siftr.c revision 273847
1/*-
2 * Copyright (c) 2007-2009
3 * 	Swinburne University of Technology, Melbourne, Australia.
4 * Copyright (c) 2009-2010, The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * Portions of this software were developed at the Centre for Advanced
8 * Internet Architectures, Swinburne University of Technology, Melbourne,
9 * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/******************************************************
34 * Statistical Information For TCP Research (SIFTR)
35 *
36 * A FreeBSD kernel module that adds very basic intrumentation to the
37 * TCP stack, allowing internal stats to be recorded to a log file
38 * for experimental, debugging and performance analysis purposes.
39 *
40 * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
41 * working on the NewTCP research project at Swinburne University of
42 * Technology's Centre for Advanced Internet Architectures, Melbourne,
43 * Australia, which was made possible in part by a grant from the Cisco
44 * University Research Program Fund at Community Foundation Silicon Valley.
45 * More details are available at:
46 *   http://caia.swin.edu.au/urp/newtcp/
47 *
48 * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
49 * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
50 * More details are available at:
51 *   http://www.freebsdfoundation.org/
52 *   http://caia.swin.edu.au/freebsd/etcp09/
53 *
54 * Lawrence Stewart is the current maintainer, and all contact regarding
55 * SIFTR should be directed to him via email: lastewart@swin.edu.au
56 *
57 * Initial release date: June 2007
58 * Most recent update: September 2010
59 ******************************************************/
60
61#include <sys/cdefs.h>
62__FBSDID("$FreeBSD: stable/10/sys/netinet/siftr.c 273847 2014-10-30 08:04:48Z hselasky $");
63
64#include <sys/param.h>
65#include <sys/alq.h>
66#include <sys/errno.h>
67#include <sys/hash.h>
68#include <sys/kernel.h>
69#include <sys/kthread.h>
70#include <sys/lock.h>
71#include <sys/mbuf.h>
72#include <sys/module.h>
73#include <sys/mutex.h>
74#include <sys/pcpu.h>
75#include <sys/proc.h>
76#include <sys/sbuf.h>
77#include <sys/smp.h>
78#include <sys/socket.h>
79#include <sys/socketvar.h>
80#include <sys/sysctl.h>
81#include <sys/unistd.h>
82
83#include <net/if.h>
84#include <net/pfil.h>
85
86#include <netinet/in.h>
87#include <netinet/in_pcb.h>
88#include <netinet/in_systm.h>
89#include <netinet/in_var.h>
90#include <netinet/ip.h>
91#include <netinet/tcp_var.h>
92
93#ifdef SIFTR_IPV6
94#include <netinet/ip6.h>
95#include <netinet6/in6_pcb.h>
96#endif /* SIFTR_IPV6 */
97
98#include <machine/in_cksum.h>
99
100/*
101 * Three digit version number refers to X.Y.Z where:
102 * X is the major version number
103 * Y is bumped to mark backwards incompatible changes
104 * Z is bumped to mark backwards compatible changes
105 */
106#define V_MAJOR		1
107#define V_BACKBREAK	2
108#define V_BACKCOMPAT	4
109#define MODVERSION	__CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
110#define MODVERSION_STR	__XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
111    __XSTRING(V_BACKCOMPAT)
112
113#define HOOK 0
114#define UNHOOK 1
115#define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
116#define SYS_NAME "FreeBSD"
117#define PACKET_TAG_SIFTR 100
118#define PACKET_COOKIE_SIFTR 21749576
119#define SIFTR_LOG_FILE_MODE 0644
120#define SIFTR_DISABLE 0
121#define SIFTR_ENABLE 1
122
123/*
124 * Hard upper limit on the length of log messages. Bump this up if you add new
125 * data fields such that the line length could exceed the below value.
126 */
127#define MAX_LOG_MSG_LEN 200
128/* XXX: Make this a sysctl tunable. */
129#define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
130
131/*
132 * 1 byte for IP version
133 * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
134 * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
135 */
136#ifdef SIFTR_IPV6
137#define FLOW_KEY_LEN 37
138#else
139#define FLOW_KEY_LEN 13
140#endif
141
142#ifdef SIFTR_IPV6
143#define SIFTR_IPMODE 6
144#else
145#define SIFTR_IPMODE 4
146#endif
147
148/* useful macros */
149#define CAST_PTR_INT(X) (*((int*)(X)))
150
151#define UPPER_SHORT(X)	(((X) & 0xFFFF0000) >> 16)
152#define LOWER_SHORT(X)	((X) & 0x0000FFFF)
153
154#define FIRST_OCTET(X)	(((X) & 0xFF000000) >> 24)
155#define SECOND_OCTET(X)	(((X) & 0x00FF0000) >> 16)
156#define THIRD_OCTET(X)	(((X) & 0x0000FF00) >> 8)
157#define FOURTH_OCTET(X)	((X) & 0x000000FF)
158
159static MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
160static MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode",
161    "SIFTR pkt_node struct");
162static MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode",
163    "SIFTR flow_hash_node struct");
164
165/* Used as links in the pkt manager queue. */
166struct pkt_node {
167	/* Timestamp of pkt as noted in the pfil hook. */
168	struct timeval		tval;
169	/* Direction pkt is travelling; either PFIL_IN or PFIL_OUT. */
170	uint8_t			direction;
171	/* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
172	uint8_t			ipver;
173	/* Hash of the pkt which triggered the log message. */
174	uint32_t		hash;
175	/* Local/foreign IP address. */
176#ifdef SIFTR_IPV6
177	uint32_t		ip_laddr[4];
178	uint32_t		ip_faddr[4];
179#else
180	uint8_t			ip_laddr[4];
181	uint8_t			ip_faddr[4];
182#endif
183	/* Local TCP port. */
184	uint16_t		tcp_localport;
185	/* Foreign TCP port. */
186	uint16_t		tcp_foreignport;
187	/* Congestion Window (bytes). */
188	u_long			snd_cwnd;
189	/* Sending Window (bytes). */
190	u_long			snd_wnd;
191	/* Receive Window (bytes). */
192	u_long			rcv_wnd;
193	/* Unused (was: Bandwidth Controlled Window (bytes)). */
194	u_long			snd_bwnd;
195	/* Slow Start Threshold (bytes). */
196	u_long			snd_ssthresh;
197	/* Current state of the TCP FSM. */
198	int			conn_state;
199	/* Max Segment Size (bytes). */
200	u_int			max_seg_size;
201	/*
202	 * Smoothed RTT stored as found in the TCP control block
203	 * in units of (TCP_RTT_SCALE*hz).
