sctp_auth.c revision 258454
1/*-
2 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
3 * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
4 * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are met:
8 *
9 * a) Redistributions of source code must retain the above copyright notice,
10 *    this list of conditions and the following disclaimer.
11 *
12 * b) Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in
14 *    the documentation and/or other materials provided with the distribution.
15 *
16 * c) Neither the name of Cisco Systems, Inc. nor the names of its
17 *    contributors may be used to endorse or promote products derived
18 *    from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/10/sys/netinet/sctp_auth.c 258454 2013-11-21 23:00:09Z tuexen $");
35
36#include <netinet/sctp_os.h>
37#include <netinet/sctp.h>
38#include <netinet/sctp_header.h>
39#include <netinet/sctp_pcb.h>
40#include <netinet/sctp_var.h>
41#include <netinet/sctp_sysctl.h>
42#include <netinet/sctputil.h>
43#include <netinet/sctp_indata.h>
44#include <netinet/sctp_output.h>
45#include <netinet/sctp_auth.h>
46
47#ifdef SCTP_DEBUG
48#define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
49#define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
50#endif				/* SCTP_DEBUG */
51
52
53void
54sctp_clear_chunklist(sctp_auth_chklist_t * chklist)
55{
56	bzero(chklist, sizeof(*chklist));
57	/* chklist->num_chunks = 0; */
58}
59
60sctp_auth_chklist_t *
61sctp_alloc_chunklist(void)
62{
63	sctp_auth_chklist_t *chklist;
64
65	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
66	    SCTP_M_AUTH_CL);
67	if (chklist == NULL) {
68		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
69	} else {
70		sctp_clear_chunklist(chklist);
71	}
72	return (chklist);
73}
74
75void
76sctp_free_chunklist(sctp_auth_chklist_t * list)
77{
78	if (list != NULL)
79		SCTP_FREE(list, SCTP_M_AUTH_CL);
80}
81
82sctp_auth_chklist_t *
83sctp_copy_chunklist(sctp_auth_chklist_t * list)
84{
85	sctp_auth_chklist_t *new_list;
86
87	if (list == NULL)
88		return (NULL);
89
90	/* get a new list */
91	new_list = sctp_alloc_chunklist();
92	if (new_list == NULL)
93		return (NULL);
94	/* copy it */
95	bcopy(list, new_list, sizeof(*new_list));
96
97	return (new_list);
98}
99
100
101/*
102 * add a chunk to the required chunks list
103 */
104int
105sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
106{
107	if (list == NULL)
108		return (-1);
109
110	/* is chunk restricted? */
111	if ((chunk == SCTP_INITIATION) ||
112	    (chunk == SCTP_INITIATION_ACK) ||
113	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
114	    (chunk == SCTP_AUTHENTICATION)) {
115		return (-1);
116	}
117	if (list->chunks[chunk] == 0) {
118		list->chunks[chunk] = 1;
119		list->num_chunks++;
120		SCTPDBG(SCTP_DEBUG_AUTH1,
121		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
122		    chunk, chunk);
123	}
124	return (0);
125}
126
127/*
128 * delete a chunk from the required chunks list
129 */
130int
131sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t * list)
132{
133	if (list == NULL)
134		return (-1);
135
136	/* is chunk restricted? */
137	if ((chunk == SCTP_ASCONF) ||
138	    (chunk == SCTP_ASCONF_ACK)) {
139		return (-1);
140	}
141	if (list->chunks[chunk] == 1) {
142		list->chunks[chunk] = 0;
143		list->num_chunks--;
144		SCTPDBG(SCTP_DEBUG_AUTH1,
145		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
146		    chunk, chunk);
147	}
148	return (0);
149}
150
151size_t
152sctp_auth_get_chklist_size(const sctp_auth_chklist_t * list)
153{
154	if (list == NULL)
155		return (0);
156	else
157		return (list->num_chunks);
158}
159
160/*
161 * set the default list of chunks requiring AUTH
162 */
163void
164sctp_auth_set_default_chunks(sctp_auth_chklist_t * list)
165{
166	(void)sctp_auth_add_chunk(SCTP_ASCONF, list);
167	(void)sctp_auth_add_chunk(SCTP_ASCONF_ACK, list);
168}
169
170/*
171 * return the current number and list of required chunks caller must
172 * guarantee ptr has space for up to 256 bytes
173 */
174int
175sctp_serialize_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
176{
177	int i, count = 0;
178
179	if (list == NULL)
180		return (0);
181
182	for (i = 0; i < 256; i++) {
183		if (list->chunks[i] != 0) {
184			*ptr++ = i;
185			count++;
186		}
187	}
188	return (count);
189}
190
191int
192sctp_pack_auth_chunks(const sctp_auth_chklist_t * list, uint8_t * ptr)
193{
194	int i, size = 0;
195
196	if (list == NULL)
197		return (0);
198
199	if (list->num_chunks <= 32) {
200		/* just list them, one byte each */
201		for (i = 0; i < 256; i++) {
202			if (list->chunks[i] != 0) {
203				*ptr++ = i;
204				size++;
205			}
206		}
207	} else {
208		int index, offset;
209
210		/* pack into a 32 byte bitfield */
211		for (i = 0; i < 256; i++) {
212			if (list->chunks[i] != 0) {
213				index = i / 8;
214				offset = i % 8;
215				ptr[index] |= (1 << offset);
216			}
217		}
218		size = 32;
219	}
220	return (size);
221}
222
223int
224sctp_unpack_auth_chunks(const uint8_t * ptr, uint8_t num_chunks,
225    sctp_auth_chklist_t * list)
226{
227	int i;
228	int size;
229
230	if (list == NULL)
231		return (0);
232
233	if (num_chunks <= 32) {
234		/* just pull them, one byte each */
235		for (i = 0; i < num_chunks; i++) {
236			(void)sctp_auth_add_chunk(*ptr++, list);
237		}
238		size = num_chunks;
239	} else {
240		int index, offset;
241
242		/* unpack from a 32 byte bitfield */
243		for (index = 0; index < 32; index++) {
244			for (offset = 0; offset < 8; offset++) {
245				if (ptr[index] & (1 << offset)) {
246					(void)sctp_auth_add_chunk((index * 8) + offset, list);
247				}
248			}
249		}
250		size = 32;
251	}
252	return (size);
253}
254
255
256/*
257 * allocate structure space for a key of length keylen
258 */
259sctp_key_t *
260sctp_alloc_key(uint32_t keylen)
261{
262	sctp_key_t *new_key;
263
264	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
265	    SCTP_M_AUTH_KY);
266	if (new_key == NULL) {
267		/* out of memory */
268		return (NULL);
269	}
270	new_key->keylen = keylen;
271	return (new_key);
272}
273
274void
275sctp_free_key(sctp_key_t * key)
276{
277	if (key != NULL)
278		SCTP_FREE(key, SCTP_M_AUTH_KY);
279}
280
281void
282sctp_print_key(sctp_key_t * key, const char *str)
283{
284	uint32_t i;
285
286	if (key == NULL) {
287		SCTP_PRINTF("%s: [Null key]\n", str);
288		return;
289	}
290	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
291	if (key->keylen) {
292		for (i = 0; i < key->keylen; i++)
293			SCTP_PRINTF("%02x", key->key[i]);
294		SCTP_PRINTF("\n");
295	} else {
296		SCTP_PRINTF("[Null key]\n");
297	}
298}
299
300void
301sctp_show_key(sctp_key_t * key, const char *str)
302{
303	uint32_t i;
304
305	if (key == NULL) {
306		SCTP_PRINTF("%s: [Null key]\n", str);
307		return;
308	}
309	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
310	if (key->keylen) {
311		for (i = 0; i < key->keylen; i++)
312			SCTP_PRINTF("%02x", key->key[i]);
313		SCTP_PRINTF("\n");
314	} else {
315		SCTP_PRINTF("[Null key]\n");
316	}
317}
318
319static uint32_t
320sctp_get_keylen(sctp_key_t * key)
321{
322	if (key != NULL)
323		return (key->keylen);
324	else
325		return (0);
326}
327
328/*
329 * generate a new random key of length 'keylen'
330 */
331sctp_key_t *
332sctp_generate_random_key(uint32_t keylen)
333{
334	sctp_key_t *new_key;
335
336	new_key = sctp_alloc_key(keylen);
337	if (new_key == NULL) {
338		/* out of memory */
339		return (NULL);
340	}
341	SCTP_READ_RANDOM(new_key->key, keylen);
342	new_key->keylen = keylen;
