tcp_syncache.c revision 292823
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program. [2001 McAfee, Inc.]
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/10/sys/netinet/tcp_syncache.c 292823 2015-12-28 02:43:12Z pkelsey $");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_pcbgroup.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/limits.h>
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/proc.h>		/* for proc0 declaration */
51#include <sys/random.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/syslog.h>
55#include <sys/ucred.h>
56
57#include <sys/md5.h>
58#include <crypto/siphash/siphash.h>
59
60#include <vm/uma.h>
61
62#include <net/if.h>
63#include <net/route.h>
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <netinet/in_var.h>
70#include <netinet/in_pcb.h>
71#include <netinet/ip_var.h>
72#include <netinet/ip_options.h>
73#ifdef INET6
74#include <netinet/ip6.h>
75#include <netinet/icmp6.h>
76#include <netinet6/nd6.h>
77#include <netinet6/ip6_var.h>
78#include <netinet6/in6_pcb.h>
79#endif
80#include <netinet/tcp.h>
81#ifdef TCP_RFC7413
82#include <netinet/tcp_fastopen.h>
83#endif
84#include <netinet/tcp_fsm.h>
85#include <netinet/tcp_seq.h>
86#include <netinet/tcp_timer.h>
87#include <netinet/tcp_var.h>
88#include <netinet/tcp_syncache.h>
89#ifdef INET6
90#include <netinet6/tcp6_var.h>
91#endif
92#ifdef TCP_OFFLOAD
93#include <netinet/toecore.h>
94#endif
95
96#ifdef IPSEC
97#include <netipsec/ipsec.h>
98#ifdef INET6
99#include <netipsec/ipsec6.h>
100#endif
101#include <netipsec/key.h>
102#endif /*IPSEC*/
103
104#include <machine/in_cksum.h>
105
106#include <security/mac/mac_framework.h>
107
108static VNET_DEFINE(int, tcp_syncookies) = 1;
109#define	V_tcp_syncookies		VNET(tcp_syncookies)
110SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
111    &VNET_NAME(tcp_syncookies), 0,
112    "Use TCP SYN cookies if the syncache overflows");
113
114static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
115#define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
116SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
117    &VNET_NAME(tcp_syncookiesonly), 0,
118    "Use only TCP SYN cookies");
119
120#ifdef TCP_OFFLOAD
121#define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
122#endif
123
124static void	 syncache_drop(struct syncache *, struct syncache_head *);
125static void	 syncache_free(struct syncache *);
126static void	 syncache_insert(struct syncache *, struct syncache_head *);
127static int	 syncache_respond(struct syncache *);
128static struct	 socket *syncache_socket(struct syncache *, struct socket *,
129		    struct mbuf *m);
130static int	 syncache_sysctl_count(SYSCTL_HANDLER_ARGS);
131static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
132		    int docallout);
133static void	 syncache_timer(void *);
134
135static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
136		    uint8_t *, uintptr_t);
137static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
138static struct syncache
139		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
140		    struct syncache *, struct tcphdr *, struct tcpopt *,
141		    struct socket *);
142static void	 syncookie_reseed(void *);
143#ifdef INVARIANTS
144static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
145		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
146		    struct socket *lso);
147#endif
148
149/*
150 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
151 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
152 * the odds are that the user has given up attempting to connect by then.
153 */
154#define SYNCACHE_MAXREXMTS		3
155
156/* Arbitrary values */
157#define TCP_SYNCACHE_HASHSIZE		512
158#define TCP_SYNCACHE_BUCKETLIMIT	30
159
160static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
161#define	V_tcp_syncache			VNET(tcp_syncache)
162
163static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
164    "TCP SYN cache");
165
166SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
167    &VNET_NAME(tcp_syncache.bucket_limit), 0,
168    "Per-bucket hash limit for syncache");
169
170SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
171    &VNET_NAME(tcp_syncache.cache_limit), 0,
172    "Overall entry limit for syncache");
173
174SYSCTL_VNET_PROC(_net_inet_tcp_syncache, OID_AUTO, count, (CTLTYPE_UINT|CTLFLAG_RD),
175    NULL, 0, &syncache_sysctl_count, "IU",
176    "Current number of entries in syncache");
177
178SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
179    &VNET_NAME(tcp_syncache.hashsize), 0,
180    "Size of TCP syncache hashtable");
181
182SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
183    &VNET_NAME(tcp_syncache.rexmt_limit), 0,
184    "Limit on SYN/ACK retransmissions");
185
186VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
187SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
188    CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
189    "Send reset on socket allocation failure");
190
191static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
192
193#define SYNCACHE_HASH(inc, mask)					\
194	((V_tcp_syncache.hash_secret ^					\
195	  (inc)->inc_faddr.s_addr ^					\
196	  ((inc)->inc_faddr.s_addr >> 16) ^				\
197	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
198
199#define SYNCACHE_HASH6(inc, mask)					\
200	((V_tcp_syncache.hash_secret ^					\
201	  (inc)->inc6_faddr.s6_addr32[0] ^				\
202	  (inc)->inc6_faddr.s6_addr32[3] ^				\
203	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
204
205#define ENDPTS_EQ(a, b) (						\
206	(a)->ie_fport == (b)->ie_fport &&				\
207	(a)->ie_lport == (b)->ie_lport &&				\
208	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
209	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
210)
211
212#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
213
214#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
215#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
216#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
217
218/*
219 * Requires the syncache entry to be already removed from the bucket list.
220 */
221static void
222syncache_free(struct syncache *sc)
223{
224
225	if (sc->sc_ipopts)
226		(void) m_free(sc->sc_ipopts);
227	if (sc->sc_cred)
228		crfree(sc->sc_cred);
229#ifdef MAC
230	mac_syncache_destroy(&sc->sc_label);
231#endif
232
233	uma_zfree(V_tcp_syncache.zone, sc);
234}
235
236void
237syncache_init(void)
238{
239	int i;
240
241	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
242	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
243	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
244	V_tcp_syncache.hash_secret = arc4random();
245
246	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
247	    &V_tcp_syncache.hashsize);
248	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
249	    &V_tcp_syncache.bucket_limit);
250	if (!powerof2(V_tcp_syncache.hashsize) ||
251	    V_tcp_syncache.hashsize == 0) {
252		printf("WARNING: syncache hash size is not a power of 2.\n");
253		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
254	}
255	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
256
257	/* Set limits. */
258	V_tcp_syncache.cache_limit =
259	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
260	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
261	    &V_tcp_syncache.cache_limit);
262
263	/* Allocate the hash table. */
264	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
265	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
266
267#ifdef VIMAGE
268	V_tcp_syncache.vnet = curvnet;
269#endif
270
271	/* Initialize the hash buckets. */
272	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
273		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
274		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
275			 NULL, MTX_DEF);
276		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
277			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
278		V_tcp_syncache.hashbase[i].sch_length = 0;
279		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
280	}
281
282	/* Create the syncache entry zone. */
283	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
284	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
285	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
286	    V_tcp_syncache.cache_limit);
287
288	/* Start the SYN cookie reseeder callout. */
289	callout_init(&V_tcp_syncache.secret.reseed, 1);
290	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
291	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
292	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
293	    syncookie_reseed, &V_tcp_syncache);
294}
295
296#ifdef VIMAGE
297void
298syncache_destroy(void)
299{
300	struct syncache_head *sch;
301	struct syncache *sc, *nsc;
302	int i;
303
304	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
305	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
306
307		sch = &V_tcp_syncache.hashbase[i];
308		callout_drain(&sch->sch_timer);
309
310		SCH_LOCK(sch);
311		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
312			syncache_drop(sc, sch);
313		SCH_UNLOCK(sch);
314		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
315		    ("%s: sch->sch_bucket not empty", __func__));
316		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
317		    __func__, sch->sch_length));
318		mtx_destroy(&sch->sch_mtx);
319	}
320
321	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
322	    ("%s: cache_count not 0", __func__));
323
324	/* Free the allocated global resources. */
325	uma_zdestroy(V_tcp_syncache.zone);
326	free(V_tcp_syncache.hashbase, M_SYNCACHE);
327
328	callout_drain(&V_tcp_syncache.secret.reseed);
329}
330#endif
331
332static int
333syncache_sysctl_count(SYSCTL_HANDLER_ARGS)
334{
335	int count;
336
337	count = uma_zone_get_cur(V_tcp_syncache.zone);
338	return (sysctl_handle_int(oidp, &count, 0, req));
339}
340
341/*
342 * Inserts a syncache entry into the specified bucket row.
