vfs_vnops.c revision 299677
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11 * Copyright (c) 2013, 2014 The FreeBSD Foundation
12 *
13 * Portions of this software were developed by Konstantin Belousov
14 * under sponsorship from the FreeBSD Foundation.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: stable/10/sys/kern/vfs_vnops.c 299677 2016-05-13 15:09:38Z pfg $");
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/disk.h>
49#include <sys/fcntl.h>
50#include <sys/file.h>
51#include <sys/kdb.h>
52#include <sys/stat.h>
53#include <sys/priv.h>
54#include <sys/proc.h>
55#include <sys/limits.h>
56#include <sys/lock.h>
57#include <sys/mount.h>
58#include <sys/mutex.h>
59#include <sys/namei.h>
60#include <sys/vnode.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/filio.h>
64#include <sys/resourcevar.h>
65#include <sys/rwlock.h>
66#include <sys/sx.h>
67#include <sys/sysctl.h>
68#include <sys/ttycom.h>
69#include <sys/conf.h>
70#include <sys/syslog.h>
71#include <sys/unistd.h>
72
73#include <security/audit/audit.h>
74#include <security/mac/mac_framework.h>
75
76#include <vm/vm.h>
77#include <vm/vm_extern.h>
78#include <vm/pmap.h>
79#include <vm/vm_map.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82
83static fo_rdwr_t	vn_read;
84static fo_rdwr_t	vn_write;
85static fo_rdwr_t	vn_io_fault;
86static fo_truncate_t	vn_truncate;
87static fo_ioctl_t	vn_ioctl;
88static fo_poll_t	vn_poll;
89static fo_kqfilter_t	vn_kqfilter;
90static fo_stat_t	vn_statfile;
91static fo_close_t	vn_closefile;
92
93struct 	fileops vnops = {
94	.fo_read = vn_io_fault,
95	.fo_write = vn_io_fault,
96	.fo_truncate = vn_truncate,
97	.fo_ioctl = vn_ioctl,
98	.fo_poll = vn_poll,
99	.fo_kqfilter = vn_kqfilter,
100	.fo_stat = vn_statfile,
101	.fo_close = vn_closefile,
102	.fo_chmod = vn_chmod,
103	.fo_chown = vn_chown,
104	.fo_sendfile = vn_sendfile,
105	.fo_seek = vn_seek,
106	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
107};
108
109static const int io_hold_cnt = 16;
110static int vn_io_fault_enable = 1;
111SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
112    &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
113static int vn_io_fault_prefault = 0;
114SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
115    &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
116static u_long vn_io_faults_cnt;
117SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
118    &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
119
120/*
121 * Returns true if vn_io_fault mode of handling the i/o request should
122 * be used.
123 */
124static bool
125do_vn_io_fault(struct vnode *vp, struct uio *uio)
126{
127	struct mount *mp;
128
129	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
130	    (mp = vp->v_mount) != NULL &&
131	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
132}
133
134/*
135 * Structure used to pass arguments to vn_io_fault1(), to do either
136 * file- or vnode-based I/O calls.
137 */
138struct vn_io_fault_args {
139	enum {
140		VN_IO_FAULT_FOP,
141		VN_IO_FAULT_VOP
142	} kind;
143	struct ucred *cred;
144	int flags;
145	union {
146		struct fop_args_tag {
147			struct file *fp;
148			fo_rdwr_t *doio;
149		} fop_args;
150		struct vop_args_tag {
151			struct vnode *vp;
152		} vop_args;
153	} args;
154};
155
156static int vn_io_fault1(struct vnode *vp, struct uio *uio,
157    struct vn_io_fault_args *args, struct thread *td);
158
159int
160vn_open(ndp, flagp, cmode, fp)
161	struct nameidata *ndp;
162	int *flagp, cmode;
163	struct file *fp;
164{
165	struct thread *td = ndp->ni_cnd.cn_thread;
166
167	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
168}
169
170/*
171 * Common code for vnode open operations via a name lookup.
