */
249	0,				/* SADB_EXT_ADDRESS_DST */
250	0,				/* SADB_EXT_ADDRESS_PROXY */
251	0,				/* SADB_EXT_KEY_AUTH */
252	0,				/* SADB_EXT_KEY_ENCRYPT */
253	0,				/* SADB_EXT_IDENTITY_SRC */
254	0,				/* SADB_EXT_IDENTITY_DST */
255	0,				/* SADB_EXT_SENSITIVITY */
256	0,				/* SADB_EXT_PROPOSAL */
257	0,				/* SADB_EXT_SUPPORTED_AUTH */
258	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
259	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
260	0,				/* SADB_X_EXT_KMPRIVATE */
261	0,				/* SADB_X_EXT_POLICY */
262	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
263	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
264	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
265	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
266	0,				/* SADB_X_EXT_NAT_T_OAI */
267	0,				/* SADB_X_EXT_NAT_T_OAR */
268	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
269};
270
271static VNET_DEFINE(int, ipsec_esp_keymin) = 256;
272static VNET_DEFINE(int, ipsec_esp_auth) = 0;
273static VNET_DEFINE(int, ipsec_ah_keymin) = 128;
274
275#define	V_ipsec_esp_keymin	VNET(ipsec_esp_keymin)
276#define	V_ipsec_esp_auth	VNET(ipsec_esp_auth)
277#define	V_ipsec_ah_keymin	VNET(ipsec_ah_keymin)
278
279#ifdef SYSCTL_DECL
280SYSCTL_DECL(_net_key);
281#endif
282
283SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,
284	CTLFLAG_RW, &VNET_NAME(key_debug_level),	0,	"");
285
286/* max count of trial for the decision of spi value */
287SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
288	CTLFLAG_RW, &VNET_NAME(key_spi_trycnt),	0,	"");
289
290/* minimum spi value to allocate automatically. */
291SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE,
292	spi_minval,	CTLFLAG_RW, &VNET_NAME(key_spi_minval),	0,	"");
293
294/* maximun spi value to allocate automatically. */
295SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE,
296	spi_maxval,	CTLFLAG_RW, &VNET_NAME(key_spi_maxval),	0,	"");
297
298/* interval to initialize randseed */
299SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT,
300	int_random,	CTLFLAG_RW, &VNET_NAME(key_int_random),	0,	"");
301
302/* lifetime for larval SA */
303SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME,
304	larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime),	0, "");
305
306/* counter for blocking to send SADB_ACQUIRE to IKEd */
307SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,
308	blockacq_count,	CTLFLAG_RW, &VNET_NAME(key_blockacq_count),	0, "");
309
310/* lifetime for blocking to send SADB_ACQUIRE to IKEd */
311SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,
312	blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
313
314/* ESP auth */
315SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH,	esp_auth,
316	CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth),	0,	"");
317
318/* minimum ESP key length */
319SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN,
320	esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin),	0,	"");
321
322/* minimum AH key length */
323SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN,	ah_keymin,
324	CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin),	0,	"");
325
326/* perfered old SA rather than new SA */
327SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA,
328	preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa),	0, "");
329
330#define __LIST_CHAINED(elm) \
331	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
332#define LIST_INSERT_TAIL(head, elm, type, field) \
333do {\
334	struct type *curelm = LIST_FIRST(head); \
335	if (curelm == NULL) {\
336		LIST_INSERT_HEAD(head, elm, field); \
337	} else { \
338		while (LIST_NEXT(curelm, field)) \
339			curelm = LIST_NEXT(curelm, field);\
340		LIST_INSERT_AFTER(curelm, elm, field);\
341	}\
342} while (0)
343
344#define KEY_CHKSASTATE(head, sav, name) \
345do { \
346	if ((head) != (sav)) {						\
347		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
348			(name), (head), (sav)));			\
349		break;							\
350	}								\
351} while (0)
352
353#define KEY_CHKSPDIR(head, sp, name) \
354do { \
355	if ((head) != (sp)) {						\
356		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
357			"anyway continue.\n",				\
358			(name), (head), (sp)));				\
359	}								\
360} while (0)
361
362MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
363MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
364MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
365MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
366MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
367MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
368MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
369
370/*
371 * set parameters into secpolicyindex buffer.
372 * Must allocate secpolicyindex buffer passed to this function.
373 */
374#define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
375do { \
376	bzero((idx), sizeof(struct secpolicyindex));                         \
377	(idx)->dir = (_dir);                                                 \
378	(idx)->prefs = (ps);                                                 \
379	(idx)->prefd = (pd);                                                 \
380	(idx)->ul_proto = (ulp);                                             \
381	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
382	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
383} while (0)
384
385/*
386 * set parameters into secasindex buffer.
387 * Must allocate secasindex buffer before calling this function.
388 */
389#define KEY_SETSECASIDX(p, m, r, s, d, idx) \
390do { \
391	bzero((idx), sizeof(struct secasindex));                             \
392	(idx)->proto = (p);                                                  \
393	(idx)->mode = (m);                                                   \
394	(idx)->reqid = (r);                                                  \
395	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
396	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
397} while (0)
398
399/* key statistics */
400struct _keystat {
401	u_long getspi_count; /* the avarage of count to try to get new SPI */
402} keystat;
403
404struct sadb_msghdr {
405	struct sadb_msg *msg;
406	struct sadb_ext *ext[SADB_EXT_MAX + 1];
407	int extoff[SADB_EXT_MAX + 1];
408	int extlen[SADB_EXT_MAX + 1];
409};
410
411static struct secasvar *key_allocsa_policy(const struct secasindex *);
412static void key_freesp_so(struct secpolicy **);
413static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int);
414static void key_delsp(struct secpolicy *);
415static struct secpolicy *key_getsp(struct secpolicyindex *);
416static void _key_delsp(struct secpolicy *sp);
417static struct secpolicy *key_getspbyid(u_int32_t);
418static u_int32_t key_newreqid(void);
419static struct mbuf *key_gather_mbuf(struct mbuf *,
420	const struct sadb_msghdr *, int, int, ...);
421static int key_spdadd(struct socket *, struct mbuf *,
422	const struct sadb_msghdr *);
423static u_int32_t key_getnewspid(void);
424static int key_spddelete(struct socket *, struct mbuf *,
425	const struct sadb_msghdr *);
426static int key_spddelete2(struct socket *, struct mbuf *,
427	const struct sadb_msghdr *);
428static int key_spdget(struct socket *, struct mbuf *,
429	const struct sadb_msghdr *);
430static int key_spdflush(struct socket *, struct mbuf *,
431	const struct sadb_msghdr *);
432static int key_spddump(struct socket *, struct mbuf *,
433	const struct sadb_msghdr *);
434static struct mbuf *key_setdumpsp(struct secpolicy *,
435	u_int8_t, u_int32_t, u_int32_t);
436static u_int key_getspreqmsglen(struct secpolicy *);
437static int key_spdexpire(struct secpolicy *);
438static struct secashead *key_newsah(struct secasindex *);
439static void key_delsah(struct secashead *);
440static struct secasvar *key_newsav(struct mbuf *,
441	const struct sadb_msghdr *, struct secashead *, int *,
442	const char*, int);
443#define	KEY_NEWSAV(m, sadb, sah, e)				\
444	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
445static void key_delsav(struct secasvar *);
446static struct secashead *key_getsah(struct secasindex *);
447static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t);
448static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t);
449static int key_setsaval(struct secasvar *, struct mbuf *,
450	const struct sadb_msghdr *);
451static int key_mature(struct secasvar *);
452static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t,
453	u_int8_t, u_int32_t, u_int32_t);
454static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t,
455	u_int32_t, pid_t, u_int16_t);
456static struct mbuf *key_setsadbsa(struct secasvar *);
457static struct mbuf *key_setsadbaddr(u_int16_t,
458	const struct sockaddr *, u_int8_t, u_int16_t);
459#ifdef IPSEC_NAT_T
460static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
461static struct mbuf *key_setsadbxtype(u_int16_t);
462#endif
463static void key_porttosaddr(struct sockaddr *, u_int16_t);
464#define	KEY_PORTTOSADDR(saddr, port)				\
465	key_porttosaddr((struct sockaddr *)(saddr), (port))
466static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t);
467static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t,
468	u_int32_t);
469static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
470				     struct malloc_type *);
471static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
472					    struct malloc_type *type);
473#ifdef INET6
474static int key_ismyaddr6(struct sockaddr_in6 *);
475#endif
476
477/* flags for key_cmpsaidx() */
478#define CMP_HEAD	1	/* protocol, addresses. */
479#define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
480#define CMP_REQID	3	/* additionally HEAD, reaid. */
481#define CMP_EXACTLY	4	/* all elements. */
482static int key_cmpsaidx(const struct secasindex *,
483    const struct secasindex *, int);
484static int key_cmpspidx_exactly(struct secpolicyindex *,
485    struct secpolicyindex *);
486static int key_cmpspidx_withmask(struct secpolicyindex *,
487    struct secpolicyindex *);
488static int key_sockaddrcmp(const struct sockaddr *,
489    const struct sockaddr *, int);
490static int key_bbcmp(const void *, const void *, u_int);
491static u_int16_t key_satype2proto(u_int8_t);
492static u_int8_t key_proto2satype(u_int16_t);
493
494static int key_getspi(struct socket *, struct mbuf *,
495	const struct sadb_msghdr *);
496static u_int32_t key_do_getnewspi(struct sadb_spirange *,
497					struct secasindex *);
498static int key_update(struct socket *, struct mbuf *,
499	const struct sadb_msghdr *);
500#ifdef IPSEC_DOSEQCHECK
501static struct secasvar *key_getsavbyseq(struct secashead *, u_int32_t);
502#endif
503static int key_add(struct socket *, struct mbuf *,
504	const struct sadb_msghdr *);
505static int key_setident(struct secashead *, struct mbuf *,
506	const struct sadb_msghdr *);
507static struct mbuf *key_getmsgbuf_x1(struct mbuf *,
508	const struct sadb_msghdr *);
509static int key_delete(struct socket *, struct mbuf *,
510	const struct sadb_msghdr *);
511static int key_delete_all(struct socket *, struct mbuf *,
512	const struct sadb_msghdr *, u_int16_t);
513static int key_get(struct socket *, struct mbuf *,
514	const struct sadb_msghdr *);
515
516static void key_getcomb_setlifetime(struct sadb_comb *);
517static struct mbuf *key_getcomb_esp(void);
518static struct mbuf *key_getcomb_ah(void);
519static struct mbuf *key_getcomb_ipcomp(void);
520static struct mbuf *key_getprop(const struct secasindex *);
521
522static int key_acquire(const struct secasindex *, struct secpolicy *);
523static struct secacq *key_newacq(const struct secasindex *);
524static struct secacq *key_getacq(const struct secasindex *);
525static struct secacq *key_getacqbyseq(u_int32_t);
526static struct secspacq *key_newspacq(struct secpolicyindex *);
527static struct secspacq *key_getspacq(struct secpolicyindex *);
528static int key_acquire2(struct socket *, struct mbuf *,
529	const struct sadb_msghdr *);
530static int key_register(struct socket *, struct mbuf *,
531	const struct sadb_msghdr *);
532static int key_expire(struct secasvar *, int);
533static int key_flush(struct socket *, struct mbuf *,
534	const struct sadb_msghdr *);
535static int key_dump(struct socket *, struct mbuf *,
536	const struct sadb_msghdr *);
537static int key_promisc(struct socket *, struct mbuf *,
538	const struct sadb_msghdr *);
539static int key_senderror(struct socket *, struct mbuf *, int);
540static int key_validate_ext(const struct sadb_ext *, int);
541static int key_align(struct mbuf *, struct sadb_msghdr *);
542static struct mbuf *key_setlifetime(struct seclifetime *src,
543				     u_int16_t exttype);
544static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
545
546#if 0
547static const char *key_getfqdn(void);
548static const char *key_getuserfqdn(void);
549#endif
550static void key_sa_chgstate(struct secasvar *, u_int8_t);
551
552static __inline void
553sa_initref(struct secasvar *sav)
554{
555
556	refcount_init(&sav->refcnt, 1);
557}
558static __inline void
559sa_addref(struct secasvar *sav)
560{
561
562	refcount_acquire(&sav->refcnt);
563	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
564}
565static __inline int
566sa_delref(struct secasvar *sav)
567{
568
569	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
570	return (refcount_release(&sav->refcnt));
571}
572
573#define	SP_ADDREF(p) do {						\
574	(p)->refcnt++;							\
575	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
576} while (0)
577#define	SP_DELREF(p) do {						\
578	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
579	(p)->refcnt--;							\
580} while (0)
581
582
583/*
584 * Update the refcnt while holding the SPTREE lock.
585 */
586void
587key_addref(struct secpolicy *sp)
588{
589	SPTREE_LOCK();
590	SP_ADDREF(sp);
591	SPTREE_UNLOCK();
592}
593
594/*
595 * Return 0 when there are known to be no SP's for the specified
596 * direction.  Otherwise return 1.  This is used by IPsec code
597 * to optimize performance.
598 */
599int
600key_havesp(u_int dir)
601{
602
603	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
604		LIST_FIRST(&V_sptree[dir]) != NULL : 1);
605}
606
607/* %%% IPsec policy management */
608/*
609 * allocating a SP for OUTBOUND or INBOUND packet.
610 * Must call key_freesp() later.
611 * OUT:	NULL:	not found
612 *	others:	found and return the pointer.
613 */
614struct secpolicy *
615key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where,
616    int tag)
617{
618	struct secpolicy *sp;
619
620	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
621	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
622		("invalid direction %u", dir));
623
624	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
625		printf("DP %s from %s:%u\n", __func__, where, tag));
626
627	/* get a SP entry */
628	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
629		printf("*** objects\n");
630		kdebug_secpolicyindex(spidx));
631
632	SPTREE_LOCK();
633	LIST_FOREACH(sp, &V_sptree[dir], chain) {
634		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
635			printf("*** in SPD\n");
636			kdebug_secpolicyindex(&sp->spidx));
637
638		if (sp->state == IPSEC_SPSTATE_DEAD)
639			continue;
640		if (key_cmpspidx_withmask(&sp->spidx, spidx))
641			goto found;
642	}
643	sp = NULL;
644found:
645	if (sp) {
646		/* sanity check */
647		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
648
649		/* found a SPD entry */
650		sp->lastused = time_second;
651		SP_ADDREF(sp);
652	}
653	SPTREE_UNLOCK();
654
655	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
656		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
657			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
658	return sp;
659}
660
661/*
662 * allocating a SP for OUTBOUND or INBOUND packet.
663 * Must call key_freesp() later.
664 * OUT:	NULL:	not found
665 *	others:	found and return the pointer.
666 */
667struct secpolicy *
668key_allocsp2(u_int32_t spi, union sockaddr_union *dst, u_int8_t proto,
669    u_int dir, const char* where, int tag)
670{
671	struct secpolicy *sp;
672
673	IPSEC_ASSERT(dst != NULL, ("null dst"));
674	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
675		("invalid direction %u", dir));
676
677	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
678		printf("DP %s from %s:%u\n", __func__, where, tag));
679
680	/* get a SP entry */
681	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
682		printf("*** objects\n");
683		printf("spi %u proto %u dir %u\n", spi, proto, dir);
684		kdebug_sockaddr(&dst->sa));
685
686	SPTREE_LOCK();
687	LIST_FOREACH(sp, &V_sptree[dir], chain) {
688		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
689			printf("*** in SPD\n");
690			kdebug_secpolicyindex(&sp->spidx));
691
692		if (sp->state == IPSEC_SPSTATE_DEAD)
693			continue;
694		/* compare simple values, then dst address */
695		if (sp->spidx.ul_proto != proto)
696			continue;
697		/* NB: spi's must exist and match */
698		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
699			continue;
700		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
701			goto found;
702	}
703	sp = NULL;
704found:
705	if (sp) {
706		/* sanity check */
707		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
708
709		/* found a SPD entry */
710		sp->lastused = time_second;
711		SP_ADDREF(sp);
712	}
713	SPTREE_UNLOCK();
714
715	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
716		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
717			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
718	return sp;
719}
720
721#if 0
722/*
723 * return a policy that matches this particular inbound packet.
724 * XXX slow
725 */
726struct secpolicy *
727key_gettunnel(const struct sockaddr *osrc,
728	      const struct sockaddr *odst,
729	      const struct sockaddr *isrc,
730	      const struct sockaddr *idst,
731	      const char* where, int tag)
732{
733	struct secpolicy *sp;
734	const int dir = IPSEC_DIR_INBOUND;
735	struct ipsecrequest *r1, *r2, *p;
736	struct secpolicyindex spidx;
737
738	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
739		printf("DP %s from %s:%u\n", __func__, where, tag));
740
741	if (isrc->sa_family != idst->sa_family) {
742		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
743			__func__, isrc->sa_family, idst->sa_family));
744		sp = NULL;
745		goto done;
746	}
747
748	SPTREE_LOCK();
749	LIST_FOREACH(sp, &V_sptree[dir], chain) {
750		if (sp->state == IPSEC_SPSTATE_DEAD)
751			continue;
752
753		r1 = r2 = NULL;
754		for (p = sp->req; p; p = p->next) {
755			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
756				continue;
757
758			r1 = r2;
759			r2 = p;
760
761			if (!r1) {
762				/* here we look at address matches only */
763				spidx = sp->spidx;
764				if (isrc->sa_len > sizeof(spidx.src) ||
765				    idst->sa_len > sizeof(spidx.dst))
766					continue;
767				bcopy(isrc, &spidx.src, isrc->sa_len);
768				bcopy(idst, &spidx.dst, idst->sa_len);
769				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
770					continue;
771			} else {
772				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
773				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
774					continue;
775			}
776
777			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
778			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
779				continue;
780
781			goto found;
782		}
783	}
784	sp = NULL;
785found:
786	if (sp) {
787		sp->lastused = time_second;
788		SP_ADDREF(sp);
789	}
790	SPTREE_UNLOCK();
791done:
792	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
793		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
794			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
795	return sp;
796}
797#endif
798
799/*
800 * allocating an SA entry for an *OUTBOUND* packet.
801 * checking each request entries in SP, and acquire an SA if need.
802 * OUT:	0: there are valid requests.
803 *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
804 */
805int
806key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
807{
808	u_int level;
809	int error;
810	struct secasvar *sav;
811
812	IPSEC_ASSERT(isr != NULL, ("null isr"));
813	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
814	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
815		saidx->mode == IPSEC_MODE_TUNNEL,
816		("unexpected policy %u", saidx->mode));
817
818	/*
819	 * XXX guard against protocol callbacks from the crypto
820	 * thread as they reference ipsecrequest.sav which we
821	 * temporarily null out below.  Need to rethink how we
822	 * handle bundled SA's in the callback thread.
823	 */
824	IPSECREQUEST_LOCK_ASSERT(isr);
825
826	/* get current level */
827	level = ipsec_get_reqlevel(isr);
828
829	/*
830	 * We check new SA in the IPsec request because a different
831	 * SA may be involved each time this request is checked, either
832	 * because new SAs are being configured, or this request is
833	 * associated with an unconnected datagram socket, or this request
834	 * is associated with a system default policy.
835	 *
836	 * key_allocsa_policy should allocate the oldest SA available.
837	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
838	 */
839	sav = key_allocsa_policy(saidx);
840	if (sav != isr->sav) {
841		/* SA need to be updated. */
842		if (!IPSECREQUEST_UPGRADE(isr)) {
843			/* Kick everyone off. */
844			IPSECREQUEST_UNLOCK(isr);
845			IPSECREQUEST_WLOCK(isr);
846		}
847		if (isr->sav != NULL)
848			KEY_FREESAV(&isr->sav);
849		isr->sav = sav;
850		IPSECREQUEST_DOWNGRADE(isr);
851	} else if (sav != NULL)
852		KEY_FREESAV(&sav);
853
854	/* When there is SA. */
855	if (isr->sav != NULL) {
856		if (isr->sav->state != SADB_SASTATE_MATURE &&
857		    isr->sav->state != SADB_SASTATE_DYING)
858			return EINVAL;
859		return 0;
860	}
861
862	/* there is no SA */
863	error = key_acquire(saidx, isr->sp);
864	if (error != 0) {
865		/* XXX What should I do ? */
866		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
867			__func__, error));
868		return error;
869	}
870
871	if (level != IPSEC_LEVEL_REQUIRE) {
872		/* XXX sigh, the interface to this routine is botched */
873		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
874		return 0;
875	} else {
876		return ENOENT;
877	}
878}
879
880/*
881 * allocating a SA for policy entry from SAD.
882 * NOTE: searching SAD of aliving state.
883 * OUT:	NULL:	not found.
884 *	others:	found and return the pointer.
885 */
886static struct secasvar *
887key_allocsa_policy(const struct secasindex *saidx)
888{
889#define	N(a)	_ARRAYLEN(a)
890	struct secashead *sah;
891	struct secasvar *sav;
892	u_int stateidx, arraysize;
893	const u_int *state_valid;
894
895	state_valid = NULL;	/* silence gcc */
896	arraysize = 0;		/* silence gcc */
897
898	SAHTREE_LOCK();
899	LIST_FOREACH(sah, &V_sahtree, chain) {
900		if (sah->state == SADB_SASTATE_DEAD)
901			continue;
902		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
903			if (V_key_preferred_oldsa) {
904				state_valid = saorder_state_valid_prefer_old;
905				arraysize = N(saorder_state_valid_prefer_old);
906			} else {
907				state_valid = saorder_state_valid_prefer_new;
908				arraysize = N(saorder_state_valid_prefer_new);
909			}
910			break;
911		}
912	}
913	SAHTREE_UNLOCK();
914	if (sah == NULL)
915		return NULL;
916
917	/* search valid state */
918	for (stateidx = 0; stateidx < arraysize; stateidx++) {
919		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
920		if (sav != NULL)
921			return sav;
922	}
923
924	return NULL;
925#undef N
926}
927
928/*
929 * searching SAD with direction, protocol, mode and state.
930 * called by key_allocsa_policy().
931 * OUT:
932 *	NULL	: not found
933 *	others	: found, pointer to a SA.
934 */
935static struct secasvar *
936key_do_allocsa_policy(struct secashead *sah, u_int state)
937{
938	struct secasvar *sav, *nextsav, *candidate, *d;
939
940	/* initilize */
941	candidate = NULL;
942
943	SAHTREE_LOCK();
944	for (sav = LIST_FIRST(&sah->savtree[state]);
945	     sav != NULL;
946	     sav = nextsav) {
947
948		nextsav = LIST_NEXT(sav, chain);
949
950		/* sanity check */
951		KEY_CHKSASTATE(sav->state, state, __func__);
952
953		/* initialize */
954		if (candidate == NULL) {
955			candidate = sav;
956			continue;
957		}
958
959		/* Which SA is the better ? */
960
961		IPSEC_ASSERT(candidate->lft_c != NULL,
962			("null candidate lifetime"));
963		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
964
965		/* What the best method is to compare ? */
966		if (V_key_preferred_oldsa) {
967			if (candidate->lft_c->addtime >
968					sav->lft_c->addtime) {
969				candidate = sav;
970			}
971			continue;
972			/*NOTREACHED*/
973		}
974
975		/* preferred new sa rather than old sa */
976		if (candidate->lft_c->addtime <
977				sav->lft_c->addtime) {
978			d = candidate;
979			candidate = sav;
980		} else
981			d = sav;
982
983		/*
984		 * prepared to delete the SA when there is more
985		 * suitable candidate and the lifetime of the SA is not
986		 * permanent.
987		 */
988		if (d->lft_h->addtime != 0) {
989			struct mbuf *m, *result;
990			u_int8_t satype;
991
992			key_sa_chgstate(d, SADB_SASTATE_DEAD);
993
994			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
995
996			satype = key_proto2satype(d->sah->saidx.proto);
997			if (satype == 0)
998				goto msgfail;
999
1000			m = key_setsadbmsg(SADB_DELETE, 0,
1001			    satype, 0, 0, d->refcnt - 1);
1002			if (!m)
1003				goto msgfail;
1004			result = m;
1005
1006			/* set sadb_address for saidx's. */
1007			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1008				&d->sah->saidx.src.sa,
1009				d->sah->saidx.src.sa.sa_len << 3,
1010				IPSEC_ULPROTO_ANY);
1011			if (!m)
1012				goto msgfail;
1013			m_cat(result, m);
1014
1015			/* set sadb_address for saidx's. */
1016			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1017				&d->sah->saidx.dst.sa,
1018				d->sah->saidx.dst.sa.sa_len << 3,
1019				IPSEC_ULPROTO_ANY);
1020			if (!m)
1021				goto msgfail;
1022			m_cat(result, m);
1023
1024			/* create SA extension */
1025			m = key_setsadbsa(d);
1026			if (!m)
1027				goto msgfail;
1028			m_cat(result, m);
1029
1030			if (result->m_len < sizeof(struct sadb_msg)) {
1031				result = m_pullup(result,
1032						sizeof(struct sadb_msg));
1033				if (result == NULL)
1034					goto msgfail;
1035			}
1036
1037			result->m_pkthdr.len = 0;
1038			for (m = result; m; m = m->m_next)
1039				result->m_pkthdr.len += m->m_len;
1040			mtod(result, struct sadb_msg *)->sadb_msg_len =
1041				PFKEY_UNIT64(result->m_pkthdr.len);
1042
1043			if (key_sendup_mbuf(NULL, result,
1044					KEY_SENDUP_REGISTERED))
1045				goto msgfail;
1046		 msgfail:
1047			KEY_FREESAV(&d);
1048		}
1049	}
1050	if (candidate) {
1051		sa_addref(candidate);
1052		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1053			printf("DP %s cause refcnt++:%d SA:%p\n",
1054				__func__, candidate->refcnt, candidate));
1055	}
1056	SAHTREE_UNLOCK();
1057
1058	return candidate;
1059}
1060
1061/*
1062 * allocating a usable SA entry for a *INBOUND* packet.
1063 * Must call key_freesav() later.
1064 * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1065 *	NULL:		not found, or error occured.
1066 *
1067 * In the comparison, no source address is used--for RFC2401 conformance.
1068 * To quote, from section 4.1:
1069 *	A security association is uniquely identified by a triple consisting
1070 *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1071 *	security protocol (AH or ESP) identifier.
1072 * Note that, however, we do need to keep source address in IPsec SA.
1073 * IKE specification and PF_KEY specification do assume that we
1074 * keep source address in IPsec SA.  We see a tricky situation here.
1075 */
1076struct secasvar *
1077key_allocsa(union sockaddr_union *dst, u_int proto, u_int32_t spi,
1078    const char* where, int tag)
1079{
1080	struct secashead *sah;
1081	struct secasvar *sav;
1082	u_int stateidx, arraysize, state;
1083	const u_int *saorder_state_valid;
1084#ifdef IPSEC_NAT_T
1085	int natt_chkport;
1086#endif
1087
1088	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1089
1090	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1091		printf("DP %s from %s:%u\n", __func__, where, tag));
1092
1093#ifdef IPSEC_NAT_T
1094        natt_chkport = (dst->sa.sa_family == AF_INET &&
1095	    dst->sa.sa_len == sizeof(struct sockaddr_in) &&
1096	    dst->sin.sin_port != 0);
1097#endif
1098
1099	/*
1100	 * searching SAD.