204	 */
205	int			smoothed_rtt;
206	/* Is SACK enabled? */
207	u_char			sack_enabled;
208	/* Window scaling for snd window. */
209	u_char			snd_scale;
210	/* Window scaling for recv window. */
211	u_char			rcv_scale;
212	/* TCP control block flags. */
213	u_int			flags;
214	/* Retransmit timeout length. */
215	int			rxt_length;
216	/* Size of the TCP send buffer in bytes. */
217	u_int			snd_buf_hiwater;
218	/* Current num bytes in the send socket buffer. */
219	u_int			snd_buf_cc;
220	/* Size of the TCP receive buffer in bytes. */
221	u_int			rcv_buf_hiwater;
222	/* Current num bytes in the receive socket buffer. */
223	u_int			rcv_buf_cc;
224	/* Number of bytes inflight that we are waiting on ACKs for. */
225	u_int			sent_inflight_bytes;
226	/* Number of segments currently in the reassembly queue. */
227	int			t_segqlen;
228	/* Link to next pkt_node in the list. */
229	STAILQ_ENTRY(pkt_node)	nodes;
230};
231
232struct flow_hash_node
233{
234	uint16_t counter;
235	uint8_t key[FLOW_KEY_LEN];
236	LIST_ENTRY(flow_hash_node) nodes;
237};
238
239struct siftr_stats
240{
241	/* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
242	uint64_t n_in;
243	uint64_t n_out;
244	/* # pkts skipped due to failed malloc calls. */
245	uint32_t nskip_in_malloc;
246	uint32_t nskip_out_malloc;
247	/* # pkts skipped due to failed mtx acquisition. */
248	uint32_t nskip_in_mtx;
249	uint32_t nskip_out_mtx;
250	/* # pkts skipped due to failed inpcb lookups. */
251	uint32_t nskip_in_inpcb;
252	uint32_t nskip_out_inpcb;
253	/* # pkts skipped due to failed tcpcb lookups. */
254	uint32_t nskip_in_tcpcb;
255	uint32_t nskip_out_tcpcb;
256	/* # pkts skipped due to stack reinjection. */
257	uint32_t nskip_in_dejavu;
258	uint32_t nskip_out_dejavu;
259};
260
261static DPCPU_DEFINE(struct siftr_stats, ss);
262
263static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
264static unsigned int siftr_enabled = 0;
265static unsigned int siftr_pkts_per_log = 1;
266static unsigned int siftr_generate_hashes = 0;
267/* static unsigned int siftr_binary_log = 0; */
268static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
269static char siftr_logfile_shadow[PATH_MAX] = "/var/log/siftr.log";
270static u_long siftr_hashmask;
271STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
272LIST_HEAD(listhead, flow_hash_node) *counter_hash;
273static int wait_for_pkt;
274static struct alq *siftr_alq = NULL;
275static struct mtx siftr_pkt_queue_mtx;
276static struct mtx siftr_pkt_mgr_mtx;
277static struct thread *siftr_pkt_manager_thr = NULL;
278/*
279 * pfil.h defines PFIL_IN as 1 and PFIL_OUT as 2,
280 * which we use as an index into this array.
281 */
282static char direction[3] = {'\0', 'i','o'};
283
284/* Required function prototypes. */
285static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
286static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
287
288
289/* Declare the net.inet.siftr sysctl tree and populate it. */
290
291SYSCTL_DECL(_net_inet_siftr);
292
293SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW, NULL,
294    "siftr related settings");
295
296SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled, CTLTYPE_UINT|CTLFLAG_RW,
297    &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
298    "switch siftr module operations on/off");
299
300SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile, CTLTYPE_STRING|CTLFLAG_RW,
301    &siftr_logfile_shadow, sizeof(siftr_logfile_shadow), &siftr_sysctl_logfile_name_handler,
302    "A", "file to save siftr log messages to");
303
304SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
305    &siftr_pkts_per_log, 1,
306    "number of packets between generating a log message");
307
308SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
309    &siftr_generate_hashes, 0,
310    "enable packet hash generation");
311
312/* XXX: TODO
313SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
314    &siftr_binary_log, 0,
315    "write log files in binary instead of ascii");
316*/
317
318
319/* Begin functions. */
320
321static void
322siftr_process_pkt(struct pkt_node * pkt_node)
323{
324	struct flow_hash_node *hash_node;
325	struct listhead *counter_list;
326	struct siftr_stats *ss;
327	struct ale *log_buf;
328	uint8_t key[FLOW_KEY_LEN];
329	uint8_t found_match, key_offset;
330
331	hash_node = NULL;
332	ss = DPCPU_PTR(ss);
333	found_match = 0;
334	key_offset = 1;
335
336	/*
337	 * Create the key that will be used to create a hash index
338	 * into our hash table. Our key consists of:
339	 * ipversion, localip, localport, foreignip, foreignport
340	 */
341	key[0] = pkt_node->ipver;
342	memcpy(key + key_offset, &pkt_node->ip_laddr,
343	    sizeof(pkt_node->ip_laddr));
344	key_offset += sizeof(pkt_node->ip_laddr);
345	memcpy(key + key_offset, &pkt_node->tcp_localport,
346	    sizeof(pkt_node->tcp_localport));
347	key_offset += sizeof(pkt_node->tcp_localport);
348	memcpy(key + key_offset, &pkt_node->ip_faddr,
349	    sizeof(pkt_node->ip_faddr));
350	key_offset += sizeof(pkt_node->ip_faddr);
351	memcpy(key + key_offset, &pkt_node->tcp_foreignport,
352	    sizeof(pkt_node->tcp_foreignport));
353
354	counter_list = counter_hash +
355	    (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
356
357	/*
358	 * If the list is not empty i.e. the hash index has
359	 * been used by another flow previously.
360	 */
361	if (LIST_FIRST(counter_list) != NULL) {
362		/*
363		 * Loop through the hash nodes in the list.
364		 * There should normally only be 1 hash node in the list,
365		 * except if there have been collisions at the hash index
366		 * computed by hash32_buf().
367		 */
368		LIST_FOREACH(hash_node, counter_list, nodes) {
369			/*
370			 * Check if the key for the pkt we are currently
371			 * processing is the same as the key stored in the
372			 * hash node we are currently processing.
373			 * If they are the same, then we've found the
374			 * hash node that stores the counter for the flow
375			 * the pkt belongs to.