343	return (new_key);
344}
345
346sctp_key_t *
347sctp_set_key(uint8_t * key, uint32_t keylen)
348{
349	sctp_key_t *new_key;
350
351	new_key = sctp_alloc_key(keylen);
352	if (new_key == NULL) {
353		/* out of memory */
354		return (NULL);
355	}
356	bcopy(key, new_key->key, keylen);
357	return (new_key);
358}
359
360/*-
361 * given two keys of variable size, compute which key is "larger/smaller"
362 * returns:  1 if key1 > key2
363 *          -1 if key1 < key2
364 *           0 if key1 = key2
365 */
366static int
367sctp_compare_key(sctp_key_t * key1, sctp_key_t * key2)
368{
369	uint32_t maxlen;
370	uint32_t i;
371	uint32_t key1len, key2len;
372	uint8_t *key_1, *key_2;
373	uint8_t val1, val2;
374
375	/* sanity/length check */
376	key1len = sctp_get_keylen(key1);
377	key2len = sctp_get_keylen(key2);
378	if ((key1len == 0) && (key2len == 0))
379		return (0);
380	else if (key1len == 0)
381		return (-1);
382	else if (key2len == 0)
383		return (1);
384
385	if (key1len < key2len) {
386		maxlen = key2len;
387	} else {
388		maxlen = key1len;
389	}
390	key_1 = key1->key;
391	key_2 = key2->key;
392	/* check for numeric equality */
393	for (i = 0; i < maxlen; i++) {
394		/* left-pad with zeros */
395		val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++);
396		val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++);
397		if (val1 > val2) {
398			return (1);
399		} else if (val1 < val2) {
400			return (-1);
401		}
402	}
403	/* keys are equal value, so check lengths */
404	if (key1len == key2len)
405		return (0);
406	else if (key1len < key2len)
407		return (-1);
408	else
409		return (1);
410}
411
412/*
413 * generate the concatenated keying material based on the two keys and the
414 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
415 * order for concatenation
416 */
417sctp_key_t *
418sctp_compute_hashkey(sctp_key_t * key1, sctp_key_t * key2, sctp_key_t * shared)
419{
420	uint32_t keylen;
421	sctp_key_t *new_key;
422	uint8_t *key_ptr;
423
424	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
425	    sctp_get_keylen(shared);
426
427	if (keylen > 0) {
428		/* get space for the new key */
429		new_key = sctp_alloc_key(keylen);
430		if (new_key == NULL) {
431			/* out of memory */
432			return (NULL);
433		}
434		new_key->keylen = keylen;
435		key_ptr = new_key->key;
436	} else {
437		/* all keys empty/null?! */
438		return (NULL);
439	}
440
441	/* concatenate the keys */
442	if (sctp_compare_key(key1, key2) <= 0) {
443		/* key is shared + key1 + key2 */
444		if (sctp_get_keylen(shared)) {
445			bcopy(shared->key, key_ptr, shared->keylen);
446			key_ptr += shared->keylen;
447		}
448		if (sctp_get_keylen(key1)) {
449			bcopy(key1->key, key_ptr, key1->keylen);
450			key_ptr += key1->keylen;
451		}
452		if (sctp_get_keylen(key2)) {
453			bcopy(key2->key, key_ptr, key2->keylen);
454		}
455	} else {
456		/* key is shared + key2 + key1 */
457		if (sctp_get_keylen(shared)) {
458			bcopy(shared->key, key_ptr, shared->keylen);
459			key_ptr += shared->keylen;
460		}
461		if (sctp_get_keylen(key2)) {
462			bcopy(key2->key, key_ptr, key2->keylen);
463			key_ptr += key2->keylen;
464		}
465		if (sctp_get_keylen(key1)) {
466			bcopy(key1->key, key_ptr, key1->keylen);
467		}
468	}
469	return (new_key);
470}
471
472
473sctp_sharedkey_t *
474sctp_alloc_sharedkey(void)
475{
476	sctp_sharedkey_t *new_key;
477
478	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
479	    SCTP_M_AUTH_KY);
480	if (new_key == NULL) {
481		/* out of memory */
482		return (NULL);
483	}
484	new_key->keyid = 0;
485	new_key->key = NULL;
486	new_key->refcount = 1;
487	new_key->deactivated = 0;
488	return (new_key);
489}
490
491void
492sctp_free_sharedkey(sctp_sharedkey_t * skey)
493{
494	if (skey == NULL)
495		return;
496
497	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
498		if (skey->key != NULL)
499			sctp_free_key(skey->key);
500		SCTP_FREE(skey, SCTP_M_AUTH_KY);
501	}
502}
503
504sctp_sharedkey_t *
505sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
506{
507	sctp_sharedkey_t *skey;
508
509	LIST_FOREACH(skey, shared_keys, next) {
510		if (skey->keyid == key_id)
511			return (skey);
512	}
513	return (NULL);
514}
515
516int
517sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
518    sctp_sharedkey_t * new_skey)
519{
520	sctp_sharedkey_t *skey;
521
522	if ((shared_keys == NULL) || (new_skey == NULL))
523		return (EINVAL);
524
525	/* insert into an empty list? */
526	if (LIST_EMPTY(shared_keys)) {
527		LIST_INSERT_HEAD(shared_keys, new_skey, next);
528		return (0);
529	}
530	/* insert into the existing list, ordered by key id */
531	LIST_FOREACH(skey, shared_keys, next) {
532		if (new_skey->keyid < skey->keyid) {
533			/* insert it before here */
534			LIST_INSERT_BEFORE(skey, new_skey, next);
535			return (0);
536		} else if (new_skey->keyid == skey->keyid) {
537			/* replace the existing key */
538			/* verify this key *can* be replaced */
539			if ((skey->deactivated) && (skey->refcount > 1)) {
540				SCTPDBG(SCTP_DEBUG_AUTH1,
541				    "can't replace shared key id %u\n",
542				    new_skey->keyid);
543				return (EBUSY);
544			}
545			SCTPDBG(SCTP_DEBUG_AUTH1,
546			    "replacing shared key id %u\n",
547			    new_skey->keyid);
548			LIST_INSERT_BEFORE(skey, new_skey, next);
549			LIST_REMOVE(skey, next);
550			sctp_free_sharedkey(skey);
551			return (0);
552		}
553		if (LIST_NEXT(skey, next) == NULL) {
554			/* belongs at the end of the list */
555			LIST_INSERT_AFTER(skey, new_skey, next);
556			return (0);
557		}
558	}
559	/* shouldn't reach here */
560	return (0);
561}
562
563void
564sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
565{
566	sctp_sharedkey_t *skey;
567
568	/* find the shared key */
569	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
570
571	/* bump the ref count */
572	if (skey) {
573		atomic_add_int(&skey->refcount, 1);
574		SCTPDBG(SCTP_DEBUG_AUTH2,
575		    "%s: stcb %p key %u refcount acquire to %d\n",
576		    __FUNCTION__, (void *)stcb, key_id, skey->refcount);
577	}
578}
579
580void
581sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked
582#if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
583    SCTP_UNUSED
584#endif
585)
586{
587	sctp_sharedkey_t *skey;
588
589	/* find the shared key */
590	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
591
592	/* decrement the ref count */
593	if (skey) {
594		sctp_free_sharedkey(skey);
595		SCTPDBG(SCTP_DEBUG_AUTH2,
596		    "%s: stcb %p key %u refcount release to %d\n",
597		    __FUNCTION__, (void *)stcb, key_id, skey->refcount);
598
599		/* see if a notification should be generated */
600		if ((skey->refcount <= 1) && (skey->deactivated)) {
601			/* notify ULP that key is no longer used */
602			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
603			    key_id, 0, so_locked);
604			SCTPDBG(SCTP_DEBUG_AUTH2,
605			    "%s: stcb %p key %u no longer used, %d\n",
606			    __FUNCTION__, (void *)stcb, key_id, skey->refcount);
607		}
608	}
609}
610
611static sctp_sharedkey_t *
612sctp_copy_sharedkey(const sctp_sharedkey_t * skey)
613{
614	sctp_sharedkey_t *new_skey;
615
616	if (skey == NULL)
617		return (NULL);
618	new_skey = sctp_alloc_sharedkey();
619	if (new_skey == NULL)
620		return (NULL);
621	if (skey->key != NULL)
622		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
623	else
624		new_skey->key = NULL;
625	new_skey->keyid = skey->keyid;
626	return (new_skey);
627}
628
629int
630sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
631{
