ip6_output.c revision 282894
1/*-
2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
30 */
31
32/*-
33 * Copyright (c) 1982, 1986, 1988, 1990, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 4. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: stable/10/sys/netinet6/ip6_output.c 282894 2015-05-14 11:47:18Z ae $");
65
66#include "opt_inet.h"
67#include "opt_inet6.h"
68#include "opt_ipfw.h"
69#include "opt_ipsec.h"
70#include "opt_sctp.h"
71#include "opt_route.h"
72
73#include <sys/param.h>
74#include <sys/kernel.h>
75#include <sys/malloc.h>
76#include <sys/mbuf.h>
77#include <sys/errno.h>
78#include <sys/priv.h>
79#include <sys/proc.h>
80#include <sys/protosw.h>
81#include <sys/socket.h>
82#include <sys/socketvar.h>
83#include <sys/syslog.h>
84#include <sys/ucred.h>
85
86#include <machine/in_cksum.h>
87
88#include <net/if.h>
89#include <net/netisr.h>
90#include <net/route.h>
91#include <net/pfil.h>
92#include <net/vnet.h>
93
94#include <netinet/in.h>
95#include <netinet/in_var.h>
96#include <netinet/ip_var.h>
97#include <netinet6/in6_var.h>
98#include <netinet/ip6.h>
99#include <netinet/icmp6.h>
100#include <netinet6/ip6_var.h>
101#include <netinet/in_pcb.h>
102#include <netinet/tcp_var.h>
103#include <netinet6/nd6.h>
104
105#ifdef IPSEC
106#include <netipsec/ipsec.h>
107#include <netipsec/ipsec6.h>
108#include <netipsec/key.h>
109#include <netinet6/ip6_ipsec.h>
110#endif /* IPSEC */
111#ifdef SCTP
112#include <netinet/sctp.h>
113#include <netinet/sctp_crc32.h>
114#endif
115
116#include <netinet6/ip6protosw.h>
117#include <netinet6/scope6_var.h>
118
119#ifdef FLOWTABLE
120#include <net/flowtable.h>
121#endif
122
123extern int in6_mcast_loop;
124
125struct ip6_exthdrs {
126	struct mbuf *ip6e_ip6;
127	struct mbuf *ip6e_hbh;
128	struct mbuf *ip6e_dest1;
129	struct mbuf *ip6e_rthdr;
130	struct mbuf *ip6e_dest2;
131};
132
133static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
134			   struct ucred *, int);
135static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
136	struct socket *, struct sockopt *);
137static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
138static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *,
139	struct ucred *, int, int, int);
140
141static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
142static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
143	struct ip6_frag **);
144static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
145static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
146static int ip6_getpmtu(struct route_in6 *, struct route_in6 *,
147	struct ifnet *, struct in6_addr *, u_long *, int *, u_int);
148static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
149
150
151/*
152 * Make an extension header from option data.  hp is the source, and
153 * mp is the destination.
154 */
155#define MAKE_EXTHDR(hp, mp)						\
156    do {								\
157	if (hp) {							\
158		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
159		error = ip6_copyexthdr((mp), (caddr_t)(hp),		\
160		    ((eh)->ip6e_len + 1) << 3);				\
161		if (error)						\
162			goto freehdrs;					\
163	}								\
164    } while (/*CONSTCOND*/ 0)
165
166/*
167 * Form a chain of extension headers.
168 * m is the extension header mbuf
169 * mp is the previous mbuf in the chain
170 * p is the next header
171 * i is the type of option.
172 */
173#define MAKE_CHAIN(m, mp, p, i)\
174    do {\
175	if (m) {\
176		if (!hdrsplit) \
177			panic("assumption failed: hdr not split"); \
178		*mtod((m), u_char *) = *(p);\
179		*(p) = (i);\
180		p = mtod((m), u_char *);\
181		(m)->m_next = (mp)->m_next;\
182		(mp)->m_next = (m);\
183		(mp) = (m);\
184	}\
185    } while (/*CONSTCOND*/ 0)
186
187void
188in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset)
189{
190	u_short csum;
191
192	csum = in_cksum_skip(m, offset + plen, offset);
193	if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0)
194		csum = 0xffff;
195	offset += m->m_pkthdr.csum_data;	/* checksum offset */
196
197	if (offset + sizeof(u_short) > m->m_len) {
198		printf("%s: delayed m_pullup, m->len: %d plen %u off %u "
199		    "csum_flags=%b\n", __func__, m->m_len, plen, offset,
200		    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
201		/*
202		 * XXX this should not happen, but if it does, the correct
203		 * behavior may be to insert the checksum in the appropriate
204		 * next mbuf in the chain.
205		 */
206		return;
207	}
208	*(u_short *)(m->m_data + offset) = csum;
209}
210
211/*
212 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
213 * header (with pri, len, nxt, hlim, src, dst).
214 * This function may modify ver and hlim only.
215 * The mbuf chain containing the packet will be freed.
216 * The mbuf opt, if present, will not be freed.
217 * If route_in6 ro is present and has ro_rt initialized, route lookup would be
218 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
219 * then result of route lookup is stored in ro->ro_rt.
220 *
221 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and
222 * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
223 * which is rt_mtu.
224 *
225 * ifpp - XXX: just for statistics
226 */
227int
228ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
229    struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
230    struct ifnet **ifpp, struct inpcb *inp)
231{
232	struct ip6_hdr *ip6, *mhip6;
233	struct ifnet *ifp, *origifp;
234	struct mbuf *m = m0;
235	struct mbuf *mprev = NULL;
236	int hlen, tlen, len, off;
237	struct route_in6 ip6route;
238	struct rtentry *rt = NULL;
239	struct sockaddr_in6 *dst, src_sa, dst_sa;
240	struct in6_addr odst;
241	int error = 0;
242	struct in6_ifaddr *ia = NULL;
243	u_long mtu;
244	int alwaysfrag, dontfrag;
245	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
246	struct ip6_exthdrs exthdrs;
247	struct in6_addr finaldst, src0, dst0;
248	u_int32_t zone;
249	struct route_in6 *ro_pmtu = NULL;
250	int hdrsplit = 0;
251	int sw_csum, tso;
252	struct m_tag *fwd_tag = NULL;
253
254	ip6 = mtod(m, struct ip6_hdr *);
255	if (ip6 == NULL) {
256		printf ("ip6 is NULL");
257		goto bad;
258	}
259
260	if (inp != NULL)
261		M_SETFIB(m, inp->inp_inc.inc_fibnum);
262
263	finaldst = ip6->ip6_dst;
264	bzero(&exthdrs, sizeof(exthdrs));
265	if (opt) {
266		/* Hop-by-Hop options header */
267		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
268		/* Destination options header(1st part) */
269		if (opt->ip6po_rthdr) {
270			/*
271			 * Destination options header(1st part)
272			 * This only makes sense with a routing header.
273			 * See Section 9.2 of RFC 3542.
274			 * Disabling this part just for MIP6 convenience is
275			 * a bad idea.  We need to think carefully about a
276			 * way to make the advanced API coexist with MIP6
277			 * options, which might automatically be inserted in
278			 * the kernel.
279			 */
280			MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
281		}
282		/* Routing header */
283		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
284		/* Destination options header(2nd part) */
285		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
286	}
287
288#ifdef IPSEC
289	/*
290	 * IPSec checking which handles several cases.
291	 * FAST IPSEC: We re-injected the packet.
292	 */
293	switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp))
294	{
295	case 1:                 /* Bad packet */
296		goto freehdrs;
297	case -1:                /* IPSec done */
298		goto done;
299	case 0:                 /* No IPSec */
300	default:
301		break;
302	}
303#endif /* IPSEC */
304
305	/*
306	 * Calculate the total length of the extension header chain.
307	 * Keep the length of the unfragmentable part for fragmentation.
308	 */
309	optlen = 0;
310	if (exthdrs.ip6e_hbh)
311		optlen += exthdrs.ip6e_hbh->m_len;
312	if (exthdrs.ip6e_dest1)
313		optlen += exthdrs.ip6e_dest1->m_len;
314	if (exthdrs.ip6e_rthdr)
315		optlen += exthdrs.ip6e_rthdr->m_len;
316	unfragpartlen = optlen + sizeof(struct ip6_hdr);
317
318	/* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */
319	if (exthdrs.ip6e_dest2)
320		optlen += exthdrs.ip6e_dest2->m_len;
321
322	/*
323	 * If there is at least one extension header,
324	 * separate IP6 header from the payload.
325	 */
326	if (optlen && !hdrsplit) {
327		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
328			m = NULL;
329			goto freehdrs;
330		}
331		m = exthdrs.ip6e_ip6;
332		hdrsplit++;
333	}
334
335	/* adjust pointer */
336	ip6 = mtod(m, struct ip6_hdr *);
337
338	/* adjust mbuf packet header length */
339	m->m_pkthdr.len += optlen;
340	plen = m->m_pkthdr.len - sizeof(*ip6);
341
342	/* If this is a jumbo payload, insert a jumbo payload option. */
343	if (plen > IPV6_MAXPACKET) {
344		if (!hdrsplit) {
345			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
346				m = NULL;
347				goto freehdrs;
348			}
349			m = exthdrs.ip6e_ip6;
350			hdrsplit++;
351		}
352		/* adjust pointer */
353		ip6 = mtod(m, struct ip6_hdr *);
354		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
355			goto freehdrs;
356		ip6->ip6_plen = 0;
357	} else
358		ip6->ip6_plen = htons(plen);
359
360	/*
361	 * Concatenate headers and fill in next header fields.
362	 * Here we have, on "m"
363	 *	IPv6 payload
364	 * and we insert headers accordingly.  Finally, we should be getting:
365	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
366	 *
367	 * during the header composing process, "m" points to IPv6 header.
368	 * "mprev" points to an extension header prior to esp.
369	 */
370	u_char *nexthdrp = &ip6->ip6_nxt;
371	mprev = m;
372
373	/*
374	 * we treat dest2 specially.  this makes IPsec processing
375	 * much easier.  the goal here is to make mprev point the
376	 * mbuf prior to dest2.
377	 *
378	 * result: IPv6 dest2 payload
379	 * m and mprev will point to IPv6 header.
380	 */
381	if (exthdrs.ip6e_dest2) {
382		if (!hdrsplit)
383			panic("assumption failed: hdr not split");
384		exthdrs.ip6e_dest2->m_next = m->m_next;
385		m->m_next = exthdrs.ip6e_dest2;
386		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
387		ip6->ip6_nxt = IPPROTO_DSTOPTS;
388	}
389
390	/*
391	 * result: IPv6 hbh dest1 rthdr dest2 payload
392	 * m will point to IPv6 header.  mprev will point to the
393	 * extension header prior to dest2 (rthdr in the above case).
394	 */
395	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
396	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
397		   IPPROTO_DSTOPTS);
398	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
399		   IPPROTO_ROUTING);
400
401	/*
402	 * If there is a routing header, discard the packet.
403	 */
404	if (exthdrs.ip6e_rthdr) {
405		 error = EINVAL;
406		 goto bad;
407	}
408
409	/* Source address validation */
410	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
411	    (flags & IPV6_UNSPECSRC) == 0) {
412		error = EOPNOTSUPP;
413		IP6STAT_INC(ip6s_badscope);
414		goto bad;
415	}
416	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
417		error = EOPNOTSUPP;
418		IP6STAT_INC(ip6s_badscope);
419		goto bad;
420	}
421
422	IP6STAT_INC(ip6s_localout);
423
424	/*
425	 * Route packet.