376			 */
377			if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
378				found_match = 1;
379				break;
380			}
381		}
382	}
383
384	/* If this flow hash hasn't been seen before or we have a collision. */
385	if (hash_node == NULL || !found_match) {
386		/* Create a new hash node to store the flow's counter. */
387		hash_node = malloc(sizeof(struct flow_hash_node),
388		    M_SIFTR_HASHNODE, M_WAITOK);
389
390		if (hash_node != NULL) {
391			/* Initialise our new hash node list entry. */
392			hash_node->counter = 0;
393			memcpy(hash_node->key, key, sizeof(key));
394			LIST_INSERT_HEAD(counter_list, hash_node, nodes);
395		} else {
396			/* Malloc failed. */
397			if (pkt_node->direction == PFIL_IN)
398				ss->nskip_in_malloc++;
399			else
400				ss->nskip_out_malloc++;
401
402			return;
403		}
404	} else if (siftr_pkts_per_log > 1) {
405		/*
406		 * Taking the remainder of the counter divided
407		 * by the current value of siftr_pkts_per_log
408		 * and storing that in counter provides a neat
409		 * way to modulate the frequency of log
410		 * messages being written to the log file.
411		 */
412		hash_node->counter = (hash_node->counter + 1) %
413		    siftr_pkts_per_log;
414
415		/*
416		 * If we have not seen enough packets since the last time
417		 * we wrote a log message for this connection, return.
418		 */
419		if (hash_node->counter > 0)
420			return;
421	}
422
423	log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
424
425	if (log_buf == NULL)
426		return; /* Should only happen if the ALQ is shutting down. */
427
428#ifdef SIFTR_IPV6
429	pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
430	pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
431
432	if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
433		pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
434		pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
435		pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
436		pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
437		pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
438		pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
439
440		/* Construct an IPv6 log message. */
441		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
442		    MAX_LOG_MSG_LEN,
443		    "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
444		    "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
445		    "%u,%d,%u,%u,%u,%u,%u,%u\n",
446		    direction[pkt_node->direction],
447		    pkt_node->hash,
448		    pkt_node->tval.tv_sec,
449		    pkt_node->tval.tv_usec,
450		    UPPER_SHORT(pkt_node->ip_laddr[0]),
451		    LOWER_SHORT(pkt_node->ip_laddr[0]),
452		    UPPER_SHORT(pkt_node->ip_laddr[1]),
453		    LOWER_SHORT(pkt_node->ip_laddr[1]),
454		    UPPER_SHORT(pkt_node->ip_laddr[2]),
455		    LOWER_SHORT(pkt_node->ip_laddr[2]),
456		    UPPER_SHORT(pkt_node->ip_laddr[3]),
457		    LOWER_SHORT(pkt_node->ip_laddr[3]),
458		    ntohs(pkt_node->tcp_localport),
459		    UPPER_SHORT(pkt_node->ip_faddr[0]),
460		    LOWER_SHORT(pkt_node->ip_faddr[0]),
461		    UPPER_SHORT(pkt_node->ip_faddr[1]),
462		    LOWER_SHORT(pkt_node->ip_faddr[1]),
463		    UPPER_SHORT(pkt_node->ip_faddr[2]),
464		    LOWER_SHORT(pkt_node->ip_faddr[2]),
465		    UPPER_SHORT(pkt_node->ip_faddr[3]),
466		    LOWER_SHORT(pkt_node->ip_faddr[3]),
467		    ntohs(pkt_node->tcp_foreignport),
468		    pkt_node->snd_ssthresh,
469		    pkt_node->snd_cwnd,
470		    pkt_node->snd_bwnd,
471		    pkt_node->snd_wnd,
472		    pkt_node->rcv_wnd,
473		    pkt_node->snd_scale,
474		    pkt_node->rcv_scale,
475		    pkt_node->conn_state,
476		    pkt_node->max_seg_size,
477		    pkt_node->smoothed_rtt,
478		    pkt_node->sack_enabled,
479		    pkt_node->flags,
480		    pkt_node->rxt_length,
481		    pkt_node->snd_buf_hiwater,
482		    pkt_node->snd_buf_cc,
483		    pkt_node->rcv_buf_hiwater,
484		    pkt_node->rcv_buf_cc,
485		    pkt_node->sent_inflight_bytes,
486		    pkt_node->t_segqlen);
487	} else { /* IPv4 packet */
488		pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
489		pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
490		pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
491		pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
492		pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
493		pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
494		pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
495		pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
496#endif /* SIFTR_IPV6 */
497
498		/* Construct an IPv4 log message. */
499		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
500		    MAX_LOG_MSG_LEN,
501		    "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
502		    "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u\n",
503		    direction[pkt_node->direction],
504		    pkt_node->hash,
505		    (intmax_t)pkt_node->tval.tv_sec,
506		    pkt_node->tval.tv_usec,
507		    pkt_node->ip_laddr[0],
508		    pkt_node->ip_laddr[1],
509		    pkt_node->ip_laddr[2],
510		    pkt_node->ip_laddr[3],
511		    ntohs(pkt_node->tcp_localport),
512		    pkt_node->ip_faddr[0],
513		    pkt_node->ip_faddr[1],
514		    pkt_node->ip_faddr[2],
515		    pkt_node->ip_faddr[3],
516		    ntohs(pkt_node->tcp_foreignport),
517		    pkt_node->snd_ssthresh,
518		    pkt_node->snd_cwnd,
519		    pkt_node->snd_bwnd,
520		    pkt_node->snd_wnd,
521		    pkt_node->rcv_wnd,
522		    pkt_node->snd_scale,
523		    pkt_node->rcv_scale,
524		    pkt_node->conn_state,
525		    pkt_node->max_seg_size,
526		    pkt_node->smoothed_rtt,
527		    pkt_node->sack_enabled,
528		    pkt_node->flags,
529		    pkt_node->rxt_length,
530		    pkt_node->snd_buf_hiwater,
531		    pkt_node->snd_buf_cc,
532		    pkt_node->rcv_buf_hiwater,
533		    pkt_node->rcv_buf_cc,
534		    pkt_node->sent_inflight_bytes,
535		    pkt_node->t_segqlen);
536#ifdef SIFTR_IPV6
537	}
538#endif
539
540	alq_post_flags(siftr_alq, log_buf, 0);
541}
542
543
544static void
545siftr_pkt_manager_thread(void *arg)
546{
547	STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
548	    STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
549	struct pkt_node *pkt_node, *pkt_node_temp;
550	uint8_t draining;
551
552	draining = 2;
553
554	mtx_lock(&siftr_pkt_mgr_mtx);
555
556	/* draining == 0 when queue has been flushed and it's safe to exit. */
557	while (draining) {
558		/*
559		 * Sleep until we are signalled to wake because thread has
560		 * been told to exit or until 1 tick has passed.