632	sctp_sharedkey_t *skey, *new_skey;
633	int count = 0;
634
635	if ((src == NULL) || (dest == NULL))
636		return (0);
637	LIST_FOREACH(skey, src, next) {
638		new_skey = sctp_copy_sharedkey(skey);
639		if (new_skey != NULL) {
640			(void)sctp_insert_sharedkey(dest, new_skey);
641			count++;
642		}
643	}
644	return (count);
645}
646
647
648sctp_hmaclist_t *
649sctp_alloc_hmaclist(uint8_t num_hmacs)
650{
651	sctp_hmaclist_t *new_list;
652	int alloc_size;
653
654	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
655	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
656	    SCTP_M_AUTH_HL);
657	if (new_list == NULL) {
658		/* out of memory */
659		return (NULL);
660	}
661	new_list->max_algo = num_hmacs;
662	new_list->num_algo = 0;
663	return (new_list);
664}
665
666void
667sctp_free_hmaclist(sctp_hmaclist_t * list)
668{
669	if (list != NULL) {
670		SCTP_FREE(list, SCTP_M_AUTH_HL);
671		list = NULL;
672	}
673}
674
675int
676sctp_auth_add_hmacid(sctp_hmaclist_t * list, uint16_t hmac_id)
677{
678	int i;
679
680	if (list == NULL)
681		return (-1);
682	if (list->num_algo == list->max_algo) {
683		SCTPDBG(SCTP_DEBUG_AUTH1,
684		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
685		return (-1);
686	}
687	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
688	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) {
689		return (-1);
690	}
691	/* Now is it already in the list */
692	for (i = 0; i < list->num_algo; i++) {
693		if (list->hmac[i] == hmac_id) {
694			/* already in list */
695			return (-1);
696		}
697	}
698	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
699	list->hmac[list->num_algo++] = hmac_id;
700	return (0);
701}
702
703sctp_hmaclist_t *
704sctp_copy_hmaclist(sctp_hmaclist_t * list)
705{
706	sctp_hmaclist_t *new_list;
707	int i;
708
709	if (list == NULL)
710		return (NULL);
711	/* get a new list */
712	new_list = sctp_alloc_hmaclist(list->max_algo);
713	if (new_list == NULL)
714		return (NULL);
715	/* copy it */
716	new_list->max_algo = list->max_algo;
717	new_list->num_algo = list->num_algo;
718	for (i = 0; i < list->num_algo; i++)
719		new_list->hmac[i] = list->hmac[i];
720	return (new_list);
721}
722
723sctp_hmaclist_t *
724sctp_default_supported_hmaclist(void)
725{
726	sctp_hmaclist_t *new_list;
727
728	new_list = sctp_alloc_hmaclist(2);
729	if (new_list == NULL)
730		return (NULL);
731	/* We prefer SHA256, so list it first */
732	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
733	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
734	return (new_list);
735}
736
737/*-
738 * HMAC algos are listed in priority/preference order
739 * find the best HMAC id to use for the peer based on local support
740 */
741uint16_t
742sctp_negotiate_hmacid(sctp_hmaclist_t * peer, sctp_hmaclist_t * local)
743{
744	int i, j;
745
746	if ((local == NULL) || (peer == NULL))
747		return (SCTP_AUTH_HMAC_ID_RSVD);
748
749	for (i = 0; i < peer->num_algo; i++) {
750		for (j = 0; j < local->num_algo; j++) {
751			if (peer->hmac[i] == local->hmac[j]) {
752				/* found the "best" one */
753				SCTPDBG(SCTP_DEBUG_AUTH1,
754				    "SCTP: negotiated peer HMAC id %u\n",
755				    peer->hmac[i]);
756				return (peer->hmac[i]);
757			}
758		}
759	}
760	/* didn't find one! */
761	return (SCTP_AUTH_HMAC_ID_RSVD);
762}
763
764/*-
765 * serialize the HMAC algo list and return space used
766 * caller must guarantee ptr has appropriate space
767 */
768int
769sctp_serialize_hmaclist(sctp_hmaclist_t * list, uint8_t * ptr)
770{
771	int i;
772	uint16_t hmac_id;
773
774	if (list == NULL)
775		return (0);
776
777	for (i = 0; i < list->num_algo; i++) {
778		hmac_id = htons(list->hmac[i]);
779		bcopy(&hmac_id, ptr, sizeof(hmac_id));
780		ptr += sizeof(hmac_id);
781	}
782	return (list->num_algo * sizeof(hmac_id));
783}
784
785int
786sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
787{
788	uint32_t i;
789
790	for (i = 0; i < num_hmacs; i++) {
791		if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) {
792			return (0);
793		}
794	}
795	return (-1);
796}
797
798sctp_authinfo_t *
799sctp_alloc_authinfo(void)
800{
801	sctp_authinfo_t *new_authinfo;
802
803	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
804	    SCTP_M_AUTH_IF);
805
806	if (new_authinfo == NULL) {
807		/* out of memory */
808		return (NULL);
809	}
810	bzero(new_authinfo, sizeof(*new_authinfo));
811	return (new_authinfo);
812}
813
814void
815sctp_free_authinfo(sctp_authinfo_t * authinfo)
816{
817	if (authinfo == NULL)
818		return;
819
820	if (authinfo->random != NULL)
821		sctp_free_key(authinfo->random);
822	if (authinfo->peer_random != NULL)
823		sctp_free_key(authinfo->peer_random);
824	if (authinfo->assoc_key != NULL)
825		sctp_free_key(authinfo->assoc_key);
826	if (authinfo->recv_key != NULL)
827		sctp_free_key(authinfo->recv_key);
828
829	/* We are NOT dynamically allocating authinfo's right now... */
830	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
831}
832
833
834uint32_t
835sctp_get_auth_chunk_len(uint16_t hmac_algo)
836{
837	int size;
838
839	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
840	return (SCTP_SIZE32(size));
841}
842
843uint32_t
844sctp_get_hmac_digest_len(uint16_t hmac_algo)
845{
846	switch (hmac_algo) {
847	case SCTP_AUTH_HMAC_ID_SHA1:
848		return (SCTP_AUTH_DIGEST_LEN_SHA1);
849	case SCTP_AUTH_HMAC_ID_SHA256:
850		return (SCTP_AUTH_DIGEST_LEN_SHA256);
851	default:
852		/* unknown HMAC algorithm: can't do anything */
853		return (0);
854	}			/* end switch */
855}
856
857static inline int
858sctp_get_hmac_block_len(uint16_t hmac_algo)
859{
860	switch (hmac_algo) {
861	case SCTP_AUTH_HMAC_ID_SHA1:
862		return (64);
863	case SCTP_AUTH_HMAC_ID_SHA256:
864		return (64);
865	case SCTP_AUTH_HMAC_ID_RSVD:
866	default:
867		/* unknown HMAC algorithm: can't do anything */
868		return (0);
869	}			/* end switch */
870}
871
872static void
873sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t * ctx)
874{
875	switch (hmac_algo) {
876	case SCTP_AUTH_HMAC_ID_SHA1:
877		SCTP_SHA1_INIT(&ctx->sha1);
878		break;
879	case SCTP_AUTH_HMAC_ID_SHA256:
880		SCTP_SHA256_INIT(&ctx->sha256);
881		break;
882	case SCTP_AUTH_HMAC_ID_RSVD:
883	default:
884		/* unknown HMAC algorithm: can't do anything */
885		return;
886	}			/* end switch */
887}
888
889static void
890sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t * ctx,
891    uint8_t * text, uint32_t textlen)
892{
893	switch (hmac_algo) {
894	case SCTP_AUTH_HMAC_ID_SHA1:
895		SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen);
896		break;
897	case SCTP_AUTH_HMAC_ID_SHA256:
898		SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen);
899		break;
900	case SCTP_AUTH_HMAC_ID_RSVD:
901	default:
902		/* unknown HMAC algorithm: can't do anything */
903		return;
904	}			/* end switch */
905}
906
907static void
908sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t * ctx,
909    uint8_t * digest)
910{
911	switch (hmac_algo) {
912	case SCTP_AUTH_HMAC_ID_SHA1:
913		SCTP_SHA1_FINAL(digest, &ctx->sha1);
914		break;
915	case SCTP_AUTH_HMAC_ID_SHA256:
916		SCTP_SHA256_FINAL(digest, &ctx->sha256);
917		break;
918	case SCTP_AUTH_HMAC_ID_RSVD:
919	default:
920		/* unknown HMAC algorithm: can't do anything */
921		return;
922	}			/* end switch */
923}
924
925/*-
926 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
927 *
928 * Compute the HMAC digest using the desired hash key, text, and HMAC
929 * algorithm.  Resulting digest is placed in 'digest' and digest length
930 * is returned, if the HMAC was performed.
