ip6_output.c revision 262743
1/*-
2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
30 */
31
32/*-
33 * Copyright (c) 1982, 1986, 1988, 1990, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 4. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: stable/10/sys/netinet6/ip6_output.c 262743 2014-03-04 15:14:47Z glebius $");
65
66#include "opt_inet.h"
67#include "opt_inet6.h"
68#include "opt_ipfw.h"
69#include "opt_ipsec.h"
70#include "opt_sctp.h"
71#include "opt_route.h"
72
73#include <sys/param.h>
74#include <sys/kernel.h>
75#include <sys/malloc.h>
76#include <sys/mbuf.h>
77#include <sys/errno.h>
78#include <sys/priv.h>
79#include <sys/proc.h>
80#include <sys/protosw.h>
81#include <sys/socket.h>
82#include <sys/socketvar.h>
83#include <sys/syslog.h>
84#include <sys/ucred.h>
85
86#include <machine/in_cksum.h>
87
88#include <net/if.h>
89#include <net/netisr.h>
90#include <net/route.h>
91#include <net/pfil.h>
92#include <net/vnet.h>
93
94#include <netinet/in.h>
95#include <netinet/in_var.h>
96#include <netinet/ip_var.h>
97#include <netinet6/in6_var.h>
98#include <netinet/ip6.h>
99#include <netinet/icmp6.h>
100#include <netinet6/ip6_var.h>
101#include <netinet/in_pcb.h>
102#include <netinet/tcp_var.h>
103#include <netinet6/nd6.h>
104
105#ifdef IPSEC
106#include <netipsec/ipsec.h>
107#include <netipsec/ipsec6.h>
108#include <netipsec/key.h>
109#include <netinet6/ip6_ipsec.h>
110#endif /* IPSEC */
111#ifdef SCTP
112#include <netinet/sctp.h>
113#include <netinet/sctp_crc32.h>
114#endif
115
116#include <netinet6/ip6protosw.h>
117#include <netinet6/scope6_var.h>
118
119#ifdef FLOWTABLE
120#include <net/flowtable.h>
121#endif
122
123extern int in6_mcast_loop;
124
125struct ip6_exthdrs {
126	struct mbuf *ip6e_ip6;
127	struct mbuf *ip6e_hbh;
128	struct mbuf *ip6e_dest1;
129	struct mbuf *ip6e_rthdr;
130	struct mbuf *ip6e_dest2;
131};
132
133static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
134			   struct ucred *, int);
135static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
136	struct socket *, struct sockopt *);
137static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
138static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *,
139	struct ucred *, int, int, int);
140
141static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
142static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
143	struct ip6_frag **);
144static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
145static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
146static int ip6_getpmtu(struct route_in6 *, struct route_in6 *,
147	struct ifnet *, struct in6_addr *, u_long *, int *, u_int);
148static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
149
150
151/*
152 * Make an extension header from option data.  hp is the source, and
153 * mp is the destination.
154 */
155#define MAKE_EXTHDR(hp, mp)						\
156    do {								\
157	if (hp) {							\
158		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
159		error = ip6_copyexthdr((mp), (caddr_t)(hp),		\
160		    ((eh)->ip6e_len + 1) << 3);				\
161		if (error)						\
162			goto freehdrs;					\
163	}								\
164    } while (/*CONSTCOND*/ 0)
165
166/*
167 * Form a chain of extension headers.
168 * m is the extension header mbuf
169 * mp is the previous mbuf in the chain
170 * p is the next header
171 * i is the type of option.
172 */
173#define MAKE_CHAIN(m, mp, p, i)\
174    do {\
175	if (m) {\
176		if (!hdrsplit) \
177			panic("assumption failed: hdr not split"); \
178		*mtod((m), u_char *) = *(p);\
179		*(p) = (i);\
180		p = mtod((m), u_char *);\
181		(m)->m_next = (mp)->m_next;\
182		(mp)->m_next = (m);\
183		(mp) = (m);\
184	}\
185    } while (/*CONSTCOND*/ 0)
186
187static void
188in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset)
189{
190	u_short csum;
191
192	csum = in_cksum_skip(m, offset + plen, offset);
193	if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0)
194		csum = 0xffff;
195	offset += m->m_pkthdr.csum_data;	/* checksum offset */
196
197	if (offset + sizeof(u_short) > m->m_len) {
198		printf("%s: delayed m_pullup, m->len: %d plen %u off %u "
199		    "csum_flags=%b\n", __func__, m->m_len, plen, offset,
200		    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
201		/*
202		 * XXX this should not happen, but if it does, the correct
203		 * behavior may be to insert the checksum in the appropriate
204		 * next mbuf in the chain.
205		 */
206		return;
207	}
208	*(u_short *)(m->m_data + offset) = csum;
209}
210
211/*
212 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
213 * header (with pri, len, nxt, hlim, src, dst).
214 * This function may modify ver and hlim only.
215 * The mbuf chain containing the packet will be freed.
216 * The mbuf opt, if present, will not be freed.
217 * If route_in6 ro is present and has ro_rt initialized, route lookup would be
218 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
219 * then result of route lookup is stored in ro->ro_rt.
220 *
221 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
222 * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
223 * which is rt_rmx.rmx_mtu.
224 *
225 * ifpp - XXX: just for statistics
226 */
227int
228ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
229    struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
230    struct ifnet **ifpp, struct inpcb *inp)
231{
232	struct ip6_hdr *ip6, *mhip6;
233	struct ifnet *ifp, *origifp;
234	struct mbuf *m = m0;
235	struct mbuf *mprev = NULL;
236	int hlen, tlen, len, off;
237	struct route_in6 ip6route;
238	struct rtentry *rt = NULL;
239	struct sockaddr_in6 *dst, src_sa, dst_sa;
240	struct in6_addr odst;
241	int error = 0;
242	struct in6_ifaddr *ia = NULL;
243	u_long mtu;
244	int alwaysfrag, dontfrag;
245	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
246	struct ip6_exthdrs exthdrs;
247	struct in6_addr finaldst, src0, dst0;
248	u_int32_t zone;
249	struct route_in6 *ro_pmtu = NULL;
250	int hdrsplit = 0;
251	int needipsec = 0;
252	int sw_csum, tso;
253#ifdef IPSEC
254	struct ipsec_output_state state;
255	struct ip6_rthdr *rh = NULL;
256	int needipsectun = 0;
257	int segleft_org = 0;
258	struct secpolicy *sp = NULL;
259#endif /* IPSEC */
260	struct m_tag *fwd_tag = NULL;
261
262	ip6 = mtod(m, struct ip6_hdr *);
263	if (ip6 == NULL) {
264		printf ("ip6 is NULL");
265		goto bad;
266	}
267
268	if (inp != NULL)
269		M_SETFIB(m, inp->inp_inc.inc_fibnum);
270
271	finaldst = ip6->ip6_dst;
272	bzero(&exthdrs, sizeof(exthdrs));
273	if (opt) {
274		/* Hop-by-Hop options header */
275		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
276		/* Destination options header(1st part) */
277		if (opt->ip6po_rthdr) {
278			/*
279			 * Destination options header(1st part)
280			 * This only makes sense with a routing header.
281			 * See Section 9.2 of RFC 3542.
282			 * Disabling this part just for MIP6 convenience is
283			 * a bad idea.  We need to think carefully about a
284			 * way to make the advanced API coexist with MIP6
285			 * options, which might automatically be inserted in
286			 * the kernel.
287			 */
288			MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
289		}
290		/* Routing header */
291		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
292		/* Destination options header(2nd part) */
293		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
294	}
295
296#ifdef IPSEC
297	/*
298	 * IPSec checking which handles several cases.
299	 * FAST IPSEC: We re-injected the packet.
300	 */
301	switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp))
302	{
303	case 1:                 /* Bad packet */
304		goto freehdrs;
305	case -1:                /* Do IPSec */
306		needipsec = 1;
307		/*
308		 * Do delayed checksums now, as we may send before returning.
309		 */
310		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
311			plen = m->m_pkthdr.len - sizeof(*ip6);
312			in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr));
313			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
314		}
315#ifdef SCTP
316		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) {
317			sctp_delayed_cksum(m, sizeof(struct ip6_hdr));
318			m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
319		}
320#endif
321	case 0:                 /* No IPSec */
322	default:
323		break;
324	}
325#endif /* IPSEC */
326
327	/*
328	 * Calculate the total length of the extension header chain.
329	 * Keep the length of the unfragmentable part for fragmentation.
330	 */
331	optlen = 0;
332	if (exthdrs.ip6e_hbh)
333		optlen += exthdrs.ip6e_hbh->m_len;
334	if (exthdrs.ip6e_dest1)
335		optlen += exthdrs.ip6e_dest1->m_len;
336	if (exthdrs.ip6e_rthdr)
337		optlen += exthdrs.ip6e_rthdr->m_len;
338	unfragpartlen = optlen + sizeof(struct ip6_hdr);
339
340	/* NOTE: we don't add AH/ESP length here. do that later. */
341	if (exthdrs.ip6e_dest2)
342		optlen += exthdrs.ip6e_dest2->m_len;
343
344	/*
345	 * If we need IPsec, or there is at least one extension header,
346	 * separate IP6 header from the payload.
347	 */
348	if ((needipsec || optlen) && !hdrsplit) {
349		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
350			m = NULL;
351			goto freehdrs;
352		}
353		m = exthdrs.ip6e_ip6;
354		hdrsplit++;
355	}
356
357	/* adjust pointer */
358	ip6 = mtod(m, struct ip6_hdr *);
359
360	/* adjust mbuf packet header length */
361	m->m_pkthdr.len += optlen;
362	plen = m->m_pkthdr.len - sizeof(*ip6);
363
364	/* If this is a jumbo payload, insert a jumbo payload option. */
365	if (plen > IPV6_MAXPACKET) {
366		if (!hdrsplit) {
367			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
368				m = NULL;
369				goto freehdrs;
370			}
371			m = exthdrs.ip6e_ip6;
372			hdrsplit++;
373		}
374		/* adjust pointer */
375		ip6 = mtod(m, struct ip6_hdr *);
376		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
377			goto freehdrs;
378		ip6->ip6_plen = 0;
379	} else
380		ip6->ip6_plen = htons(plen);
381
382	/*
383	 * Concatenate headers and fill in next header fields.
384	 * Here we have, on "m"
385	 *	IPv6 payload
386	 * and we insert headers accordingly.  Finally, we should be getting:
387	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
388	 *
389	 * during the header composing process, "m" points to IPv6 header.
390	 * "mprev" points to an extension header prior to esp.
391	 */
392	u_char *nexthdrp = &ip6->ip6_nxt;
393	mprev = m;
394
395	/*
396	 * we treat dest2 specially.  this makes IPsec processing
397	 * much easier.  the goal here is to make mprev point the
398	 * mbuf prior to dest2.
399	 *
400	 * result: IPv6 dest2 payload
401	 * m and mprev will point to IPv6 header.
402	 */
403	if (exthdrs.ip6e_dest2) {
404		if (!hdrsplit)
405			panic("assumption failed: hdr not split");
406		exthdrs.ip6e_dest2->m_next = m->m_next;
407		m->m_next = exthdrs.ip6e_dest2;
408		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
409		ip6->ip6_nxt = IPPROTO_DSTOPTS;
410	}
411
412	/*
413	 * result: IPv6 hbh dest1 rthdr dest2 payload
414	 * m will point to IPv6 header.  mprev will point to the
415	 * extension header prior to dest2 (rthdr in the above case).
416	 */
417	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
418	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
419		   IPPROTO_DSTOPTS);
420	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
421		   IPPROTO_ROUTING);
422
423#ifdef IPSEC
424	if (!needipsec)
425		goto skip_ipsec2;
426
427	/*
428	 * pointers after IPsec headers are not valid any more.
429	 * other pointers need a great care too.