1101	 * XXX: to be checked internal IP header somewhere.  Also when
1102	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1103	 * encrypted so we can't check internal IP header.
1104	 */
1105	SAHTREE_LOCK();
1106	if (V_key_preferred_oldsa) {
1107		saorder_state_valid = saorder_state_valid_prefer_old;
1108		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1109	} else {
1110		saorder_state_valid = saorder_state_valid_prefer_new;
1111		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1112	}
1113	LIST_FOREACH(sah, &V_sahtree, chain) {
1114		int checkport;
1115
1116		/* search valid state */
1117		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1118			state = saorder_state_valid[stateidx];
1119			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1120				/* sanity check */
1121				KEY_CHKSASTATE(sav->state, state, __func__);
1122				/* do not return entries w/ unusable state */
1123				if (sav->state != SADB_SASTATE_MATURE &&
1124				    sav->state != SADB_SASTATE_DYING)
1125					continue;
1126				if (proto != sav->sah->saidx.proto)
1127					continue;
1128				if (spi != sav->spi)
1129					continue;
1130				checkport = 0;
1131#ifdef IPSEC_NAT_T
1132				/*
1133				 * Really only check ports when this is a NAT-T
1134				 * SA.  Otherwise other lookups providing ports
1135				 * might suffer.
1136				 */
1137				if (sav->natt_type && natt_chkport)
1138					checkport = 1;
1139#endif
1140#if 0	/* don't check src */
1141				/* check src address */
1142				if (key_sockaddrcmp(&src->sa,
1143				    &sav->sah->saidx.src.sa, checkport) != 0)
1144					continue;
1145#endif
1146				/* check dst address */
1147				if (key_sockaddrcmp(&dst->sa,
1148				    &sav->sah->saidx.dst.sa, checkport) != 0)
1149					continue;
1150				sa_addref(sav);
1151				goto done;
1152			}
1153		}
1154	}
1155	sav = NULL;
1156done:
1157	SAHTREE_UNLOCK();
1158
1159	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1160		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1161			sav, sav ? sav->refcnt : 0));
1162	return sav;
1163}
1164
1165/*
1166 * Must be called after calling key_allocsp().
1167 * For both the packet without socket and key_freeso().
1168 */
1169void
1170_key_freesp(struct secpolicy **spp, const char* where, int tag)
1171{
1172	struct secpolicy *sp = *spp;
1173
1174	IPSEC_ASSERT(sp != NULL, ("null sp"));
1175
1176	SPTREE_LOCK();
1177	SP_DELREF(sp);
1178
1179	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1180		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1181			__func__, sp, sp->id, where, tag, sp->refcnt));
1182
1183	if (sp->refcnt == 0) {
1184		*spp = NULL;
1185		key_delsp(sp);
1186	}
1187	SPTREE_UNLOCK();
1188}
1189
1190/*
1191 * Must be called after calling key_allocsp().
1192 * For the packet with socket.
1193 */
1194void
1195key_freeso(struct socket *so)
1196{
1197	IPSEC_ASSERT(so != NULL, ("null so"));
1198
1199	switch (so->so_proto->pr_domain->dom_family) {
1200#if defined(INET) || defined(INET6)
1201#ifdef INET
1202	case PF_INET:
1203#endif
1204#ifdef INET6
1205	case PF_INET6:
1206#endif
1207	    {
1208		struct inpcb *pcb = sotoinpcb(so);
1209
1210		/* Does it have a PCB ? */
1211		if (pcb == NULL)
1212			return;
1213		key_freesp_so(&pcb->inp_sp->sp_in);
1214		key_freesp_so(&pcb->inp_sp->sp_out);
1215	    }
1216		break;
1217#endif /* INET || INET6 */
1218	default:
1219		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1220		    __func__, so->so_proto->pr_domain->dom_family));
1221		return;
1222	}
1223}
1224
1225static void
1226key_freesp_so(struct secpolicy **sp)
1227{
1228	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1229
1230	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1231	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1232		return;
1233
1234	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1235		("invalid policy %u", (*sp)->policy));
1236	KEY_FREESP(sp);
1237}
1238
1239void
1240key_addrefsa(struct secasvar *sav, const char* where, int tag)
1241{
1242
1243	IPSEC_ASSERT(sav != NULL, ("null sav"));
1244	IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist"));
1245
1246	sa_addref(sav);
1247}
1248
1249/*
1250 * Must be called after calling key_allocsa().
1251 * This function is called by key_freesp() to free some SA allocated
1252 * for a policy.
1253 */
1254void
1255key_freesav(struct secasvar **psav, const char* where, int tag)
1256{
1257	struct secasvar *sav = *psav;
1258
1259	IPSEC_ASSERT(sav != NULL, ("null sav"));
1260
1261	if (sa_delref(sav)) {
1262		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1263			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1264				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1265		*psav = NULL;
1266		key_delsav(sav);
1267	} else {
1268		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1269			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1270				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1271	}
1272}
1273
1274/* %%% SPD management */
1275/*
1276 * free security policy entry.
1277 */
1278static void
1279key_delsp(struct secpolicy *sp)
1280{
1281	struct ipsecrequest *isr, *nextisr;
1282
1283	IPSEC_ASSERT(sp != NULL, ("null sp"));
1284	SPTREE_LOCK_ASSERT();
1285
1286	sp->state = IPSEC_SPSTATE_DEAD;
1287
1288	IPSEC_ASSERT(sp->refcnt == 0,
1289		("SP with references deleted (refcnt %u)", sp->refcnt));
1290
1291	/* remove from SP index */
1292	if (__LIST_CHAINED(sp))
1293		LIST_REMOVE(sp, chain);
1294
1295	for (isr = sp->req; isr != NULL; isr = nextisr) {
1296		if (isr->sav != NULL) {
1297			KEY_FREESAV(&isr->sav);
1298			isr->sav = NULL;
1299		}
1300
1301		nextisr = isr->next;
1302		ipsec_delisr(isr);
1303	}
1304	_key_delsp(sp);
1305}
1306
1307/*
1308 * search SPD
1309 * OUT:	NULL	: not found
1310 *	others	: found, pointer to a SP.
1311 */
1312static struct secpolicy *
1313key_getsp(struct secpolicyindex *spidx)
1314{
1315	struct secpolicy *sp;
1316
1317	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1318
1319	SPTREE_LOCK();
1320	LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1321		if (sp->state == IPSEC_SPSTATE_DEAD)
1322			continue;
1323		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1324			SP_ADDREF(sp);
1325			break;
1326		}
1327	}
1328	SPTREE_UNLOCK();
1329
1330	return sp;
1331}
1332
1333/*
1334 * get SP by index.
1335 * OUT:	NULL	: not found
1336 *	others	: found, pointer to a SP.
1337 */
1338static struct secpolicy *
1339key_getspbyid(u_int32_t id)
1340{
1341	struct secpolicy *sp;
1342
1343	SPTREE_LOCK();
1344	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1345		if (sp->state == IPSEC_SPSTATE_DEAD)
1346			continue;
1347		if (sp->id == id) {
1348			SP_ADDREF(sp);
1349			goto done;
1350		}
1351	}
1352
1353	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1354		if (sp->state == IPSEC_SPSTATE_DEAD)
1355			continue;
1356		if (sp->id == id) {
1357			SP_ADDREF(sp);
1358			goto done;
1359		}
1360	}
1361done:
1362	SPTREE_UNLOCK();
1363
1364	return sp;
1365}
1366
1367struct secpolicy *
1368key_newsp(const char* where, int tag)
1369{
1370	struct secpolicy *newsp = NULL;
1371
1372	newsp = (struct secpolicy *)
1373		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1374	if (newsp) {
1375		SECPOLICY_LOCK_INIT(newsp);
1376		newsp->refcnt = 1;
1377		newsp->req = NULL;
1378	}
1379
1380	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1381		printf("DP %s from %s:%u return SP:%p\n", __func__,
1382			where, tag, newsp));
1383	return newsp;
1384}
1385
1386static void
1387_key_delsp(struct secpolicy *sp)
1388{
1389	SECPOLICY_LOCK_DESTROY(sp);
1390	free(sp, M_IPSEC_SP);
1391}
1392
1393/*
1394 * create secpolicy structure from sadb_x_policy structure.
1395 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1396 * so must be set properly later.
1397 */
1398struct secpolicy *
1399key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error)
1400{
1401	struct secpolicy *newsp;
1402
1403	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1404	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1405
1406	if (len != PFKEY_EXTLEN(xpl0)) {
1407		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1408		*error = EINVAL;
1409		return NULL;
1410	}
1411
1412	if ((newsp = KEY_NEWSP()) == NULL) {
1413		*error = ENOBUFS;
1414		return NULL;
1415	}
1416
1417	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1418	newsp->policy = xpl0->sadb_x_policy_type;
1419
1420	/* check policy */
1421	switch (xpl0->sadb_x_policy_type) {
1422	case IPSEC_POLICY_DISCARD:
1423	case IPSEC_POLICY_NONE:
1424	case IPSEC_POLICY_ENTRUST:
1425	case IPSEC_POLICY_BYPASS:
1426		newsp->req = NULL;
1427		break;
1428
1429	case IPSEC_POLICY_IPSEC:
1430	    {
1431		int tlen;
1432		struct sadb_x_ipsecrequest *xisr;
1433		struct ipsecrequest **p_isr = &newsp->req;
1434
1435		/* validity check */
1436		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1437			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1438				__func__));
1439			KEY_FREESP(&newsp);
1440			*error = EINVAL;
1441			return NULL;
1442		}
1443
1444		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1445		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1446
1447		while (tlen > 0) {
1448			/* length check */
1449			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1450				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1451					"length.\n", __func__));
1452				KEY_FREESP(&newsp);
1453				*error = EINVAL;
1454				return NULL;
1455			}
1456
1457			/* allocate request buffer */
1458			/* NB: data structure is zero'd */
1459			*p_isr = ipsec_newisr();
1460			if ((*p_isr) == NULL) {
1461				ipseclog((LOG_DEBUG,
1462				    "%s: No more memory.\n", __func__));
1463				KEY_FREESP(&newsp);
1464				*error = ENOBUFS;
1465				return NULL;
1466			}
1467
1468			/* set values */
1469			switch (xisr->sadb_x_ipsecrequest_proto) {
1470			case IPPROTO_ESP:
1471			case IPPROTO_AH:
1472			case IPPROTO_IPCOMP:
1473				break;
1474			default:
1475				ipseclog((LOG_DEBUG,
1476				    "%s: invalid proto type=%u\n", __func__,
1477				    xisr->sadb_x_ipsecrequest_proto));
1478				KEY_FREESP(&newsp);
1479				*error = EPROTONOSUPPORT;
1480				return NULL;
1481			}
1482			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1483
1484			switch (xisr->sadb_x_ipsecrequest_mode) {
1485			case IPSEC_MODE_TRANSPORT:
1486			case IPSEC_MODE_TUNNEL:
1487				break;
1488			case IPSEC_MODE_ANY:
1489			default:
1490				ipseclog((LOG_DEBUG,
1491				    "%s: invalid mode=%u\n", __func__,
1492				    xisr->sadb_x_ipsecrequest_mode));
1493				KEY_FREESP(&newsp);
1494				*error = EINVAL;
1495				return NULL;
1496			}
1497			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1498
1499			switch (xisr->sadb_x_ipsecrequest_level) {
1500			case IPSEC_LEVEL_DEFAULT:
1501			case IPSEC_LEVEL_USE:
1502			case IPSEC_LEVEL_REQUIRE:
1503				break;
1504			case IPSEC_LEVEL_UNIQUE:
1505				/* validity check */
1506				/*
1507				 * If range violation of reqid, kernel will
1508				 * update it, don't refuse it.
1509				 */
1510				if (xisr->sadb_x_ipsecrequest_reqid
1511						> IPSEC_MANUAL_REQID_MAX) {
1512					ipseclog((LOG_DEBUG,
1513					    "%s: reqid=%d range "
1514					    "violation, updated by kernel.\n",
1515					    __func__,
1516					    xisr->sadb_x_ipsecrequest_reqid));
1517					xisr->sadb_x_ipsecrequest_reqid = 0;
1518				}
1519
1520				/* allocate new reqid id if reqid is zero. */
1521				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1522					u_int32_t reqid;
1523					if ((reqid = key_newreqid()) == 0) {
1524						KEY_FREESP(&newsp);
1525						*error = ENOBUFS;
1526						return NULL;
1527					}
1528					(*p_isr)->saidx.reqid = reqid;
1529					xisr->sadb_x_ipsecrequest_reqid = reqid;
1530				} else {
1531				/* set it for manual keying. */
1532					(*p_isr)->saidx.reqid =
1533						xisr->sadb_x_ipsecrequest_reqid;
1534				}
1535				break;
1536
1537			default:
1538				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1539					__func__,
1540					xisr->sadb_x_ipsecrequest_level));
1541				KEY_FREESP(&newsp);
1542				*error = EINVAL;
1543				return NULL;
1544			}
1545			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1546
1547			/* set IP addresses if there */
1548			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1549				struct sockaddr *paddr;
1550
1551				paddr = (struct sockaddr *)(xisr + 1);
1552
1553				/* validity check */
1554				if (paddr->sa_len
1555				    > sizeof((*p_isr)->saidx.src)) {
1556					ipseclog((LOG_DEBUG, "%s: invalid "
1557						"request address length.\n",
1558						__func__));
1559					KEY_FREESP(&newsp);
1560					*error = EINVAL;
1561					return NULL;
1562				}
1563				bcopy(paddr, &(*p_isr)->saidx.src,
1564					paddr->sa_len);
1565
1566				paddr = (struct sockaddr *)((caddr_t)paddr
1567							+ paddr->sa_len);
1568
1569				/* validity check */
1570				if (paddr->sa_len
1571				    > sizeof((*p_isr)->saidx.dst)) {
1572					ipseclog((LOG_DEBUG, "%s: invalid "
1573						"request address length.\n",
1574						__func__));
1575					KEY_FREESP(&newsp);
1576					*error = EINVAL;
1577					return NULL;
1578				}
1579				bcopy(paddr, &(*p_isr)->saidx.dst,
1580					paddr->sa_len);
1581			}
1582
1583			(*p_isr)->sp = newsp;
1584
1585			/* initialization for the next. */
1586			p_isr = &(*p_isr)->next;
1587			tlen -= xisr->sadb_x_ipsecrequest_len;
1588
1589			/* validity check */
1590			if (tlen < 0) {
1591				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1592					__func__));
1593				KEY_FREESP(&newsp);
1594				*error = EINVAL;
1595				return NULL;
1596			}
1597
1598			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1599			                 + xisr->sadb_x_ipsecrequest_len);
1600		}
1601	    }
1602		break;
1603	default:
1604		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1605		KEY_FREESP(&newsp);
1606		*error = EINVAL;
1607		return NULL;
1608	}
1609
1610	*error = 0;
1611	return newsp;
1612}
1613
1614static u_int32_t
1615key_newreqid()
1616{
1617	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1618
1619	auto_reqid = (auto_reqid == ~0
1620			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1621
1622	/* XXX should be unique check */
1623
1624	return auto_reqid;
1625}
1626
1627/*
1628 * copy secpolicy struct to sadb_x_policy structure indicated.
1629 */
1630struct mbuf *
1631key_sp2msg(struct secpolicy *sp)
1632{
1633	struct sadb_x_policy *xpl;
1634	int tlen;
1635	caddr_t p;
1636	struct mbuf *m;
1637
1638	IPSEC_ASSERT(sp != NULL, ("null policy"));
1639
1640	tlen = key_getspreqmsglen(sp);
1641
1642	m = m_get2(tlen, M_NOWAIT, MT_DATA, 0);
1643	if (m == NULL)
1644		return (NULL);
1645	m_align(m, tlen);
1646	m->m_len = tlen;
1647	xpl = mtod(m, struct sadb_x_policy *);
1648	bzero(xpl, tlen);
1649
1650	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1651	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1652	xpl->sadb_x_policy_type = sp->policy;
1653	xpl->sadb_x_policy_dir = sp->spidx.dir;
1654	xpl->sadb_x_policy_id = sp->id;
1655	p = (caddr_t)xpl + sizeof(*xpl);
1656
1657	/* if is the policy for ipsec ? */
1658	if (sp->policy == IPSEC_POLICY_IPSEC) {
1659		struct sadb_x_ipsecrequest *xisr;
1660		struct ipsecrequest *isr;
1661
1662		for (isr = sp->req; isr != NULL; isr = isr->next) {
1663
1664			xisr = (struct sadb_x_ipsecrequest *)p;
1665
1666			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1667			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1668			xisr->sadb_x_ipsecrequest_level = isr->level;
1669			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1670
1671			p += sizeof(*xisr);
1672			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1673			p += isr->saidx.src.sa.sa_len;
1674			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1675			p += isr->saidx.src.sa.sa_len;
1676
1677			xisr->sadb_x_ipsecrequest_len =
1678				PFKEY_ALIGN8(sizeof(*xisr)
1679					+ isr->saidx.src.sa.sa_len
1680					+ isr->saidx.dst.sa.sa_len);
1681		}
1682	}
1683
1684	return m;
1685}
1686
1687/* m will not be freed nor modified */
1688static struct mbuf *
1689key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1690    int ndeep, int nitem, ...)
1691{
1692	va_list ap;
1693	int idx;
1694	int i;
1695	struct mbuf *result = NULL, *n;
1696	int len;
1697
1698	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1699	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1700
1701	va_start(ap, nitem);
1702	for (i = 0; i < nitem; i++) {
1703		idx = va_arg(ap, int);
1704		if (idx < 0 || idx > SADB_EXT_MAX)
1705			goto fail;
1706		/* don't attempt to pull empty extension */
1707		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1708			continue;
1709		if (idx != SADB_EXT_RESERVED  &&
1710		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1711			continue;
1712
1713		if (idx == SADB_EXT_RESERVED) {
1714			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1715
1716			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1717
1718			MGETHDR(n, M_NOWAIT, MT_DATA);
1719			if (!n)
1720				goto fail;
1721			n->m_len = len;
1722			n->m_next = NULL;
1723			m_copydata(m, 0, sizeof(struct sadb_msg),
1724			    mtod(n, caddr_t));
1725		} else if (i < ndeep) {
1726			len = mhp->extlen[idx];
1727			n = m_get2(len, M_NOWAIT, MT_DATA, 0);
1728			if (n == NULL)
1729				goto fail;
1730			m_align(n, len);
1731			n->m_len = len;
1732			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1733			    mtod(n, caddr_t));
1734		} else {
1735			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1736			    M_NOWAIT);
1737		}
1738		if (n == NULL)
1739			goto fail;
1740
1741		if (result)
1742			m_cat(result, n);
1743		else
1744			result = n;
1745	}
1746	va_end(ap);
1747
1748	if ((result->m_flags & M_PKTHDR) != 0) {
1749		result->m_pkthdr.len = 0;
1750		for (n = result; n; n = n->m_next)
1751			result->m_pkthdr.len += n->m_len;
1752	}
1753
1754	return result;
1755
1756fail:
1757	m_freem(result);
1758	va_end(ap);
1759	return NULL;
1760}
1761
1762/*
1763 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1764 * add an entry to SP database, when received
1765 *   <base, address(SD), (lifetime(H),) policy>
1766 * from the user(?).
1767 * Adding to SP database,
1768 * and send
1769 *   <base, address(SD), (lifetime(H),) policy>
1770 * to the socket which was send.
1771 *
1772 * SPDADD set a unique policy entry.
1773 * SPDSETIDX like SPDADD without a part of policy requests.
1774 * SPDUPDATE replace a unique policy entry.
1775 *
1776 * m will always be freed.
1777 */
1778static int
1779key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
1780{
1781	struct sadb_address *src0, *dst0;
1782	struct sadb_x_policy *xpl0, *xpl;
1783	struct sadb_lifetime *lft = NULL;
1784	struct secpolicyindex spidx;
1785	struct secpolicy *newsp;
1786	int error;
1787
1788	IPSEC_ASSERT(so != NULL, ("null socket"));
1789	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1790	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1791	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1792
1793	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1794	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1795	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1796		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1797		return key_senderror(so, m, EINVAL);
1798	}
1799	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1800	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1801	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1802		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1803			__func__));
1804		return key_senderror(so, m, EINVAL);
1805	}
1806	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1807		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1808			< sizeof(struct sadb_lifetime)) {
1809			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1810				__func__));
1811			return key_senderror(so, m, EINVAL);
1812		}
1813		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1814	}
1815
1816	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1817	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1818	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1819
1820	/*
1821	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
1822	 * we are processing traffic endpoints.
1823	 */
1824
1825	/* make secindex */
1826	/* XXX boundary check against sa_len */
1827	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1828	                src0 + 1,
1829	                dst0 + 1,
1830	                src0->sadb_address_prefixlen,
1831	                dst0->sadb_address_prefixlen,
1832	                src0->sadb_address_proto,
1833	                &spidx);
1834
1835	/* checking the direciton. */
1836	switch (xpl0->sadb_x_policy_dir) {
1837	case IPSEC_DIR_INBOUND:
1838	case IPSEC_DIR_OUTBOUND:
1839		break;
1840	default:
1841		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1842		mhp->msg->sadb_msg_errno = EINVAL;
1843		return 0;
1844	}
1845
1846	/* check policy */
1847	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1848	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1849	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1850		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1851		return key_senderror(so, m, EINVAL);
1852	}
1853
1854	/* policy requests are mandatory when action is ipsec. */
1855        if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1856	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1857	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1858		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1859			__func__));
1860		return key_senderror(so, m, EINVAL);
1861	}
1862
1863	/*
1864	 * checking there is SP already or not.
1865	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1866	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1867	 * then error.
1868	 */
1869	newsp = key_getsp(&spidx);
1870	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1871		if (newsp) {
1872			SPTREE_LOCK();
1873			newsp->state = IPSEC_SPSTATE_DEAD;
1874			SPTREE_UNLOCK();
1875			KEY_FREESP(&newsp);
1876		}
1877	} else {
1878		if (newsp != NULL) {
1879			KEY_FREESP(&newsp);
1880			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1881				__func__));
1882			return key_senderror(so, m, EEXIST);
1883		}
1884	}
1885
1886	/* allocation new SP entry */
1887	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1888		return key_senderror(so, m, error);
1889	}
1890
1891	if ((newsp->id = key_getnewspid()) == 0) {
1892		_key_delsp(newsp);
1893		return key_senderror(so, m, ENOBUFS);
1894	}
1895
1896	/* XXX boundary check against sa_len */
1897	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1898	                src0 + 1,
1899	                dst0 + 1,
1900	                src0->sadb_address_prefixlen,
1901	                dst0->sadb_address_prefixlen,
1902	                src0->sadb_address_proto,
1903	                &newsp->spidx);
1904
1905	/* sanity check on addr pair */
1906	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1907			((struct sockaddr *)(dst0+ 1))->sa_family) {
1908		_key_delsp(newsp);
1909		return key_senderror(so, m, EINVAL);
1910	}
1911	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1912			((struct sockaddr *)(dst0+ 1))->sa_len) {
1913		_key_delsp(newsp);
1914		return key_senderror(so, m, EINVAL);
1915	}
1916#if 1
1917	if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) {
1918		if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) {
1919			_key_delsp(newsp);
1920			return key_senderror(so, m, EINVAL);
1921		}
1922	}
1923#endif
1924
1925	newsp->created = time_second;
1926	newsp->lastused = newsp->created;
1927	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1928	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1929
1930	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1931	newsp->state = IPSEC_SPSTATE_ALIVE;
1932	LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1933
1934	/* delete the entry in spacqtree */
1935	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1936		struct secspacq *spacq = key_getspacq(&spidx);
1937		if (spacq != NULL) {
1938			/* reset counter in order to deletion by timehandler. */
1939			spacq->created = time_second;
1940			spacq->count = 0;
1941			SPACQ_UNLOCK();
1942		}
1943    	}
1944
1945    {
1946	struct mbuf *n, *mpolicy;
1947	struct sadb_msg *newmsg;
1948	int off;
1949
1950	/*
1951	 * Note: do not send SADB_X_EXT_NAT_T_* here:
1952	 * we are sending traffic endpoints.
1953	 */
1954
1955	/* create new sadb_msg to reply. */
1956	if (lft) {
1957		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1958		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1959		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1960	} else {
1961		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1962		    SADB_X_EXT_POLICY,
1963		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1964	}
1965	if (!n)
1966		return key_senderror(so, m, ENOBUFS);
1967
1968	if (n->m_len < sizeof(*newmsg)) {
1969		n = m_pullup(n, sizeof(*newmsg));
1970		if (!n)
1971			return key_senderror(so, m, ENOBUFS);
1972	}
1973	newmsg = mtod(n, struct sadb_msg *);
1974	newmsg->sadb_msg_errno = 0;
1975	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1976
1977	off = 0;
1978	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1979	    sizeof(*xpl), &off);
1980	if (mpolicy == NULL) {
1981		/* n is already freed */
1982		return key_senderror(so, m, ENOBUFS);
1983	}
1984	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1985	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1986		m_freem(n);
1987		return key_senderror(so, m, EINVAL);
1988	}
1989	xpl->sadb_x_policy_id = newsp->id;
1990
1991	m_freem(m);
1992	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1993    }
1994}
1995
1996/*
1997 * get new policy id.
1998 * OUT:
1999 *	0:	failure.
2000 *	others: success.
2001 */
2002static u_int32_t
2003key_getnewspid()
2004{
2005	u_int32_t newid = 0;
2006	int count = V_key_spi_trycnt;	/* XXX */
2007	struct secpolicy *sp;
2008
2009	/* when requesting to allocate spi ranged */
2010	while (count--) {
2011		newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
2012
2013		if ((sp = key_getspbyid(newid)) == NULL)
2014			break;
2015
2016		KEY_FREESP(&sp);
2017	}
2018
2019	if (count == 0 || newid == 0) {
2020		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
2021			__func__));
2022		return 0;
2023	}
2024
2025	return newid;
2026}
2027
2028/*
2029 * SADB_SPDDELETE processing
2030 * receive
2031 *   <base, address(SD), policy(*)>
2032 * from the user(?), and set SADB_SASTATE_DEAD,
2033 * and send,
2034 *   <base, address(SD), policy(*)>
2035 * to the ikmpd.
2036 * policy(*) including direction of policy.
2037 *
2038 * m will always be freed.
2039 */
2040static int
2041key_spddelete(struct socket *so, struct mbuf *m,
2042    const struct sadb_msghdr *mhp)
2043{
2044	struct sadb_address *src0, *dst0;
2045	struct sadb_x_policy *xpl0;
2046	struct secpolicyindex spidx;
2047	struct secpolicy *sp;
2048
2049	IPSEC_ASSERT(so != NULL, ("null so"));
2050	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2051	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2052	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2053
2054	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2055	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2056	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2057		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2058			__func__));
2059		return key_senderror(so, m, EINVAL);
2060	}
2061	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2062	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2063	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2064		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2065			__func__));
2066		return key_senderror(so, m, EINVAL);
2067	}
2068
2069	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2070	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2071	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2072
2073	/*
2074	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
2075	 * we are processing traffic endpoints.