931 *
932 * WARNING: it is up to the caller to supply sufficient space to hold the
933 * resultant digest.
934 */
935uint32_t
936sctp_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
937    uint8_t * text, uint32_t textlen, uint8_t * digest)
938{
939	uint32_t digestlen;
940	uint32_t blocklen;
941	sctp_hash_context_t ctx;
942	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
943	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
944	uint32_t i;
945
946	/* sanity check the material and length */
947	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
948	    (textlen == 0) || (digest == NULL)) {
949		/* can't do HMAC with empty key or text or digest store */
950		return (0);
951	}
952	/* validate the hmac algo and get the digest length */
953	digestlen = sctp_get_hmac_digest_len(hmac_algo);
954	if (digestlen == 0)
955		return (0);
956
957	/* hash the key if it is longer than the hash block size */
958	blocklen = sctp_get_hmac_block_len(hmac_algo);
959	if (keylen > blocklen) {
960		sctp_hmac_init(hmac_algo, &ctx);
961		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
962		sctp_hmac_final(hmac_algo, &ctx, temp);
963		/* set the hashed key as the key */
964		keylen = digestlen;
965		key = temp;
966	}
967	/* initialize the inner/outer pads with the key and "append" zeroes */
968	bzero(ipad, blocklen);
969	bzero(opad, blocklen);
970	bcopy(key, ipad, keylen);
971	bcopy(key, opad, keylen);
972
973	/* XOR the key with ipad and opad values */
974	for (i = 0; i < blocklen; i++) {
975		ipad[i] ^= 0x36;
976		opad[i] ^= 0x5c;
977	}
978
979	/* perform inner hash */
980	sctp_hmac_init(hmac_algo, &ctx);
981	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
982	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
983	sctp_hmac_final(hmac_algo, &ctx, temp);
984
985	/* perform outer hash */
986	sctp_hmac_init(hmac_algo, &ctx);
987	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
988	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
989	sctp_hmac_final(hmac_algo, &ctx, digest);
990
991	return (digestlen);
992}
993
994/* mbuf version */
995uint32_t
996sctp_hmac_m(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
997    struct mbuf *m, uint32_t m_offset, uint8_t * digest, uint32_t trailer)
998{
999	uint32_t digestlen;
1000	uint32_t blocklen;
1001	sctp_hash_context_t ctx;
1002	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
1003	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1004	uint32_t i;
1005	struct mbuf *m_tmp;
1006
1007	/* sanity check the material and length */
1008	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
1009		/* can't do HMAC with empty key or text or digest store */
1010		return (0);
1011	}
1012	/* validate the hmac algo and get the digest length */
1013	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1014	if (digestlen == 0)
1015		return (0);
1016
1017	/* hash the key if it is longer than the hash block size */
1018	blocklen = sctp_get_hmac_block_len(hmac_algo);
1019	if (keylen > blocklen) {
1020		sctp_hmac_init(hmac_algo, &ctx);
1021		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1022		sctp_hmac_final(hmac_algo, &ctx, temp);
1023		/* set the hashed key as the key */
1024		keylen = digestlen;
1025		key = temp;
1026	}
1027	/* initialize the inner/outer pads with the key and "append" zeroes */
1028	bzero(ipad, blocklen);
1029	bzero(opad, blocklen);
1030	bcopy(key, ipad, keylen);
1031	bcopy(key, opad, keylen);
1032
1033	/* XOR the key with ipad and opad values */
1034	for (i = 0; i < blocklen; i++) {
1035		ipad[i] ^= 0x36;
1036		opad[i] ^= 0x5c;
1037	}
1038
1039	/* perform inner hash */
1040	sctp_hmac_init(hmac_algo, &ctx);
1041	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1042	/* find the correct starting mbuf and offset (get start of text) */
1043	m_tmp = m;
1044	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1045		m_offset -= SCTP_BUF_LEN(m_tmp);
1046		m_tmp = SCTP_BUF_NEXT(m_tmp);
1047	}
1048	/* now use the rest of the mbuf chain for the text */
1049	while (m_tmp != NULL) {
1050		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1051			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1052			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1053		} else {
1054			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *) + m_offset,
1055			    SCTP_BUF_LEN(m_tmp) - m_offset);
1056		}
1057
1058		/* clear the offset since it's only for the first mbuf */
1059		m_offset = 0;
1060		m_tmp = SCTP_BUF_NEXT(m_tmp);
1061	}
1062	sctp_hmac_final(hmac_algo, &ctx, temp);
1063
1064	/* perform outer hash */
1065	sctp_hmac_init(hmac_algo, &ctx);
1066	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1067	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1068	sctp_hmac_final(hmac_algo, &ctx, digest);
1069
1070	return (digestlen);
1071}
1072
1073/*-
1074 * verify the HMAC digest using the desired hash key, text, and HMAC
1075 * algorithm.
1076 * Returns -1 on error, 0 on success.
1077 */
1078int
1079sctp_verify_hmac(uint16_t hmac_algo, uint8_t * key, uint32_t keylen,
1080    uint8_t * text, uint32_t textlen,
1081    uint8_t * digest, uint32_t digestlen)
1082{
1083	uint32_t len;
1084	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1085
1086	/* sanity check the material and length */
1087	if ((key == NULL) || (keylen == 0) ||
1088	    (text == NULL) || (textlen == 0) || (digest == NULL)) {
1089		/* can't do HMAC with empty key or text or digest */
1090		return (-1);
1091	}
1092	len = sctp_get_hmac_digest_len(hmac_algo);
1093	if ((len == 0) || (digestlen != len))
1094		return (-1);
1095
1096	/* compute the expected hash */
1097	if (sctp_hmac(hmac_algo, key, keylen, text, textlen, temp) != len)
1098		return (-1);
1099
1100	if (memcmp(digest, temp, digestlen) != 0)
1101		return (-1);
1102	else
1103		return (0);
1104}
1105
1106
1107/*
1108 * computes the requested HMAC using a key struct (which may be modified if
1109 * the keylen exceeds the HMAC block len).
