vfs_vnops.c revision 301100
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11 * Copyright (c) 2013, 2014 The FreeBSD Foundation
12 *
13 * Portions of this software were developed by Konstantin Belousov
14 * under sponsorship from the FreeBSD Foundation.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: stable/10/sys/kern/vfs_vnops.c 301100 2016-06-01 04:07:33Z kib $");
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/disk.h>
49#include <sys/fcntl.h>
50#include <sys/file.h>
51#include <sys/kdb.h>
52#include <sys/stat.h>
53#include <sys/priv.h>
54#include <sys/proc.h>
55#include <sys/limits.h>
56#include <sys/lock.h>
57#include <sys/mount.h>
58#include <sys/mutex.h>
59#include <sys/namei.h>
60#include <sys/vnode.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/filio.h>
64#include <sys/resourcevar.h>
65#include <sys/rwlock.h>
66#include <sys/sx.h>
67#include <sys/sysctl.h>
68#include <sys/ttycom.h>
69#include <sys/conf.h>
70#include <sys/syslog.h>
71#include <sys/unistd.h>
72
73#include <security/audit/audit.h>
74#include <security/mac/mac_framework.h>
75
76#include <vm/vm.h>
77#include <vm/vm_extern.h>
78#include <vm/pmap.h>
79#include <vm/vm_map.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82
83static fo_rdwr_t	vn_read;
84static fo_rdwr_t	vn_write;
85static fo_rdwr_t	vn_io_fault;
86static fo_truncate_t	vn_truncate;
87static fo_ioctl_t	vn_ioctl;
88static fo_poll_t	vn_poll;
89static fo_kqfilter_t	vn_kqfilter;
90static fo_stat_t	vn_statfile;
91static fo_close_t	vn_closefile;
92
93struct 	fileops vnops = {
94	.fo_read = vn_io_fault,
95	.fo_write = vn_io_fault,
96	.fo_truncate = vn_truncate,
97	.fo_ioctl = vn_ioctl,
98	.fo_poll = vn_poll,
99	.fo_kqfilter = vn_kqfilter,
100	.fo_stat = vn_statfile,
101	.fo_close = vn_closefile,
102	.fo_chmod = vn_chmod,
103	.fo_chown = vn_chown,
104	.fo_sendfile = vn_sendfile,
105	.fo_seek = vn_seek,
106	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
107};
108
109static const int io_hold_cnt = 16;
110static int vn_io_fault_enable = 1;
111SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
112    &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
113static int vn_io_fault_prefault = 0;
114SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
115    &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
116static u_long vn_io_faults_cnt;
117SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
118    &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
119
120/*
121 * Returns true if vn_io_fault mode of handling the i/o request should
122 * be used.
123 */
124static bool
125do_vn_io_fault(struct vnode *vp, struct uio *uio)
126{
127	struct mount *mp;
128
129	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
130	    (mp = vp->v_mount) != NULL &&
131	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
132}
133
134/*
135 * Structure used to pass arguments to vn_io_fault1(), to do either
136 * file- or vnode-based I/O calls.
137 */
138struct vn_io_fault_args {
139	enum {
140		VN_IO_FAULT_FOP,
141		VN_IO_FAULT_VOP
142	} kind;
143	struct ucred *cred;
144	int flags;
145	union {
146		struct fop_args_tag {
147			struct file *fp;
148			fo_rdwr_t *doio;
149		} fop_args;
150		struct vop_args_tag {
151			struct vnode *vp;
152		} vop_args;
153	} args;
154};
155
156static int vn_io_fault1(struct vnode *vp, struct uio *uio,
157    struct vn_io_fault_args *args, struct thread *td);
158
159int
160vn_open(ndp, flagp, cmode, fp)
161	struct nameidata *ndp;
162	int *flagp, cmode;
163	struct file *fp;
164{
165	struct thread *td = ndp->ni_cnd.cn_thread;
166
167	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
168}
169
170/*
171 * Common code for vnode open operations via a name lookup.
172 * Lookup the vnode and invoke VOP_CREATE if needed.
173 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
174 *
175 * Note that this does NOT free nameidata for the successful case,
176 * due to the NDINIT being done elsewhere.
177 */
178int
179vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
180    struct ucred *cred, struct file *fp)
181{
182	struct vnode *vp;
183	struct mount *mp;
184	struct thread *td = ndp->ni_cnd.cn_thread;
185	struct vattr vat;
186	struct vattr *vap = &vat;
187	int fmode, error;
188
189restart:
190	fmode = *flagp;
191	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
192	    O_EXCL | O_DIRECTORY))
193		return (EINVAL);
194	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
195		ndp->ni_cnd.cn_nameiop = CREATE;
196		/*
197		 * Set NOCACHE to avoid flushing the cache when
198		 * rolling in many files at once.
199		*/
200		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
201		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
202			ndp->ni_cnd.cn_flags |= FOLLOW;
203		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
204			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
205		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
206			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
207		bwillwrite();
208		if ((error = namei(ndp)) != 0)
209			return (error);
210		if (ndp->ni_vp == NULL) {
211			VATTR_NULL(vap);
212			vap->va_type = VREG;
213			vap->va_mode = cmode;
214			if (fmode & O_EXCL)
215				vap->va_vaflags |= VA_EXCLUSIVE;
216			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
217				NDFREE(ndp, NDF_ONLY_PNBUF);
218				vput(ndp->ni_dvp);
219				if ((error = vn_start_write(NULL, &mp,
220				    V_XSLEEP | PCATCH)) != 0)
221					return (error);
222				goto restart;
223			}
224			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
225				ndp->ni_cnd.cn_flags |= MAKEENTRY;
226#ifdef MAC
227			error = mac_vnode_check_create(cred, ndp->ni_dvp,
228			    &ndp->ni_cnd, vap);
229			if (error == 0)
230#endif
231				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
232						   &ndp->ni_cnd, vap);
233			vput(ndp->ni_dvp);
234			vn_finished_write(mp);
235			if (error) {
236				NDFREE(ndp, NDF_ONLY_PNBUF);
237				return (error);
238			}
239			fmode &= ~O_TRUNC;
240			vp = ndp->ni_vp;
241		} else {
242			if (ndp->ni_dvp == ndp->ni_vp)
243				vrele(ndp->ni_dvp);
244			else
245				vput(ndp->ni_dvp);
246			ndp->ni_dvp = NULL;
247			vp = ndp->ni_vp;
248			if (fmode & O_EXCL) {
249				error = EEXIST;
250				goto bad;
251			}
252			fmode &= ~O_CREAT;
253		}
254	} else {
255		ndp->ni_cnd.cn_nameiop = LOOKUP;
256		ndp->ni_cnd.cn_flags = ISOPEN |
257		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
258		if (!(fmode & FWRITE))
259			ndp->ni_cnd.cn_flags |= LOCKSHARED;
260		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
261			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
262		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
263			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
264		if ((error = namei(ndp)) != 0)
265			return (error);
266		vp = ndp->ni_vp;
267	}
268	error = vn_open_vnode(vp, fmode, cred, td, fp);
269	if (error)
270		goto bad;
271	*flagp = fmode;
272	return (0);
273bad:
274	NDFREE(ndp, NDF_ONLY_PNBUF);
275	vput(vp);
276	*flagp = fmode;
277	ndp->ni_vp = NULL;
278	return (error);
279}
280
281/*
282 * Common code for vnode open operations once a vnode is located.
283 * Check permissions, and call the VOP_OPEN routine.
284 */
285int
286vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
287    struct thread *td, struct file *fp)
288{
289	struct mount *mp;
290	accmode_t accmode;
291	struct flock lf;
292	int error, have_flock, lock_flags, type;
293
294	if (vp->v_type == VLNK)
295		return (EMLINK);
296	if (vp->v_type == VSOCK)
297		return (EOPNOTSUPP);
298	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
299		return (ENOTDIR);
300	accmode = 0;
301	if (fmode & (FWRITE | O_TRUNC)) {
302		if (vp->v_type == VDIR)
303			return (EISDIR);
304		accmode |= VWRITE;
305	}
306	if (fmode & FREAD)
307		accmode |= VREAD;
308	if (fmode & FEXEC)
309		accmode |= VEXEC;
310	if ((fmode & O_APPEND) && (fmode & FWRITE))
311		accmode |= VAPPEND;
312#ifdef MAC
313	error = mac_vnode_check_open(cred, vp, accmode);
314	if (error)
315		return (error);
316#endif
317	if ((fmode & O_CREAT) == 0) {
318		if (accmode & VWRITE) {
319			error = vn_writechk(vp);
320			if (error)
321				return (error);
322		}
323		if (accmode) {
324		        error = VOP_ACCESS(vp, accmode, cred, td);
325			if (error)
326				return (error);
327		}
328	}
329	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
330		vn_lock(vp, LK_UPGRADE | LK_RETRY);
331	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
332		return (error);
333
334	if (fmode & (O_EXLOCK | O_SHLOCK)) {
335		KASSERT(fp != NULL, ("open with flock requires fp"));
336		lock_flags = VOP_ISLOCKED(vp);
337		VOP_UNLOCK(vp, 0);
338		lf.l_whence = SEEK_SET;
339		lf.l_start = 0;
340		lf.l_len = 0;
341		if (fmode & O_EXLOCK)
342			lf.l_type = F_WRLCK;
343		else
344			lf.l_type = F_RDLCK;
345		type = F_FLOCK;
346		if ((fmode & FNONBLOCK) == 0)
347			type |= F_WAIT;
348		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
349		have_flock = (error == 0);
350		vn_lock(vp, lock_flags | LK_RETRY);
351		if (error == 0 && vp->v_iflag & VI_DOOMED)
352			error = ENOENT;
353		/*
354		 * Another thread might have used this vnode as an
355		 * executable while the vnode lock was dropped.