561		 */
562		mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
563		    1);
564
565		/* Gain exclusive access to the pkt_node queue. */
566		mtx_lock(&siftr_pkt_queue_mtx);
567
568		/*
569		 * Move pkt_queue to tmp_pkt_queue, which leaves
570		 * pkt_queue empty and ready to receive more pkt_nodes.
571		 */
572		STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
573
574		/*
575		 * We've finished making changes to the list. Unlock it
576		 * so the pfil hooks can continue queuing pkt_nodes.
577		 */
578		mtx_unlock(&siftr_pkt_queue_mtx);
579
580		/*
581		 * We can't hold a mutex whilst calling siftr_process_pkt
582		 * because ALQ might sleep waiting for buffer space.
583		 */
584		mtx_unlock(&siftr_pkt_mgr_mtx);
585
586		/* Flush all pkt_nodes to the log file. */
587		STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
588		    pkt_node_temp) {
589			siftr_process_pkt(pkt_node);
590			STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
591			free(pkt_node, M_SIFTR_PKTNODE);
592		}
593
594		KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
595		    ("SIFTR tmp_pkt_queue not empty after flush"));
596
597		mtx_lock(&siftr_pkt_mgr_mtx);
598
599		/*
600		 * If siftr_exit_pkt_manager_thread gets set during the window
601		 * where we are draining the tmp_pkt_queue above, there might
602		 * still be pkts in pkt_queue that need to be drained.
603		 * Allow one further iteration to occur after
604		 * siftr_exit_pkt_manager_thread has been set to ensure
605		 * pkt_queue is completely empty before we kill the thread.
606		 *
607		 * siftr_exit_pkt_manager_thread is set only after the pfil
608		 * hooks have been removed, so only 1 extra iteration
609		 * is needed to drain the queue.
610		 */
611		if (siftr_exit_pkt_manager_thread)
612			draining--;
613	}
614
615	mtx_unlock(&siftr_pkt_mgr_mtx);
616
617	/* Calls wakeup on this thread's struct thread ptr. */
618	kthread_exit();
619}
620
621
622static uint32_t
623hash_pkt(struct mbuf *m, uint32_t offset)
624{
625	uint32_t hash;
626
627	hash = 0;
628
629	while (m != NULL && offset > m->m_len) {
630		/*
631		 * The IP packet payload does not start in this mbuf, so
632		 * need to figure out which mbuf it starts in and what offset
633		 * into the mbuf's data region the payload starts at.
634		 */
635		offset -= m->m_len;
636		m = m->m_next;
637	}
638
639	while (m != NULL) {
640		/* Ensure there is data in the mbuf */
641		if ((m->m_len - offset) > 0)
642			hash = hash32_buf(m->m_data + offset,
643			    m->m_len - offset, hash);
644
645		m = m->m_next;
646		offset = 0;
647        }
648
649	return (hash);
650}
651
652
653/*
654 * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
655 * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
656 * Return value >0 means the caller should skip processing this mbuf.
657 */
658static inline int
659siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
660{
661	if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
662	    != NULL) {
663		if (dir == PFIL_IN)
664			ss->nskip_in_dejavu++;
665		else
666			ss->nskip_out_dejavu++;
667
668		return (1);
669	} else {
670		struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
671		    PACKET_TAG_SIFTR, 0, M_NOWAIT);
672		if (tag == NULL) {
673			if (dir == PFIL_IN)
674				ss->nskip_in_malloc++;
675			else
676				ss->nskip_out_malloc++;
677
678			return (1);
679		}
680
681		m_tag_prepend(m, tag);
682	}
683
684	return (0);
685}
686
687
688/*
689 * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
690 * otherwise.
691 */
692static inline struct inpcb *
693siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
694    uint16_t dport, int dir, struct siftr_stats *ss)
695{
696	struct inpcb *inp;
697
698	/* We need the tcbinfo lock. */
699	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
700
701	if (dir == PFIL_IN)
702		inp = (ipver == INP_IPV4 ?
703		    in_pcblookup(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
704		    dport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
705		    :
706#ifdef SIFTR_IPV6
707		    in6_pcblookup(&V_tcbinfo,
708		    &((struct ip6_hdr *)ip)->ip6_src, sport,
709		    &((struct ip6_hdr *)ip)->ip6_dst, dport, INPLOOKUP_RLOCKPCB,
710		    m->m_pkthdr.rcvif)
711#else
712		    NULL
713#endif
714		    );
715
716	else
717		inp = (ipver == INP_IPV4 ?
718		    in_pcblookup(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
719		    sport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
720		    :
721#ifdef SIFTR_IPV6
722		    in6_pcblookup(&V_tcbinfo,
723		    &((struct ip6_hdr *)ip)->ip6_dst, dport,
724		    &((struct ip6_hdr *)ip)->ip6_src, sport, INPLOOKUP_RLOCKPCB,
725		    m->m_pkthdr.rcvif)
726#else
727		    NULL
728#endif
729		    );
730
731	/* If we can't find the inpcb, bail. */
732	if (inp == NULL) {
733		if (dir == PFIL_IN)
734			ss->nskip_in_inpcb++;
735		else
736			ss->nskip_out_inpcb++;
737	}
738
739	return (inp);
740}
741
742
743static inline void
744siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
745    int ipver, int dir, int inp_locally_locked)
746{
747#ifdef SIFTR_IPV6
748	if (ipver == INP_IPV4) {
749		pn->ip_laddr[3] = inp->inp_laddr.s_addr;
750		pn->ip_faddr[3] = inp->inp_faddr.s_addr;
751#else
752		*((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
753		*((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
754#endif
755#ifdef SIFTR_IPV6
756	} else {
757		pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
758		pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
759		pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
760		pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
761		pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
762		pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
763		pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
764		pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
765	}
766#endif
767	pn->tcp_localport = inp->inp_lport;
768	pn->tcp_foreignport = inp->inp_fport;
769	pn->snd_cwnd = tp->snd_cwnd;
770	pn->snd_wnd = tp->snd_wnd;
771	pn->rcv_wnd = tp->rcv_wnd;
772	pn->snd_bwnd = 0;		/* Unused, kept for compat. */
773	pn->snd_ssthresh = tp->snd_ssthresh;
774	pn->snd_scale = tp->snd_scale;
775	pn->rcv_scale = tp->rcv_scale;
776	pn->conn_state = tp->t_state;
777	pn->max_seg_size = tp->t_maxseg;
778	pn->smoothed_rtt = tp->t_srtt;
779	pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
780	pn->flags = tp->t_flags;
781	pn->rxt_length = tp->t_rxtcur;
782	pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
783	pn->snd_buf_cc = inp->inp_socket->so_snd.sb_cc;
784	pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
785	pn->rcv_buf_cc = inp->inp_socket->so_rcv.sb_cc;
786	pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
787	pn->t_segqlen = tp->t_segqlen;
788
789	/* We've finished accessing the tcb so release the lock. */
790	if (inp_locally_locked)
791		INP_RUNLOCK(inp);
792
793	pn->ipver = ipver;
794	pn->direction = dir;
795
796	/*
797	 * Significantly more accurate than using getmicrotime(), but slower!