1110 */
1111uint32_t
1112sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t * key, uint8_t * text,
1113    uint32_t textlen, uint8_t * digest)
1114{
1115	uint32_t digestlen;
1116	uint32_t blocklen;
1117	sctp_hash_context_t ctx;
1118	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1119
1120	/* sanity check */
1121	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1122	    (digest == NULL)) {
1123		/* can't do HMAC with empty key or text or digest store */
1124		return (0);
1125	}
1126	/* validate the hmac algo and get the digest length */
1127	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1128	if (digestlen == 0)
1129		return (0);
1130
1131	/* hash the key if it is longer than the hash block size */
1132	blocklen = sctp_get_hmac_block_len(hmac_algo);
1133	if (key->keylen > blocklen) {
1134		sctp_hmac_init(hmac_algo, &ctx);
1135		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1136		sctp_hmac_final(hmac_algo, &ctx, temp);
1137		/* save the hashed key as the new key */
1138		key->keylen = digestlen;
1139		bcopy(temp, key->key, key->keylen);
1140	}
1141	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1142	    digest));
1143}
1144
1145/* mbuf version */
1146uint32_t
1147sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t * key, struct mbuf *m,
1148    uint32_t m_offset, uint8_t * digest)
1149{
1150	uint32_t digestlen;
1151	uint32_t blocklen;
1152	sctp_hash_context_t ctx;
1153	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1154
1155	/* sanity check */
1156	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1157		/* can't do HMAC with empty key or text or digest store */
1158		return (0);
1159	}
1160	/* validate the hmac algo and get the digest length */
1161	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1162	if (digestlen == 0)
1163		return (0);
1164
1165	/* hash the key if it is longer than the hash block size */
1166	blocklen = sctp_get_hmac_block_len(hmac_algo);
1167	if (key->keylen > blocklen) {
1168		sctp_hmac_init(hmac_algo, &ctx);
1169		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1170		sctp_hmac_final(hmac_algo, &ctx, temp);
1171		/* save the hashed key as the new key */
1172		key->keylen = digestlen;
1173		bcopy(temp, key->key, key->keylen);
1174	}
1175	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1176}
1177
1178int
1179sctp_auth_is_supported_hmac(sctp_hmaclist_t * list, uint16_t id)
1180{
1181	int i;
1182
1183	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1184		return (0);
1185
1186	for (i = 0; i < list->num_algo; i++)
1187		if (list->hmac[i] == id)
1188			return (1);
1189
1190	/* not in the list */
1191	return (0);
1192}
1193
1194
1195/*-
1196 * clear any cached key(s) if they match the given key id on an association.
1197 * the cached key(s) will be recomputed and re-cached at next use.
1198 * ASSUMES TCB_LOCK is already held
1199 */
1200void
1201sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1202{
1203	if (stcb == NULL)
1204		return;
1205
1206	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1207		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1208		stcb->asoc.authinfo.assoc_key = NULL;
1209	}
1210	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1211		sctp_free_key(stcb->asoc.authinfo.recv_key);
1212		stcb->asoc.authinfo.recv_key = NULL;
1213	}
1214}
1215
1216/*-
1217 * clear any cached key(s) if they match the given key id for all assocs on
1218 * an endpoint.
1219 * ASSUMES INP_WLOCK is already held
1220 */
1221void
1222sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1223{
1224	struct sctp_tcb *stcb;
1225
1226	if (inp == NULL)
1227		return;
1228
1229	/* clear the cached keys on all assocs on this instance */
1230	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1231		SCTP_TCB_LOCK(stcb);
1232		sctp_clear_cachedkeys(stcb, keyid);
1233		SCTP_TCB_UNLOCK(stcb);
1234	}
1235}
1236
1237/*-
1238 * delete a shared key from an association
1239 * ASSUMES TCB_LOCK is already held
1240 */
1241int
1242sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1243{
1244	sctp_sharedkey_t *skey;
1245
1246	if (stcb == NULL)
1247		return (-1);
1248
1249	/* is the keyid the assoc active sending key */
1250	if (keyid == stcb->asoc.authinfo.active_keyid)
1251		return (-1);
1252
1253	/* does the key exist? */
1254	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1255	if (skey == NULL)
1256		return (-1);
1257
1258	/* are there other refcount holders on the key? */
1259	if (skey->refcount > 1)
1260		return (-1);
1261
1262	/* remove it */
1263	LIST_REMOVE(skey, next);
1264	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1265
1266	/* clear any cached keys */
1267	sctp_clear_cachedkeys(stcb, keyid);
1268	return (0);
1269}
1270
1271/*-
1272 * deletes a shared key from the endpoint
1273 * ASSUMES INP_WLOCK is already held
1274 */
1275int
1276sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1277{
1278	sctp_sharedkey_t *skey;
1279
1280	if (inp == NULL)
1281		return (-1);
1282
1283	/* is the keyid the active sending key on the endpoint */
1284	if (keyid == inp->sctp_ep.default_keyid)
1285		return (-1);
1286
1287	/* does the key exist? */
1288	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1289	if (skey == NULL)
1290		return (-1);
1291
1292	/* endpoint keys are not refcounted */
1293
1294	/* remove it */
1295	LIST_REMOVE(skey, next);
1296	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1297
1298	/* clear any cached keys */
1299	sctp_clear_cachedkeys_ep(inp, keyid);
1300	return (0);
1301}
1302
1303/*-
1304 * set the active key on an association
1305 * ASSUMES TCB_LOCK is already held
1306 */
1307int
1308sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1309{
1310	sctp_sharedkey_t *skey = NULL;
1311
1312	/* find the key on the assoc */
1313	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1314	if (skey == NULL) {
1315		/* that key doesn't exist */
1316		return (-1);
1317	}
1318	if ((skey->deactivated) && (skey->refcount > 1)) {
1319		/* can't reactivate a deactivated key with other refcounts */
1320		return (-1);
1321	}
1322	/* set the (new) active key */
1323	stcb->asoc.authinfo.active_keyid = keyid;
1324	/* reset the deactivated flag */
1325	skey->deactivated = 0;
1326
1327	return (0);
1328}
1329
1330/*-
1331 * set the active key on an endpoint
1332 * ASSUMES INP_WLOCK is already held
1333 */
1334int
1335sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1336{
1337	sctp_sharedkey_t *skey;
1338
1339	/* find the key */
1340	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1341	if (skey == NULL) {
1342		/* that key doesn't exist */
1343		return (-1);
1344	}
1345	inp->sctp_ep.default_keyid = keyid;
1346	return (0);
1347}
1348
1349/*-
1350 * deactivates a shared key from the association
1351 * ASSUMES INP_WLOCK is already held
1352 */
1353int
1354sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1355{
1356	sctp_sharedkey_t *skey;
1357
1358	if (stcb == NULL)
1359		return (-1);
1360
1361	/* is the keyid the assoc active sending key */
1362	if (keyid == stcb->asoc.authinfo.active_keyid)
1363		return (-1);
1364
1365	/* does the key exist? */
1366	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1367	if (skey == NULL)
1368		return (-1);
1369
1370	/* are there other refcount holders on the key? */
1371	if (skey->refcount == 1) {
1372		/* no other users, send a notification for this key */
1373		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1374		    SCTP_SO_LOCKED);
1375	}
1376	/* mark the key as deactivated */