426	 */
427	if (ro == 0) {
428		ro = &ip6route;
429		bzero((caddr_t)ro, sizeof(*ro));
430	}
431	ro_pmtu = ro;
432	if (opt && opt->ip6po_rthdr)
433		ro = &opt->ip6po_route;
434	dst = (struct sockaddr_in6 *)&ro->ro_dst;
435#ifdef FLOWTABLE
436	if (ro->ro_rt == NULL)
437		(void )flowtable_lookup(AF_INET6, m, (struct route *)ro);
438#endif
439again:
440	/*
441	 * if specified, try to fill in the traffic class field.
442	 * do not override if a non-zero value is already set.
443	 * we check the diffserv field and the ecn field separately.
444	 */
445	if (opt && opt->ip6po_tclass >= 0) {
446		int mask = 0;
447
448		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
449			mask |= 0xfc;
450		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
451			mask |= 0x03;
452		if (mask != 0)
453			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
454	}
455
456	/* fill in or override the hop limit field, if necessary. */
457	if (opt && opt->ip6po_hlim != -1)
458		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
459	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
460		if (im6o != NULL)
461			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
462		else
463			ip6->ip6_hlim = V_ip6_defmcasthlim;
464	}
465
466	/* adjust pointer */
467	ip6 = mtod(m, struct ip6_hdr *);
468
469	if (ro->ro_rt && fwd_tag == NULL) {
470		rt = ro->ro_rt;
471		ifp = ro->ro_rt->rt_ifp;
472	} else {
473		if (fwd_tag == NULL) {
474			bzero(&dst_sa, sizeof(dst_sa));
475			dst_sa.sin6_family = AF_INET6;
476			dst_sa.sin6_len = sizeof(dst_sa);
477			dst_sa.sin6_addr = ip6->ip6_dst;
478		}
479		error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp,
480		    &rt, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
481		if (error != 0) {
482			if (ifp != NULL)
483				in6_ifstat_inc(ifp, ifs6_out_discard);
484			goto bad;
485		}
486	}
487	if (rt == NULL) {
488		/*
489		 * If in6_selectroute() does not return a route entry,
490		 * dst may not have been updated.
491		 */
492		*dst = dst_sa;	/* XXX */
493	}
494
495	/*
496	 * then rt (for unicast) and ifp must be non-NULL valid values.
497	 */
498	if ((flags & IPV6_FORWARDING) == 0) {
499		/* XXX: the FORWARDING flag can be set for mrouting. */
500		in6_ifstat_inc(ifp, ifs6_out_request);
501	}
502	if (rt != NULL) {
503		ia = (struct in6_ifaddr *)(rt->rt_ifa);
504		counter_u64_add(rt->rt_pksent, 1);
505	}
506
507
508	/*
509	 * The outgoing interface must be in the zone of source and
510	 * destination addresses.
511	 */
512	origifp = ifp;
513
514	src0 = ip6->ip6_src;
515	if (in6_setscope(&src0, origifp, &zone))
516		goto badscope;
517	bzero(&src_sa, sizeof(src_sa));
518	src_sa.sin6_family = AF_INET6;
519	src_sa.sin6_len = sizeof(src_sa);
520	src_sa.sin6_addr = ip6->ip6_src;
521	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
522		goto badscope;
523
524	dst0 = ip6->ip6_dst;
525	if (in6_setscope(&dst0, origifp, &zone))
526		goto badscope;
527	/* re-initialize to be sure */
528	bzero(&dst_sa, sizeof(dst_sa));
529	dst_sa.sin6_family = AF_INET6;
530	dst_sa.sin6_len = sizeof(dst_sa);
531	dst_sa.sin6_addr = ip6->ip6_dst;
532	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
533		goto badscope;
534	}
535
536	/* We should use ia_ifp to support the case of
537	 * sending packets to an address of our own.
538	 */
539	if (ia != NULL && ia->ia_ifp)
540		ifp = ia->ia_ifp;
541
542	/* scope check is done. */
543	goto routefound;
544
545  badscope:
546	IP6STAT_INC(ip6s_badscope);
547	in6_ifstat_inc(origifp, ifs6_out_discard);
548	if (error == 0)
549		error = EHOSTUNREACH; /* XXX */
550	goto bad;
551
552  routefound:
553	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
554		if (opt && opt->ip6po_nextroute.ro_rt) {
555			/*
556			 * The nexthop is explicitly specified by the
557			 * application.  We assume the next hop is an IPv6
558			 * address.
559			 */
560			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
561		}
562		else if ((rt->rt_flags & RTF_GATEWAY))
563			dst = (struct sockaddr_in6 *)rt->rt_gateway;
564	}
565
566	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
567		m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
568	} else {
569		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
570		in6_ifstat_inc(ifp, ifs6_out_mcast);
571		/*
572		 * Confirm that the outgoing interface supports multicast.
573		 */
574		if (!(ifp->if_flags & IFF_MULTICAST)) {
575			IP6STAT_INC(ip6s_noroute);
576			in6_ifstat_inc(ifp, ifs6_out_discard);
577			error = ENETUNREACH;
578			goto bad;
579		}
580		if ((im6o == NULL && in6_mcast_loop) ||
581		    (im6o && im6o->im6o_multicast_loop)) {
582			/*
583			 * Loop back multicast datagram if not expressly
584			 * forbidden to do so, even if we have not joined
585			 * the address; protocols will filter it later,
586			 * thus deferring a hash lookup and lock acquisition
587			 * at the expense of an m_copym().
588			 */
589			ip6_mloopback(ifp, m, dst);
590		} else {
591			/*
592			 * If we are acting as a multicast router, perform
593			 * multicast forwarding as if the packet had just
594			 * arrived on the interface to which we are about
595			 * to send.  The multicast forwarding function
596			 * recursively calls this function, using the
597			 * IPV6_FORWARDING flag to prevent infinite recursion.
598			 *
599			 * Multicasts that are looped back by ip6_mloopback(),
600			 * above, will be forwarded by the ip6_input() routine,
601			 * if necessary.
602			 */
603			if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
604				/*
605				 * XXX: ip6_mforward expects that rcvif is NULL
606				 * when it is called from the originating path.
607				 * However, it may not always be the case.
608				 */
609				m->m_pkthdr.rcvif = NULL;
610				if (ip6_mforward(ip6, ifp, m) != 0) {
611					m_freem(m);
612					goto done;
613				}
614			}
615		}
616		/*
617		 * Multicasts with a hoplimit of zero may be looped back,
618		 * above, but must not be transmitted on a network.
619		 * Also, multicasts addressed to the loopback interface
620		 * are not sent -- the above call to ip6_mloopback() will
621		 * loop back a copy if this host actually belongs to the
622		 * destination group on the loopback interface.
623		 */
624		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
625		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
626			m_freem(m);
627			goto done;
628		}
629	}
630
631	/*
632	 * Fill the outgoing inteface to tell the upper layer
633	 * to increment per-interface statistics.
634	 */
635	if (ifpp)
636		*ifpp = ifp;
637
638	/* Determine path MTU. */
639	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
640	    &alwaysfrag, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0)
641		goto bad;
642
643	/*
644	 * The caller of this function may specify to use the minimum MTU
645	 * in some cases.
646	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
647	 * setting.  The logic is a bit complicated; by default, unicast
648	 * packets will follow path MTU while multicast packets will be sent at
649	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
650	 * including unicast ones will be sent at the minimum MTU.  Multicast
651	 * packets will always be sent at the minimum MTU unless
652	 * IP6PO_MINMTU_DISABLE is explicitly specified.
653	 * See RFC 3542 for more details.
654	 */
655	if (mtu > IPV6_MMTU) {
656		if ((flags & IPV6_MINMTU))
657			mtu = IPV6_MMTU;
658		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
659			mtu = IPV6_MMTU;
660		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
661			 (opt == NULL ||
662			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
663			mtu = IPV6_MMTU;
664		}
665	}
666
667	/*
668	 * clear embedded scope identifiers if necessary.
669	 * in6_clearscope will touch the addresses only when necessary.
670	 */
671	in6_clearscope(&ip6->ip6_src);
672	in6_clearscope(&ip6->ip6_dst);
673
674	/*
675	 * If the outgoing packet contains a hop-by-hop options header,
676	 * it must be examined and processed even by the source node.
677	 * (RFC 2460, section 4.)
678	 */
679	if (exthdrs.ip6e_hbh) {
680		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
681		u_int32_t dummy; /* XXX unused */
682		u_int32_t plen = 0; /* XXX: ip6_process will check the value */
683
684#ifdef DIAGNOSTIC
685		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
686			panic("ip6e_hbh is not contiguous");
687#endif
688		/*
689		 *  XXX: if we have to send an ICMPv6 error to the sender,
690		 *       we need the M_LOOP flag since icmp6_error() expects
691		 *       the IPv6 and the hop-by-hop options header are
692		 *       contiguous unless the flag is set.
693		 */
694		m->m_flags |= M_LOOP;
695		m->m_pkthdr.rcvif = ifp;
696		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
697		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
698		    &dummy, &plen) < 0) {
699			/* m was already freed at this point */
700			error = EINVAL;/* better error? */
701			goto done;
702		}
703		m->m_flags &= ~M_LOOP; /* XXX */
704		m->m_pkthdr.rcvif = NULL;
705	}
706
707	/* Jump over all PFIL processing if hooks are not active. */
708	if (!PFIL_HOOKED(&V_inet6_pfil_hook))
709		goto passout;
710
711	odst = ip6->ip6_dst;
712	/* Run through list of hooks for output packets. */
713	error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp);
714	if (error != 0 || m == NULL)
715		goto done;
716	ip6 = mtod(m, struct ip6_hdr *);
717
718	/* See if destination IP address was changed by packet filter. */
719	if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
720		m->m_flags |= M_SKIP_FIREWALL;
721		/* If destination is now ourself drop to ip6_input(). */
722		if (in6_localip(&ip6->ip6_dst)) {
723			m->m_flags |= M_FASTFWD_OURS;
724			if (m->m_pkthdr.rcvif == NULL)
725				m->m_pkthdr.rcvif = V_loif;
726			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
727				m->m_pkthdr.csum_flags |=
728				    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
729				m->m_pkthdr.csum_data = 0xffff;
730			}
731#ifdef SCTP
732			if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
733				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
734#endif
735			error = netisr_queue(NETISR_IPV6, m);
736			goto done;
737		} else
738			goto again;	/* Redo the routing table lookup. */
739	}
740
741	/* See if local, if yes, send it to netisr. */
742	if (m->m_flags & M_FASTFWD_OURS) {
743		if (m->m_pkthdr.rcvif == NULL)
744			m->m_pkthdr.rcvif = V_loif;
745		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
746			m->m_pkthdr.csum_flags |=
747			    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
748			m->m_pkthdr.csum_data = 0xffff;
749		}
750#ifdef SCTP
751		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
752			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
753#endif
754		error = netisr_queue(NETISR_IPV6, m);
755		goto done;
756	}
757	/* Or forward to some other address? */
758	if ((m->m_flags & M_IP6_NEXTHOP) &&
759	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
760		dst = (struct sockaddr_in6 *)&ro->ro_dst;
761		bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6));
762		m->m_flags |= M_SKIP_FIREWALL;
763		m->m_flags &= ~M_IP6_NEXTHOP;
764		m_tag_delete(m, fwd_tag);
765		goto again;
766	}
767
768passout:
769	/*
770	 * Send the packet to the outgoing interface.