798	 * Gives true microsecond resolution at the expense of a hit to
799	 * maximum pps throughput processing when SIFTR is loaded and enabled.
800	 */
801	microtime(&pn->tval);
802}
803
804
805/*
806 * pfil hook that is called for each IPv4 packet making its way through the
807 * stack in either direction.
808 * The pfil subsystem holds a non-sleepable mutex somewhere when
809 * calling our hook function, so we can't sleep at all.
810 * It's very important to use the M_NOWAIT flag with all function calls
811 * that support it so that they won't sleep, otherwise you get a panic.
812 */
813static int
814siftr_chkpkt(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
815    struct inpcb *inp)
816{
817	struct pkt_node *pn;
818	struct ip *ip;
819	struct tcphdr *th;
820	struct tcpcb *tp;
821	struct siftr_stats *ss;
822	unsigned int ip_hl;
823	int inp_locally_locked;
824
825	inp_locally_locked = 0;
826	ss = DPCPU_PTR(ss);
827
828	/*
829	 * m_pullup is not required here because ip_{input|output}
830	 * already do the heavy lifting for us.
831	 */
832
833	ip = mtod(*m, struct ip *);
834
835	/* Only continue processing if the packet is TCP. */
836	if (ip->ip_p != IPPROTO_TCP)
837		goto ret;
838
839	/*
840	 * If a kernel subsystem reinjects packets into the stack, our pfil
841	 * hook will be called multiple times for the same packet.
842	 * Make sure we only process unique packets.
843	 */
844	if (siftr_chkreinject(*m, dir, ss))
845		goto ret;
846
847	if (dir == PFIL_IN)
848		ss->n_in++;
849	else
850		ss->n_out++;
851
852	/*
853	 * Create a tcphdr struct starting at the correct offset
854	 * in the IP packet. ip->ip_hl gives the ip header length
855	 * in 4-byte words, so multiply it to get the size in bytes.
856	 */
857	ip_hl = (ip->ip_hl << 2);
858	th = (struct tcphdr *)((caddr_t)ip + ip_hl);
859
860	/*
861	 * If the pfil hooks don't provide a pointer to the
862	 * inpcb, we need to find it ourselves and lock it.
863	 */
864	if (!inp) {
865		/* Find the corresponding inpcb for this pkt. */
866		inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
867		    th->th_dport, dir, ss);
868
869		if (inp == NULL)
870			goto ret;
871		else
872			inp_locally_locked = 1;
873	}
874
875	INP_LOCK_ASSERT(inp);
876
877	/* Find the TCP control block that corresponds with this packet */
878	tp = intotcpcb(inp);
879
880	/*
881	 * If we can't find the TCP control block (happens occasionaly for a
882	 * packet sent during the shutdown phase of a TCP connection),
883	 * or we're in the timewait state, bail
884	 */
885	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
886		if (dir == PFIL_IN)
887			ss->nskip_in_tcpcb++;
888		else
889			ss->nskip_out_tcpcb++;
890
891		goto inp_unlock;
892	}
893
894	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
895
896	if (pn == NULL) {
897		if (dir == PFIL_IN)
898			ss->nskip_in_malloc++;
899		else
900			ss->nskip_out_malloc++;
901
902		goto inp_unlock;
903	}
904
905	siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
906
907	if (siftr_generate_hashes) {
908		if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
909			/*
910			 * For outbound packets, the TCP checksum isn't
911			 * calculated yet. This is a problem for our packet
912			 * hashing as the receiver will calc a different hash
913			 * to ours if we don't include the correct TCP checksum
914			 * in the bytes being hashed. To work around this
915			 * problem, we manually calc the TCP checksum here in
916			 * software. We unset the CSUM_TCP flag so the lower
917			 * layers don't recalc it.
918			 */
919			(*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
920
921			/*
922			 * Calculate the TCP checksum in software and assign
923			 * to correct TCP header field, which will follow the
924			 * packet mbuf down the stack. The trick here is that
925			 * tcp_output() sets th->th_sum to the checksum of the
926			 * pseudo header for us already. Because of the nature
927			 * of the checksumming algorithm, we can sum over the
928			 * entire IP payload (i.e. TCP header and data), which
929			 * will include the already calculated pseduo header
930			 * checksum, thus giving us the complete TCP checksum.
931			 *
932			 * To put it in simple terms, if checksum(1,2,3,4)=10,
933			 * then checksum(1,2,3,4,5) == checksum(10,5).
934			 * This property is what allows us to "cheat" and
935			 * checksum only the IP payload which has the TCP
936			 * th_sum field populated with the pseudo header's
937			 * checksum, and not need to futz around checksumming
938			 * pseudo header bytes and TCP header/data in one hit.
939			 * Refer to RFC 1071 for more info.
940			 *
941			 * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
942			 * in_cksum_skip 2nd argument is NOT the number of
943			 * bytes to read from the mbuf at "skip" bytes offset
944			 * from the start of the mbuf (very counter intuitive!).
945			 * The number of bytes to read is calculated internally
946			 * by the function as len-skip i.e. to sum over the IP
947			 * payload (TCP header + data) bytes, it is INCORRECT
948			 * to call the function like this:
949			 * in_cksum_skip(at, ip->ip_len - offset, offset)
950			 * Rather, it should be called like this:
951			 * in_cksum_skip(at, ip->ip_len, offset)
952			 * which means read "ip->ip_len - offset" bytes from
953			 * the mbuf cluster "at" at offset "offset" bytes from
954			 * the beginning of the "at" mbuf's data pointer.