1377	skey->deactivated = 1;
1378
1379	return (0);
1380}
1381
1382/*-
1383 * deactivates a shared key from the endpoint
1384 * ASSUMES INP_WLOCK is already held
1385 */
1386int
1387sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1388{
1389	sctp_sharedkey_t *skey;
1390
1391	if (inp == NULL)
1392		return (-1);
1393
1394	/* is the keyid the active sending key on the endpoint */
1395	if (keyid == inp->sctp_ep.default_keyid)
1396		return (-1);
1397
1398	/* does the key exist? */
1399	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1400	if (skey == NULL)
1401		return (-1);
1402
1403	/* endpoint keys are not refcounted */
1404
1405	/* remove it */
1406	LIST_REMOVE(skey, next);
1407	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1408
1409	return (0);
1410}
1411
1412/*
1413 * get local authentication parameters from cookie (from INIT-ACK)
1414 */
1415void
1416sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1417    uint32_t offset, uint32_t length)
1418{
1419	struct sctp_paramhdr *phdr, tmp_param;
1420	uint16_t plen, ptype;
1421	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1422	struct sctp_auth_random *p_random = NULL;
1423	uint16_t random_len = 0;
1424	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1425	struct sctp_auth_hmac_algo *hmacs = NULL;
1426	uint16_t hmacs_len = 0;
1427	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1428	struct sctp_auth_chunk_list *chunks = NULL;
1429	uint16_t num_chunks = 0;
1430	sctp_key_t *new_key;
1431	uint32_t keylen;
1432
1433	/* convert to upper bound */
1434	length += offset;
1435
1436	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1437	    sizeof(struct sctp_paramhdr), (uint8_t *) & tmp_param);
1438	while (phdr != NULL) {
1439		ptype = ntohs(phdr->param_type);
1440		plen = ntohs(phdr->param_length);
1441
1442		if ((plen == 0) || (offset + plen > length))
1443			break;
1444
1445		if (ptype == SCTP_RANDOM) {
1446			if (plen > sizeof(random_store))
1447				break;
1448			phdr = sctp_get_next_param(m, offset,
1449			    (struct sctp_paramhdr *)random_store, min(plen, sizeof(random_store)));
1450			if (phdr == NULL)
1451				return;
1452			/* save the random and length for the key */
1453			p_random = (struct sctp_auth_random *)phdr;
1454			random_len = plen - sizeof(*p_random);
1455		} else if (ptype == SCTP_HMAC_LIST) {
1456			int num_hmacs;
1457			int i;
1458
1459			if (plen > sizeof(hmacs_store))
1460				break;
1461			phdr = sctp_get_next_param(m, offset,
1462			    (struct sctp_paramhdr *)hmacs_store, min(plen, sizeof(hmacs_store)));
1463			if (phdr == NULL)
1464				return;
1465			/* save the hmacs list and num for the key */
1466			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1467			hmacs_len = plen - sizeof(*hmacs);
1468			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1469			if (stcb->asoc.local_hmacs != NULL)
1470				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1471			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1472			if (stcb->asoc.local_hmacs != NULL) {
1473				for (i = 0; i < num_hmacs; i++) {
1474					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1475					    ntohs(hmacs->hmac_ids[i]));
1476				}
1477			}
1478		} else if (ptype == SCTP_CHUNK_LIST) {
1479			int i;
1480
1481			if (plen > sizeof(chunks_store))
1482				break;
1483			phdr = sctp_get_next_param(m, offset,
1484			    (struct sctp_paramhdr *)chunks_store, min(plen, sizeof(chunks_store)));
1485			if (phdr == NULL)
1486				return;
1487			chunks = (struct sctp_auth_chunk_list *)phdr;
1488			num_chunks = plen - sizeof(*chunks);
1489			/* save chunks list and num for the key */
1490			if (stcb->asoc.local_auth_chunks != NULL)
1491				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1492			else
1493				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1494			for (i = 0; i < num_chunks; i++) {
1495				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1496				    stcb->asoc.local_auth_chunks);
1497			}
1498		}
1499		/* get next parameter */
1500		offset += SCTP_SIZE32(plen);
1501		if (offset + sizeof(struct sctp_paramhdr) > length)
1502			break;
1503		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1504		    (uint8_t *) & tmp_param);
1505	}
1506	/* concatenate the full random key */
1507	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1508	if (chunks != NULL) {
1509		keylen += sizeof(*chunks) + num_chunks;
1510	}
1511	new_key = sctp_alloc_key(keylen);
1512	if (new_key != NULL) {
1513		/* copy in the RANDOM */
1514		if (p_random != NULL) {
1515			keylen = sizeof(*p_random) + random_len;
1516			bcopy(p_random, new_key->key, keylen);
1517		}
1518		/* append in the AUTH chunks */
1519		if (chunks != NULL) {
1520			bcopy(chunks, new_key->key + keylen,
1521			    sizeof(*chunks) + num_chunks);
1522			keylen += sizeof(*chunks) + num_chunks;
1523		}
1524		/* append in the HMACs */
1525		if (hmacs != NULL) {
1526			bcopy(hmacs, new_key->key + keylen,
1527			    sizeof(*hmacs) + hmacs_len);
1528		}
1529	}
1530	if (stcb->asoc.authinfo.random != NULL)
1531		sctp_free_key(stcb->asoc.authinfo.random);
1532	stcb->asoc.authinfo.random = new_key;
1533	stcb->asoc.authinfo.random_len = random_len;
1534	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1535	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1536
1537	/* negotiate what HMAC to use for the peer */
1538	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1539	    stcb->asoc.local_hmacs);
1540
1541	/* copy defaults from the endpoint */
1542	/* FIX ME: put in cookie? */
1543	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1544	/* copy out the shared key list (by reference) from the endpoint */
1545	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1546	    &stcb->asoc.shared_keys);
1547}
1548
1549/*
1550 * compute and fill in the HMAC digest for a packet
1551 */
1552void
1553sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1554    struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1555{
1556	uint32_t digestlen;
1557	sctp_sharedkey_t *skey;
1558	sctp_key_t *key;
1559
1560	if ((stcb == NULL) || (auth == NULL))
1561		return;
1562
1563	/* zero the digest + chunk padding */
1564	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1565	bzero(auth->hmac, SCTP_SIZE32(digestlen));
1566
1567	/* is the desired key cached? */
1568	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1569	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1570		if (stcb->asoc.authinfo.assoc_key != NULL) {
1571			/* free the old cached key */
1572			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1573		}
1574		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1575		/* the only way skey is NULL is if null key id 0 is used */
1576		if (skey != NULL)
1577			key = skey->key;
1578		else
1579			key = NULL;
1580		/* compute a new assoc key and cache it */
1581		stcb->asoc.authinfo.assoc_key =
1582		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1583		    stcb->asoc.authinfo.peer_random, key);
1584		stcb->asoc.authinfo.assoc_keyid = keyid;
1585		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1586		    stcb->asoc.authinfo.assoc_keyid);
1587#ifdef SCTP_DEBUG
1588		if (SCTP_AUTH_DEBUG)
1589			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1590			    "Assoc Key");
1591#endif
1592	}
1593	/* set in the active key id */
1594	auth->shared_key_id = htons(keyid);
1595
1596	/* compute and fill in the digest */
1597	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1598	    m, auth_offset, auth->hmac);