343 * Locks and unlocks the syncache_head autonomously.
344 */
345static void
346syncache_insert(struct syncache *sc, struct syncache_head *sch)
347{
348	struct syncache *sc2;
349
350	SCH_LOCK(sch);
351
352	/*
353	 * Make sure that we don't overflow the per-bucket limit.
354	 * If the bucket is full, toss the oldest element.
355	 */
356	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
357		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
358			("sch->sch_length incorrect"));
359		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
360		syncache_drop(sc2, sch);
361		TCPSTAT_INC(tcps_sc_bucketoverflow);
362	}
363
364	/* Put it into the bucket. */
365	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
366	sch->sch_length++;
367
368#ifdef TCP_OFFLOAD
369	if (ADDED_BY_TOE(sc)) {
370		struct toedev *tod = sc->sc_tod;
371
372		tod->tod_syncache_added(tod, sc->sc_todctx);
373	}
374#endif
375
376	/* Reinitialize the bucket row's timer. */
377	if (sch->sch_length == 1)
378		sch->sch_nextc = ticks + INT_MAX;
379	syncache_timeout(sc, sch, 1);
380
381	SCH_UNLOCK(sch);
382
383	TCPSTAT_INC(tcps_sc_added);
384}
385
386/*
387 * Remove and free entry from syncache bucket row.
388 * Expects locked syncache head.
389 */
390static void
391syncache_drop(struct syncache *sc, struct syncache_head *sch)
392{
393
394	SCH_LOCK_ASSERT(sch);
395
396	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
397	sch->sch_length--;
398
399#ifdef TCP_OFFLOAD
400	if (ADDED_BY_TOE(sc)) {
401		struct toedev *tod = sc->sc_tod;
402
403		tod->tod_syncache_removed(tod, sc->sc_todctx);
404	}
405#endif
406
407	syncache_free(sc);
408}
409
410/*
411 * Engage/reengage time on bucket row.
412 */
413static void
414syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
415{
416	sc->sc_rxttime = ticks +
417		TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
418	sc->sc_rxmits++;
419	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
420		sch->sch_nextc = sc->sc_rxttime;
421		if (docallout)
422			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
423			    syncache_timer, (void *)sch);
424	}
425}
426
427/*
428 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
429 * If we have retransmitted an entry the maximum number of times, expire it.
430 * One separate timer for each bucket row.
431 */
432static void
433syncache_timer(void *xsch)
434{
435	struct syncache_head *sch = (struct syncache_head *)xsch;
436	struct syncache *sc, *nsc;
437	int tick = ticks;
438	char *s;
439
440	CURVNET_SET(sch->sch_sc->vnet);
441
442	/* NB: syncache_head has already been locked by the callout. */
443	SCH_LOCK_ASSERT(sch);
444
445	/*
446	 * In the following cycle we may remove some entries and/or
447	 * advance some timeouts, so re-initialize the bucket timer.
448	 */
449	sch->sch_nextc = tick + INT_MAX;
450
451	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
452		/*
453		 * We do not check if the listen socket still exists
454		 * and accept the case where the listen socket may be
455		 * gone by the time we resend the SYN/ACK.  We do
456		 * not expect this to happens often. If it does,
457		 * then the RST will be sent by the time the remote
458		 * host does the SYN/ACK->ACK.
459		 */
460		if (TSTMP_GT(sc->sc_rxttime, tick)) {
461			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
462				sch->sch_nextc = sc->sc_rxttime;
463			continue;
464		}
465		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
466			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
467				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
468				    "giving up and removing syncache entry\n",
469				    s, __func__);
470				free(s, M_TCPLOG);
471			}
472			syncache_drop(sc, sch);
473			TCPSTAT_INC(tcps_sc_stale);
474			continue;
475		}
476		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
477			log(LOG_DEBUG, "%s; %s: Response timeout, "
478			    "retransmitting (%u) SYN|ACK\n",
479			    s, __func__, sc->sc_rxmits);
480			free(s, M_TCPLOG);
481		}
482
483		(void) syncache_respond(sc);
484		TCPSTAT_INC(tcps_sc_retransmitted);
485		syncache_timeout(sc, sch, 0);
486	}
487	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
488		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
489			syncache_timer, (void *)(sch));
490	CURVNET_RESTORE();
491}
492
493/*
494 * Find an entry in the syncache.
495 * Returns always with locked syncache_head plus a matching entry or NULL.
496 */
497static struct syncache *
498syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
499{
500	struct syncache *sc;
501	struct syncache_head *sch;
502
503#ifdef INET6
504	if (inc->inc_flags & INC_ISIPV6) {
505		sch = &V_tcp_syncache.hashbase[
506		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
507		*schp = sch;
508
509		SCH_LOCK(sch);
510
511		/* Circle through bucket row to find matching entry. */
512		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
513			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
514				return (sc);
515		}
516	} else
517#endif
518	{
519		sch = &V_tcp_syncache.hashbase[
520		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
521		*schp = sch;
522
523		SCH_LOCK(sch);
524
525		/* Circle through bucket row to find matching entry. */
526		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
527#ifdef INET6
528			if (sc->sc_inc.inc_flags & INC_ISIPV6)
529				continue;
530#endif
531			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
532				return (sc);
533		}
534	}
535	SCH_LOCK_ASSERT(*schp);
536	return (NULL);			/* always returns with locked sch */
537}
538
539/*
540 * This function is called when we get a RST for a
541 * non-existent connection, so that we can see if the
542 * connection is in the syn cache.  If it is, zap it.
543 */
544void
545syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
546{
547	struct syncache *sc;
548	struct syncache_head *sch;
549	char *s = NULL;
550
551	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
552	SCH_LOCK_ASSERT(sch);
553
554	/*
555	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
556	 * See RFC 793 page 65, section SEGMENT ARRIVES.
557	 */
558	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
559		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
560			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
561			    "FIN flag set, segment ignored\n", s, __func__);
562		TCPSTAT_INC(tcps_badrst);
563		goto done;
564	}
565
566	/*
567	 * No corresponding connection was found in syncache.
568	 * If syncookies are enabled and possibly exclusively
569	 * used, or we are under memory pressure, a valid RST
570	 * may not find a syncache entry.  In that case we're
571	 * done and no SYN|ACK retransmissions will happen.
572	 * Otherwise the RST was misdirected or spoofed.
573	 */
574	if (sc == NULL) {
575		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
576			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
577			    "syncache entry (possibly syncookie only), "
578			    "segment ignored\n", s, __func__);
579		TCPSTAT_INC(tcps_badrst);
580		goto done;
581	}
582
583	/*
584	 * If the RST bit is set, check the sequence number to see
585	 * if this is a valid reset segment.
586	 * RFC 793 page 37:
587	 *   In all states except SYN-SENT, all reset (RST) segments
588	 *   are validated by checking their SEQ-fields.  A reset is
589	 *   valid if its sequence number is in the window.
590	 *
591	 *   The sequence number in the reset segment is normally an
592	 *   echo of our outgoing acknowlegement numbers, but some hosts
593	 *   send a reset with the sequence number at the rightmost edge
594	 *   of our receive window, and we have to handle this case.
595	 */
596	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
597	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
598		syncache_drop(sc, sch);
599		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
600			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
601			    "connection attempt aborted by remote endpoint\n",
602			    s, __func__);
603		TCPSTAT_INC(tcps_sc_reset);
604	} else {
605		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
606			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
607			    "IRS %u (+WND %u), segment ignored\n",
608			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
609		TCPSTAT_INC(tcps_badrst);
610	}
611
612done:
613	if (s != NULL)
614		free(s, M_TCPLOG);
615	SCH_UNLOCK(sch);
616}
617
618void
619syncache_badack(struct in_conninfo *inc)
620{
621	struct syncache *sc;
622	struct syncache_head *sch;
623
624	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
625	SCH_LOCK_ASSERT(sch);
626	if (sc != NULL) {
627		syncache_drop(sc, sch);
628		TCPSTAT_INC(tcps_sc_badack);
629	}
630	SCH_UNLOCK(sch);
631}
632
633void
634syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
635{
636	struct syncache *sc;
637	struct syncache_head *sch;
638
639	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
640	SCH_LOCK_ASSERT(sch);
641	if (sc == NULL)
642		goto done;
643
644	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
645	if (ntohl(th->th_seq) != sc->sc_iss)
646		goto done;
647
648	/*
649	 * If we've rertransmitted 3 times and this is our second error,
650	 * we remove the entry.  Otherwise, we allow it to continue on.