771	 * If necessary, do IPv6 fragmentation before sending.
772	 *
773	 * the logic here is rather complex:
774	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
775	 * 1-a:	send as is if tlen <= path mtu
776	 * 1-b:	fragment if tlen > path mtu
777	 *
778	 * 2: if user asks us not to fragment (dontfrag == 1)
779	 * 2-a:	send as is if tlen <= interface mtu
780	 * 2-b:	error if tlen > interface mtu
781	 *
782	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
783	 *	always fragment
784	 *
785	 * 4: if dontfrag == 1 && alwaysfrag == 1
786	 *	error, as we cannot handle this conflicting request
787	 */
788	sw_csum = m->m_pkthdr.csum_flags;
789	if (!hdrsplit) {
790		tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0;
791		sw_csum &= ~ifp->if_hwassist;
792	} else
793		tso = 0;
794	/*
795	 * If we added extension headers, we will not do TSO and calculate the
796	 * checksums ourselves for now.
797	 * XXX-BZ  Need a framework to know when the NIC can handle it, even
798	 * with ext. hdrs.
799	 */
800	if (sw_csum & CSUM_DELAY_DATA_IPV6) {
801		sw_csum &= ~CSUM_DELAY_DATA_IPV6;
802		in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr));
803	}
804#ifdef SCTP
805	if (sw_csum & CSUM_SCTP_IPV6) {
806		sw_csum &= ~CSUM_SCTP_IPV6;
807		sctp_delayed_cksum(m, sizeof(struct ip6_hdr));
808	}
809#endif
810	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
811	tlen = m->m_pkthdr.len;
812
813	if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso)
814		dontfrag = 1;
815	else
816		dontfrag = 0;
817	if (dontfrag && alwaysfrag) {	/* case 4 */
818		/* conflicting request - can't transmit */
819		error = EMSGSIZE;
820		goto bad;
821	}
822	if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) {	/* case 2-b */
823		/*
824		 * Even if the DONTFRAG option is specified, we cannot send the
825		 * packet when the data length is larger than the MTU of the
826		 * outgoing interface.
827		 * Notify the error by sending IPV6_PATHMTU ancillary data if
828		 * application wanted to know the MTU value. Also return an
829		 * error code (this is not described in the API spec).
830		 */
831		if (inp != NULL)
832			ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu);
833		error = EMSGSIZE;
834		goto bad;
835	}
836
837	/*
838	 * transmit packet without fragmentation
839	 */
840	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
841		struct in6_ifaddr *ia6;
842
843		ip6 = mtod(m, struct ip6_hdr *);
844		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
845		if (ia6) {
846			/* Record statistics for this interface address. */
847			ia6->ia_ifa.if_opackets++;
848			ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
849			ifa_free(&ia6->ia_ifa);
850		}
851		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
852		goto done;
853	}
854
855	/*
856	 * try to fragment the packet.  case 1-b and 3
857	 */
858	if (mtu < IPV6_MMTU) {
859		/* path MTU cannot be less than IPV6_MMTU */
860		error = EMSGSIZE;
861		in6_ifstat_inc(ifp, ifs6_out_fragfail);
862		goto bad;
863	} else if (ip6->ip6_plen == 0) {
864		/* jumbo payload cannot be fragmented */
865		error = EMSGSIZE;
866		in6_ifstat_inc(ifp, ifs6_out_fragfail);
867		goto bad;
868	} else {
869		struct mbuf **mnext, *m_frgpart;
870		struct ip6_frag *ip6f;
871		u_int32_t id = htonl(ip6_randomid());
872		u_char nextproto;
873
874		int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
875
876		/*
877		 * Too large for the destination or interface;
878		 * fragment if possible.
879		 * Must be able to put at least 8 bytes per fragment.
880		 */
881		hlen = unfragpartlen;
882		if (mtu > IPV6_MAXPACKET)
883			mtu = IPV6_MAXPACKET;
884
885		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
886		if (len < 8) {
887			error = EMSGSIZE;
888			in6_ifstat_inc(ifp, ifs6_out_fragfail);
889			goto bad;
890		}
891
892		/*
893		 * Verify that we have any chance at all of being able to queue
894		 *      the packet or packet fragments
895		 */
896		if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
897		    < tlen  /* - hlen */)) {
898			error = ENOBUFS;
899			IP6STAT_INC(ip6s_odropped);
900			goto bad;
901		}
902
903
904		/*
905		 * If the interface will not calculate checksums on
906		 * fragmented packets, then do it here.
907		 * XXX-BZ handle the hw offloading case.  Need flags.
908		 */
909		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
910			in6_delayed_cksum(m, plen, hlen);
911			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
912		}
913#ifdef SCTP
914		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) {
915			sctp_delayed_cksum(m, hlen);
916			m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
917		}
918#endif
919		mnext = &m->m_nextpkt;
920
921		/*
922		 * Change the next header field of the last header in the
923		 * unfragmentable part.
924		 */
925		if (exthdrs.ip6e_rthdr) {
926			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
927			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
928		} else if (exthdrs.ip6e_dest1) {
929			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
930			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
931		} else if (exthdrs.ip6e_hbh) {
932			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
933			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
934		} else {
935			nextproto = ip6->ip6_nxt;
936			ip6->ip6_nxt = IPPROTO_FRAGMENT;
937		}
938
939		/*
940		 * Loop through length of segment after first fragment,
941		 * make new header and copy data of each part and link onto
942		 * chain.
943		 */
944		m0 = m;
945		for (off = hlen; off < tlen; off += len) {
946			m = m_gethdr(M_NOWAIT, MT_DATA);
947			if (!m) {
948				error = ENOBUFS;
949				IP6STAT_INC(ip6s_odropped);
950				goto sendorfree;
951			}
952			m->m_flags = m0->m_flags & M_COPYFLAGS;
953			*mnext = m;
954			mnext = &m->m_nextpkt;
955			m->m_data += max_linkhdr;
956			mhip6 = mtod(m, struct ip6_hdr *);
957			*mhip6 = *ip6;
958			m->m_len = sizeof(*mhip6);
959			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
960			if (error) {
961				IP6STAT_INC(ip6s_odropped);
962				goto sendorfree;
963			}
964			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
965			if (off + len >= tlen)
966				len = tlen - off;
967			else
968				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
969			mhip6->ip6_plen = htons((u_short)(len + hlen +
970			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
971			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
972				error = ENOBUFS;
973				IP6STAT_INC(ip6s_odropped);
974				goto sendorfree;
975			}
976			m_cat(m, m_frgpart);
977			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
978			m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum;
979			m->m_pkthdr.rcvif = NULL;
980			ip6f->ip6f_reserved = 0;
981			ip6f->ip6f_ident = id;
982			ip6f->ip6f_nxt = nextproto;
983			IP6STAT_INC(ip6s_ofragments);
984			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
985		}
986
987		in6_ifstat_inc(ifp, ifs6_out_fragok);
988	}
989
990	/*
991	 * Remove leading garbages.
992	 */
993sendorfree:
994	m = m0->m_nextpkt;
995	m0->m_nextpkt = 0;
996	m_freem(m0);
997	for (m0 = m; m; m = m0) {
998		m0 = m->m_nextpkt;
999		m->m_nextpkt = 0;
1000		if (error == 0) {
1001			/* Record statistics for this interface address. */
1002			if (ia) {
1003				ia->ia_ifa.if_opackets++;
1004				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1005			}
1006			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1007		} else
1008			m_freem(m);
1009	}
1010
1011	if (error == 0)
1012		IP6STAT_INC(ip6s_fragmented);
1013
1014done:
1015	if (ro == &ip6route)
1016		RO_RTFREE(ro);
1017	if (ro_pmtu == &ip6route)
1018		RO_RTFREE(ro_pmtu);
1019	return (error);
1020
1021freehdrs:
1022	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1023	m_freem(exthdrs.ip6e_dest1);
1024	m_freem(exthdrs.ip6e_rthdr);
1025	m_freem(exthdrs.ip6e_dest2);
1026	/* FALLTHROUGH */
1027bad:
1028	if (m)
1029		m_freem(m);
1030	goto done;
1031}
1032
1033static int
1034ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1035{
1036	struct mbuf *m;
1037
1038	if (hlen > MCLBYTES)
1039		return (ENOBUFS); /* XXX */
1040
1041	if (hlen > MLEN)
1042		m = m_getcl(M_NOWAIT, MT_DATA, 0);
1043	else
1044		m = m_get(M_NOWAIT, MT_DATA);
1045	if (m == NULL)
1046		return (ENOBUFS);
1047	m->m_len = hlen;
1048	if (hdr)
1049		bcopy(hdr, mtod(m, caddr_t), hlen);
1050
1051	*mp = m;
1052	return (0);
1053}
1054
1055/*
1056 * Insert jumbo payload option.
1057 */
1058static int
1059ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1060{
1061	struct mbuf *mopt;
1062	u_char *optbuf;
1063	u_int32_t v;
1064
1065#define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1066
1067	/*
1068	 * If there is no hop-by-hop options header, allocate new one.
1069	 * If there is one but it doesn't have enough space to store the
1070	 * jumbo payload option, allocate a cluster to store the whole options.
1071	 * Otherwise, use it to store the options.
1072	 */
1073	if (exthdrs->ip6e_hbh == 0) {
1074		mopt = m_get(M_NOWAIT, MT_DATA);
1075		if (mopt == NULL)
1076			return (ENOBUFS);
1077		mopt->m_len = JUMBOOPTLEN;
1078		optbuf = mtod(mopt, u_char *);
1079		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1080		exthdrs->ip6e_hbh = mopt;
1081	} else {
1082		struct ip6_hbh *hbh;
1083
1084		mopt = exthdrs->ip6e_hbh;
1085		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1086			/*
1087			 * XXX assumption:
1088			 * - exthdrs->ip6e_hbh is not referenced from places
1089			 *   other than exthdrs.
1090			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1091			 */
1092			int oldoptlen = mopt->m_len;
1093			struct mbuf *n;
1094
1095			/*
1096			 * XXX: give up if the whole (new) hbh header does
1097			 * not fit even in an mbuf cluster.
1098			 */
1099			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1100				return (ENOBUFS);
1101
1102			/*
1103			 * As a consequence, we must always prepare a cluster
1104			 * at this point.
1105			 */
1106			n = m_getcl(M_NOWAIT, MT_DATA, 0);
1107			if (n == NULL)
1108				return (ENOBUFS);
1109			n->m_len = oldoptlen + JUMBOOPTLEN;
1110			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1111			    oldoptlen);
1112			optbuf = mtod(n, caddr_t) + oldoptlen;
1113			m_freem(mopt);
1114			mopt = exthdrs->ip6e_hbh = n;
1115		} else {
1116			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1117			mopt->m_len += JUMBOOPTLEN;
1118		}
1119		optbuf[0] = IP6OPT_PADN;
1120		optbuf[1] = 1;
1121
1122		/*
1123		 * Adjust the header length according to the pad and
1124		 * the jumbo payload option.
1125		 */
1126		hbh = mtod(mopt, struct ip6_hbh *);
1127		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1128	}
1129
1130	/* fill in the option. */
1131	optbuf[2] = IP6OPT_JUMBO;
1132	optbuf[3] = 4;
1133	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1134	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1135
1136	/* finally, adjust the packet header length */
1137	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1138
1139	return (0);
1140#undef JUMBOOPTLEN
1141}
1142
1143/*
1144 * Insert fragment header and copy unfragmentable header portions.
