ip_input.c revision 286025
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/netinet/ip_input.c 286025 2015-07-29 17:46:16Z eri $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_kdtrace.h"
40#include "opt_route.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/domain.h>
47#include <sys/protosw.h>
48#include <sys/socket.h>
49#include <sys/time.h>
50#include <sys/kernel.h>
51#include <sys/lock.h>
52#include <sys/rwlock.h>
53#include <sys/sdt.h>
54#include <sys/syslog.h>
55#include <sys/sysctl.h>
56
57#include <net/pfil.h>
58#include <net/if.h>
59#include <net/if_types.h>
60#include <net/if_var.h>
61#include <net/if_dl.h>
62#include <net/route.h>
63#include <net/netisr.h>
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_kdtrace.h>
68#include <netinet/in_systm.h>
69#include <netinet/in_var.h>
70#include <netinet/ip.h>
71#include <netinet/in_pcb.h>
72#include <netinet/ip_var.h>
73#include <netinet/ip_fw.h>
74#include <netinet/ip_icmp.h>
75#include <netinet/ip_options.h>
76#include <machine/in_cksum.h>
77#include <netinet/ip_carp.h>
78#ifdef IPSEC
79#include <netinet/ip_ipsec.h>
80#endif /* IPSEC */
81
82#include <sys/socketvar.h>
83
84#include <security/mac/mac_framework.h>
85
86#ifdef CTASSERT
87CTASSERT(sizeof(struct ip) == 20);
88#endif
89
90struct	rwlock in_ifaddr_lock;
91RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
92
93VNET_DEFINE(int, rsvp_on);
94
95VNET_DEFINE(int, ipforwarding);
96SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
97    &VNET_NAME(ipforwarding), 0,
98    "Enable IP forwarding between interfaces");
99
100static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
101#define	V_ipsendredirects	VNET(ipsendredirects)
102SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
103    &VNET_NAME(ipsendredirects), 0,
104    "Enable sending IP redirects");
105
106static VNET_DEFINE(int, ip_keepfaith);
107#define	V_ip_keepfaith		VNET(ip_keepfaith)
108SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
109    &VNET_NAME(ip_keepfaith), 0,
110    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
111
112static VNET_DEFINE(int, ip_sendsourcequench);
113#define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
114SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
115    &VNET_NAME(ip_sendsourcequench), 0,
116    "Enable the transmission of source quench packets");
117
118VNET_DEFINE(int, ip_do_randomid);
119SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
120    &VNET_NAME(ip_do_randomid), 0,
121    "Assign random ip_id values");
122
123/*
124 * XXX - Setting ip_checkinterface mostly implements the receive side of
125 * the Strong ES model described in RFC 1122, but since the routing table
126 * and transmit implementation do not implement the Strong ES model,
127 * setting this to 1 results in an odd hybrid.
128 *
129 * XXX - ip_checkinterface currently must be disabled if you use ipnat
130 * to translate the destination address to another local interface.
131 *
132 * XXX - ip_checkinterface must be disabled if you add IP aliases
133 * to the loopback interface instead of the interface where the
134 * packets for those addresses are received.
135 */
136static VNET_DEFINE(int, ip_checkinterface);
137#define	V_ip_checkinterface	VNET(ip_checkinterface)
138SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
139    &VNET_NAME(ip_checkinterface), 0,
140    "Verify packet arrives on correct interface");
141
142VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
143
144static struct netisr_handler ip_nh = {
145	.nh_name = "ip",
146	.nh_handler = ip_input,
147	.nh_proto = NETISR_IP,
148	.nh_policy = NETISR_POLICY_FLOW,
149};
150
151extern	struct domain inetdomain;
152extern	struct protosw inetsw[];
153u_char	ip_protox[IPPROTO_MAX];
154VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
155VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
156VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
157
158static VNET_DEFINE(uma_zone_t, ipq_zone);
159static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
160static struct mtx ipqlock;
161
162#define	V_ipq_zone		VNET(ipq_zone)
163#define	V_ipq			VNET(ipq)
164
165#define	IPQ_LOCK()	mtx_lock(&ipqlock)
166#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
167#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
168#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
169
170static void	maxnipq_update(void);
171static void	ipq_zone_change(void *);
172static void	ip_drain_locked(void);
173
174static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
175static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
176#define	V_maxnipq		VNET(maxnipq)
177#define	V_nipq			VNET(nipq)
178SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
179    &VNET_NAME(nipq), 0,
180    "Current number of IPv4 fragment reassembly queue entries");
181
182static VNET_DEFINE(int, maxfragsperpacket);
183#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
184SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
185    &VNET_NAME(maxfragsperpacket), 0,
186    "Maximum number of IPv4 fragments allowed per packet");
187
188#ifdef IPCTL_DEFMTU
189SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
190    &ip_mtu, 0, "Default MTU");
191#endif
192
193#ifdef IPSTEALTH
194VNET_DEFINE(int, ipstealth);
195SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
196    &VNET_NAME(ipstealth), 0,
197    "IP stealth mode, no TTL decrementation on forwarding");
198#endif
199
200static void	ip_freef(struct ipqhead *, struct ipq *);
201
202/*
203 * IP statistics are stored in the "array" of counter(9)s.
204 */
205VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
206VNET_PCPUSTAT_SYSINIT(ipstat);
207SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
208    "IP statistics (struct ipstat, netinet/ip_var.h)");
209
210#ifdef VIMAGE
211VNET_PCPUSTAT_SYSUNINIT(ipstat);
212#endif /* VIMAGE */
213
214/*
215 * Kernel module interface for updating ipstat.  The argument is an index
216 * into ipstat treated as an array.
217 */
218void
219kmod_ipstat_inc(int statnum)
220{
221
222	counter_u64_add(VNET(ipstat)[statnum], 1);
223}
224
225void
226kmod_ipstat_dec(int statnum)
227{
228
229	counter_u64_add(VNET(ipstat)[statnum], -1);
230}
231
232static int
233sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
234{
235	int error, qlimit;
236
237	netisr_getqlimit(&ip_nh, &qlimit);
238	error = sysctl_handle_int(oidp, &qlimit, 0, req);
239	if (error || !req->newptr)
240		return (error);
241	if (qlimit < 1)
242		return (EINVAL);
243	return (netisr_setqlimit(&ip_nh, qlimit));
244}
245SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
246    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
247    "Maximum size of the IP input queue");
248
249static int
250sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
251{
252	u_int64_t qdrops_long;
253	int error, qdrops;
254
255	netisr_getqdrops(&ip_nh, &qdrops_long);
256	qdrops = qdrops_long;
257	error = sysctl_handle_int(oidp, &qdrops, 0, req);
258	if (error || !req->newptr)
259		return (error);
260	if (qdrops != 0)
261		return (EINVAL);
262	netisr_clearqdrops(&ip_nh);
263	return (0);
264}
265
266SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
267    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
268    "Number of packets dropped from the IP input queue");
269
270/*
271 * IP initialization: fill in IP protocol switch table.