430	 * (IPsec routines should not mangle mbufs prior to AH/ESP)
431	 */
432	exthdrs.ip6e_dest2 = NULL;
433
434	if (exthdrs.ip6e_rthdr) {
435		rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
436		segleft_org = rh->ip6r_segleft;
437		rh->ip6r_segleft = 0;
438	}
439
440	bzero(&state, sizeof(state));
441	state.m = m;
442	error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
443				    &needipsectun);
444	m = state.m;
445	if (error == EJUSTRETURN) {
446		/*
447		 * We had a SP with a level of 'use' and no SA. We
448		 * will just continue to process the packet without
449		 * IPsec processing.
450		 */
451		;
452	} else if (error) {
453		/* mbuf is already reclaimed in ipsec6_output_trans. */
454		m = NULL;
455		switch (error) {
456		case EHOSTUNREACH:
457		case ENETUNREACH:
458		case EMSGSIZE:
459		case ENOBUFS:
460		case ENOMEM:
461			break;
462		default:
463			printf("[%s:%d] (ipsec): error code %d\n",
464			    __func__, __LINE__, error);
465			/* FALLTHROUGH */
466		case ENOENT:
467			/* don't show these error codes to the user */
468			error = 0;
469			break;
470		}
471		goto bad;
472	} else if (!needipsectun) {
473		/*
474		 * In the FAST IPSec case we have already
475		 * re-injected the packet and it has been freed
476		 * by the ipsec_done() function.  So, just clean
477		 * up after ourselves.
478		 */
479		m = NULL;
480		goto done;
481	}
482	if (exthdrs.ip6e_rthdr) {
483		/* ah6_output doesn't modify mbuf chain */
484		rh->ip6r_segleft = segleft_org;
485	}
486skip_ipsec2:;
487#endif /* IPSEC */
488
489	/*
490	 * If there is a routing header, discard the packet.
491	 */
492	if (exthdrs.ip6e_rthdr) {
493		 error = EINVAL;
494		 goto bad;
495	}
496
497	/* Source address validation */
498	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
499	    (flags & IPV6_UNSPECSRC) == 0) {
500		error = EOPNOTSUPP;
501		IP6STAT_INC(ip6s_badscope);
502		goto bad;
503	}
504	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
505		error = EOPNOTSUPP;
506		IP6STAT_INC(ip6s_badscope);
507		goto bad;
508	}
509
510	IP6STAT_INC(ip6s_localout);
511
512	/*
513	 * Route packet.
514	 */
515	if (ro == 0) {
516		ro = &ip6route;
517		bzero((caddr_t)ro, sizeof(*ro));
518	}
519	ro_pmtu = ro;
520	if (opt && opt->ip6po_rthdr)
521		ro = &opt->ip6po_route;
522	dst = (struct sockaddr_in6 *)&ro->ro_dst;
523#ifdef FLOWTABLE
524	if (ro->ro_rt == NULL)
525		(void )flowtable_lookup(AF_INET6, m, (struct route *)ro);
526#endif
527again:
528	/*
529	 * if specified, try to fill in the traffic class field.
530	 * do not override if a non-zero value is already set.
531	 * we check the diffserv field and the ecn field separately.
532	 */
533	if (opt && opt->ip6po_tclass >= 0) {
534		int mask = 0;
535
536		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
537			mask |= 0xfc;
538		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
539			mask |= 0x03;
540		if (mask != 0)
541			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
542	}
543
544	/* fill in or override the hop limit field, if necessary. */
545	if (opt && opt->ip6po_hlim != -1)
546		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
547	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
548		if (im6o != NULL)
549			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
550		else
551			ip6->ip6_hlim = V_ip6_defmcasthlim;
552	}
553
554#ifdef IPSEC
555	/*
556	 * We may re-inject packets into the stack here.
557	 */
558	if (needipsec && needipsectun) {
559		struct ipsec_output_state state;
560
561		/*
562		 * All the extension headers will become inaccessible
563		 * (since they can be encrypted).
564		 * Don't panic, we need no more updates to extension headers
565		 * on inner IPv6 packet (since they are now encapsulated).
566		 *
567		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
568		 */
569		bzero(&exthdrs, sizeof(exthdrs));
570		exthdrs.ip6e_ip6 = m;
571
572		bzero(&state, sizeof(state));
573		state.m = m;
574		state.ro = (struct route *)ro;
575		state.dst = (struct sockaddr *)dst;
576
577		error = ipsec6_output_tunnel(&state, sp, flags);
578
579		m = state.m;
580		ro = (struct route_in6 *)state.ro;
581		dst = (struct sockaddr_in6 *)state.dst;
582		if (error == EJUSTRETURN) {
583			/*
584			 * We had a SP with a level of 'use' and no SA. We
585			 * will just continue to process the packet without
586			 * IPsec processing.
587			 */
588			;
589		} else if (error) {
590			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
591			m0 = m = NULL;
592			m = NULL;
593			switch (error) {
594			case EHOSTUNREACH:
595			case ENETUNREACH:
596			case EMSGSIZE:
597			case ENOBUFS:
598			case ENOMEM:
599				break;
600			default:
601				printf("[%s:%d] (ipsec): error code %d\n",
602				    __func__, __LINE__, error);
603				/* FALLTHROUGH */
604			case ENOENT:
605				/* don't show these error codes to the user */
606				error = 0;
607				break;
608			}
609			goto bad;
610		} else {
611			/*
612			 * In the FAST IPSec case we have already
613			 * re-injected the packet and it has been freed
614			 * by the ipsec_done() function.  So, just clean
615			 * up after ourselves.
616			 */
617			m = NULL;
618			goto done;
619		}
620
621		exthdrs.ip6e_ip6 = m;
622	}
623#endif /* IPSEC */
624
625	/* adjust pointer */
626	ip6 = mtod(m, struct ip6_hdr *);
627
628	if (ro->ro_rt && fwd_tag == NULL) {
629		rt = ro->ro_rt;
630		ifp = ro->ro_rt->rt_ifp;
631	} else {
632		if (fwd_tag == NULL) {
633			bzero(&dst_sa, sizeof(dst_sa));
634			dst_sa.sin6_family = AF_INET6;
635			dst_sa.sin6_len = sizeof(dst_sa);
636			dst_sa.sin6_addr = ip6->ip6_dst;
637		}
638		error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp,
639		    &rt, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
640		if (error != 0) {
641			if (ifp != NULL)
642				in6_ifstat_inc(ifp, ifs6_out_discard);
643			goto bad;
644		}
645	}
646	if (rt == NULL) {
647		/*
648		 * If in6_selectroute() does not return a route entry,
649		 * dst may not have been updated.
650		 */
651		*dst = dst_sa;	/* XXX */
652	}
653
654	/*
655	 * then rt (for unicast) and ifp must be non-NULL valid values.
656	 */
657	if ((flags & IPV6_FORWARDING) == 0) {
658		/* XXX: the FORWARDING flag can be set for mrouting. */
659		in6_ifstat_inc(ifp, ifs6_out_request);
660	}
661	if (rt != NULL) {
662		ia = (struct in6_ifaddr *)(rt->rt_ifa);
663		rt->rt_use++;
664	}
665
666
667	/*
668	 * The outgoing interface must be in the zone of source and
669	 * destination addresses.
670	 */
671	origifp = ifp;
672
673	src0 = ip6->ip6_src;
674	if (in6_setscope(&src0, origifp, &zone))
675		goto badscope;
676	bzero(&src_sa, sizeof(src_sa));
677	src_sa.sin6_family = AF_INET6;
678	src_sa.sin6_len = sizeof(src_sa);
679	src_sa.sin6_addr = ip6->ip6_src;
680	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
681		goto badscope;
682
683	dst0 = ip6->ip6_dst;
684	if (in6_setscope(&dst0, origifp, &zone))
685		goto badscope;
686	/* re-initialize to be sure */
687	bzero(&dst_sa, sizeof(dst_sa));
688	dst_sa.sin6_family = AF_INET6;
689	dst_sa.sin6_len = sizeof(dst_sa);
690	dst_sa.sin6_addr = ip6->ip6_dst;
691	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
692		goto badscope;
693	}
694
695	/* We should use ia_ifp to support the case of
696	 * sending packets to an address of our own.
697	 */
698	if (ia != NULL && ia->ia_ifp)
699		ifp = ia->ia_ifp;
700
701	/* scope check is done. */
702	goto routefound;
703
704  badscope:
705	IP6STAT_INC(ip6s_badscope);
706	in6_ifstat_inc(origifp, ifs6_out_discard);
707	if (error == 0)
708		error = EHOSTUNREACH; /* XXX */
709	goto bad;
710
711  routefound:
712	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
713		if (opt && opt->ip6po_nextroute.ro_rt) {
714			/*
715			 * The nexthop is explicitly specified by the
716			 * application.  We assume the next hop is an IPv6
717			 * address.
718			 */
719			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
720		}
721		else if ((rt->rt_flags & RTF_GATEWAY))
722			dst = (struct sockaddr_in6 *)rt->rt_gateway;
723	}
724
725	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
726		m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
727	} else {
728		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
729		in6_ifstat_inc(ifp, ifs6_out_mcast);
730		/*
731		 * Confirm that the outgoing interface supports multicast.
732		 */
733		if (!(ifp->if_flags & IFF_MULTICAST)) {
734			IP6STAT_INC(ip6s_noroute);
735			in6_ifstat_inc(ifp, ifs6_out_discard);
736			error = ENETUNREACH;
737			goto bad;
738		}
739		if ((im6o == NULL && in6_mcast_loop) ||
740		    (im6o && im6o->im6o_multicast_loop)) {
741			/*
742			 * Loop back multicast datagram if not expressly
743			 * forbidden to do so, even if we have not joined
744			 * the address; protocols will filter it later,
745			 * thus deferring a hash lookup and lock acquisition
746			 * at the expense of an m_copym().
747			 */
748			ip6_mloopback(ifp, m, dst);
749		} else {
750			/*
751			 * If we are acting as a multicast router, perform
752			 * multicast forwarding as if the packet had just
753			 * arrived on the interface to which we are about
754			 * to send.  The multicast forwarding function
755			 * recursively calls this function, using the
756			 * IPV6_FORWARDING flag to prevent infinite recursion.
757			 *
758			 * Multicasts that are looped back by ip6_mloopback(),
759			 * above, will be forwarded by the ip6_input() routine,
760			 * if necessary.
761			 */
762			if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
763				/*
764				 * XXX: ip6_mforward expects that rcvif is NULL
765				 * when it is called from the originating path.
766				 * However, it may not always be the case.
767				 */
768				m->m_pkthdr.rcvif = NULL;
769				if (ip6_mforward(ip6, ifp, m) != 0) {
770					m_freem(m);
771					goto done;
772				}
773			}
774		}
775		/*
776		 * Multicasts with a hoplimit of zero may be looped back,
777		 * above, but must not be transmitted on a network.
778		 * Also, multicasts addressed to the loopback interface
779		 * are not sent -- the above call to ip6_mloopback() will
780		 * loop back a copy if this host actually belongs to the
781		 * destination group on the loopback interface.
782		 */
783		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
784		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
785			m_freem(m);
786			goto done;
787		}
788	}
789
790	/*
791	 * Fill the outgoing inteface to tell the upper layer
792	 * to increment per-interface statistics.
793	 */
794	if (ifpp)
795		*ifpp = ifp;
796
797	/* Determine path MTU. */
798	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
799	    &alwaysfrag, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0)
800		goto bad;
801
802	/*
803	 * The caller of this function may specify to use the minimum MTU
804	 * in some cases.
805	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
806	 * setting.  The logic is a bit complicated; by default, unicast
807	 * packets will follow path MTU while multicast packets will be sent at
808	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
809	 * including unicast ones will be sent at the minimum MTU.  Multicast
810	 * packets will always be sent at the minimum MTU unless
811	 * IP6PO_MINMTU_DISABLE is explicitly specified.
812	 * See RFC 3542 for more details.
813	 */
814	if (mtu > IPV6_MMTU) {
815		if ((flags & IPV6_MINMTU))
816			mtu = IPV6_MMTU;
817		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
818			mtu = IPV6_MMTU;
819		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
820			 (opt == NULL ||
821			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
822			mtu = IPV6_MMTU;
823		}
824	}
825
826	/*
827	 * clear embedded scope identifiers if necessary.
828	 * in6_clearscope will touch the addresses only when necessary.