955			 */
956			th->th_sum = in_cksum_skip(*m, ntohs(ip->ip_len),
957			    ip_hl);
958		}
959
960		/*
961		 * XXX: Having to calculate the checksum in software and then
962		 * hash over all bytes is really inefficient. Would be nice to
963		 * find a way to create the hash and checksum in the same pass
964		 * over the bytes.
965		 */
966		pn->hash = hash_pkt(*m, ip_hl);
967	}
968
969	mtx_lock(&siftr_pkt_queue_mtx);
970	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
971	mtx_unlock(&siftr_pkt_queue_mtx);
972	goto ret;
973
974inp_unlock:
975	if (inp_locally_locked)
976		INP_RUNLOCK(inp);
977
978ret:
979	/* Returning 0 ensures pfil will not discard the pkt */
980	return (0);
981}
982
983
984#ifdef SIFTR_IPV6
985static int
986siftr_chkpkt6(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
987    struct inpcb *inp)
988{
989	struct pkt_node *pn;
990	struct ip6_hdr *ip6;
991	struct tcphdr *th;
992	struct tcpcb *tp;
993	struct siftr_stats *ss;
994	unsigned int ip6_hl;
995	int inp_locally_locked;
996
997	inp_locally_locked = 0;
998	ss = DPCPU_PTR(ss);
999
1000	/*
1001	 * m_pullup is not required here because ip6_{input|output}
1002	 * already do the heavy lifting for us.
1003	 */
1004
1005	ip6 = mtod(*m, struct ip6_hdr *);
1006
1007	/*
1008	 * Only continue processing if the packet is TCP
1009	 * XXX: We should follow the next header fields
1010	 * as shown on Pg 6 RFC 2460, but right now we'll
1011	 * only check pkts that have no extension headers.
1012	 */
1013	if (ip6->ip6_nxt != IPPROTO_TCP)
1014		goto ret6;
1015
1016	/*
1017	 * If a kernel subsystem reinjects packets into the stack, our pfil
1018	 * hook will be called multiple times for the same packet.
1019	 * Make sure we only process unique packets.
1020	 */
1021	if (siftr_chkreinject(*m, dir, ss))
1022		goto ret6;
1023
1024	if (dir == PFIL_IN)
1025		ss->n_in++;
1026	else
1027		ss->n_out++;
1028
1029	ip6_hl = sizeof(struct ip6_hdr);
1030
1031	/*
1032	 * Create a tcphdr struct starting at the correct offset
1033	 * in the ipv6 packet. ip->ip_hl gives the ip header length
1034	 * in 4-byte words, so multiply it to get the size in bytes.
1035	 */
1036	th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
1037
1038	/*
1039	 * For inbound packets, the pfil hooks don't provide a pointer to the
1040	 * inpcb, so we need to find it ourselves and lock it.
1041	 */
1042	if (!inp) {
1043		/* Find the corresponding inpcb for this pkt. */
1044		inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
1045		    th->th_sport, th->th_dport, dir, ss);
1046
1047		if (inp == NULL)
1048			goto ret6;
1049		else
1050			inp_locally_locked = 1;
1051	}
1052
1053	/* Find the TCP control block that corresponds with this packet. */
1054	tp = intotcpcb(inp);
1055
1056	/*
1057	 * If we can't find the TCP control block (happens occasionaly for a
1058	 * packet sent during the shutdown phase of a TCP connection),
1059	 * or we're in the timewait state, bail.
1060	 */
1061	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
1062		if (dir == PFIL_IN)
1063			ss->nskip_in_tcpcb++;
1064		else
1065			ss->nskip_out_tcpcb++;
1066
1067		goto inp_unlock6;
1068	}
1069
1070	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
1071
1072	if (pn == NULL) {
1073		if (dir == PFIL_IN)
1074			ss->nskip_in_malloc++;
1075		else
1076			ss->nskip_out_malloc++;
1077
1078		goto inp_unlock6;
1079	}
1080
1081	siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
1082
1083	/* XXX: Figure out how to generate hashes for IPv6 packets. */
1084
1085	mtx_lock(&siftr_pkt_queue_mtx);
1086	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
1087	mtx_unlock(&siftr_pkt_queue_mtx);
1088	goto ret6;
1089
1090inp_unlock6:
1091	if (inp_locally_locked)
1092		INP_RUNLOCK(inp);
1093
1094ret6:
1095	/* Returning 0 ensures pfil will not discard the pkt. */
1096	return (0);
1097}
1098#endif /* #ifdef SIFTR_IPV6 */
1099
1100
1101static int
1102siftr_pfil(int action)
1103{
1104	struct pfil_head *pfh_inet;
1105#ifdef SIFTR_IPV6
1106	struct pfil_head *pfh_inet6;
1107#endif
1108	VNET_ITERATOR_DECL(vnet_iter);
1109
1110	VNET_LIST_RLOCK();
1111	VNET_FOREACH(vnet_iter) {
1112		CURVNET_SET(vnet_iter);
1113		pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
1114#ifdef SIFTR_IPV6
1115		pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6);
1116#endif
1117
1118		if (action == HOOK) {
1119			pfil_add_hook(siftr_chkpkt, NULL,
1120			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1121#ifdef SIFTR_IPV6
1122			pfil_add_hook(siftr_chkpkt6, NULL,
1123			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1124#endif
1125		} else if (action == UNHOOK) {
1126			pfil_remove_hook(siftr_chkpkt, NULL,
1127			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1128#ifdef SIFTR_IPV6
1129			pfil_remove_hook(siftr_chkpkt6, NULL,
1130			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1131#endif
1132		}
1133		CURVNET_RESTORE();
1134	}
1135	VNET_LIST_RUNLOCK();
1136
1137	return (0);
1138}
1139
1140
1141static int
1142siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
1143{
1144	struct alq *new_alq;
1145	int error;
1146
1147	error = sysctl_handle_string(oidp, arg1, arg2, req);
1148
1149	/* Check for error or same filename */
1150	if (error != 0 || req->newptr == NULL ||
1151	    strncmp(siftr_logfile, arg1, arg2) == 0)
1152		goto done;
1153
1154	/* Filname changed */
1155	error = alq_open(&new_alq, arg1, curthread->td_ucred,
1156	    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1157	if (error != 0)
1158		goto done;
1159
1160	/*
1161	 * If disabled, siftr_alq == NULL so we simply close
1162	 * the alq as we've proved it can be opened.
1163	 * If enabled, close the existing alq and switch the old
1164	 * for the new.