172 * Lookup the vnode and invoke VOP_CREATE if needed.
173 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
174 *
175 * Note that this does NOT free nameidata for the successful case,
176 * due to the NDINIT being done elsewhere.
177 */
178int
179vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
180    struct ucred *cred, struct file *fp)
181{
182	struct vnode *vp;
183	struct mount *mp;
184	struct thread *td = ndp->ni_cnd.cn_thread;
185	struct vattr vat;
186	struct vattr *vap = &vat;
187	int fmode, error;
188
189restart:
190	fmode = *flagp;
191	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
192	    O_EXCL | O_DIRECTORY))
193		return (EINVAL);
194	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
195		ndp->ni_cnd.cn_nameiop = CREATE;
196		/*
197		 * Set NOCACHE to avoid flushing the cache when
198		 * rolling in many files at once.
199		*/
200		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
201		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
202			ndp->ni_cnd.cn_flags |= FOLLOW;
203		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
204			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
205		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
206			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
207		bwillwrite();
208		if ((error = namei(ndp)) != 0)
209			return (error);
210		if (ndp->ni_vp == NULL) {
211			VATTR_NULL(vap);
212			vap->va_type = VREG;
213			vap->va_mode = cmode;
214			if (fmode & O_EXCL)
215				vap->va_vaflags |= VA_EXCLUSIVE;
216			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
217				NDFREE(ndp, NDF_ONLY_PNBUF);
218				vput(ndp->ni_dvp);
219				if ((error = vn_start_write(NULL, &mp,
220				    V_XSLEEP | PCATCH)) != 0)
221					return (error);
222				goto restart;
223			}
224			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
225				ndp->ni_cnd.cn_flags |= MAKEENTRY;
226#ifdef MAC
227			error = mac_vnode_check_create(cred, ndp->ni_dvp,
228			    &ndp->ni_cnd, vap);
229			if (error == 0)
230#endif
231				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
232						   &ndp->ni_cnd, vap);
233			vput(ndp->ni_dvp);
234			vn_finished_write(mp);
235			if (error) {
236				NDFREE(ndp, NDF_ONLY_PNBUF);
237				return (error);
238			}
239			fmode &= ~O_TRUNC;
240			vp = ndp->ni_vp;
241		} else {
242			if (ndp->ni_dvp == ndp->ni_vp)
243				vrele(ndp->ni_dvp);
244			else
245				vput(ndp->ni_dvp);
246			ndp->ni_dvp = NULL;
247			vp = ndp->ni_vp;
248			if (fmode & O_EXCL) {
249				error = EEXIST;
250				goto bad;
251			}
252			fmode &= ~O_CREAT;
253		}
254	} else {
255		ndp->ni_cnd.cn_nameiop = LOOKUP;
256		ndp->ni_cnd.cn_flags = ISOPEN |
257		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
258		if (!(fmode & FWRITE))
259			ndp->ni_cnd.cn_flags |= LOCKSHARED;
260		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
261			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
262		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
263			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
264		if ((error = namei(ndp)) != 0)
265			return (error);
266		vp = ndp->ni_vp;
267	}
268	error = vn_open_vnode(vp, fmode, cred, td, fp);
269	if (error)
270		goto bad;
271	*flagp = fmode;
272	return (0);
273bad:
274	NDFREE(ndp, NDF_ONLY_PNBUF);
275	vput(vp);
276	*flagp = fmode;
277	ndp->ni_vp = NULL;
278	return (error);
279}
280
281/*
282 * Common code for vnode open operations once a vnode is located.
283 * Check permissions, and call the VOP_OPEN routine.