829	 */
830	in6_clearscope(&ip6->ip6_src);
831	in6_clearscope(&ip6->ip6_dst);
832
833	/*
834	 * If the outgoing packet contains a hop-by-hop options header,
835	 * it must be examined and processed even by the source node.
836	 * (RFC 2460, section 4.)
837	 */
838	if (exthdrs.ip6e_hbh) {
839		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
840		u_int32_t dummy; /* XXX unused */
841		u_int32_t plen = 0; /* XXX: ip6_process will check the value */
842
843#ifdef DIAGNOSTIC
844		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
845			panic("ip6e_hbh is not contiguous");
846#endif
847		/*
848		 *  XXX: if we have to send an ICMPv6 error to the sender,
849		 *       we need the M_LOOP flag since icmp6_error() expects
850		 *       the IPv6 and the hop-by-hop options header are
851		 *       contiguous unless the flag is set.
852		 */
853		m->m_flags |= M_LOOP;
854		m->m_pkthdr.rcvif = ifp;
855		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
856		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
857		    &dummy, &plen) < 0) {
858			/* m was already freed at this point */
859			error = EINVAL;/* better error? */
860			goto done;
861		}
862		m->m_flags &= ~M_LOOP; /* XXX */
863		m->m_pkthdr.rcvif = NULL;
864	}
865
866	/* Jump over all PFIL processing if hooks are not active. */
867	if (!PFIL_HOOKED(&V_inet6_pfil_hook))
868		goto passout;
869
870	odst = ip6->ip6_dst;
871	/* Run through list of hooks for output packets. */
872	error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp);
873	if (error != 0 || m == NULL)
874		goto done;
875	ip6 = mtod(m, struct ip6_hdr *);
876
877	/* See if destination IP address was changed by packet filter. */
878	if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
879		m->m_flags |= M_SKIP_FIREWALL;
880		/* If destination is now ourself drop to ip6_input(). */
881		if (in6_localip(&ip6->ip6_dst)) {
882			m->m_flags |= M_FASTFWD_OURS;
883			if (m->m_pkthdr.rcvif == NULL)
884				m->m_pkthdr.rcvif = V_loif;
885			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
886				m->m_pkthdr.csum_flags |=
887				    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
888				m->m_pkthdr.csum_data = 0xffff;
889			}
890#ifdef SCTP
891			if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
892				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
893#endif
894			error = netisr_queue(NETISR_IPV6, m);
895			goto done;
896		} else
897			goto again;	/* Redo the routing table lookup. */
898	}
899
900	/* See if local, if yes, send it to netisr. */
901	if (m->m_flags & M_FASTFWD_OURS) {
902		if (m->m_pkthdr.rcvif == NULL)
903			m->m_pkthdr.rcvif = V_loif;
904		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
905			m->m_pkthdr.csum_flags |=
906			    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
907			m->m_pkthdr.csum_data = 0xffff;
908		}
909#ifdef SCTP
910		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
911			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
912#endif
913		error = netisr_queue(NETISR_IPV6, m);
914		goto done;
915	}
916	/* Or forward to some other address? */
917	if ((m->m_flags & M_IP6_NEXTHOP) &&
918	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
919		dst = (struct sockaddr_in6 *)&ro->ro_dst;
920		bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6));
921		m->m_flags |= M_SKIP_FIREWALL;
922		m->m_flags &= ~M_IP6_NEXTHOP;
923		m_tag_delete(m, fwd_tag);
924		goto again;
925	}
926
927passout:
928	/*
929	 * Send the packet to the outgoing interface.
930	 * If necessary, do IPv6 fragmentation before sending.
931	 *
932	 * the logic here is rather complex:
933	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
934	 * 1-a:	send as is if tlen <= path mtu
935	 * 1-b:	fragment if tlen > path mtu
936	 *
937	 * 2: if user asks us not to fragment (dontfrag == 1)
938	 * 2-a:	send as is if tlen <= interface mtu
939	 * 2-b:	error if tlen > interface mtu
940	 *
941	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
942	 *	always fragment
943	 *
944	 * 4: if dontfrag == 1 && alwaysfrag == 1
945	 *	error, as we cannot handle this conflicting request
946	 */
947	sw_csum = m->m_pkthdr.csum_flags;
948	if (!hdrsplit) {
949		tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0;
950		sw_csum &= ~ifp->if_hwassist;
951	} else
952		tso = 0;
953	/*
954	 * If we added extension headers, we will not do TSO and calculate the
955	 * checksums ourselves for now.
956	 * XXX-BZ  Need a framework to know when the NIC can handle it, even
957	 * with ext. hdrs.
958	 */
959	if (sw_csum & CSUM_DELAY_DATA_IPV6) {
960		sw_csum &= ~CSUM_DELAY_DATA_IPV6;
961		in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr));
962	}
963#ifdef SCTP
964	if (sw_csum & CSUM_SCTP_IPV6) {
965		sw_csum &= ~CSUM_SCTP_IPV6;
966		sctp_delayed_cksum(m, sizeof(struct ip6_hdr));
967	}
968#endif
969	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
970	tlen = m->m_pkthdr.len;
971
972	if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso)
973		dontfrag = 1;
974	else
975		dontfrag = 0;
976	if (dontfrag && alwaysfrag) {	/* case 4 */
977		/* conflicting request - can't transmit */
978		error = EMSGSIZE;
979		goto bad;
980	}
981	if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) {	/* case 2-b */
982		/*
983		 * Even if the DONTFRAG option is specified, we cannot send the
984		 * packet when the data length is larger than the MTU of the
985		 * outgoing interface.
986		 * Notify the error by sending IPV6_PATHMTU ancillary data as
987		 * well as returning an error code (the latter is not described
988		 * in the API spec.)
989		 */
990		u_int32_t mtu32;
991		struct ip6ctlparam ip6cp;
992
993		mtu32 = (u_int32_t)mtu;
994		bzero(&ip6cp, sizeof(ip6cp));
995		ip6cp.ip6c_cmdarg = (void *)&mtu32;
996		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
997		    (void *)&ip6cp);
998
999		error = EMSGSIZE;
1000		goto bad;
1001	}
1002
1003	/*
1004	 * transmit packet without fragmentation
1005	 */
1006	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
1007		struct in6_ifaddr *ia6;
1008
1009		ip6 = mtod(m, struct ip6_hdr *);
1010		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1011		if (ia6) {
1012			/* Record statistics for this interface address. */
1013			ia6->ia_ifa.if_opackets++;
1014			ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
1015			ifa_free(&ia6->ia_ifa);
1016		}
1017		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1018		goto done;
1019	}
1020
1021	/*
1022	 * try to fragment the packet.  case 1-b and 3
1023	 */
1024	if (mtu < IPV6_MMTU) {
1025		/* path MTU cannot be less than IPV6_MMTU */
1026		error = EMSGSIZE;
1027		in6_ifstat_inc(ifp, ifs6_out_fragfail);
1028		goto bad;
1029	} else if (ip6->ip6_plen == 0) {
1030		/* jumbo payload cannot be fragmented */
1031		error = EMSGSIZE;
1032		in6_ifstat_inc(ifp, ifs6_out_fragfail);
1033		goto bad;
1034	} else {
1035		struct mbuf **mnext, *m_frgpart;
1036		struct ip6_frag *ip6f;
1037		u_int32_t id = htonl(ip6_randomid());
1038		u_char nextproto;
1039
1040		int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
1041
1042		/*
1043		 * Too large for the destination or interface;
1044		 * fragment if possible.
1045		 * Must be able to put at least 8 bytes per fragment.
1046		 */
1047		hlen = unfragpartlen;
1048		if (mtu > IPV6_MAXPACKET)
1049			mtu = IPV6_MAXPACKET;
1050
1051		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
1052		if (len < 8) {
1053			error = EMSGSIZE;
1054			in6_ifstat_inc(ifp, ifs6_out_fragfail);
1055			goto bad;
1056		}
1057
1058		/*
1059		 * Verify that we have any chance at all of being able to queue
1060		 *      the packet or packet fragments
1061		 */
1062		if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
1063		    < tlen  /* - hlen */)) {
1064			error = ENOBUFS;
1065			IP6STAT_INC(ip6s_odropped);
1066			goto bad;
1067		}
1068
1069
1070		/*
1071		 * If the interface will not calculate checksums on
1072		 * fragmented packets, then do it here.
1073		 * XXX-BZ handle the hw offloading case.  Need flags.
1074		 */
1075		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
1076			in6_delayed_cksum(m, plen, hlen);
1077			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
1078		}
1079#ifdef SCTP
1080		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) {
1081			sctp_delayed_cksum(m, hlen);
1082			m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
1083		}
1084#endif
1085		mnext = &m->m_nextpkt;
1086
1087		/*
1088		 * Change the next header field of the last header in the
1089		 * unfragmentable part.
1090		 */
1091		if (exthdrs.ip6e_rthdr) {
1092			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1093			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1094		} else if (exthdrs.ip6e_dest1) {
1095			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1096			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1097		} else if (exthdrs.ip6e_hbh) {
1098			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1099			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1100		} else {
1101			nextproto = ip6->ip6_nxt;
1102			ip6->ip6_nxt = IPPROTO_FRAGMENT;
1103		}
1104
1105		/*
1106		 * Loop through length of segment after first fragment,
1107		 * make new header and copy data of each part and link onto
1108		 * chain.
1109		 */
1110		m0 = m;
1111		for (off = hlen; off < tlen; off += len) {
1112			m = m_gethdr(M_NOWAIT, MT_DATA);
1113			if (!m) {
1114				error = ENOBUFS;
1115				IP6STAT_INC(ip6s_odropped);
1116				goto sendorfree;
1117			}
1118			m->m_flags = m0->m_flags & M_COPYFLAGS;
1119			*mnext = m;
1120			mnext = &m->m_nextpkt;
1121			m->m_data += max_linkhdr;
1122			mhip6 = mtod(m, struct ip6_hdr *);
1123			*mhip6 = *ip6;
1124			m->m_len = sizeof(*mhip6);
1125			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1126			if (error) {
1127				IP6STAT_INC(ip6s_odropped);
1128				goto sendorfree;
1129			}
1130			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1131			if (off + len >= tlen)
1132				len = tlen - off;
1133			else
1134				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1135			mhip6->ip6_plen = htons((u_short)(len + hlen +
1136			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1137			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1138				error = ENOBUFS;
1139				IP6STAT_INC(ip6s_odropped);
1140				goto sendorfree;
1141			}
1142			m_cat(m, m_frgpart);
1143			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1144			m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum;
1145			m->m_pkthdr.rcvif = NULL;
1146			ip6f->ip6f_reserved = 0;
1147			ip6f->ip6f_ident = id;
1148			ip6f->ip6f_nxt = nextproto;
1149			IP6STAT_INC(ip6s_ofragments);
1150			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1151		}
1152
1153		in6_ifstat_inc(ifp, ifs6_out_fragok);
1154	}
1155
1156	/*
1157	 * Remove leading garbages.
1158	 */
1159sendorfree:
1160	m = m0->m_nextpkt;
1161	m0->m_nextpkt = 0;
1162	m_freem(m0);
1163	for (m0 = m; m; m = m0) {
1164		m0 = m->m_nextpkt;
1165		m->m_nextpkt = 0;
1166		if (error == 0) {
1167			/* Record statistics for this interface address. */
1168			if (ia) {
1169				ia->ia_ifa.if_opackets++;
1170				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1171			}
1172			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1173		} else
1174			m_freem(m);
1175	}
1176
1177	if (error == 0)
1178		IP6STAT_INC(ip6s_fragmented);
1179
1180done:
1181	if (ro == &ip6route)
1182		RO_RTFREE(ro);
1183	if (ro_pmtu == &ip6route)
1184		RO_RTFREE(ro_pmtu);
1185#ifdef IPSEC
1186	if (sp != NULL)
1187		KEY_FREESP(&sp);
1188#endif
1189
1190	return (error);
1191
1192freehdrs:
1193	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1194	m_freem(exthdrs.ip6e_dest1);
1195	m_freem(exthdrs.ip6e_rthdr);
1196	m_freem(exthdrs.ip6e_dest2);
1197	/* FALLTHROUGH */
1198bad:
1199	if (m)
1200		m_freem(m);
1201	goto done;
1202}
1203
1204static int
1205ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1206{
1207	struct mbuf *m;
1208
1209	if (hlen > MCLBYTES)
1210		return (ENOBUFS); /* XXX */
1211
1212	if (hlen > MLEN)
1213		m = m_getcl(M_NOWAIT, MT_DATA, 0);
1214	else
1215		m = m_get(M_NOWAIT, MT_DATA);
1216	if (m == NULL)
1217		return (ENOBUFS);
1218	m->m_len = hlen;
1219	if (hdr)
1220		bcopy(hdr, mtod(m, caddr_t), hlen);
1221
1222	*mp = m;
1223	return (0);
1224}
1225
1226/*
1227 * Insert jumbo payload option.