1599}
1600
1601
1602static void
1603sctp_bzero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1604{
1605	struct mbuf *m_tmp;
1606	uint8_t *data;
1607
1608	/* sanity check */
1609	if (m == NULL)
1610		return;
1611
1612	/* find the correct starting mbuf and offset (get start position) */
1613	m_tmp = m;
1614	while ((m_tmp != NULL) && (m_offset >= (uint32_t) SCTP_BUF_LEN(m_tmp))) {
1615		m_offset -= SCTP_BUF_LEN(m_tmp);
1616		m_tmp = SCTP_BUF_NEXT(m_tmp);
1617	}
1618	/* now use the rest of the mbuf chain */
1619	while ((m_tmp != NULL) && (size > 0)) {
1620		data = mtod(m_tmp, uint8_t *) + m_offset;
1621		if (size > (uint32_t) SCTP_BUF_LEN(m_tmp)) {
1622			bzero(data, SCTP_BUF_LEN(m_tmp));
1623			size -= SCTP_BUF_LEN(m_tmp);
1624		} else {
1625			bzero(data, size);
1626			size = 0;
1627		}
1628		/* clear the offset since it's only for the first mbuf */
1629		m_offset = 0;
1630		m_tmp = SCTP_BUF_NEXT(m_tmp);
1631	}
1632}
1633
1634/*-
1635 * process the incoming Authentication chunk
1636 * return codes:
1637 *   -1 on any authentication error
1638 *    0 on authentication verification
1639 */
1640int
1641sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1642    struct mbuf *m, uint32_t offset)
1643{
1644	uint16_t chunklen;
1645	uint16_t shared_key_id;
1646	uint16_t hmac_id;
1647	sctp_sharedkey_t *skey;
1648	uint32_t digestlen;
1649	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1650	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1651
1652	/* auth is checked for NULL by caller */
1653	chunklen = ntohs(auth->ch.chunk_length);
1654	if (chunklen < sizeof(*auth)) {
1655		SCTP_STAT_INCR(sctps_recvauthfailed);
1656		return (-1);
1657	}
1658	SCTP_STAT_INCR(sctps_recvauth);
1659
1660	/* get the auth params */
1661	shared_key_id = ntohs(auth->shared_key_id);
1662	hmac_id = ntohs(auth->hmac_id);
1663	SCTPDBG(SCTP_DEBUG_AUTH1,
1664	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1665	    shared_key_id, hmac_id);
1666
1667	/* is the indicated HMAC supported? */
1668	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1669		struct mbuf *m_err;
1670		struct sctp_auth_invalid_hmac *err;
1671
1672		SCTP_STAT_INCR(sctps_recvivalhmacid);
1673		SCTPDBG(SCTP_DEBUG_AUTH1,
1674		    "SCTP Auth: unsupported HMAC id %u\n",
1675		    hmac_id);
1676		/*
1677		 * report this in an Error Chunk: Unsupported HMAC
1678		 * Identifier
1679		 */
1680		m_err = sctp_get_mbuf_for_msg(sizeof(*err), 0, M_NOWAIT,
1681		    1, MT_HEADER);
1682		if (m_err != NULL) {
1683			/* pre-reserve some space */
1684			SCTP_BUF_RESV_UF(m_err, sizeof(struct sctp_chunkhdr));
1685			/* fill in the error */
1686			err = mtod(m_err, struct sctp_auth_invalid_hmac *);
1687			bzero(err, sizeof(*err));
1688			err->ph.param_type = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1689			err->ph.param_length = htons(sizeof(*err));
1690			err->hmac_id = ntohs(hmac_id);
1691			SCTP_BUF_LEN(m_err) = sizeof(*err);
1692			/* queue it */
1693			sctp_queue_op_err(stcb, m_err);
1694		}
1695		return (-1);
1696	}
1697	/* get the indicated shared key, if available */
1698	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1699	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1700		/* find the shared key on the assoc first */
1701		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1702		    shared_key_id);
1703		/* if the shared key isn't found, discard the chunk */
1704		if (skey == NULL) {
1705			SCTP_STAT_INCR(sctps_recvivalkeyid);
1706			SCTPDBG(SCTP_DEBUG_AUTH1,
1707			    "SCTP Auth: unknown key id %u\n",
1708			    shared_key_id);
1709			return (-1);
1710		}
1711		/* generate a notification if this is a new key id */
1712		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1713			/*
1714			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1715			 * shared_key_id, (void
1716			 * *)stcb->asoc.authinfo.recv_keyid);
1717			 */
1718			sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY,
1719			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1720			    SCTP_SO_NOT_LOCKED);
1721		/* compute a new recv assoc key and cache it */
1722		if (stcb->asoc.authinfo.recv_key != NULL)
1723			sctp_free_key(stcb->asoc.authinfo.recv_key);
1724		stcb->asoc.authinfo.recv_key =
1725		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1726		    stcb->asoc.authinfo.peer_random, skey->key);
1727		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1728#ifdef SCTP_DEBUG
1729		if (SCTP_AUTH_DEBUG)
1730			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1731#endif
1732	}
1733	/* validate the digest length */
1734	digestlen = sctp_get_hmac_digest_len(hmac_id);
1735	if (chunklen < (sizeof(*auth) + digestlen)) {
1736		/* invalid digest length */
1737		SCTP_STAT_INCR(sctps_recvauthfailed);
1738		SCTPDBG(SCTP_DEBUG_AUTH1,
1739		    "SCTP Auth: chunk too short for HMAC\n");
1740		return (-1);
1741	}
1742	/* save a copy of the digest, zero the pseudo header, and validate */
1743	bcopy(auth->hmac, digest, digestlen);
1744	sctp_bzero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1745	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1746	    m, offset, computed_digest);
1747
1748	/* compare the computed digest with the one in the AUTH chunk */
1749	if (memcmp(digest, computed_digest, digestlen) != 0) {
1750		SCTP_STAT_INCR(sctps_recvauthfailed);
1751		SCTPDBG(SCTP_DEBUG_AUTH1,
1752		    "SCTP Auth: HMAC digest check failed\n");
1753		return (-1);
1754	}
1755	return (0);
1756}
1757
1758/*
1759 * Generate NOTIFICATION
1760 */
1761void
1762sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1763    uint16_t keyid, uint16_t alt_keyid, int so_locked
1764#if !defined(__APPLE__) && !defined(SCTP_SO_LOCK_TESTING)
1765    SCTP_UNUSED
1766#endif
1767)
1768{
1769	struct mbuf *m_notify;
1770	struct sctp_authkey_event *auth;
1771	struct sctp_queued_to_read *control;
1772
1773	if ((stcb == NULL) ||
1774	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1775	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1776	    (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1777	    ) {
1778		/* If the socket is gone we are out of here */
1779		return;
1780	}
1781	if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT))
1782		/* event not enabled */
1783		return;
1784
1785	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1786	    0, M_NOWAIT, 1, MT_HEADER);
1787	if (m_notify == NULL)
1788		/* no space left */
1789		return;
1790
1791	SCTP_BUF_LEN(m_notify) = 0;
1792	auth = mtod(m_notify, struct sctp_authkey_event *);
1793	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1794	auth->auth_flags = 0;
1795	auth->auth_length = sizeof(*auth);
1796	auth->auth_keynumber = keyid;
1797	auth->auth_altkeynumber = alt_keyid;
1798	auth->auth_indication = indication;
1799	auth->auth_assoc_id = sctp_get_associd(stcb);
1800
1801	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1802	SCTP_BUF_NEXT(m_notify) = NULL;
1803
1804	/* append to socket */
1805	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1806	    0, 0, stcb->asoc.context, 0, 0, 0, m_notify);
1807	if (control == NULL) {
1808		/* no memory */
1809		sctp_m_freem(m_notify);
1810		return;
1811	}
1812	control->spec_flags = M_NOTIFICATION;
1813	control->length = SCTP_BUF_LEN(m_notify);
1814	/* not that we need this */
1815	control->tail_mbuf = m_notify;
1816	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1817	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1818}
1819