2076	 */
2077
2078	/* make secindex */
2079	/* XXX boundary check against sa_len */
2080	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2081	                src0 + 1,
2082	                dst0 + 1,
2083	                src0->sadb_address_prefixlen,
2084	                dst0->sadb_address_prefixlen,
2085	                src0->sadb_address_proto,
2086	                &spidx);
2087
2088	/* checking the direciton. */
2089	switch (xpl0->sadb_x_policy_dir) {
2090	case IPSEC_DIR_INBOUND:
2091	case IPSEC_DIR_OUTBOUND:
2092		break;
2093	default:
2094		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2095		return key_senderror(so, m, EINVAL);
2096	}
2097
2098	/* Is there SP in SPD ? */
2099	if ((sp = key_getsp(&spidx)) == NULL) {
2100		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2101		return key_senderror(so, m, EINVAL);
2102	}
2103
2104	/* save policy id to buffer to be returned. */
2105	xpl0->sadb_x_policy_id = sp->id;
2106
2107	SPTREE_LOCK();
2108	sp->state = IPSEC_SPSTATE_DEAD;
2109	SPTREE_UNLOCK();
2110	KEY_FREESP(&sp);
2111
2112    {
2113	struct mbuf *n;
2114	struct sadb_msg *newmsg;
2115
2116	/*
2117	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2118	 * we are sending traffic endpoints.
2119	 */
2120
2121	/* create new sadb_msg to reply. */
2122	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2123	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2124	if (!n)
2125		return key_senderror(so, m, ENOBUFS);
2126
2127	newmsg = mtod(n, struct sadb_msg *);
2128	newmsg->sadb_msg_errno = 0;
2129	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2130
2131	m_freem(m);
2132	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2133    }
2134}
2135
2136/*
2137 * SADB_SPDDELETE2 processing
2138 * receive
2139 *   <base, policy(*)>
2140 * from the user(?), and set SADB_SASTATE_DEAD,
2141 * and send,
2142 *   <base, policy(*)>
2143 * to the ikmpd.
2144 * policy(*) including direction of policy.
2145 *
2146 * m will always be freed.
2147 */
2148static int
2149key_spddelete2(struct socket *so, struct mbuf *m,
2150    const struct sadb_msghdr *mhp)
2151{
2152	u_int32_t id;
2153	struct secpolicy *sp;
2154
2155	IPSEC_ASSERT(so != NULL, ("null socket"));
2156	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2157	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2158	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2159
2160	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2161	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2162		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2163		return key_senderror(so, m, EINVAL);
2164	}
2165
2166	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2167
2168	/* Is there SP in SPD ? */
2169	if ((sp = key_getspbyid(id)) == NULL) {
2170		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2171		return key_senderror(so, m, EINVAL);
2172	}
2173
2174	SPTREE_LOCK();
2175	sp->state = IPSEC_SPSTATE_DEAD;
2176	SPTREE_UNLOCK();
2177	KEY_FREESP(&sp);
2178
2179    {
2180	struct mbuf *n, *nn;
2181	struct sadb_msg *newmsg;
2182	int off, len;
2183
2184	/* create new sadb_msg to reply. */
2185	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2186
2187	MGETHDR(n, M_NOWAIT, MT_DATA);
2188	if (n && len > MHLEN) {
2189		MCLGET(n, M_NOWAIT);
2190		if ((n->m_flags & M_EXT) == 0) {
2191			m_freem(n);
2192			n = NULL;
2193		}
2194	}
2195	if (!n)
2196		return key_senderror(so, m, ENOBUFS);
2197
2198	n->m_len = len;
2199	n->m_next = NULL;
2200	off = 0;
2201
2202	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2203	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2204
2205	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2206		off, len));
2207
2208	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2209	    mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT);
2210	if (!n->m_next) {
2211		m_freem(n);
2212		return key_senderror(so, m, ENOBUFS);
2213	}
2214
2215	n->m_pkthdr.len = 0;
2216	for (nn = n; nn; nn = nn->m_next)
2217		n->m_pkthdr.len += nn->m_len;
2218
2219	newmsg = mtod(n, struct sadb_msg *);
2220	newmsg->sadb_msg_errno = 0;
2221	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2222
2223	m_freem(m);
2224	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2225    }
2226}
2227
2228/*
2229 * SADB_X_SPDGET processing
2230 * receive
2231 *   <base, policy(*)>
2232 * from the user(?),
2233 * and send,
2234 *   <base, address(SD), policy>
2235 * to the ikmpd.
2236 * policy(*) including direction of policy.
2237 *
2238 * m will always be freed.
2239 */
2240static int
2241key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2242{
2243	u_int32_t id;
2244	struct secpolicy *sp;
2245	struct mbuf *n;
2246
2247	IPSEC_ASSERT(so != NULL, ("null socket"));
2248	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2249	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2250	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2251
2252	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2253	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2254		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2255			__func__));
2256		return key_senderror(so, m, EINVAL);
2257	}
2258
2259	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2260
2261	/* Is there SP in SPD ? */
2262	if ((sp = key_getspbyid(id)) == NULL) {
2263		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2264		return key_senderror(so, m, ENOENT);
2265	}
2266
2267	n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2268	    mhp->msg->sadb_msg_pid);
2269	KEY_FREESP(&sp);
2270	if (n != NULL) {
2271		m_freem(m);
2272		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2273	} else
2274		return key_senderror(so, m, ENOBUFS);
2275}
2276
2277/*
2278 * SADB_X_SPDACQUIRE processing.
2279 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2280 * send
2281 *   <base, policy(*)>
2282 * to KMD, and expect to receive
2283 *   <base> with SADB_X_SPDACQUIRE if error occured,
2284 * or
2285 *   <base, policy>
2286 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2287 * policy(*) is without policy requests.
2288 *
2289 *    0     : succeed
2290 *    others: error number
2291 */
2292int
2293key_spdacquire(struct secpolicy *sp)
2294{
2295	struct mbuf *result = NULL, *m;
2296	struct secspacq *newspacq;
2297
2298	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2299	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2300	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2301		("policy not IPSEC %u", sp->policy));
2302
2303	/* Get an entry to check whether sent message or not. */
2304	newspacq = key_getspacq(&sp->spidx);
2305	if (newspacq != NULL) {
2306		if (V_key_blockacq_count < newspacq->count) {
2307			/* reset counter and do send message. */
2308			newspacq->count = 0;
2309		} else {
2310			/* increment counter and do nothing. */
2311			newspacq->count++;
2312			SPACQ_UNLOCK();
2313			return (0);
2314		}
2315		SPACQ_UNLOCK();
2316	} else {
2317		/* make new entry for blocking to send SADB_ACQUIRE. */
2318		newspacq = key_newspacq(&sp->spidx);
2319		if (newspacq == NULL)
2320			return ENOBUFS;
2321	}
2322
2323	/* create new sadb_msg to reply. */
2324	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2325	if (!m)
2326		return ENOBUFS;
2327
2328	result = m;
2329
2330	result->m_pkthdr.len = 0;
2331	for (m = result; m; m = m->m_next)
2332		result->m_pkthdr.len += m->m_len;
2333
2334	mtod(result, struct sadb_msg *)->sadb_msg_len =
2335	    PFKEY_UNIT64(result->m_pkthdr.len);
2336
2337	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2338}
2339
2340/*
2341 * SADB_SPDFLUSH processing
2342 * receive
2343 *   <base>
2344 * from the user, and free all entries in secpctree.
2345 * and send,
2346 *   <base>
2347 * to the user.
2348 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2349 *
2350 * m will always be freed.
2351 */
2352static int
2353key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2354{
2355	struct sadb_msg *newmsg;
2356	struct secpolicy *sp;
2357	u_int dir;
2358
2359	IPSEC_ASSERT(so != NULL, ("null socket"));
2360	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2361	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2362	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2363
2364	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2365		return key_senderror(so, m, EINVAL);
2366
2367	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2368		SPTREE_LOCK();
2369		LIST_FOREACH(sp, &V_sptree[dir], chain)
2370			sp->state = IPSEC_SPSTATE_DEAD;
2371		SPTREE_UNLOCK();
2372	}
2373
2374	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2375		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2376		return key_senderror(so, m, ENOBUFS);
2377	}
2378
2379	if (m->m_next)
2380		m_freem(m->m_next);
2381	m->m_next = NULL;
2382	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2383	newmsg = mtod(m, struct sadb_msg *);
2384	newmsg->sadb_msg_errno = 0;
2385	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2386
2387	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2388}
2389
2390/*
2391 * SADB_SPDDUMP processing
2392 * receive
2393 *   <base>
2394 * from the user, and dump all SP leaves
2395 * and send,
2396 *   <base> .....
2397 * to the ikmpd.
2398 *
2399 * m will always be freed.
2400 */
2401static int
2402key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2403{
2404	struct secpolicy *sp;
2405	int cnt;
2406	u_int dir;
2407	struct mbuf *n;
2408
2409	IPSEC_ASSERT(so != NULL, ("null socket"));
2410	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2411	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2412	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2413
2414	/* search SPD entry and get buffer size. */
2415	cnt = 0;
2416	SPTREE_LOCK();
2417	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2418		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2419			cnt++;
2420		}
2421	}
2422
2423	if (cnt == 0) {
2424		SPTREE_UNLOCK();
2425		return key_senderror(so, m, ENOENT);
2426	}
2427
2428	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2429		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2430			--cnt;
2431			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2432			    mhp->msg->sadb_msg_pid);
2433
2434			if (n)
2435				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2436		}
2437	}
2438
2439	SPTREE_UNLOCK();
2440	m_freem(m);
2441	return 0;
2442}
2443
2444static struct mbuf *
2445key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq,
2446    u_int32_t pid)
2447{
2448	struct mbuf *result = NULL, *m;
2449	struct seclifetime lt;
2450
2451	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2452	if (!m)
2453		goto fail;
2454	result = m;
2455
2456	/*
2457	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2458	 * we are sending traffic endpoints.
2459	 */
2460	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2461	    &sp->spidx.src.sa, sp->spidx.prefs,
2462	    sp->spidx.ul_proto);
2463	if (!m)
2464		goto fail;
2465	m_cat(result, m);
2466
2467	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2468	    &sp->spidx.dst.sa, sp->spidx.prefd,
2469	    sp->spidx.ul_proto);
2470	if (!m)
2471		goto fail;
2472	m_cat(result, m);
2473
2474	m = key_sp2msg(sp);
2475	if (!m)
2476		goto fail;
2477	m_cat(result, m);
2478
2479	if(sp->lifetime){
2480		lt.addtime=sp->created;
2481		lt.usetime= sp->lastused;
2482		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2483		if (!m)
2484			goto fail;
2485		m_cat(result, m);
2486
2487		lt.addtime=sp->lifetime;
2488		lt.usetime= sp->validtime;
2489		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2490		if (!m)
2491			goto fail;
2492		m_cat(result, m);
2493	}
2494
2495	if ((result->m_flags & M_PKTHDR) == 0)
2496		goto fail;
2497
2498	if (result->m_len < sizeof(struct sadb_msg)) {
2499		result = m_pullup(result, sizeof(struct sadb_msg));
2500		if (result == NULL)
2501			goto fail;
2502	}
2503
2504	result->m_pkthdr.len = 0;
2505	for (m = result; m; m = m->m_next)
2506		result->m_pkthdr.len += m->m_len;
2507
2508	mtod(result, struct sadb_msg *)->sadb_msg_len =
2509	    PFKEY_UNIT64(result->m_pkthdr.len);
2510
2511	return result;
2512
2513fail:
2514	m_freem(result);
2515	return NULL;
2516}
2517
2518/*
2519 * get PFKEY message length for security policy and request.
2520 */
2521static u_int
2522key_getspreqmsglen(struct secpolicy *sp)
2523{
2524	u_int tlen;
2525
2526	tlen = sizeof(struct sadb_x_policy);
2527
2528	/* if is the policy for ipsec ? */
2529	if (sp->policy != IPSEC_POLICY_IPSEC)
2530		return tlen;
2531
2532	/* get length of ipsec requests */
2533    {
2534	struct ipsecrequest *isr;
2535	int len;
2536
2537	for (isr = sp->req; isr != NULL; isr = isr->next) {
2538		len = sizeof(struct sadb_x_ipsecrequest)
2539			+ isr->saidx.src.sa.sa_len
2540			+ isr->saidx.dst.sa.sa_len;
2541
2542		tlen += PFKEY_ALIGN8(len);
2543	}
2544    }
2545
2546	return tlen;
2547}
2548
2549/*
2550 * SADB_SPDEXPIRE processing
2551 * send
2552 *   <base, address(SD), lifetime(CH), policy>
2553 * to KMD by PF_KEY.
2554 *
2555 * OUT:	0	: succeed
2556 *	others	: error number
2557 */
2558static int
2559key_spdexpire(struct secpolicy *sp)
2560{
2561	struct mbuf *result = NULL, *m;
2562	int len;
2563	int error = -1;
2564	struct sadb_lifetime *lt;
2565
2566	/* XXX: Why do we lock ? */
2567
2568	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2569
2570	/* set msg header */
2571	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2572	if (!m) {
2573		error = ENOBUFS;
2574		goto fail;
2575	}
2576	result = m;
2577
2578	/* create lifetime extension (current and hard) */
2579	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2580	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
2581	if (m == NULL) {
2582		error = ENOBUFS;
2583		goto fail;
2584	}
2585	m_align(m, len);
2586	m->m_len = len;
2587	bzero(mtod(m, caddr_t), len);
2588	lt = mtod(m, struct sadb_lifetime *);
2589	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2590	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2591	lt->sadb_lifetime_allocations = 0;
2592	lt->sadb_lifetime_bytes = 0;
2593	lt->sadb_lifetime_addtime = sp->created;
2594	lt->sadb_lifetime_usetime = sp->lastused;
2595	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2596	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2597	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2598	lt->sadb_lifetime_allocations = 0;
2599	lt->sadb_lifetime_bytes = 0;
2600	lt->sadb_lifetime_addtime = sp->lifetime;
2601	lt->sadb_lifetime_usetime = sp->validtime;
2602	m_cat(result, m);
2603
2604	/*
2605	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2606	 * we are sending traffic endpoints.
2607	 */
2608
2609	/* set sadb_address for source */
2610	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2611	    &sp->spidx.src.sa,
2612	    sp->spidx.prefs, sp->spidx.ul_proto);
2613	if (!m) {
2614		error = ENOBUFS;
2615		goto fail;
2616	}
2617	m_cat(result, m);
2618
2619	/* set sadb_address for destination */
2620	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2621	    &sp->spidx.dst.sa,
2622	    sp->spidx.prefd, sp->spidx.ul_proto);
2623	if (!m) {
2624		error = ENOBUFS;
2625		goto fail;
2626	}
2627	m_cat(result, m);
2628
2629	/* set secpolicy */
2630	m = key_sp2msg(sp);
2631	if (!m) {
2632		error = ENOBUFS;
2633		goto fail;
2634	}
2635	m_cat(result, m);
2636
2637	if ((result->m_flags & M_PKTHDR) == 0) {
2638		error = EINVAL;
2639		goto fail;
2640	}
2641
2642	if (result->m_len < sizeof(struct sadb_msg)) {
2643		result = m_pullup(result, sizeof(struct sadb_msg));
2644		if (result == NULL) {
2645			error = ENOBUFS;
2646			goto fail;
2647		}
2648	}
2649
2650	result->m_pkthdr.len = 0;
2651	for (m = result; m; m = m->m_next)
2652		result->m_pkthdr.len += m->m_len;
2653
2654	mtod(result, struct sadb_msg *)->sadb_msg_len =
2655	    PFKEY_UNIT64(result->m_pkthdr.len);
2656
2657	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2658
2659 fail:
2660	if (result)
2661		m_freem(result);
2662	return error;
2663}
2664
2665/* %%% SAD management */
2666/*
2667 * allocating a memory for new SA head, and copy from the values of mhp.
2668 * OUT:	NULL	: failure due to the lack of memory.
2669 *	others	: pointer to new SA head.
2670 */
2671static struct secashead *
2672key_newsah(struct secasindex *saidx)
2673{
2674	struct secashead *newsah;
2675
2676	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2677
2678	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2679	if (newsah != NULL) {
2680		int i;
2681		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2682			LIST_INIT(&newsah->savtree[i]);
2683		newsah->saidx = *saidx;
2684
2685		/* add to saidxtree */
2686		newsah->state = SADB_SASTATE_MATURE;
2687
2688		SAHTREE_LOCK();
2689		LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2690		SAHTREE_UNLOCK();
2691	}
2692	return(newsah);
2693}
2694
2695/*
2696 * delete SA index and all SA registerd.
2697 */
2698static void
2699key_delsah(struct secashead *sah)
2700{
2701	struct secasvar *sav, *nextsav;
2702	u_int stateidx;
2703	int zombie = 0;
2704
2705	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2706	SAHTREE_LOCK_ASSERT();
2707
2708	/* searching all SA registerd in the secindex. */
2709	for (stateidx = 0;
2710	     stateidx < _ARRAYLEN(saorder_state_any);
2711	     stateidx++) {
2712		u_int state = saorder_state_any[stateidx];
2713		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2714			if (sav->refcnt == 0) {
2715				/* sanity check */
2716				KEY_CHKSASTATE(state, sav->state, __func__);
2717				/*
2718				 * do NOT call KEY_FREESAV here:
2719				 * it will only delete the sav if refcnt == 1,
2720				 * where we already know that refcnt == 0
2721				 */
2722				key_delsav(sav);
2723			} else {
2724				/* give up to delete this sa */
2725				zombie++;
2726			}
2727		}
2728	}
2729	if (!zombie) {		/* delete only if there are savs */
2730		/* remove from tree of SA index */
2731		if (__LIST_CHAINED(sah))
2732			LIST_REMOVE(sah, chain);
2733		free(sah, M_IPSEC_SAH);
2734	}
2735}
2736
2737/*
2738 * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2739 * and copy the values of mhp into new buffer.
2740 * When SAD message type is GETSPI:
2741 *	to set sequence number from acq_seq++,
2742 *	to set zero to SPI.
2743 *	not to call key_setsava().
2744 * OUT:	NULL	: fail
2745 *	others	: pointer to new secasvar.
2746 *
2747 * does not modify mbuf.  does not free mbuf on error.
2748 */
2749static struct secasvar *
2750key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
2751    struct secashead *sah, int *errp, const char *where, int tag)
2752{
2753	struct secasvar *newsav;
2754	const struct sadb_sa *xsa;
2755
2756	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2757	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2758	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2759	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2760
2761	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2762	if (newsav == NULL) {
2763		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2764		*errp = ENOBUFS;
2765		goto done;
2766	}
2767
2768	switch (mhp->msg->sadb_msg_type) {
2769	case SADB_GETSPI:
2770		newsav->spi = 0;
2771
2772#ifdef IPSEC_DOSEQCHECK
2773		/* sync sequence number */
2774		if (mhp->msg->sadb_msg_seq == 0)
2775			newsav->seq =
2776				(V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2777		else
2778#endif
2779			newsav->seq = mhp->msg->sadb_msg_seq;
2780		break;
2781
2782	case SADB_ADD:
2783		/* sanity check */
2784		if (mhp->ext[SADB_EXT_SA] == NULL) {
2785			free(newsav, M_IPSEC_SA);
2786			newsav = NULL;
2787			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2788				__func__));
2789			*errp = EINVAL;
2790			goto done;
2791		}
2792		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2793		newsav->spi = xsa->sadb_sa_spi;
2794		newsav->seq = mhp->msg->sadb_msg_seq;
2795		break;
2796	default:
2797		free(newsav, M_IPSEC_SA);
2798		newsav = NULL;
2799		*errp = EINVAL;
2800		goto done;
2801	}
2802
2803
2804	/* copy sav values */
2805	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2806		*errp = key_setsaval(newsav, m, mhp);
2807		if (*errp) {
2808			free(newsav, M_IPSEC_SA);
2809			newsav = NULL;
2810			goto done;
2811		}
2812	}
2813
2814	SECASVAR_LOCK_INIT(newsav);
2815
2816	/* reset created */
2817	newsav->created = time_second;
2818	newsav->pid = mhp->msg->sadb_msg_pid;
2819
2820	/* add to satree */
2821	newsav->sah = sah;
2822	sa_initref(newsav);
2823	newsav->state = SADB_SASTATE_LARVAL;
2824
2825	SAHTREE_LOCK();
2826	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2827			secasvar, chain);
2828	SAHTREE_UNLOCK();
2829done:
2830	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2831		printf("DP %s from %s:%u return SP:%p\n", __func__,
2832			where, tag, newsav));
2833
2834	return newsav;
2835}
2836
2837/*
2838 * free() SA variable entry.
2839 */
2840static void
2841key_cleansav(struct secasvar *sav)
2842{
2843	/*
2844	 * Cleanup xform state.  Note that zeroize'ing causes the
2845	 * keys to be cleared; otherwise we must do it ourself.
2846	 */
2847	if (sav->tdb_xform != NULL) {
2848		sav->tdb_xform->xf_zeroize(sav);
2849		sav->tdb_xform = NULL;
2850	} else {
2851		KASSERT(sav->iv == NULL, ("iv but no xform"));
2852		if (sav->key_auth != NULL)
2853			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2854		if (sav->key_enc != NULL)
2855			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2856	}
2857	if (sav->key_auth != NULL) {
2858		if (sav->key_auth->key_data != NULL)
2859			free(sav->key_auth->key_data, M_IPSEC_MISC);
2860		free(sav->key_auth, M_IPSEC_MISC);
2861		sav->key_auth = NULL;
2862	}
2863	if (sav->key_enc != NULL) {
2864		if (sav->key_enc->key_data != NULL)
2865			free(sav->key_enc->key_data, M_IPSEC_MISC);
2866		free(sav->key_enc, M_IPSEC_MISC);
2867		sav->key_enc = NULL;
2868	}
2869	if (sav->sched) {
2870		bzero(sav->sched, sav->schedlen);
2871		free(sav->sched, M_IPSEC_MISC);
2872		sav->sched = NULL;
2873	}
2874	if (sav->replay != NULL) {
2875		free(sav->replay, M_IPSEC_MISC);
2876		sav->replay = NULL;
2877	}
2878	if (sav->lft_c != NULL) {
2879		free(sav->lft_c, M_IPSEC_MISC);
2880		sav->lft_c = NULL;
2881	}
2882	if (sav->lft_h != NULL) {
2883		free(sav->lft_h, M_IPSEC_MISC);
2884		sav->lft_h = NULL;
2885	}
2886	if (sav->lft_s != NULL) {
2887		free(sav->lft_s, M_IPSEC_MISC);
2888		sav->lft_s = NULL;
2889	}
2890}
2891
2892/*
2893 * free() SA variable entry.
2894 */
2895static void
2896key_delsav(struct secasvar *sav)
2897{
2898	IPSEC_ASSERT(sav != NULL, ("null sav"));
2899	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2900
2901	/* remove from SA header */
2902	if (__LIST_CHAINED(sav))
2903		LIST_REMOVE(sav, chain);
2904	key_cleansav(sav);
2905	SECASVAR_LOCK_DESTROY(sav);
2906	free(sav, M_IPSEC_SA);
2907}
2908
2909/*
2910 * search SAD.
2911 * OUT:
2912 *	NULL	: not found
2913 *	others	: found, pointer to a SA.
2914 */
2915static struct secashead *
2916key_getsah(struct secasindex *saidx)
2917{
2918	struct secashead *sah;
2919
2920	SAHTREE_LOCK();
2921	LIST_FOREACH(sah, &V_sahtree, chain) {
2922		if (sah->state == SADB_SASTATE_DEAD)
2923			continue;
2924		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2925			break;
2926	}
2927	SAHTREE_UNLOCK();
2928
2929	return sah;
2930}
2931
2932/*
2933 * check not to be duplicated SPI.
2934 * NOTE: this function is too slow due to searching all SAD.
2935 * OUT:
2936 *	NULL	: not found
2937 *	others	: found, pointer to a SA.
2938 */
2939static struct secasvar *
2940key_checkspidup(struct secasindex *saidx, u_int32_t spi)
2941{
2942	struct secashead *sah;
2943	struct secasvar *sav;
2944
2945	/* check address family */
2946	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2947		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2948			__func__));
2949		return NULL;
2950	}
2951
2952	sav = NULL;
2953	/* check all SAD */
2954	SAHTREE_LOCK();
2955	LIST_FOREACH(sah, &V_sahtree, chain) {
2956		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2957			continue;
2958		sav = key_getsavbyspi(sah, spi);
2959		if (sav != NULL)
2960			break;
2961	}
2962	SAHTREE_UNLOCK();
2963
2964	return sav;
2965}
2966
2967/*
2968 * search SAD litmited alive SA, protocol, SPI.
2969 * OUT:
2970 *	NULL	: not found
2971 *	others	: found, pointer to a SA.
2972 */
2973static struct secasvar *
2974key_getsavbyspi(struct secashead *sah, u_int32_t spi)
2975{
2976	struct secasvar *sav;
2977	u_int stateidx, state;
2978
2979	sav = NULL;
2980	SAHTREE_LOCK_ASSERT();
2981	/* search all status */
2982	for (stateidx = 0;
2983	     stateidx < _ARRAYLEN(saorder_state_alive);
2984	     stateidx++) {
2985
2986		state = saorder_state_alive[stateidx];
2987		LIST_FOREACH(sav, &sah->savtree[state], chain) {
2988
2989			/* sanity check */
2990			if (sav->state != state) {
2991				ipseclog((LOG_DEBUG, "%s: "
2992				    "invalid sav->state (queue: %d SA: %d)\n",
2993				    __func__, state, sav->state));
2994				continue;
2995			}
2996
2997			if (sav->spi == spi)
2998				return sav;
2999		}
3000	}
3001
3002	return NULL;
3003}
3004
3005/*
3006 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3007 * You must update these if need.
3008 * OUT:	0:	success.
3009 *	!0:	failure.
3010 *
3011 * does not modify mbuf.  does not free mbuf on error.