1165	 */
1166	if (siftr_alq == NULL) {
1167		alq_close(new_alq);
1168	} else {
1169		alq_close(siftr_alq);
1170		siftr_alq = new_alq;
1171	}
1172
1173	/* Update filename upon success */
1174	strlcpy(siftr_logfile, arg1, arg2);
1175done:
1176	return (error);
1177}
1178
1179static int
1180siftr_manage_ops(uint8_t action)
1181{
1182	struct siftr_stats totalss;
1183	struct timeval tval;
1184	struct flow_hash_node *counter, *tmp_counter;
1185	struct sbuf *s;
1186	int i, key_index, ret, error;
1187	uint32_t bytes_to_write, total_skipped_pkts;
1188	uint16_t lport, fport;
1189	uint8_t *key, ipver;
1190
1191#ifdef SIFTR_IPV6
1192	uint32_t laddr[4];
1193	uint32_t faddr[4];
1194#else
1195	uint8_t laddr[4];
1196	uint8_t faddr[4];
1197#endif
1198
1199	error = 0;
1200	total_skipped_pkts = 0;
1201
1202	/* Init an autosizing sbuf that initially holds 200 chars. */
1203	if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
1204		return (-1);
1205
1206	if (action == SIFTR_ENABLE) {
1207		/*
1208		 * Create our alq
1209		 * XXX: We should abort if alq_open fails!
1210		 */
1211		alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
1212		    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1213
1214		STAILQ_INIT(&pkt_queue);
1215
1216		DPCPU_ZERO(ss);
1217
1218		siftr_exit_pkt_manager_thread = 0;
1219
1220		ret = kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
1221		    &siftr_pkt_manager_thr, RFNOWAIT, 0,
1222		    "siftr_pkt_manager_thr");
1223
1224		siftr_pfil(HOOK);
1225
1226		microtime(&tval);
1227
1228		sbuf_printf(s,
1229		    "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
1230		    "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
1231		    "sysver=%u\tipmode=%u\n",
1232		    (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
1233		    TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
1234
1235		sbuf_finish(s);
1236		alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
1237
1238	} else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
1239		/*
1240		 * Remove the pfil hook functions. All threads currently in
1241		 * the hook functions are allowed to exit before siftr_pfil()
1242		 * returns.
1243		 */
1244		siftr_pfil(UNHOOK);
1245
1246		/* This will block until the pkt manager thread unlocks it. */
1247		mtx_lock(&siftr_pkt_mgr_mtx);
1248
1249		/* Tell the pkt manager thread that it should exit now. */
1250		siftr_exit_pkt_manager_thread = 1;
1251
1252		/*
1253		 * Wake the pkt_manager thread so it realises that
1254		 * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
1255		 * The wakeup won't be delivered until we unlock
1256		 * siftr_pkt_mgr_mtx so this isn't racy.
1257		 */
1258		wakeup(&wait_for_pkt);
1259
1260		/* Wait for the pkt_manager thread to exit. */
1261		mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
1262		    "thrwait", 0);
1263
1264		siftr_pkt_manager_thr = NULL;
1265		mtx_unlock(&siftr_pkt_mgr_mtx);
1266
1267		totalss.n_in = DPCPU_VARSUM(ss, n_in);
1268		totalss.n_out = DPCPU_VARSUM(ss, n_out);
1269		totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
1270		totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
1271		totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
1272		totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
1273		totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
1274		totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
1275		totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
1276		totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
1277
1278		total_skipped_pkts = totalss.nskip_in_malloc +
1279		    totalss.nskip_out_malloc + totalss.nskip_in_mtx +
1280		    totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
1281		    totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
1282		    totalss.nskip_out_inpcb;
1283
1284		microtime(&tval);
1285
1286		sbuf_printf(s,
1287		    "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
1288		    "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
1289		    "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
1290		    "num_outbound_skipped_pkts_malloc=%u\t"
1291		    "num_inbound_skipped_pkts_mtx=%u\t"
1292		    "num_outbound_skipped_pkts_mtx=%u\t"
1293		    "num_inbound_skipped_pkts_tcpcb=%u\t"
1294		    "num_outbound_skipped_pkts_tcpcb=%u\t"
1295		    "num_inbound_skipped_pkts_inpcb=%u\t"
1296		    "num_outbound_skipped_pkts_inpcb=%u\t"
1297		    "total_skipped_tcp_pkts=%u\tflow_list=",
1298		    (intmax_t)tval.tv_sec,
1299		    tval.tv_usec,
1300		    (uintmax_t)totalss.n_in,
1301		    (uintmax_t)totalss.n_out,
1302		    (uintmax_t)(totalss.n_in + totalss.n_out),
1303		    totalss.nskip_in_malloc,
1304		    totalss.nskip_out_malloc,
1305		    totalss.nskip_in_mtx,
1306		    totalss.nskip_out_mtx,
1307		    totalss.nskip_in_tcpcb,
1308		    totalss.nskip_out_tcpcb,
1309		    totalss.nskip_in_inpcb,
1310		    totalss.nskip_out_inpcb,
1311		    total_skipped_pkts);
1312
1313		/*
1314		 * Iterate over the flow hash, printing a summary of each
1315		 * flow seen and freeing any malloc'd memory.
1316		 * The hash consists of an array of LISTs (man 3 queue).