356		 * Ensure the vnode is still able to be opened for
357		 * writing after the lock has been obtained.
358		 */
359		if (error == 0 && accmode & VWRITE)
360			error = vn_writechk(vp);
361		if (error) {
362			VOP_UNLOCK(vp, 0);
363			if (have_flock) {
364				lf.l_whence = SEEK_SET;
365				lf.l_start = 0;
366				lf.l_len = 0;
367				lf.l_type = F_UNLCK;
368				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
369				    F_FLOCK);
370			}
371			vn_start_write(vp, &mp, V_WAIT);
372			vn_lock(vp, lock_flags | LK_RETRY);
373			(void)VOP_CLOSE(vp, fmode, cred, td);
374			vn_finished_write(mp);
375			/* Prevent second close from fdrop()->vn_close(). */
376			if (fp != NULL)
377				fp->f_ops= &badfileops;
378			return (error);
379		}
380		fp->f_flag |= FHASLOCK;
381	}
382	if (fmode & FWRITE) {
383		VOP_ADD_WRITECOUNT(vp, 1);
384		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
385		    __func__, vp, vp->v_writecount);
386	}
387	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
388	return (0);
389}
390
391/*
392 * Check for write permissions on the specified vnode.
393 * Prototype text segments cannot be written.
394 */
395int
396vn_writechk(vp)
397	register struct vnode *vp;
398{
399
400	ASSERT_VOP_LOCKED(vp, "vn_writechk");
401	/*
402	 * If there's shared text associated with
403	 * the vnode, try to free it up once.  If
404	 * we fail, we can't allow writing.
405	 */
406	if (VOP_IS_TEXT(vp))
407		return (ETXTBSY);
408
409	return (0);
410}
411
412/*
413 * Vnode close call
414 */
415int
416vn_close(vp, flags, file_cred, td)
417	register struct vnode *vp;
418	int flags;
419	struct ucred *file_cred;
420	struct thread *td;
421{
422	struct mount *mp;
423	int error, lock_flags;
424
425	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
426	    MNT_EXTENDED_SHARED(vp->v_mount))
427		lock_flags = LK_SHARED;
428	else
429		lock_flags = LK_EXCLUSIVE;
430
431	vn_start_write(vp, &mp, V_WAIT);
432	vn_lock(vp, lock_flags | LK_RETRY);
433	if (flags & FWRITE) {
434		VNASSERT(vp->v_writecount > 0, vp,
435		    ("vn_close: negative writecount"));
436		VOP_ADD_WRITECOUNT(vp, -1);
437		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
438		    __func__, vp, vp->v_writecount);
439	}
440	error = VOP_CLOSE(vp, flags, file_cred, td);
441	vput(vp);
442	vn_finished_write(mp);
443	return (error);
444}
445
446/*
447 * Heuristic to detect sequential operation.
448 */
449static int
450sequential_heuristic(struct uio *uio, struct file *fp)
451{
452
453	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
454	if (fp->f_flag & FRDAHEAD)
455		return (fp->f_seqcount << IO_SEQSHIFT);
456
457	/*
458	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
459	 * that the first I/O is normally considered to be slightly
460	 * sequential.  Seeking to offset 0 doesn't change sequentiality
461	 * unless previous seeks have reduced f_seqcount to 0, in which
462	 * case offset 0 is not special.
463	 */
464	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
465	    uio->uio_offset == fp->f_nextoff) {
466		/*
467		 * f_seqcount is in units of fixed-size blocks so that it
468		 * depends mainly on the amount of sequential I/O and not
469		 * much on the number of sequential I/O's.  The fixed size
470		 * of 16384 is hard-coded here since it is (not quite) just
471		 * a magic size that works well here.  This size is more
472		 * closely related to the best I/O size for real disks than
473		 * to any block size used by software.
474		 */
475		fp->f_seqcount += howmany(uio->uio_resid, 16384);
476		if (fp->f_seqcount > IO_SEQMAX)
477			fp->f_seqcount = IO_SEQMAX;
478		return (fp->f_seqcount << IO_SEQSHIFT);
479	}
480
481	/* Not sequential.  Quickly draw-down sequentiality. */
482	if (fp->f_seqcount > 1)
483		fp->f_seqcount = 1;
484	else
485		fp->f_seqcount = 0;
486	return (0);
487}
488
489/*
490 * Package up an I/O request on a vnode into a uio and do it.
491 */
492int
493vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
494    enum uio_seg segflg, int ioflg, struct ucred *active_cred,
495    struct ucred *file_cred, ssize_t *aresid, struct thread *td)
496{
497	struct uio auio;
498	struct iovec aiov;
499	struct mount *mp;
500	struct ucred *cred;
501	void *rl_cookie;
502	struct vn_io_fault_args args;
503	int error, lock_flags;
504
505	auio.uio_iov = &aiov;
506	auio.uio_iovcnt = 1;
507	aiov.iov_base = base;
508	aiov.iov_len = len;
509	auio.uio_resid = len;
510	auio.uio_offset = offset;
511	auio.uio_segflg = segflg;
512	auio.uio_rw = rw;
513	auio.uio_td = td;
514	error = 0;
515
516	if ((ioflg & IO_NODELOCKED) == 0) {
517		if ((ioflg & IO_RANGELOCKED) == 0) {
518			if (rw == UIO_READ) {
519				rl_cookie = vn_rangelock_rlock(vp, offset,
520				    offset + len);
521			} else {
522				rl_cookie = vn_rangelock_wlock(vp, offset,
523				    offset + len);
524			}
525		} else
526			rl_cookie = NULL;
527		mp = NULL;
528		if (rw == UIO_WRITE) {
529			if (vp->v_type != VCHR &&
530			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
531			    != 0)
532				goto out;
533			if (MNT_SHARED_WRITES(mp) ||
534			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
535				lock_flags = LK_SHARED;
536			else
537				lock_flags = LK_EXCLUSIVE;
538		} else
539			lock_flags = LK_SHARED;
540		vn_lock(vp, lock_flags | LK_RETRY);
541	} else
542		rl_cookie = NULL;
543
544	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
545#ifdef MAC
546	if ((ioflg & IO_NOMACCHECK) == 0) {
547		if (rw == UIO_READ)
548			error = mac_vnode_check_read(active_cred, file_cred,
549			    vp);
550		else
551			error = mac_vnode_check_write(active_cred, file_cred,
552			    vp);
553	}
554#endif
555	if (error == 0) {
556		if (file_cred != NULL)
557			cred = file_cred;
558		else
559			cred = active_cred;
560		if (do_vn_io_fault(vp, &auio)) {
561			args.kind = VN_IO_FAULT_VOP;
562			args.cred = cred;
563			args.flags = ioflg;
564			args.args.vop_args.vp = vp;
565			error = vn_io_fault1(vp, &auio, &args, td);
566		} else if (rw == UIO_READ) {
567			error = VOP_READ(vp, &auio, ioflg, cred);
568		} else /* if (rw == UIO_WRITE) */ {
569			error = VOP_WRITE(vp, &auio, ioflg, cred);
570		}
571	}
572	if (aresid)
573		*aresid = auio.uio_resid;
574	else
575		if (auio.uio_resid && error == 0)
576			error = EIO;
577	if ((ioflg & IO_NODELOCKED) == 0) {
578		VOP_UNLOCK(vp, 0);
579		if (mp != NULL)
580			vn_finished_write(mp);
581	}
582 out:
583	if (rl_cookie != NULL)
584		vn_rangelock_unlock(vp, rl_cookie);
585	return (error);
586}
587
588/*
589 * Package up an I/O request on a vnode into a uio and do it.  The I/O
590 * request is split up into smaller chunks and we try to avoid saturating
591 * the buffer cache while potentially holding a vnode locked, so we
592 * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
593 * to give other processes a chance to lock the vnode (either other processes
594 * core'ing the same binary, or unrelated processes scanning the directory).