3012 */
3013static int
3014key_setsaval(struct secasvar *sav, struct mbuf *m,
3015    const struct sadb_msghdr *mhp)
3016{
3017	int error = 0;
3018
3019	IPSEC_ASSERT(m != NULL, ("null mbuf"));
3020	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3021	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3022
3023	/* initialization */
3024	sav->replay = NULL;
3025	sav->key_auth = NULL;
3026	sav->key_enc = NULL;
3027	sav->sched = NULL;
3028	sav->schedlen = 0;
3029	sav->iv = NULL;
3030	sav->lft_c = NULL;
3031	sav->lft_h = NULL;
3032	sav->lft_s = NULL;
3033	sav->tdb_xform = NULL;		/* transform */
3034	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3035	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3036	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3037	/*  Initialize even if NAT-T not compiled in: */
3038	sav->natt_type = 0;
3039	sav->natt_esp_frag_len = 0;
3040
3041	/* SA */
3042	if (mhp->ext[SADB_EXT_SA] != NULL) {
3043		const struct sadb_sa *sa0;
3044
3045		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3046		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3047			error = EINVAL;
3048			goto fail;
3049		}
3050
3051		sav->alg_auth = sa0->sadb_sa_auth;
3052		sav->alg_enc = sa0->sadb_sa_encrypt;
3053		sav->flags = sa0->sadb_sa_flags;
3054
3055		/* replay window */
3056		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3057			sav->replay = (struct secreplay *)
3058				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3059			if (sav->replay == NULL) {
3060				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3061					__func__));
3062				error = ENOBUFS;
3063				goto fail;
3064			}
3065			if (sa0->sadb_sa_replay != 0)
3066				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3067			sav->replay->wsize = sa0->sadb_sa_replay;
3068		}
3069	}
3070
3071	/* Authentication keys */
3072	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3073		const struct sadb_key *key0;
3074		int len;
3075
3076		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3077		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3078
3079		error = 0;
3080		if (len < sizeof(*key0)) {
3081			error = EINVAL;
3082			goto fail;
3083		}
3084		switch (mhp->msg->sadb_msg_satype) {
3085		case SADB_SATYPE_AH:
3086		case SADB_SATYPE_ESP:
3087		case SADB_X_SATYPE_TCPSIGNATURE:
3088			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3089			    sav->alg_auth != SADB_X_AALG_NULL)
3090				error = EINVAL;
3091			break;
3092		case SADB_X_SATYPE_IPCOMP:
3093		default:
3094			error = EINVAL;
3095			break;
3096		}
3097		if (error) {
3098			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3099				__func__));
3100			goto fail;
3101		}
3102
3103		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3104								M_IPSEC_MISC);
3105		if (sav->key_auth == NULL ) {
3106			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3107				  __func__));
3108			error = ENOBUFS;
3109			goto fail;
3110		}
3111	}
3112
3113	/* Encryption key */
3114	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3115		const struct sadb_key *key0;
3116		int len;
3117
3118		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3119		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3120
3121		error = 0;
3122		if (len < sizeof(*key0)) {
3123			error = EINVAL;
3124			goto fail;
3125		}
3126		switch (mhp->msg->sadb_msg_satype) {
3127		case SADB_SATYPE_ESP:
3128			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3129			    sav->alg_enc != SADB_EALG_NULL) {
3130				error = EINVAL;
3131				break;
3132			}
3133			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3134								       len,
3135								       M_IPSEC_MISC);
3136			if (sav->key_enc == NULL) {
3137				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3138					__func__));
3139				error = ENOBUFS;
3140				goto fail;
3141			}
3142			break;
3143		case SADB_X_SATYPE_IPCOMP:
3144			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3145				error = EINVAL;
3146			sav->key_enc = NULL;	/*just in case*/
3147			break;
3148		case SADB_SATYPE_AH:
3149		case SADB_X_SATYPE_TCPSIGNATURE:
3150		default:
3151			error = EINVAL;
3152			break;
3153		}
3154		if (error) {
3155			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3156				__func__));
3157			goto fail;
3158		}
3159	}
3160
3161	/* set iv */
3162	sav->ivlen = 0;
3163
3164	switch (mhp->msg->sadb_msg_satype) {
3165	case SADB_SATYPE_AH:
3166		error = xform_init(sav, XF_AH);
3167		break;
3168	case SADB_SATYPE_ESP:
3169		error = xform_init(sav, XF_ESP);
3170		break;
3171	case SADB_X_SATYPE_IPCOMP:
3172		error = xform_init(sav, XF_IPCOMP);
3173		break;
3174	case SADB_X_SATYPE_TCPSIGNATURE:
3175		error = xform_init(sav, XF_TCPSIGNATURE);
3176		break;
3177	}
3178	if (error) {
3179		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3180		        __func__, mhp->msg->sadb_msg_satype));
3181		goto fail;
3182	}
3183
3184	/* reset created */
3185	sav->created = time_second;
3186
3187	/* make lifetime for CURRENT */
3188	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3189	if (sav->lft_c == NULL) {
3190		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3191		error = ENOBUFS;
3192		goto fail;
3193	}
3194
3195	sav->lft_c->allocations = 0;
3196	sav->lft_c->bytes = 0;
3197	sav->lft_c->addtime = time_second;
3198	sav->lft_c->usetime = 0;
3199
3200	/* lifetimes for HARD and SOFT */
3201    {
3202	const struct sadb_lifetime *lft0;
3203
3204	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3205	if (lft0 != NULL) {
3206		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3207			error = EINVAL;
3208			goto fail;
3209		}
3210		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3211		if (sav->lft_h == NULL) {
3212			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3213			error = ENOBUFS;
3214			goto fail;
3215		}
3216		/* to be initialize ? */
3217	}
3218
3219	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3220	if (lft0 != NULL) {
3221		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3222			error = EINVAL;
3223			goto fail;
3224		}
3225		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3226		if (sav->lft_s == NULL) {
3227			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3228			error = ENOBUFS;
3229			goto fail;
3230		}
3231		/* to be initialize ? */
3232	}
3233    }
3234
3235	return 0;
3236
3237 fail:
3238	/* initialization */
3239	key_cleansav(sav);
3240
3241	return error;
3242}
3243
3244/*
3245 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3246 * OUT:	0:	valid
3247 *	other:	errno
3248 */
3249static int
3250key_mature(struct secasvar *sav)
3251{
3252	int error;
3253
3254	/* check SPI value */
3255	switch (sav->sah->saidx.proto) {
3256	case IPPROTO_ESP:
3257	case IPPROTO_AH:
3258		/*
3259		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3260		 * 1-255 reserved by IANA for future use,
3261		 * 0 for implementation specific, local use.
3262		 */
3263		if (ntohl(sav->spi) <= 255) {
3264			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3265			    __func__, (u_int32_t)ntohl(sav->spi)));
3266			return EINVAL;
3267		}
3268		break;
3269	}
3270
3271	/* check satype */
3272	switch (sav->sah->saidx.proto) {
3273	case IPPROTO_ESP:
3274		/* check flags */
3275		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3276		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3277			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3278				"given to old-esp.\n", __func__));
3279			return EINVAL;
3280		}
3281		error = xform_init(sav, XF_ESP);
3282		break;
3283	case IPPROTO_AH:
3284		/* check flags */
3285		if (sav->flags & SADB_X_EXT_DERIV) {
3286			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3287				"given to AH SA.\n", __func__));
3288			return EINVAL;
3289		}
3290		if (sav->alg_enc != SADB_EALG_NONE) {
3291			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3292				"mismated.\n", __func__));
3293			return(EINVAL);
3294		}
3295		error = xform_init(sav, XF_AH);
3296		break;
3297	case IPPROTO_IPCOMP:
3298		if (sav->alg_auth != SADB_AALG_NONE) {
3299			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3300				"mismated.\n", __func__));
3301			return(EINVAL);
3302		}
3303		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3304		 && ntohl(sav->spi) >= 0x10000) {
3305			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3306				__func__));
3307			return(EINVAL);
3308		}
3309		error = xform_init(sav, XF_IPCOMP);
3310		break;
3311	case IPPROTO_TCP:
3312		if (sav->alg_enc != SADB_EALG_NONE) {
3313			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3314				"mismated.\n", __func__));
3315			return(EINVAL);
3316		}
3317		error = xform_init(sav, XF_TCPSIGNATURE);
3318		break;
3319	default:
3320		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3321		error = EPROTONOSUPPORT;
3322		break;
3323	}
3324	if (error == 0) {
3325		SAHTREE_LOCK();
3326		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3327		SAHTREE_UNLOCK();
3328	}
3329	return (error);
3330}
3331
3332/*
3333 * subroutine for SADB_GET and SADB_DUMP.
3334 */
3335static struct mbuf *
3336key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3337    u_int32_t seq, u_int32_t pid)
3338{
3339	struct mbuf *result = NULL, *tres = NULL, *m;
3340	int i;
3341	int dumporder[] = {
3342		SADB_EXT_SA, SADB_X_EXT_SA2,
3343		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3344		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3345		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3346		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3347		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3348#ifdef IPSEC_NAT_T
3349		SADB_X_EXT_NAT_T_TYPE,
3350		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3351		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3352		SADB_X_EXT_NAT_T_FRAG,
3353#endif
3354	};
3355
3356	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3357	if (m == NULL)
3358		goto fail;
3359	result = m;
3360
3361	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3362		m = NULL;
3363		switch (dumporder[i]) {
3364		case SADB_EXT_SA:
3365			m = key_setsadbsa(sav);
3366			if (!m)
3367				goto fail;
3368			break;
3369
3370		case SADB_X_EXT_SA2:
3371			m = key_setsadbxsa2(sav->sah->saidx.mode,
3372					sav->replay ? sav->replay->count : 0,
3373					sav->sah->saidx.reqid);
3374			if (!m)
3375				goto fail;
3376			break;
3377
3378		case SADB_EXT_ADDRESS_SRC:
3379			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3380			    &sav->sah->saidx.src.sa,
3381			    FULLMASK, IPSEC_ULPROTO_ANY);
3382			if (!m)
3383				goto fail;
3384			break;
3385
3386		case SADB_EXT_ADDRESS_DST:
3387			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3388			    &sav->sah->saidx.dst.sa,
3389			    FULLMASK, IPSEC_ULPROTO_ANY);
3390			if (!m)
3391				goto fail;
3392			break;
3393
3394		case SADB_EXT_KEY_AUTH:
3395			if (!sav->key_auth)
3396				continue;
3397			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3398			if (!m)
3399				goto fail;
3400			break;
3401
3402		case SADB_EXT_KEY_ENCRYPT:
3403			if (!sav->key_enc)
3404				continue;
3405			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3406			if (!m)
3407				goto fail;
3408			break;
3409
3410		case SADB_EXT_LIFETIME_CURRENT:
3411			if (!sav->lft_c)
3412				continue;
3413			m = key_setlifetime(sav->lft_c,
3414					    SADB_EXT_LIFETIME_CURRENT);
3415			if (!m)
3416				goto fail;
3417			break;
3418
3419		case SADB_EXT_LIFETIME_HARD:
3420			if (!sav->lft_h)
3421				continue;
3422			m = key_setlifetime(sav->lft_h,
3423					    SADB_EXT_LIFETIME_HARD);
3424			if (!m)
3425				goto fail;
3426			break;
3427
3428		case SADB_EXT_LIFETIME_SOFT:
3429			if (!sav->lft_s)
3430				continue;
3431			m = key_setlifetime(sav->lft_s,
3432					    SADB_EXT_LIFETIME_SOFT);
3433
3434			if (!m)
3435				goto fail;
3436			break;
3437
3438#ifdef IPSEC_NAT_T
3439		case SADB_X_EXT_NAT_T_TYPE:
3440			m = key_setsadbxtype(sav->natt_type);
3441			if (!m)
3442				goto fail;
3443			break;
3444
3445		case SADB_X_EXT_NAT_T_DPORT:
3446			m = key_setsadbxport(
3447			    KEY_PORTFROMSADDR(&sav->sah->saidx.dst),
3448			    SADB_X_EXT_NAT_T_DPORT);
3449			if (!m)
3450				goto fail;
3451			break;
3452
3453		case SADB_X_EXT_NAT_T_SPORT:
3454			m = key_setsadbxport(
3455			    KEY_PORTFROMSADDR(&sav->sah->saidx.src),
3456			    SADB_X_EXT_NAT_T_SPORT);
3457			if (!m)
3458				goto fail;
3459			break;
3460
3461		case SADB_X_EXT_NAT_T_OAI:
3462		case SADB_X_EXT_NAT_T_OAR:
3463		case SADB_X_EXT_NAT_T_FRAG:
3464			/* We do not (yet) support those. */
3465			continue;
3466#endif
3467
3468		case SADB_EXT_ADDRESS_PROXY:
3469		case SADB_EXT_IDENTITY_SRC:
3470		case SADB_EXT_IDENTITY_DST:
3471			/* XXX: should we brought from SPD ? */
3472		case SADB_EXT_SENSITIVITY:
3473		default:
3474			continue;
3475		}
3476
3477		if (!m)
3478			goto fail;
3479		if (tres)
3480			m_cat(m, tres);
3481		tres = m;
3482
3483	}
3484
3485	m_cat(result, tres);
3486	if (result->m_len < sizeof(struct sadb_msg)) {
3487		result = m_pullup(result, sizeof(struct sadb_msg));
3488		if (result == NULL)
3489			goto fail;
3490	}
3491
3492	result->m_pkthdr.len = 0;
3493	for (m = result; m; m = m->m_next)
3494		result->m_pkthdr.len += m->m_len;
3495
3496	mtod(result, struct sadb_msg *)->sadb_msg_len =
3497	    PFKEY_UNIT64(result->m_pkthdr.len);
3498
3499	return result;
3500
3501fail:
3502	m_freem(result);
3503	m_freem(tres);
3504	return NULL;
3505}
3506
3507/*
3508 * set data into sadb_msg.
3509 */
3510static struct mbuf *
3511key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3512    pid_t pid, u_int16_t reserved)
3513{
3514	struct mbuf *m;
3515	struct sadb_msg *p;
3516	int len;
3517
3518	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3519	if (len > MCLBYTES)
3520		return NULL;
3521	MGETHDR(m, M_NOWAIT, MT_DATA);
3522	if (m && len > MHLEN) {
3523		MCLGET(m, M_NOWAIT);
3524		if ((m->m_flags & M_EXT) == 0) {
3525			m_freem(m);
3526			m = NULL;
3527		}
3528	}
3529	if (!m)
3530		return NULL;
3531	m->m_pkthdr.len = m->m_len = len;
3532	m->m_next = NULL;
3533
3534	p = mtod(m, struct sadb_msg *);
3535
3536	bzero(p, len);
3537	p->sadb_msg_version = PF_KEY_V2;
3538	p->sadb_msg_type = type;
3539	p->sadb_msg_errno = 0;
3540	p->sadb_msg_satype = satype;
3541	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3542	p->sadb_msg_reserved = reserved;
3543	p->sadb_msg_seq = seq;
3544	p->sadb_msg_pid = (u_int32_t)pid;
3545
3546	return m;
3547}
3548
3549/*
3550 * copy secasvar data into sadb_address.
3551 */
3552static struct mbuf *
3553key_setsadbsa(struct secasvar *sav)
3554{
3555	struct mbuf *m;
3556	struct sadb_sa *p;
3557	int len;
3558
3559	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3560	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3561	if (m == NULL)
3562		return (NULL);
3563	m_align(m, len);
3564	m->m_len = len;
3565	p = mtod(m, struct sadb_sa *);
3566	bzero(p, len);
3567	p->sadb_sa_len = PFKEY_UNIT64(len);
3568	p->sadb_sa_exttype = SADB_EXT_SA;
3569	p->sadb_sa_spi = sav->spi;
3570	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3571	p->sadb_sa_state = sav->state;
3572	p->sadb_sa_auth = sav->alg_auth;
3573	p->sadb_sa_encrypt = sav->alg_enc;
3574	p->sadb_sa_flags = sav->flags;
3575
3576	return m;
3577}
3578
3579/*
3580 * set data into sadb_address.
3581 */
3582static struct mbuf *
3583key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3584    u_int8_t prefixlen, u_int16_t ul_proto)
3585{
3586	struct mbuf *m;
3587	struct sadb_address *p;
3588	size_t len;
3589
3590	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3591	    PFKEY_ALIGN8(saddr->sa_len);
3592	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3593	if (m == NULL)
3594		return (NULL);
3595	m_align(m, len);
3596	m->m_len = len;
3597	p = mtod(m, struct sadb_address *);
3598
3599	bzero(p, len);
3600	p->sadb_address_len = PFKEY_UNIT64(len);
3601	p->sadb_address_exttype = exttype;
3602	p->sadb_address_proto = ul_proto;
3603	if (prefixlen == FULLMASK) {
3604		switch (saddr->sa_family) {
3605		case AF_INET:
3606			prefixlen = sizeof(struct in_addr) << 3;
3607			break;
3608		case AF_INET6:
3609			prefixlen = sizeof(struct in6_addr) << 3;
3610			break;
3611		default:
3612			; /*XXX*/
3613		}
3614	}
3615	p->sadb_address_prefixlen = prefixlen;
3616	p->sadb_address_reserved = 0;
3617
3618	bcopy(saddr,
3619	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3620	    saddr->sa_len);
3621
3622	return m;
3623}
3624
3625/*
3626 * set data into sadb_x_sa2.
3627 */
3628static struct mbuf *
3629key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3630{
3631	struct mbuf *m;
3632	struct sadb_x_sa2 *p;
3633	size_t len;
3634
3635	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3636	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3637	if (m == NULL)
3638		return (NULL);
3639	m_align(m, len);
3640	m->m_len = len;
3641	p = mtod(m, struct sadb_x_sa2 *);
3642
3643	bzero(p, len);
3644	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3645	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3646	p->sadb_x_sa2_mode = mode;
3647	p->sadb_x_sa2_reserved1 = 0;
3648	p->sadb_x_sa2_reserved2 = 0;
3649	p->sadb_x_sa2_sequence = seq;
3650	p->sadb_x_sa2_reqid = reqid;
3651
3652	return m;
3653}
3654
3655#ifdef IPSEC_NAT_T
3656/*
3657 * Set a type in sadb_x_nat_t_type.
3658 */
3659static struct mbuf *
3660key_setsadbxtype(u_int16_t type)
3661{
3662	struct mbuf *m;
3663	size_t len;
3664	struct sadb_x_nat_t_type *p;
3665
3666	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3667
3668	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3669	if (m == NULL)
3670		return (NULL);
3671	m_align(m, len);
3672	m->m_len = len;
3673	p = mtod(m, struct sadb_x_nat_t_type *);
3674
3675	bzero(p, len);
3676	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3677	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3678	p->sadb_x_nat_t_type_type = type;
3679
3680	return (m);
3681}
3682/*
3683 * Set a port in sadb_x_nat_t_port.
3684 * In contrast to default RFC 2367 behaviour, port is in network byte order.
3685 */
3686static struct mbuf *
3687key_setsadbxport(u_int16_t port, u_int16_t type)
3688{
3689	struct mbuf *m;
3690	size_t len;
3691	struct sadb_x_nat_t_port *p;
3692
3693	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3694
3695	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3696	if (m == NULL)
3697		return (NULL);
3698	m_align(m, len);
3699	m->m_len = len;
3700	p = mtod(m, struct sadb_x_nat_t_port *);
3701
3702	bzero(p, len);
3703	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3704	p->sadb_x_nat_t_port_exttype = type;
3705	p->sadb_x_nat_t_port_port = port;
3706
3707	return (m);
3708}
3709
3710/*
3711 * Get port from sockaddr. Port is in network byte order.
3712 */
3713u_int16_t
3714key_portfromsaddr(struct sockaddr *sa)
3715{
3716
3717	switch (sa->sa_family) {
3718#ifdef INET
3719	case AF_INET:
3720		return ((struct sockaddr_in *)sa)->sin_port;
3721#endif
3722#ifdef INET6
3723	case AF_INET6:
3724		return ((struct sockaddr_in6 *)sa)->sin6_port;
3725#endif
3726	}
3727	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3728		printf("DP %s unexpected address family %d\n",
3729			__func__, sa->sa_family));
3730	return (0);
3731}
3732#endif /* IPSEC_NAT_T */
3733
3734/*
3735 * Set port in struct sockaddr. Port is in network byte order.
3736 */
3737static void
3738key_porttosaddr(struct sockaddr *sa, u_int16_t port)
3739{
3740
3741	switch (sa->sa_family) {
3742#ifdef INET
3743	case AF_INET:
3744		((struct sockaddr_in *)sa)->sin_port = port;
3745		break;
3746#endif
3747#ifdef INET6
3748	case AF_INET6:
3749		((struct sockaddr_in6 *)sa)->sin6_port = port;
3750		break;
3751#endif
3752	default:
3753		ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
3754			__func__, sa->sa_family));
3755		break;
3756	}
3757}
3758
3759/*
3760 * set data into sadb_x_policy
3761 */
3762static struct mbuf *
3763key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3764{
3765	struct mbuf *m;
3766	struct sadb_x_policy *p;
3767	size_t len;
3768
3769	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3770	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3771	if (m == NULL)
3772		return (NULL);
3773	m_align(m, len);
3774	m->m_len = len;
3775	p = mtod(m, struct sadb_x_policy *);
3776
3777	bzero(p, len);
3778	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3779	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3780	p->sadb_x_policy_type = type;
3781	p->sadb_x_policy_dir = dir;
3782	p->sadb_x_policy_id = id;
3783
3784	return m;
3785}
3786
3787/* %%% utilities */
3788/* Take a key message (sadb_key) from the socket and turn it into one
3789 * of the kernel's key structures (seckey).
3790 *
3791 * IN: pointer to the src
3792 * OUT: NULL no more memory
3793 */
3794struct seckey *
3795key_dup_keymsg(const struct sadb_key *src, u_int len,
3796    struct malloc_type *type)
3797{
3798	struct seckey *dst;
3799	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3800	if (dst != NULL) {
3801		dst->bits = src->sadb_key_bits;
3802		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3803		if (dst->key_data != NULL) {
3804			bcopy((const char *)src + sizeof(struct sadb_key),
3805			      dst->key_data, len);
3806		} else {
3807			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3808				  __func__));
3809			free(dst, type);
3810			dst = NULL;
3811		}
3812	} else {
3813		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3814			  __func__));
3815
3816	}
3817	return dst;
3818}
3819
3820/* Take a lifetime message (sadb_lifetime) passed in on a socket and
3821 * turn it into one of the kernel's lifetime structures (seclifetime).
3822 *
3823 * IN: pointer to the destination, source and malloc type
3824 * OUT: NULL, no more memory
3825 */
3826
3827static struct seclifetime *
3828key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type)
3829{
3830	struct seclifetime *dst = NULL;
3831
3832	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3833					   type, M_NOWAIT);
3834	if (dst == NULL) {
3835		/* XXX counter */
3836		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3837	} else {
3838		dst->allocations = src->sadb_lifetime_allocations;
3839		dst->bytes = src->sadb_lifetime_bytes;
3840		dst->addtime = src->sadb_lifetime_addtime;
3841		dst->usetime = src->sadb_lifetime_usetime;
3842	}
3843	return dst;
3844}
3845
3846/* compare my own address
3847 * OUT:	1: true, i.e. my address.
3848 *	0: false
3849 */
3850int
3851key_ismyaddr(struct sockaddr *sa)
3852{
3853
3854	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3855	switch (sa->sa_family) {
3856#ifdef INET
3857	case AF_INET:
3858		return (in_localip(satosin(sa)->sin_addr));
3859#endif
3860#ifdef INET6
3861	case AF_INET6:
3862		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3863#endif
3864	}
3865
3866	return 0;
3867}
3868
3869#ifdef INET6
3870/*
3871 * compare my own address for IPv6.
3872 * 1: ours
3873 * 0: other
3874 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3875 */
3876#include <netinet6/in6_var.h>
3877
3878static int
3879key_ismyaddr6(struct sockaddr_in6 *sin6)
3880{
3881	struct in6_ifaddr *ia;
3882#if 0
3883	struct in6_multi *in6m;
3884#endif
3885
3886	IN6_IFADDR_RLOCK();
3887	TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
3888		if (key_sockaddrcmp((struct sockaddr *)sin6,
3889		    (struct sockaddr *)&ia->ia_addr, 0) == 0) {
3890			IN6_IFADDR_RUNLOCK();
3891			return 1;
3892		}
3893
3894#if 0
3895		/*
3896		 * XXX Multicast
3897		 * XXX why do we care about multlicast here while we don't care
3898		 * about IPv4 multicast??
3899		 * XXX scope
3900		 */
3901		in6m = NULL;
3902		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3903		if (in6m) {
3904			IN6_IFADDR_RUNLOCK();
3905			return 1;
3906		}
3907#endif
3908	}
3909	IN6_IFADDR_RUNLOCK();
3910
3911	/* loopback, just for safety */
3912	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3913		return 1;
3914
3915	return 0;
3916}
3917#endif /*INET6*/
3918
3919/*
3920 * compare two secasindex structure.
3921 * flag can specify to compare 2 saidxes.
3922 * compare two secasindex structure without both mode and reqid.
3923 * don't compare port.
3924 * IN:
3925 *      saidx0: source, it can be in SAD.
3926 *      saidx1: object.
3927 * OUT:
3928 *      1 : equal
3929 *      0 : not equal
3930 */
3931static int
3932key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1,
3933    int flag)
3934{
3935	int chkport = 0;
3936
3937	/* sanity */
3938	if (saidx0 == NULL && saidx1 == NULL)
3939		return 1;
3940
3941	if (saidx0 == NULL || saidx1 == NULL)
3942		return 0;
3943
3944	if (saidx0->proto != saidx1->proto)
3945		return 0;
3946
3947	if (flag == CMP_EXACTLY) {
3948		if (saidx0->mode != saidx1->mode)
3949			return 0;
3950		if (saidx0->reqid != saidx1->reqid)
3951			return 0;
3952		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3953		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3954			return 0;
3955	} else {
3956
3957		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3958		if (flag == CMP_MODE_REQID
3959		  ||flag == CMP_REQID) {
3960			/*
3961			 * If reqid of SPD is non-zero, unique SA is required.
3962			 * The result must be of same reqid in this case.
3963			 */
3964			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3965				return 0;
3966		}
3967
3968		if (flag == CMP_MODE_REQID) {
3969			if (saidx0->mode != IPSEC_MODE_ANY
3970			 && saidx0->mode != saidx1->mode)
3971				return 0;
3972		}
3973
3974#ifdef IPSEC_NAT_T
3975		/*
3976		 * If NAT-T is enabled, check ports for tunnel mode.
3977		 * Do not check ports if they are set to zero in the SPD.
3978		 * Also do not do it for native transport mode, as there
3979		 * is no port information available in the SP.
3980		 */
3981		if ((saidx1->mode == IPSEC_MODE_TUNNEL ||
3982		     (saidx1->mode == IPSEC_MODE_TRANSPORT &&
3983		      saidx1->proto == IPPROTO_ESP)) &&
3984		    saidx1->src.sa.sa_family == AF_INET &&
3985		    saidx1->dst.sa.sa_family == AF_INET &&
3986		    ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
3987		    ((const struct sockaddr_in *)(&saidx1->dst))->sin_port)
3988			chkport = 1;
3989#endif /* IPSEC_NAT_T */
3990
3991		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
3992			return 0;
3993		}
3994		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
3995			return 0;
3996		}
3997	}
3998
3999	return 1;
4000}
4001
4002/*
4003 * compare two secindex structure exactly.
4004 * IN:
4005 *	spidx0: source, it is often in SPD.
4006 *	spidx1: object, it is often from PFKEY message.
4007 * OUT:
4008 *	1 : equal
4009 *	0 : not equal
4010 */
4011static int
4012key_cmpspidx_exactly(struct secpolicyindex *spidx0,
4013    struct secpolicyindex *spidx1)
4014{
4015	/* sanity */
4016	if (spidx0 == NULL && spidx1 == NULL)
4017		return 1;
4018
4019	if (spidx0 == NULL || spidx1 == NULL)
4020		return 0;
4021
4022	if (spidx0->prefs != spidx1->prefs
4023	 || spidx0->prefd != spidx1->prefd
4024	 || spidx0->ul_proto != spidx1->ul_proto)
4025		return 0;
4026
4027	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4028	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4029}
4030
4031/*
4032 * compare two secindex structure with mask.
4033 * IN:
4034 *	spidx0: source, it is often in SPD.
4035 *	spidx1: object, it is often from IP header.