1228 */
1229static int
1230ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1231{
1232	struct mbuf *mopt;
1233	u_char *optbuf;
1234	u_int32_t v;
1235
1236#define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1237
1238	/*
1239	 * If there is no hop-by-hop options header, allocate new one.
1240	 * If there is one but it doesn't have enough space to store the
1241	 * jumbo payload option, allocate a cluster to store the whole options.
1242	 * Otherwise, use it to store the options.
1243	 */
1244	if (exthdrs->ip6e_hbh == 0) {
1245		mopt = m_get(M_NOWAIT, MT_DATA);
1246		if (mopt == NULL)
1247			return (ENOBUFS);
1248		mopt->m_len = JUMBOOPTLEN;
1249		optbuf = mtod(mopt, u_char *);
1250		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1251		exthdrs->ip6e_hbh = mopt;
1252	} else {
1253		struct ip6_hbh *hbh;
1254
1255		mopt = exthdrs->ip6e_hbh;
1256		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1257			/*
1258			 * XXX assumption:
1259			 * - exthdrs->ip6e_hbh is not referenced from places
1260			 *   other than exthdrs.
1261			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1262			 */
1263			int oldoptlen = mopt->m_len;
1264			struct mbuf *n;
1265
1266			/*
1267			 * XXX: give up if the whole (new) hbh header does
1268			 * not fit even in an mbuf cluster.
1269			 */
1270			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1271				return (ENOBUFS);
1272
1273			/*
1274			 * As a consequence, we must always prepare a cluster
1275			 * at this point.
1276			 */
1277			n = m_getcl(M_NOWAIT, MT_DATA, 0);
1278			if (n == NULL)
1279				return (ENOBUFS);
1280			n->m_len = oldoptlen + JUMBOOPTLEN;
1281			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1282			    oldoptlen);
1283			optbuf = mtod(n, caddr_t) + oldoptlen;
1284			m_freem(mopt);
1285			mopt = exthdrs->ip6e_hbh = n;
1286		} else {
1287			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1288			mopt->m_len += JUMBOOPTLEN;
1289		}
1290		optbuf[0] = IP6OPT_PADN;
1291		optbuf[1] = 1;
1292
1293		/*
1294		 * Adjust the header length according to the pad and
1295		 * the jumbo payload option.
1296		 */
1297		hbh = mtod(mopt, struct ip6_hbh *);
1298		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1299	}
1300
1301	/* fill in the option. */
1302	optbuf[2] = IP6OPT_JUMBO;
1303	optbuf[3] = 4;
1304	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1305	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1306
1307	/* finally, adjust the packet header length */
1308	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1309
1310	return (0);
1311#undef JUMBOOPTLEN
1312}
1313
1314/*
1315 * Insert fragment header and copy unfragmentable header portions.
1316 */
1317static int
1318ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1319    struct ip6_frag **frghdrp)
1320{
1321	struct mbuf *n, *mlast;
1322
1323	if (hlen > sizeof(struct ip6_hdr)) {
1324		n = m_copym(m0, sizeof(struct ip6_hdr),
1325		    hlen - sizeof(struct ip6_hdr), M_NOWAIT);
1326		if (n == 0)
1327			return (ENOBUFS);
1328		m->m_next = n;
1329	} else
1330		n = m;
1331
1332	/* Search for the last mbuf of unfragmentable part. */
1333	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1334		;
1335
1336	if ((mlast->m_flags & M_EXT) == 0 &&
1337	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1338		/* use the trailing space of the last mbuf for the fragment hdr */
1339		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1340		    mlast->m_len);
1341		mlast->m_len += sizeof(struct ip6_frag);
1342		m->m_pkthdr.len += sizeof(struct ip6_frag);
1343	} else {
1344		/* allocate a new mbuf for the fragment header */
1345		struct mbuf *mfrg;
1346
1347		mfrg = m_get(M_NOWAIT, MT_DATA);
1348		if (mfrg == NULL)
1349			return (ENOBUFS);
1350		mfrg->m_len = sizeof(struct ip6_frag);
1351		*frghdrp = mtod(mfrg, struct ip6_frag *);
1352		mlast->m_next = mfrg;
1353	}
1354
1355	return (0);
1356}
1357
1358static int
1359ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1360    struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1361    int *alwaysfragp, u_int fibnum)
1362{
1363	u_int32_t mtu = 0;
1364	int alwaysfrag = 0;
1365	int error = 0;
1366
1367	if (ro_pmtu != ro) {
1368		/* The first hop and the final destination may differ. */
1369		struct sockaddr_in6 *sa6_dst =
1370		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1371		if (ro_pmtu->ro_rt &&
1372		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1373		     !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1374			RTFREE(ro_pmtu->ro_rt);
1375			ro_pmtu->ro_rt = (struct rtentry *)NULL;
1376		}
1377		if (ro_pmtu->ro_rt == NULL) {
1378			bzero(sa6_dst, sizeof(*sa6_dst));
1379			sa6_dst->sin6_family = AF_INET6;
1380			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1381			sa6_dst->sin6_addr = *dst;
1382
1383			in6_rtalloc(ro_pmtu, fibnum);
1384		}
1385	}
1386	if (ro_pmtu->ro_rt) {
1387		u_int32_t ifmtu;
1388		struct in_conninfo inc;
1389
1390		bzero(&inc, sizeof(inc));
1391		inc.inc_flags |= INC_ISIPV6;
1392		inc.inc6_faddr = *dst;
1393
1394		if (ifp == NULL)
1395			ifp = ro_pmtu->ro_rt->rt_ifp;
1396		ifmtu = IN6_LINKMTU(ifp);
1397		mtu = tcp_hc_getmtu(&inc);
1398		if (mtu)
1399			mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu);
1400		else
1401			mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1402		if (mtu == 0)
1403			mtu = ifmtu;
1404		else if (mtu < IPV6_MMTU) {
1405			/*
1406			 * RFC2460 section 5, last paragraph:
1407			 * if we record ICMPv6 too big message with
1408			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1409			 * or smaller, with framgent header attached.
1410			 * (fragment header is needed regardless from the
1411			 * packet size, for translators to identify packets)
1412			 */
1413			alwaysfrag = 1;
1414			mtu = IPV6_MMTU;
1415		} else if (mtu > ifmtu) {
1416			/*
1417			 * The MTU on the route is larger than the MTU on
1418			 * the interface!  This shouldn't happen, unless the
1419			 * MTU of the interface has been changed after the
1420			 * interface was brought up.  Change the MTU in the
1421			 * route to match the interface MTU (as long as the
1422			 * field isn't locked).
1423			 */
1424			mtu = ifmtu;
1425			ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1426		}
1427	} else if (ifp) {
1428		mtu = IN6_LINKMTU(ifp);
1429	} else
1430		error = EHOSTUNREACH; /* XXX */
1431
1432	*mtup = mtu;
1433	if (alwaysfragp)
1434		*alwaysfragp = alwaysfrag;
1435	return (error);
1436}
1437
1438/*
1439 * IP6 socket option processing.
1440 */
1441int
1442ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1443{
1444	int optdatalen, uproto;
1445	void *optdata;
1446	struct inpcb *in6p = sotoinpcb(so);
1447	int error, optval;
1448	int level, op, optname;
1449	int optlen;
1450	struct thread *td;
1451
1452	level = sopt->sopt_level;
1453	op = sopt->sopt_dir;
1454	optname = sopt->sopt_name;
1455	optlen = sopt->sopt_valsize;
1456	td = sopt->sopt_td;
1457	error = 0;
1458	optval = 0;
1459	uproto = (int)so->so_proto->pr_protocol;
1460
1461	if (level != IPPROTO_IPV6) {
1462		error = EINVAL;
1463
1464		if (sopt->sopt_level == SOL_SOCKET &&
1465		    sopt->sopt_dir == SOPT_SET) {
1466			switch (sopt->sopt_name) {
1467			case SO_REUSEADDR:
1468				INP_WLOCK(in6p);
1469				if ((so->so_options & SO_REUSEADDR) != 0)
1470					in6p->inp_flags2 |= INP_REUSEADDR;
1471				else
1472					in6p->inp_flags2 &= ~INP_REUSEADDR;
1473				INP_WUNLOCK(in6p);
1474				error = 0;
1475				break;
1476			case SO_REUSEPORT:
1477				INP_WLOCK(in6p);
1478				if ((so->so_options & SO_REUSEPORT) != 0)
1479					in6p->inp_flags2 |= INP_REUSEPORT;
1480				else
1481					in6p->inp_flags2 &= ~INP_REUSEPORT;
1482				INP_WUNLOCK(in6p);
1483				error = 0;
1484				break;
1485			case SO_SETFIB:
1486				INP_WLOCK(in6p);
1487				in6p->inp_inc.inc_fibnum = so->so_fibnum;
1488				INP_WUNLOCK(in6p);
1489				error = 0;
1490				break;
1491			default:
1492				break;
1493			}
1494		}
1495	} else {		/* level == IPPROTO_IPV6 */
1496		switch (op) {
1497
1498		case SOPT_SET:
1499			switch (optname) {
1500			case IPV6_2292PKTOPTIONS:
1501#ifdef IPV6_PKTOPTIONS
1502			case IPV6_PKTOPTIONS:
1503#endif
1504			{
1505				struct mbuf *m;
1506
1507				error = soopt_getm(sopt, &m); /* XXX */
1508				if (error != 0)
1509					break;
1510				error = soopt_mcopyin(sopt, m); /* XXX */
1511				if (error != 0)
1512					break;
1513				error = ip6_pcbopts(&in6p->in6p_outputopts,
1514						    m, so, sopt);
1515				m_freem(m); /* XXX */
1516				break;
1517			}
1518
1519			/*
1520			 * Use of some Hop-by-Hop options or some
1521			 * Destination options, might require special
1522			 * privilege.  That is, normal applications
1523			 * (without special privilege) might be forbidden
1524			 * from setting certain options in outgoing packets,
1525			 * and might never see certain options in received
1526			 * packets. [RFC 2292 Section 6]
1527			 * KAME specific note:
1528			 *  KAME prevents non-privileged users from sending or
1529			 *  receiving ANY hbh/dst options in order to avoid
1530			 *  overhead of parsing options in the kernel.