595 */
596int
597vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
598    file_cred, aresid, td)
599	enum uio_rw rw;
600	struct vnode *vp;
601	void *base;
602	size_t len;
603	off_t offset;
604	enum uio_seg segflg;
605	int ioflg;
606	struct ucred *active_cred;
607	struct ucred *file_cred;
608	size_t *aresid;
609	struct thread *td;
610{
611	int error = 0;
612	ssize_t iaresid;
613
614	do {
615		int chunk;
616
617		/*
618		 * Force `offset' to a multiple of MAXBSIZE except possibly
619		 * for the first chunk, so that filesystems only need to
620		 * write full blocks except possibly for the first and last
621		 * chunks.
622		 */
623		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
624
625		if (chunk > len)
626			chunk = len;
627		if (rw != UIO_READ && vp->v_type == VREG)
628			bwillwrite();
629		iaresid = 0;
630		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
631		    ioflg, active_cred, file_cred, &iaresid, td);
632		len -= chunk;	/* aresid calc already includes length */
633		if (error)
634			break;
635		offset += chunk;
636		base = (char *)base + chunk;
637		kern_yield(PRI_USER);
638	} while (len);
639	if (aresid)
640		*aresid = len + iaresid;
641	return (error);
642}
643
644off_t
645foffset_lock(struct file *fp, int flags)
646{
647	struct mtx *mtxp;
648	off_t res;
649
650	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
651
652#if OFF_MAX <= LONG_MAX
653	/*
654	 * Caller only wants the current f_offset value.  Assume that
655	 * the long and shorter integer types reads are atomic.
656	 */
657	if ((flags & FOF_NOLOCK) != 0)
658		return (fp->f_offset);
659#endif
660
661	/*
662	 * According to McKusick the vn lock was protecting f_offset here.
663	 * It is now protected by the FOFFSET_LOCKED flag.
664	 */
665	mtxp = mtx_pool_find(mtxpool_sleep, fp);
666	mtx_lock(mtxp);
667	if ((flags & FOF_NOLOCK) == 0) {
668		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
669			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
670			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
671			    "vofflock", 0);
672		}
673		fp->f_vnread_flags |= FOFFSET_LOCKED;
674	}
675	res = fp->f_offset;
676	mtx_unlock(mtxp);
677	return (res);
678}
679
680void
681foffset_unlock(struct file *fp, off_t val, int flags)
682{
683	struct mtx *mtxp;
684
685	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
686
687#if OFF_MAX <= LONG_MAX
688	if ((flags & FOF_NOLOCK) != 0) {
689		if ((flags & FOF_NOUPDATE) == 0)
690			fp->f_offset = val;
691		if ((flags & FOF_NEXTOFF) != 0)
692			fp->f_nextoff = val;
693		return;
694	}
695#endif
696
697	mtxp = mtx_pool_find(mtxpool_sleep, fp);
698	mtx_lock(mtxp);
699	if ((flags & FOF_NOUPDATE) == 0)
700		fp->f_offset = val;
701	if ((flags & FOF_NEXTOFF) != 0)
702		fp->f_nextoff = val;
703	if ((flags & FOF_NOLOCK) == 0) {
704		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
705		    ("Lost FOFFSET_LOCKED"));
706		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
707			wakeup(&fp->f_vnread_flags);
708		fp->f_vnread_flags = 0;
709	}
710	mtx_unlock(mtxp);
711}
712
713void
714foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
715{
716
717	if ((flags & FOF_OFFSET) == 0)
718		uio->uio_offset = foffset_lock(fp, flags);
719}
720
721void
722foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
723{
724
725	if ((flags & FOF_OFFSET) == 0)
726		foffset_unlock(fp, uio->uio_offset, flags);
727}
728
729static int
730get_advice(struct file *fp, struct uio *uio)
731{
732	struct mtx *mtxp;
733	int ret;
734
735	ret = POSIX_FADV_NORMAL;
736	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
737		return (ret);
738
739	mtxp = mtx_pool_find(mtxpool_sleep, fp);
740	mtx_lock(mtxp);
741	if (fp->f_advice != NULL &&
742	    uio->uio_offset >= fp->f_advice->fa_start &&
743	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
744		ret = fp->f_advice->fa_advice;
745	mtx_unlock(mtxp);
746	return (ret);
747}
748
749/*
750 * File table vnode read routine.
751 */
752static int
753vn_read(fp, uio, active_cred, flags, td)
754	struct file *fp;
755	struct uio *uio;
756	struct ucred *active_cred;
757	int flags;
758	struct thread *td;
759{
760	struct vnode *vp;
761	struct mtx *mtxp;
762	int error, ioflag;
763	int advice;
764	off_t offset, start, end;
765
766	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
767	    uio->uio_td, td));
768	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
769	vp = fp->f_vnode;
770	ioflag = 0;
771	if (fp->f_flag & FNONBLOCK)
772		ioflag |= IO_NDELAY;
773	if (fp->f_flag & O_DIRECT)
774		ioflag |= IO_DIRECT;
775	advice = get_advice(fp, uio);
776	vn_lock(vp, LK_SHARED | LK_RETRY);
777
778	switch (advice) {
779	case POSIX_FADV_NORMAL:
780	case POSIX_FADV_SEQUENTIAL:
781	case POSIX_FADV_NOREUSE:
782		ioflag |= sequential_heuristic(uio, fp);
783		break;
784	case POSIX_FADV_RANDOM:
785		/* Disable read-ahead for random I/O. */
786		break;
787	}
788	offset = uio->uio_offset;
789
790#ifdef MAC
791	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
792	if (error == 0)
793#endif
794		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
795	fp->f_nextoff = uio->uio_offset;
796	VOP_UNLOCK(vp, 0);
797	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
798	    offset != uio->uio_offset) {
799		/*
800		 * Use POSIX_FADV_DONTNEED to flush clean pages and
801		 * buffers for the backing file after a
802		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
803		 * case of using POSIX_FADV_NOREUSE with sequential
804		 * access, track the previous implicit DONTNEED
805		 * request and grow this request to include the
806		 * current read(2) in addition to the previous
807		 * DONTNEED.  With purely sequential access this will
808		 * cause the DONTNEED requests to continously grow to
809		 * cover all of the previously read regions of the
810		 * file.  This allows filesystem blocks that are
811		 * accessed by multiple calls to read(2) to be flushed
812		 * once the last read(2) finishes.
813		 */
814		start = offset;
815		end = uio->uio_offset - 1;
816		mtxp = mtx_pool_find(mtxpool_sleep, fp);
817		mtx_lock(mtxp);
818		if (fp->f_advice != NULL &&
819		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
820			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
821				start = fp->f_advice->fa_prevstart;
822			else if (fp->f_advice->fa_prevstart != 0 &&
823			    fp->f_advice->fa_prevstart == end + 1)
824				end = fp->f_advice->fa_prevend;
825			fp->f_advice->fa_prevstart = start;
826			fp->f_advice->fa_prevend = end;
827		}
828		mtx_unlock(mtxp);
829		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
830	}
831	return (error);
832}
833
834/*
835 * File table vnode write routine.