4036 * OUT:
4037 *	1 : equal
4038 *	0 : not equal
4039 */
4040static int
4041key_cmpspidx_withmask(struct secpolicyindex *spidx0,
4042    struct secpolicyindex *spidx1)
4043{
4044	/* sanity */
4045	if (spidx0 == NULL && spidx1 == NULL)
4046		return 1;
4047
4048	if (spidx0 == NULL || spidx1 == NULL)
4049		return 0;
4050
4051	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4052	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4053	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4054	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4055		return 0;
4056
4057	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4058	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4059	 && spidx0->ul_proto != spidx1->ul_proto)
4060		return 0;
4061
4062	switch (spidx0->src.sa.sa_family) {
4063	case AF_INET:
4064		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4065		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4066			return 0;
4067		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4068		    &spidx1->src.sin.sin_addr, spidx0->prefs))
4069			return 0;
4070		break;
4071	case AF_INET6:
4072		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4073		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4074			return 0;
4075		/*
4076		 * scope_id check. if sin6_scope_id is 0, we regard it
4077		 * as a wildcard scope, which matches any scope zone ID.
4078		 */
4079		if (spidx0->src.sin6.sin6_scope_id &&
4080		    spidx1->src.sin6.sin6_scope_id &&
4081		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4082			return 0;
4083		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4084		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4085			return 0;
4086		break;
4087	default:
4088		/* XXX */
4089		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4090			return 0;
4091		break;
4092	}
4093
4094	switch (spidx0->dst.sa.sa_family) {
4095	case AF_INET:
4096		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4097		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4098			return 0;
4099		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4100		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
4101			return 0;
4102		break;
4103	case AF_INET6:
4104		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4105		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4106			return 0;
4107		/*
4108		 * scope_id check. if sin6_scope_id is 0, we regard it
4109		 * as a wildcard scope, which matches any scope zone ID.
4110		 */
4111		if (spidx0->dst.sin6.sin6_scope_id &&
4112		    spidx1->dst.sin6.sin6_scope_id &&
4113		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4114			return 0;
4115		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4116		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4117			return 0;
4118		break;
4119	default:
4120		/* XXX */
4121		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4122			return 0;
4123		break;
4124	}
4125
4126	/* XXX Do we check other field ?  e.g. flowinfo */
4127
4128	return 1;
4129}
4130
4131/* returns 0 on match */
4132static int
4133key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2,
4134    int port)
4135{
4136#ifdef satosin
4137#undef satosin
4138#endif
4139#define satosin(s) ((const struct sockaddr_in *)s)
4140#ifdef satosin6
4141#undef satosin6
4142#endif
4143#define satosin6(s) ((const struct sockaddr_in6 *)s)
4144	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4145		return 1;
4146
4147	switch (sa1->sa_family) {
4148	case AF_INET:
4149		if (sa1->sa_len != sizeof(struct sockaddr_in))
4150			return 1;
4151		if (satosin(sa1)->sin_addr.s_addr !=
4152		    satosin(sa2)->sin_addr.s_addr) {
4153			return 1;
4154		}
4155		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4156			return 1;
4157		break;
4158	case AF_INET6:
4159		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4160			return 1;	/*EINVAL*/
4161		if (satosin6(sa1)->sin6_scope_id !=
4162		    satosin6(sa2)->sin6_scope_id) {
4163			return 1;
4164		}
4165		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4166		    &satosin6(sa2)->sin6_addr)) {
4167			return 1;
4168		}
4169		if (port &&
4170		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4171			return 1;
4172		}
4173		break;
4174	default:
4175		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4176			return 1;
4177		break;
4178	}
4179
4180	return 0;
4181#undef satosin
4182#undef satosin6
4183}
4184
4185/*
4186 * compare two buffers with mask.
4187 * IN:
4188 *	addr1: source
4189 *	addr2: object
4190 *	bits:  Number of bits to compare
4191 * OUT:
4192 *	1 : equal
4193 *	0 : not equal
4194 */
4195static int
4196key_bbcmp(const void *a1, const void *a2, u_int bits)
4197{
4198	const unsigned char *p1 = a1;
4199	const unsigned char *p2 = a2;
4200
4201	/* XXX: This could be considerably faster if we compare a word
4202	 * at a time, but it is complicated on LSB Endian machines */
4203
4204	/* Handle null pointers */
4205	if (p1 == NULL || p2 == NULL)
4206		return (p1 == p2);
4207
4208	while (bits >= 8) {
4209		if (*p1++ != *p2++)
4210			return 0;
4211		bits -= 8;
4212	}
4213
4214	if (bits > 0) {
4215		u_int8_t mask = ~((1<<(8-bits))-1);
4216		if ((*p1 & mask) != (*p2 & mask))
4217			return 0;
4218	}
4219	return 1;	/* Match! */
4220}
4221
4222static void
4223key_flush_spd(time_t now)
4224{
4225	static u_int16_t sptree_scangen = 0;
4226	u_int16_t gen = sptree_scangen++;
4227	struct secpolicy *sp;
4228	u_int dir;
4229
4230	/* SPD */
4231	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4232restart:
4233		SPTREE_LOCK();
4234		LIST_FOREACH(sp, &V_sptree[dir], chain) {
4235			if (sp->scangen == gen)		/* previously handled */
4236				continue;
4237			sp->scangen = gen;
4238			if (sp->state == IPSEC_SPSTATE_DEAD &&
4239			    sp->refcnt == 1) {
4240				/*
4241				 * Ensure that we only decrease refcnt once,
4242				 * when we're the last consumer.
4243				 * Directly call SP_DELREF/key_delsp instead
4244				 * of KEY_FREESP to avoid unlocking/relocking
4245				 * SPTREE_LOCK before key_delsp: may refcnt
4246				 * be increased again during that time ?
4247				 * NB: also clean entries created by
4248				 * key_spdflush
4249				 */
4250				SP_DELREF(sp);
4251				key_delsp(sp);
4252				SPTREE_UNLOCK();
4253				goto restart;
4254			}
4255			if (sp->lifetime == 0 && sp->validtime == 0)
4256				continue;
4257			if ((sp->lifetime && now - sp->created > sp->lifetime)
4258			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4259				sp->state = IPSEC_SPSTATE_DEAD;
4260				SPTREE_UNLOCK();
4261				key_spdexpire(sp);
4262				goto restart;
4263			}
4264		}
4265		SPTREE_UNLOCK();
4266	}
4267}
4268
4269static void
4270key_flush_sad(time_t now)
4271{
4272	struct secashead *sah, *nextsah;
4273	struct secasvar *sav, *nextsav;
4274
4275	/* SAD */
4276	SAHTREE_LOCK();
4277	LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4278		/* if sah has been dead, then delete it and process next sah. */
4279		if (sah->state == SADB_SASTATE_DEAD) {
4280			key_delsah(sah);
4281			continue;
4282		}
4283
4284		/* if LARVAL entry doesn't become MATURE, delete it. */
4285		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4286			/* Need to also check refcnt for a larval SA ??? */
4287			if (now - sav->created > V_key_larval_lifetime)
4288				KEY_FREESAV(&sav);
4289		}
4290
4291		/*
4292		 * check MATURE entry to start to send expire message
4293		 * whether or not.
4294		 */
4295		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4296			/* we don't need to check. */
4297			if (sav->lft_s == NULL)
4298				continue;
4299
4300			/* sanity check */
4301			if (sav->lft_c == NULL) {
4302				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4303					"time, why?\n", __func__));
4304				continue;
4305			}
4306			/*
4307			 * RFC 2367:
4308			 * HARD lifetimes MUST take precedence over SOFT
4309			 * lifetimes, meaning if the HARD and SOFT lifetimes
4310			 * are the same, the HARD lifetime will appear on the
4311			 * EXPIRE message.
4312			 */
4313			/* check HARD lifetime */
4314			if ((sav->lft_h->addtime != 0 &&
4315			    now - sav->created > sav->lft_h->addtime) ||
4316			    (sav->lft_h->bytes != 0 &&
4317			    sav->lft_h->bytes < sav->lft_c->bytes)) {
4318				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4319				key_expire(sav, 1);
4320				KEY_FREESAV(&sav);
4321			}
4322			/* check SOFT lifetime */
4323			else if ((sav->lft_s->addtime != 0 &&
4324			    now - sav->created > sav->lft_s->addtime) ||
4325			    (sav->lft_s->bytes != 0 &&
4326			    sav->lft_s->bytes < sav->lft_c->bytes)) {
4327				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4328				key_expire(sav, 0);
4329			}
4330		}
4331
4332		/* check DYING entry to change status to DEAD. */
4333		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4334			/* we don't need to check. */
4335			if (sav->lft_h == NULL)
4336				continue;
4337
4338			/* sanity check */
4339			if (sav->lft_c == NULL) {
4340				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4341					"time, why?\n", __func__));
4342				continue;
4343			}
4344
4345			if (sav->lft_h->addtime != 0 &&
4346			    now - sav->created > sav->lft_h->addtime) {
4347				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4348				key_expire(sav, 1);
4349				KEY_FREESAV(&sav);
4350			}
4351#if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4352			else if (sav->lft_s != NULL
4353			      && sav->lft_s->addtime != 0
4354			      && now - sav->created > sav->lft_s->addtime) {
4355				/*
4356				 * XXX: should be checked to be
4357				 * installed the valid SA.
4358				 */
4359
4360				/*
4361				 * If there is no SA then sending
4362				 * expire message.
4363				 */
4364				key_expire(sav, 0);
4365			}
4366#endif
4367			/* check HARD lifetime by bytes */
4368			else if (sav->lft_h->bytes != 0 &&
4369			    sav->lft_h->bytes < sav->lft_c->bytes) {
4370				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4371				key_expire(sav, 1);
4372				KEY_FREESAV(&sav);
4373			}
4374		}
4375
4376		/* delete entry in DEAD */
4377		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4378			/* sanity check */
4379			if (sav->state != SADB_SASTATE_DEAD) {
4380				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4381					"(queue: %d SA: %d): kill it anyway\n",
4382					__func__,
4383					SADB_SASTATE_DEAD, sav->state));
4384			}
4385			/*
4386			 * do not call key_freesav() here.
4387			 * sav should already be freed, and sav->refcnt
4388			 * shows other references to sav
4389			 * (such as from SPD).
4390			 */
4391		}
4392	}
4393	SAHTREE_UNLOCK();
4394}
4395
4396static void
4397key_flush_acq(time_t now)
4398{
4399	struct secacq *acq, *nextacq;
4400
4401	/* ACQ tree */
4402	ACQ_LOCK();
4403	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4404		nextacq = LIST_NEXT(acq, chain);
4405		if (now - acq->created > V_key_blockacq_lifetime
4406		 && __LIST_CHAINED(acq)) {
4407			LIST_REMOVE(acq, chain);
4408			free(acq, M_IPSEC_SAQ);
4409		}
4410	}
4411	ACQ_UNLOCK();
4412}
4413
4414static void
4415key_flush_spacq(time_t now)
4416{
4417	struct secspacq *acq, *nextacq;
4418
4419	/* SP ACQ tree */
4420	SPACQ_LOCK();
4421	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4422		nextacq = LIST_NEXT(acq, chain);
4423		if (now - acq->created > V_key_blockacq_lifetime
4424		 && __LIST_CHAINED(acq)) {
4425			LIST_REMOVE(acq, chain);
4426			free(acq, M_IPSEC_SAQ);
4427		}
4428	}
4429	SPACQ_UNLOCK();
4430}
4431
4432/*
4433 * time handler.
4434 * scanning SPD and SAD to check status for each entries,
4435 * and do to remove or to expire.
4436 * XXX: year 2038 problem may remain.
4437 */
4438void
4439key_timehandler(void)
4440{
4441	VNET_ITERATOR_DECL(vnet_iter);
4442	time_t now = time_second;
4443
4444	VNET_LIST_RLOCK_NOSLEEP();
4445	VNET_FOREACH(vnet_iter) {
4446		CURVNET_SET(vnet_iter);
4447		key_flush_spd(now);
4448		key_flush_sad(now);
4449		key_flush_acq(now);
4450		key_flush_spacq(now);
4451		CURVNET_RESTORE();
4452	}
4453	VNET_LIST_RUNLOCK_NOSLEEP();
4454
4455#ifndef IPSEC_DEBUG2
4456	/* do exchange to tick time !! */
4457	(void)timeout((void *)key_timehandler, (void *)0, hz);
4458#endif /* IPSEC_DEBUG2 */
4459}
4460
4461u_long
4462key_random()
4463{
4464	u_long value;
4465
4466	key_randomfill(&value, sizeof(value));
4467	return value;
4468}
4469
4470void
4471key_randomfill(void *p, size_t l)
4472{
4473	size_t n;
4474	u_long v;
4475	static int warn = 1;
4476
4477	n = 0;
4478	n = (size_t)read_random(p, (u_int)l);
4479	/* last resort */
4480	while (n < l) {
4481		v = random();
4482		bcopy(&v, (u_int8_t *)p + n,
4483		    l - n < sizeof(v) ? l - n : sizeof(v));
4484		n += sizeof(v);
4485
4486		if (warn) {
4487			printf("WARNING: pseudo-random number generator "
4488			    "used for IPsec processing\n");
4489			warn = 0;
4490		}
4491	}
4492}
4493
4494/*
4495 * map SADB_SATYPE_* to IPPROTO_*.
4496 * if satype == SADB_SATYPE then satype is mapped to ~0.
4497 * OUT:
4498 *	0: invalid satype.
4499 */
4500static u_int16_t
4501key_satype2proto(u_int8_t satype)
4502{
4503	switch (satype) {
4504	case SADB_SATYPE_UNSPEC:
4505		return IPSEC_PROTO_ANY;
4506	case SADB_SATYPE_AH:
4507		return IPPROTO_AH;
4508	case SADB_SATYPE_ESP:
4509		return IPPROTO_ESP;
4510	case SADB_X_SATYPE_IPCOMP:
4511		return IPPROTO_IPCOMP;
4512	case SADB_X_SATYPE_TCPSIGNATURE:
4513		return IPPROTO_TCP;
4514	default:
4515		return 0;
4516	}
4517	/* NOTREACHED */
4518}
4519
4520/*
4521 * map IPPROTO_* to SADB_SATYPE_*
4522 * OUT:
4523 *	0: invalid protocol type.
4524 */
4525static u_int8_t
4526key_proto2satype(u_int16_t proto)
4527{
4528	switch (proto) {
4529	case IPPROTO_AH:
4530		return SADB_SATYPE_AH;
4531	case IPPROTO_ESP:
4532		return SADB_SATYPE_ESP;
4533	case IPPROTO_IPCOMP:
4534		return SADB_X_SATYPE_IPCOMP;
4535	case IPPROTO_TCP:
4536		return SADB_X_SATYPE_TCPSIGNATURE;
4537	default:
4538		return 0;
4539	}
4540	/* NOTREACHED */
4541}
4542
4543/* %%% PF_KEY */
4544/*
4545 * SADB_GETSPI processing is to receive
4546 *	<base, (SA2), src address, dst address, (SPI range)>
4547 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4548 * tree with the status of LARVAL, and send
4549 *	<base, SA(*), address(SD)>
4550 * to the IKMPd.
4551 *
4552 * IN:	mhp: pointer to the pointer to each header.
4553 * OUT:	NULL if fail.
4554 *	other if success, return pointer to the message to send.
4555 */
4556static int
4557key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
4558{
4559	struct sadb_address *src0, *dst0;
4560	struct secasindex saidx;
4561	struct secashead *newsah;
4562	struct secasvar *newsav;
4563	u_int8_t proto;
4564	u_int32_t spi;
4565	u_int8_t mode;
4566	u_int32_t reqid;
4567	int error;
4568
4569	IPSEC_ASSERT(so != NULL, ("null socket"));
4570	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4571	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4572	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4573
4574	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4575	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4576		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4577			__func__));
4578		return key_senderror(so, m, EINVAL);
4579	}
4580	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4581	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4582		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4583			__func__));
4584		return key_senderror(so, m, EINVAL);
4585	}
4586	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4587		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4588		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4589	} else {
4590		mode = IPSEC_MODE_ANY;
4591		reqid = 0;
4592	}
4593
4594	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4595	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4596
4597	/* map satype to proto */
4598	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4599		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4600			__func__));
4601		return key_senderror(so, m, EINVAL);
4602	}
4603
4604	/*
4605	 * Make sure the port numbers are zero.
4606	 * In case of NAT-T we will update them later if needed.
4607	 */
4608	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4609	case AF_INET:
4610		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4611		    sizeof(struct sockaddr_in))
4612			return key_senderror(so, m, EINVAL);
4613		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4614		break;
4615	case AF_INET6:
4616		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4617		    sizeof(struct sockaddr_in6))
4618			return key_senderror(so, m, EINVAL);
4619		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4620		break;
4621	default:
4622		; /*???*/
4623	}
4624	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4625	case AF_INET:
4626		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4627		    sizeof(struct sockaddr_in))
4628			return key_senderror(so, m, EINVAL);
4629		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4630		break;
4631	case AF_INET6:
4632		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4633		    sizeof(struct sockaddr_in6))
4634			return key_senderror(so, m, EINVAL);
4635		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4636		break;
4637	default:
4638		; /*???*/
4639	}
4640
4641	/* XXX boundary check against sa_len */
4642	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4643
4644#ifdef IPSEC_NAT_T
4645	/*
4646	 * Handle NAT-T info if present.
4647	 * We made sure the port numbers are zero above, so we do
4648	 * not have to worry in case we do not update them.
4649	 */
4650	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
4651		ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__));
4652	if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
4653		ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__));
4654
4655	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4656	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4657	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4658		struct sadb_x_nat_t_type *type;
4659		struct sadb_x_nat_t_port *sport, *dport;
4660
4661		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4662		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4663		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4664			ipseclog((LOG_DEBUG, "%s: invalid nat-t message "
4665			    "passed.\n", __func__));
4666			return key_senderror(so, m, EINVAL);
4667		}
4668
4669		sport = (struct sadb_x_nat_t_port *)
4670		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4671		dport = (struct sadb_x_nat_t_port *)
4672		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4673
4674		if (sport)
4675			KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port);
4676		if (dport)
4677			KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port);
4678	}
4679#endif
4680
4681	/* SPI allocation */
4682	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4683	                       &saidx);
4684	if (spi == 0)
4685		return key_senderror(so, m, EINVAL);
4686
4687	/* get a SA index */
4688	if ((newsah = key_getsah(&saidx)) == NULL) {
4689		/* create a new SA index */
4690		if ((newsah = key_newsah(&saidx)) == NULL) {
4691			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4692			return key_senderror(so, m, ENOBUFS);
4693		}
4694	}
4695
4696	/* get a new SA */
4697	/* XXX rewrite */
4698	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4699	if (newsav == NULL) {
4700		/* XXX don't free new SA index allocated in above. */
4701		return key_senderror(so, m, error);
4702	}
4703
4704	/* set spi */
4705	newsav->spi = htonl(spi);
4706
4707	/* delete the entry in acqtree */
4708	if (mhp->msg->sadb_msg_seq != 0) {
4709		struct secacq *acq;
4710		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4711			/* reset counter in order to deletion by timehandler. */
4712			acq->created = time_second;
4713			acq->count = 0;
4714		}
4715    	}
4716
4717    {
4718	struct mbuf *n, *nn;
4719	struct sadb_sa *m_sa;
4720	struct sadb_msg *newmsg;
4721	int off, len;
4722
4723	/* create new sadb_msg to reply. */
4724	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4725	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4726
4727	MGETHDR(n, M_NOWAIT, MT_DATA);
4728	if (len > MHLEN) {
4729		MCLGET(n, M_NOWAIT);
4730		if ((n->m_flags & M_EXT) == 0) {
4731			m_freem(n);
4732			n = NULL;
4733		}
4734	}
4735	if (!n)
4736		return key_senderror(so, m, ENOBUFS);
4737
4738	n->m_len = len;
4739	n->m_next = NULL;
4740	off = 0;
4741
4742	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4743	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4744
4745	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4746	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4747	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4748	m_sa->sadb_sa_spi = htonl(spi);
4749	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4750
4751	IPSEC_ASSERT(off == len,
4752		("length inconsistency (off %u len %u)", off, len));
4753
4754	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4755	    SADB_EXT_ADDRESS_DST);
4756	if (!n->m_next) {
4757		m_freem(n);
4758		return key_senderror(so, m, ENOBUFS);
4759	}
4760
4761	if (n->m_len < sizeof(struct sadb_msg)) {
4762		n = m_pullup(n, sizeof(struct sadb_msg));
4763		if (n == NULL)
4764			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4765	}
4766
4767	n->m_pkthdr.len = 0;
4768	for (nn = n; nn; nn = nn->m_next)
4769		n->m_pkthdr.len += nn->m_len;
4770
4771	newmsg = mtod(n, struct sadb_msg *);
4772	newmsg->sadb_msg_seq = newsav->seq;
4773	newmsg->sadb_msg_errno = 0;
4774	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4775
4776	m_freem(m);
4777	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4778    }
4779}
4780
4781/*
4782 * allocating new SPI
4783 * called by key_getspi().
4784 * OUT:
4785 *	0:	failure.
4786 *	others: success.
4787 */
4788static u_int32_t
4789key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx)
4790{
4791	u_int32_t newspi;
4792	u_int32_t min, max;
4793	int count = V_key_spi_trycnt;
4794
4795	/* set spi range to allocate */
4796	if (spirange != NULL) {
4797		min = spirange->sadb_spirange_min;
4798		max = spirange->sadb_spirange_max;
4799	} else {
4800		min = V_key_spi_minval;
4801		max = V_key_spi_maxval;
4802	}
4803	/* IPCOMP needs 2-byte SPI */
4804	if (saidx->proto == IPPROTO_IPCOMP) {
4805		u_int32_t t;
4806		if (min >= 0x10000)
4807			min = 0xffff;
4808		if (max >= 0x10000)
4809			max = 0xffff;
4810		if (min > max) {
4811			t = min; min = max; max = t;
4812		}
4813	}
4814
4815	if (min == max) {
4816		if (key_checkspidup(saidx, min) != NULL) {
4817			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4818				__func__, min));
4819			return 0;
4820		}
4821
4822		count--; /* taking one cost. */
4823		newspi = min;
4824
4825	} else {
4826
4827		/* init SPI */
4828		newspi = 0;
4829
4830		/* when requesting to allocate spi ranged */
4831		while (count--) {
4832			/* generate pseudo-random SPI value ranged. */
4833			newspi = min + (key_random() % (max - min + 1));
4834
4835			if (key_checkspidup(saidx, newspi) == NULL)
4836				break;
4837		}
4838
4839		if (count == 0 || newspi == 0) {
4840			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4841				__func__));
4842			return 0;
4843		}
4844	}
4845
4846	/* statistics */
4847	keystat.getspi_count =
4848		(keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4849
4850	return newspi;
4851}
4852
4853/*
4854 * SADB_UPDATE processing
4855 * receive
4856 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4857 *       key(AE), (identity(SD),) (sensitivity)>
4858 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4859 * and send
4860 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4861 *       (identity(SD),) (sensitivity)>
4862 * to the ikmpd.
4863 *
4864 * m will always be freed.
4865 */
4866static int
4867key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
4868{
4869	struct sadb_sa *sa0;
4870	struct sadb_address *src0, *dst0;
4871#ifdef IPSEC_NAT_T
4872	struct sadb_x_nat_t_type *type;
4873	struct sadb_x_nat_t_port *sport, *dport;
4874	struct sadb_address *iaddr, *raddr;
4875	struct sadb_x_nat_t_frag *frag;
4876#endif
4877	struct secasindex saidx;
4878	struct secashead *sah;
4879	struct secasvar *sav;
4880	u_int16_t proto;
4881	u_int8_t mode;
4882	u_int32_t reqid;
4883	int error;
4884
4885	IPSEC_ASSERT(so != NULL, ("null socket"));
4886	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4887	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4888	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4889
4890	/* map satype to proto */
4891	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4892		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4893			__func__));
4894		return key_senderror(so, m, EINVAL);
4895	}
4896
4897	if (mhp->ext[SADB_EXT_SA] == NULL ||
4898	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4899	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4900	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4901	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4902	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4903	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4904	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4905	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4906	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4907	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4908		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4909			__func__));
4910		return key_senderror(so, m, EINVAL);
4911	}
4912	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4913	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4914	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4915		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4916			__func__));
4917		return key_senderror(so, m, EINVAL);
4918	}
4919	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4920		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4921		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4922	} else {
4923		mode = IPSEC_MODE_ANY;
4924		reqid = 0;
4925	}
4926	/* XXX boundary checking for other extensions */
4927
4928	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4929	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4930	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4931
4932	/* XXX boundary check against sa_len */
4933	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4934
4935	/*
4936	 * Make sure the port numbers are zero.
4937	 * In case of NAT-T we will update them later if needed.
4938	 */
4939	KEY_PORTTOSADDR(&saidx.src, 0);
4940	KEY_PORTTOSADDR(&saidx.dst, 0);
4941
4942#ifdef IPSEC_NAT_T
4943	/*
4944	 * Handle NAT-T info if present.
4945	 */
4946	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4947	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4948	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4949
4950		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4951		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4952		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4953			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
4954			    __func__));
4955			return key_senderror(so, m, EINVAL);
4956		}
4957
4958		type = (struct sadb_x_nat_t_type *)
4959		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
4960		sport = (struct sadb_x_nat_t_port *)
4961		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4962		dport = (struct sadb_x_nat_t_port *)
4963		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4964	} else {
4965		type = 0;
4966		sport = dport = 0;
4967	}
4968	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
4969	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
4970		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
4971		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
4972			ipseclog((LOG_DEBUG, "%s: invalid message\n",
4973			    __func__));
4974			return key_senderror(so, m, EINVAL);
4975		}
4976		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
4977		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
4978		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
4979	} else {
4980		iaddr = raddr = NULL;
4981	}
4982	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
4983		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
4984			ipseclog((LOG_DEBUG, "%s: invalid message\n",
4985			    __func__));
4986			return key_senderror(so, m, EINVAL);
4987		}
4988		frag = (struct sadb_x_nat_t_frag *)
4989		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
4990	} else {
4991		frag = 0;
4992	}
4993#endif
4994
4995	/* get a SA header */
4996	if ((sah = key_getsah(&saidx)) == NULL) {
4997		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
4998		return key_senderror(so, m, ENOENT);
4999	}
5000
5001	/* set spidx if there */
5002	/* XXX rewrite */
5003	error = key_setident(sah, m, mhp);
5004	if (error)
5005		return key_senderror(so, m, error);
5006
5007	/* find a SA with sequence number. */
5008#ifdef IPSEC_DOSEQCHECK
5009	if (mhp->msg->sadb_msg_seq != 0
5010	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5011		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
5012			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
5013		return key_senderror(so, m, ENOENT);
5014	}
5015#else
5016	SAHTREE_LOCK();
5017	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5018	SAHTREE_UNLOCK();
5019	if (sav == NULL) {
5020		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
5021			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5022		return key_senderror(so, m, EINVAL);
5023	}
5024#endif
5025
5026	/* validity check */
5027	if (sav->sah->saidx.proto != proto) {
5028		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
5029			"(DB=%u param=%u)\n", __func__,
5030			sav->sah->saidx.proto, proto));
5031		return key_senderror(so, m, EINVAL);
5032	}
5033#ifdef IPSEC_DOSEQCHECK
5034	if (sav->spi != sa0->sadb_sa_spi) {
5035		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
5036		    __func__,
5037		    (u_int32_t)ntohl(sav->spi),
5038		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5039		return key_senderror(so, m, EINVAL);
5040	}
5041#endif
5042	if (sav->pid != mhp->msg->sadb_msg_pid) {
5043		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
5044		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
5045		return key_senderror(so, m, EINVAL);
5046	}
5047
5048	/* copy sav values */
5049	error = key_setsaval(sav, m, mhp);
5050	if (error) {
5051		KEY_FREESAV(&sav);
5052		return key_senderror(so, m, error);
5053	}
5054
5055#ifdef IPSEC_NAT_T
5056	/*
5057	 * Handle more NAT-T info if present,
5058	 * now that we have a sav to fill.