272 * All protocols not implemented in kernel go to raw IP protocol handler.
273 */
274void
275ip_init(void)
276{
277	struct protosw *pr;
278	int i;
279
280	V_ip_id = time_second & 0xffff;
281
282	TAILQ_INIT(&V_in_ifaddrhead);
283	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
284
285	/* Initialize IP reassembly queue. */
286	for (i = 0; i < IPREASS_NHASH; i++)
287		TAILQ_INIT(&V_ipq[i]);
288	V_maxnipq = nmbclusters / 32;
289	V_maxfragsperpacket = 16;
290	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
291	    NULL, UMA_ALIGN_PTR, 0);
292	maxnipq_update();
293
294	/* Initialize packet filter hooks. */
295	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
296	V_inet_pfil_hook.ph_af = AF_INET;
297	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
298		printf("%s: WARNING: unable to register pfil hook, "
299			"error %d\n", __func__, i);
300
301	/* Skip initialization of globals for non-default instances. */
302	if (!IS_DEFAULT_VNET(curvnet))
303		return;
304
305	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
306	if (pr == NULL)
307		panic("ip_init: PF_INET not found");
308
309	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
310	for (i = 0; i < IPPROTO_MAX; i++)
311		ip_protox[i] = pr - inetsw;
312	/*
313	 * Cycle through IP protocols and put them into the appropriate place
314	 * in ip_protox[].
315	 */
316	for (pr = inetdomain.dom_protosw;
317	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
318		if (pr->pr_domain->dom_family == PF_INET &&
319		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
320			/* Be careful to only index valid IP protocols. */
321			if (pr->pr_protocol < IPPROTO_MAX)
322				ip_protox[pr->pr_protocol] = pr - inetsw;
323		}
324
325	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
326		NULL, EVENTHANDLER_PRI_ANY);
327
328	/* Initialize various other remaining things. */
329	IPQ_LOCK_INIT();
330	netisr_register(&ip_nh);
331}
332
333#ifdef VIMAGE
334void
335ip_destroy(void)
336{
337	int i;
338
339	if ((i = pfil_head_unregister(&V_inet_pfil_hook)) != 0)
340		printf("%s: WARNING: unable to unregister pfil hook, "
341		    "error %d\n", __func__, i);
342
343	/* Cleanup in_ifaddr hash table; should be empty. */
344	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
345
346	IPQ_LOCK();
347	ip_drain_locked();
348	IPQ_UNLOCK();
349
350	uma_zdestroy(V_ipq_zone);
351}
352#endif
353
354/*
355 * Ip input routine.  Checksum and byte swap header.  If fragmented
356 * try to reassemble.  Process options.  Pass to next level.
357 */
358void
359ip_input(struct mbuf *m)
360{
361	struct ip *ip = NULL;
362	struct in_ifaddr *ia = NULL;
363	struct ifaddr *ifa;
364	struct ifnet *ifp;
365	int    checkif, hlen = 0;
366	uint16_t sum, ip_len;
367	int dchg = 0;				/* dest changed after fw */
368	struct in_addr odst;			/* original dst address */
369
370	M_ASSERTPKTHDR(m);
371
372	if (m->m_flags & M_FASTFWD_OURS) {
373		m->m_flags &= ~M_FASTFWD_OURS;
374		/* Set up some basics that will be used later. */
375		ip = mtod(m, struct ip *);
376		hlen = ip->ip_hl << 2;
377		ip_len = ntohs(ip->ip_len);
378		goto ours;
379	}
380
381	IPSTAT_INC(ips_total);
382
383	if (m->m_pkthdr.len < sizeof(struct ip))
384		goto tooshort;
385
386	if (m->m_len < sizeof (struct ip) &&
387	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
388		IPSTAT_INC(ips_toosmall);
389		return;
390	}
391	ip = mtod(m, struct ip *);
392
393	if (ip->ip_v != IPVERSION) {
394		IPSTAT_INC(ips_badvers);
395		goto bad;
396	}
397
398	hlen = ip->ip_hl << 2;
399	if (hlen < sizeof(struct ip)) {	/* minimum header length */
400		IPSTAT_INC(ips_badhlen);
401		goto bad;
402	}
403	if (hlen > m->m_len) {
404		if ((m = m_pullup(m, hlen)) == NULL) {
405			IPSTAT_INC(ips_badhlen);
406			return;
407		}
408		ip = mtod(m, struct ip *);
409	}
410
411	IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL);
412
413	/* 127/8 must not appear on wire - RFC1122 */
414	ifp = m->m_pkthdr.rcvif;
415	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
416	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
417		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
418			IPSTAT_INC(ips_badaddr);
419			goto bad;
420		}
421	}
422
423	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
424		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
425	} else {
426		if (hlen == sizeof(struct ip)) {
427			sum = in_cksum_hdr(ip);
428		} else {
429			sum = in_cksum(m, hlen);
430		}
431	}
432	if (sum) {
433		IPSTAT_INC(ips_badsum);
434		goto bad;
435	}
436
437#ifdef ALTQ
438	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
439		/* packet is dropped by traffic conditioner */
440		return;
441#endif
442
443	ip_len = ntohs(ip->ip_len);
444	if (ip_len < hlen) {
445		IPSTAT_INC(ips_badlen);
446		goto bad;
447	}
448
449	/*
450	 * Check that the amount of data in the buffers
451	 * is as at least much as the IP header would have us expect.
452	 * Trim mbufs if longer than we expect.
453	 * Drop packet if shorter than we expect.
454	 */
455	if (m->m_pkthdr.len < ip_len) {
456tooshort:
457		IPSTAT_INC(ips_tooshort);
458		goto bad;
459	}
460	if (m->m_pkthdr.len > ip_len) {
461		if (m->m_len == m->m_pkthdr.len) {
462			m->m_len = ip_len;
463			m->m_pkthdr.len = ip_len;
464		} else
465			m_adj(m, ip_len - m->m_pkthdr.len);
466	}
467#ifdef IPSEC
468	/*
469	 * Bypass packet filtering for packets previously handled by IPsec.
470	 */
471	if (ip_ipsec_filtertunnel(m))
472		goto passin;
473#endif /* IPSEC */
474
475	/*
476	 * Run through list of hooks for input packets.