836 */
837static int
838vn_write(fp, uio, active_cred, flags, td)
839	struct file *fp;
840	struct uio *uio;
841	struct ucred *active_cred;
842	int flags;
843	struct thread *td;
844{
845	struct vnode *vp;
846	struct mount *mp;
847	struct mtx *mtxp;
848	int error, ioflag, lock_flags;
849	int advice;
850	off_t offset, start, end;
851
852	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
853	    uio->uio_td, td));
854	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
855	vp = fp->f_vnode;
856	if (vp->v_type == VREG)
857		bwillwrite();
858	ioflag = IO_UNIT;
859	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
860		ioflag |= IO_APPEND;
861	if (fp->f_flag & FNONBLOCK)
862		ioflag |= IO_NDELAY;
863	if (fp->f_flag & O_DIRECT)
864		ioflag |= IO_DIRECT;
865	if ((fp->f_flag & O_FSYNC) ||
866	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
867		ioflag |= IO_SYNC;
868	mp = NULL;
869	if (vp->v_type != VCHR &&
870	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
871		goto unlock;
872
873	advice = get_advice(fp, uio);
874
875	if (MNT_SHARED_WRITES(mp) ||
876	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
877		lock_flags = LK_SHARED;
878	} else {
879		lock_flags = LK_EXCLUSIVE;
880	}
881
882	vn_lock(vp, lock_flags | LK_RETRY);
883	switch (advice) {
884	case POSIX_FADV_NORMAL:
885	case POSIX_FADV_SEQUENTIAL:
886	case POSIX_FADV_NOREUSE:
887		ioflag |= sequential_heuristic(uio, fp);
888		break;
889	case POSIX_FADV_RANDOM:
890		/* XXX: Is this correct? */
891		break;
892	}
893	offset = uio->uio_offset;
894
895#ifdef MAC
896	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
897	if (error == 0)
898#endif
899		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
900	fp->f_nextoff = uio->uio_offset;
901	VOP_UNLOCK(vp, 0);
902	if (vp->v_type != VCHR)
903		vn_finished_write(mp);
904	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
905	    offset != uio->uio_offset) {
906		/*
907		 * Use POSIX_FADV_DONTNEED to flush clean pages and
908		 * buffers for the backing file after a
909		 * POSIX_FADV_NOREUSE write(2).  To optimize the
910		 * common case of using POSIX_FADV_NOREUSE with
911		 * sequential access, track the previous implicit
912		 * DONTNEED request and grow this request to include
913		 * the current write(2) in addition to the previous
914		 * DONTNEED.  With purely sequential access this will
915		 * cause the DONTNEED requests to continously grow to
916		 * cover all of the previously written regions of the
917		 * file.
918		 *
919		 * Note that the blocks just written are almost
920		 * certainly still dirty, so this only works when
921		 * VOP_ADVISE() calls from subsequent writes push out
922		 * the data written by this write(2) once the backing
923		 * buffers are clean.  However, as compared to forcing
924		 * IO_DIRECT, this gives much saner behavior.  Write
925		 * clustering is still allowed, and clean pages are
926		 * merely moved to the cache page queue rather than
927		 * outright thrown away.  This means a subsequent
928		 * read(2) can still avoid hitting the disk if the
929		 * pages have not been reclaimed.
930		 *
931		 * This does make POSIX_FADV_NOREUSE largely useless
932		 * with non-sequential access.  However, sequential
933		 * access is the more common use case and the flag is
934		 * merely advisory.
935		 */
936		start = offset;
937		end = uio->uio_offset - 1;
938		mtxp = mtx_pool_find(mtxpool_sleep, fp);
939		mtx_lock(mtxp);
940		if (fp->f_advice != NULL &&
941		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
942			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
943				start = fp->f_advice->fa_prevstart;
944			else if (fp->f_advice->fa_prevstart != 0 &&
945			    fp->f_advice->fa_prevstart == end + 1)
946				end = fp->f_advice->fa_prevend;
947			fp->f_advice->fa_prevstart = start;
948			fp->f_advice->fa_prevend = end;
949		}
950		mtx_unlock(mtxp);
951		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
952	}
953
954unlock:
955	return (error);
956}
957
958/*
959 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
960 * prevent the following deadlock:
961 *
962 * Assume that the thread A reads from the vnode vp1 into userspace
963 * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
964 * currently not resident, then system ends up with the call chain
965 *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
966 *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
967 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
968 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
969 * backed by the pages of vnode vp1, and some page in buf2 is not
970 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
971 *
972 * To prevent the lock order reversal and deadlock, vn_io_fault() does
973 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
974 * Instead, it first tries to do the whole range i/o with pagefaults
975 * disabled. If all pages in the i/o buffer are resident and mapped,
976 * VOP will succeed (ignoring the genuine filesystem errors).
977 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
978 * i/o in chunks, with all pages in the chunk prefaulted and held
979 * using vm_fault_quick_hold_pages().
980 *
981 * Filesystems using this deadlock avoidance scheme should use the
982 * array of the held pages from uio, saved in the curthread->td_ma,
983 * instead of doing uiomove().  A helper function
984 * vn_io_fault_uiomove() converts uiomove request into
985 * uiomove_fromphys() over td_ma array.
986 *
987 * Since vnode locks do not cover the whole i/o anymore, rangelocks
988 * make the current i/o request atomic with respect to other i/os and
989 * truncations.
990 */
991
992/*
993 * Decode vn_io_fault_args and perform the corresponding i/o.
994 */
995static int
996vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
997    struct thread *td)
998{
999
1000	switch (args->kind) {
1001	case VN_IO_FAULT_FOP:
1002		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
1003		    uio, args->cred, args->flags, td));
1004	case VN_IO_FAULT_VOP:
1005		if (uio->uio_rw == UIO_READ) {
1006			return (VOP_READ(args->args.vop_args.vp, uio,
1007			    args->flags, args->cred));
1008		} else if (uio->uio_rw == UIO_WRITE) {
1009			return (VOP_WRITE(args->args.vop_args.vp, uio,
1010			    args->flags, args->cred));
1011		}
1012		break;
1013	}
1014	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
1015	    uio->uio_rw);
1016}
1017
1018static int
1019vn_io_fault_touch(char *base, const struct uio *uio)
1020{
1021	int r;
1022
1023	r = fubyte(base);
1024	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1025		return (EFAULT);
1026	return (0);
1027}
1028
1029static int
1030vn_io_fault_prefault_user(const struct uio *uio)
1031{
1032	char *base;
1033	const struct iovec *iov;
1034	size_t len;
1035	ssize_t resid;
1036	int error, i;
1037
1038	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1039	    ("vn_io_fault_prefault userspace"));
1040
1041	error = i = 0;
1042	iov = uio->uio_iov;
1043	resid = uio->uio_resid;
1044	base = iov->iov_base;
1045	len = iov->iov_len;
1046	while (resid > 0) {
1047		error = vn_io_fault_touch(base, uio);
1048		if (error != 0)
1049			break;
1050		if (len < PAGE_SIZE) {
1051			if (len != 0) {
1052				error = vn_io_fault_touch(base + len - 1, uio);
1053				if (error != 0)
1054					break;
1055				resid -= len;
1056			}
1057			if (++i >= uio->uio_iovcnt)
1058				break;
1059			iov = uio->uio_iov + i;
1060			base = iov->iov_base;
1061			len = iov->iov_len;
1062		} else {
1063			len -= PAGE_SIZE;
1064			base += PAGE_SIZE;
1065			resid -= PAGE_SIZE;
1066		}
1067	}
1068	return (error);
1069}
1070
1071/*
1072 * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1073 * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1074 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1075 * into args and call vn_io_fault1() to handle faults during the user
1076 * mode buffer accesses.
1077 */
1078static int
1079vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1080    struct thread *td)
1081{
1082	vm_page_t ma[io_hold_cnt + 2];
1083	struct uio *uio_clone, short_uio;
1084	struct iovec short_iovec[1];
1085	vm_page_t *prev_td_ma;
1086	vm_prot_t prot;
1087	vm_offset_t addr, end;
1088	size_t len, resid;
1089	ssize_t adv;
1090	int error, cnt, save, saveheld, prev_td_ma_cnt;
1091
1092	if (vn_io_fault_prefault) {
1093		error = vn_io_fault_prefault_user(uio);
1094		if (error != 0)
1095			return (error); /* Or ignore ? */
1096	}
1097
1098	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1099
1100	/*
1101	 * The UFS follows IO_UNIT directive and replays back both
1102	 * uio_offset and uio_resid if an error is encountered during the
1103	 * operation.  But, since the iovec may be already advanced,
1104	 * uio is still in an inconsistent state.
1105	 *
1106	 * Cache a copy of the original uio, which is advanced to the redo
1107	 * point using UIO_NOCOPY below.
1108	 */
1109	uio_clone = cloneuio(uio);
1110	resid = uio->uio_resid;
1111
1112	short_uio.uio_segflg = UIO_USERSPACE;
1113	short_uio.uio_rw = uio->uio_rw;
1114	short_uio.uio_td = uio->uio_td;
1115
1116	save = vm_fault_disable_pagefaults();
1117	error = vn_io_fault_doio(args, uio, td);
1118	if (error != EFAULT)
1119		goto out;
1120
1121	atomic_add_long(&vn_io_faults_cnt, 1);
1122	uio_clone->uio_segflg = UIO_NOCOPY;
1123	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1124	uio_clone->uio_segflg = uio->uio_segflg;
1125
1126	saveheld = curthread_pflags_set(TDP_UIOHELD);
1127	prev_td_ma = td->td_ma;
1128	prev_td_ma_cnt = td->td_ma_cnt;
1129
1130	while (uio_clone->uio_resid != 0) {
1131		len = uio_clone->uio_iov->iov_len;
1132		if (len == 0) {
1133			KASSERT(uio_clone->uio_iovcnt >= 1,
1134			    ("iovcnt underflow"));
1135			uio_clone->uio_iov++;
1136			uio_clone->uio_iovcnt--;
1137			continue;
1138		}
1139		if (len > io_hold_cnt * PAGE_SIZE)
1140			len = io_hold_cnt * PAGE_SIZE;
1141		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1142		end = round_page(addr + len);
1143		if (end < addr) {
1144			error = EFAULT;
1145			break;
1146		}
1147		cnt = atop(end - trunc_page(addr));
1148		/*
1149		 * A perfectly misaligned address and length could cause
1150		 * both the start and the end of the chunk to use partial
1151		 * page.  +2 accounts for such a situation.