1145 */
1146static int
1147ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1148    struct ip6_frag **frghdrp)
1149{
1150	struct mbuf *n, *mlast;
1151
1152	if (hlen > sizeof(struct ip6_hdr)) {
1153		n = m_copym(m0, sizeof(struct ip6_hdr),
1154		    hlen - sizeof(struct ip6_hdr), M_NOWAIT);
1155		if (n == 0)
1156			return (ENOBUFS);
1157		m->m_next = n;
1158	} else
1159		n = m;
1160
1161	/* Search for the last mbuf of unfragmentable part. */
1162	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1163		;
1164
1165	if ((mlast->m_flags & M_EXT) == 0 &&
1166	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1167		/* use the trailing space of the last mbuf for the fragment hdr */
1168		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1169		    mlast->m_len);
1170		mlast->m_len += sizeof(struct ip6_frag);
1171		m->m_pkthdr.len += sizeof(struct ip6_frag);
1172	} else {
1173		/* allocate a new mbuf for the fragment header */
1174		struct mbuf *mfrg;
1175
1176		mfrg = m_get(M_NOWAIT, MT_DATA);
1177		if (mfrg == NULL)
1178			return (ENOBUFS);
1179		mfrg->m_len = sizeof(struct ip6_frag);
1180		*frghdrp = mtod(mfrg, struct ip6_frag *);
1181		mlast->m_next = mfrg;
1182	}
1183
1184	return (0);
1185}
1186
1187static int
1188ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1189    struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1190    int *alwaysfragp, u_int fibnum)
1191{
1192	u_int32_t mtu = 0;
1193	int alwaysfrag = 0;
1194	int error = 0;
1195
1196	if (ro_pmtu != ro) {
1197		/* The first hop and the final destination may differ. */
1198		struct sockaddr_in6 *sa6_dst =
1199		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1200		if (ro_pmtu->ro_rt &&
1201		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1202		     !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1203			RTFREE(ro_pmtu->ro_rt);
1204			ro_pmtu->ro_rt = (struct rtentry *)NULL;
1205		}
1206		if (ro_pmtu->ro_rt == NULL) {
1207			bzero(sa6_dst, sizeof(*sa6_dst));
1208			sa6_dst->sin6_family = AF_INET6;
1209			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1210			sa6_dst->sin6_addr = *dst;
1211
1212			in6_rtalloc(ro_pmtu, fibnum);
1213		}
1214	}
1215	if (ro_pmtu->ro_rt) {
1216		u_int32_t ifmtu;
1217		struct in_conninfo inc;
1218
1219		bzero(&inc, sizeof(inc));
1220		inc.inc_flags |= INC_ISIPV6;
1221		inc.inc6_faddr = *dst;
1222
1223		if (ifp == NULL)
1224			ifp = ro_pmtu->ro_rt->rt_ifp;
1225		ifmtu = IN6_LINKMTU(ifp);
1226		mtu = tcp_hc_getmtu(&inc);
1227		if (mtu)
1228			mtu = min(mtu, ro_pmtu->ro_rt->rt_mtu);
1229		else
1230			mtu = ro_pmtu->ro_rt->rt_mtu;
1231		if (mtu == 0)
1232			mtu = ifmtu;
1233		else if (mtu < IPV6_MMTU) {
1234			/*
1235			 * RFC2460 section 5, last paragraph:
1236			 * if we record ICMPv6 too big message with
1237			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1238			 * or smaller, with framgent header attached.
1239			 * (fragment header is needed regardless from the
1240			 * packet size, for translators to identify packets)
1241			 */
1242			alwaysfrag = 1;
1243			mtu = IPV6_MMTU;
1244		} else if (mtu > ifmtu) {
1245			/*
1246			 * The MTU on the route is larger than the MTU on
1247			 * the interface!  This shouldn't happen, unless the
1248			 * MTU of the interface has been changed after the
1249			 * interface was brought up.  Change the MTU in the
1250			 * route to match the interface MTU (as long as the
1251			 * field isn't locked).
1252			 */
1253			mtu = ifmtu;
1254			ro_pmtu->ro_rt->rt_mtu = mtu;
1255		}
1256	} else if (ifp) {
1257		mtu = IN6_LINKMTU(ifp);
1258	} else
1259		error = EHOSTUNREACH; /* XXX */
1260
1261	*mtup = mtu;
1262	if (alwaysfragp)
1263		*alwaysfragp = alwaysfrag;
1264	return (error);
1265}
1266
1267/*
1268 * IP6 socket option processing.
1269 */
1270int
1271ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1272{
1273	int optdatalen, uproto;
1274	void *optdata;
1275	struct inpcb *in6p = sotoinpcb(so);
1276	int error, optval;
1277	int level, op, optname;
1278	int optlen;
1279	struct thread *td;
1280
1281	level = sopt->sopt_level;
1282	op = sopt->sopt_dir;
1283	optname = sopt->sopt_name;
1284	optlen = sopt->sopt_valsize;
1285	td = sopt->sopt_td;
1286	error = 0;
1287	optval = 0;
1288	uproto = (int)so->so_proto->pr_protocol;
1289
1290	if (level != IPPROTO_IPV6) {
1291		error = EINVAL;
1292
1293		if (sopt->sopt_level == SOL_SOCKET &&
1294		    sopt->sopt_dir == SOPT_SET) {
1295			switch (sopt->sopt_name) {
1296			case SO_REUSEADDR:
1297				INP_WLOCK(in6p);
1298				if ((so->so_options & SO_REUSEADDR) != 0)
1299					in6p->inp_flags2 |= INP_REUSEADDR;
1300				else
1301					in6p->inp_flags2 &= ~INP_REUSEADDR;
1302				INP_WUNLOCK(in6p);
1303				error = 0;
1304				break;
1305			case SO_REUSEPORT:
1306				INP_WLOCK(in6p);
1307				if ((so->so_options & SO_REUSEPORT) != 0)
1308					in6p->inp_flags2 |= INP_REUSEPORT;
1309				else
1310					in6p->inp_flags2 &= ~INP_REUSEPORT;
1311				INP_WUNLOCK(in6p);
1312				error = 0;
1313				break;
1314			case SO_SETFIB:
1315				INP_WLOCK(in6p);
1316				in6p->inp_inc.inc_fibnum = so->so_fibnum;
1317				INP_WUNLOCK(in6p);
1318				error = 0;
1319				break;
1320			default:
1321				break;
1322			}
1323		}
1324	} else {		/* level == IPPROTO_IPV6 */
1325		switch (op) {
1326
1327		case SOPT_SET:
1328			switch (optname) {
1329			case IPV6_2292PKTOPTIONS:
1330#ifdef IPV6_PKTOPTIONS
1331			case IPV6_PKTOPTIONS:
1332#endif
1333			{
1334				struct mbuf *m;
1335
1336				error = soopt_getm(sopt, &m); /* XXX */
1337				if (error != 0)
1338					break;
1339				error = soopt_mcopyin(sopt, m); /* XXX */
1340				if (error != 0)
1341					break;
1342				error = ip6_pcbopts(&in6p->in6p_outputopts,
1343						    m, so, sopt);
1344				m_freem(m); /* XXX */
1345				break;
1346			}
1347
1348			/*
1349			 * Use of some Hop-by-Hop options or some
1350			 * Destination options, might require special
1351			 * privilege.  That is, normal applications
1352			 * (without special privilege) might be forbidden
1353			 * from setting certain options in outgoing packets,
1354			 * and might never see certain options in received
1355			 * packets. [RFC 2292 Section 6]
1356			 * KAME specific note:
1357			 *  KAME prevents non-privileged users from sending or
1358			 *  receiving ANY hbh/dst options in order to avoid
1359			 *  overhead of parsing options in the kernel.
1360			 */
1361			case IPV6_RECVHOPOPTS:
1362			case IPV6_RECVDSTOPTS:
1363			case IPV6_RECVRTHDRDSTOPTS:
1364				if (td != NULL) {
1365					error = priv_check(td,
1366					    PRIV_NETINET_SETHDROPTS);
1367					if (error)
1368						break;
1369				}
1370				/* FALLTHROUGH */
1371			case IPV6_UNICAST_HOPS:
1372			case IPV6_HOPLIMIT:
1373			case IPV6_FAITH:
1374
1375			case IPV6_RECVPKTINFO:
1376			case IPV6_RECVHOPLIMIT:
1377			case IPV6_RECVRTHDR:
1378			case IPV6_RECVPATHMTU:
1379			case IPV6_RECVTCLASS:
1380			case IPV6_V6ONLY:
1381			case IPV6_AUTOFLOWLABEL:
1382			case IPV6_BINDANY:
1383				if (optname == IPV6_BINDANY && td != NULL) {
1384					error = priv_check(td,
1385					    PRIV_NETINET_BINDANY);
1386					if (error)
1387						break;
1388				}
1389
1390				if (optlen != sizeof(int)) {
1391					error = EINVAL;
1392					break;
1393				}
1394				error = sooptcopyin(sopt, &optval,
1395					sizeof optval, sizeof optval);
1396				if (error)
1397					break;
1398				switch (optname) {
1399
1400				case IPV6_UNICAST_HOPS:
1401					if (optval < -1 || optval >= 256)
1402						error = EINVAL;
1403					else {
1404						/* -1 = kernel default */
1405						in6p->in6p_hops = optval;
1406						if ((in6p->inp_vflag &
1407						     INP_IPV4) != 0)
1408							in6p->inp_ip_ttl = optval;
1409					}
1410					break;
1411#define OPTSET(bit) \
1412do { \
1413	INP_WLOCK(in6p); \
1414	if (optval) \
1415		in6p->inp_flags |= (bit); \
1416	else \
1417		in6p->inp_flags &= ~(bit); \
1418	INP_WUNLOCK(in6p); \
1419} while (/*CONSTCOND*/ 0)
1420#define OPTSET2292(bit) \
1421do { \
1422	INP_WLOCK(in6p); \
1423	in6p->inp_flags |= IN6P_RFC2292; \
1424	if (optval) \
1425		in6p->inp_flags |= (bit); \
1426	else \
1427		in6p->inp_flags &= ~(bit); \
1428	INP_WUNLOCK(in6p); \
1429} while (/*CONSTCOND*/ 0)
1430#define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
1431
1432				case IPV6_RECVPKTINFO:
1433					/* cannot mix with RFC2292 */
1434					if (OPTBIT(IN6P_RFC2292)) {
1435						error = EINVAL;
1436						break;
1437					}
1438					OPTSET(IN6P_PKTINFO);
1439					break;
1440
1441				case IPV6_HOPLIMIT:
1442				{
1443					struct ip6_pktopts **optp;
1444
1445					/* cannot mix with RFC2292 */
1446					if (OPTBIT(IN6P_RFC2292)) {
1447						error = EINVAL;
1448						break;
1449					}
1450					optp = &in6p->in6p_outputopts;
1451					error = ip6_pcbopt(IPV6_HOPLIMIT,
1452					    (u_char *)&optval, sizeof(optval),
1453					    optp, (td != NULL) ? td->td_ucred :
1454					    NULL, uproto);
1455					break;
1456				}
1457
1458				case IPV6_RECVHOPLIMIT:
1459					/* cannot mix with RFC2292 */
1460					if (OPTBIT(IN6P_RFC2292)) {
1461						error = EINVAL;
1462						break;
1463					}
1464					OPTSET(IN6P_HOPLIMIT);
1465					break;
1466
1467				case IPV6_RECVHOPOPTS:
1468					/* cannot mix with RFC2292 */
1469					if (OPTBIT(IN6P_RFC2292)) {
1470						error = EINVAL;
1471						break;
1472					}
1473					OPTSET(IN6P_HOPOPTS);
1474					break;
1475
1476				case IPV6_RECVDSTOPTS:
1477					/* cannot mix with RFC2292 */
1478					if (OPTBIT(IN6P_RFC2292)) {
1479						error = EINVAL;
1480						break;
1481					}
1482					OPTSET(IN6P_DSTOPTS);
1483					break;
1484
1485				case IPV6_RECVRTHDRDSTOPTS:
1486					/* cannot mix with RFC2292 */
1487					if (OPTBIT(IN6P_RFC2292)) {
1488						error = EINVAL;
1489						break;
1490					}
1491					OPTSET(IN6P_RTHDRDSTOPTS);
1492					break;
1493
1494				case IPV6_RECVRTHDR:
1495					/* cannot mix with RFC2292 */
1496					if (OPTBIT(IN6P_RFC2292)) {
1497						error = EINVAL;
1498						break;
1499					}
1500					OPTSET(IN6P_RTHDR);
1501					break;
1502
1503				case IPV6_FAITH:
1504					OPTSET(INP_FAITH);
1505					break;
1506
1507				case IPV6_RECVPATHMTU:
1508					/*
1509					 * We ignore this option for TCP
1510					 * sockets.