477	 *
478	 * NB: Beware of the destination address changing (e.g.
479	 *     by NAT rewriting).  When this happens, tell
480	 *     ip_forward to do the right thing.
481	 */
482
483	/* Jump over all PFIL processing if hooks are not active. */
484	if (!PFIL_HOOKED(&V_inet_pfil_hook))
485		goto passin;
486
487	odst = ip->ip_dst;
488	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
489		return;
490	if (m == NULL)			/* consumed by filter */
491		return;
492
493	ip = mtod(m, struct ip *);
494	dchg = (odst.s_addr != ip->ip_dst.s_addr);
495	ifp = m->m_pkthdr.rcvif;
496
497	if (m->m_flags & M_FASTFWD_OURS) {
498		m->m_flags &= ~M_FASTFWD_OURS;
499		goto ours;
500	}
501	if (m->m_flags & M_IP_NEXTHOP) {
502		dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
503		if (dchg != 0) {
504			/*
505			 * Directly ship the packet on.  This allows
506			 * forwarding packets originally destined to us
507			 * to some other directly connected host.
508			 */
509			ip_forward(m, 1);
510			return;
511		}
512	}
513passin:
514
515	/*
516	 * Process options and, if not destined for us,
517	 * ship it on.  ip_dooptions returns 1 when an
518	 * error was detected (causing an icmp message
519	 * to be sent and the original packet to be freed).
520	 */
521	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
522		return;
523
524        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
525         * matter if it is destined to another node, or whether it is
526         * a multicast one, RSVP wants it! and prevents it from being forwarded
527         * anywhere else. Also checks if the rsvp daemon is running before
528	 * grabbing the packet.
529         */
530	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
531		goto ours;
532
533	/*
534	 * Check our list of addresses, to see if the packet is for us.
535	 * If we don't have any addresses, assume any unicast packet
536	 * we receive might be for us (and let the upper layers deal
537	 * with it).
538	 */
539	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
540	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
541		goto ours;
542
543	/*
544	 * Enable a consistency check between the destination address
545	 * and the arrival interface for a unicast packet (the RFC 1122
546	 * strong ES model) if IP forwarding is disabled and the packet
547	 * is not locally generated and the packet is not subject to
548	 * 'ipfw fwd'.
549	 *
550	 * XXX - Checking also should be disabled if the destination
551	 * address is ipnat'ed to a different interface.
552	 *
553	 * XXX - Checking is incompatible with IP aliases added
554	 * to the loopback interface instead of the interface where
555	 * the packets are received.
556	 *
557	 * XXX - This is the case for carp vhost IPs as well so we
558	 * insert a workaround. If the packet got here, we already
559	 * checked with carp_iamatch() and carp_forus().
560	 */
561	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
562	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
563	    ifp->if_carp == NULL && (dchg == 0);
564
565	/*
566	 * Check for exact addresses in the hash bucket.
567	 */
568	/* IN_IFADDR_RLOCK(); */
569	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
570		/*
571		 * If the address matches, verify that the packet
572		 * arrived via the correct interface if checking is
573		 * enabled.
574		 */
575		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
576		    (!checkif || ia->ia_ifp == ifp)) {
577			ifa_ref(&ia->ia_ifa);
578			/* IN_IFADDR_RUNLOCK(); */
579			goto ours;
580		}
581	}
582	/* IN_IFADDR_RUNLOCK(); */
583
584	/*
585	 * Check for broadcast addresses.
586	 *
587	 * Only accept broadcast packets that arrive via the matching
588	 * interface.  Reception of forwarded directed broadcasts would
589	 * be handled via ip_forward() and ether_output() with the loopback
590	 * into the stack for SIMPLEX interfaces handled by ether_output().
591	 */
592	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
593		IF_ADDR_RLOCK(ifp);
594	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
595			if (ifa->ifa_addr->sa_family != AF_INET)
596				continue;
597			ia = ifatoia(ifa);
598			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
599			    ip->ip_dst.s_addr) {
600				ifa_ref(ifa);
601				IF_ADDR_RUNLOCK(ifp);
602				goto ours;
603			}
604#ifdef BOOTP_COMPAT
605			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
606				ifa_ref(ifa);
607				IF_ADDR_RUNLOCK(ifp);
608				goto ours;
609			}
610#endif
611		}
612		IF_ADDR_RUNLOCK(ifp);
613		ia = NULL;
614	}
615	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
616	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
617		IPSTAT_INC(ips_cantforward);
618		m_freem(m);
619		return;
620	}
621	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
622		if (V_ip_mrouter) {
623			/*
624			 * If we are acting as a multicast router, all
625			 * incoming multicast packets are passed to the
626			 * kernel-level multicast forwarding function.
627			 * The packet is returned (relatively) intact; if
628			 * ip_mforward() returns a non-zero value, the packet
629			 * must be discarded, else it may be accepted below.
630			 */
631			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
632				IPSTAT_INC(ips_cantforward);
633				m_freem(m);
634				return;
635			}
636
637			/*
638			 * The process-level routing daemon needs to receive
639			 * all multicast IGMP packets, whether or not this
640			 * host belongs to their destination groups.
641			 */
642			if (ip->ip_p == IPPROTO_IGMP)
643				goto ours;
644			IPSTAT_INC(ips_forward);
645		}
646		/*
647		 * Assume the packet is for us, to avoid prematurely taking
648		 * a lock on the in_multi hash. Protocols must perform
649		 * their own filtering and update statistics accordingly.
650		 */
651		goto ours;
652	}
653	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
654		goto ours;
655	if (ip->ip_dst.s_addr == INADDR_ANY)
656		goto ours;
657
658	/*
659	 * FAITH(Firewall Aided Internet Translator)
660	 */
661	if (ifp && ifp->if_type == IFT_FAITH) {
662		if (V_ip_keepfaith) {
663			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
664				goto ours;
665		}
666		m_freem(m);
667		return;
668	}
669
670	/*
671	 * Not for us; forward if possible and desirable.
672	 */
673	if (V_ipforwarding == 0) {
674		IPSTAT_INC(ips_cantforward);
675		m_freem(m);
676	} else {
677#ifdef IPSEC
678		if (ip_ipsec_fwd(m))
679			goto bad;
680#endif /* IPSEC */
681		ip_forward(m, dchg);
682	}
683	return;
684
685ours:
686#ifdef IPSTEALTH
687	/*
688	 * IPSTEALTH: Process non-routing options only
689	 * if the packet is destined for us.