1152		 */
1153		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1154		    addr, len, prot, ma, io_hold_cnt + 2);
1155		if (cnt == -1) {
1156			error = EFAULT;
1157			break;
1158		}
1159		short_uio.uio_iov = &short_iovec[0];
1160		short_iovec[0].iov_base = (void *)addr;
1161		short_uio.uio_iovcnt = 1;
1162		short_uio.uio_resid = short_iovec[0].iov_len = len;
1163		short_uio.uio_offset = uio_clone->uio_offset;
1164		td->td_ma = ma;
1165		td->td_ma_cnt = cnt;
1166
1167		error = vn_io_fault_doio(args, &short_uio, td);
1168		vm_page_unhold_pages(ma, cnt);
1169		adv = len - short_uio.uio_resid;
1170
1171		uio_clone->uio_iov->iov_base =
1172		    (char *)uio_clone->uio_iov->iov_base + adv;
1173		uio_clone->uio_iov->iov_len -= adv;
1174		uio_clone->uio_resid -= adv;
1175		uio_clone->uio_offset += adv;
1176
1177		uio->uio_resid -= adv;
1178		uio->uio_offset += adv;
1179
1180		if (error != 0 || adv == 0)
1181			break;
1182	}
1183	td->td_ma = prev_td_ma;
1184	td->td_ma_cnt = prev_td_ma_cnt;
1185	curthread_pflags_restore(saveheld);
1186out:
1187	vm_fault_enable_pagefaults(save);
1188	free(uio_clone, M_IOV);
1189	return (error);
1190}
1191
1192static int
1193vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1194    int flags, struct thread *td)
1195{
1196	fo_rdwr_t *doio;
1197	struct vnode *vp;
1198	void *rl_cookie;
1199	struct vn_io_fault_args args;
1200	int error;
1201
1202	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1203	vp = fp->f_vnode;
1204	foffset_lock_uio(fp, uio, flags);
1205	if (do_vn_io_fault(vp, uio)) {
1206		args.kind = VN_IO_FAULT_FOP;
1207		args.args.fop_args.fp = fp;
1208		args.args.fop_args.doio = doio;
1209		args.cred = active_cred;
1210		args.flags = flags | FOF_OFFSET;
1211		if (uio->uio_rw == UIO_READ) {
1212			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1213			    uio->uio_offset + uio->uio_resid);
1214		} else if ((fp->f_flag & O_APPEND) != 0 ||
1215		    (flags & FOF_OFFSET) == 0) {
1216			/* For appenders, punt and lock the whole range. */
1217			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1218		} else {
1219			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1220			    uio->uio_offset + uio->uio_resid);
1221		}
1222		error = vn_io_fault1(vp, uio, &args, td);
1223		vn_rangelock_unlock(vp, rl_cookie);
1224	} else {
1225		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1226	}
1227	foffset_unlock_uio(fp, uio, flags);
1228	return (error);
1229}
1230
1231/*
1232 * Helper function to perform the requested uiomove operation using
1233 * the held pages for io->uio_iov[0].iov_base buffer instead of
1234 * copyin/copyout.  Access to the pages with uiomove_fromphys()
1235 * instead of iov_base prevents page faults that could occur due to
1236 * pmap_collect() invalidating the mapping created by
1237 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1238 * object cleanup revoking the write access from page mappings.
1239 *
1240 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1241 * instead of plain uiomove().
1242 */
1243int
1244vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1245{
1246	struct uio transp_uio;
1247	struct iovec transp_iov[1];
1248	struct thread *td;
1249	size_t adv;
1250	int error, pgadv;
1251
1252	td = curthread;
1253	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1254	    uio->uio_segflg != UIO_USERSPACE)
1255		return (uiomove(data, xfersize, uio));
1256
1257	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1258	transp_iov[0].iov_base = data;
1259	transp_uio.uio_iov = &transp_iov[0];
1260	transp_uio.uio_iovcnt = 1;
1261	if (xfersize > uio->uio_resid)
1262		xfersize = uio->uio_resid;
1263	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1264	transp_uio.uio_offset = 0;
1265	transp_uio.uio_segflg = UIO_SYSSPACE;
1266	/*
1267	 * Since transp_iov points to data, and td_ma page array
1268	 * corresponds to original uio->uio_iov, we need to invert the
1269	 * direction of the i/o operation as passed to
1270	 * uiomove_fromphys().
1271	 */
1272	switch (uio->uio_rw) {
1273	case UIO_WRITE:
1274		transp_uio.uio_rw = UIO_READ;
1275		break;
1276	case UIO_READ:
1277		transp_uio.uio_rw = UIO_WRITE;
1278		break;
1279	}
1280	transp_uio.uio_td = uio->uio_td;
1281	error = uiomove_fromphys(td->td_ma,
1282	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1283	    xfersize, &transp_uio);
1284	adv = xfersize - transp_uio.uio_resid;
1285	pgadv =
1286	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1287	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1288	td->td_ma += pgadv;
1289	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1290	    pgadv));
1291	td->td_ma_cnt -= pgadv;
1292	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1293	uio->uio_iov->iov_len -= adv;
1294	uio->uio_resid -= adv;
1295	uio->uio_offset += adv;
1296	return (error);
1297}
1298
1299int
1300vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1301    struct uio *uio)
1302{
1303	struct thread *td;
1304	vm_offset_t iov_base;
1305	int cnt, pgadv;
1306
1307	td = curthread;
1308	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1309	    uio->uio_segflg != UIO_USERSPACE)
1310		return (uiomove_fromphys(ma, offset, xfersize, uio));
1311
1312	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1313	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1314	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1315	switch (uio->uio_rw) {
1316	case UIO_WRITE:
1317		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1318		    offset, cnt);
1319		break;
1320	case UIO_READ:
1321		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1322		    cnt);
1323		break;
1324	}
1325	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1326	td->td_ma += pgadv;
1327	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1328	    pgadv));
1329	td->td_ma_cnt -= pgadv;
1330	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1331	uio->uio_iov->iov_len -= cnt;
1332	uio->uio_resid -= cnt;
1333	uio->uio_offset += cnt;
1334	return (0);
1335}
1336
1337
1338/*
1339 * File table truncate routine.
1340 */
1341static int
1342vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1343    struct thread *td)
1344{
1345	struct vattr vattr;
1346	struct mount *mp;
1347	struct vnode *vp;
1348	void *rl_cookie;
1349	int error;
1350
1351	vp = fp->f_vnode;
1352
1353	/*
1354	 * Lock the whole range for truncation.  Otherwise split i/o
1355	 * might happen partly before and partly after the truncation.
1356	 */
1357	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1358	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1359	if (error)
1360		goto out1;
1361	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1362	if (vp->v_type == VDIR) {
1363		error = EISDIR;
1364		goto out;
1365	}
1366#ifdef MAC
1367	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1368	if (error)
1369		goto out;
1370#endif
1371	error = vn_writechk(vp);
1372	if (error == 0) {
1373		VATTR_NULL(&vattr);
1374		vattr.va_size = length;
1375		if ((fp->f_flag & O_FSYNC) != 0)
1376			vattr.va_vaflags |= VA_SYNC;
1377		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1378	}
1379out:
1380	VOP_UNLOCK(vp, 0);
1381	vn_finished_write(mp);
1382out1:
1383	vn_rangelock_unlock(vp, rl_cookie);
1384	return (error);
1385}
1386
1387/*
1388 * File table vnode stat routine.
1389 */
1390static int
1391vn_statfile(fp, sb, active_cred, td)
1392	struct file *fp;
1393	struct stat *sb;
1394	struct ucred *active_cred;
1395	struct thread *td;
1396{
1397	struct vnode *vp = fp->f_vnode;
1398	int error;
1399
1400	vn_lock(vp, LK_SHARED | LK_RETRY);
1401	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1402	VOP_UNLOCK(vp, 0);
1403
1404	return (error);
1405}
1406
1407/*
1408 * Stat a vnode; implementation for the stat syscall
1409 */
1410int
1411vn_stat(vp, sb, active_cred, file_cred, td)
1412	struct vnode *vp;
1413	register struct stat *sb;
1414	struct ucred *active_cred;
1415	struct ucred *file_cred;
1416	struct thread *td;
1417{
1418	struct vattr vattr;
1419	register struct vattr *vap;
1420	int error;
1421	u_short mode;
1422
1423#ifdef MAC
1424	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1425	if (error)
1426		return (error);
1427#endif
1428
1429	vap = &vattr;
1430
1431	/*
1432	 * Initialize defaults for new and unusual fields, so that file
1433	 * systems which don't support these fields don't need to know
1434	 * about them.