1317		 */
1318		for (i = 0; i <= siftr_hashmask; i++) {
1319			LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
1320			    tmp_counter) {
1321				key = counter->key;
1322				key_index = 1;
1323
1324				ipver = key[0];
1325
1326				memcpy(laddr, key + key_index, sizeof(laddr));
1327				key_index += sizeof(laddr);
1328				memcpy(&lport, key + key_index, sizeof(lport));
1329				key_index += sizeof(lport);
1330				memcpy(faddr, key + key_index, sizeof(faddr));
1331				key_index += sizeof(faddr);
1332				memcpy(&fport, key + key_index, sizeof(fport));
1333
1334#ifdef SIFTR_IPV6
1335				laddr[3] = ntohl(laddr[3]);
1336				faddr[3] = ntohl(faddr[3]);
1337
1338				if (ipver == INP_IPV6) {
1339					laddr[0] = ntohl(laddr[0]);
1340					laddr[1] = ntohl(laddr[1]);
1341					laddr[2] = ntohl(laddr[2]);
1342					faddr[0] = ntohl(faddr[0]);
1343					faddr[1] = ntohl(faddr[1]);
1344					faddr[2] = ntohl(faddr[2]);
1345
1346					sbuf_printf(s,
1347					    "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
1348					    "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
1349					    UPPER_SHORT(laddr[0]),
1350					    LOWER_SHORT(laddr[0]),
1351					    UPPER_SHORT(laddr[1]),
1352					    LOWER_SHORT(laddr[1]),
1353					    UPPER_SHORT(laddr[2]),
1354					    LOWER_SHORT(laddr[2]),
1355					    UPPER_SHORT(laddr[3]),
1356					    LOWER_SHORT(laddr[3]),
1357					    ntohs(lport),
1358					    UPPER_SHORT(faddr[0]),
1359					    LOWER_SHORT(faddr[0]),
1360					    UPPER_SHORT(faddr[1]),
1361					    LOWER_SHORT(faddr[1]),
1362					    UPPER_SHORT(faddr[2]),
1363					    LOWER_SHORT(faddr[2]),
1364					    UPPER_SHORT(faddr[3]),
1365					    LOWER_SHORT(faddr[3]),
1366					    ntohs(fport));
1367				} else {
1368					laddr[0] = FIRST_OCTET(laddr[3]);
1369					laddr[1] = SECOND_OCTET(laddr[3]);
1370					laddr[2] = THIRD_OCTET(laddr[3]);
1371					laddr[3] = FOURTH_OCTET(laddr[3]);
1372					faddr[0] = FIRST_OCTET(faddr[3]);
1373					faddr[1] = SECOND_OCTET(faddr[3]);
1374					faddr[2] = THIRD_OCTET(faddr[3]);
1375					faddr[3] = FOURTH_OCTET(faddr[3]);
1376#endif
1377					sbuf_printf(s,
1378					    "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
1379					    laddr[0],
1380					    laddr[1],
1381					    laddr[2],
1382					    laddr[3],
1383					    ntohs(lport),
1384					    faddr[0],
1385					    faddr[1],
1386					    faddr[2],
1387					    faddr[3],
1388					    ntohs(fport));
1389#ifdef SIFTR_IPV6
1390				}
1391#endif
1392
1393				free(counter, M_SIFTR_HASHNODE);
1394			}
1395
1396			LIST_INIT(counter_hash + i);
1397		}
1398
1399		sbuf_printf(s, "\n");
1400		sbuf_finish(s);
1401
1402		i = 0;
1403		do {
1404			bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
1405			alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
1406			i += bytes_to_write;
1407		} while (i < sbuf_len(s));
1408
1409		alq_close(siftr_alq);
1410		siftr_alq = NULL;
1411	}
1412
1413	sbuf_delete(s);
1414
1415	/*
1416	 * XXX: Should be using ret to check if any functions fail
1417	 * and set error appropriately
1418	 */
1419
1420	return (error);
1421}
1422
1423
1424static int
1425siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
1426{
1427	if (req->newptr == NULL)
1428		goto skip;
1429
1430	/* If the value passed in isn't 0 or 1, return an error. */
1431	if (CAST_PTR_INT(req->newptr) != 0 && CAST_PTR_INT(req->newptr) != 1)
1432		return (1);
1433
1434	/* If we are changing state (0 to 1 or 1 to 0). */
1435	if (CAST_PTR_INT(req->newptr) != siftr_enabled )
1436		if (siftr_manage_ops(CAST_PTR_INT(req->newptr))) {
1437			siftr_manage_ops(SIFTR_DISABLE);
1438			return (1);
1439		}
1440
1441skip:
1442	return (sysctl_handle_int(oidp, arg1, arg2, req));
1443}
1444
1445
1446static void
1447siftr_shutdown_handler(void *arg)
1448{
1449	siftr_manage_ops(SIFTR_DISABLE);
1450}
1451
1452
1453/*
1454 * Module is being unloaded or machine is shutting down. Take care of cleanup.
1455 */
1456static int
1457deinit_siftr(void)
1458{
1459	/* Cleanup. */
1460	siftr_manage_ops(SIFTR_DISABLE);
1461	hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
1462	mtx_destroy(&siftr_pkt_queue_mtx);
1463	mtx_destroy(&siftr_pkt_mgr_mtx);
1464
1465	return (0);
1466}
1467
1468
1469/*
1470 * Module has just been loaded into the kernel.
1471 */
1472static int
1473init_siftr(void)
1474{
1475	EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
1476	    SHUTDOWN_PRI_FIRST);
1477
1478	/* Initialise our flow counter hash table. */
1479	counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
1480	    &siftr_hashmask);
1481
1482	mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
1483	mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
1484
1485	/* Print message to the user's current terminal. */
1486	uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
1487	    "          http://caia.swin.edu.au/urp/newtcp\n\n",
1488	    MODVERSION_STR);
1489
1490	return (0);
1491}
1492
1493
1494/*
1495 * This is the function that is called to load and unload the module.
1496 * When the module is loaded, this function is called once with
1497 * "what" == MOD_LOAD
1498 * When the module is unloaded, this function is called twice with
1499 * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
1500 * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
1501 * this function is called once with "what" = MOD_SHUTDOWN
1502 * When the system is shut down, the handler isn't called until the very end
1503 * of the shutdown sequence i.e. after the disks have been synced.
1504 */
1505static int
1506siftr_load_handler(module_t mod, int what, void *arg)
1507{
1508	int ret;
1509
1510	switch (what) {
1511	case MOD_LOAD:
1512		ret = init_siftr();
1513		break;
1514
1515	case MOD_QUIESCE:
1516	case MOD_SHUTDOWN:
1517		ret = deinit_siftr();
1518		break;
1519
1520	case MOD_UNLOAD:
1521		ret = 0;
1522		break;
1523
1524	default:
1525		ret = EINVAL;
1526		break;
1527	}
1528
1529	return (ret);
1530}
1531
1532
1533static moduledata_t siftr_mod = {
1534	.name = "siftr",
1535	.evhand = siftr_load_handler,
1536};
1537
1538/*
1539 * Param 1: name of the kernel module
1540 * Param 2: moduledata_t struct containing info about the kernel module
1541 *          and the execution entry point for the module
1542 * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
1543 *          Defines the module initialisation order
1544 * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
1545 *          Defines the initialisation order of this kld relative to others
1546 *          within the same subsystem as defined by param 3
1547 */
1548DECLARE_MODULE(siftr, siftr_mod, SI_SUB_SMP, SI_ORDER_ANY);
1549MODULE_DEPEND(siftr, alq, 1, 1, 1);
1550MODULE_VERSION(siftr, MODVERSION);
1551