651	 * This prevents us from incorrectly nuking an entry during a
652	 * spurious network outage.
653	 *
654	 * See tcp_notify().
655	 */
656	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
657		sc->sc_flags |= SCF_UNREACH;
658		goto done;
659	}
660	syncache_drop(sc, sch);
661	TCPSTAT_INC(tcps_sc_unreach);
662done:
663	SCH_UNLOCK(sch);
664}
665
666/*
667 * Build a new TCP socket structure from a syncache entry.
668 */
669static struct socket *
670syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
671{
672	struct inpcb *inp = NULL;
673	struct socket *so;
674	struct tcpcb *tp;
675	int error;
676	char *s;
677
678	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
679
680	/*
681	 * Ok, create the full blown connection, and set things up
682	 * as they would have been set up if we had created the
683	 * connection when the SYN arrived.  If we can't create
684	 * the connection, abort it.
685	 */
686	so = sonewconn(lso, SS_ISCONNECTED);
687	if (so == NULL) {
688		/*
689		 * Drop the connection; we will either send a RST or
690		 * have the peer retransmit its SYN again after its
691		 * RTO and try again.
692		 */
693		TCPSTAT_INC(tcps_listendrop);
694		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
695			log(LOG_DEBUG, "%s; %s: Socket create failed "
696			    "due to limits or memory shortage\n",
697			    s, __func__);
698			free(s, M_TCPLOG);
699		}
700		goto abort2;
701	}
702#ifdef MAC
703	mac_socketpeer_set_from_mbuf(m, so);
704#endif
705
706	inp = sotoinpcb(so);
707	inp->inp_inc.inc_fibnum = so->so_fibnum;
708	INP_WLOCK(inp);
709	INP_HASH_WLOCK(&V_tcbinfo);
710
711	/* Insert new socket into PCB hash list. */
712	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
713#ifdef INET6
714	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
715		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
716	} else {
717		inp->inp_vflag &= ~INP_IPV6;
718		inp->inp_vflag |= INP_IPV4;
719#endif
720		inp->inp_laddr = sc->sc_inc.inc_laddr;
721#ifdef INET6
722	}
723#endif
724
725	/*
726	 * If there's an mbuf and it has a flowid, then let's initialise the
727	 * inp with that particular flowid.
728	 */
729	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
730		inp->inp_flowid = m->m_pkthdr.flowid;
731		inp->inp_flowtype = M_HASHTYPE_GET(m);
732	}
733
734	/*
735	 * Install in the reservation hash table for now, but don't yet
736	 * install a connection group since the full 4-tuple isn't yet
737	 * configured.
738	 */
739	inp->inp_lport = sc->sc_inc.inc_lport;
740	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
741		/*
742		 * Undo the assignments above if we failed to
743		 * put the PCB on the hash lists.
744		 */
745#ifdef INET6
746		if (sc->sc_inc.inc_flags & INC_ISIPV6)
747			inp->in6p_laddr = in6addr_any;
748		else
749#endif
750			inp->inp_laddr.s_addr = INADDR_ANY;
751		inp->inp_lport = 0;
752		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
753			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
754			    "with error %i\n",
755			    s, __func__, error);
756			free(s, M_TCPLOG);
757		}
758		INP_HASH_WUNLOCK(&V_tcbinfo);
759		goto abort;
760	}
761#ifdef IPSEC
762	/* Copy old policy into new socket's. */
763	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
764		printf("syncache_socket: could not copy policy\n");
765#endif
766#ifdef INET6
767	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
768		struct inpcb *oinp = sotoinpcb(lso);
769		struct in6_addr laddr6;
770		struct sockaddr_in6 sin6;
771		/*
772		 * Inherit socket options from the listening socket.
773		 * Note that in6p_inputopts are not (and should not be)
774		 * copied, since it stores previously received options and is
775		 * used to detect if each new option is different than the
776		 * previous one and hence should be passed to a user.
777		 * If we copied in6p_inputopts, a user would not be able to
778		 * receive options just after calling the accept system call.
779		 */
780		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
781		if (oinp->in6p_outputopts)
782			inp->in6p_outputopts =
783			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
784
785		sin6.sin6_family = AF_INET6;
786		sin6.sin6_len = sizeof(sin6);
787		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
788		sin6.sin6_port = sc->sc_inc.inc_fport;
789		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
790		laddr6 = inp->in6p_laddr;
791		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
792			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
793		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
794		    thread0.td_ucred, m)) != 0) {
795			inp->in6p_laddr = laddr6;
796			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
797				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
798				    "with error %i\n",
799				    s, __func__, error);
800				free(s, M_TCPLOG);
801			}
802			INP_HASH_WUNLOCK(&V_tcbinfo);
803			goto abort;
804		}
805		/* Override flowlabel from in6_pcbconnect. */
806		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
807		inp->inp_flow |= sc->sc_flowlabel;
808	}
809#endif /* INET6 */
810#if defined(INET) && defined(INET6)
811	else
812#endif
813#ifdef INET
814	{
815		struct in_addr laddr;
816		struct sockaddr_in sin;
817
818		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
819
820		if (inp->inp_options == NULL) {
821			inp->inp_options = sc->sc_ipopts;
822			sc->sc_ipopts = NULL;
823		}
824
825		sin.sin_family = AF_INET;
826		sin.sin_len = sizeof(sin);
827		sin.sin_addr = sc->sc_inc.inc_faddr;
828		sin.sin_port = sc->sc_inc.inc_fport;
829		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
830		laddr = inp->inp_laddr;
831		if (inp->inp_laddr.s_addr == INADDR_ANY)
832			inp->inp_laddr = sc->sc_inc.inc_laddr;
833		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
834		    thread0.td_ucred, m)) != 0) {
835			inp->inp_laddr = laddr;
836			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
837				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
838				    "with error %i\n",
839				    s, __func__, error);
840				free(s, M_TCPLOG);
841			}
842			INP_HASH_WUNLOCK(&V_tcbinfo);
843			goto abort;
844		}
845	}
846#endif /* INET */
847	INP_HASH_WUNLOCK(&V_tcbinfo);
848	tp = intotcpcb(inp);
849	tcp_state_change(tp, TCPS_SYN_RECEIVED);
850	tp->iss = sc->sc_iss;
851	tp->irs = sc->sc_irs;
852	tcp_rcvseqinit(tp);
853	tcp_sendseqinit(tp);
854	tp->snd_wl1 = sc->sc_irs;
855	tp->snd_max = tp->iss + 1;
856	tp->snd_nxt = tp->iss + 1;
857	tp->rcv_up = sc->sc_irs + 1;
858	tp->rcv_wnd = sc->sc_wnd;
859	tp->rcv_adv += tp->rcv_wnd;
860	tp->last_ack_sent = tp->rcv_nxt;
861
862	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
863	if (sc->sc_flags & SCF_NOOPT)
864		tp->t_flags |= TF_NOOPT;
865	else {
866		if (sc->sc_flags & SCF_WINSCALE) {
867			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
868			tp->snd_scale = sc->sc_requested_s_scale;
869			tp->request_r_scale = sc->sc_requested_r_scale;
870		}
871		if (sc->sc_flags & SCF_TIMESTAMP) {
872			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
873			tp->ts_recent = sc->sc_tsreflect;
874			tp->ts_recent_age = tcp_ts_getticks();
875			tp->ts_offset = sc->sc_tsoff;
876		}
877#ifdef TCP_SIGNATURE
878		if (sc->sc_flags & SCF_SIGNATURE)
879			tp->t_flags |= TF_SIGNATURE;
880#endif
881		if (sc->sc_flags & SCF_SACK)
882			tp->t_flags |= TF_SACK_PERMIT;
883	}
884
885	if (sc->sc_flags & SCF_ECN)
886		tp->t_flags |= TF_ECN_PERMIT;
887
888	/*
889	 * Set up MSS and get cached values from tcp_hostcache.
890	 * This might overwrite some of the defaults we just set.
891	 */
892	tcp_mss(tp, sc->sc_peer_mss);
893
894	/*
895	 * If the SYN,ACK was retransmitted, indicate that CWND to be
896	 * limited to one segment in cc_conn_init().