690	 */
691	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
692		if (ia != NULL)
693			ifa_free(&ia->ia_ifa);
694		return;
695	}
696#endif /* IPSTEALTH */
697
698	/* Count the packet in the ip address stats */
699	if (ia != NULL) {
700		ia->ia_ifa.if_ipackets++;
701		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
702		ifa_free(&ia->ia_ifa);
703	}
704
705	/*
706	 * Attempt reassembly; if it succeeds, proceed.
707	 * ip_reass() will return a different mbuf.
708	 */
709	if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
710		/* XXXGL: shouldn't we save & set m_flags? */
711		m = ip_reass(m);
712		if (m == NULL)
713			return;
714		ip = mtod(m, struct ip *);
715		/* Get the header length of the reassembled packet */
716		hlen = ip->ip_hl << 2;
717	}
718
719#ifdef IPSEC
720	/*
721	 * enforce IPsec policy checking if we are seeing last header.
722	 * note that we do not visit this with protocols with pcb layer
723	 * code - like udp/tcp/raw ip.
724	 */
725	if (ip_ipsec_input(m))
726		goto bad;
727#endif /* IPSEC */
728
729	/*
730	 * Switch out to protocol's input routine.
731	 */
732	IPSTAT_INC(ips_delivered);
733
734	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
735	return;
736bad:
737	m_freem(m);
738}
739
740/*
741 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
742 * max has slightly different semantics than the sysctl, for historical
743 * reasons.
744 */
745static void
746maxnipq_update(void)
747{
748
749	/*
750	 * -1 for unlimited allocation.
751	 */
752	if (V_maxnipq < 0)
753		uma_zone_set_max(V_ipq_zone, 0);
754	/*
755	 * Positive number for specific bound.
756	 */
757	if (V_maxnipq > 0)
758		uma_zone_set_max(V_ipq_zone, V_maxnipq);
759	/*
760	 * Zero specifies no further fragment queue allocation -- set the
761	 * bound very low, but rely on implementation elsewhere to actually
762	 * prevent allocation and reclaim current queues.
763	 */
764	if (V_maxnipq == 0)
765		uma_zone_set_max(V_ipq_zone, 1);
766}
767
768static void
769ipq_zone_change(void *tag)
770{
771
772	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
773		V_maxnipq = nmbclusters / 32;
774		maxnipq_update();
775	}
776}
777
778static int
779sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
780{
781	int error, i;
782
783	i = V_maxnipq;
784	error = sysctl_handle_int(oidp, &i, 0, req);
785	if (error || !req->newptr)
786		return (error);
787
788	/*
789	 * XXXRW: Might be a good idea to sanity check the argument and place
790	 * an extreme upper bound.
791	 */
792	if (i < -1)
793		return (EINVAL);
794	V_maxnipq = i;
795	maxnipq_update();
796	return (0);
797}
798
799SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
800    NULL, 0, sysctl_maxnipq, "I",
801    "Maximum number of IPv4 fragment reassembly queue entries");
802
803#define	M_IP_FRAG	M_PROTO9
804
805/*
806 * Take incoming datagram fragment and try to reassemble it into
807 * whole datagram.  If the argument is the first fragment or one
808 * in between the function will return NULL and store the mbuf
809 * in the fragment chain.  If the argument is the last fragment
810 * the packet will be reassembled and the pointer to the new
811 * mbuf returned for further processing.  Only m_tags attached
812 * to the first packet/fragment are preserved.
813 * The IP header is *NOT* adjusted out of iplen.
814 */
815struct mbuf *
816ip_reass(struct mbuf *m)
817{
818	struct ip *ip;
819	struct mbuf *p, *q, *nq, *t;
820	struct ipq *fp = NULL;
821	struct ipqhead *head;
822	int i, hlen, next;
823	u_int8_t ecn, ecn0;
824	u_short hash;
825
826	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
827	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
828		IPSTAT_INC(ips_fragments);
829		IPSTAT_INC(ips_fragdropped);
830		m_freem(m);
831		return (NULL);
832	}
833
834	ip = mtod(m, struct ip *);
835	hlen = ip->ip_hl << 2;
836
837	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
838	head = &V_ipq[hash];
839	IPQ_LOCK();
840
841	/*
842	 * Look for queue of fragments
843	 * of this datagram.
844	 */
845	TAILQ_FOREACH(fp, head, ipq_list)
846		if (ip->ip_id == fp->ipq_id &&
847		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
848		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
849#ifdef MAC
850		    mac_ipq_match(m, fp) &&
851#endif
852		    ip->ip_p == fp->ipq_p)
853			goto found;
854
855	fp = NULL;
856
857	/*
858	 * Attempt to trim the number of allocated fragment queues if it
859	 * exceeds the administrative limit.
860	 */
861	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
862		/*
863		 * drop something from the tail of the current queue
864		 * before proceeding further
865		 */
866		struct ipq *q = TAILQ_LAST(head, ipqhead);
867		if (q == NULL) {   /* gak */
868			for (i = 0; i < IPREASS_NHASH; i++) {
869				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
870				if (r) {
871					IPSTAT_ADD(ips_fragtimeout,
872					    r->ipq_nfrags);
873					ip_freef(&V_ipq[i], r);
874					break;
875				}
876			}
877		} else {
878			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
879			ip_freef(head, q);
880		}
881	}
882
883found:
884	/*
885	 * Adjust ip_len to not reflect header,
886	 * convert offset of this to bytes.
887	 */
888	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
889	if (ip->ip_off & htons(IP_MF)) {
890		/*
891		 * Make sure that fragments have a data length
892		 * that's a non-zero multiple of 8 bytes.
893		 */
894		if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
895			IPSTAT_INC(ips_toosmall); /* XXX */
896			goto dropfrag;
897		}
898		m->m_flags |= M_IP_FRAG;
899	} else
900		m->m_flags &= ~M_IP_FRAG;
901	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
902
903	/*
904	 * Attempt reassembly; if it succeeds, proceed.
905	 * ip_reass() will return a different mbuf.
906	 */
907	IPSTAT_INC(ips_fragments);
908	m->m_pkthdr.PH_loc.ptr = ip;
909
910	/* Previous ip_reass() started here. */
911	/*
912	 * Presence of header sizes in mbufs
913	 * would confuse code below.
914	 */
915	m->m_data += hlen;
916	m->m_len -= hlen;
917
918	/*
919	 * If first fragment to arrive, create a reassembly queue.