1511					 * (RFC3542 leaves this case
1512					 * unspecified.)
1513					 */
1514					if (uproto != IPPROTO_TCP)
1515						OPTSET(IN6P_MTU);
1516					break;
1517
1518				case IPV6_V6ONLY:
1519					/*
1520					 * make setsockopt(IPV6_V6ONLY)
1521					 * available only prior to bind(2).
1522					 * see ipng mailing list, Jun 22 2001.
1523					 */
1524					if (in6p->inp_lport ||
1525					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1526						error = EINVAL;
1527						break;
1528					}
1529					OPTSET(IN6P_IPV6_V6ONLY);
1530					if (optval)
1531						in6p->inp_vflag &= ~INP_IPV4;
1532					else
1533						in6p->inp_vflag |= INP_IPV4;
1534					break;
1535				case IPV6_RECVTCLASS:
1536					/* cannot mix with RFC2292 XXX */
1537					if (OPTBIT(IN6P_RFC2292)) {
1538						error = EINVAL;
1539						break;
1540					}
1541					OPTSET(IN6P_TCLASS);
1542					break;
1543				case IPV6_AUTOFLOWLABEL:
1544					OPTSET(IN6P_AUTOFLOWLABEL);
1545					break;
1546
1547				case IPV6_BINDANY:
1548					OPTSET(INP_BINDANY);
1549					break;
1550				}
1551				break;
1552
1553			case IPV6_TCLASS:
1554			case IPV6_DONTFRAG:
1555			case IPV6_USE_MIN_MTU:
1556			case IPV6_PREFER_TEMPADDR:
1557				if (optlen != sizeof(optval)) {
1558					error = EINVAL;
1559					break;
1560				}
1561				error = sooptcopyin(sopt, &optval,
1562					sizeof optval, sizeof optval);
1563				if (error)
1564					break;
1565				{
1566					struct ip6_pktopts **optp;
1567					optp = &in6p->in6p_outputopts;
1568					error = ip6_pcbopt(optname,
1569					    (u_char *)&optval, sizeof(optval),
1570					    optp, (td != NULL) ? td->td_ucred :
1571					    NULL, uproto);
1572					break;
1573				}
1574
1575			case IPV6_2292PKTINFO:
1576			case IPV6_2292HOPLIMIT:
1577			case IPV6_2292HOPOPTS:
1578			case IPV6_2292DSTOPTS:
1579			case IPV6_2292RTHDR:
1580				/* RFC 2292 */
1581				if (optlen != sizeof(int)) {
1582					error = EINVAL;
1583					break;
1584				}
1585				error = sooptcopyin(sopt, &optval,
1586					sizeof optval, sizeof optval);
1587				if (error)
1588					break;
1589				switch (optname) {
1590				case IPV6_2292PKTINFO:
1591					OPTSET2292(IN6P_PKTINFO);
1592					break;
1593				case IPV6_2292HOPLIMIT:
1594					OPTSET2292(IN6P_HOPLIMIT);
1595					break;
1596				case IPV6_2292HOPOPTS:
1597					/*
1598					 * Check super-user privilege.
1599					 * See comments for IPV6_RECVHOPOPTS.
1600					 */
1601					if (td != NULL) {
1602						error = priv_check(td,
1603						    PRIV_NETINET_SETHDROPTS);
1604						if (error)
1605							return (error);
1606					}
1607					OPTSET2292(IN6P_HOPOPTS);
1608					break;
1609				case IPV6_2292DSTOPTS:
1610					if (td != NULL) {
1611						error = priv_check(td,
1612						    PRIV_NETINET_SETHDROPTS);
1613						if (error)
1614							return (error);
1615					}
1616					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1617					break;
1618				case IPV6_2292RTHDR:
1619					OPTSET2292(IN6P_RTHDR);
1620					break;
1621				}
1622				break;
1623			case IPV6_PKTINFO:
1624			case IPV6_HOPOPTS:
1625			case IPV6_RTHDR:
1626			case IPV6_DSTOPTS:
1627			case IPV6_RTHDRDSTOPTS:
1628			case IPV6_NEXTHOP:
1629			{
1630				/* new advanced API (RFC3542) */
1631				u_char *optbuf;
1632				u_char optbuf_storage[MCLBYTES];
1633				int optlen;
1634				struct ip6_pktopts **optp;
1635
1636				/* cannot mix with RFC2292 */
1637				if (OPTBIT(IN6P_RFC2292)) {
1638					error = EINVAL;
1639					break;
1640				}
1641
1642				/*
1643				 * We only ensure valsize is not too large
1644				 * here.  Further validation will be done
1645				 * later.
1646				 */
1647				error = sooptcopyin(sopt, optbuf_storage,
1648				    sizeof(optbuf_storage), 0);
1649				if (error)
1650					break;
1651				optlen = sopt->sopt_valsize;
1652				optbuf = optbuf_storage;
1653				optp = &in6p->in6p_outputopts;
1654				error = ip6_pcbopt(optname, optbuf, optlen,
1655				    optp, (td != NULL) ? td->td_ucred : NULL,
1656				    uproto);
1657				break;
1658			}
1659#undef OPTSET
1660
1661			case IPV6_MULTICAST_IF:
1662			case IPV6_MULTICAST_HOPS:
1663			case IPV6_MULTICAST_LOOP:
1664			case IPV6_JOIN_GROUP:
1665			case IPV6_LEAVE_GROUP:
1666			case IPV6_MSFILTER:
1667			case MCAST_BLOCK_SOURCE:
1668			case MCAST_UNBLOCK_SOURCE:
1669			case MCAST_JOIN_GROUP:
1670			case MCAST_LEAVE_GROUP:
1671			case MCAST_JOIN_SOURCE_GROUP:
1672			case MCAST_LEAVE_SOURCE_GROUP:
1673				error = ip6_setmoptions(in6p, sopt);
1674				break;
1675
1676			case IPV6_PORTRANGE:
1677				error = sooptcopyin(sopt, &optval,
1678				    sizeof optval, sizeof optval);
1679				if (error)
1680					break;
1681
1682				INP_WLOCK(in6p);
1683				switch (optval) {
1684				case IPV6_PORTRANGE_DEFAULT:
1685					in6p->inp_flags &= ~(INP_LOWPORT);
1686					in6p->inp_flags &= ~(INP_HIGHPORT);
1687					break;
1688
1689				case IPV6_PORTRANGE_HIGH:
1690					in6p->inp_flags &= ~(INP_LOWPORT);
1691					in6p->inp_flags |= INP_HIGHPORT;
1692					break;
1693
1694				case IPV6_PORTRANGE_LOW:
1695					in6p->inp_flags &= ~(INP_HIGHPORT);
1696					in6p->inp_flags |= INP_LOWPORT;
1697					break;
1698
1699				default:
1700					error = EINVAL;
1701					break;
1702				}
1703				INP_WUNLOCK(in6p);
1704				break;
1705
1706#ifdef IPSEC
1707			case IPV6_IPSEC_POLICY:
1708			{
1709				caddr_t req;
1710				struct mbuf *m;
1711
1712				if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1713					break;
1714				if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1715					break;
1716				req = mtod(m, caddr_t);
1717				error = ipsec_set_policy(in6p, optname, req,
1718				    m->m_len, (sopt->sopt_td != NULL) ?
1719				    sopt->sopt_td->td_ucred : NULL);
1720				m_freem(m);
1721				break;
1722			}
1723#endif /* IPSEC */
1724
1725			default:
1726				error = ENOPROTOOPT;
1727				break;
1728			}
1729			break;
1730
1731		case SOPT_GET:
1732			switch (optname) {
1733
1734			case IPV6_2292PKTOPTIONS:
1735#ifdef IPV6_PKTOPTIONS
1736			case IPV6_PKTOPTIONS:
1737#endif
1738				/*
1739				 * RFC3542 (effectively) deprecated the
1740				 * semantics of the 2292-style pktoptions.
1741				 * Since it was not reliable in nature (i.e.,
1742				 * applications had to expect the lack of some
1743				 * information after all), it would make sense
1744				 * to simplify this part by always returning
1745				 * empty data.
1746				 */
1747				sopt->sopt_valsize = 0;
1748				break;
1749
1750			case IPV6_RECVHOPOPTS:
1751			case IPV6_RECVDSTOPTS:
1752			case IPV6_RECVRTHDRDSTOPTS:
1753			case IPV6_UNICAST_HOPS:
1754			case IPV6_RECVPKTINFO:
1755			case IPV6_RECVHOPLIMIT:
1756			case IPV6_RECVRTHDR:
1757			case IPV6_RECVPATHMTU:
1758
1759			case IPV6_FAITH:
1760			case IPV6_V6ONLY:
1761			case IPV6_PORTRANGE:
1762			case IPV6_RECVTCLASS:
1763			case IPV6_AUTOFLOWLABEL:
1764			case IPV6_BINDANY:
1765				switch (optname) {
1766
1767				case IPV6_RECVHOPOPTS:
1768					optval = OPTBIT(IN6P_HOPOPTS);
1769					break;
1770
1771				case IPV6_RECVDSTOPTS:
1772					optval = OPTBIT(IN6P_DSTOPTS);
1773					break;
1774
1775				case IPV6_RECVRTHDRDSTOPTS:
1776					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1777					break;
1778
1779				case IPV6_UNICAST_HOPS:
1780					optval = in6p->in6p_hops;
1781					break;
1782
1783				case IPV6_RECVPKTINFO:
1784					optval = OPTBIT(IN6P_PKTINFO);
1785					break;
1786
1787				case IPV6_RECVHOPLIMIT:
1788					optval = OPTBIT(IN6P_HOPLIMIT);
1789					break;
1790
1791				case IPV6_RECVRTHDR:
1792					optval = OPTBIT(IN6P_RTHDR);
1793					break;
1794
1795				case IPV6_RECVPATHMTU:
1796					optval = OPTBIT(IN6P_MTU);
1797					break;
1798
1799				case IPV6_FAITH:
1800					optval = OPTBIT(INP_FAITH);
1801					break;
1802
1803				case IPV6_V6ONLY:
1804					optval = OPTBIT(IN6P_IPV6_V6ONLY);
1805					break;
1806
1807				case IPV6_PORTRANGE:
1808				    {
1809					int flags;
1810					flags = in6p->inp_flags;
1811					if (flags & INP_HIGHPORT)
1812						optval = IPV6_PORTRANGE_HIGH;
1813					else if (flags & INP_LOWPORT)
1814						optval = IPV6_PORTRANGE_LOW;
1815					else
1816						optval = 0;
1817					break;
1818				    }
1819				case IPV6_RECVTCLASS:
1820					optval = OPTBIT(IN6P_TCLASS);
1821					break;
1822
1823				case IPV6_AUTOFLOWLABEL:
1824					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1825					break;
1826
1827				case IPV6_BINDANY:
1828					optval = OPTBIT(INP_BINDANY);
1829					break;
1830				}
1831				if (error)
1832					break;
1833				error = sooptcopyout(sopt, &optval,
1834					sizeof optval);
1835				break;
1836
1837			case IPV6_PATHMTU:
1838			{
1839				u_long pmtu = 0;
1840				struct ip6_mtuinfo mtuinfo;
1841				struct route_in6 sro;
1842
1843				bzero(&sro, sizeof(sro));
1844
1845				if (!(so->so_state & SS_ISCONNECTED))
1846					return (ENOTCONN);
1847				/*
1848				 * XXX: we dot not consider the case of source
1849				 * routing, or optional information to specify
1850				 * the outgoing interface.