5059	 */
5060	if (type)
5061		sav->natt_type = type->sadb_x_nat_t_type_type;
5062
5063	if (sport)
5064		KEY_PORTTOSADDR(&sav->sah->saidx.src,
5065		    sport->sadb_x_nat_t_port_port);
5066	if (dport)
5067		KEY_PORTTOSADDR(&sav->sah->saidx.dst,
5068		    dport->sadb_x_nat_t_port_port);
5069
5070#if 0
5071	/*
5072	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5073	 * We should actually check for a minimum MTU here, if we
5074	 * want to support it in ip_output.
5075	 */
5076	if (frag)
5077		sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5078#endif
5079#endif
5080
5081	/* check SA values to be mature. */
5082	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5083		KEY_FREESAV(&sav);
5084		return key_senderror(so, m, 0);
5085	}
5086
5087    {
5088	struct mbuf *n;
5089
5090	/* set msg buf from mhp */
5091	n = key_getmsgbuf_x1(m, mhp);
5092	if (n == NULL) {
5093		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5094		return key_senderror(so, m, ENOBUFS);
5095	}
5096
5097	m_freem(m);
5098	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5099    }
5100}
5101
5102/*
5103 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5104 * only called by key_update().
5105 * OUT:
5106 *	NULL	: not found
5107 *	others	: found, pointer to a SA.
5108 */
5109#ifdef IPSEC_DOSEQCHECK
5110static struct secasvar *
5111key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5112{
5113	struct secasvar *sav;
5114	u_int state;
5115
5116	state = SADB_SASTATE_LARVAL;
5117
5118	/* search SAD with sequence number ? */
5119	LIST_FOREACH(sav, &sah->savtree[state], chain) {
5120
5121		KEY_CHKSASTATE(state, sav->state, __func__);
5122
5123		if (sav->seq == seq) {
5124			sa_addref(sav);
5125			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5126				printf("DP %s cause refcnt++:%d SA:%p\n",
5127					__func__, sav->refcnt, sav));
5128			return sav;
5129		}
5130	}
5131
5132	return NULL;
5133}
5134#endif
5135
5136/*
5137 * SADB_ADD processing
5138 * add an entry to SA database, when received
5139 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5140 *       key(AE), (identity(SD),) (sensitivity)>
5141 * from the ikmpd,
5142 * and send
5143 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5144 *       (identity(SD),) (sensitivity)>
5145 * to the ikmpd.
5146 *
5147 * IGNORE identity and sensitivity messages.
5148 *
5149 * m will always be freed.
5150 */
5151static int
5152key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5153{
5154	struct sadb_sa *sa0;
5155	struct sadb_address *src0, *dst0;
5156#ifdef IPSEC_NAT_T
5157	struct sadb_x_nat_t_type *type;
5158	struct sadb_address *iaddr, *raddr;
5159	struct sadb_x_nat_t_frag *frag;
5160#endif
5161	struct secasindex saidx;
5162	struct secashead *newsah;
5163	struct secasvar *newsav;
5164	u_int16_t proto;
5165	u_int8_t mode;
5166	u_int32_t reqid;
5167	int error;
5168
5169	IPSEC_ASSERT(so != NULL, ("null socket"));
5170	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5171	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5172	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5173
5174	/* map satype to proto */
5175	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5176		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5177			__func__));
5178		return key_senderror(so, m, EINVAL);
5179	}
5180
5181	if (mhp->ext[SADB_EXT_SA] == NULL ||
5182	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5183	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5184	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5185	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5186	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5187	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5188	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5189	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5190	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5191	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5192		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5193			__func__));
5194		return key_senderror(so, m, EINVAL);
5195	}
5196	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5197	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5198	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5199		/* XXX need more */
5200		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5201			__func__));
5202		return key_senderror(so, m, EINVAL);
5203	}
5204	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5205		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5206		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5207	} else {
5208		mode = IPSEC_MODE_ANY;
5209		reqid = 0;
5210	}
5211
5212	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5213	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5214	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5215
5216	/* XXX boundary check against sa_len */
5217	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5218
5219	/*
5220	 * Make sure the port numbers are zero.
5221	 * In case of NAT-T we will update them later if needed.
5222	 */
5223	KEY_PORTTOSADDR(&saidx.src, 0);
5224	KEY_PORTTOSADDR(&saidx.dst, 0);
5225
5226#ifdef IPSEC_NAT_T
5227	/*
5228	 * Handle NAT-T info if present.
5229	 */
5230	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5231	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5232	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5233		struct sadb_x_nat_t_port *sport, *dport;
5234
5235		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5236		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5237		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5238			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5239			    __func__));
5240			return key_senderror(so, m, EINVAL);
5241		}
5242
5243		type = (struct sadb_x_nat_t_type *)
5244		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5245		sport = (struct sadb_x_nat_t_port *)
5246		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5247		dport = (struct sadb_x_nat_t_port *)
5248		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5249
5250		if (sport)
5251			KEY_PORTTOSADDR(&saidx.src,
5252			    sport->sadb_x_nat_t_port_port);
5253		if (dport)
5254			KEY_PORTTOSADDR(&saidx.dst,
5255			    dport->sadb_x_nat_t_port_port);
5256	} else {
5257		type = 0;
5258	}
5259	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5260	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5261		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5262		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5263			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5264			    __func__));
5265			return key_senderror(so, m, EINVAL);
5266		}
5267		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5268		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5269		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5270	} else {
5271		iaddr = raddr = NULL;
5272	}
5273	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5274		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5275			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5276			    __func__));
5277			return key_senderror(so, m, EINVAL);
5278		}
5279		frag = (struct sadb_x_nat_t_frag *)
5280		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5281	} else {
5282		frag = 0;
5283	}
5284#endif
5285
5286	/* get a SA header */
5287	if ((newsah = key_getsah(&saidx)) == NULL) {
5288		/* create a new SA header */
5289		if ((newsah = key_newsah(&saidx)) == NULL) {
5290			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
5291			return key_senderror(so, m, ENOBUFS);
5292		}
5293	}
5294
5295	/* set spidx if there */
5296	/* XXX rewrite */
5297	error = key_setident(newsah, m, mhp);
5298	if (error) {
5299		return key_senderror(so, m, error);
5300	}
5301
5302	/* create new SA entry. */
5303	/* We can create new SA only if SPI is differenct. */
5304	SAHTREE_LOCK();
5305	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5306	SAHTREE_UNLOCK();
5307	if (newsav != NULL) {
5308		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5309		return key_senderror(so, m, EEXIST);
5310	}
5311	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5312	if (newsav == NULL) {
5313		return key_senderror(so, m, error);
5314	}
5315
5316#ifdef IPSEC_NAT_T
5317	/*
5318	 * Handle more NAT-T info if present,
5319	 * now that we have a sav to fill.
5320	 */
5321	if (type)
5322		newsav->natt_type = type->sadb_x_nat_t_type_type;
5323
5324#if 0
5325	/*
5326	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5327	 * We should actually check for a minimum MTU here, if we
5328	 * want to support it in ip_output.
5329	 */
5330	if (frag)
5331		newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5332#endif
5333#endif
5334
5335	/* check SA values to be mature. */
5336	if ((error = key_mature(newsav)) != 0) {
5337		KEY_FREESAV(&newsav);
5338		return key_senderror(so, m, error);
5339	}
5340
5341	/*
5342	 * don't call key_freesav() here, as we would like to keep the SA
5343	 * in the database on success.
5344	 */
5345
5346    {
5347	struct mbuf *n;
5348
5349	/* set msg buf from mhp */
5350	n = key_getmsgbuf_x1(m, mhp);
5351	if (n == NULL) {
5352		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5353		return key_senderror(so, m, ENOBUFS);
5354	}
5355
5356	m_freem(m);
5357	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5358    }
5359}
5360
5361/* m is retained */
5362static int
5363key_setident(struct secashead *sah, struct mbuf *m,
5364    const struct sadb_msghdr *mhp)
5365{
5366	const struct sadb_ident *idsrc, *iddst;
5367	int idsrclen, iddstlen;
5368
5369	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5370	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5371	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5372	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5373
5374	/* don't make buffer if not there */
5375	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5376	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5377		sah->idents = NULL;
5378		sah->identd = NULL;
5379		return 0;
5380	}
5381
5382	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5383	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5384		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5385		return EINVAL;
5386	}
5387
5388	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5389	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5390	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5391	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5392
5393	/* validity check */
5394	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5395		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5396		return EINVAL;
5397	}
5398
5399	switch (idsrc->sadb_ident_type) {
5400	case SADB_IDENTTYPE_PREFIX:
5401	case SADB_IDENTTYPE_FQDN:
5402	case SADB_IDENTTYPE_USERFQDN:
5403	default:
5404		/* XXX do nothing */
5405		sah->idents = NULL;
5406		sah->identd = NULL;
5407	 	return 0;
5408	}
5409
5410	/* make structure */
5411	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5412	if (sah->idents == NULL) {
5413		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5414		return ENOBUFS;
5415	}
5416	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5417	if (sah->identd == NULL) {
5418		free(sah->idents, M_IPSEC_MISC);
5419		sah->idents = NULL;
5420		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5421		return ENOBUFS;
5422	}
5423	sah->idents->type = idsrc->sadb_ident_type;
5424	sah->idents->id = idsrc->sadb_ident_id;
5425
5426	sah->identd->type = iddst->sadb_ident_type;
5427	sah->identd->id = iddst->sadb_ident_id;
5428
5429	return 0;
5430}
5431
5432/*
5433 * m will not be freed on return.
5434 * it is caller's responsibility to free the result.
5435 */
5436static struct mbuf *
5437key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5438{
5439	struct mbuf *n;
5440
5441	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5442	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5443	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5444
5445	/* create new sadb_msg to reply. */
5446	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5447	    SADB_EXT_SA, SADB_X_EXT_SA2,
5448	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5449	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5450	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5451	if (!n)
5452		return NULL;
5453
5454	if (n->m_len < sizeof(struct sadb_msg)) {
5455		n = m_pullup(n, sizeof(struct sadb_msg));
5456		if (n == NULL)
5457			return NULL;
5458	}
5459	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5460	mtod(n, struct sadb_msg *)->sadb_msg_len =
5461	    PFKEY_UNIT64(n->m_pkthdr.len);
5462
5463	return n;
5464}
5465
5466/*
5467 * SADB_DELETE processing
5468 * receive
5469 *   <base, SA(*), address(SD)>
5470 * from the ikmpd, and set SADB_SASTATE_DEAD,
5471 * and send,
5472 *   <base, SA(*), address(SD)>
5473 * to the ikmpd.
5474 *
5475 * m will always be freed.
5476 */
5477static int
5478key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5479{
5480	struct sadb_sa *sa0;
5481	struct sadb_address *src0, *dst0;
5482	struct secasindex saidx;
5483	struct secashead *sah;
5484	struct secasvar *sav = NULL;
5485	u_int16_t proto;
5486
5487	IPSEC_ASSERT(so != NULL, ("null socket"));
5488	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5489	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5490	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5491
5492	/* map satype to proto */
5493	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5494		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5495			__func__));
5496		return key_senderror(so, m, EINVAL);
5497	}
5498
5499	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5500	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5501		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5502			__func__));
5503		return key_senderror(so, m, EINVAL);
5504	}
5505
5506	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5507	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5508		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5509			__func__));
5510		return key_senderror(so, m, EINVAL);
5511	}
5512
5513	if (mhp->ext[SADB_EXT_SA] == NULL) {
5514		/*
5515		 * Caller wants us to delete all non-LARVAL SAs
5516		 * that match the src/dst.  This is used during
5517		 * IKE INITIAL-CONTACT.
5518		 */
5519		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5520		return key_delete_all(so, m, mhp, proto);
5521	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5522		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5523			__func__));
5524		return key_senderror(so, m, EINVAL);
5525	}
5526
5527	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5528	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5529	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5530
5531	/* XXX boundary check against sa_len */
5532	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5533
5534	/*
5535	 * Make sure the port numbers are zero.
5536	 * In case of NAT-T we will update them later if needed.
5537	 */
5538	KEY_PORTTOSADDR(&saidx.src, 0);
5539	KEY_PORTTOSADDR(&saidx.dst, 0);
5540
5541#ifdef IPSEC_NAT_T
5542	/*
5543	 * Handle NAT-T info if present.
5544	 */
5545	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5546	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5547		struct sadb_x_nat_t_port *sport, *dport;
5548
5549		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5550		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5551			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5552			    __func__));
5553			return key_senderror(so, m, EINVAL);
5554		}
5555
5556		sport = (struct sadb_x_nat_t_port *)
5557		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5558		dport = (struct sadb_x_nat_t_port *)
5559		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5560
5561		if (sport)
5562			KEY_PORTTOSADDR(&saidx.src,
5563			    sport->sadb_x_nat_t_port_port);
5564		if (dport)
5565			KEY_PORTTOSADDR(&saidx.dst,
5566			    dport->sadb_x_nat_t_port_port);
5567	}
5568#endif
5569
5570	/* get a SA header */
5571	SAHTREE_LOCK();
5572	LIST_FOREACH(sah, &V_sahtree, chain) {
5573		if (sah->state == SADB_SASTATE_DEAD)
5574			continue;
5575		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5576			continue;
5577
5578		/* get a SA with SPI. */
5579		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5580		if (sav)
5581			break;
5582	}
5583	if (sah == NULL) {
5584		SAHTREE_UNLOCK();
5585		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5586		return key_senderror(so, m, ENOENT);
5587	}
5588
5589	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5590	KEY_FREESAV(&sav);
5591	SAHTREE_UNLOCK();
5592
5593    {
5594	struct mbuf *n;
5595	struct sadb_msg *newmsg;
5596
5597	/* create new sadb_msg to reply. */
5598	/* XXX-BZ NAT-T extensions? */
5599	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5600	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5601	if (!n)
5602		return key_senderror(so, m, ENOBUFS);
5603
5604	if (n->m_len < sizeof(struct sadb_msg)) {
5605		n = m_pullup(n, sizeof(struct sadb_msg));
5606		if (n == NULL)
5607			return key_senderror(so, m, ENOBUFS);
5608	}
5609	newmsg = mtod(n, struct sadb_msg *);
5610	newmsg->sadb_msg_errno = 0;
5611	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5612
5613	m_freem(m);
5614	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5615    }
5616}
5617
5618/*
5619 * delete all SAs for src/dst.  Called from key_delete().
5620 */
5621static int
5622key_delete_all(struct socket *so, struct mbuf *m,
5623    const struct sadb_msghdr *mhp, u_int16_t proto)
5624{
5625	struct sadb_address *src0, *dst0;
5626	struct secasindex saidx;
5627	struct secashead *sah;
5628	struct secasvar *sav, *nextsav;
5629	u_int stateidx, state;
5630
5631	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5632	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5633
5634	/* XXX boundary check against sa_len */
5635	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5636
5637	/*
5638	 * Make sure the port numbers are zero.
5639	 * In case of NAT-T we will update them later if needed.
5640	 */
5641	KEY_PORTTOSADDR(&saidx.src, 0);
5642	KEY_PORTTOSADDR(&saidx.dst, 0);
5643
5644#ifdef IPSEC_NAT_T
5645	/*
5646	 * Handle NAT-T info if present.
5647	 */
5648
5649	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5650	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5651		struct sadb_x_nat_t_port *sport, *dport;
5652
5653		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5654		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5655			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5656			    __func__));
5657			return key_senderror(so, m, EINVAL);
5658		}
5659
5660		sport = (struct sadb_x_nat_t_port *)
5661		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5662		dport = (struct sadb_x_nat_t_port *)
5663		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5664
5665		if (sport)
5666			KEY_PORTTOSADDR(&saidx.src,
5667			    sport->sadb_x_nat_t_port_port);
5668		if (dport)
5669			KEY_PORTTOSADDR(&saidx.dst,
5670			    dport->sadb_x_nat_t_port_port);
5671	}
5672#endif
5673
5674	SAHTREE_LOCK();
5675	LIST_FOREACH(sah, &V_sahtree, chain) {
5676		if (sah->state == SADB_SASTATE_DEAD)
5677			continue;
5678		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5679			continue;
5680
5681		/* Delete all non-LARVAL SAs. */
5682		for (stateidx = 0;
5683		     stateidx < _ARRAYLEN(saorder_state_alive);
5684		     stateidx++) {
5685			state = saorder_state_alive[stateidx];
5686			if (state == SADB_SASTATE_LARVAL)
5687				continue;
5688			for (sav = LIST_FIRST(&sah->savtree[state]);
5689			     sav != NULL; sav = nextsav) {
5690				nextsav = LIST_NEXT(sav, chain);
5691				/* sanity check */
5692				if (sav->state != state) {
5693					ipseclog((LOG_DEBUG, "%s: invalid "
5694						"sav->state (queue %d SA %d)\n",
5695						__func__, state, sav->state));
5696					continue;
5697				}
5698
5699				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5700				KEY_FREESAV(&sav);
5701			}
5702		}
5703	}
5704	SAHTREE_UNLOCK();
5705    {
5706	struct mbuf *n;
5707	struct sadb_msg *newmsg;
5708
5709	/* create new sadb_msg to reply. */
5710	/* XXX-BZ NAT-T extensions? */
5711	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5712	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5713	if (!n)
5714		return key_senderror(so, m, ENOBUFS);
5715
5716	if (n->m_len < sizeof(struct sadb_msg)) {
5717		n = m_pullup(n, sizeof(struct sadb_msg));
5718		if (n == NULL)
5719			return key_senderror(so, m, ENOBUFS);
5720	}
5721	newmsg = mtod(n, struct sadb_msg *);
5722	newmsg->sadb_msg_errno = 0;
5723	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5724
5725	m_freem(m);
5726	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5727    }
5728}
5729
5730/*
5731 * SADB_GET processing
5732 * receive
5733 *   <base, SA(*), address(SD)>
5734 * from the ikmpd, and get a SP and a SA to respond,
5735 * and send,
5736 *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5737 *       (identity(SD),) (sensitivity)>
5738 * to the ikmpd.
5739 *
5740 * m will always be freed.
5741 */
5742static int
5743key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5744{
5745	struct sadb_sa *sa0;
5746	struct sadb_address *src0, *dst0;
5747	struct secasindex saidx;
5748	struct secashead *sah;
5749	struct secasvar *sav = NULL;
5750	u_int16_t proto;
5751
5752	IPSEC_ASSERT(so != NULL, ("null socket"));
5753	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5754	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5755	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5756
5757	/* map satype to proto */
5758	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5759		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5760			__func__));
5761		return key_senderror(so, m, EINVAL);
5762	}
5763
5764	if (mhp->ext[SADB_EXT_SA] == NULL ||
5765	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5766	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5767		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5768			__func__));
5769		return key_senderror(so, m, EINVAL);
5770	}
5771	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5772	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5773	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5774		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5775			__func__));
5776		return key_senderror(so, m, EINVAL);
5777	}
5778
5779	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5780	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5781	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5782
5783	/* XXX boundary check against sa_len */
5784	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5785
5786	/*
5787	 * Make sure the port numbers are zero.
5788	 * In case of NAT-T we will update them later if needed.
5789	 */
5790	KEY_PORTTOSADDR(&saidx.src, 0);
5791	KEY_PORTTOSADDR(&saidx.dst, 0);
5792
5793#ifdef IPSEC_NAT_T
5794	/*
5795	 * Handle NAT-T info if present.
5796	 */
5797
5798	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5799	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5800		struct sadb_x_nat_t_port *sport, *dport;
5801
5802		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5803		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5804			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5805			    __func__));
5806			return key_senderror(so, m, EINVAL);
5807		}
5808
5809		sport = (struct sadb_x_nat_t_port *)
5810		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5811		dport = (struct sadb_x_nat_t_port *)
5812		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5813
5814		if (sport)
5815			KEY_PORTTOSADDR(&saidx.src,
5816			    sport->sadb_x_nat_t_port_port);
5817		if (dport)
5818			KEY_PORTTOSADDR(&saidx.dst,
5819			    dport->sadb_x_nat_t_port_port);
5820	}
5821#endif
5822
5823	/* get a SA header */
5824	SAHTREE_LOCK();
5825	LIST_FOREACH(sah, &V_sahtree, chain) {
5826		if (sah->state == SADB_SASTATE_DEAD)
5827			continue;
5828		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5829			continue;
5830
5831		/* get a SA with SPI. */
5832		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5833		if (sav)
5834			break;
5835	}
5836	SAHTREE_UNLOCK();
5837	if (sah == NULL) {
5838		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5839		return key_senderror(so, m, ENOENT);
5840	}
5841
5842    {
5843	struct mbuf *n;
5844	u_int8_t satype;
5845
5846	/* map proto to satype */
5847	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5848		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5849			__func__));
5850		return key_senderror(so, m, EINVAL);
5851	}
5852
5853	/* create new sadb_msg to reply. */
5854	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5855	    mhp->msg->sadb_msg_pid);
5856	if (!n)
5857		return key_senderror(so, m, ENOBUFS);
5858
5859	m_freem(m);
5860	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5861    }
5862}
5863
5864/* XXX make it sysctl-configurable? */
5865static void
5866key_getcomb_setlifetime(struct sadb_comb *comb)
5867{
5868
5869	comb->sadb_comb_soft_allocations = 1;
5870	comb->sadb_comb_hard_allocations = 1;
5871	comb->sadb_comb_soft_bytes = 0;
5872	comb->sadb_comb_hard_bytes = 0;
5873	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5874	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5875	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5876	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5877}
5878
5879/*
5880 * XXX reorder combinations by preference
5881 * XXX no idea if the user wants ESP authentication or not
5882 */
5883static struct mbuf *
5884key_getcomb_esp()
5885{
5886	struct sadb_comb *comb;
5887	struct enc_xform *algo;
5888	struct mbuf *result = NULL, *m, *n;
5889	int encmin;
5890	int i, off, o;
5891	int totlen;
5892	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5893
5894	m = NULL;
5895	for (i = 1; i <= SADB_EALG_MAX; i++) {
5896		algo = esp_algorithm_lookup(i);
5897		if (algo == NULL)
5898			continue;
5899
5900		/* discard algorithms with key size smaller than system min */
5901		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
5902			continue;
5903		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
5904			encmin = V_ipsec_esp_keymin;
5905		else
5906			encmin = _BITS(algo->minkey);
5907
5908		if (V_ipsec_esp_auth)
5909			m = key_getcomb_ah();
5910		else {
5911			IPSEC_ASSERT(l <= MLEN,
5912				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5913			MGET(m, M_NOWAIT, MT_DATA);
5914			if (m) {
5915				M_ALIGN(m, l);
5916				m->m_len = l;
5917				m->m_next = NULL;
5918				bzero(mtod(m, caddr_t), m->m_len);
5919			}
5920		}
5921		if (!m)
5922			goto fail;
5923
5924		totlen = 0;
5925		for (n = m; n; n = n->m_next)
5926			totlen += n->m_len;
5927		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
5928
5929		for (off = 0; off < totlen; off += l) {
5930			n = m_pulldown(m, off, l, &o);
5931			if (!n) {
5932				/* m is already freed */
5933				goto fail;
5934			}
5935			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5936			bzero(comb, sizeof(*comb));
5937			key_getcomb_setlifetime(comb);
5938			comb->sadb_comb_encrypt = i;
5939			comb->sadb_comb_encrypt_minbits = encmin;
5940			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5941		}
5942
5943		if (!result)
5944			result = m;
5945		else
5946			m_cat(result, m);
5947	}
5948
5949	return result;
5950
5951 fail:
5952	if (result)
5953		m_freem(result);
5954	return NULL;
5955}
5956
5957static void
5958key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min,
5959    u_int16_t* max)
5960{
5961
5962	*min = *max = ah->keysize;
5963	if (ah->keysize == 0) {
5964		/*
5965		 * Transform takes arbitrary key size but algorithm
5966		 * key size is restricted.  Enforce this here.
5967		 */
5968		switch (alg) {
5969		case SADB_X_AALG_MD5:	*min = *max = 16; break;
5970		case SADB_X_AALG_SHA:	*min = *max = 20; break;
5971		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
5972		case SADB_X_AALG_SHA2_256: *min = *max = 32; break;
5973		case SADB_X_AALG_SHA2_384: *min = *max = 48; break;
5974		case SADB_X_AALG_SHA2_512: *min = *max = 64; break;
5975		default:
5976			DPRINTF(("%s: unknown AH algorithm %u\n",
5977				__func__, alg));
5978			break;
5979		}
5980	}
5981}
5982
5983/*
5984 * XXX reorder combinations by preference
5985 */
5986static struct mbuf *
5987key_getcomb_ah()
5988{
5989	struct sadb_comb *comb;
5990	struct auth_hash *algo;
5991	struct mbuf *m;
5992	u_int16_t minkeysize, maxkeysize;
5993	int i;
5994	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5995
5996	m = NULL;
5997	for (i = 1; i <= SADB_AALG_MAX; i++) {
5998#if 1
5999		/* we prefer HMAC algorithms, not old algorithms */
6000		if (i != SADB_AALG_SHA1HMAC &&
6001		    i != SADB_AALG_MD5HMAC  &&
6002		    i != SADB_X_AALG_SHA2_256 &&
6003		    i != SADB_X_AALG_SHA2_384 &&
6004		    i != SADB_X_AALG_SHA2_512)
6005			continue;
6006#endif
6007		algo = ah_algorithm_lookup(i);
6008		if (!algo)
6009			continue;
6010		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6011		/* discard algorithms with key size smaller than system min */
6012		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6013			continue;
6014
6015		if (!m) {
6016			IPSEC_ASSERT(l <= MLEN,
6017				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6018			MGET(m, M_NOWAIT, MT_DATA);
6019			if (m) {
6020				M_ALIGN(m, l);
6021				m->m_len = l;
6022				m->m_next = NULL;
6023			}
6024		} else
6025			M_PREPEND(m, l, M_NOWAIT);
6026		if (!m)
6027			return NULL;
6028
6029		comb = mtod(m, struct sadb_comb *);
6030		bzero(comb, sizeof(*comb));
6031		key_getcomb_setlifetime(comb);
6032		comb->sadb_comb_auth = i;
6033		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6034		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6035	}
6036
6037	return m;
6038}
6039
6040/*
6041 * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
6042 * XXX reorder combinations by preference
6043 */
6044static struct mbuf *
6045key_getcomb_ipcomp()
6046{
6047	struct sadb_comb *comb;
6048	struct comp_algo *algo;
6049	struct mbuf *m;
6050	int i;
6051	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6052
6053	m = NULL;
6054	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6055		algo = ipcomp_algorithm_lookup(i);
6056		if (!algo)
6057			continue;
6058
6059		if (!m) {
6060			IPSEC_ASSERT(l <= MLEN,
6061				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6062			MGET(m, M_NOWAIT, MT_DATA);
6063			if (m) {
6064				M_ALIGN(m, l);
6065				m->m_len = l;
6066				m->m_next = NULL;
6067			}
6068		} else
6069			M_PREPEND(m, l, M_NOWAIT);
6070		if (!m)
6071			return NULL;
6072
6073		comb = mtod(m, struct sadb_comb *);
6074		bzero(comb, sizeof(*comb));
6075		key_getcomb_setlifetime(comb);
6076		comb->sadb_comb_encrypt = i;
6077		/* what should we set into sadb_comb_*_{min,max}bits? */
6078	}
6079
6080	return m;
6081}
6082
6083/*
6084 * XXX no way to pass mode (transport/tunnel) to userland
6085 * XXX replay checking?