284 */
285int
286vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
287    struct thread *td, struct file *fp)
288{
289	struct mount *mp;
290	accmode_t accmode;
291	struct flock lf;
292	int error, have_flock, lock_flags, type;
293
294	if (vp->v_type == VLNK)
295		return (EMLINK);
296	if (vp->v_type == VSOCK)
297		return (EOPNOTSUPP);
298	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
299		return (ENOTDIR);
300	accmode = 0;
301	if (fmode & (FWRITE | O_TRUNC)) {
302		if (vp->v_type == VDIR)
303			return (EISDIR);
304		accmode |= VWRITE;
305	}
306	if (fmode & FREAD)
307		accmode |= VREAD;
308	if (fmode & FEXEC)
309		accmode |= VEXEC;
310	if ((fmode & O_APPEND) && (fmode & FWRITE))
311		accmode |= VAPPEND;
312#ifdef MAC
313	error = mac_vnode_check_open(cred, vp, accmode);
314	if (error)
315		return (error);
316#endif
317	if ((fmode & O_CREAT) == 0) {
318		if (accmode & VWRITE) {
319			error = vn_writechk(vp);
320			if (error)
321				return (error);
322		}
323		if (accmode) {
324		        error = VOP_ACCESS(vp, accmode, cred, td);
325			if (error)
326				return (error);
327		}
328	}
329	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
330		vn_lock(vp, LK_UPGRADE | LK_RETRY);
331	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
332		return (error);
333
334	if (fmode & (O_EXLOCK | O_SHLOCK)) {
335		KASSERT(fp != NULL, ("open with flock requires fp"));
336		lock_flags = VOP_ISLOCKED(vp);
337		VOP_UNLOCK(vp, 0);
338		lf.l_whence = SEEK_SET;
339		lf.l_start = 0;
340		lf.l_len = 0;
341		if (fmode & O_EXLOCK)
342			lf.l_type = F_WRLCK;
343		else
344			lf.l_type = F_RDLCK;
345		type = F_FLOCK;
346		if ((fmode & FNONBLOCK) == 0)
347			type |= F_WAIT;
348		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
349		have_flock = (error == 0);
350		vn_lock(vp, lock_flags | LK_RETRY);
351		if (error == 0 && vp->v_iflag & VI_DOOMED)
352			error = ENOENT;
353		/*
354		 * Another thread might have used this vnode as an
355		 * executable while the vnode lock was dropped.
356		 * Ensure the vnode is still able to be opened for
357		 * writing after the lock has been obtained.
358		 */
359		if (error == 0 && accmode & VWRITE)
360			error = vn_writechk(vp);
361		if (error) {
362			VOP_UNLOCK(vp, 0);
363			if (have_flock) {
364				lf.l_whence = SEEK_SET;
365				lf.l_start = 0;
366				lf.l_len = 0;
367				lf.l_type = F_UNLCK;
368				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
369				    F_FLOCK);
370			}
371			vn_start_write(vp, &mp, V_WAIT);
372			vn_lock(vp, lock_flags | LK_RETRY);
373			(void)VOP_CLOSE(vp, fmode, cred, td);
374			vn_finished_write(mp);
375			/* Prevent second close from fdrop()->vn_close(). */
376			if (fp != NULL)
377				fp->f_ops= &badfileops;
378			return (error);
379		}
380		fp->f_flag |= FHASLOCK;
381	}
382	if (fmode & FWRITE) {
383		VOP_ADD_WRITECOUNT(vp, 1);
384		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
385		    __func__, vp, vp->v_writecount);
386	}
387	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
388	return (0);
389}
390
391/*
392 * Check for write permissions on the specified vnode.
393 * Prototype text segments cannot be written.
394 */
395int
396vn_writechk(vp)
397	register struct vnode *vp;
398{
399
400	ASSERT_VOP_LOCKED(vp, "vn_writechk");
401	/*
402	 * If there's shared text associated with
403	 * the vnode, try to free it up once.  If
404	 * we fail, we can't allow writing.