1435	 */
1436	vap->va_birthtime.tv_sec = -1;
1437	vap->va_birthtime.tv_nsec = 0;
1438	vap->va_fsid = VNOVAL;
1439	vap->va_rdev = NODEV;
1440
1441	error = VOP_GETATTR(vp, vap, active_cred);
1442	if (error)
1443		return (error);
1444
1445	/*
1446	 * Zero the spare stat fields
1447	 */
1448	bzero(sb, sizeof *sb);
1449
1450	/*
1451	 * Copy from vattr table
1452	 */
1453	if (vap->va_fsid != VNOVAL)
1454		sb->st_dev = vap->va_fsid;
1455	else
1456		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1457	sb->st_ino = vap->va_fileid;
1458	mode = vap->va_mode;
1459	switch (vap->va_type) {
1460	case VREG:
1461		mode |= S_IFREG;
1462		break;
1463	case VDIR:
1464		mode |= S_IFDIR;
1465		break;
1466	case VBLK:
1467		mode |= S_IFBLK;
1468		break;
1469	case VCHR:
1470		mode |= S_IFCHR;
1471		break;
1472	case VLNK:
1473		mode |= S_IFLNK;
1474		break;
1475	case VSOCK:
1476		mode |= S_IFSOCK;
1477		break;
1478	case VFIFO:
1479		mode |= S_IFIFO;
1480		break;
1481	default:
1482		return (EBADF);
1483	};
1484	sb->st_mode = mode;
1485	sb->st_nlink = vap->va_nlink;
1486	sb->st_uid = vap->va_uid;
1487	sb->st_gid = vap->va_gid;
1488	sb->st_rdev = vap->va_rdev;
1489	if (vap->va_size > OFF_MAX)
1490		return (EOVERFLOW);
1491	sb->st_size = vap->va_size;
1492	sb->st_atim = vap->va_atime;
1493	sb->st_mtim = vap->va_mtime;
1494	sb->st_ctim = vap->va_ctime;
1495	sb->st_birthtim = vap->va_birthtime;
1496
1497        /*
1498	 * According to www.opengroup.org, the meaning of st_blksize is
1499	 *   "a filesystem-specific preferred I/O block size for this
1500	 *    object.  In some filesystem types, this may vary from file
1501	 *    to file"
1502	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1503	 */
1504
1505	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1506
1507	sb->st_flags = vap->va_flags;
1508	if (priv_check(td, PRIV_VFS_GENERATION))
1509		sb->st_gen = 0;
1510	else
1511		sb->st_gen = vap->va_gen;
1512
1513	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1514	return (0);
1515}
1516
1517/*
1518 * File table vnode ioctl routine.
1519 */
1520static int
1521vn_ioctl(fp, com, data, active_cred, td)
1522	struct file *fp;
1523	u_long com;
1524	void *data;
1525	struct ucred *active_cred;
1526	struct thread *td;
1527{
1528	struct vattr vattr;
1529	struct vnode *vp;
1530	int error;
1531
1532	vp = fp->f_vnode;
1533	switch (vp->v_type) {
1534	case VDIR:
1535	case VREG:
1536		switch (com) {
1537		case FIONREAD:
1538			vn_lock(vp, LK_SHARED | LK_RETRY);
1539			error = VOP_GETATTR(vp, &vattr, active_cred);
1540			VOP_UNLOCK(vp, 0);
1541			if (error == 0)
1542				*(int *)data = vattr.va_size - fp->f_offset;
1543			return (error);
1544		case FIONBIO:
1545		case FIOASYNC:
1546			return (0);
1547		default:
1548			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1549			    active_cred, td));
1550		}
1551	default:
1552		return (ENOTTY);
1553	}
1554}
1555
1556/*
1557 * File table vnode poll routine.
1558 */
1559static int
1560vn_poll(fp, events, active_cred, td)
1561	struct file *fp;
1562	int events;
1563	struct ucred *active_cred;
1564	struct thread *td;
1565{
1566	struct vnode *vp;
1567	int error;
1568
1569	vp = fp->f_vnode;
1570#ifdef MAC
1571	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1572	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1573	VOP_UNLOCK(vp, 0);
1574	if (!error)
1575#endif
1576
1577	error = VOP_POLL(vp, events, fp->f_cred, td);
1578	return (error);
1579}
1580
1581/*
1582 * Acquire the requested lock and then check for validity.  LK_RETRY
1583 * permits vn_lock to return doomed vnodes.
1584 */
1585int
1586_vn_lock(struct vnode *vp, int flags, char *file, int line)
1587{
1588	int error;
1589
1590	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1591	    ("vn_lock called with no locktype."));
1592	do {
1593#ifdef DEBUG_VFS_LOCKS
1594		KASSERT(vp->v_holdcnt != 0,
1595		    ("vn_lock %p: zero hold count", vp));
1596#endif
1597		error = VOP_LOCK1(vp, flags, file, line);
1598		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1599		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1600		    ("LK_RETRY set with incompatible flags (0x%x) or an error occurred (%d)",
1601		    flags, error));
1602		/*
1603		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1604		 * If RETRY is not set, we return ENOENT instead.
1605		 */
1606		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1607		    (flags & LK_RETRY) == 0) {
1608			VOP_UNLOCK(vp, 0);
1609			error = ENOENT;
1610			break;
1611		}
1612	} while (flags & LK_RETRY && error != 0);
1613	return (error);
1614}
1615
1616/*
1617 * File table vnode close routine.
1618 */
1619static int
1620vn_closefile(fp, td)
1621	struct file *fp;
1622	struct thread *td;
1623{
1624	struct vnode *vp;
1625	struct flock lf;
1626	int error;
1627
1628	vp = fp->f_vnode;
1629	fp->f_ops = &badfileops;
1630
1631	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1632		vref(vp);
1633
1634	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1635
1636	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1637		lf.l_whence = SEEK_SET;
1638		lf.l_start = 0;
1639		lf.l_len = 0;
1640		lf.l_type = F_UNLCK;
1641		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1642		vrele(vp);
1643	}
1644	return (error);
1645}
1646
1647/*
1648 * Preparing to start a filesystem write operation. If the operation is
1649 * permitted, then we bump the count of operations in progress and
1650 * proceed. If a suspend request is in progress, we wait until the
1651 * suspension is over, and then proceed.
1652 */
1653static int
1654vn_start_write_locked(struct mount *mp, int flags)
1655{
1656	int error, mflags;
1657
1658	mtx_assert(MNT_MTX(mp), MA_OWNED);
1659	error = 0;
1660
1661	/*
1662	 * Check on status of suspension.
1663	 */
1664	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1665	    mp->mnt_susp_owner != curthread) {
1666		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1667		    (flags & PCATCH) : 0) | (PUSER - 1);
1668		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1669			if (flags & V_NOWAIT) {
1670				error = EWOULDBLOCK;
1671				goto unlock;
1672			}
1673			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1674			    "suspfs", 0);
1675			if (error)
1676				goto unlock;
1677		}
1678	}
1679	if (flags & V_XSLEEP)
1680		goto unlock;
1681	mp->mnt_writeopcount++;
1682unlock:
1683	if (error != 0 || (flags & V_XSLEEP) != 0)
1684		MNT_REL(mp);
1685	MNT_IUNLOCK(mp);
1686	return (error);
1687}
1688
1689int
1690vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1691{
1692	struct mount *mp;
1693	int error;
1694
1695	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1696	    ("V_MNTREF requires mp"));
1697
1698	error = 0;
1699	/*
1700	 * If a vnode is provided, get and return the mount point that
1701	 * to which it will write.
1702	 */
1703	if (vp != NULL) {
1704		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1705			*mpp = NULL;
1706			if (error != EOPNOTSUPP)
1707				return (error);
1708			return (0);
1709		}
1710	}
1711	if ((mp = *mpp) == NULL)
1712		return (0);
1713
1714	/*
1715	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1716	 * a vfs_ref().
1717	 * As long as a vnode is not provided we need to acquire a
1718	 * refcount for the provided mountpoint too, in order to
1719	 * emulate a vfs_ref().