1531			 */
1532			case IPV6_RECVHOPOPTS:
1533			case IPV6_RECVDSTOPTS:
1534			case IPV6_RECVRTHDRDSTOPTS:
1535				if (td != NULL) {
1536					error = priv_check(td,
1537					    PRIV_NETINET_SETHDROPTS);
1538					if (error)
1539						break;
1540				}
1541				/* FALLTHROUGH */
1542			case IPV6_UNICAST_HOPS:
1543			case IPV6_HOPLIMIT:
1544			case IPV6_FAITH:
1545
1546			case IPV6_RECVPKTINFO:
1547			case IPV6_RECVHOPLIMIT:
1548			case IPV6_RECVRTHDR:
1549			case IPV6_RECVPATHMTU:
1550			case IPV6_RECVTCLASS:
1551			case IPV6_V6ONLY:
1552			case IPV6_AUTOFLOWLABEL:
1553			case IPV6_BINDANY:
1554				if (optname == IPV6_BINDANY && td != NULL) {
1555					error = priv_check(td,
1556					    PRIV_NETINET_BINDANY);
1557					if (error)
1558						break;
1559				}
1560
1561				if (optlen != sizeof(int)) {
1562					error = EINVAL;
1563					break;
1564				}
1565				error = sooptcopyin(sopt, &optval,
1566					sizeof optval, sizeof optval);
1567				if (error)
1568					break;
1569				switch (optname) {
1570
1571				case IPV6_UNICAST_HOPS:
1572					if (optval < -1 || optval >= 256)
1573						error = EINVAL;
1574					else {
1575						/* -1 = kernel default */
1576						in6p->in6p_hops = optval;
1577						if ((in6p->inp_vflag &
1578						     INP_IPV4) != 0)
1579							in6p->inp_ip_ttl = optval;
1580					}
1581					break;
1582#define OPTSET(bit) \
1583do { \
1584	INP_WLOCK(in6p); \
1585	if (optval) \
1586		in6p->inp_flags |= (bit); \
1587	else \
1588		in6p->inp_flags &= ~(bit); \
1589	INP_WUNLOCK(in6p); \
1590} while (/*CONSTCOND*/ 0)
1591#define OPTSET2292(bit) \
1592do { \
1593	INP_WLOCK(in6p); \
1594	in6p->inp_flags |= IN6P_RFC2292; \
1595	if (optval) \
1596		in6p->inp_flags |= (bit); \
1597	else \
1598		in6p->inp_flags &= ~(bit); \
1599	INP_WUNLOCK(in6p); \
1600} while (/*CONSTCOND*/ 0)
1601#define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
1602
1603				case IPV6_RECVPKTINFO:
1604					/* cannot mix with RFC2292 */
1605					if (OPTBIT(IN6P_RFC2292)) {
1606						error = EINVAL;
1607						break;
1608					}
1609					OPTSET(IN6P_PKTINFO);
1610					break;
1611
1612				case IPV6_HOPLIMIT:
1613				{
1614					struct ip6_pktopts **optp;
1615
1616					/* cannot mix with RFC2292 */
1617					if (OPTBIT(IN6P_RFC2292)) {
1618						error = EINVAL;
1619						break;
1620					}
1621					optp = &in6p->in6p_outputopts;
1622					error = ip6_pcbopt(IPV6_HOPLIMIT,
1623					    (u_char *)&optval, sizeof(optval),
1624					    optp, (td != NULL) ? td->td_ucred :
1625					    NULL, uproto);
1626					break;
1627				}
1628
1629				case IPV6_RECVHOPLIMIT:
1630					/* cannot mix with RFC2292 */
1631					if (OPTBIT(IN6P_RFC2292)) {
1632						error = EINVAL;
1633						break;
1634					}
1635					OPTSET(IN6P_HOPLIMIT);
1636					break;
1637
1638				case IPV6_RECVHOPOPTS:
1639					/* cannot mix with RFC2292 */
1640					if (OPTBIT(IN6P_RFC2292)) {
1641						error = EINVAL;
1642						break;
1643					}
1644					OPTSET(IN6P_HOPOPTS);
1645					break;
1646
1647				case IPV6_RECVDSTOPTS:
1648					/* cannot mix with RFC2292 */
1649					if (OPTBIT(IN6P_RFC2292)) {
1650						error = EINVAL;
1651						break;
1652					}
1653					OPTSET(IN6P_DSTOPTS);
1654					break;
1655
1656				case IPV6_RECVRTHDRDSTOPTS:
1657					/* cannot mix with RFC2292 */
1658					if (OPTBIT(IN6P_RFC2292)) {
1659						error = EINVAL;
1660						break;
1661					}
1662					OPTSET(IN6P_RTHDRDSTOPTS);
1663					break;
1664
1665				case IPV6_RECVRTHDR:
1666					/* cannot mix with RFC2292 */
1667					if (OPTBIT(IN6P_RFC2292)) {
1668						error = EINVAL;
1669						break;
1670					}
1671					OPTSET(IN6P_RTHDR);
1672					break;
1673
1674				case IPV6_FAITH:
1675					OPTSET(INP_FAITH);
1676					break;
1677
1678				case IPV6_RECVPATHMTU:
1679					/*
1680					 * We ignore this option for TCP
1681					 * sockets.
1682					 * (RFC3542 leaves this case
1683					 * unspecified.)
1684					 */
1685					if (uproto != IPPROTO_TCP)
1686						OPTSET(IN6P_MTU);
1687					break;
1688
1689				case IPV6_V6ONLY:
1690					/*
1691					 * make setsockopt(IPV6_V6ONLY)
1692					 * available only prior to bind(2).
1693					 * see ipng mailing list, Jun 22 2001.
1694					 */
1695					if (in6p->inp_lport ||
1696					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1697						error = EINVAL;
1698						break;
1699					}
1700					OPTSET(IN6P_IPV6_V6ONLY);
1701					if (optval)
1702						in6p->inp_vflag &= ~INP_IPV4;
1703					else
1704						in6p->inp_vflag |= INP_IPV4;
1705					break;
1706				case IPV6_RECVTCLASS:
1707					/* cannot mix with RFC2292 XXX */
1708					if (OPTBIT(IN6P_RFC2292)) {
1709						error = EINVAL;
1710						break;
1711					}
1712					OPTSET(IN6P_TCLASS);
1713					break;
1714				case IPV6_AUTOFLOWLABEL:
1715					OPTSET(IN6P_AUTOFLOWLABEL);
1716					break;
1717
1718				case IPV6_BINDANY:
1719					OPTSET(INP_BINDANY);
1720					break;
1721				}
1722				break;
1723
1724			case IPV6_TCLASS:
1725			case IPV6_DONTFRAG:
1726			case IPV6_USE_MIN_MTU:
1727			case IPV6_PREFER_TEMPADDR:
1728				if (optlen != sizeof(optval)) {
1729					error = EINVAL;
1730					break;
1731				}
1732				error = sooptcopyin(sopt, &optval,
1733					sizeof optval, sizeof optval);
1734				if (error)
1735					break;
1736				{
1737					struct ip6_pktopts **optp;
1738					optp = &in6p->in6p_outputopts;
1739					error = ip6_pcbopt(optname,
1740					    (u_char *)&optval, sizeof(optval),
1741					    optp, (td != NULL) ? td->td_ucred :
1742					    NULL, uproto);
1743					break;
1744				}
1745
1746			case IPV6_2292PKTINFO:
1747			case IPV6_2292HOPLIMIT:
1748			case IPV6_2292HOPOPTS:
1749			case IPV6_2292DSTOPTS:
1750			case IPV6_2292RTHDR:
1751				/* RFC 2292 */
1752				if (optlen != sizeof(int)) {
1753					error = EINVAL;
1754					break;
1755				}
1756				error = sooptcopyin(sopt, &optval,
1757					sizeof optval, sizeof optval);
1758				if (error)
1759					break;
1760				switch (optname) {
1761				case IPV6_2292PKTINFO:
1762					OPTSET2292(IN6P_PKTINFO);
1763					break;
1764				case IPV6_2292HOPLIMIT:
1765					OPTSET2292(IN6P_HOPLIMIT);
1766					break;
1767				case IPV6_2292HOPOPTS:
1768					/*
1769					 * Check super-user privilege.
1770					 * See comments for IPV6_RECVHOPOPTS.
1771					 */
1772					if (td != NULL) {
1773						error = priv_check(td,
1774						    PRIV_NETINET_SETHDROPTS);
1775						if (error)
1776							return (error);
1777					}
1778					OPTSET2292(IN6P_HOPOPTS);
1779					break;
1780				case IPV6_2292DSTOPTS:
1781					if (td != NULL) {
1782						error = priv_check(td,
1783						    PRIV_NETINET_SETHDROPTS);
1784						if (error)
1785							return (error);
1786					}
1787					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1788					break;
1789				case IPV6_2292RTHDR:
1790					OPTSET2292(IN6P_RTHDR);
1791					break;
1792				}
1793				break;
1794			case IPV6_PKTINFO:
1795			case IPV6_HOPOPTS:
1796			case IPV6_RTHDR:
1797			case IPV6_DSTOPTS:
1798			case IPV6_RTHDRDSTOPTS:
1799			case IPV6_NEXTHOP:
1800			{
1801				/* new advanced API (RFC3542) */
1802				u_char *optbuf;
1803				u_char optbuf_storage[MCLBYTES];
1804				int optlen;
1805				struct ip6_pktopts **optp;
1806
1807				/* cannot mix with RFC2292 */
1808				if (OPTBIT(IN6P_RFC2292)) {
1809					error = EINVAL;
1810					break;
1811				}
1812
1813				/*
1814				 * We only ensure valsize is not too large
1815				 * here.  Further validation will be done
1816				 * later.
1817				 */
1818				error = sooptcopyin(sopt, optbuf_storage,
1819				    sizeof(optbuf_storage), 0);
1820				if (error)
1821					break;
1822				optlen = sopt->sopt_valsize;
1823				optbuf = optbuf_storage;
1824				optp = &in6p->in6p_outputopts;
1825				error = ip6_pcbopt(optname, optbuf, optlen,
1826				    optp, (td != NULL) ? td->td_ucred : NULL,
1827				    uproto);
1828				break;
1829			}
1830#undef OPTSET
1831
1832			case IPV6_MULTICAST_IF:
1833			case IPV6_MULTICAST_HOPS:
1834			case IPV6_MULTICAST_LOOP:
1835			case IPV6_JOIN_GROUP:
1836			case IPV6_LEAVE_GROUP:
1837			case IPV6_MSFILTER:
1838			case MCAST_BLOCK_SOURCE:
1839			case MCAST_UNBLOCK_SOURCE:
1840			case MCAST_JOIN_GROUP:
1841			case MCAST_LEAVE_GROUP:
1842			case MCAST_JOIN_SOURCE_GROUP:
1843			case MCAST_LEAVE_SOURCE_GROUP:
1844				error = ip6_setmoptions(in6p, sopt);
1845				break;
1846
1847			case IPV6_PORTRANGE:
1848				error = sooptcopyin(sopt, &optval,
1849				    sizeof optval, sizeof optval);
1850				if (error)
1851					break;
1852
1853				INP_WLOCK(in6p);
1854				switch (optval) {
1855				case IPV6_PORTRANGE_DEFAULT:
1856					in6p->inp_flags &= ~(INP_LOWPORT);
1857					in6p->inp_flags &= ~(INP_HIGHPORT);
1858					break;
1859
1860				case IPV6_PORTRANGE_HIGH:
1861					in6p->inp_flags &= ~(INP_LOWPORT);
1862					in6p->inp_flags |= INP_HIGHPORT;
1863					break;
1864
1865				case IPV6_PORTRANGE_LOW:
1866					in6p->inp_flags &= ~(INP_HIGHPORT);
1867					in6p->inp_flags |= INP_LOWPORT;
1868					break;
1869
1870				default:
1871					error = EINVAL;
1872					break;
1873				}
1874				INP_WUNLOCK(in6p);
1875				break;
1876
1877#ifdef IPSEC
1878			case IPV6_IPSEC_POLICY:
1879			{
1880				caddr_t req;
1881				struct mbuf *m;
1882
1883				if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1884					break;
1885				if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1886					break;
1887				req = mtod(m, caddr_t);
1888				error = ipsec_set_policy(in6p, optname, req,
1889				    m->m_len, (sopt->sopt_td != NULL) ?
1890				    sopt->sopt_td->td_ucred : NULL);
1891				m_freem(m);
1892				break;
1893			}
1894#endif /* IPSEC */
1895
1896			default:
1897				error = ENOPROTOOPT;
1898				break;
1899			}
1900			break;
1901
1902		case SOPT_GET:
1903			switch (optname) {
1904
1905			case IPV6_2292PKTOPTIONS:
1906#ifdef IPV6_PKTOPTIONS
1907			case IPV6_PKTOPTIONS:
1908#endif
1909				/*
1910				 * RFC3542 (effectively) deprecated the
1911				 * semantics of the 2292-style pktoptions.
1912				 * Since it was not reliable in nature (i.e.,
1913				 * applications had to expect the lack of some
1914				 * information after all), it would make sense
1915				 * to simplify this part by always returning
1916				 * empty data.