897	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
898	 */
899	if (sc->sc_rxmits > 1)
900		tp->snd_cwnd = 1;
901
902#ifdef TCP_OFFLOAD
903	/*
904	 * Allow a TOE driver to install its hooks.  Note that we hold the
905	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
906	 * new connection before the TOE driver has done its thing.
907	 */
908	if (ADDED_BY_TOE(sc)) {
909		struct toedev *tod = sc->sc_tod;
910
911		tod->tod_offload_socket(tod, sc->sc_todctx, so);
912	}
913#endif
914	/*
915	 * Copy and activate timers.
916	 */
917	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
918	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
919	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
920	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
921	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
922
923	INP_WUNLOCK(inp);
924
925	TCPSTAT_INC(tcps_accepts);
926	return (so);
927
928abort:
929	INP_WUNLOCK(inp);
930abort2:
931	if (so != NULL)
932		soabort(so);
933	return (NULL);
934}
935
936/*
937 * This function gets called when we receive an ACK for a
938 * socket in the LISTEN state.  We look up the connection
939 * in the syncache, and if its there, we pull it out of
940 * the cache and turn it into a full-blown connection in
941 * the SYN-RECEIVED state.
942 */
943int
944syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
945    struct socket **lsop, struct mbuf *m)
946{
947	struct syncache *sc;
948	struct syncache_head *sch;
949	struct syncache scs;
950	char *s;
951
952	/*
953	 * Global TCP locks are held because we manipulate the PCB lists
954	 * and create a new socket.
955	 */
956	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
957	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
958	    ("%s: can handle only ACK", __func__));
959
960	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
961	SCH_LOCK_ASSERT(sch);
962
963#ifdef INVARIANTS
964	/*
965	 * Test code for syncookies comparing the syncache stored
966	 * values with the reconstructed values from the cookie.
967	 */
968	if (sc != NULL)
969		syncookie_cmp(inc, sch, sc, th, to, *lsop);
970#endif
971
972	if (sc == NULL) {
973		/*
974		 * There is no syncache entry, so see if this ACK is
975		 * a returning syncookie.  To do this, first:
976		 *  A. See if this socket has had a syncache entry dropped in
977		 *     the past.  We don't want to accept a bogus syncookie
978		 *     if we've never received a SYN.
979		 *  B. check that the syncookie is valid.  If it is, then
980		 *     cobble up a fake syncache entry, and return.
981		 */
982		if (!V_tcp_syncookies) {
983			SCH_UNLOCK(sch);
984			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
985				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
986				    "segment rejected (syncookies disabled)\n",
987				    s, __func__);
988			goto failed;
989		}
990		bzero(&scs, sizeof(scs));
991		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
992		SCH_UNLOCK(sch);
993		if (sc == NULL) {
994			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
995				log(LOG_DEBUG, "%s; %s: Segment failed "
996				    "SYNCOOKIE authentication, segment rejected "
997				    "(probably spoofed)\n", s, __func__);
998			goto failed;
999		}
1000	} else {
1001		/* Pull out the entry to unlock the bucket row. */
1002		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1003		sch->sch_length--;
1004#ifdef TCP_OFFLOAD
1005		if (ADDED_BY_TOE(sc)) {
1006			struct toedev *tod = sc->sc_tod;
1007
1008			tod->tod_syncache_removed(tod, sc->sc_todctx);
1009		}
1010#endif
1011		SCH_UNLOCK(sch);
1012	}
1013
1014	/*
1015	 * Segment validation:
1016	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1017	 */
1018	if (th->th_ack != sc->sc_iss + 1) {
1019		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1020			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1021			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1022		goto failed;
1023	}
1024
1025	/*
1026	 * The SEQ must fall in the window starting at the received
1027	 * initial receive sequence number + 1 (the SYN).
1028	 */
1029	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1030	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1031		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1032			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1033			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1034		goto failed;
1035	}
1036
1037	/*
1038	 * If timestamps were not negotiated during SYN/ACK they
1039	 * must not appear on any segment during this session.
1040	 */
1041	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1042		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1043			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1044			    "segment rejected\n", s, __func__);
1045		goto failed;
1046	}
1047
1048	/*
1049	 * If timestamps were negotiated during SYN/ACK they should
1050	 * appear on every segment during this session.
1051	 * XXXAO: This is only informal as there have been unverified
1052	 * reports of non-compliants stacks.
1053	 */
1054	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1055		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1056			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1057			    "no action\n", s, __func__);
1058			free(s, M_TCPLOG);
1059			s = NULL;
1060		}
1061	}
1062
1063	/*
1064	 * If timestamps were negotiated the reflected timestamp
1065	 * must be equal to what we actually sent in the SYN|ACK.
1066	 */
1067	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
1068		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1069			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1070			    "segment rejected\n",
1071			    s, __func__, to->to_tsecr, sc->sc_ts);
1072		goto failed;
1073	}
1074
1075	*lsop = syncache_socket(sc, *lsop, m);
1076
1077	if (*lsop == NULL)
1078		TCPSTAT_INC(tcps_sc_aborted);
1079	else
1080		TCPSTAT_INC(tcps_sc_completed);
1081
1082/* how do we find the inp for the new socket? */
1083	if (sc != &scs)
1084		syncache_free(sc);
1085	return (1);
1086failed:
1087	if (sc != NULL && sc != &scs)
1088		syncache_free(sc);
1089	if (s != NULL)
1090		free(s, M_TCPLOG);
1091	*lsop = NULL;
1092	return (0);
1093}
1094
1095#ifdef TCP_RFC7413
1096static void
1097syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1098    uint64_t response_cookie)
1099{
1100	struct inpcb *inp;
1101	struct tcpcb *tp;
1102	unsigned int *pending_counter;
1103
1104	/*
1105	 * Global TCP locks are held because we manipulate the PCB lists
1106	 * and create a new socket.
1107	 */
1108	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1109
1110	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1111	*lsop = syncache_socket(sc, *lsop, m);
1112	if (*lsop == NULL) {
1113		TCPSTAT_INC(tcps_sc_aborted);
1114		atomic_subtract_int(pending_counter, 1);
1115	} else {
1116		inp = sotoinpcb(*lsop);
1117		tp = intotcpcb(inp);
1118		tp->t_flags |= TF_FASTOPEN;
1119		tp->t_tfo_cookie = response_cookie;
1120		tp->snd_max = tp->iss;
1121		tp->snd_nxt = tp->iss;
1122		tp->t_tfo_pending = pending_counter;
1123		TCPSTAT_INC(tcps_sc_completed);
1124	}
1125}
1126#endif /* TCP_RFC7413 */
1127
1128/*
1129 * Given a LISTEN socket and an inbound SYN request, add
1130 * this to the syn cache, and send back a segment:
1131 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1132 * to the source.
1133 *
1134 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1135 * Doing so would require that we hold onto the data and deliver it
1136 * to the application.  However, if we are the target of a SYN-flood
1137 * DoS attack, an attacker could send data which would eventually
1138 * consume all available buffer space if it were ACKed.  By not ACKing
1139 * the data, we avoid this DoS scenario.
1140 *
1141 * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1142 * cookie is processed, V_tcp_fastopen_enabled set to true, and the
1143 * TCP_FASTOPEN socket option is set.  In this case, a new socket is created
1144 * and returned via lsop, the mbuf is not freed so that tcp_input() can
1145 * queue its data to the socket, and 1 is returned to indicate the
1146 * TFO-socket-creation path was taken.
1147 */
1148int
1149syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1150    struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1151    void *todctx)
1152{
1153	struct tcpcb *tp;
1154	struct socket *so;
1155	struct syncache *sc = NULL;
1156	struct syncache_head *sch;
1157	struct mbuf *ipopts = NULL;
1158	u_int ltflags;
1159	int win, sb_hiwat, ip_ttl, ip_tos;
1160	char *s;
1161	int rv = 0;
1162#ifdef INET6
1163	int autoflowlabel = 0;
1164#endif
1165#ifdef MAC
1166	struct label *maclabel;
1167#endif
1168	struct syncache scs;
1169	struct ucred *cred;
1170#ifdef TCP_RFC7413
1171	uint64_t tfo_response_cookie;
1172	int tfo_cookie_valid = 0;
1173	int tfo_response_cookie_valid = 0;
1174#endif
1175
1176	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1177	INP_WLOCK_ASSERT(inp);			/* listen socket */
1178	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1179	    ("%s: unexpected tcp flags", __func__));
1180
1181	/*
1182	 * Combine all so/tp operations very early to drop the INP lock as
1183	 * soon as possible.