920	 */
921	if (fp == NULL) {
922		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
923		if (fp == NULL)
924			goto dropfrag;
925#ifdef MAC
926		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
927			uma_zfree(V_ipq_zone, fp);
928			fp = NULL;
929			goto dropfrag;
930		}
931		mac_ipq_create(m, fp);
932#endif
933		TAILQ_INSERT_HEAD(head, fp, ipq_list);
934		V_nipq++;
935		fp->ipq_nfrags = 1;
936		fp->ipq_ttl = IPFRAGTTL;
937		fp->ipq_p = ip->ip_p;
938		fp->ipq_id = ip->ip_id;
939		fp->ipq_src = ip->ip_src;
940		fp->ipq_dst = ip->ip_dst;
941		fp->ipq_frags = m;
942		m->m_nextpkt = NULL;
943		goto done;
944	} else {
945		fp->ipq_nfrags++;
946#ifdef MAC
947		mac_ipq_update(m, fp);
948#endif
949	}
950
951#define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
952
953	/*
954	 * Handle ECN by comparing this segment with the first one;
955	 * if CE is set, do not lose CE.
956	 * drop if CE and not-ECT are mixed for the same packet.
957	 */
958	ecn = ip->ip_tos & IPTOS_ECN_MASK;
959	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
960	if (ecn == IPTOS_ECN_CE) {
961		if (ecn0 == IPTOS_ECN_NOTECT)
962			goto dropfrag;
963		if (ecn0 != IPTOS_ECN_CE)
964			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
965	}
966	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
967		goto dropfrag;
968
969	/*
970	 * Find a segment which begins after this one does.
971	 */
972	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
973		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
974			break;
975
976	/*
977	 * If there is a preceding segment, it may provide some of
978	 * our data already.  If so, drop the data from the incoming
979	 * segment.  If it provides all of our data, drop us, otherwise
980	 * stick new segment in the proper place.
981	 *
982	 * If some of the data is dropped from the preceding
983	 * segment, then it's checksum is invalidated.
984	 */
985	if (p) {
986		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
987		    ntohs(ip->ip_off);
988		if (i > 0) {
989			if (i >= ntohs(ip->ip_len))
990				goto dropfrag;
991			m_adj(m, i);
992			m->m_pkthdr.csum_flags = 0;
993			ip->ip_off = htons(ntohs(ip->ip_off) + i);
994			ip->ip_len = htons(ntohs(ip->ip_len) - i);
995		}
996		m->m_nextpkt = p->m_nextpkt;
997		p->m_nextpkt = m;
998	} else {
999		m->m_nextpkt = fp->ipq_frags;
1000		fp->ipq_frags = m;
1001	}
1002
1003	/*
1004	 * While we overlap succeeding segments trim them or,
1005	 * if they are completely covered, dequeue them.
1006	 */
1007	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
1008	    ntohs(GETIP(q)->ip_off); q = nq) {
1009		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
1010		    ntohs(GETIP(q)->ip_off);
1011		if (i < ntohs(GETIP(q)->ip_len)) {
1012			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
1013			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
1014			m_adj(q, i);
1015			q->m_pkthdr.csum_flags = 0;
1016			break;
1017		}
1018		nq = q->m_nextpkt;
1019		m->m_nextpkt = nq;
1020		IPSTAT_INC(ips_fragdropped);
1021		fp->ipq_nfrags--;
1022		m_freem(q);
1023	}
1024
1025	/*
1026	 * Check for complete reassembly and perform frag per packet
1027	 * limiting.
1028	 *
1029	 * Frag limiting is performed here so that the nth frag has
1030	 * a chance to complete the packet before we drop the packet.
1031	 * As a result, n+1 frags are actually allowed per packet, but
1032	 * only n will ever be stored. (n = maxfragsperpacket.)
1033	 *
1034	 */
1035	next = 0;
1036	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1037		if (ntohs(GETIP(q)->ip_off) != next) {
1038			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1039				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1040				ip_freef(head, fp);
1041			}
1042			goto done;
1043		}
1044		next += ntohs(GETIP(q)->ip_len);
1045	}
1046	/* Make sure the last packet didn't have the IP_MF flag */
1047	if (p->m_flags & M_IP_FRAG) {
1048		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1049			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1050			ip_freef(head, fp);
1051		}
1052		goto done;
1053	}
1054
1055	/*
1056	 * Reassembly is complete.  Make sure the packet is a sane size.
1057	 */
1058	q = fp->ipq_frags;
1059	ip = GETIP(q);
1060	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1061		IPSTAT_INC(ips_toolong);
1062		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1063		ip_freef(head, fp);
1064		goto done;
1065	}
1066
1067	/*
1068	 * Concatenate fragments.
1069	 */
1070	m = q;
1071	t = m->m_next;
1072	m->m_next = NULL;
1073	m_cat(m, t);
1074	nq = q->m_nextpkt;
1075	q->m_nextpkt = NULL;
1076	for (q = nq; q != NULL; q = nq) {
1077		nq = q->m_nextpkt;
1078		q->m_nextpkt = NULL;
1079		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1080		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1081		m_cat(m, q);
1082	}
1083	/*
1084	 * In order to do checksumming faster we do 'end-around carry' here
1085	 * (and not in for{} loop), though it implies we are not going to
1086	 * reassemble more than 64k fragments.
1087	 */
1088	while (m->m_pkthdr.csum_data & 0xffff0000)
1089		m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1090		    (m->m_pkthdr.csum_data >> 16);
1091#ifdef MAC
1092	mac_ipq_reassemble(fp, m);
1093	mac_ipq_destroy(fp);
1094#endif
1095
1096	/*
1097	 * Create header for new ip packet by modifying header of first
1098	 * packet;  dequeue and discard fragment reassembly header.
1099	 * Make header visible.
1100	 */
1101	ip->ip_len = htons((ip->ip_hl << 2) + next);
1102	ip->ip_src = fp->ipq_src;
1103	ip->ip_dst = fp->ipq_dst;
1104	TAILQ_REMOVE(head, fp, ipq_list);
1105	V_nipq--;
1106	uma_zfree(V_ipq_zone, fp);
1107	m->m_len += (ip->ip_hl << 2);
1108	m->m_data -= (ip->ip_hl << 2);
1109	/* some debugging cruft by sklower, below, will go away soon */
1110	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1111		m_fixhdr(m);
1112	IPSTAT_INC(ips_reassembled);
1113	IPQ_UNLOCK();
1114	return (m);
1115
1116dropfrag:
1117	IPSTAT_INC(ips_fragdropped);
1118	if (fp != NULL)
1119		fp->ipq_nfrags--;
1120	m_freem(m);
1121done:
1122	IPQ_UNLOCK();
1123	return (NULL);
1124
1125#undef GETIP
1126}
1127
1128/*
1129 * Free a fragment reassembly header and all
1130 * associated datagrams.