1917				 */
1918				sopt->sopt_valsize = 0;
1919				break;
1920
1921			case IPV6_RECVHOPOPTS:
1922			case IPV6_RECVDSTOPTS:
1923			case IPV6_RECVRTHDRDSTOPTS:
1924			case IPV6_UNICAST_HOPS:
1925			case IPV6_RECVPKTINFO:
1926			case IPV6_RECVHOPLIMIT:
1927			case IPV6_RECVRTHDR:
1928			case IPV6_RECVPATHMTU:
1929
1930			case IPV6_FAITH:
1931			case IPV6_V6ONLY:
1932			case IPV6_PORTRANGE:
1933			case IPV6_RECVTCLASS:
1934			case IPV6_AUTOFLOWLABEL:
1935			case IPV6_BINDANY:
1936				switch (optname) {
1937
1938				case IPV6_RECVHOPOPTS:
1939					optval = OPTBIT(IN6P_HOPOPTS);
1940					break;
1941
1942				case IPV6_RECVDSTOPTS:
1943					optval = OPTBIT(IN6P_DSTOPTS);
1944					break;
1945
1946				case IPV6_RECVRTHDRDSTOPTS:
1947					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1948					break;
1949
1950				case IPV6_UNICAST_HOPS:
1951					optval = in6p->in6p_hops;
1952					break;
1953
1954				case IPV6_RECVPKTINFO:
1955					optval = OPTBIT(IN6P_PKTINFO);
1956					break;
1957
1958				case IPV6_RECVHOPLIMIT:
1959					optval = OPTBIT(IN6P_HOPLIMIT);
1960					break;
1961
1962				case IPV6_RECVRTHDR:
1963					optval = OPTBIT(IN6P_RTHDR);
1964					break;
1965
1966				case IPV6_RECVPATHMTU:
1967					optval = OPTBIT(IN6P_MTU);
1968					break;
1969
1970				case IPV6_FAITH:
1971					optval = OPTBIT(INP_FAITH);
1972					break;
1973
1974				case IPV6_V6ONLY:
1975					optval = OPTBIT(IN6P_IPV6_V6ONLY);
1976					break;
1977
1978				case IPV6_PORTRANGE:
1979				    {
1980					int flags;
1981					flags = in6p->inp_flags;
1982					if (flags & INP_HIGHPORT)
1983						optval = IPV6_PORTRANGE_HIGH;
1984					else if (flags & INP_LOWPORT)
1985						optval = IPV6_PORTRANGE_LOW;
1986					else
1987						optval = 0;
1988					break;
1989				    }
1990				case IPV6_RECVTCLASS:
1991					optval = OPTBIT(IN6P_TCLASS);
1992					break;
1993
1994				case IPV6_AUTOFLOWLABEL:
1995					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1996					break;
1997
1998				case IPV6_BINDANY:
1999					optval = OPTBIT(INP_BINDANY);
2000					break;
2001				}
2002				if (error)
2003					break;
2004				error = sooptcopyout(sopt, &optval,
2005					sizeof optval);
2006				break;
2007
2008			case IPV6_PATHMTU:
2009			{
2010				u_long pmtu = 0;
2011				struct ip6_mtuinfo mtuinfo;
2012				struct route_in6 sro;
2013
2014				bzero(&sro, sizeof(sro));
2015
2016				if (!(so->so_state & SS_ISCONNECTED))
2017					return (ENOTCONN);
2018				/*
2019				 * XXX: we dot not consider the case of source
2020				 * routing, or optional information to specify
2021				 * the outgoing interface.
2022				 */
2023				error = ip6_getpmtu(&sro, NULL, NULL,
2024				    &in6p->in6p_faddr, &pmtu, NULL,
2025				    so->so_fibnum);
2026				if (sro.ro_rt)
2027					RTFREE(sro.ro_rt);
2028				if (error)
2029					break;
2030				if (pmtu > IPV6_MAXPACKET)
2031					pmtu = IPV6_MAXPACKET;
2032
2033				bzero(&mtuinfo, sizeof(mtuinfo));
2034				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
2035				optdata = (void *)&mtuinfo;
2036				optdatalen = sizeof(mtuinfo);
2037				error = sooptcopyout(sopt, optdata,
2038				    optdatalen);
2039				break;
2040			}
2041
2042			case IPV6_2292PKTINFO:
2043			case IPV6_2292HOPLIMIT:
2044			case IPV6_2292HOPOPTS:
2045			case IPV6_2292RTHDR:
2046			case IPV6_2292DSTOPTS:
2047				switch (optname) {
2048				case IPV6_2292PKTINFO:
2049					optval = OPTBIT(IN6P_PKTINFO);
2050					break;
2051				case IPV6_2292HOPLIMIT:
2052					optval = OPTBIT(IN6P_HOPLIMIT);
2053					break;
2054				case IPV6_2292HOPOPTS:
2055					optval = OPTBIT(IN6P_HOPOPTS);
2056					break;
2057				case IPV6_2292RTHDR:
2058					optval = OPTBIT(IN6P_RTHDR);
2059					break;
2060				case IPV6_2292DSTOPTS:
2061					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
2062					break;
2063				}
2064				error = sooptcopyout(sopt, &optval,
2065				    sizeof optval);
2066				break;
2067			case IPV6_PKTINFO:
2068			case IPV6_HOPOPTS:
2069			case IPV6_RTHDR:
2070			case IPV6_DSTOPTS:
2071			case IPV6_RTHDRDSTOPTS:
2072			case IPV6_NEXTHOP:
2073			case IPV6_TCLASS:
2074			case IPV6_DONTFRAG:
2075			case IPV6_USE_MIN_MTU:
2076			case IPV6_PREFER_TEMPADDR:
2077				error = ip6_getpcbopt(in6p->in6p_outputopts,
2078				    optname, sopt);
2079				break;
2080
2081			case IPV6_MULTICAST_IF:
2082			case IPV6_MULTICAST_HOPS:
2083			case IPV6_MULTICAST_LOOP:
2084			case IPV6_MSFILTER:
2085				error = ip6_getmoptions(in6p, sopt);
2086				break;
2087
2088#ifdef IPSEC
2089			case IPV6_IPSEC_POLICY:
2090			  {
2091				caddr_t req = NULL;
2092				size_t len = 0;
2093				struct mbuf *m = NULL;
2094				struct mbuf **mp = &m;
2095				size_t ovalsize = sopt->sopt_valsize;
2096				caddr_t oval = (caddr_t)sopt->sopt_val;
2097
2098				error = soopt_getm(sopt, &m); /* XXX */
2099				if (error != 0)
2100					break;
2101				error = soopt_mcopyin(sopt, m); /* XXX */
2102				if (error != 0)
2103					break;
2104				sopt->sopt_valsize = ovalsize;
2105				sopt->sopt_val = oval;
2106				if (m) {
2107					req = mtod(m, caddr_t);
2108					len = m->m_len;
2109				}
2110				error = ipsec_get_policy(in6p, req, len, mp);
2111				if (error == 0)
2112					error = soopt_mcopyout(sopt, m); /* XXX */
2113				if (error == 0 && m)
2114					m_freem(m);
2115				break;
2116			  }
2117#endif /* IPSEC */
2118
2119			default:
2120				error = ENOPROTOOPT;
2121				break;
2122			}
2123			break;
2124		}
2125	}
2126	return (error);
2127}
2128
2129int
2130ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2131{
2132	int error = 0, optval, optlen;
2133	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2134	struct inpcb *in6p = sotoinpcb(so);
2135	int level, op, optname;
2136
2137	level = sopt->sopt_level;
2138	op = sopt->sopt_dir;
2139	optname = sopt->sopt_name;
2140	optlen = sopt->sopt_valsize;
2141
2142	if (level != IPPROTO_IPV6) {
2143		return (EINVAL);
2144	}
2145
2146	switch (optname) {
2147	case IPV6_CHECKSUM:
2148		/*
2149		 * For ICMPv6 sockets, no modification allowed for checksum
2150		 * offset, permit "no change" values to help existing apps.
2151		 *
2152		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2153		 * for an ICMPv6 socket will fail."
2154		 * The current behavior does not meet RFC3542.
2155		 */
2156		switch (op) {
2157		case SOPT_SET:
2158			if (optlen != sizeof(int)) {
2159				error = EINVAL;
2160				break;
2161			}
2162			error = sooptcopyin(sopt, &optval, sizeof(optval),
2163					    sizeof(optval));
2164			if (error)
2165				break;
2166			if ((optval % 2) != 0) {
2167				/* the API assumes even offset values */
2168				error = EINVAL;
2169			} else if (so->so_proto->pr_protocol ==
2170			    IPPROTO_ICMPV6) {
2171				if (optval != icmp6off)
2172					error = EINVAL;
2173			} else
2174				in6p->in6p_cksum = optval;
2175			break;
2176
2177		case SOPT_GET:
2178			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2179				optval = icmp6off;
2180			else
2181				optval = in6p->in6p_cksum;
2182
2183			error = sooptcopyout(sopt, &optval, sizeof(optval));
2184			break;
2185
2186		default:
2187			error = EINVAL;
2188			break;
2189		}
2190		break;
2191
2192	default:
2193		error = ENOPROTOOPT;
2194		break;
2195	}
2196
2197	return (error);
2198}
2199
2200/*
2201 * Set up IP6 options in pcb for insertion in output packets or
2202 * specifying behavior of outgoing packets.
2203 */
2204static int
2205ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2206    struct socket *so, struct sockopt *sopt)
2207{
2208	struct ip6_pktopts *opt = *pktopt;
2209	int error = 0;
2210	struct thread *td = sopt->sopt_td;
2211
2212	/* turn off any old options. */
2213	if (opt) {
2214#ifdef DIAGNOSTIC
2215		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2216		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2217		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2218			printf("ip6_pcbopts: all specified options are cleared.\n");
2219#endif
2220		ip6_clearpktopts(opt, -1);
2221	} else
2222		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2223	*pktopt = NULL;
2224
2225	if (!m || m->m_len == 0) {
2226		/*
2227		 * Only turning off any previous options, regardless of
2228		 * whether the opt is just created or given.
2229		 */
2230		free(opt, M_IP6OPT);
2231		return (0);
2232	}
2233
2234	/*  set options specified by user. */
2235	if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2236	    td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2237		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2238		free(opt, M_IP6OPT);
2239		return (error);
2240	}
2241	*pktopt = opt;
2242	return (0);
2243}
2244
2245/*
2246 * initialize ip6_pktopts.  beware that there are non-zero default values in
2247 * the struct.