1184	 */
1185	so = *lsop;
1186	tp = sototcpcb(so);
1187	cred = crhold(so->so_cred);
1188
1189#ifdef INET6
1190	if ((inc->inc_flags & INC_ISIPV6) &&
1191	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1192		autoflowlabel = 1;
1193#endif
1194	ip_ttl = inp->inp_ip_ttl;
1195	ip_tos = inp->inp_ip_tos;
1196	win = sbspace(&so->so_rcv);
1197	sb_hiwat = so->so_rcv.sb_hiwat;
1198	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1199
1200#ifdef TCP_RFC7413
1201	if (V_tcp_fastopen_enabled && (tp->t_flags & TF_FASTOPEN) &&
1202	    (tp->t_tfo_pending != NULL) && (to->to_flags & TOF_FASTOPEN)) {
1203		/*
1204		 * Limit the number of pending TFO connections to
1205		 * approximately half of the queue limit.  This prevents TFO
1206		 * SYN floods from starving the service by filling the
1207		 * listen queue with bogus TFO connections.
1208		 */
1209		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1210		    (so->so_qlimit / 2)) {
1211			int result;
1212
1213			result = tcp_fastopen_check_cookie(inc,
1214			    to->to_tfo_cookie, to->to_tfo_len,
1215			    &tfo_response_cookie);
1216			tfo_cookie_valid = (result > 0);
1217			tfo_response_cookie_valid = (result >= 0);
1218		} else
1219			atomic_subtract_int(tp->t_tfo_pending, 1);
1220	}
1221#endif
1222
1223	/* By the time we drop the lock these should no longer be used. */
1224	so = NULL;
1225	tp = NULL;
1226
1227#ifdef MAC
1228	if (mac_syncache_init(&maclabel) != 0) {
1229		INP_WUNLOCK(inp);
1230		INP_INFO_WUNLOCK(&V_tcbinfo);
1231		goto done;
1232	} else
1233		mac_syncache_create(maclabel, inp);
1234#endif
1235#ifdef TCP_RFC7413
1236	if (!tfo_cookie_valid) {
1237		INP_WUNLOCK(inp);
1238		INP_INFO_WUNLOCK(&V_tcbinfo);
1239	}
1240#else
1241	INP_WUNLOCK(inp);
1242	INP_INFO_WUNLOCK(&V_tcbinfo);
1243#endif
1244
1245	/*
1246	 * Remember the IP options, if any.
1247	 */
1248#ifdef INET6
1249	if (!(inc->inc_flags & INC_ISIPV6))
1250#endif
1251#ifdef INET
1252		ipopts = (m) ? ip_srcroute(m) : NULL;
1253#else
1254		ipopts = NULL;
1255#endif
1256
1257	/*
1258	 * See if we already have an entry for this connection.
1259	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1260	 *
1261	 * XXX: should the syncache be re-initialized with the contents
1262	 * of the new SYN here (which may have different options?)
1263	 *
1264	 * XXX: We do not check the sequence number to see if this is a
1265	 * real retransmit or a new connection attempt.  The question is
1266	 * how to handle such a case; either ignore it as spoofed, or
1267	 * drop the current entry and create a new one?
1268	 */
1269	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1270	SCH_LOCK_ASSERT(sch);
1271	if (sc != NULL) {
1272#ifdef TCP_RFC7413
1273		if (tfo_cookie_valid) {
1274			INP_WUNLOCK(inp);
1275			INP_INFO_WUNLOCK(&V_tcbinfo);
1276		}
1277#endif
1278		TCPSTAT_INC(tcps_sc_dupsyn);
1279		if (ipopts) {
1280			/*
1281			 * If we were remembering a previous source route,
1282			 * forget it and use the new one we've been given.
1283			 */
1284			if (sc->sc_ipopts)
1285				(void) m_free(sc->sc_ipopts);
1286			sc->sc_ipopts = ipopts;
1287		}
1288		/*
1289		 * Update timestamp if present.
1290		 */
1291		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1292			sc->sc_tsreflect = to->to_tsval;
1293		else
1294			sc->sc_flags &= ~SCF_TIMESTAMP;
1295#ifdef MAC
1296		/*
1297		 * Since we have already unconditionally allocated label
1298		 * storage, free it up.  The syncache entry will already
1299		 * have an initialized label we can use.
1300		 */
1301		mac_syncache_destroy(&maclabel);
1302#endif
1303		/* Retransmit SYN|ACK and reset retransmit count. */
1304		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1305			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1306			    "resetting timer and retransmitting SYN|ACK\n",
1307			    s, __func__);
1308			free(s, M_TCPLOG);
1309		}
1310		if (syncache_respond(sc) == 0) {
1311			sc->sc_rxmits = 0;
1312			syncache_timeout(sc, sch, 1);
1313			TCPSTAT_INC(tcps_sndacks);
1314			TCPSTAT_INC(tcps_sndtotal);
1315		}
1316		SCH_UNLOCK(sch);
1317		goto done;
1318	}
1319
1320#ifdef TCP_RFC7413
1321	if (tfo_cookie_valid) {
1322		bzero(&scs, sizeof(scs));
1323		sc = &scs;
1324		goto skip_alloc;
1325	}
1326#endif
1327
1328	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1329	if (sc == NULL) {
1330		/*
1331		 * The zone allocator couldn't provide more entries.
1332		 * Treat this as if the cache was full; drop the oldest
1333		 * entry and insert the new one.
1334		 */
1335		TCPSTAT_INC(tcps_sc_zonefail);
1336		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1337			syncache_drop(sc, sch);
1338		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1339		if (sc == NULL) {
1340			if (V_tcp_syncookies) {
1341				bzero(&scs, sizeof(scs));
1342				sc = &scs;
1343			} else {
1344				SCH_UNLOCK(sch);
1345				if (ipopts)
1346					(void) m_free(ipopts);
1347				goto done;
1348			}
1349		}
1350	}
1351
1352#ifdef TCP_RFC7413
1353skip_alloc:
1354	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1355		sc->sc_tfo_cookie = &tfo_response_cookie;
1356#endif
1357
1358	/*
1359	 * Fill in the syncache values.
1360	 */
1361#ifdef MAC
1362	sc->sc_label = maclabel;
1363#endif
1364	sc->sc_cred = cred;
1365	cred = NULL;
1366	sc->sc_ipopts = ipopts;
1367	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1368#ifdef INET6
1369	if (!(inc->inc_flags & INC_ISIPV6))
1370#endif
1371	{
1372		sc->sc_ip_tos = ip_tos;
1373		sc->sc_ip_ttl = ip_ttl;
1374	}
1375#ifdef TCP_OFFLOAD
1376	sc->sc_tod = tod;
1377	sc->sc_todctx = todctx;
1378#endif
1379	sc->sc_irs = th->th_seq;
1380	sc->sc_iss = arc4random();
1381	sc->sc_flags = 0;
1382	sc->sc_flowlabel = 0;
1383
1384	/*
1385	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1386	 * win was derived from socket earlier in the function.
1387	 */
1388	win = imax(win, 0);
1389	win = imin(win, TCP_MAXWIN);
1390	sc->sc_wnd = win;
1391
1392	if (V_tcp_do_rfc1323) {
1393		/*
1394		 * A timestamp received in a SYN makes
1395		 * it ok to send timestamp requests and replies.
1396		 */
1397		if (to->to_flags & TOF_TS) {
1398			sc->sc_tsreflect = to->to_tsval;
1399			sc->sc_ts = tcp_ts_getticks();
1400			sc->sc_flags |= SCF_TIMESTAMP;
1401		}
1402		if (to->to_flags & TOF_SCALE) {
1403			int wscale = 0;
1404
1405			/*
1406			 * Pick the smallest possible scaling factor that
1407			 * will still allow us to scale up to sb_max, aka
1408			 * kern.ipc.maxsockbuf.
1409			 *
1410			 * We do this because there are broken firewalls that
1411			 * will corrupt the window scale option, leading to
1412			 * the other endpoint believing that our advertised
1413			 * window is unscaled.  At scale factors larger than
1414			 * 5 the unscaled window will drop below 1500 bytes,
1415			 * leading to serious problems when traversing these
1416			 * broken firewalls.