1851				 */
1852				error = ip6_getpmtu(&sro, NULL, NULL,
1853				    &in6p->in6p_faddr, &pmtu, NULL,
1854				    so->so_fibnum);
1855				if (sro.ro_rt)
1856					RTFREE(sro.ro_rt);
1857				if (error)
1858					break;
1859				if (pmtu > IPV6_MAXPACKET)
1860					pmtu = IPV6_MAXPACKET;
1861
1862				bzero(&mtuinfo, sizeof(mtuinfo));
1863				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1864				optdata = (void *)&mtuinfo;
1865				optdatalen = sizeof(mtuinfo);
1866				error = sooptcopyout(sopt, optdata,
1867				    optdatalen);
1868				break;
1869			}
1870
1871			case IPV6_2292PKTINFO:
1872			case IPV6_2292HOPLIMIT:
1873			case IPV6_2292HOPOPTS:
1874			case IPV6_2292RTHDR:
1875			case IPV6_2292DSTOPTS:
1876				switch (optname) {
1877				case IPV6_2292PKTINFO:
1878					optval = OPTBIT(IN6P_PKTINFO);
1879					break;
1880				case IPV6_2292HOPLIMIT:
1881					optval = OPTBIT(IN6P_HOPLIMIT);
1882					break;
1883				case IPV6_2292HOPOPTS:
1884					optval = OPTBIT(IN6P_HOPOPTS);
1885					break;
1886				case IPV6_2292RTHDR:
1887					optval = OPTBIT(IN6P_RTHDR);
1888					break;
1889				case IPV6_2292DSTOPTS:
1890					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1891					break;
1892				}
1893				error = sooptcopyout(sopt, &optval,
1894				    sizeof optval);
1895				break;
1896			case IPV6_PKTINFO:
1897			case IPV6_HOPOPTS:
1898			case IPV6_RTHDR:
1899			case IPV6_DSTOPTS:
1900			case IPV6_RTHDRDSTOPTS:
1901			case IPV6_NEXTHOP:
1902			case IPV6_TCLASS:
1903			case IPV6_DONTFRAG:
1904			case IPV6_USE_MIN_MTU:
1905			case IPV6_PREFER_TEMPADDR:
1906				error = ip6_getpcbopt(in6p->in6p_outputopts,
1907				    optname, sopt);
1908				break;
1909
1910			case IPV6_MULTICAST_IF:
1911			case IPV6_MULTICAST_HOPS:
1912			case IPV6_MULTICAST_LOOP:
1913			case IPV6_MSFILTER:
1914				error = ip6_getmoptions(in6p, sopt);
1915				break;
1916
1917#ifdef IPSEC
1918			case IPV6_IPSEC_POLICY:
1919			  {
1920				caddr_t req = NULL;
1921				size_t len = 0;
1922				struct mbuf *m = NULL;
1923				struct mbuf **mp = &m;
1924				size_t ovalsize = sopt->sopt_valsize;
1925				caddr_t oval = (caddr_t)sopt->sopt_val;
1926
1927				error = soopt_getm(sopt, &m); /* XXX */
1928				if (error != 0)
1929					break;
1930				error = soopt_mcopyin(sopt, m); /* XXX */
1931				if (error != 0)
1932					break;
1933				sopt->sopt_valsize = ovalsize;
1934				sopt->sopt_val = oval;
1935				if (m) {
1936					req = mtod(m, caddr_t);
1937					len = m->m_len;
1938				}
1939				error = ipsec_get_policy(in6p, req, len, mp);
1940				if (error == 0)
1941					error = soopt_mcopyout(sopt, m); /* XXX */
1942				if (error == 0 && m)
1943					m_freem(m);
1944				break;
1945			  }
1946#endif /* IPSEC */
1947
1948			default:
1949				error = ENOPROTOOPT;
1950				break;
1951			}
1952			break;
1953		}
1954	}
1955	return (error);
1956}
1957
1958int
1959ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
1960{
1961	int error = 0, optval, optlen;
1962	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1963	struct inpcb *in6p = sotoinpcb(so);
1964	int level, op, optname;
1965
1966	level = sopt->sopt_level;
1967	op = sopt->sopt_dir;
1968	optname = sopt->sopt_name;
1969	optlen = sopt->sopt_valsize;
1970
1971	if (level != IPPROTO_IPV6) {
1972		return (EINVAL);
1973	}
1974
1975	switch (optname) {
1976	case IPV6_CHECKSUM:
1977		/*
1978		 * For ICMPv6 sockets, no modification allowed for checksum
1979		 * offset, permit "no change" values to help existing apps.
1980		 *
1981		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
1982		 * for an ICMPv6 socket will fail."
1983		 * The current behavior does not meet RFC3542.
1984		 */
1985		switch (op) {
1986		case SOPT_SET:
1987			if (optlen != sizeof(int)) {
1988				error = EINVAL;
1989				break;
1990			}
1991			error = sooptcopyin(sopt, &optval, sizeof(optval),
1992					    sizeof(optval));
1993			if (error)
1994				break;
1995			if ((optval % 2) != 0) {
1996				/* the API assumes even offset values */
1997				error = EINVAL;
1998			} else if (so->so_proto->pr_protocol ==
1999			    IPPROTO_ICMPV6) {
2000				if (optval != icmp6off)
2001					error = EINVAL;
2002			} else
2003				in6p->in6p_cksum = optval;
2004			break;
2005
2006		case SOPT_GET:
2007			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2008				optval = icmp6off;
2009			else
2010				optval = in6p->in6p_cksum;
2011
2012			error = sooptcopyout(sopt, &optval, sizeof(optval));
2013			break;
2014
2015		default:
2016			error = EINVAL;
2017			break;
2018		}
2019		break;
2020
2021	default:
2022		error = ENOPROTOOPT;
2023		break;
2024	}
2025
2026	return (error);
2027}
2028
2029/*
2030 * Set up IP6 options in pcb for insertion in output packets or
2031 * specifying behavior of outgoing packets.
2032 */
2033static int
2034ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2035    struct socket *so, struct sockopt *sopt)
2036{
2037	struct ip6_pktopts *opt = *pktopt;
2038	int error = 0;
2039	struct thread *td = sopt->sopt_td;
2040
2041	/* turn off any old options. */
2042	if (opt) {
2043#ifdef DIAGNOSTIC
2044		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2045		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2046		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2047			printf("ip6_pcbopts: all specified options are cleared.\n");
2048#endif
2049		ip6_clearpktopts(opt, -1);
2050	} else
2051		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2052	*pktopt = NULL;
2053
2054	if (!m || m->m_len == 0) {
2055		/*
2056		 * Only turning off any previous options, regardless of
2057		 * whether the opt is just created or given.
2058		 */
2059		free(opt, M_IP6OPT);
2060		return (0);
2061	}
2062
2063	/*  set options specified by user. */
2064	if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2065	    td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2066		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2067		free(opt, M_IP6OPT);
2068		return (error);
2069	}
2070	*pktopt = opt;
2071	return (0);
2072}
2073
2074/*
2075 * initialize ip6_pktopts.  beware that there are non-zero default values in
2076 * the struct.