1131 */
1132static void
1133ip_freef(struct ipqhead *fhp, struct ipq *fp)
1134{
1135	struct mbuf *q;
1136
1137	IPQ_LOCK_ASSERT();
1138
1139	while (fp->ipq_frags) {
1140		q = fp->ipq_frags;
1141		fp->ipq_frags = q->m_nextpkt;
1142		m_freem(q);
1143	}
1144	TAILQ_REMOVE(fhp, fp, ipq_list);
1145	uma_zfree(V_ipq_zone, fp);
1146	V_nipq--;
1147}
1148
1149/*
1150 * IP timer processing;
1151 * if a timer expires on a reassembly
1152 * queue, discard it.
1153 */
1154void
1155ip_slowtimo(void)
1156{
1157	VNET_ITERATOR_DECL(vnet_iter);
1158	struct ipq *fp;
1159	int i;
1160
1161	VNET_LIST_RLOCK_NOSLEEP();
1162	IPQ_LOCK();
1163	VNET_FOREACH(vnet_iter) {
1164		CURVNET_SET(vnet_iter);
1165		for (i = 0; i < IPREASS_NHASH; i++) {
1166			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1167				struct ipq *fpp;
1168
1169				fpp = fp;
1170				fp = TAILQ_NEXT(fp, ipq_list);
1171				if(--fpp->ipq_ttl == 0) {
1172					IPSTAT_ADD(ips_fragtimeout,
1173					    fpp->ipq_nfrags);
1174					ip_freef(&V_ipq[i], fpp);
1175				}
1176			}
1177		}
1178		/*
1179		 * If we are over the maximum number of fragments
1180		 * (due to the limit being lowered), drain off
1181		 * enough to get down to the new limit.
1182		 */
1183		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1184			for (i = 0; i < IPREASS_NHASH; i++) {
1185				while (V_nipq > V_maxnipq &&
1186				    !TAILQ_EMPTY(&V_ipq[i])) {
1187					IPSTAT_ADD(ips_fragdropped,
1188					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1189					ip_freef(&V_ipq[i],
1190					    TAILQ_FIRST(&V_ipq[i]));
1191				}
1192			}
1193		}
1194		CURVNET_RESTORE();
1195	}
1196	IPQ_UNLOCK();
1197	VNET_LIST_RUNLOCK_NOSLEEP();
1198}
1199
1200/*
1201 * Drain off all datagram fragments.
1202 */
1203static void
1204ip_drain_locked(void)
1205{
1206	int     i;
1207
1208	IPQ_LOCK_ASSERT();
1209
1210	for (i = 0; i < IPREASS_NHASH; i++) {
1211		while(!TAILQ_EMPTY(&V_ipq[i])) {
1212			IPSTAT_ADD(ips_fragdropped,
1213			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1214			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1215		}
1216	}
1217}
1218
1219void
1220ip_drain(void)
1221{
1222	VNET_ITERATOR_DECL(vnet_iter);
1223
1224	VNET_LIST_RLOCK_NOSLEEP();
1225	IPQ_LOCK();
1226	VNET_FOREACH(vnet_iter) {
1227		CURVNET_SET(vnet_iter);
1228		ip_drain_locked();
1229		CURVNET_RESTORE();
1230	}
1231	IPQ_UNLOCK();
1232	VNET_LIST_RUNLOCK_NOSLEEP();
1233	in_rtqdrain();
1234}
1235
1236/*
1237 * The protocol to be inserted into ip_protox[] must be already registered
1238 * in inetsw[], either statically or through pf_proto_register().
1239 */
1240int
1241ipproto_register(short ipproto)
1242{
1243	struct protosw *pr;
1244
1245	/* Sanity checks. */
1246	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1247		return (EPROTONOSUPPORT);
1248
1249	/*
1250	 * The protocol slot must not be occupied by another protocol
1251	 * already.  An index pointing to IPPROTO_RAW is unused.
1252	 */
1253	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1254	if (pr == NULL)
1255		return (EPFNOSUPPORT);
1256	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1257		return (EEXIST);
1258
1259	/* Find the protocol position in inetsw[] and set the index. */
1260	for (pr = inetdomain.dom_protosw;
1261	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1262		if (pr->pr_domain->dom_family == PF_INET &&
1263		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1264			ip_protox[pr->pr_protocol] = pr - inetsw;
1265			return (0);
1266		}
1267	}
1268	return (EPROTONOSUPPORT);
1269}
1270
1271int
1272ipproto_unregister(short ipproto)
1273{
1274	struct protosw *pr;
1275
1276	/* Sanity checks. */
1277	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1278		return (EPROTONOSUPPORT);
1279
1280	/* Check if the protocol was indeed registered. */
1281	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1282	if (pr == NULL)
1283		return (EPFNOSUPPORT);
1284	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1285		return (ENOENT);
1286
1287	/* Reset the protocol slot to IPPROTO_RAW. */
1288	ip_protox[ipproto] = pr - inetsw;
1289	return (0);
1290}
1291
1292/*
1293 * Given address of next destination (final or next hop), return (referenced)
1294 * internet address info of interface to be used to get there.
1295 */
1296struct in_ifaddr *
1297ip_rtaddr(struct in_addr dst, u_int fibnum)
1298{
1299	struct route sro;
1300	struct sockaddr_in *sin;
1301	struct in_ifaddr *ia;
1302
1303	bzero(&sro, sizeof(sro));
1304	sin = (struct sockaddr_in *)&sro.ro_dst;
1305	sin->sin_family = AF_INET;
1306	sin->sin_len = sizeof(*sin);
1307	sin->sin_addr = dst;
1308	in_rtalloc_ign(&sro, 0, fibnum);
1309
1310	if (sro.ro_rt == NULL)
1311		return (NULL);
1312
1313	ia = ifatoia(sro.ro_rt->rt_ifa);
1314	ifa_ref(&ia->ia_ifa);
1315	RTFREE(sro.ro_rt);
1316	return (ia);
1317}
1318
1319u_char inetctlerrmap[PRC_NCMDS] = {
1320	0,		0,		0,		0,
1321	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1322	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1323	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1324	0,		0,		EHOSTUNREACH,	0,
1325	ENOPROTOOPT,	ECONNREFUSED
1326};
1327
1328/*
1329 * Forward a packet.  If some error occurs return the sender
1330 * an icmp packet.  Note we can't always generate a meaningful
1331 * icmp message because icmp doesn't have a large enough repertoire
1332 * of codes and types.