1417			 *
1418			 * With the default maxsockbuf of 256K, a scale factor
1419			 * of 3 will be chosen by this algorithm.  Those who
1420			 * choose a larger maxsockbuf should watch out
1421			 * for the compatiblity problems mentioned above.
1422			 *
1423			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1424			 * or <SYN,ACK>) segment itself is never scaled.
1425			 */
1426			while (wscale < TCP_MAX_WINSHIFT &&
1427			    (TCP_MAXWIN << wscale) < sb_max)
1428				wscale++;
1429			sc->sc_requested_r_scale = wscale;
1430			sc->sc_requested_s_scale = to->to_wscale;
1431			sc->sc_flags |= SCF_WINSCALE;
1432		}
1433	}
1434#ifdef TCP_SIGNATURE
1435	/*
1436	 * If listening socket requested TCP digests, and received SYN
1437	 * contains the option, flag this in the syncache so that
1438	 * syncache_respond() will do the right thing with the SYN+ACK.
1439	 * XXX: Currently we always record the option by default and will
1440	 * attempt to use it in syncache_respond().
1441	 */
1442	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1443		sc->sc_flags |= SCF_SIGNATURE;
1444#endif
1445	if (to->to_flags & TOF_SACKPERM)
1446		sc->sc_flags |= SCF_SACK;
1447	if (to->to_flags & TOF_MSS)
1448		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1449	if (ltflags & TF_NOOPT)
1450		sc->sc_flags |= SCF_NOOPT;
1451	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1452		sc->sc_flags |= SCF_ECN;
1453
1454	if (V_tcp_syncookies)
1455		sc->sc_iss = syncookie_generate(sch, sc);
1456#ifdef INET6
1457	if (autoflowlabel) {
1458		if (V_tcp_syncookies)
1459			sc->sc_flowlabel = sc->sc_iss;
1460		else
1461			sc->sc_flowlabel = ip6_randomflowlabel();
1462		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1463	}
1464#endif
1465	SCH_UNLOCK(sch);
1466
1467#ifdef TCP_RFC7413
1468	if (tfo_cookie_valid) {
1469		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1470		/* INP_WUNLOCK(inp) will be performed by the called */
1471		rv = 1;
1472		goto tfo_done;
1473	}
1474#endif
1475
1476	/*
1477	 * Do a standard 3-way handshake.
1478	 */
1479	if (syncache_respond(sc) == 0) {
1480		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1481			syncache_free(sc);
1482		else if (sc != &scs)
1483			syncache_insert(sc, sch);   /* locks and unlocks sch */
1484		TCPSTAT_INC(tcps_sndacks);
1485		TCPSTAT_INC(tcps_sndtotal);
1486	} else {
1487		if (sc != &scs)
1488			syncache_free(sc);
1489		TCPSTAT_INC(tcps_sc_dropped);
1490	}
1491
1492done:
1493	if (m) {
1494		*lsop = NULL;
1495		m_freem(m);
1496	}
1497#ifdef TCP_RFC7413
1498tfo_done:
1499#endif
1500	if (cred != NULL)
1501		crfree(cred);
1502#ifdef MAC
1503	if (sc == &scs)
1504		mac_syncache_destroy(&maclabel);
1505#endif
1506	return (rv);
1507}
1508
1509static int
1510syncache_respond(struct syncache *sc)
1511{
1512	struct ip *ip = NULL;
1513	struct mbuf *m;
1514	struct tcphdr *th = NULL;
1515	int optlen, error = 0;	/* Make compiler happy */
1516	u_int16_t hlen, tlen, mssopt;
1517	struct tcpopt to;
1518#ifdef INET6
1519	struct ip6_hdr *ip6 = NULL;
1520#endif
1521
1522	hlen =
1523#ifdef INET6
1524	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1525#endif
1526		sizeof(struct ip);
1527	tlen = hlen + sizeof(struct tcphdr);
1528
1529	/* Determine MSS we advertize to other end of connection. */
1530	mssopt = tcp_mssopt(&sc->sc_inc);
1531	if (sc->sc_peer_mss)
1532		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1533
1534	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1535	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1536	    ("syncache: mbuf too small"));
1537
1538	/* Create the IP+TCP header from scratch. */
1539	m = m_gethdr(M_NOWAIT, MT_DATA);
1540	if (m == NULL)
1541		return (ENOBUFS);
1542#ifdef MAC
1543	mac_syncache_create_mbuf(sc->sc_label, m);
1544#endif
1545	m->m_data += max_linkhdr;
1546	m->m_len = tlen;
1547	m->m_pkthdr.len = tlen;
1548	m->m_pkthdr.rcvif = NULL;
1549
1550#ifdef INET6
1551	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1552		ip6 = mtod(m, struct ip6_hdr *);
1553		ip6->ip6_vfc = IPV6_VERSION;
1554		ip6->ip6_nxt = IPPROTO_TCP;
1555		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1556		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1557		ip6->ip6_plen = htons(tlen - hlen);
1558		/* ip6_hlim is set after checksum */
1559		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1560		ip6->ip6_flow |= sc->sc_flowlabel;
1561
1562		th = (struct tcphdr *)(ip6 + 1);
1563	}
1564#endif
1565#if defined(INET6) && defined(INET)
1566	else
1567#endif
1568#ifdef INET
1569	{
1570		ip = mtod(m, struct ip *);
1571		ip->ip_v = IPVERSION;
1572		ip->ip_hl = sizeof(struct ip) >> 2;
1573		ip->ip_len = htons(tlen);
1574		ip->ip_id = 0;
1575		ip->ip_off = 0;
1576		ip->ip_sum = 0;
1577		ip->ip_p = IPPROTO_TCP;
1578		ip->ip_src = sc->sc_inc.inc_laddr;
1579		ip->ip_dst = sc->sc_inc.inc_faddr;
1580		ip->ip_ttl = sc->sc_ip_ttl;
1581		ip->ip_tos = sc->sc_ip_tos;
1582
1583		/*
1584		 * See if we should do MTU discovery.  Route lookups are
1585		 * expensive, so we will only unset the DF bit if:
1586		 *
1587		 *	1) path_mtu_discovery is disabled
1588		 *	2) the SCF_UNREACH flag has been set
1589		 */
1590		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1591		       ip->ip_off |= htons(IP_DF);
1592
1593		th = (struct tcphdr *)(ip + 1);
1594	}
1595#endif /* INET */
1596	th->th_sport = sc->sc_inc.inc_lport;
1597	th->th_dport = sc->sc_inc.inc_fport;
1598
1599	th->th_seq = htonl(sc->sc_iss);
1600	th->th_ack = htonl(sc->sc_irs + 1);
1601	th->th_off = sizeof(struct tcphdr) >> 2;
1602	th->th_x2 = 0;
1603	th->th_flags = TH_SYN|TH_ACK;
1604	th->th_win = htons(sc->sc_wnd);
1605	th->th_urp = 0;
1606
1607	if (sc->sc_flags & SCF_ECN) {
1608		th->th_flags |= TH_ECE;
1609		TCPSTAT_INC(tcps_ecn_shs);
1610	}
1611
1612	/* Tack on the TCP options. */
1613	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1614		to.to_flags = 0;
1615
1616		to.to_mss = mssopt;
1617		to.to_flags = TOF_MSS;
1618		if (sc->sc_flags & SCF_WINSCALE) {
1619			to.to_wscale = sc->sc_requested_r_scale;
1620			to.to_flags |= TOF_SCALE;
1621		}
1622		if (sc->sc_flags & SCF_TIMESTAMP) {
1623			/* Virgin timestamp or TCP cookie enhanced one. */
1624			to.to_tsval = sc->sc_ts;
1625			to.to_tsecr = sc->sc_tsreflect;
1626			to.to_flags |= TOF_TS;
1627		}
1628		if (sc->sc_flags & SCF_SACK)
1629			to.to_flags |= TOF_SACKPERM;
1630#ifdef TCP_SIGNATURE
1631		if (sc->sc_flags & SCF_SIGNATURE)
1632			to.to_flags |= TOF_SIGNATURE;
1633#endif
1634
1635#ifdef TCP_RFC7413
1636		if (sc->sc_tfo_cookie) {
1637			to.to_flags |= TOF_FASTOPEN;
1638			to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1639			to.to_tfo_cookie = sc->sc_tfo_cookie;
1640			/* don't send cookie again when retransmitting response */
1641			sc->sc_tfo_cookie = NULL;
1642		}
1643#endif
1644		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1645
1646		/* Adjust headers by option size. */
1647		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1648		m->m_len += optlen;
1649		m->m_pkthdr.len += optlen;
1650
1651#ifdef TCP_SIGNATURE
1652		if (sc->sc_flags & SCF_SIGNATURE)
1653			tcp_signature_compute(m, 0, 0, optlen,
1654			    to.to_signature, IPSEC_DIR_OUTBOUND);
1655#endif
1656#ifdef INET6
1657		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1658			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1659		else
1660#endif
1661			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1662	} else
1663		optlen = 0;
1664
1665	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1666	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1667#ifdef INET6
1668	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1669		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1670		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1671		    IPPROTO_TCP, 0);
1672		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1673#ifdef TCP_OFFLOAD
1674		if (ADDED_BY_TOE(sc)) {
1675			struct toedev *tod = sc->sc_tod;
1676
1677			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1678
1679			return (error);
1680		}
1681#endif
1682		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1683	}
1684#endif
1685#if defined(INET6) && defined(INET)
1686	else
1687#endif
1688#ifdef INET
1689	{
1690		m->m_pkthdr.csum_flags = CSUM_TCP;
1691		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1692		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1693#ifdef TCP_OFFLOAD
1694		if (ADDED_BY_TOE(sc)) {
1695			struct toedev *tod = sc->sc_tod;
1696
1697			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1698
1699			return (error);
1700		}
1701#endif
1702		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1703	}
1704#endif
1705	return (error);
1706}
1707
1708/*
1709 * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1710 * that exceed the capacity of the syncache by avoiding the storage of any
1711 * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1712 * attacks where the attacker does not have access to our responses.