2077 */
2078void
2079ip6_initpktopts(struct ip6_pktopts *opt)
2080{
2081
2082	bzero(opt, sizeof(*opt));
2083	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2084	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2085	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2086	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2087}
2088
2089static int
2090ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2091    struct ucred *cred, int uproto)
2092{
2093	struct ip6_pktopts *opt;
2094
2095	if (*pktopt == NULL) {
2096		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2097		    M_WAITOK);
2098		ip6_initpktopts(*pktopt);
2099	}
2100	opt = *pktopt;
2101
2102	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2103}
2104
2105static int
2106ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2107{
2108	void *optdata = NULL;
2109	int optdatalen = 0;
2110	struct ip6_ext *ip6e;
2111	int error = 0;
2112	struct in6_pktinfo null_pktinfo;
2113	int deftclass = 0, on;
2114	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2115	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2116
2117	switch (optname) {
2118	case IPV6_PKTINFO:
2119		if (pktopt && pktopt->ip6po_pktinfo)
2120			optdata = (void *)pktopt->ip6po_pktinfo;
2121		else {
2122			/* XXX: we don't have to do this every time... */
2123			bzero(&null_pktinfo, sizeof(null_pktinfo));
2124			optdata = (void *)&null_pktinfo;
2125		}
2126		optdatalen = sizeof(struct in6_pktinfo);
2127		break;
2128	case IPV6_TCLASS:
2129		if (pktopt && pktopt->ip6po_tclass >= 0)
2130			optdata = (void *)&pktopt->ip6po_tclass;
2131		else
2132			optdata = (void *)&deftclass;
2133		optdatalen = sizeof(int);
2134		break;
2135	case IPV6_HOPOPTS:
2136		if (pktopt && pktopt->ip6po_hbh) {
2137			optdata = (void *)pktopt->ip6po_hbh;
2138			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2139			optdatalen = (ip6e->ip6e_len + 1) << 3;
2140		}
2141		break;
2142	case IPV6_RTHDR:
2143		if (pktopt && pktopt->ip6po_rthdr) {
2144			optdata = (void *)pktopt->ip6po_rthdr;
2145			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2146			optdatalen = (ip6e->ip6e_len + 1) << 3;
2147		}
2148		break;
2149	case IPV6_RTHDRDSTOPTS:
2150		if (pktopt && pktopt->ip6po_dest1) {
2151			optdata = (void *)pktopt->ip6po_dest1;
2152			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2153			optdatalen = (ip6e->ip6e_len + 1) << 3;
2154		}
2155		break;
2156	case IPV6_DSTOPTS:
2157		if (pktopt && pktopt->ip6po_dest2) {
2158			optdata = (void *)pktopt->ip6po_dest2;
2159			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2160			optdatalen = (ip6e->ip6e_len + 1) << 3;
2161		}
2162		break;
2163	case IPV6_NEXTHOP:
2164		if (pktopt && pktopt->ip6po_nexthop) {
2165			optdata = (void *)pktopt->ip6po_nexthop;
2166			optdatalen = pktopt->ip6po_nexthop->sa_len;
2167		}
2168		break;
2169	case IPV6_USE_MIN_MTU:
2170		if (pktopt)
2171			optdata = (void *)&pktopt->ip6po_minmtu;
2172		else
2173			optdata = (void *)&defminmtu;
2174		optdatalen = sizeof(int);
2175		break;
2176	case IPV6_DONTFRAG:
2177		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2178			on = 1;
2179		else
2180			on = 0;
2181		optdata = (void *)&on;
2182		optdatalen = sizeof(on);
2183		break;
2184	case IPV6_PREFER_TEMPADDR:
2185		if (pktopt)
2186			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2187		else
2188			optdata = (void *)&defpreftemp;
2189		optdatalen = sizeof(int);
2190		break;
2191	default:		/* should not happen */
2192#ifdef DIAGNOSTIC
2193		panic("ip6_getpcbopt: unexpected option\n");
2194#endif
2195		return (ENOPROTOOPT);
2196	}
2197
2198	error = sooptcopyout(sopt, optdata, optdatalen);
2199
2200	return (error);
2201}
2202
2203void
2204ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2205{
2206	if (pktopt == NULL)
2207		return;
2208
2209	if (optname == -1 || optname == IPV6_PKTINFO) {
2210		if (pktopt->ip6po_pktinfo)
2211			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2212		pktopt->ip6po_pktinfo = NULL;
2213	}
2214	if (optname == -1 || optname == IPV6_HOPLIMIT)
2215		pktopt->ip6po_hlim = -1;
2216	if (optname == -1 || optname == IPV6_TCLASS)
2217		pktopt->ip6po_tclass = -1;
2218	if (optname == -1 || optname == IPV6_NEXTHOP) {
2219		if (pktopt->ip6po_nextroute.ro_rt) {
2220			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2221			pktopt->ip6po_nextroute.ro_rt = NULL;
2222		}
2223		if (pktopt->ip6po_nexthop)
2224			free(pktopt->ip6po_nexthop, M_IP6OPT);
2225		pktopt->ip6po_nexthop = NULL;
2226	}
2227	if (optname == -1 || optname == IPV6_HOPOPTS) {
2228		if (pktopt->ip6po_hbh)
2229			free(pktopt->ip6po_hbh, M_IP6OPT);
2230		pktopt->ip6po_hbh = NULL;
2231	}
2232	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2233		if (pktopt->ip6po_dest1)
2234			free(pktopt->ip6po_dest1, M_IP6OPT);
2235		pktopt->ip6po_dest1 = NULL;
2236	}
2237	if (optname == -1 || optname == IPV6_RTHDR) {
2238		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2239			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2240		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2241		if (pktopt->ip6po_route.ro_rt) {
2242			RTFREE(pktopt->ip6po_route.ro_rt);
2243			pktopt->ip6po_route.ro_rt = NULL;
2244		}
2245	}
2246	if (optname == -1 || optname == IPV6_DSTOPTS) {
2247		if (pktopt->ip6po_dest2)
2248			free(pktopt->ip6po_dest2, M_IP6OPT);
2249		pktopt->ip6po_dest2 = NULL;
2250	}
2251}
2252
2253#define PKTOPT_EXTHDRCPY(type) \
2254do {\
2255	if (src->type) {\
2256		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2257		dst->type = malloc(hlen, M_IP6OPT, canwait);\
2258		if (dst->type == NULL && canwait == M_NOWAIT)\
2259			goto bad;\
2260		bcopy(src->type, dst->type, hlen);\
2261	}\
2262} while (/*CONSTCOND*/ 0)
2263
2264static int
2265copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2266{
2267	if (dst == NULL || src == NULL)  {
2268		printf("ip6_clearpktopts: invalid argument\n");
2269		return (EINVAL);
2270	}
2271
2272	dst->ip6po_hlim = src->ip6po_hlim;
2273	dst->ip6po_tclass = src->ip6po_tclass;
2274	dst->ip6po_flags = src->ip6po_flags;
2275	dst->ip6po_minmtu = src->ip6po_minmtu;
2276	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2277	if (src->ip6po_pktinfo) {
2278		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2279		    M_IP6OPT, canwait);
2280		if (dst->ip6po_pktinfo == NULL)
2281			goto bad;
2282		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2283	}
2284	if (src->ip6po_nexthop) {
2285		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2286		    M_IP6OPT, canwait);
2287		if (dst->ip6po_nexthop == NULL)
2288			goto bad;
2289		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2290		    src->ip6po_nexthop->sa_len);
2291	}
2292	PKTOPT_EXTHDRCPY(ip6po_hbh);
2293	PKTOPT_EXTHDRCPY(ip6po_dest1);
2294	PKTOPT_EXTHDRCPY(ip6po_dest2);
2295	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2296	return (0);
2297
2298  bad:
2299	ip6_clearpktopts(dst, -1);
2300	return (ENOBUFS);
2301}
2302#undef PKTOPT_EXTHDRCPY
2303
2304struct ip6_pktopts *
2305ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2306{
2307	int error;
2308	struct ip6_pktopts *dst;
2309
2310	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2311	if (dst == NULL)
2312		return (NULL);
2313	ip6_initpktopts(dst);
2314
2315	if ((error = copypktopts(dst, src, canwait)) != 0) {
2316		free(dst, M_IP6OPT);
2317		return (NULL);
2318	}
2319
2320	return (dst);
2321}
2322
2323void
2324ip6_freepcbopts(struct ip6_pktopts *pktopt)
2325{
2326	if (pktopt == NULL)
2327		return;
2328
2329	ip6_clearpktopts(pktopt, -1);
2330
2331	free(pktopt, M_IP6OPT);
2332}
2333
2334/*
2335 * Set IPv6 outgoing packet options based on advanced API.
2336 */
2337int
2338ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2339    struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2340{
2341	struct cmsghdr *cm = 0;
2342
2343	if (control == NULL || opt == NULL)
2344		return (EINVAL);
2345
2346	ip6_initpktopts(opt);
2347	if (stickyopt) {
2348		int error;
2349
2350		/*
2351		 * If stickyopt is provided, make a local copy of the options
2352		 * for this particular packet, then override them by ancillary
2353		 * objects.
2354		 * XXX: copypktopts() does not copy the cached route to a next
2355		 * hop (if any).  This is not very good in terms of efficiency,
2356		 * but we can allow this since this option should be rarely
2357		 * used.
2358		 */
2359		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2360			return (error);
2361	}
2362
2363	/*
2364	 * XXX: Currently, we assume all the optional information is stored
2365	 * in a single mbuf.
2366	 */
2367	if (control->m_next)
2368		return (EINVAL);
2369
2370	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2371	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2372		int error;
2373
2374		if (control->m_len < CMSG_LEN(0))
2375			return (EINVAL);
2376
2377		cm = mtod(control, struct cmsghdr *);
2378		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2379			return (EINVAL);
2380		if (cm->cmsg_level != IPPROTO_IPV6)
2381			continue;
2382
2383		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2384		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2385		if (error)
2386			return (error);
2387	}
2388
2389	return (0);
2390}
2391
2392/*
2393 * Set a particular packet option, as a sticky option or an ancillary data
2394 * item.  "len" can be 0 only when it's a sticky option.
2395 * We have 4 cases of combination of "sticky" and "cmsg":
2396 * "sticky=0, cmsg=0": impossible
2397 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2398 * "sticky=1, cmsg=0": RFC3542 socket option
2399 * "sticky=1, cmsg=1": RFC2292 socket option
2400 */
2401static int
2402ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2403    struct ucred *cred, int sticky, int cmsg, int uproto)
2404{
2405	int minmtupolicy, preftemp;
2406	int error;
2407
2408	if (!sticky && !cmsg) {
2409#ifdef DIAGNOSTIC
2410		printf("ip6_setpktopt: impossible case\n");
2411#endif
2412		return (EINVAL);
2413	}
2414
2415	/*
2416	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2417	 * not be specified in the context of RFC3542.  Conversely,
2418	 * RFC3542 types should not be specified in the context of RFC2292.
2419	 */
2420	if (!cmsg) {
2421		switch (optname) {
2422		case IPV6_2292PKTINFO:
2423		case IPV6_2292HOPLIMIT:
2424		case IPV6_2292NEXTHOP:
2425		case IPV6_2292HOPOPTS:
2426		case IPV6_2292DSTOPTS:
2427		case IPV6_2292RTHDR:
2428		case IPV6_2292PKTOPTIONS:
2429			return (ENOPROTOOPT);
2430		}
2431	}
2432	if (sticky && cmsg) {
2433		switch (optname) {
2434		case IPV6_PKTINFO:
2435		case IPV6_HOPLIMIT:
2436		case IPV6_NEXTHOP:
2437		case IPV6_HOPOPTS:
2438		case IPV6_DSTOPTS:
2439		case IPV6_RTHDRDSTOPTS:
2440		case IPV6_RTHDR:
2441		case IPV6_USE_MIN_MTU:
2442		case IPV6_DONTFRAG:
2443		case IPV6_TCLASS:
2444		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2445			return (ENOPROTOOPT);
2446		}
2447	}
2448
2449	switch (optname) {
2450	case IPV6_2292PKTINFO:
2451	case IPV6_PKTINFO:
2452	{
2453		struct ifnet *ifp = NULL;
2454		struct in6_pktinfo *pktinfo;
2455
2456		if (len != sizeof(struct in6_pktinfo))
2457			return (EINVAL);
2458
2459		pktinfo = (struct in6_pktinfo *)buf;
2460
2461		/*
2462		 * An application can clear any sticky IPV6_PKTINFO option by
2463		 * doing a "regular" setsockopt with ipi6_addr being
2464		 * in6addr_any and ipi6_ifindex being zero.
2465		 * [RFC 3542, Section 6]
2466		 */
2467		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2468		    pktinfo->ipi6_ifindex == 0 &&
2469		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2470			ip6_clearpktopts(opt, optname);
2471			break;
2472		}
2473
2474		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2475		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2476			return (EINVAL);
2477		}
2478
2479		/* validate the interface index if specified. */
2480		if (pktinfo->ipi6_ifindex > V_if_index ||
2481		    pktinfo->ipi6_ifindex < 0) {
2482			 return (ENXIO);
2483		}
2484		if (pktinfo->ipi6_ifindex) {
2485			ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2486			if (ifp == NULL)
2487				return (ENXIO);
2488		}
2489
2490		/*
2491		 * We store the address anyway, and let in6_selectsrc()
2492		 * validate the specified address.  This is because ipi6_addr
2493		 * may not have enough information about its scope zone, and
2494		 * we may need additional information (such as outgoing
2495		 * interface or the scope zone of a destination address) to
2496		 * disambiguate the scope.
2497		 * XXX: the delay of the validation may confuse the
2498		 * application when it is used as a sticky option.
2499		 */
2500		if (opt->ip6po_pktinfo == NULL) {
2501			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2502			    M_IP6OPT, M_NOWAIT);
2503			if (opt->ip6po_pktinfo == NULL)
2504				return (ENOBUFS);
2505		}
2506		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2507		break;
2508	}
2509
2510	case IPV6_2292HOPLIMIT:
2511	case IPV6_HOPLIMIT:
2512	{
2513		int *hlimp;
2514
2515		/*
2516		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2517		 * to simplify the ordering among hoplimit options.