1333 *
1334 * If not forwarding, just drop the packet.  This could be confusing
1335 * if ipforwarding was zero but some routing protocol was advancing
1336 * us as a gateway to somewhere.  However, we must let the routing
1337 * protocol deal with that.
1338 *
1339 * The srcrt parameter indicates whether the packet is being forwarded
1340 * via a source route.
1341 */
1342void
1343ip_forward(struct mbuf *m, int srcrt)
1344{
1345	struct ip *ip = mtod(m, struct ip *);
1346	struct in_ifaddr *ia;
1347	struct mbuf *mcopy;
1348	struct sockaddr_in *sin;
1349	struct in_addr dest;
1350	struct route ro;
1351	int error, type = 0, code = 0, mtu = 0;
1352
1353	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1354		IPSTAT_INC(ips_cantforward);
1355		m_freem(m);
1356		return;
1357	}
1358#ifdef IPSTEALTH
1359	if (!V_ipstealth) {
1360#endif
1361		if (ip->ip_ttl <= IPTTLDEC) {
1362			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1363			    0, 0);
1364			return;
1365		}
1366#ifdef IPSTEALTH
1367	}
1368#endif
1369
1370	bzero(&ro, sizeof(ro));
1371	sin = (struct sockaddr_in *)&ro.ro_dst;
1372	sin->sin_family = AF_INET;
1373	sin->sin_len = sizeof(*sin);
1374	sin->sin_addr = ip->ip_dst;
1375#ifdef RADIX_MPATH
1376	rtalloc_mpath_fib(&ro,
1377	    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
1378	    M_GETFIB(m));
1379#else
1380	in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1381#endif
1382	if (ro.ro_rt != NULL) {
1383		ia = ifatoia(ro.ro_rt->rt_ifa);
1384		ifa_ref(&ia->ia_ifa);
1385	}
1386#ifndef IPSEC
1387	/*
1388	 * 'ia' may be NULL if there is no route for this destination.
1389	 * In case of IPsec, Don't discard it just yet, but pass it to
1390	 * ip_output in case of outgoing IPsec policy.
1391	 */
1392	if (!srcrt && ia == NULL) {
1393		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1394		RO_RTFREE(&ro);
1395		return;
1396	}
1397#endif
1398
1399	/*
1400	 * Save the IP header and at most 8 bytes of the payload,
1401	 * in case we need to generate an ICMP message to the src.
1402	 *
1403	 * XXX this can be optimized a lot by saving the data in a local
1404	 * buffer on the stack (72 bytes at most), and only allocating the
1405	 * mbuf if really necessary. The vast majority of the packets
1406	 * are forwarded without having to send an ICMP back (either
1407	 * because unnecessary, or because rate limited), so we are
1408	 * really we are wasting a lot of work here.
1409	 *
1410	 * We don't use m_copy() because it might return a reference
1411	 * to a shared cluster. Both this function and ip_output()
1412	 * assume exclusive access to the IP header in `m', so any
1413	 * data in a cluster may change before we reach icmp_error().
1414	 */
1415	mcopy = m_gethdr(M_NOWAIT, m->m_type);
1416	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1417		/*
1418		 * It's probably ok if the pkthdr dup fails (because
1419		 * the deep copy of the tag chain failed), but for now
1420		 * be conservative and just discard the copy since
1421		 * code below may some day want the tags.
1422		 */
1423		m_free(mcopy);
1424		mcopy = NULL;
1425	}
1426	if (mcopy != NULL) {
1427		mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1428		mcopy->m_pkthdr.len = mcopy->m_len;
1429		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1430	}
1431
1432#ifdef IPSTEALTH
1433	if (!V_ipstealth) {
1434#endif
1435		ip->ip_ttl -= IPTTLDEC;
1436#ifdef IPSTEALTH
1437	}
1438#endif
1439
1440	/*
1441	 * If forwarding packet using same interface that it came in on,
1442	 * perhaps should send a redirect to sender to shortcut a hop.
1443	 * Only send redirect if source is sending directly to us,
1444	 * and if packet was not source routed (or has any options).
1445	 * Also, don't send redirect if forwarding using a default route
1446	 * or a route modified by a redirect.
1447	 */
1448	dest.s_addr = 0;
1449	if (!srcrt && V_ipsendredirects &&
1450	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1451		struct rtentry *rt;
1452
1453		rt = ro.ro_rt;
1454
1455		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1456		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1457#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1458			u_long src = ntohl(ip->ip_src.s_addr);
1459
1460			if (RTA(rt) &&
1461			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1462				if (rt->rt_flags & RTF_GATEWAY)
1463					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1464				else
1465					dest.s_addr = ip->ip_dst.s_addr;
1466				/* Router requirements says to only send host redirects */
1467				type = ICMP_REDIRECT;
1468				code = ICMP_REDIRECT_HOST;
1469			}
1470		}
1471	}
1472
1473	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1474
1475	if (error == EMSGSIZE && ro.ro_rt)
1476		mtu = ro.ro_rt->rt_mtu;
1477	RO_RTFREE(&ro);
1478
1479	if (error)
1480		IPSTAT_INC(ips_cantforward);
1481	else {
1482		IPSTAT_INC(ips_forward);
1483		if (type)
1484			IPSTAT_INC(ips_redirectsent);
1485		else {
1486			if (mcopy)
1487				m_freem(mcopy);
1488			if (ia != NULL)
1489				ifa_free(&ia->ia_ifa);
1490			return;
1491		}
1492	}
1493	if (mcopy == NULL) {
1494		if (ia != NULL)
1495			ifa_free(&ia->ia_ifa);
1496		return;
1497	}
1498
1499	switch (error) {
1500
1501	case 0:				/* forwarded, but need redirect */
1502		/* type, code set above */
1503		break;
1504
1505	case ENETUNREACH:
1506	case EHOSTUNREACH:
1507	case ENETDOWN:
1508	case EHOSTDOWN:
1509	default:
1510		type = ICMP_UNREACH;
1511		code = ICMP_UNREACH_HOST;
1512		break;
1513
1514	case EMSGSIZE:
1515		type = ICMP_UNREACH;
1516		code = ICMP_UNREACH_NEEDFRAG;
1517
1518#ifdef IPSEC
1519		/*
1520		 * If IPsec is configured for this path,
1521		 * override any possibly mtu value set by ip_output.
1522		 */
1523		mtu = ip_ipsec_mtu(mcopy, mtu);
1524#endif /* IPSEC */
1525		/*
1526		 * If the MTU was set before make sure we are below the
1527		 * interface MTU.
1528		 * If the MTU wasn't set before use the interface mtu or
1529		 * fall back to the next smaller mtu step compared to the
1530		 * current packet size.