1713 *
1714 * Syncookies encode and include all necessary information about the
1715 * connection setup within the SYN|ACK that we send back.  That way we
1716 * can avoid keeping any local state until the ACK to our SYN|ACK returns
1717 * (if ever).  Normally the syncache and syncookies are running in parallel
1718 * with the latter taking over when the former is exhausted.  When matching
1719 * syncache entry is found the syncookie is ignored.
1720 *
1721 * The only reliable information persisting the 3WHS is our inital sequence
1722 * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1723 * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1724 * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1725 * returns and signifies a legitimate connection if it matches the ACK.
1726 *
1727 * The available space of 32 bits to store the hash and to encode the SYN
1728 * option information is very tight and we should have at least 24 bits for
1729 * the MAC to keep the number of guesses by blind spoofing reasonably high.
1730 *
1731 * SYN option information we have to encode to fully restore a connection:
1732 * MSS: is imporant to chose an optimal segment size to avoid IP level
1733 *   fragmentation along the path.  The common MSS values can be encoded
1734 *   in a 3-bit table.  Uncommon values are captured by the next lower value
1735 *   in the table leading to a slight increase in packetization overhead.
1736 * WSCALE: is necessary to allow large windows to be used for high delay-
1737 *   bandwidth product links.  Not scaling the window when it was initially
1738 *   negotiated is bad for performance as lack of scaling further decreases
1739 *   the apparent available send window.  We only need to encode the WSCALE
1740 *   we received from the remote end.  Our end can be recalculated at any
1741 *   time.  The common WSCALE values can be encoded in a 3-bit table.
1742 *   Uncommon values are captured by the next lower value in the table
1743 *   making us under-estimate the available window size halving our
1744 *   theoretically possible maximum throughput for that connection.
1745 * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1746 * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1747 *   that are included in all segments on a connection.  We enable them when
1748 *   the ACK has them.
1749 *
1750 * Security of syncookies and attack vectors:
1751 *
1752 * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1753 * together with the gloabl secret to make it unique per connection attempt.
1754 * Thus any change of any of those parameters results in a different MAC output
1755 * in an unpredictable way unless a collision is encountered.  24 bits of the
1756 * MAC are embedded into the ISS.
1757 *
1758 * To prevent replay attacks two rotating global secrets are updated with a
1759 * new random value every 15 seconds.  The life-time of a syncookie is thus
1760 * 15-30 seconds.
1761 *
1762 * Vector 1: Attacking the secret.  This requires finding a weakness in the
1763 * MAC itself or the way it is used here.  The attacker can do a chosen plain
1764 * text attack by varying and testing the all parameters under his control.
1765 * The strength depends on the size and randomness of the secret, and the
1766 * cryptographic security of the MAC function.  Due to the constant updating
1767 * of the secret the attacker has at most 29.999 seconds to find the secret
1768 * and launch spoofed connections.  After that he has to start all over again.
1769 *
1770 * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1771 * size an average of 4,823 attempts are required for a 50% chance of success
1772 * to spoof a single syncookie (birthday collision paradox).  However the
1773 * attacker is blind and doesn't know if one of his attempts succeeded unless
1774 * he has a side channel to interfere success from.  A single connection setup
1775 * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1776 * This many attempts are required for each one blind spoofed connection.  For
1777 * every additional spoofed connection he has to launch another N attempts.
1778 * Thus for a sustained rate 100 spoofed connections per second approximately
1779 * 1,800,000 packets per second would have to be sent.
1780 *
1781 * NB: The MAC function should be fast so that it doesn't become a CPU
1782 * exhaustion attack vector itself.
1783 *
1784 * References:
1785 *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1786 *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1787 *   http://cr.yp.to/syncookies.html    (overview)
1788 *   http://cr.yp.to/syncookies/archive (details)
1789 *
1790 *
1791 * Schematic construction of a syncookie enabled Initial Sequence Number:
1792 *  0        1         2         3
1793 *  12345678901234567890123456789012
1794 * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1795 *
1796 *  x 24 MAC (truncated)
1797 *  W  3 Send Window Scale index
1798 *  M  3 MSS index
1799 *  S  1 SACK permitted
1800 *  P  1 Odd/even secret
1801 */
1802
1803/*
1804 * Distribution and probability of certain MSS values.  Those in between are
1805 * rounded down to the next lower one.
1806 * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1807 *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1808 */
1809static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1810
1811/*
1812 * Distribution and probability of certain WSCALE values.  We have to map the
1813 * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1814 * bits based on prevalence of certain values.  Where we don't have an exact
1815 * match for are rounded down to the next lower one letting us under-estimate
1816 * the true available window.  At the moment this would happen only for the
1817 * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1818 * and window size).  The absence of the WSCALE option (no scaling in either
1819 * direction) is encoded with index zero.
1820 * [WSCALE values histograms, Allman, 2012]
1821 *                            X 10 10 35  5  6 14 10%   by host
1822 *                            X 11  4  5  5 18 49  3%   by connections
1823 */
1824static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1825
1826/*
1827 * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1828 * and good cryptographic properties.
1829 */
1830static uint32_t
1831syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1832    uint8_t *secbits, uintptr_t secmod)
1833{
1834	SIPHASH_CTX ctx;
1835	uint32_t siphash[2];
1836
1837	SipHash24_Init(&ctx);
1838	SipHash_SetKey(&ctx, secbits);
1839	switch (inc->inc_flags & INC_ISIPV6) {
1840#ifdef INET
1841	case 0:
1842		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1843		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1844		break;
1845#endif
1846#ifdef INET6
1847	case INC_ISIPV6:
1848		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1849		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1850		break;
1851#endif
1852	}
1853	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1854	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1855	SipHash_Update(&ctx, &flags, sizeof(flags));
1856	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1857	SipHash_Final((u_int8_t *)&siphash, &ctx);
1858
1859	return (siphash[0] ^ siphash[1]);
1860}
1861
1862static tcp_seq
1863syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1864{
1865	u_int i, mss, secbit, wscale;
1866	uint32_t iss, hash;
1867	uint8_t *secbits;
1868	union syncookie cookie;
1869
1870	SCH_LOCK_ASSERT(sch);
1871
1872	cookie.cookie = 0;
1873
1874	/* Map our computed MSS into the 3-bit index. */
1875	mss = min(tcp_mssopt(&sc->sc_inc), max(sc->sc_peer_mss, V_tcp_minmss));
1876	for (i = sizeof(tcp_sc_msstab) / sizeof(*tcp_sc_msstab) - 1;
1877	     tcp_sc_msstab[i] > mss && i > 0;
1878	     i--)
1879		;
1880	cookie.flags.mss_idx = i;
1881
1882	/*
1883	 * Map the send window scale into the 3-bit index but only if
1884	 * the wscale option was received.