1720	 */
1721	MNT_ILOCK(mp);
1722	if (vp == NULL && (flags & V_MNTREF) == 0)
1723		MNT_REF(mp);
1724
1725	return (vn_start_write_locked(mp, flags));
1726}
1727
1728/*
1729 * Secondary suspension. Used by operations such as vop_inactive
1730 * routines that are needed by the higher level functions. These
1731 * are allowed to proceed until all the higher level functions have
1732 * completed (indicated by mnt_writeopcount dropping to zero). At that
1733 * time, these operations are halted until the suspension is over.
1734 */
1735int
1736vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1737{
1738	struct mount *mp;
1739	int error;
1740
1741	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1742	    ("V_MNTREF requires mp"));
1743
1744 retry:
1745	if (vp != NULL) {
1746		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1747			*mpp = NULL;
1748			if (error != EOPNOTSUPP)
1749				return (error);
1750			return (0);
1751		}
1752	}
1753	/*
1754	 * If we are not suspended or have not yet reached suspended
1755	 * mode, then let the operation proceed.
1756	 */
1757	if ((mp = *mpp) == NULL)
1758		return (0);
1759
1760	/*
1761	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1762	 * a vfs_ref().
1763	 * As long as a vnode is not provided we need to acquire a
1764	 * refcount for the provided mountpoint too, in order to
1765	 * emulate a vfs_ref().
1766	 */
1767	MNT_ILOCK(mp);
1768	if (vp == NULL && (flags & V_MNTREF) == 0)
1769		MNT_REF(mp);
1770	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1771		mp->mnt_secondary_writes++;
1772		mp->mnt_secondary_accwrites++;
1773		MNT_IUNLOCK(mp);
1774		return (0);
1775	}
1776	if (flags & V_NOWAIT) {
1777		MNT_REL(mp);
1778		MNT_IUNLOCK(mp);
1779		return (EWOULDBLOCK);
1780	}
1781	/*
1782	 * Wait for the suspension to finish.
1783	 */
1784	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1785	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1786	    "suspfs", 0);
1787	vfs_rel(mp);
1788	if (error == 0)
1789		goto retry;
1790	return (error);
1791}
1792
1793/*
1794 * Filesystem write operation has completed. If we are suspending and this
1795 * operation is the last one, notify the suspender that the suspension is
1796 * now in effect.
1797 */
1798void
1799vn_finished_write(mp)
1800	struct mount *mp;
1801{
1802	if (mp == NULL)
1803		return;
1804	MNT_ILOCK(mp);
1805	MNT_REL(mp);
1806	mp->mnt_writeopcount--;
1807	if (mp->mnt_writeopcount < 0)
1808		panic("vn_finished_write: neg cnt");
1809	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1810	    mp->mnt_writeopcount <= 0)
1811		wakeup(&mp->mnt_writeopcount);
1812	MNT_IUNLOCK(mp);
1813}
1814
1815
1816/*
1817 * Filesystem secondary write operation has completed. If we are
1818 * suspending and this operation is the last one, notify the suspender
1819 * that the suspension is now in effect.
1820 */
1821void
1822vn_finished_secondary_write(mp)
1823	struct mount *mp;
1824{
1825	if (mp == NULL)
1826		return;
1827	MNT_ILOCK(mp);
1828	MNT_REL(mp);
1829	mp->mnt_secondary_writes--;
1830	if (mp->mnt_secondary_writes < 0)
1831		panic("vn_finished_secondary_write: neg cnt");
1832	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1833	    mp->mnt_secondary_writes <= 0)
1834		wakeup(&mp->mnt_secondary_writes);
1835	MNT_IUNLOCK(mp);
1836}
1837
1838
1839
1840/*
1841 * Request a filesystem to suspend write operations.
1842 */
1843int
1844vfs_write_suspend(struct mount *mp, int flags)
1845{
1846	int error;
1847
1848	MNT_ILOCK(mp);
1849	if (mp->mnt_susp_owner == curthread) {
1850		MNT_IUNLOCK(mp);
1851		return (EALREADY);
1852	}
1853	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1854		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1855
1856	/*
1857	 * Unmount holds a write reference on the mount point.  If we
1858	 * own busy reference and drain for writers, we deadlock with
1859	 * the reference draining in the unmount path.  Callers of
1860	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1861	 * vfs_busy() reference is owned and caller is not in the
1862	 * unmount context.
1863	 */
1864	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1865	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1866		MNT_IUNLOCK(mp);
1867		return (EBUSY);
1868	}
1869
1870	mp->mnt_kern_flag |= MNTK_SUSPEND;
1871	mp->mnt_susp_owner = curthread;
1872	if (mp->mnt_writeopcount > 0)
1873		(void) msleep(&mp->mnt_writeopcount,
1874		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1875	else
1876		MNT_IUNLOCK(mp);
1877	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1878		vfs_write_resume(mp, 0);
1879	return (error);
1880}
1881
1882/*
1883 * Request a filesystem to resume write operations.
1884 */
1885void
1886vfs_write_resume(struct mount *mp, int flags)
1887{
1888
1889	MNT_ILOCK(mp);
1890	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1891		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1892		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1893				       MNTK_SUSPENDED);
1894		mp->mnt_susp_owner = NULL;
1895		wakeup(&mp->mnt_writeopcount);
1896		wakeup(&mp->mnt_flag);
1897		curthread->td_pflags &= ~TDP_IGNSUSP;
1898		if ((flags & VR_START_WRITE) != 0) {
1899			MNT_REF(mp);
1900			mp->mnt_writeopcount++;
1901		}
1902		MNT_IUNLOCK(mp);
1903		if ((flags & VR_NO_SUSPCLR) == 0)
1904			VFS_SUSP_CLEAN(mp);
1905	} else if ((flags & VR_START_WRITE) != 0) {
1906		MNT_REF(mp);
1907		vn_start_write_locked(mp, 0);
1908	} else {
1909		MNT_IUNLOCK(mp);
1910	}
1911}
1912
1913/*
1914 * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1915 * methods.
1916 */
1917int
1918vfs_write_suspend_umnt(struct mount *mp)
1919{
1920	int error;
1921
1922	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1923	    ("vfs_write_suspend_umnt: recursed"));
1924
1925	/* dounmount() already called vn_start_write(). */
1926	for (;;) {
1927		vn_finished_write(mp);
1928		error = vfs_write_suspend(mp, 0);
1929		if (error != 0) {
1930			vn_start_write(NULL, &mp, V_WAIT);
1931			return (error);
1932		}
1933		MNT_ILOCK(mp);
1934		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1935			break;
1936		MNT_IUNLOCK(mp);
1937		vn_start_write(NULL, &mp, V_WAIT);
1938	}
1939	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1940	wakeup(&mp->mnt_flag);
1941	MNT_IUNLOCK(mp);
1942	curthread->td_pflags |= TDP_IGNSUSP;
1943	return (0);
1944}
1945
1946/*
1947 * Implement kqueues for files by translating it to vnode operation.
1948 */
1949static int
1950vn_kqfilter(struct file *fp, struct knote *kn)
1951{
1952
1953	return (VOP_KQFILTER(fp->f_vnode, kn));
1954}
1955
1956/*
1957 * Simplified in-kernel wrapper calls for extended attribute access.
1958 * Both calls pass in a NULL credential, authorizing as "kernel" access.
1959 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1960 */
1961int
1962vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1963    const char *attrname, int *buflen, char *buf, struct thread *td)
1964{
1965	struct uio	auio;
1966	struct iovec	iov;
1967	int	error;
1968
1969	iov.iov_len = *buflen;
1970	iov.iov_base = buf;
1971
1972	auio.uio_iov = &iov;
1973	auio.uio_iovcnt = 1;
1974	auio.uio_rw = UIO_READ;
1975	auio.uio_segflg = UIO_SYSSPACE;
1976	auio.uio_td = td;
1977	auio.uio_offset = 0;
1978	auio.uio_resid = *buflen;
1979
1980	if ((ioflg & IO_NODELOCKED) == 0)
1981		vn_lock(vp, LK_SHARED | LK_RETRY);
1982
1983	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1984
1985	/* authorize attribute retrieval as kernel */
1986	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1987	    td);
1988
1989	if ((ioflg & IO_NODELOCKED) == 0)
1990		VOP_UNLOCK(vp, 0);
1991
1992	if (error == 0) {
1993		*buflen = *buflen - auio.uio_resid;
1994	}
1995
1996	return (error);
1997}
1998
1999/*
2000 * XXX failure mode if partially written?