2248 */
2249void
2250ip6_initpktopts(struct ip6_pktopts *opt)
2251{
2252
2253	bzero(opt, sizeof(*opt));
2254	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2255	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2256	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2257	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2258}
2259
2260static int
2261ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2262    struct ucred *cred, int uproto)
2263{
2264	struct ip6_pktopts *opt;
2265
2266	if (*pktopt == NULL) {
2267		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2268		    M_WAITOK);
2269		ip6_initpktopts(*pktopt);
2270	}
2271	opt = *pktopt;
2272
2273	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2274}
2275
2276static int
2277ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2278{
2279	void *optdata = NULL;
2280	int optdatalen = 0;
2281	struct ip6_ext *ip6e;
2282	int error = 0;
2283	struct in6_pktinfo null_pktinfo;
2284	int deftclass = 0, on;
2285	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2286	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2287
2288	switch (optname) {
2289	case IPV6_PKTINFO:
2290		if (pktopt && pktopt->ip6po_pktinfo)
2291			optdata = (void *)pktopt->ip6po_pktinfo;
2292		else {
2293			/* XXX: we don't have to do this every time... */
2294			bzero(&null_pktinfo, sizeof(null_pktinfo));
2295			optdata = (void *)&null_pktinfo;
2296		}
2297		optdatalen = sizeof(struct in6_pktinfo);
2298		break;
2299	case IPV6_TCLASS:
2300		if (pktopt && pktopt->ip6po_tclass >= 0)
2301			optdata = (void *)&pktopt->ip6po_tclass;
2302		else
2303			optdata = (void *)&deftclass;
2304		optdatalen = sizeof(int);
2305		break;
2306	case IPV6_HOPOPTS:
2307		if (pktopt && pktopt->ip6po_hbh) {
2308			optdata = (void *)pktopt->ip6po_hbh;
2309			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2310			optdatalen = (ip6e->ip6e_len + 1) << 3;
2311		}
2312		break;
2313	case IPV6_RTHDR:
2314		if (pktopt && pktopt->ip6po_rthdr) {
2315			optdata = (void *)pktopt->ip6po_rthdr;
2316			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2317			optdatalen = (ip6e->ip6e_len + 1) << 3;
2318		}
2319		break;
2320	case IPV6_RTHDRDSTOPTS:
2321		if (pktopt && pktopt->ip6po_dest1) {
2322			optdata = (void *)pktopt->ip6po_dest1;
2323			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2324			optdatalen = (ip6e->ip6e_len + 1) << 3;
2325		}
2326		break;
2327	case IPV6_DSTOPTS:
2328		if (pktopt && pktopt->ip6po_dest2) {
2329			optdata = (void *)pktopt->ip6po_dest2;
2330			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2331			optdatalen = (ip6e->ip6e_len + 1) << 3;
2332		}
2333		break;
2334	case IPV6_NEXTHOP:
2335		if (pktopt && pktopt->ip6po_nexthop) {
2336			optdata = (void *)pktopt->ip6po_nexthop;
2337			optdatalen = pktopt->ip6po_nexthop->sa_len;
2338		}
2339		break;
2340	case IPV6_USE_MIN_MTU:
2341		if (pktopt)
2342			optdata = (void *)&pktopt->ip6po_minmtu;
2343		else
2344			optdata = (void *)&defminmtu;
2345		optdatalen = sizeof(int);
2346		break;
2347	case IPV6_DONTFRAG:
2348		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2349			on = 1;
2350		else
2351			on = 0;
2352		optdata = (void *)&on;
2353		optdatalen = sizeof(on);
2354		break;
2355	case IPV6_PREFER_TEMPADDR:
2356		if (pktopt)
2357			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2358		else
2359			optdata = (void *)&defpreftemp;
2360		optdatalen = sizeof(int);
2361		break;
2362	default:		/* should not happen */
2363#ifdef DIAGNOSTIC
2364		panic("ip6_getpcbopt: unexpected option\n");
2365#endif
2366		return (ENOPROTOOPT);
2367	}
2368
2369	error = sooptcopyout(sopt, optdata, optdatalen);
2370
2371	return (error);
2372}
2373
2374void
2375ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2376{
2377	if (pktopt == NULL)
2378		return;
2379
2380	if (optname == -1 || optname == IPV6_PKTINFO) {
2381		if (pktopt->ip6po_pktinfo)
2382			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2383		pktopt->ip6po_pktinfo = NULL;
2384	}
2385	if (optname == -1 || optname == IPV6_HOPLIMIT)
2386		pktopt->ip6po_hlim = -1;
2387	if (optname == -1 || optname == IPV6_TCLASS)
2388		pktopt->ip6po_tclass = -1;
2389	if (optname == -1 || optname == IPV6_NEXTHOP) {
2390		if (pktopt->ip6po_nextroute.ro_rt) {
2391			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2392			pktopt->ip6po_nextroute.ro_rt = NULL;
2393		}
2394		if (pktopt->ip6po_nexthop)
2395			free(pktopt->ip6po_nexthop, M_IP6OPT);
2396		pktopt->ip6po_nexthop = NULL;
2397	}
2398	if (optname == -1 || optname == IPV6_HOPOPTS) {
2399		if (pktopt->ip6po_hbh)
2400			free(pktopt->ip6po_hbh, M_IP6OPT);
2401		pktopt->ip6po_hbh = NULL;
2402	}
2403	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2404		if (pktopt->ip6po_dest1)
2405			free(pktopt->ip6po_dest1, M_IP6OPT);
2406		pktopt->ip6po_dest1 = NULL;
2407	}
2408	if (optname == -1 || optname == IPV6_RTHDR) {
2409		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2410			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2411		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2412		if (pktopt->ip6po_route.ro_rt) {
2413			RTFREE(pktopt->ip6po_route.ro_rt);
2414			pktopt->ip6po_route.ro_rt = NULL;
2415		}
2416	}
2417	if (optname == -1 || optname == IPV6_DSTOPTS) {
2418		if (pktopt->ip6po_dest2)
2419			free(pktopt->ip6po_dest2, M_IP6OPT);
2420		pktopt->ip6po_dest2 = NULL;
2421	}
2422}
2423
2424#define PKTOPT_EXTHDRCPY(type) \
2425do {\
2426	if (src->type) {\
2427		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2428		dst->type = malloc(hlen, M_IP6OPT, canwait);\
2429		if (dst->type == NULL && canwait == M_NOWAIT)\
2430			goto bad;\
2431		bcopy(src->type, dst->type, hlen);\
2432	}\
2433} while (/*CONSTCOND*/ 0)
2434
2435static int
2436copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2437{
2438	if (dst == NULL || src == NULL)  {
2439		printf("ip6_clearpktopts: invalid argument\n");
2440		return (EINVAL);
2441	}
2442
2443	dst->ip6po_hlim = src->ip6po_hlim;
2444	dst->ip6po_tclass = src->ip6po_tclass;
2445	dst->ip6po_flags = src->ip6po_flags;
2446	dst->ip6po_minmtu = src->ip6po_minmtu;
2447	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2448	if (src->ip6po_pktinfo) {
2449		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2450		    M_IP6OPT, canwait);
2451		if (dst->ip6po_pktinfo == NULL)
2452			goto bad;
2453		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2454	}
2455	if (src->ip6po_nexthop) {
2456		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2457		    M_IP6OPT, canwait);
2458		if (dst->ip6po_nexthop == NULL)
2459			goto bad;
2460		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2461		    src->ip6po_nexthop->sa_len);
2462	}
2463	PKTOPT_EXTHDRCPY(ip6po_hbh);
2464	PKTOPT_EXTHDRCPY(ip6po_dest1);
2465	PKTOPT_EXTHDRCPY(ip6po_dest2);
2466	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2467	return (0);
2468
2469  bad:
2470	ip6_clearpktopts(dst, -1);
2471	return (ENOBUFS);
2472}
2473#undef PKTOPT_EXTHDRCPY
2474
2475struct ip6_pktopts *
2476ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2477{
2478	int error;
2479	struct ip6_pktopts *dst;
2480
2481	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2482	if (dst == NULL)
2483		return (NULL);
2484	ip6_initpktopts(dst);
2485
2486	if ((error = copypktopts(dst, src, canwait)) != 0) {
2487		free(dst, M_IP6OPT);
2488		return (NULL);
2489	}
2490
2491	return (dst);
2492}
2493
2494void
2495ip6_freepcbopts(struct ip6_pktopts *pktopt)
2496{
2497	if (pktopt == NULL)
2498		return;
2499
2500	ip6_clearpktopts(pktopt, -1);
2501
2502	free(pktopt, M_IP6OPT);
2503}
2504
2505/*
2506 * Set IPv6 outgoing packet options based on advanced API.
2507 */
2508int
2509ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2510    struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2511{
2512	struct cmsghdr *cm = 0;
2513
2514	if (control == NULL || opt == NULL)
2515		return (EINVAL);
2516
2517	ip6_initpktopts(opt);
2518	if (stickyopt) {
2519		int error;
2520
2521		/*
2522		 * If stickyopt is provided, make a local copy of the options
2523		 * for this particular packet, then override them by ancillary
2524		 * objects.
2525		 * XXX: copypktopts() does not copy the cached route to a next
2526		 * hop (if any).  This is not very good in terms of efficiency,
2527		 * but we can allow this since this option should be rarely
2528		 * used.
2529		 */
2530		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2531			return (error);
2532	}
2533
2534	/*
2535	 * XXX: Currently, we assume all the optional information is stored
2536	 * in a single mbuf.
2537	 */
2538	if (control->m_next)
2539		return (EINVAL);
2540
2541	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2542	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2543		int error;
2544
2545		if (control->m_len < CMSG_LEN(0))
2546			return (EINVAL);
2547
2548		cm = mtod(control, struct cmsghdr *);
2549		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2550			return (EINVAL);
2551		if (cm->cmsg_level != IPPROTO_IPV6)
2552			continue;
2553
2554		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2555		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2556		if (error)
2557			return (error);
2558	}
2559
2560	return (0);
2561}
2562
2563/*
2564 * Set a particular packet option, as a sticky option or an ancillary data
2565 * item.  "len" can be 0 only when it's a sticky option.
2566 * We have 4 cases of combination of "sticky" and "cmsg":
2567 * "sticky=0, cmsg=0": impossible
2568 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2569 * "sticky=1, cmsg=0": RFC3542 socket option
2570 * "sticky=1, cmsg=1": RFC2292 socket option
2571 */
2572static int
2573ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2574    struct ucred *cred, int sticky, int cmsg, int uproto)
2575{
2576	int minmtupolicy, preftemp;
2577	int error;
2578
2579	if (!sticky && !cmsg) {
2580#ifdef DIAGNOSTIC
2581		printf("ip6_setpktopt: impossible case\n");
2582#endif
2583		return (EINVAL);
2584	}
2585
2586	/*
2587	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2588	 * not be specified in the context of RFC3542.  Conversely,
2589	 * RFC3542 types should not be specified in the context of RFC2292.
2590	 */
2591	if (!cmsg) {
2592		switch (optname) {
2593		case IPV6_2292PKTINFO:
2594		case IPV6_2292HOPLIMIT:
2595		case IPV6_2292NEXTHOP:
2596		case IPV6_2292HOPOPTS:
2597		case IPV6_2292DSTOPTS:
2598		case IPV6_2292RTHDR:
2599		case IPV6_2292PKTOPTIONS:
2600			return (ENOPROTOOPT);
2601		}
2602	}
2603	if (sticky && cmsg) {
2604		switch (optname) {
2605		case IPV6_PKTINFO:
2606		case IPV6_HOPLIMIT:
2607		case IPV6_NEXTHOP:
2608		case IPV6_HOPOPTS:
2609		case IPV6_DSTOPTS:
2610		case IPV6_RTHDRDSTOPTS:
2611		case IPV6_RTHDR:
2612		case IPV6_USE_MIN_MTU:
2613		case IPV6_DONTFRAG:
2614		case IPV6_TCLASS:
2615		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2616			return (ENOPROTOOPT);
2617		}
2618	}
2619
2620	switch (optname) {
2621	case IPV6_2292PKTINFO:
2622	case IPV6_PKTINFO:
2623	{
2624		struct ifnet *ifp = NULL;
2625		struct in6_pktinfo *pktinfo;
2626
2627		if (len != sizeof(struct in6_pktinfo))
2628			return (EINVAL);
2629
2630		pktinfo = (struct in6_pktinfo *)buf;
2631
2632		/*
2633		 * An application can clear any sticky IPV6_PKTINFO option by
2634		 * doing a "regular" setsockopt with ipi6_addr being
2635		 * in6addr_any and ipi6_ifindex being zero.
2636		 * [RFC 3542, Section 6]
2637		 */
2638		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2639		    pktinfo->ipi6_ifindex == 0 &&
2640		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2641			ip6_clearpktopts(opt, optname);
2642			break;
2643		}
2644
2645		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2646		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2647			return (EINVAL);
2648		}
2649
2650		/* validate the interface index if specified. */
2651		if (pktinfo->ipi6_ifindex > V_if_index ||
2652		    pktinfo->ipi6_ifindex < 0) {
2653			 return (ENXIO);
2654		}
2655		if (pktinfo->ipi6_ifindex) {
2656			ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2657			if (ifp == NULL)
2658				return (ENXIO);
2659		}
2660
2661		/*
2662		 * We store the address anyway, and let in6_selectsrc()
2663		 * validate the specified address.  This is because ipi6_addr
2664		 * may not have enough information about its scope zone, and
2665		 * we may need additional information (such as outgoing
2666		 * interface or the scope zone of a destination address) to
2667		 * disambiguate the scope.