1885	 */
1886	if (sc->sc_flags & SCF_WINSCALE) {
1887		wscale = sc->sc_requested_s_scale;
1888		for (i = sizeof(tcp_sc_wstab) / sizeof(*tcp_sc_wstab) - 1;
1889		     tcp_sc_wstab[i] > wscale && i > 0;
1890		     i--)
1891			;
1892		cookie.flags.wscale_idx = i;
1893	}
1894
1895	/* Can we do SACK? */
1896	if (sc->sc_flags & SCF_SACK)
1897		cookie.flags.sack_ok = 1;
1898
1899	/* Which of the two secrets to use. */
1900	secbit = sch->sch_sc->secret.oddeven & 0x1;
1901	cookie.flags.odd_even = secbit;
1902
1903	secbits = sch->sch_sc->secret.key[secbit];
1904	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
1905	    (uintptr_t)sch);
1906
1907	/*
1908	 * Put the flags into the hash and XOR them to get better ISS number
1909	 * variance.  This doesn't enhance the cryptographic strength and is
1910	 * done to prevent the 8 cookie bits from showing up directly on the
1911	 * wire.
1912	 */
1913	iss = hash & ~0xff;
1914	iss |= cookie.cookie ^ (hash >> 24);
1915
1916	/* Randomize the timestamp. */
1917	if (sc->sc_flags & SCF_TIMESTAMP) {
1918		sc->sc_ts = arc4random();
1919		sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
1920	}
1921
1922	TCPSTAT_INC(tcps_sc_sendcookie);
1923	return (iss);
1924}
1925
1926static struct syncache *
1927syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1928    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1929    struct socket *lso)
1930{
1931	uint32_t hash;
1932	uint8_t *secbits;
1933	tcp_seq ack, seq;
1934	int wnd, wscale = 0;
1935	union syncookie cookie;
1936
1937	SCH_LOCK_ASSERT(sch);
1938
1939	/*
1940	 * Pull information out of SYN-ACK/ACK and revert sequence number
1941	 * advances.
1942	 */
1943	ack = th->th_ack - 1;
1944	seq = th->th_seq - 1;
1945
1946	/*
1947	 * Unpack the flags containing enough information to restore the
1948	 * connection.
1949	 */
1950	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
1951
1952	/* Which of the two secrets to use. */
1953	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
1954
1955	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
1956
1957	/* The recomputed hash matches the ACK if this was a genuine cookie. */
1958	if ((ack & ~0xff) != (hash & ~0xff))
1959		return (NULL);
1960
1961	/* Fill in the syncache values. */
1962	sc->sc_flags = 0;
1963	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1964	sc->sc_ipopts = NULL;
1965
1966	sc->sc_irs = seq;
1967	sc->sc_iss = ack;
1968
1969	switch (inc->inc_flags & INC_ISIPV6) {
1970#ifdef INET
1971	case 0:
1972		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
1973		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
1974		break;
1975#endif
1976#ifdef INET6
1977	case INC_ISIPV6:
1978		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
1979			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
1980		break;
1981#endif
1982	}
1983
1984	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
1985
1986	/* We can simply recompute receive window scale we sent earlier. */
1987	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
1988		wscale++;
1989
1990	/* Only use wscale if it was enabled in the orignal SYN. */
1991	if (cookie.flags.wscale_idx > 0) {
1992		sc->sc_requested_r_scale = wscale;
1993		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
1994		sc->sc_flags |= SCF_WINSCALE;
1995	}
1996
1997	wnd = sbspace(&lso->so_rcv);
1998	wnd = imax(wnd, 0);
1999	wnd = imin(wnd, TCP_MAXWIN);
2000	sc->sc_wnd = wnd;
2001
2002	if (cookie.flags.sack_ok)
2003		sc->sc_flags |= SCF_SACK;
2004
2005	if (to->to_flags & TOF_TS) {
2006		sc->sc_flags |= SCF_TIMESTAMP;
2007		sc->sc_tsreflect = to->to_tsval;
2008		sc->sc_ts = to->to_tsecr;
2009		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
2010	}
2011
2012	if (to->to_flags & TOF_SIGNATURE)
2013		sc->sc_flags |= SCF_SIGNATURE;
2014
2015	sc->sc_rxmits = 0;
2016
2017	TCPSTAT_INC(tcps_sc_recvcookie);
2018	return (sc);
2019}
2020
2021#ifdef INVARIANTS
2022static int
2023syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2024    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2025    struct socket *lso)
2026{
2027	struct syncache scs, *scx;
2028	char *s;
2029
2030	bzero(&scs, sizeof(scs));
2031	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2032
2033	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2034		return (0);
2035
2036	if (scx != NULL) {
2037		if (sc->sc_peer_mss != scx->sc_peer_mss)
2038			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2039			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2040
2041		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2042			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2043			    s, __func__, sc->sc_requested_r_scale,
2044			    scx->sc_requested_r_scale);
2045
2046		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2047			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2048			    s, __func__, sc->sc_requested_s_scale,
2049			    scx->sc_requested_s_scale);
2050
2051		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2052			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2053	}
2054
2055	if (s != NULL)
2056		free(s, M_TCPLOG);
2057	return (0);
2058}
2059#endif /* INVARIANTS */
2060
2061static void
2062syncookie_reseed(void *arg)
2063{
2064	struct tcp_syncache *sc = arg;
2065	uint8_t *secbits;
2066	int secbit;
2067
2068	/*
2069	 * Reseeding the secret doesn't have to be protected by a lock.
2070	 * It only must be ensured that the new random values are visible
2071	 * to all CPUs in a SMP environment.  The atomic with release
2072	 * semantics ensures that.
2073	 */
2074	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2075	secbits = sc->secret.key[secbit];
2076	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2077	atomic_add_rel_int(&sc->secret.oddeven, 1);
2078
2079	/* Reschedule ourself. */
2080	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2081}
2082
2083/*
2084 * Returns the current number of syncache entries.  This number
2085 * will probably change before you get around to calling
2086 * syncache_pcblist.
2087 */
2088int
2089syncache_pcbcount(void)
2090{
2091	struct syncache_head *sch;
2092	int count, i;
2093
2094	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2095		/* No need to lock for a read. */
2096		sch = &V_tcp_syncache.hashbase[i];
2097		count += sch->sch_length;
2098	}
2099	return count;
2100}
2101
2102/*
2103 * Exports the syncache entries to userland so that netstat can display
2104 * them alongside the other sockets.  This function is intended to be
2105 * called only from tcp_pcblist.
2106 *
2107 * Due to concurrency on an active system, the number of pcbs exported
2108 * may have no relation to max_pcbs.  max_pcbs merely indicates the
2109 * amount of space the caller allocated for this function to use.
2110 */
2111int
2112syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2113{
2114	struct xtcpcb xt;
2115	struct syncache *sc;
2116	struct syncache_head *sch;
2117	int count, error, i;
2118
2119	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2120		sch = &V_tcp_syncache.hashbase[i];
2121		SCH_LOCK(sch);
2122		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2123			if (count >= max_pcbs) {
2124				SCH_UNLOCK(sch);
2125				goto exit;
2126			}
2127			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2128				continue;
2129			bzero(&xt, sizeof(xt));
2130			xt.xt_len = sizeof(xt);
2131			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2132				xt.xt_inp.inp_vflag = INP_IPV6;
2133			else
2134				xt.xt_inp.inp_vflag = INP_IPV4;
2135			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
2136			xt.xt_tp.t_inpcb = &xt.xt_inp;
2137			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
2138			xt.xt_socket.xso_protocol = IPPROTO_TCP;
2139			xt.xt_socket.xso_len = sizeof (struct xsocket);
2140			xt.xt_socket.so_type = SOCK_STREAM;
2141			xt.xt_socket.so_state = SS_ISCONNECTING;
2142			error = SYSCTL_OUT(req, &xt, sizeof xt);
2143			if (error) {
2144				SCH_UNLOCK(sch);
2145				goto exit;
2146			}
2147			count++;
2148		}
2149		SCH_UNLOCK(sch);
2150	}
2151exit:
2152	*pcbs_exported = count;
2153	return error;
2154}
2155