2001 */
2002int
2003vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2004    const char *attrname, int buflen, char *buf, struct thread *td)
2005{
2006	struct uio	auio;
2007	struct iovec	iov;
2008	struct mount	*mp;
2009	int	error;
2010
2011	iov.iov_len = buflen;
2012	iov.iov_base = buf;
2013
2014	auio.uio_iov = &iov;
2015	auio.uio_iovcnt = 1;
2016	auio.uio_rw = UIO_WRITE;
2017	auio.uio_segflg = UIO_SYSSPACE;
2018	auio.uio_td = td;
2019	auio.uio_offset = 0;
2020	auio.uio_resid = buflen;
2021
2022	if ((ioflg & IO_NODELOCKED) == 0) {
2023		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2024			return (error);
2025		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2026	}
2027
2028	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2029
2030	/* authorize attribute setting as kernel */
2031	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2032
2033	if ((ioflg & IO_NODELOCKED) == 0) {
2034		vn_finished_write(mp);
2035		VOP_UNLOCK(vp, 0);
2036	}
2037
2038	return (error);
2039}
2040
2041int
2042vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2043    const char *attrname, struct thread *td)
2044{
2045	struct mount	*mp;
2046	int	error;
2047
2048	if ((ioflg & IO_NODELOCKED) == 0) {
2049		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2050			return (error);
2051		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2052	}
2053
2054	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2055
2056	/* authorize attribute removal as kernel */
2057	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2058	if (error == EOPNOTSUPP)
2059		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2060		    NULL, td);
2061
2062	if ((ioflg & IO_NODELOCKED) == 0) {
2063		vn_finished_write(mp);
2064		VOP_UNLOCK(vp, 0);
2065	}
2066
2067	return (error);
2068}
2069
2070static int
2071vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2072    struct vnode **rvp)
2073{
2074
2075	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2076}
2077
2078int
2079vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2080{
2081
2082	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2083	    lkflags, rvp));
2084}
2085
2086int
2087vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2088    int lkflags, struct vnode **rvp)
2089{
2090	struct mount *mp;
2091	int ltype, error;
2092
2093	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2094	mp = vp->v_mount;
2095	ltype = VOP_ISLOCKED(vp);
2096	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2097	    ("vn_vget_ino: vp not locked"));
2098	error = vfs_busy(mp, MBF_NOWAIT);
2099	if (error != 0) {
2100		vfs_ref(mp);
2101		VOP_UNLOCK(vp, 0);
2102		error = vfs_busy(mp, 0);
2103		vn_lock(vp, ltype | LK_RETRY);
2104		vfs_rel(mp);
2105		if (error != 0)
2106			return (ENOENT);
2107		if (vp->v_iflag & VI_DOOMED) {
2108			vfs_unbusy(mp);
2109			return (ENOENT);
2110		}
2111	}
2112	VOP_UNLOCK(vp, 0);
2113	error = alloc(mp, alloc_arg, lkflags, rvp);
2114	vfs_unbusy(mp);
2115	if (*rvp != vp)
2116		vn_lock(vp, ltype | LK_RETRY);
2117	if (vp->v_iflag & VI_DOOMED) {
2118		if (error == 0) {
2119			if (*rvp == vp)
2120				vunref(vp);
2121			else
2122				vput(*rvp);
2123		}
2124		error = ENOENT;
2125	}
2126	return (error);
2127}
2128
2129int
2130vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2131    const struct thread *td)
2132{
2133
2134	if (vp->v_type != VREG || td == NULL)
2135		return (0);
2136	PROC_LOCK(td->td_proc);
2137	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2138	    lim_cur(td->td_proc, RLIMIT_FSIZE)) {
2139		kern_psignal(td->td_proc, SIGXFSZ);
2140		PROC_UNLOCK(td->td_proc);
2141		return (EFBIG);
2142	}
2143	PROC_UNLOCK(td->td_proc);
2144	return (0);
2145}
2146
2147int
2148vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2149    struct thread *td)
2150{
2151	struct vnode *vp;
2152
2153	vp = fp->f_vnode;
2154#ifdef AUDIT
2155	vn_lock(vp, LK_SHARED | LK_RETRY);
2156	AUDIT_ARG_VNODE1(vp);
2157	VOP_UNLOCK(vp, 0);
2158#endif
2159	return (setfmode(td, active_cred, vp, mode));
2160}
2161
2162int
2163vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2164    struct thread *td)
2165{
2166	struct vnode *vp;
2167
2168	vp = fp->f_vnode;
2169#ifdef AUDIT
2170	vn_lock(vp, LK_SHARED | LK_RETRY);
2171	AUDIT_ARG_VNODE1(vp);
2172	VOP_UNLOCK(vp, 0);
2173#endif
2174	return (setfown(td, active_cred, vp, uid, gid));
2175}
2176
2177void
2178vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2179{
2180	vm_object_t object;
2181
2182	if ((object = vp->v_object) == NULL)
2183		return;
2184	VM_OBJECT_WLOCK(object);
2185	vm_object_page_remove(object, start, end, 0);
2186	VM_OBJECT_WUNLOCK(object);
2187}
2188
2189int
2190vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2191{
2192	struct vattr va;
2193	daddr_t bn, bnp;
2194	uint64_t bsize;
2195	off_t noff;
2196	int error;
2197
2198	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2199	    ("Wrong command %lu", cmd));
2200
2201	if (vn_lock(vp, LK_SHARED) != 0)
2202		return (EBADF);
2203	if (vp->v_type != VREG) {
2204		error = ENOTTY;
2205		goto unlock;
2206	}
2207	error = VOP_GETATTR(vp, &va, cred);
2208	if (error != 0)
2209		goto unlock;
2210	noff = *off;
2211	if (noff >= va.va_size) {
2212		error = ENXIO;
2213		goto unlock;
2214	}
2215	bsize = vp->v_mount->mnt_stat.f_iosize;
2216	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2217		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2218		if (error == EOPNOTSUPP) {
2219			error = ENOTTY;
2220			goto unlock;
2221		}
2222		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2223		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2224			noff = bn * bsize;
2225			if (noff < *off)
2226				noff = *off;
2227			goto unlock;
2228		}
2229	}
2230	if (noff > va.va_size)
2231		noff = va.va_size;
2232	/* noff == va.va_size. There is an implicit hole at the end of file. */
2233	if (cmd == FIOSEEKDATA)
2234		error = ENXIO;
2235unlock:
2236	VOP_UNLOCK(vp, 0);
2237	if (error == 0)
2238		*off = noff;
2239	return (error);
2240}
2241
2242int
2243vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2244{
2245	struct ucred *cred;
2246	struct vnode *vp;
2247	struct vattr vattr;
2248	off_t foffset, size;
2249	int error, noneg;
2250
2251	cred = td->td_ucred;
2252	vp = fp->f_vnode;
2253	foffset = foffset_lock(fp, 0);
2254	noneg = (vp->v_type != VCHR);
2255	error = 0;
2256	switch (whence) {
2257	case L_INCR:
2258		if (noneg &&
2259		    (foffset < 0 ||
2260		    (offset > 0 && foffset > OFF_MAX - offset))) {
2261			error = EOVERFLOW;
2262			break;
2263		}
2264		offset += foffset;
2265		break;
2266	case L_XTND:
2267		vn_lock(vp, LK_SHARED | LK_RETRY);
2268		error = VOP_GETATTR(vp, &vattr, cred);
2269		VOP_UNLOCK(vp, 0);
2270		if (error)
2271			break;
2272
2273		/*
2274		 * If the file references a disk device, then fetch
2275		 * the media size and use that to determine the ending
2276		 * offset.
2277		 */
2278		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2279		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2280			vattr.va_size = size;
2281		if (noneg &&
2282		    (vattr.va_size > OFF_MAX ||
2283		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2284			error = EOVERFLOW;
2285			break;
2286		}
2287		offset += vattr.va_size;
2288		break;
2289	case L_SET:
2290		break;
2291	case SEEK_DATA:
2292		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2293		break;
2294	case SEEK_HOLE:
2295		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2296		break;
2297	default:
2298		error = EINVAL;
2299	}
2300	if (error == 0 && noneg && offset < 0)
2301		error = EINVAL;
2302	if (error != 0)
2303		goto drop;
2304	VFS_KNOTE_UNLOCKED(vp, 0);
2305	*(off_t *)(td->td_retval) = offset;
2306drop:
2307	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2308	return (error);
2309}
2310
2311int
2312vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2313    struct thread *td)
2314{
2315	int error;
2316
2317	/*
2318	 * Grant permission if the caller is the owner of the file, or
2319	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2320	 * on the file.  If the time pointer is null, then write
2321	 * permission on the file is also sufficient.
2322	 *
2323	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2324	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2325	 * will be allowed to set the times [..] to the current
2326	 * server time.
2327	 */
2328	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2329	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2330		error = VOP_ACCESS(vp, VWRITE, cred, td);
2331	return (error);
2332}
2333