1820
1821/*-
1822 * validates the AUTHentication related parameters in an INIT/INIT-ACK
1823 * Note: currently only used for INIT as INIT-ACK is handled inline
1824 * with sctp_load_addresses_from_init()
1825 */
1826int
1827sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1828{
1829	struct sctp_paramhdr *phdr, parm_buf;
1830	uint16_t ptype, plen;
1831	int peer_supports_asconf = 0;
1832	int peer_supports_auth = 0;
1833	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1834	uint8_t saw_asconf = 0;
1835	uint8_t saw_asconf_ack = 0;
1836
1837	/* go through each of the params. */
1838	phdr = sctp_get_next_param(m, offset, &parm_buf, sizeof(parm_buf));
1839	while (phdr) {
1840		ptype = ntohs(phdr->param_type);
1841		plen = ntohs(phdr->param_length);
1842
1843		if (offset + plen > limit) {
1844			break;
1845		}
1846		if (plen < sizeof(struct sctp_paramhdr)) {
1847			break;
1848		}
1849		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1850			/* A supported extension chunk */
1851			struct sctp_supported_chunk_types_param *pr_supported;
1852			uint8_t local_store[SCTP_PARAM_BUFFER_SIZE];
1853			int num_ent, i;
1854
1855			phdr = sctp_get_next_param(m, offset,
1856			    (struct sctp_paramhdr *)&local_store, min(plen, sizeof(local_store)));
1857			if (phdr == NULL) {
1858				return (-1);
1859			}
1860			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1861			num_ent = plen - sizeof(struct sctp_paramhdr);
1862			for (i = 0; i < num_ent; i++) {
1863				switch (pr_supported->chunk_types[i]) {
1864				case SCTP_ASCONF:
1865				case SCTP_ASCONF_ACK:
1866					peer_supports_asconf = 1;
1867					break;
1868				default:
1869					/* one we don't care about */
1870					break;
1871				}
1872			}
1873		} else if (ptype == SCTP_RANDOM) {
1874			got_random = 1;
1875			/* enforce the random length */
1876			if (plen != (sizeof(struct sctp_auth_random) +
1877			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1878				SCTPDBG(SCTP_DEBUG_AUTH1,
1879				    "SCTP: invalid RANDOM len\n");
1880				return (-1);
1881			}
1882		} else if (ptype == SCTP_HMAC_LIST) {
1883			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1884			struct sctp_auth_hmac_algo *hmacs;
1885			int num_hmacs;
1886
1887			if (plen > sizeof(store))
1888				break;
1889			phdr = sctp_get_next_param(m, offset,
1890			    (struct sctp_paramhdr *)store, min(plen, sizeof(store)));
1891			if (phdr == NULL)
1892				return (-1);
1893			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1894			num_hmacs = (plen - sizeof(*hmacs)) /
1895			    sizeof(hmacs->hmac_ids[0]);
1896			/* validate the hmac list */
1897			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1898				SCTPDBG(SCTP_DEBUG_AUTH1,
1899				    "SCTP: invalid HMAC param\n");
1900				return (-1);
1901			}
1902			got_hmacs = 1;
1903		} else if (ptype == SCTP_CHUNK_LIST) {
1904			int i, num_chunks;
1905			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1906
1907			/* did the peer send a non-empty chunk list? */
1908			struct sctp_auth_chunk_list *chunks = NULL;
1909
1910			phdr = sctp_get_next_param(m, offset,
1911			    (struct sctp_paramhdr *)chunks_store,
1912			    min(plen, sizeof(chunks_store)));
1913			if (phdr == NULL)
1914				return (-1);
1915
1916			/*-
1917			 * Flip through the list and mark that the
1918			 * peer supports asconf/asconf_ack.
1919			 */
1920			chunks = (struct sctp_auth_chunk_list *)phdr;
1921			num_chunks = plen - sizeof(*chunks);
1922			for (i = 0; i < num_chunks; i++) {
1923				/* record asconf/asconf-ack if listed */
1924				if (chunks->chunk_types[i] == SCTP_ASCONF)
1925					saw_asconf = 1;
1926				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
1927					saw_asconf_ack = 1;
1928
1929			}
1930			if (num_chunks)
1931				got_chklist = 1;
1932		}
1933		offset += SCTP_SIZE32(plen);
1934		if (offset >= limit) {
1935			break;
1936		}
1937		phdr = sctp_get_next_param(m, offset, &parm_buf,
1938		    sizeof(parm_buf));
1939	}
1940	/* validate authentication required parameters */
1941	if (got_random && got_hmacs) {
1942		peer_supports_auth = 1;
1943	} else {
1944		peer_supports_auth = 0;
1945	}
1946	if (!peer_supports_auth && got_chklist) {
1947		SCTPDBG(SCTP_DEBUG_AUTH1,
1948		    "SCTP: peer sent chunk list w/o AUTH\n");
1949		return (-1);
1950	}
1951	if (!SCTP_BASE_SYSCTL(sctp_asconf_auth_nochk) && peer_supports_asconf &&
1952	    !peer_supports_auth) {
1953		SCTPDBG(SCTP_DEBUG_AUTH1,
1954		    "SCTP: peer supports ASCONF but not AUTH\n");
1955		return (-1);
1956	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
1957	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
1958		return (-2);
1959	}
1960	return (0);
1961}
1962
1963void
1964sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
1965{
1966	uint16_t chunks_len = 0;
1967	uint16_t hmacs_len = 0;
1968	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
1969	sctp_key_t *new_key;
1970	uint16_t keylen;
1971
1972	/* initialize hmac list from endpoint */
1973	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
1974	if (stcb->asoc.local_hmacs != NULL) {
1975		hmacs_len = stcb->asoc.local_hmacs->num_algo *
1976		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
1977	}
1978	/* initialize auth chunks list from endpoint */
1979	stcb->asoc.local_auth_chunks =
1980	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
1981	if (stcb->asoc.local_auth_chunks != NULL) {
1982		int i;
1983
1984		for (i = 0; i < 256; i++) {
1985			if (stcb->asoc.local_auth_chunks->chunks[i])
1986				chunks_len++;
1987		}
1988	}
1989	/* copy defaults from the endpoint */
1990	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
1991
1992	/* copy out the shared key list (by reference) from the endpoint */
1993	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
1994	    &stcb->asoc.shared_keys);
1995
1996	/* now set the concatenated key (random + chunks + hmacs) */
1997	/* key includes parameter headers */
1998	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
1999	    hmacs_len;
2000	new_key = sctp_alloc_key(keylen);
2001	if (new_key != NULL) {
2002		struct sctp_paramhdr *ph;
2003		int plen;
2004
2005		/* generate and copy in the RANDOM */
2006		ph = (struct sctp_paramhdr *)new_key->key;
2007		ph->param_type = htons(SCTP_RANDOM);
2008		plen = sizeof(*ph) + random_len;
2009		ph->param_length = htons(plen);
2010		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
2011		keylen = plen;
2012
2013		/* append in the AUTH chunks */
2014		/* NOTE: currently we always have chunks to list */
2015		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2016		ph->param_type = htons(SCTP_CHUNK_LIST);
2017		plen = sizeof(*ph) + chunks_len;
2018		ph->param_length = htons(plen);
2019		keylen += sizeof(*ph);
2020		if (stcb->asoc.local_auth_chunks) {
2021			int i;
2022
2023			for (i = 0; i < 256; i++) {
2024				if (stcb->asoc.local_auth_chunks->chunks[i])
2025					new_key->key[keylen++] = i;
2026			}
2027		}
2028		/* append in the HMACs */
2029		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
2030		ph->param_type = htons(SCTP_HMAC_LIST);
2031		plen = sizeof(*ph) + hmacs_len;
2032		ph->param_length = htons(plen);
2033		keylen += sizeof(*ph);
2034		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
2035		    new_key->key + keylen);
2036	}
2037	if (stcb->asoc.authinfo.random != NULL)
2038		sctp_free_key(stcb->asoc.authinfo.random);
2039	stcb->asoc.authinfo.random = new_key;
2040	stcb->asoc.authinfo.random_len = random_len;
2041}
2042