6086 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6087 */
6088static struct mbuf *
6089key_getprop(const struct secasindex *saidx)
6090{
6091	struct sadb_prop *prop;
6092	struct mbuf *m, *n;
6093	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6094	int totlen;
6095
6096	switch (saidx->proto)  {
6097	case IPPROTO_ESP:
6098		m = key_getcomb_esp();
6099		break;
6100	case IPPROTO_AH:
6101		m = key_getcomb_ah();
6102		break;
6103	case IPPROTO_IPCOMP:
6104		m = key_getcomb_ipcomp();
6105		break;
6106	default:
6107		return NULL;
6108	}
6109
6110	if (!m)
6111		return NULL;
6112	M_PREPEND(m, l, M_NOWAIT);
6113	if (!m)
6114		return NULL;
6115
6116	totlen = 0;
6117	for (n = m; n; n = n->m_next)
6118		totlen += n->m_len;
6119
6120	prop = mtod(m, struct sadb_prop *);
6121	bzero(prop, sizeof(*prop));
6122	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6123	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6124	prop->sadb_prop_replay = 32;	/* XXX */
6125
6126	return m;
6127}
6128
6129/*
6130 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6131 * send
6132 *   <base, SA, address(SD), (address(P)), x_policy,
6133 *       (identity(SD),) (sensitivity,) proposal>
6134 * to KMD, and expect to receive
6135 *   <base> with SADB_ACQUIRE if error occured,
6136 * or
6137 *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
6138 * from KMD by PF_KEY.
6139 *
6140 * XXX x_policy is outside of RFC2367 (KAME extension).
6141 * XXX sensitivity is not supported.
6142 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6143 * see comment for key_getcomb_ipcomp().
6144 *
6145 * OUT:
6146 *    0     : succeed
6147 *    others: error number
6148 */
6149static int
6150key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6151{
6152	union sockaddr_union addr;
6153	struct mbuf *result, *m;
6154	struct secacq *newacq;
6155	u_int32_t seq;
6156	int error;
6157	u_int16_t ul_proto;
6158	u_int8_t mask, satype;
6159
6160	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6161	satype = key_proto2satype(saidx->proto);
6162	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6163
6164	error = -1;
6165	result = NULL;
6166	ul_proto = IPSEC_ULPROTO_ANY;
6167	/*
6168	 * We never do anything about acquirng SA.  There is anather
6169	 * solution that kernel blocks to send SADB_ACQUIRE message until
6170	 * getting something message from IKEd.  In later case, to be
6171	 * managed with ACQUIRING list.
6172	 */
6173	/* Get an entry to check whether sending message or not. */
6174	if ((newacq = key_getacq(saidx)) != NULL) {
6175		if (V_key_blockacq_count < newacq->count) {
6176			/* reset counter and do send message. */
6177			newacq->count = 0;
6178		} else {
6179			/* increment counter and do nothing. */
6180			newacq->count++;
6181			return 0;
6182		}
6183	} else {
6184		/* make new entry for blocking to send SADB_ACQUIRE. */
6185		if ((newacq = key_newacq(saidx)) == NULL)
6186			return ENOBUFS;
6187	}
6188
6189
6190	seq = newacq->seq;
6191	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6192	if (!m) {
6193		error = ENOBUFS;
6194		goto fail;
6195	}
6196	result = m;
6197
6198	/*
6199	 * No SADB_X_EXT_NAT_T_* here: we do not know
6200	 * anything related to NAT-T at this time.
6201	 */
6202
6203	/*
6204	 * set sadb_address for saidx's.
6205	 *
6206	 * Note that if sp is supplied, then we're being called from
6207	 * key_checkrequest and should supply port and protocol information.
6208	 */
6209	if (sp != NULL && (sp->spidx.ul_proto == IPPROTO_TCP ||
6210	    sp->spidx.ul_proto == IPPROTO_UDP))
6211		ul_proto = sp->spidx.ul_proto;
6212
6213	addr = saidx->src;
6214	mask = FULLMASK;
6215	if (ul_proto != IPSEC_ULPROTO_ANY) {
6216		switch (sp->spidx.src.sa.sa_family) {
6217		case AF_INET:
6218			if (sp->spidx.src.sin.sin_port != IPSEC_PORT_ANY) {
6219				addr.sin.sin_port = sp->spidx.src.sin.sin_port;
6220				mask = sp->spidx.prefs;
6221			}
6222			break;
6223		case AF_INET6:
6224			if (sp->spidx.src.sin6.sin6_port != IPSEC_PORT_ANY) {
6225				addr.sin6.sin6_port = sp->spidx.src.sin6.sin6_port;
6226				mask = sp->spidx.prefs;
6227			}
6228			break;
6229		default:
6230			break;
6231		}
6232	}
6233	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &addr.sa, mask, ul_proto);
6234	if (!m) {
6235		error = ENOBUFS;
6236		goto fail;
6237	}
6238	m_cat(result, m);
6239
6240	addr = saidx->dst;
6241	mask = FULLMASK;
6242	if (ul_proto != IPSEC_ULPROTO_ANY) {
6243		switch (sp->spidx.dst.sa.sa_family) {
6244		case AF_INET:
6245			if (sp->spidx.dst.sin.sin_port != IPSEC_PORT_ANY) {
6246				addr.sin.sin_port = sp->spidx.dst.sin.sin_port;
6247				mask = sp->spidx.prefd;
6248			}
6249			break;
6250		case AF_INET6:
6251			if (sp->spidx.dst.sin6.sin6_port != IPSEC_PORT_ANY) {
6252				addr.sin6.sin6_port = sp->spidx.dst.sin6.sin6_port;
6253				mask = sp->spidx.prefd;
6254			}
6255			break;
6256		default:
6257			break;
6258		}
6259	}
6260	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &addr.sa, mask, ul_proto);
6261	if (!m) {
6262		error = ENOBUFS;
6263		goto fail;
6264	}
6265	m_cat(result, m);
6266
6267	/* XXX proxy address (optional) */
6268
6269	/* set sadb_x_policy */
6270	if (sp) {
6271		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6272		if (!m) {
6273			error = ENOBUFS;
6274			goto fail;
6275		}
6276		m_cat(result, m);
6277	}
6278
6279	/* XXX identity (optional) */
6280#if 0
6281	if (idexttype && fqdn) {
6282		/* create identity extension (FQDN) */
6283		struct sadb_ident *id;
6284		int fqdnlen;
6285
6286		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
6287		id = (struct sadb_ident *)p;
6288		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6289		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6290		id->sadb_ident_exttype = idexttype;
6291		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6292		bcopy(fqdn, id + 1, fqdnlen);
6293		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6294	}
6295
6296	if (idexttype) {
6297		/* create identity extension (USERFQDN) */
6298		struct sadb_ident *id;
6299		int userfqdnlen;
6300
6301		if (userfqdn) {
6302			/* +1 for terminating-NUL */
6303			userfqdnlen = strlen(userfqdn) + 1;
6304		} else
6305			userfqdnlen = 0;
6306		id = (struct sadb_ident *)p;
6307		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6308		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6309		id->sadb_ident_exttype = idexttype;
6310		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6311		/* XXX is it correct? */
6312		if (curproc && curproc->p_cred)
6313			id->sadb_ident_id = curproc->p_cred->p_ruid;
6314		if (userfqdn && userfqdnlen)
6315			bcopy(userfqdn, id + 1, userfqdnlen);
6316		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6317	}
6318#endif
6319
6320	/* XXX sensitivity (optional) */
6321
6322	/* create proposal/combination extension */
6323	m = key_getprop(saidx);
6324#if 0
6325	/*
6326	 * spec conformant: always attach proposal/combination extension,
6327	 * the problem is that we have no way to attach it for ipcomp,
6328	 * due to the way sadb_comb is declared in RFC2367.
6329	 */
6330	if (!m) {
6331		error = ENOBUFS;
6332		goto fail;
6333	}
6334	m_cat(result, m);
6335#else
6336	/*
6337	 * outside of spec; make proposal/combination extension optional.
6338	 */
6339	if (m)
6340		m_cat(result, m);
6341#endif
6342
6343	if ((result->m_flags & M_PKTHDR) == 0) {
6344		error = EINVAL;
6345		goto fail;
6346	}
6347
6348	if (result->m_len < sizeof(struct sadb_msg)) {
6349		result = m_pullup(result, sizeof(struct sadb_msg));
6350		if (result == NULL) {
6351			error = ENOBUFS;
6352			goto fail;
6353		}
6354	}
6355
6356	result->m_pkthdr.len = 0;
6357	for (m = result; m; m = m->m_next)
6358		result->m_pkthdr.len += m->m_len;
6359
6360	mtod(result, struct sadb_msg *)->sadb_msg_len =
6361	    PFKEY_UNIT64(result->m_pkthdr.len);
6362
6363	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6364
6365 fail:
6366	if (result)
6367		m_freem(result);
6368	return error;
6369}
6370
6371static struct secacq *
6372key_newacq(const struct secasindex *saidx)
6373{
6374	struct secacq *newacq;
6375
6376	/* get new entry */
6377	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6378	if (newacq == NULL) {
6379		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6380		return NULL;
6381	}
6382
6383	/* copy secindex */
6384	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6385	newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
6386	newacq->created = time_second;
6387	newacq->count = 0;
6388
6389	/* add to acqtree */
6390	ACQ_LOCK();
6391	LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
6392	ACQ_UNLOCK();
6393
6394	return newacq;
6395}
6396
6397static struct secacq *
6398key_getacq(const struct secasindex *saidx)
6399{
6400	struct secacq *acq;
6401
6402	ACQ_LOCK();
6403	LIST_FOREACH(acq, &V_acqtree, chain) {
6404		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6405			break;
6406	}
6407	ACQ_UNLOCK();
6408
6409	return acq;
6410}
6411
6412static struct secacq *
6413key_getacqbyseq(u_int32_t seq)
6414{
6415	struct secacq *acq;
6416
6417	ACQ_LOCK();
6418	LIST_FOREACH(acq, &V_acqtree, chain) {
6419		if (acq->seq == seq)
6420			break;
6421	}
6422	ACQ_UNLOCK();
6423
6424	return acq;
6425}
6426
6427static struct secspacq *
6428key_newspacq(struct secpolicyindex *spidx)
6429{
6430	struct secspacq *acq;
6431
6432	/* get new entry */
6433	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6434	if (acq == NULL) {
6435		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6436		return NULL;
6437	}
6438
6439	/* copy secindex */
6440	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6441	acq->created = time_second;
6442	acq->count = 0;
6443
6444	/* add to spacqtree */
6445	SPACQ_LOCK();
6446	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
6447	SPACQ_UNLOCK();
6448
6449	return acq;
6450}
6451
6452static struct secspacq *
6453key_getspacq(struct secpolicyindex *spidx)
6454{
6455	struct secspacq *acq;
6456
6457	SPACQ_LOCK();
6458	LIST_FOREACH(acq, &V_spacqtree, chain) {
6459		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
6460			/* NB: return holding spacq_lock */
6461			return acq;
6462		}
6463	}
6464	SPACQ_UNLOCK();
6465
6466	return NULL;
6467}
6468
6469/*
6470 * SADB_ACQUIRE processing,
6471 * in first situation, is receiving
6472 *   <base>
6473 * from the ikmpd, and clear sequence of its secasvar entry.
6474 *
6475 * In second situation, is receiving
6476 *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6477 * from a user land process, and return
6478 *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6479 * to the socket.
6480 *
6481 * m will always be freed.
6482 */
6483static int
6484key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6485{
6486	const struct sadb_address *src0, *dst0;
6487	struct secasindex saidx;
6488	struct secashead *sah;
6489	u_int16_t proto;
6490	int error;
6491
6492	IPSEC_ASSERT(so != NULL, ("null socket"));
6493	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6494	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6495	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6496
6497	/*
6498	 * Error message from KMd.
6499	 * We assume that if error was occured in IKEd, the length of PFKEY
6500	 * message is equal to the size of sadb_msg structure.
6501	 * We do not raise error even if error occured in this function.
6502	 */
6503	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6504		struct secacq *acq;
6505
6506		/* check sequence number */
6507		if (mhp->msg->sadb_msg_seq == 0) {
6508			ipseclog((LOG_DEBUG, "%s: must specify sequence "
6509				"number.\n", __func__));
6510			m_freem(m);
6511			return 0;
6512		}
6513
6514		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6515			/*
6516			 * the specified larval SA is already gone, or we got
6517			 * a bogus sequence number.  we can silently ignore it.
6518			 */
6519			m_freem(m);
6520			return 0;
6521		}
6522
6523		/* reset acq counter in order to deletion by timehander. */
6524		acq->created = time_second;
6525		acq->count = 0;
6526		m_freem(m);
6527		return 0;
6528	}
6529
6530	/*
6531	 * This message is from user land.
6532	 */
6533
6534	/* map satype to proto */
6535	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6536		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6537			__func__));
6538		return key_senderror(so, m, EINVAL);
6539	}
6540
6541	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6542	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6543	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6544		/* error */
6545		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6546			__func__));
6547		return key_senderror(so, m, EINVAL);
6548	}
6549	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6550	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6551	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6552		/* error */
6553		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6554			__func__));
6555		return key_senderror(so, m, EINVAL);
6556	}
6557
6558	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6559	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6560
6561	/* XXX boundary check against sa_len */
6562	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6563
6564	/*
6565	 * Make sure the port numbers are zero.
6566	 * In case of NAT-T we will update them later if needed.
6567	 */
6568	KEY_PORTTOSADDR(&saidx.src, 0);
6569	KEY_PORTTOSADDR(&saidx.dst, 0);
6570
6571#ifndef IPSEC_NAT_T
6572	/*
6573	 * Handle NAT-T info if present.
6574	 */
6575
6576	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
6577	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
6578		struct sadb_x_nat_t_port *sport, *dport;
6579
6580		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
6581		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
6582			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
6583			    __func__));
6584			return key_senderror(so, m, EINVAL);
6585		}
6586
6587		sport = (struct sadb_x_nat_t_port *)
6588		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
6589		dport = (struct sadb_x_nat_t_port *)
6590		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
6591
6592		if (sport)
6593			KEY_PORTTOSADDR(&saidx.src,
6594			    sport->sadb_x_nat_t_port_port);
6595		if (dport)
6596			KEY_PORTTOSADDR(&saidx.dst,
6597			    dport->sadb_x_nat_t_port_port);
6598	}
6599#endif
6600
6601	/* get a SA index */
6602	SAHTREE_LOCK();
6603	LIST_FOREACH(sah, &V_sahtree, chain) {
6604		if (sah->state == SADB_SASTATE_DEAD)
6605			continue;
6606		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6607			break;
6608	}
6609	SAHTREE_UNLOCK();
6610	if (sah != NULL) {
6611		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6612		return key_senderror(so, m, EEXIST);
6613	}
6614
6615	error = key_acquire(&saidx, NULL);
6616	if (error != 0) {
6617		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6618			__func__, mhp->msg->sadb_msg_errno));
6619		return key_senderror(so, m, error);
6620	}
6621
6622	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6623}
6624
6625/*
6626 * SADB_REGISTER processing.
6627 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6628 * receive
6629 *   <base>
6630 * from the ikmpd, and register a socket to send PF_KEY messages,
6631 * and send
6632 *   <base, supported>
6633 * to KMD by PF_KEY.
6634 * If socket is detached, must free from regnode.
6635 *
6636 * m will always be freed.
6637 */
6638static int
6639key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6640{
6641	struct secreg *reg, *newreg = 0;
6642
6643	IPSEC_ASSERT(so != NULL, ("null socket"));
6644	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6645	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6646	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6647
6648	/* check for invalid register message */
6649	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6650		return key_senderror(so, m, EINVAL);
6651
6652	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6653	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6654		goto setmsg;
6655
6656	/* check whether existing or not */
6657	REGTREE_LOCK();
6658	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6659		if (reg->so == so) {
6660			REGTREE_UNLOCK();
6661			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6662				__func__));
6663			return key_senderror(so, m, EEXIST);
6664		}
6665	}
6666
6667	/* create regnode */
6668	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6669	if (newreg == NULL) {
6670		REGTREE_UNLOCK();
6671		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6672		return key_senderror(so, m, ENOBUFS);
6673	}
6674
6675	newreg->so = so;
6676	((struct keycb *)sotorawcb(so))->kp_registered++;
6677
6678	/* add regnode to regtree. */
6679	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6680	REGTREE_UNLOCK();
6681
6682  setmsg:
6683    {
6684	struct mbuf *n;
6685	struct sadb_msg *newmsg;
6686	struct sadb_supported *sup;
6687	u_int len, alen, elen;
6688	int off;
6689	int i;
6690	struct sadb_alg *alg;
6691
6692	/* create new sadb_msg to reply. */
6693	alen = 0;
6694	for (i = 1; i <= SADB_AALG_MAX; i++) {
6695		if (ah_algorithm_lookup(i))
6696			alen += sizeof(struct sadb_alg);
6697	}
6698	if (alen)
6699		alen += sizeof(struct sadb_supported);
6700	elen = 0;
6701	for (i = 1; i <= SADB_EALG_MAX; i++) {
6702		if (esp_algorithm_lookup(i))
6703			elen += sizeof(struct sadb_alg);
6704	}
6705	if (elen)
6706		elen += sizeof(struct sadb_supported);
6707
6708	len = sizeof(struct sadb_msg) + alen + elen;
6709
6710	if (len > MCLBYTES)
6711		return key_senderror(so, m, ENOBUFS);
6712
6713	MGETHDR(n, M_NOWAIT, MT_DATA);
6714	if (len > MHLEN) {
6715		MCLGET(n, M_NOWAIT);
6716		if ((n->m_flags & M_EXT) == 0) {
6717			m_freem(n);
6718			n = NULL;
6719		}
6720	}
6721	if (!n)
6722		return key_senderror(so, m, ENOBUFS);
6723
6724	n->m_pkthdr.len = n->m_len = len;
6725	n->m_next = NULL;
6726	off = 0;
6727
6728	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6729	newmsg = mtod(n, struct sadb_msg *);
6730	newmsg->sadb_msg_errno = 0;
6731	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6732	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6733
6734	/* for authentication algorithm */
6735	if (alen) {
6736		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6737		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6738		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6739		off += PFKEY_ALIGN8(sizeof(*sup));
6740
6741		for (i = 1; i <= SADB_AALG_MAX; i++) {
6742			struct auth_hash *aalgo;
6743			u_int16_t minkeysize, maxkeysize;
6744
6745			aalgo = ah_algorithm_lookup(i);
6746			if (!aalgo)
6747				continue;
6748			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6749			alg->sadb_alg_id = i;
6750			alg->sadb_alg_ivlen = 0;
6751			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6752			alg->sadb_alg_minbits = _BITS(minkeysize);
6753			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6754			off += PFKEY_ALIGN8(sizeof(*alg));
6755		}
6756	}
6757
6758	/* for encryption algorithm */
6759	if (elen) {
6760		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6761		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6762		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6763		off += PFKEY_ALIGN8(sizeof(*sup));
6764
6765		for (i = 1; i <= SADB_EALG_MAX; i++) {
6766			struct enc_xform *ealgo;
6767
6768			ealgo = esp_algorithm_lookup(i);
6769			if (!ealgo)
6770				continue;
6771			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6772			alg->sadb_alg_id = i;
6773			alg->sadb_alg_ivlen = ealgo->blocksize;
6774			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6775			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6776			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6777		}
6778	}
6779
6780	IPSEC_ASSERT(off == len,
6781		("length assumption failed (off %u len %u)", off, len));
6782
6783	m_freem(m);
6784	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6785    }
6786}
6787
6788/*
6789 * free secreg entry registered.
6790 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6791 */
6792void
6793key_freereg(struct socket *so)
6794{
6795	struct secreg *reg;
6796	int i;
6797
6798	IPSEC_ASSERT(so != NULL, ("NULL so"));
6799
6800	/*
6801	 * check whether existing or not.
6802	 * check all type of SA, because there is a potential that
6803	 * one socket is registered to multiple type of SA.
6804	 */
6805	REGTREE_LOCK();
6806	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6807		LIST_FOREACH(reg, &V_regtree[i], chain) {
6808			if (reg->so == so && __LIST_CHAINED(reg)) {
6809				LIST_REMOVE(reg, chain);
6810				free(reg, M_IPSEC_SAR);
6811				break;
6812			}
6813		}
6814	}
6815	REGTREE_UNLOCK();
6816}
6817
6818/*
6819 * SADB_EXPIRE processing
6820 * send
6821 *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6822 * to KMD by PF_KEY.
6823 * NOTE: We send only soft lifetime extension.
6824 *
6825 * OUT:	0	: succeed
6826 *	others	: error number
6827 */
6828static int
6829key_expire(struct secasvar *sav, int hard)
6830{
6831	int satype;
6832	struct mbuf *result = NULL, *m;
6833	int len;
6834	int error = -1;
6835	struct sadb_lifetime *lt;
6836
6837	IPSEC_ASSERT (sav != NULL, ("null sav"));
6838	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6839
6840	/* set msg header */
6841	satype = key_proto2satype(sav->sah->saidx.proto);
6842	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6843	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6844	if (!m) {
6845		error = ENOBUFS;
6846		goto fail;
6847	}
6848	result = m;
6849
6850	/* create SA extension */
6851	m = key_setsadbsa(sav);
6852	if (!m) {
6853		error = ENOBUFS;
6854		goto fail;
6855	}
6856	m_cat(result, m);
6857
6858	/* create SA extension */
6859	m = key_setsadbxsa2(sav->sah->saidx.mode,
6860			sav->replay ? sav->replay->count : 0,
6861			sav->sah->saidx.reqid);
6862	if (!m) {
6863		error = ENOBUFS;
6864		goto fail;
6865	}
6866	m_cat(result, m);
6867
6868	/* create lifetime extension (current and soft) */
6869	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6870	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
6871	if (m == NULL) {
6872		error = ENOBUFS;
6873		goto fail;
6874	}
6875	m_align(m, len);
6876	m->m_len = len;
6877	bzero(mtod(m, caddr_t), len);
6878	lt = mtod(m, struct sadb_lifetime *);
6879	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6880	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6881	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6882	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6883	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6884	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6885	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6886	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6887	if (hard) {
6888		lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
6889		lt->sadb_lifetime_allocations = sav->lft_h->allocations;
6890		lt->sadb_lifetime_bytes = sav->lft_h->bytes;
6891		lt->sadb_lifetime_addtime = sav->lft_h->addtime;
6892		lt->sadb_lifetime_usetime = sav->lft_h->usetime;
6893	} else {
6894		lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6895		lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6896		lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6897		lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6898		lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6899	}
6900	m_cat(result, m);
6901
6902	/* set sadb_address for source */
6903	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6904	    &sav->sah->saidx.src.sa,
6905	    FULLMASK, IPSEC_ULPROTO_ANY);
6906	if (!m) {
6907		error = ENOBUFS;
6908		goto fail;
6909	}
6910	m_cat(result, m);
6911
6912	/* set sadb_address for destination */
6913	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6914	    &sav->sah->saidx.dst.sa,
6915	    FULLMASK, IPSEC_ULPROTO_ANY);
6916	if (!m) {
6917		error = ENOBUFS;
6918		goto fail;
6919	}
6920	m_cat(result, m);
6921
6922	/*
6923	 * XXX-BZ Handle NAT-T extensions here.
6924	 */
6925
6926	if ((result->m_flags & M_PKTHDR) == 0) {
6927		error = EINVAL;
6928		goto fail;
6929	}
6930
6931	if (result->m_len < sizeof(struct sadb_msg)) {
6932		result = m_pullup(result, sizeof(struct sadb_msg));
6933		if (result == NULL) {
6934			error = ENOBUFS;
6935			goto fail;
6936		}
6937	}
6938
6939	result->m_pkthdr.len = 0;
6940	for (m = result; m; m = m->m_next)
6941		result->m_pkthdr.len += m->m_len;
6942
6943	mtod(result, struct sadb_msg *)->sadb_msg_len =
6944	    PFKEY_UNIT64(result->m_pkthdr.len);
6945
6946	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6947
6948 fail:
6949	if (result)
6950		m_freem(result);
6951	return error;
6952}
6953
6954/*
6955 * SADB_FLUSH processing
6956 * receive
6957 *   <base>
6958 * from the ikmpd, and free all entries in secastree.
6959 * and send,
6960 *   <base>
6961 * to the ikmpd.
6962 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6963 *
6964 * m will always be freed.
6965 */
6966static int
6967key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6968{
6969	struct sadb_msg *newmsg;
6970	struct secashead *sah, *nextsah;
6971	struct secasvar *sav, *nextsav;
6972	u_int16_t proto;
6973	u_int8_t state;
6974	u_int stateidx;
6975
6976	IPSEC_ASSERT(so != NULL, ("null socket"));
6977	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6978	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6979
6980	/* map satype to proto */
6981	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6982		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6983			__func__));
6984		return key_senderror(so, m, EINVAL);
6985	}
6986
6987	/* no SATYPE specified, i.e. flushing all SA. */
6988	SAHTREE_LOCK();
6989	for (sah = LIST_FIRST(&V_sahtree);
6990	     sah != NULL;
6991	     sah = nextsah) {
6992		nextsah = LIST_NEXT(sah, chain);
6993
6994		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6995		 && proto != sah->saidx.proto)
6996			continue;
6997
6998		for (stateidx = 0;
6999		     stateidx < _ARRAYLEN(saorder_state_alive);
7000		     stateidx++) {
7001			state = saorder_state_any[stateidx];
7002			for (sav = LIST_FIRST(&sah->savtree[state]);
7003			     sav != NULL;
7004			     sav = nextsav) {
7005
7006				nextsav = LIST_NEXT(sav, chain);
7007
7008				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7009				KEY_FREESAV(&sav);
7010			}
7011		}
7012
7013		sah->state = SADB_SASTATE_DEAD;
7014	}
7015	SAHTREE_UNLOCK();
7016
7017	if (m->m_len < sizeof(struct sadb_msg) ||
7018	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7019		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7020		return key_senderror(so, m, ENOBUFS);
7021	}
7022
7023	if (m->m_next)
7024		m_freem(m->m_next);
7025	m->m_next = NULL;
7026	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7027	newmsg = mtod(m, struct sadb_msg *);
7028	newmsg->sadb_msg_errno = 0;
7029	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7030
7031	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7032}
7033
7034/*
7035 * SADB_DUMP processing
7036 * dump all entries including status of DEAD in SAD.