2518		 */
2519		if (optname == IPV6_HOPLIMIT && sticky)
2520			return (ENOPROTOOPT);
2521
2522		if (len != sizeof(int))
2523			return (EINVAL);
2524		hlimp = (int *)buf;
2525		if (*hlimp < -1 || *hlimp > 255)
2526			return (EINVAL);
2527
2528		opt->ip6po_hlim = *hlimp;
2529		break;
2530	}
2531
2532	case IPV6_TCLASS:
2533	{
2534		int tclass;
2535
2536		if (len != sizeof(int))
2537			return (EINVAL);
2538		tclass = *(int *)buf;
2539		if (tclass < -1 || tclass > 255)
2540			return (EINVAL);
2541
2542		opt->ip6po_tclass = tclass;
2543		break;
2544	}
2545
2546	case IPV6_2292NEXTHOP:
2547	case IPV6_NEXTHOP:
2548		if (cred != NULL) {
2549			error = priv_check_cred(cred,
2550			    PRIV_NETINET_SETHDROPTS, 0);
2551			if (error)
2552				return (error);
2553		}
2554
2555		if (len == 0) {	/* just remove the option */
2556			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2557			break;
2558		}
2559
2560		/* check if cmsg_len is large enough for sa_len */
2561		if (len < sizeof(struct sockaddr) || len < *buf)
2562			return (EINVAL);
2563
2564		switch (((struct sockaddr *)buf)->sa_family) {
2565		case AF_INET6:
2566		{
2567			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2568			int error;
2569
2570			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2571				return (EINVAL);
2572
2573			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2574			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2575				return (EINVAL);
2576			}
2577			if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
2578			    != 0) {
2579				return (error);
2580			}
2581			break;
2582		}
2583		case AF_LINK:	/* should eventually be supported */
2584		default:
2585			return (EAFNOSUPPORT);
2586		}
2587
2588		/* turn off the previous option, then set the new option. */
2589		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2590		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2591		if (opt->ip6po_nexthop == NULL)
2592			return (ENOBUFS);
2593		bcopy(buf, opt->ip6po_nexthop, *buf);
2594		break;
2595
2596	case IPV6_2292HOPOPTS:
2597	case IPV6_HOPOPTS:
2598	{
2599		struct ip6_hbh *hbh;
2600		int hbhlen;
2601
2602		/*
2603		 * XXX: We don't allow a non-privileged user to set ANY HbH
2604		 * options, since per-option restriction has too much
2605		 * overhead.
2606		 */
2607		if (cred != NULL) {
2608			error = priv_check_cred(cred,
2609			    PRIV_NETINET_SETHDROPTS, 0);
2610			if (error)
2611				return (error);
2612		}
2613
2614		if (len == 0) {
2615			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2616			break;	/* just remove the option */
2617		}
2618
2619		/* message length validation */
2620		if (len < sizeof(struct ip6_hbh))
2621			return (EINVAL);
2622		hbh = (struct ip6_hbh *)buf;
2623		hbhlen = (hbh->ip6h_len + 1) << 3;
2624		if (len != hbhlen)
2625			return (EINVAL);
2626
2627		/* turn off the previous option, then set the new option. */
2628		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2629		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2630		if (opt->ip6po_hbh == NULL)
2631			return (ENOBUFS);
2632		bcopy(hbh, opt->ip6po_hbh, hbhlen);
2633
2634		break;
2635	}
2636
2637	case IPV6_2292DSTOPTS:
2638	case IPV6_DSTOPTS:
2639	case IPV6_RTHDRDSTOPTS:
2640	{
2641		struct ip6_dest *dest, **newdest = NULL;
2642		int destlen;
2643
2644		if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
2645			error = priv_check_cred(cred,
2646			    PRIV_NETINET_SETHDROPTS, 0);
2647			if (error)
2648				return (error);
2649		}
2650
2651		if (len == 0) {
2652			ip6_clearpktopts(opt, optname);
2653			break;	/* just remove the option */
2654		}
2655
2656		/* message length validation */
2657		if (len < sizeof(struct ip6_dest))
2658			return (EINVAL);
2659		dest = (struct ip6_dest *)buf;
2660		destlen = (dest->ip6d_len + 1) << 3;
2661		if (len != destlen)
2662			return (EINVAL);
2663
2664		/*
2665		 * Determine the position that the destination options header
2666		 * should be inserted; before or after the routing header.
2667		 */
2668		switch (optname) {
2669		case IPV6_2292DSTOPTS:
2670			/*
2671			 * The old advacned API is ambiguous on this point.
2672			 * Our approach is to determine the position based
2673			 * according to the existence of a routing header.
2674			 * Note, however, that this depends on the order of the
2675			 * extension headers in the ancillary data; the 1st
2676			 * part of the destination options header must appear
2677			 * before the routing header in the ancillary data,
2678			 * too.
2679			 * RFC3542 solved the ambiguity by introducing
2680			 * separate ancillary data or option types.
2681			 */
2682			if (opt->ip6po_rthdr == NULL)
2683				newdest = &opt->ip6po_dest1;
2684			else
2685				newdest = &opt->ip6po_dest2;
2686			break;
2687		case IPV6_RTHDRDSTOPTS:
2688			newdest = &opt->ip6po_dest1;
2689			break;
2690		case IPV6_DSTOPTS:
2691			newdest = &opt->ip6po_dest2;
2692			break;
2693		}
2694
2695		/* turn off the previous option, then set the new option. */
2696		ip6_clearpktopts(opt, optname);
2697		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2698		if (*newdest == NULL)
2699			return (ENOBUFS);
2700		bcopy(dest, *newdest, destlen);
2701
2702		break;
2703	}
2704
2705	case IPV6_2292RTHDR:
2706	case IPV6_RTHDR:
2707	{
2708		struct ip6_rthdr *rth;
2709		int rthlen;
2710
2711		if (len == 0) {
2712			ip6_clearpktopts(opt, IPV6_RTHDR);
2713			break;	/* just remove the option */
2714		}
2715
2716		/* message length validation */
2717		if (len < sizeof(struct ip6_rthdr))
2718			return (EINVAL);
2719		rth = (struct ip6_rthdr *)buf;
2720		rthlen = (rth->ip6r_len + 1) << 3;
2721		if (len != rthlen)
2722			return (EINVAL);
2723
2724		switch (rth->ip6r_type) {
2725		case IPV6_RTHDR_TYPE_0:
2726			if (rth->ip6r_len == 0)	/* must contain one addr */
2727				return (EINVAL);
2728			if (rth->ip6r_len % 2) /* length must be even */
2729				return (EINVAL);
2730			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2731				return (EINVAL);
2732			break;
2733		default:
2734			return (EINVAL);	/* not supported */
2735		}
2736
2737		/* turn off the previous option */
2738		ip6_clearpktopts(opt, IPV6_RTHDR);
2739		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
2740		if (opt->ip6po_rthdr == NULL)
2741			return (ENOBUFS);
2742		bcopy(rth, opt->ip6po_rthdr, rthlen);
2743
2744		break;
2745	}
2746
2747	case IPV6_USE_MIN_MTU:
2748		if (len != sizeof(int))
2749			return (EINVAL);
2750		minmtupolicy = *(int *)buf;
2751		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2752		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
2753		    minmtupolicy != IP6PO_MINMTU_ALL) {
2754			return (EINVAL);
2755		}
2756		opt->ip6po_minmtu = minmtupolicy;
2757		break;
2758
2759	case IPV6_DONTFRAG:
2760		if (len != sizeof(int))
2761			return (EINVAL);
2762
2763		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2764			/*
2765			 * we ignore this option for TCP sockets.
2766			 * (RFC3542 leaves this case unspecified.)
2767			 */
2768			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2769		} else
2770			opt->ip6po_flags |= IP6PO_DONTFRAG;
2771		break;
2772
2773	case IPV6_PREFER_TEMPADDR:
2774		if (len != sizeof(int))
2775			return (EINVAL);
2776		preftemp = *(int *)buf;
2777		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
2778		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
2779		    preftemp != IP6PO_TEMPADDR_PREFER) {
2780			return (EINVAL);
2781		}
2782		opt->ip6po_prefer_tempaddr = preftemp;
2783		break;
2784
2785	default:
2786		return (ENOPROTOOPT);
2787	} /* end of switch */
2788
2789	return (0);
2790}
2791
2792/*
2793 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2794 * packet to the input queue of a specified interface.  Note that this
2795 * calls the output routine of the loopback "driver", but with an interface
2796 * pointer that might NOT be &loif -- easier than replicating that code here.
2797 */
2798void
2799ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2800{
2801	struct mbuf *copym;
2802	struct ip6_hdr *ip6;
2803
2804	copym = m_copy(m, 0, M_COPYALL);
2805	if (copym == NULL)
2806		return;
2807
2808	/*
2809	 * Make sure to deep-copy IPv6 header portion in case the data
2810	 * is in an mbuf cluster, so that we can safely override the IPv6
2811	 * header portion later.
2812	 */
2813	if ((copym->m_flags & M_EXT) != 0 ||
2814	    copym->m_len < sizeof(struct ip6_hdr)) {
2815		copym = m_pullup(copym, sizeof(struct ip6_hdr));
2816		if (copym == NULL)
2817			return;
2818	}
2819	ip6 = mtod(copym, struct ip6_hdr *);
2820	/*
2821	 * clear embedded scope identifiers if necessary.
2822	 * in6_clearscope will touch the addresses only when necessary.
2823	 */
2824	in6_clearscope(&ip6->ip6_src);
2825	in6_clearscope(&ip6->ip6_dst);
2826	if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
2827		copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 |
2828		    CSUM_PSEUDO_HDR;
2829		copym->m_pkthdr.csum_data = 0xffff;
2830	}
2831	(void)if_simloop(ifp, copym, dst->sin6_family, 0);
2832}
2833
2834/*
2835 * Chop IPv6 header off from the payload.
2836 */
2837static int
2838ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
2839{
2840	struct mbuf *mh;
2841	struct ip6_hdr *ip6;
2842
2843	ip6 = mtod(m, struct ip6_hdr *);
2844	if (m->m_len > sizeof(*ip6)) {
2845		mh = m_gethdr(M_NOWAIT, MT_DATA);
2846		if (mh == NULL) {
2847			m_freem(m);
2848			return ENOBUFS;
2849		}
2850		m_move_pkthdr(mh, m);
2851		MH_ALIGN(mh, sizeof(*ip6));
2852		m->m_len -= sizeof(*ip6);
2853		m->m_data += sizeof(*ip6);
2854		mh->m_next = m;
2855		m = mh;
2856		m->m_len = sizeof(*ip6);
2857		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2858	}
2859	exthdrs->ip6e_ip6 = m;
2860	return 0;
2861}
2862
2863/*
2864 * Compute IPv6 extension header length.
2865 */
2866int
2867ip6_optlen(struct inpcb *in6p)
2868{
2869	int len;
2870
2871	if (!in6p->in6p_outputopts)
2872		return 0;
2873
2874	len = 0;
2875#define elen(x) \
2876    (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2877
2878	len += elen(in6p->in6p_outputopts->ip6po_hbh);
2879	if (in6p->in6p_outputopts->ip6po_rthdr)
2880		/* dest1 is valid with rthdr only */
2881		len += elen(in6p->in6p_outputopts->ip6po_dest1);
2882	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2883	len += elen(in6p->in6p_outputopts->ip6po_dest2);
2884	return len;
2885#undef elen
2886}
2887