1531		 */
1532		if (mtu != 0) {
1533			if (ia != NULL)
1534				mtu = min(mtu, ia->ia_ifp->if_mtu);
1535		} else {
1536			if (ia != NULL)
1537				mtu = ia->ia_ifp->if_mtu;
1538			else
1539				mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1540		}
1541		IPSTAT_INC(ips_cantfrag);
1542		break;
1543
1544	case ENOBUFS:
1545		/*
1546		 * A router should not generate ICMP_SOURCEQUENCH as
1547		 * required in RFC1812 Requirements for IP Version 4 Routers.
1548		 * Source quench could be a big problem under DoS attacks,
1549		 * or if the underlying interface is rate-limited.
1550		 * Those who need source quench packets may re-enable them
1551		 * via the net.inet.ip.sendsourcequench sysctl.
1552		 */
1553		if (V_ip_sendsourcequench == 0) {
1554			m_freem(mcopy);
1555			if (ia != NULL)
1556				ifa_free(&ia->ia_ifa);
1557			return;
1558		} else {
1559			type = ICMP_SOURCEQUENCH;
1560			code = 0;
1561		}
1562		break;
1563
1564	case EACCES:			/* ipfw denied packet */
1565		m_freem(mcopy);
1566		if (ia != NULL)
1567			ifa_free(&ia->ia_ifa);
1568		return;
1569	}
1570	if (ia != NULL)
1571		ifa_free(&ia->ia_ifa);
1572	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1573}
1574
1575void
1576ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1577    struct mbuf *m)
1578{
1579
1580	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1581		struct bintime bt;
1582
1583		bintime(&bt);
1584		if (inp->inp_socket->so_options & SO_BINTIME) {
1585			*mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1586			    SCM_BINTIME, SOL_SOCKET);
1587			if (*mp)
1588				mp = &(*mp)->m_next;
1589		}
1590		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1591			struct timeval tv;
1592
1593			bintime2timeval(&bt, &tv);
1594			*mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1595			    SCM_TIMESTAMP, SOL_SOCKET);
1596			if (*mp)
1597				mp = &(*mp)->m_next;
1598		}
1599	}
1600	if (inp->inp_flags & INP_RECVDSTADDR) {
1601		*mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1602		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1603		if (*mp)
1604			mp = &(*mp)->m_next;
1605	}
1606	if (inp->inp_flags & INP_RECVTTL) {
1607		*mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1608		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1609		if (*mp)
1610			mp = &(*mp)->m_next;
1611	}
1612#ifdef notyet
1613	/* XXX
1614	 * Moving these out of udp_input() made them even more broken
1615	 * than they already were.
1616	 */
1617	/* options were tossed already */
1618	if (inp->inp_flags & INP_RECVOPTS) {
1619		*mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1620		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1621		if (*mp)
1622			mp = &(*mp)->m_next;
1623	}
1624	/* ip_srcroute doesn't do what we want here, need to fix */
1625	if (inp->inp_flags & INP_RECVRETOPTS) {
1626		*mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1627		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1628		if (*mp)
1629			mp = &(*mp)->m_next;
1630	}
1631#endif
1632	if (inp->inp_flags & INP_RECVIF) {
1633		struct ifnet *ifp;
1634		struct sdlbuf {
1635			struct sockaddr_dl sdl;
1636			u_char	pad[32];
1637		} sdlbuf;
1638		struct sockaddr_dl *sdp;
1639		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1640
1641		if ((ifp = m->m_pkthdr.rcvif) &&
1642		    ifp->if_index && ifp->if_index <= V_if_index) {
1643			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1644			/*
1645			 * Change our mind and don't try copy.
1646			 */
1647			if (sdp->sdl_family != AF_LINK ||
1648			    sdp->sdl_len > sizeof(sdlbuf)) {
1649				goto makedummy;
1650			}
1651			bcopy(sdp, sdl2, sdp->sdl_len);
1652		} else {
1653makedummy:
1654			sdl2->sdl_len =
1655			    offsetof(struct sockaddr_dl, sdl_data[0]);
1656			sdl2->sdl_family = AF_LINK;
1657			sdl2->sdl_index = 0;
1658			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1659		}
1660		*mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1661		    IP_RECVIF, IPPROTO_IP);
1662		if (*mp)
1663			mp = &(*mp)->m_next;
1664	}
1665	if (inp->inp_flags & INP_RECVTOS) {
1666		*mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1667		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1668		if (*mp)
1669			mp = &(*mp)->m_next;
1670	}
1671}
1672
1673/*
1674 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1675 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1676 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1677 * compiled.
1678 */
1679static VNET_DEFINE(int, ip_rsvp_on);
1680VNET_DEFINE(struct socket *, ip_rsvpd);
1681
1682#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1683
1684int
1685ip_rsvp_init(struct socket *so)
1686{
1687
1688	if (so->so_type != SOCK_RAW ||
1689	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1690		return EOPNOTSUPP;
1691
1692	if (V_ip_rsvpd != NULL)
1693		return EADDRINUSE;
1694
1695	V_ip_rsvpd = so;
1696	/*
1697	 * This may seem silly, but we need to be sure we don't over-increment
1698	 * the RSVP counter, in case something slips up.
1699	 */
1700	if (!V_ip_rsvp_on) {
1701		V_ip_rsvp_on = 1;
1702		V_rsvp_on++;
1703	}
1704
1705	return 0;
1706}
1707
1708int
1709ip_rsvp_done(void)
1710{
1711
1712	V_ip_rsvpd = NULL;
1713	/*
1714	 * This may seem silly, but we need to be sure we don't over-decrement
1715	 * the RSVP counter, in case something slips up.
1716	 */
1717	if (V_ip_rsvp_on) {
1718		V_ip_rsvp_on = 0;
1719		V_rsvp_on--;
1720	}
1721	return 0;
1722}
1723
1724void
1725rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1726{
1727
1728	if (rsvp_input_p) { /* call the real one if loaded */
1729		rsvp_input_p(m, off);
1730		return;
1731	}
1732
1733	/* Can still get packets with rsvp_on = 0 if there is a local member
1734	 * of the group to which the RSVP packet is addressed.  But in this
1735	 * case we want to throw the packet away.
1736	 */
1737
1738	if (!V_rsvp_on) {
1739		m_freem(m);
1740		return;
1741	}
1742
1743	if (V_ip_rsvpd != NULL) {
1744		rip_input(m, off);
1745		return;
1746	}
1747	/* Drop the packet */
1748	m_freem(m);
1749}
1750