7037 * receive
7038 *   <base>
7039 * from the ikmpd, and dump all secasvar leaves
7040 * and send,
7041 *   <base> .....
7042 * to the ikmpd.
7043 *
7044 * m will always be freed.
7045 */
7046static int
7047key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7048{
7049	struct secashead *sah;
7050	struct secasvar *sav;
7051	u_int16_t proto;
7052	u_int stateidx;
7053	u_int8_t satype;
7054	u_int8_t state;
7055	int cnt;
7056	struct sadb_msg *newmsg;
7057	struct mbuf *n;
7058
7059	IPSEC_ASSERT(so != NULL, ("null socket"));
7060	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7061	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7062	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7063
7064	/* map satype to proto */
7065	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7066		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7067			__func__));
7068		return key_senderror(so, m, EINVAL);
7069	}
7070
7071	/* count sav entries to be sent to the userland. */
7072	cnt = 0;
7073	SAHTREE_LOCK();
7074	LIST_FOREACH(sah, &V_sahtree, chain) {
7075		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7076		 && proto != sah->saidx.proto)
7077			continue;
7078
7079		for (stateidx = 0;
7080		     stateidx < _ARRAYLEN(saorder_state_any);
7081		     stateidx++) {
7082			state = saorder_state_any[stateidx];
7083			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7084				cnt++;
7085			}
7086		}
7087	}
7088
7089	if (cnt == 0) {
7090		SAHTREE_UNLOCK();
7091		return key_senderror(so, m, ENOENT);
7092	}
7093
7094	/* send this to the userland, one at a time. */
7095	newmsg = NULL;
7096	LIST_FOREACH(sah, &V_sahtree, chain) {
7097		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7098		 && proto != sah->saidx.proto)
7099			continue;
7100
7101		/* map proto to satype */
7102		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7103			SAHTREE_UNLOCK();
7104			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7105				"SAD.\n", __func__));
7106			return key_senderror(so, m, EINVAL);
7107		}
7108
7109		for (stateidx = 0;
7110		     stateidx < _ARRAYLEN(saorder_state_any);
7111		     stateidx++) {
7112			state = saorder_state_any[stateidx];
7113			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7114				n = key_setdumpsa(sav, SADB_DUMP, satype,
7115				    --cnt, mhp->msg->sadb_msg_pid);
7116				if (!n) {
7117					SAHTREE_UNLOCK();
7118					return key_senderror(so, m, ENOBUFS);
7119				}
7120				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7121			}
7122		}
7123	}
7124	SAHTREE_UNLOCK();
7125
7126	m_freem(m);
7127	return 0;
7128}
7129
7130/*
7131 * SADB_X_PROMISC processing
7132 *
7133 * m will always be freed.
7134 */
7135static int
7136key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7137{
7138	int olen;
7139
7140	IPSEC_ASSERT(so != NULL, ("null socket"));
7141	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7142	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7143	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7144
7145	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7146
7147	if (olen < sizeof(struct sadb_msg)) {
7148#if 1
7149		return key_senderror(so, m, EINVAL);
7150#else
7151		m_freem(m);
7152		return 0;
7153#endif
7154	} else if (olen == sizeof(struct sadb_msg)) {
7155		/* enable/disable promisc mode */
7156		struct keycb *kp;
7157
7158		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7159			return key_senderror(so, m, EINVAL);
7160		mhp->msg->sadb_msg_errno = 0;
7161		switch (mhp->msg->sadb_msg_satype) {
7162		case 0:
7163		case 1:
7164			kp->kp_promisc = mhp->msg->sadb_msg_satype;
7165			break;
7166		default:
7167			return key_senderror(so, m, EINVAL);
7168		}
7169
7170		/* send the original message back to everyone */
7171		mhp->msg->sadb_msg_errno = 0;
7172		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7173	} else {
7174		/* send packet as is */
7175
7176		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7177
7178		/* TODO: if sadb_msg_seq is specified, send to specific pid */
7179		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7180	}
7181}
7182
7183static int (*key_typesw[])(struct socket *, struct mbuf *,
7184		const struct sadb_msghdr *) = {
7185	NULL,		/* SADB_RESERVED */
7186	key_getspi,	/* SADB_GETSPI */
7187	key_update,	/* SADB_UPDATE */
7188	key_add,	/* SADB_ADD */
7189	key_delete,	/* SADB_DELETE */
7190	key_get,	/* SADB_GET */
7191	key_acquire2,	/* SADB_ACQUIRE */
7192	key_register,	/* SADB_REGISTER */
7193	NULL,		/* SADB_EXPIRE */
7194	key_flush,	/* SADB_FLUSH */
7195	key_dump,	/* SADB_DUMP */
7196	key_promisc,	/* SADB_X_PROMISC */
7197	NULL,		/* SADB_X_PCHANGE */
7198	key_spdadd,	/* SADB_X_SPDUPDATE */
7199	key_spdadd,	/* SADB_X_SPDADD */
7200	key_spddelete,	/* SADB_X_SPDDELETE */
7201	key_spdget,	/* SADB_X_SPDGET */
7202	NULL,		/* SADB_X_SPDACQUIRE */
7203	key_spddump,	/* SADB_X_SPDDUMP */
7204	key_spdflush,	/* SADB_X_SPDFLUSH */
7205	key_spdadd,	/* SADB_X_SPDSETIDX */
7206	NULL,		/* SADB_X_SPDEXPIRE */
7207	key_spddelete2,	/* SADB_X_SPDDELETE2 */
7208};
7209
7210/*
7211 * parse sadb_msg buffer to process PFKEYv2,
7212 * and create a data to response if needed.
7213 * I think to be dealed with mbuf directly.
7214 * IN:
7215 *     msgp  : pointer to pointer to a received buffer pulluped.
7216 *             This is rewrited to response.
7217 *     so    : pointer to socket.
7218 * OUT:
7219 *    length for buffer to send to user process.
7220 */
7221int
7222key_parse(struct mbuf *m, struct socket *so)
7223{
7224	struct sadb_msg *msg;
7225	struct sadb_msghdr mh;
7226	u_int orglen;
7227	int error;
7228	int target;
7229
7230	IPSEC_ASSERT(so != NULL, ("null socket"));
7231	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7232
7233#if 0	/*kdebug_sadb assumes msg in linear buffer*/
7234	KEYDEBUG(KEYDEBUG_KEY_DUMP,
7235		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
7236		kdebug_sadb(msg));
7237#endif
7238
7239	if (m->m_len < sizeof(struct sadb_msg)) {
7240		m = m_pullup(m, sizeof(struct sadb_msg));
7241		if (!m)
7242			return ENOBUFS;
7243	}
7244	msg = mtod(m, struct sadb_msg *);
7245	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7246	target = KEY_SENDUP_ONE;
7247
7248	if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != orglen) {
7249		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
7250		PFKEYSTAT_INC(out_invlen);
7251		error = EINVAL;
7252		goto senderror;
7253	}
7254
7255	if (msg->sadb_msg_version != PF_KEY_V2) {
7256		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
7257		    __func__, msg->sadb_msg_version));
7258		PFKEYSTAT_INC(out_invver);
7259		error = EINVAL;
7260		goto senderror;
7261	}
7262
7263	if (msg->sadb_msg_type > SADB_MAX) {
7264		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7265		    __func__, msg->sadb_msg_type));
7266		PFKEYSTAT_INC(out_invmsgtype);
7267		error = EINVAL;
7268		goto senderror;
7269	}
7270
7271	/* for old-fashioned code - should be nuked */
7272	if (m->m_pkthdr.len > MCLBYTES) {
7273		m_freem(m);
7274		return ENOBUFS;
7275	}
7276	if (m->m_next) {
7277		struct mbuf *n;
7278
7279		MGETHDR(n, M_NOWAIT, MT_DATA);
7280		if (n && m->m_pkthdr.len > MHLEN) {
7281			MCLGET(n, M_NOWAIT);
7282			if ((n->m_flags & M_EXT) == 0) {
7283				m_free(n);
7284				n = NULL;
7285			}
7286		}
7287		if (!n) {
7288			m_freem(m);
7289			return ENOBUFS;
7290		}
7291		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7292		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7293		n->m_next = NULL;
7294		m_freem(m);
7295		m = n;
7296	}
7297
7298	/* align the mbuf chain so that extensions are in contiguous region. */
7299	error = key_align(m, &mh);
7300	if (error)
7301		return error;
7302
7303	msg = mh.msg;
7304
7305	/* check SA type */
7306	switch (msg->sadb_msg_satype) {
7307	case SADB_SATYPE_UNSPEC:
7308		switch (msg->sadb_msg_type) {
7309		case SADB_GETSPI:
7310		case SADB_UPDATE:
7311		case SADB_ADD:
7312		case SADB_DELETE:
7313		case SADB_GET:
7314		case SADB_ACQUIRE:
7315		case SADB_EXPIRE:
7316			ipseclog((LOG_DEBUG, "%s: must specify satype "
7317			    "when msg type=%u.\n", __func__,
7318			    msg->sadb_msg_type));
7319			PFKEYSTAT_INC(out_invsatype);
7320			error = EINVAL;
7321			goto senderror;
7322		}
7323		break;
7324	case SADB_SATYPE_AH:
7325	case SADB_SATYPE_ESP:
7326	case SADB_X_SATYPE_IPCOMP:
7327	case SADB_X_SATYPE_TCPSIGNATURE:
7328		switch (msg->sadb_msg_type) {
7329		case SADB_X_SPDADD:
7330		case SADB_X_SPDDELETE:
7331		case SADB_X_SPDGET:
7332		case SADB_X_SPDDUMP:
7333		case SADB_X_SPDFLUSH:
7334		case SADB_X_SPDSETIDX:
7335		case SADB_X_SPDUPDATE:
7336		case SADB_X_SPDDELETE2:
7337			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7338				__func__, msg->sadb_msg_type));
7339			PFKEYSTAT_INC(out_invsatype);
7340			error = EINVAL;
7341			goto senderror;
7342		}
7343		break;
7344	case SADB_SATYPE_RSVP:
7345	case SADB_SATYPE_OSPFV2:
7346	case SADB_SATYPE_RIPV2:
7347	case SADB_SATYPE_MIP:
7348		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
7349			__func__, msg->sadb_msg_satype));
7350		PFKEYSTAT_INC(out_invsatype);
7351		error = EOPNOTSUPP;
7352		goto senderror;
7353	case 1:	/* XXX: What does it do? */
7354		if (msg->sadb_msg_type == SADB_X_PROMISC)
7355			break;
7356		/*FALLTHROUGH*/
7357	default:
7358		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7359			__func__, msg->sadb_msg_satype));
7360		PFKEYSTAT_INC(out_invsatype);
7361		error = EINVAL;
7362		goto senderror;
7363	}
7364
7365	/* check field of upper layer protocol and address family */
7366	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7367	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7368		struct sadb_address *src0, *dst0;
7369		u_int plen;
7370
7371		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7372		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7373
7374		/* check upper layer protocol */
7375		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7376			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
7377				"mismatched.\n", __func__));
7378			PFKEYSTAT_INC(out_invaddr);
7379			error = EINVAL;
7380			goto senderror;
7381		}
7382
7383		/* check family */
7384		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7385		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
7386			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
7387				__func__));
7388			PFKEYSTAT_INC(out_invaddr);
7389			error = EINVAL;
7390			goto senderror;
7391		}
7392		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7393		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
7394			ipseclog((LOG_DEBUG, "%s: address struct size "
7395				"mismatched.\n", __func__));
7396			PFKEYSTAT_INC(out_invaddr);
7397			error = EINVAL;
7398			goto senderror;
7399		}
7400
7401		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7402		case AF_INET:
7403			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7404			    sizeof(struct sockaddr_in)) {
7405				PFKEYSTAT_INC(out_invaddr);
7406				error = EINVAL;
7407				goto senderror;
7408			}
7409			break;
7410		case AF_INET6:
7411			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7412			    sizeof(struct sockaddr_in6)) {
7413				PFKEYSTAT_INC(out_invaddr);
7414				error = EINVAL;
7415				goto senderror;
7416			}
7417			break;
7418		default:
7419			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
7420				__func__));
7421			PFKEYSTAT_INC(out_invaddr);
7422			error = EAFNOSUPPORT;
7423			goto senderror;
7424		}
7425
7426		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7427		case AF_INET:
7428			plen = sizeof(struct in_addr) << 3;
7429			break;
7430		case AF_INET6:
7431			plen = sizeof(struct in6_addr) << 3;
7432			break;
7433		default:
7434			plen = 0;	/*fool gcc*/
7435			break;
7436		}
7437
7438		/* check max prefix length */
7439		if (src0->sadb_address_prefixlen > plen ||
7440		    dst0->sadb_address_prefixlen > plen) {
7441			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
7442				__func__));
7443			PFKEYSTAT_INC(out_invaddr);
7444			error = EINVAL;
7445			goto senderror;
7446		}
7447
7448		/*
7449		 * prefixlen == 0 is valid because there can be a case when
7450		 * all addresses are matched.
7451		 */
7452	}
7453
7454	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7455	    key_typesw[msg->sadb_msg_type] == NULL) {
7456		PFKEYSTAT_INC(out_invmsgtype);
7457		error = EINVAL;
7458		goto senderror;
7459	}
7460
7461	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7462
7463senderror:
7464	msg->sadb_msg_errno = error;
7465	return key_sendup_mbuf(so, m, target);
7466}
7467
7468static int
7469key_senderror(struct socket *so, struct mbuf *m, int code)
7470{
7471	struct sadb_msg *msg;
7472
7473	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7474		("mbuf too small, len %u", m->m_len));
7475
7476	msg = mtod(m, struct sadb_msg *);
7477	msg->sadb_msg_errno = code;
7478	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7479}
7480
7481/*
7482 * set the pointer to each header into message buffer.
7483 * m will be freed on error.
7484 * XXX larger-than-MCLBYTES extension?
7485 */
7486static int
7487key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7488{
7489	struct mbuf *n;
7490	struct sadb_ext *ext;
7491	size_t off, end;
7492	int extlen;
7493	int toff;
7494
7495	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7496	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7497	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7498		("mbuf too small, len %u", m->m_len));
7499
7500	/* initialize */
7501	bzero(mhp, sizeof(*mhp));
7502
7503	mhp->msg = mtod(m, struct sadb_msg *);
7504	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
7505
7506	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7507	extlen = end;	/*just in case extlen is not updated*/
7508	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7509		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7510		if (!n) {
7511			/* m is already freed */
7512			return ENOBUFS;
7513		}
7514		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7515
7516		/* set pointer */
7517		switch (ext->sadb_ext_type) {
7518		case SADB_EXT_SA:
7519		case SADB_EXT_ADDRESS_SRC:
7520		case SADB_EXT_ADDRESS_DST:
7521		case SADB_EXT_ADDRESS_PROXY:
7522		case SADB_EXT_LIFETIME_CURRENT:
7523		case SADB_EXT_LIFETIME_HARD:
7524		case SADB_EXT_LIFETIME_SOFT:
7525		case SADB_EXT_KEY_AUTH:
7526		case SADB_EXT_KEY_ENCRYPT:
7527		case SADB_EXT_IDENTITY_SRC:
7528		case SADB_EXT_IDENTITY_DST:
7529		case SADB_EXT_SENSITIVITY:
7530		case SADB_EXT_PROPOSAL:
7531		case SADB_EXT_SUPPORTED_AUTH:
7532		case SADB_EXT_SUPPORTED_ENCRYPT:
7533		case SADB_EXT_SPIRANGE:
7534		case SADB_X_EXT_POLICY:
7535		case SADB_X_EXT_SA2:
7536#ifdef IPSEC_NAT_T
7537		case SADB_X_EXT_NAT_T_TYPE:
7538		case SADB_X_EXT_NAT_T_SPORT:
7539		case SADB_X_EXT_NAT_T_DPORT:
7540		case SADB_X_EXT_NAT_T_OAI:
7541		case SADB_X_EXT_NAT_T_OAR:
7542		case SADB_X_EXT_NAT_T_FRAG:
7543#endif
7544			/* duplicate check */
7545			/*
7546			 * XXX Are there duplication payloads of either
7547			 * KEY_AUTH or KEY_ENCRYPT ?
7548			 */
7549			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7550				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7551					"%u\n", __func__, ext->sadb_ext_type));
7552				m_freem(m);
7553				PFKEYSTAT_INC(out_dupext);
7554				return EINVAL;
7555			}
7556			break;
7557		default:
7558			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7559				__func__, ext->sadb_ext_type));
7560			m_freem(m);
7561			PFKEYSTAT_INC(out_invexttype);
7562			return EINVAL;
7563		}
7564
7565		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7566
7567		if (key_validate_ext(ext, extlen)) {
7568			m_freem(m);
7569			PFKEYSTAT_INC(out_invlen);
7570			return EINVAL;
7571		}
7572
7573		n = m_pulldown(m, off, extlen, &toff);
7574		if (!n) {
7575			/* m is already freed */
7576			return ENOBUFS;
7577		}
7578		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7579
7580		mhp->ext[ext->sadb_ext_type] = ext;
7581		mhp->extoff[ext->sadb_ext_type] = off;
7582		mhp->extlen[ext->sadb_ext_type] = extlen;
7583	}
7584
7585	if (off != end) {
7586		m_freem(m);
7587		PFKEYSTAT_INC(out_invlen);
7588		return EINVAL;
7589	}
7590
7591	return 0;
7592}
7593
7594static int
7595key_validate_ext(const struct sadb_ext *ext, int len)
7596{
7597	const struct sockaddr *sa;
7598	enum { NONE, ADDR } checktype = NONE;
7599	int baselen = 0;
7600	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7601
7602	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7603		return EINVAL;
7604
7605	/* if it does not match minimum/maximum length, bail */
7606	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7607	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7608		return EINVAL;
7609	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7610		return EINVAL;
7611	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7612		return EINVAL;
7613
7614	/* more checks based on sadb_ext_type XXX need more */
7615	switch (ext->sadb_ext_type) {
7616	case SADB_EXT_ADDRESS_SRC:
7617	case SADB_EXT_ADDRESS_DST:
7618	case SADB_EXT_ADDRESS_PROXY:
7619		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7620		checktype = ADDR;
7621		break;
7622	case SADB_EXT_IDENTITY_SRC:
7623	case SADB_EXT_IDENTITY_DST:
7624		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7625		    SADB_X_IDENTTYPE_ADDR) {
7626			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7627			checktype = ADDR;
7628		} else
7629			checktype = NONE;
7630		break;
7631	default:
7632		checktype = NONE;
7633		break;
7634	}
7635
7636	switch (checktype) {
7637	case NONE:
7638		break;
7639	case ADDR:
7640		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7641		if (len < baselen + sal)
7642			return EINVAL;
7643		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7644			return EINVAL;
7645		break;
7646	}
7647
7648	return 0;
7649}
7650
7651void
7652key_init(void)
7653{
7654	int i;
7655
7656	for (i = 0; i < IPSEC_DIR_MAX; i++)
7657		LIST_INIT(&V_sptree[i]);
7658
7659	LIST_INIT(&V_sahtree);
7660
7661	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7662		LIST_INIT(&V_regtree[i]);
7663
7664	LIST_INIT(&V_acqtree);
7665	LIST_INIT(&V_spacqtree);
7666
7667	/* system default */
7668	V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7669	V_ip4_def_policy.refcnt++;	/*never reclaim this*/
7670
7671	if (!IS_DEFAULT_VNET(curvnet))
7672		return;
7673
7674	SPTREE_LOCK_INIT();
7675	REGTREE_LOCK_INIT();
7676	SAHTREE_LOCK_INIT();
7677	ACQ_LOCK_INIT();
7678	SPACQ_LOCK_INIT();
7679
7680#ifndef IPSEC_DEBUG2
7681	timeout((void *)key_timehandler, (void *)0, hz);
7682#endif /*IPSEC_DEBUG2*/
7683
7684	/* initialize key statistics */
7685	keystat.getspi_count = 1;
7686
7687	printf("IPsec: Initialized Security Association Processing.\n");
7688}
7689
7690#ifdef VIMAGE
7691void
7692key_destroy(void)
7693{
7694	struct secpolicy *sp, *nextsp;
7695	struct secacq *acq, *nextacq;
7696	struct secspacq *spacq, *nextspacq;
7697	struct secashead *sah, *nextsah;
7698	struct secreg *reg;
7699	int i;
7700
7701	SPTREE_LOCK();
7702	for (i = 0; i < IPSEC_DIR_MAX; i++) {
7703		for (sp = LIST_FIRST(&V_sptree[i]);
7704		    sp != NULL; sp = nextsp) {
7705			nextsp = LIST_NEXT(sp, chain);
7706			if (__LIST_CHAINED(sp)) {
7707				LIST_REMOVE(sp, chain);
7708				free(sp, M_IPSEC_SP);
7709			}
7710		}
7711	}
7712	SPTREE_UNLOCK();
7713
7714	SAHTREE_LOCK();
7715	for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) {
7716		nextsah = LIST_NEXT(sah, chain);
7717		if (__LIST_CHAINED(sah)) {
7718			LIST_REMOVE(sah, chain);
7719			free(sah, M_IPSEC_SAH);
7720		}
7721	}
7722	SAHTREE_UNLOCK();
7723
7724	REGTREE_LOCK();
7725	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7726		LIST_FOREACH(reg, &V_regtree[i], chain) {
7727			if (__LIST_CHAINED(reg)) {
7728				LIST_REMOVE(reg, chain);
7729				free(reg, M_IPSEC_SAR);
7730				break;
7731			}
7732		}
7733	}
7734	REGTREE_UNLOCK();
7735
7736	ACQ_LOCK();
7737	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
7738		nextacq = LIST_NEXT(acq, chain);
7739		if (__LIST_CHAINED(acq)) {
7740			LIST_REMOVE(acq, chain);
7741			free(acq, M_IPSEC_SAQ);
7742		}
7743	}
7744	ACQ_UNLOCK();
7745
7746	SPACQ_LOCK();
7747	for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL;
7748	    spacq = nextspacq) {
7749		nextspacq = LIST_NEXT(spacq, chain);
7750		if (__LIST_CHAINED(spacq)) {
7751			LIST_REMOVE(spacq, chain);
7752			free(spacq, M_IPSEC_SAQ);
7753		}
7754	}
7755	SPACQ_UNLOCK();
7756}
7757#endif
7758
7759/*
7760 * XXX: maybe This function is called after INBOUND IPsec processing.
7761 *
7762 * Special check for tunnel-mode packets.
7763 * We must make some checks for consistency between inner and outer IP header.
7764 *
7765 * xxx more checks to be provided
7766 */
7767int
7768key_checktunnelsanity(struct secasvar *sav, u_int family, caddr_t src,
7769    caddr_t dst)
7770{
7771	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7772
7773	/* XXX: check inner IP header */
7774
7775	return 1;
7776}
7777
7778/* record data transfer on SA, and update timestamps */
7779void
7780key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
7781{
7782	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7783	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7784	if (!sav->lft_c)
7785		return;
7786
7787	/*
7788	 * XXX Currently, there is a difference of bytes size
7789	 * between inbound and outbound processing.
7790	 */
7791	sav->lft_c->bytes += m->m_pkthdr.len;
7792	/* to check bytes lifetime is done in key_timehandler(). */
7793
7794	/*
7795	 * We use the number of packets as the unit of
7796	 * allocations.  We increment the variable
7797	 * whenever {esp,ah}_{in,out}put is called.
7798	 */
7799	sav->lft_c->allocations++;
7800	/* XXX check for expires? */
7801
7802	/*
7803	 * NOTE: We record CURRENT usetime by using wall clock,
7804	 * in seconds.  HARD and SOFT lifetime are measured by the time
7805	 * difference (again in seconds) from usetime.
7806	 *
7807	 *	usetime
7808	 *	v     expire   expire
7809	 * -----+-----+--------+---> t
7810	 *	<--------------> HARD
7811	 *	<-----> SOFT
7812	 */
7813	sav->lft_c->usetime = time_second;
7814	/* XXX check for expires? */
7815
7816	return;
7817}
7818
7819static void
7820key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7821{
7822	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7823	SAHTREE_LOCK_ASSERT();
7824
7825	if (sav->state != state) {
7826		if (__LIST_CHAINED(sav))
7827			LIST_REMOVE(sav, chain);
7828		sav->state = state;
7829		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7830	}
7831}
7832
7833void
7834key_sa_stir_iv(struct secasvar *sav)
7835{
7836
7837	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7838	key_randomfill(sav->iv, sav->ivlen);
7839}
7840
7841/*
7842 * Take one of the kernel's security keys and convert it into a PF_KEY
7843 * structure within an mbuf, suitable for sending up to a waiting
7844 * application in user land.
7845 *
7846 * IN:
7847 *    src: A pointer to a kernel security key.
7848 *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
7849 * OUT:
7850 *    a valid mbuf or NULL indicating an error
7851 *
7852 */
7853
7854static struct mbuf *
7855key_setkey(struct seckey *src, u_int16_t exttype)
7856{
7857	struct mbuf *m;
7858	struct sadb_key *p;
7859	int len;
7860
7861	if (src == NULL)
7862		return NULL;
7863
7864	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
7865	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
7866	if (m == NULL)
7867		return NULL;
7868	m_align(m, len);
7869	m->m_len = len;
7870	p = mtod(m, struct sadb_key *);
7871	bzero(p, len);
7872	p->sadb_key_len = PFKEY_UNIT64(len);
7873	p->sadb_key_exttype = exttype;
7874	p->sadb_key_bits = src->bits;
7875	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
7876
7877	return m;
7878}
7879
7880/*
7881 * Take one of the kernel's lifetime data structures and convert it
7882 * into a PF_KEY structure within an mbuf, suitable for sending up to
7883 * a waiting application in user land.
7884 *
7885 * IN:
7886 *    src: A pointer to a kernel lifetime structure.
7887 *    exttype: Which type of lifetime this is. Refer to the PF_KEY
7888 *             data structures for more information.
7889 * OUT:
7890 *    a valid mbuf or NULL indicating an error
7891 *
7892 */
7893
7894static struct mbuf *
7895key_setlifetime(struct seclifetime *src, u_int16_t exttype)
7896{
7897	struct mbuf *m = NULL;
7898	struct sadb_lifetime *p;
7899	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
7900
7901	if (src == NULL)
7902		return NULL;
7903
7904	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
7905	if (m == NULL)
7906		return m;
7907	m_align(m, len);
7908	m->m_len = len;
7909	p = mtod(m, struct sadb_lifetime *);
7910
7911	bzero(p, len);
7912	p->sadb_lifetime_len = PFKEY_UNIT64(len);
7913	p->sadb_lifetime_exttype = exttype;
7914	p->sadb_lifetime_allocations = src->allocations;
7915	p->sadb_lifetime_bytes = src->bytes;
7916	p->sadb_lifetime_addtime = src->addtime;
7917	p->sadb_lifetime_usetime = src->usetime;
7918
7919	return m;
7920
7921}
7922