2668		 * XXX: the delay of the validation may confuse the
2669		 * application when it is used as a sticky option.
2670		 */
2671		if (opt->ip6po_pktinfo == NULL) {
2672			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2673			    M_IP6OPT, M_NOWAIT);
2674			if (opt->ip6po_pktinfo == NULL)
2675				return (ENOBUFS);
2676		}
2677		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2678		break;
2679	}
2680
2681	case IPV6_2292HOPLIMIT:
2682	case IPV6_HOPLIMIT:
2683	{
2684		int *hlimp;
2685
2686		/*
2687		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2688		 * to simplify the ordering among hoplimit options.
2689		 */
2690		if (optname == IPV6_HOPLIMIT && sticky)
2691			return (ENOPROTOOPT);
2692
2693		if (len != sizeof(int))
2694			return (EINVAL);
2695		hlimp = (int *)buf;
2696		if (*hlimp < -1 || *hlimp > 255)
2697			return (EINVAL);
2698
2699		opt->ip6po_hlim = *hlimp;
2700		break;
2701	}
2702
2703	case IPV6_TCLASS:
2704	{
2705		int tclass;
2706
2707		if (len != sizeof(int))
2708			return (EINVAL);
2709		tclass = *(int *)buf;
2710		if (tclass < -1 || tclass > 255)
2711			return (EINVAL);
2712
2713		opt->ip6po_tclass = tclass;
2714		break;
2715	}
2716
2717	case IPV6_2292NEXTHOP:
2718	case IPV6_NEXTHOP:
2719		if (cred != NULL) {
2720			error = priv_check_cred(cred,
2721			    PRIV_NETINET_SETHDROPTS, 0);
2722			if (error)
2723				return (error);
2724		}
2725
2726		if (len == 0) {	/* just remove the option */
2727			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2728			break;
2729		}
2730
2731		/* check if cmsg_len is large enough for sa_len */
2732		if (len < sizeof(struct sockaddr) || len < *buf)
2733			return (EINVAL);
2734
2735		switch (((struct sockaddr *)buf)->sa_family) {
2736		case AF_INET6:
2737		{
2738			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2739			int error;
2740
2741			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2742				return (EINVAL);
2743
2744			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2745			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2746				return (EINVAL);
2747			}
2748			if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
2749			    != 0) {
2750				return (error);
2751			}
2752			break;
2753		}
2754		case AF_LINK:	/* should eventually be supported */
2755		default:
2756			return (EAFNOSUPPORT);
2757		}
2758
2759		/* turn off the previous option, then set the new option. */
2760		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2761		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2762		if (opt->ip6po_nexthop == NULL)
2763			return (ENOBUFS);
2764		bcopy(buf, opt->ip6po_nexthop, *buf);
2765		break;
2766
2767	case IPV6_2292HOPOPTS:
2768	case IPV6_HOPOPTS:
2769	{
2770		struct ip6_hbh *hbh;
2771		int hbhlen;
2772
2773		/*
2774		 * XXX: We don't allow a non-privileged user to set ANY HbH
2775		 * options, since per-option restriction has too much
2776		 * overhead.
2777		 */
2778		if (cred != NULL) {
2779			error = priv_check_cred(cred,
2780			    PRIV_NETINET_SETHDROPTS, 0);
2781			if (error)
2782				return (error);
2783		}
2784
2785		if (len == 0) {
2786			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2787			break;	/* just remove the option */
2788		}
2789
2790		/* message length validation */
2791		if (len < sizeof(struct ip6_hbh))
2792			return (EINVAL);
2793		hbh = (struct ip6_hbh *)buf;
2794		hbhlen = (hbh->ip6h_len + 1) << 3;
2795		if (len != hbhlen)
2796			return (EINVAL);
2797
2798		/* turn off the previous option, then set the new option. */
2799		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2800		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2801		if (opt->ip6po_hbh == NULL)
2802			return (ENOBUFS);
2803		bcopy(hbh, opt->ip6po_hbh, hbhlen);
2804
2805		break;
2806	}
2807
2808	case IPV6_2292DSTOPTS:
2809	case IPV6_DSTOPTS:
2810	case IPV6_RTHDRDSTOPTS:
2811	{
2812		struct ip6_dest *dest, **newdest = NULL;
2813		int destlen;
2814
2815		if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
2816			error = priv_check_cred(cred,
2817			    PRIV_NETINET_SETHDROPTS, 0);
2818			if (error)
2819				return (error);
2820		}
2821
2822		if (len == 0) {
2823			ip6_clearpktopts(opt, optname);
2824			break;	/* just remove the option */
2825		}
2826
2827		/* message length validation */
2828		if (len < sizeof(struct ip6_dest))
2829			return (EINVAL);
2830		dest = (struct ip6_dest *)buf;
2831		destlen = (dest->ip6d_len + 1) << 3;
2832		if (len != destlen)
2833			return (EINVAL);
2834
2835		/*
2836		 * Determine the position that the destination options header
2837		 * should be inserted; before or after the routing header.
2838		 */
2839		switch (optname) {
2840		case IPV6_2292DSTOPTS:
2841			/*
2842			 * The old advacned API is ambiguous on this point.
2843			 * Our approach is to determine the position based
2844			 * according to the existence of a routing header.
2845			 * Note, however, that this depends on the order of the
2846			 * extension headers in the ancillary data; the 1st
2847			 * part of the destination options header must appear
2848			 * before the routing header in the ancillary data,
2849			 * too.
2850			 * RFC3542 solved the ambiguity by introducing
2851			 * separate ancillary data or option types.
2852			 */
2853			if (opt->ip6po_rthdr == NULL)
2854				newdest = &opt->ip6po_dest1;
2855			else
2856				newdest = &opt->ip6po_dest2;
2857			break;
2858		case IPV6_RTHDRDSTOPTS:
2859			newdest = &opt->ip6po_dest1;
2860			break;
2861		case IPV6_DSTOPTS:
2862			newdest = &opt->ip6po_dest2;
2863			break;
2864		}
2865
2866		/* turn off the previous option, then set the new option. */
2867		ip6_clearpktopts(opt, optname);
2868		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2869		if (*newdest == NULL)
2870			return (ENOBUFS);
2871		bcopy(dest, *newdest, destlen);
2872
2873		break;
2874	}
2875
2876	case IPV6_2292RTHDR:
2877	case IPV6_RTHDR:
2878	{
2879		struct ip6_rthdr *rth;
2880		int rthlen;
2881
2882		if (len == 0) {
2883			ip6_clearpktopts(opt, IPV6_RTHDR);
2884			break;	/* just remove the option */
2885		}
2886
2887		/* message length validation */
2888		if (len < sizeof(struct ip6_rthdr))
2889			return (EINVAL);
2890		rth = (struct ip6_rthdr *)buf;
2891		rthlen = (rth->ip6r_len + 1) << 3;
2892		if (len != rthlen)
2893			return (EINVAL);
2894
2895		switch (rth->ip6r_type) {
2896		case IPV6_RTHDR_TYPE_0:
2897			if (rth->ip6r_len == 0)	/* must contain one addr */
2898				return (EINVAL);
2899			if (rth->ip6r_len % 2) /* length must be even */
2900				return (EINVAL);
2901			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2902				return (EINVAL);
2903			break;
2904		default:
2905			return (EINVAL);	/* not supported */
2906		}
2907
2908		/* turn off the previous option */
2909		ip6_clearpktopts(opt, IPV6_RTHDR);
2910		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
2911		if (opt->ip6po_rthdr == NULL)
2912			return (ENOBUFS);
2913		bcopy(rth, opt->ip6po_rthdr, rthlen);
2914
2915		break;
2916	}
2917
2918	case IPV6_USE_MIN_MTU:
2919		if (len != sizeof(int))
2920			return (EINVAL);
2921		minmtupolicy = *(int *)buf;
2922		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2923		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
2924		    minmtupolicy != IP6PO_MINMTU_ALL) {
2925			return (EINVAL);
2926		}
2927		opt->ip6po_minmtu = minmtupolicy;
2928		break;
2929
2930	case IPV6_DONTFRAG:
2931		if (len != sizeof(int))
2932			return (EINVAL);
2933
2934		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2935			/*
2936			 * we ignore this option for TCP sockets.
2937			 * (RFC3542 leaves this case unspecified.)
2938			 */
2939			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2940		} else
2941			opt->ip6po_flags |= IP6PO_DONTFRAG;
2942		break;
2943
2944	case IPV6_PREFER_TEMPADDR:
2945		if (len != sizeof(int))
2946			return (EINVAL);
2947		preftemp = *(int *)buf;
2948		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
2949		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
2950		    preftemp != IP6PO_TEMPADDR_PREFER) {
2951			return (EINVAL);
2952		}
2953		opt->ip6po_prefer_tempaddr = preftemp;
2954		break;
2955
2956	default:
2957		return (ENOPROTOOPT);
2958	} /* end of switch */
2959
2960	return (0);
2961}
2962
2963/*
2964 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2965 * packet to the input queue of a specified interface.  Note that this
2966 * calls the output routine of the loopback "driver", but with an interface
2967 * pointer that might NOT be &loif -- easier than replicating that code here.
2968 */
2969void
2970ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2971{
2972	struct mbuf *copym;
2973	struct ip6_hdr *ip6;
2974
2975	copym = m_copy(m, 0, M_COPYALL);
2976	if (copym == NULL)
2977		return;
2978
2979	/*
2980	 * Make sure to deep-copy IPv6 header portion in case the data
2981	 * is in an mbuf cluster, so that we can safely override the IPv6
2982	 * header portion later.
2983	 */
2984	if ((copym->m_flags & M_EXT) != 0 ||
2985	    copym->m_len < sizeof(struct ip6_hdr)) {
2986		copym = m_pullup(copym, sizeof(struct ip6_hdr));
2987		if (copym == NULL)
2988			return;
2989	}
2990
2991#ifdef DIAGNOSTIC
2992	if (copym->m_len < sizeof(*ip6)) {
2993		m_freem(copym);
2994		return;
2995	}
2996#endif
2997
2998	ip6 = mtod(copym, struct ip6_hdr *);
2999	/*
3000	 * clear embedded scope identifiers if necessary.
3001	 * in6_clearscope will touch the addresses only when necessary.
3002	 */
3003	in6_clearscope(&ip6->ip6_src);
3004	in6_clearscope(&ip6->ip6_dst);
3005
3006	(void)if_simloop(ifp, copym, dst->sin6_family, 0);
3007}
3008
3009/*
3010 * Chop IPv6 header off from the payload.
3011 */
3012static int
3013ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3014{
3015	struct mbuf *mh;
3016	struct ip6_hdr *ip6;
3017
3018	ip6 = mtod(m, struct ip6_hdr *);
3019	if (m->m_len > sizeof(*ip6)) {
3020		mh = m_gethdr(M_NOWAIT, MT_DATA);
3021		if (mh == NULL) {
3022			m_freem(m);
3023			return ENOBUFS;
3024		}
3025		m_move_pkthdr(mh, m);
3026		MH_ALIGN(mh, sizeof(*ip6));
3027		m->m_len -= sizeof(*ip6);
3028		m->m_data += sizeof(*ip6);
3029		mh->m_next = m;
3030		m = mh;
3031		m->m_len = sizeof(*ip6);
3032		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3033	}
3034	exthdrs->ip6e_ip6 = m;
3035	return 0;
3036}
3037
3038/*
3039 * Compute IPv6 extension header length.
3040 */
3041int
3042ip6_optlen(struct inpcb *in6p)
3043{
3044	int len;
3045
3046	if (!in6p->in6p_outputopts)
3047		return 0;
3048
3049	len = 0;
3050#define elen(x) \
3051    (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3052
3053	len += elen(in6p->in6p_outputopts->ip6po_hbh);
3054	if (in6p->in6p_outputopts->ip6po_rthdr)
3055		/* dest1 is valid with rthdr only */
3056		len += elen(in6p->in6p_outputopts->ip6po_dest1);
3057	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3058	len += elen(in6p->in6p_outputopts->ip6po_dest2);
3059	return len;
3060#undef elen
3061}
3062