405	 */
406	if (VOP_IS_TEXT(vp))
407		return (ETXTBSY);
408
409	return (0);
410}
411
412/*
413 * Vnode close call
414 */
415int
416vn_close(vp, flags, file_cred, td)
417	register struct vnode *vp;
418	int flags;
419	struct ucred *file_cred;
420	struct thread *td;
421{
422	struct mount *mp;
423	int error, lock_flags;
424
425	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
426	    MNT_EXTENDED_SHARED(vp->v_mount))
427		lock_flags = LK_SHARED;
428	else
429		lock_flags = LK_EXCLUSIVE;
430
431	vn_start_write(vp, &mp, V_WAIT);
432	vn_lock(vp, lock_flags | LK_RETRY);
433	if (flags & FWRITE) {
434		VNASSERT(vp->v_writecount > 0, vp,
435		    ("vn_close: negative writecount"));
436		VOP_ADD_WRITECOUNT(vp, -1);
437		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
438		    __func__, vp, vp->v_writecount);
439	}
440	error = VOP_CLOSE(vp, flags, file_cred, td);
441	vput(vp);
442	vn_finished_write(mp);
443	return (error);
444}
445
446/*
447 * Heuristic to detect sequential operation.
448 */
449static int
450sequential_heuristic(struct uio *uio, struct file *fp)
451{
452
453	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
454	if (fp->f_flag & FRDAHEAD)
455		return (fp->f_seqcount << IO_SEQSHIFT);
456
457	/*
458	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
459	 * that the first I/O is normally considered to be slightly
460	 * sequential.  Seeking to offset 0 doesn't change sequentiality
461	 * unless previous seeks have reduced f_seqcount to 0, in which
462	 * case offset 0 is not special.
463	 */
464	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
465	    uio->uio_offset == fp->f_nextoff) {
466		/*
467		 * f_seqcount is in units of fixed-size blocks so that it
468		 * depends mainly on the amount of sequential I/O and not
469		 * much on the number of sequential I/O's.  The fixed size
470		 * of 16384 is hard-coded here since it is (not quite) just
471		 * a magic size that works well here.  This size is more
472		 * closely related to the best I/O size for real disks than
473		 * to any block size used by software.
474		 */
475		fp->f_seqcount += howmany(uio->uio_resid, 16384);
476		if (fp->f_seqcount > IO_SEQMAX)
477			fp->f_seqcount = IO_SEQMAX;
478		return (fp->f_seqcount << IO_SEQSHIFT);
479	}
480
481	/* Not sequential.  Quickly draw-down sequentiality. */
482	if (fp->f_seqcount > 1)
483		fp->f_seqcount = 1;
484	else
485		fp->f_seqcount = 0;
486	return (0);
487}
488
489/*
490 * Package up an I/O request on a vnode into a uio and do it.
491 */
492int
493vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
494    enum uio_seg segflg, int ioflg, struct ucred *active_cred,
495    struct ucred *file_cred, ssize_t *aresid, struct thread *td)
496{
497	struct uio auio;
498	struct iovec aiov;
499	struct mount *mp;
500	struct ucred *cred;
501	void *rl_cookie;
502	struct vn_io_fault_args args;
503	int error, lock_flags;
504
505	auio.uio_iov = &aiov;
506	auio.uio_iovcnt = 1;
507	aiov.iov_base = base;
508	aiov.iov_len = len;
509	auio.uio_resid = len;
510	auio.uio_offset = offset;
511	auio.uio_segflg = segflg;
512	auio.uio_rw = rw;
513	auio.uio_td = td;
514	error = 0;
515
516	if ((ioflg & IO_NODELOCKED) == 0) {
517		if ((ioflg & IO_RANGELOCKED) == 0) {
518			if (rw == UIO_READ) {
519				rl_cookie = vn_rangelock_rlock(vp, offset,
520				    offset + len);
521			} else {
522				rl_cookie = vn_rangelock_wlock(vp, offset,
523				    offset + len);
524			}
525		} else
526			rl_cookie = NULL;
527		mp = NULL;
528		if (rw == UIO_WRITE) {
529			if (vp->v_type != VCHR &&
530			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
531			    != 0)
532				goto out;
533			if (MNT_SHARED_WRITES(mp) ||
534			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
535				lock_flags = LK_SHARED;
536			else
537				lock_flags = LK_EXCLUSIVE;
538		} else
539			lock_flags = LK_SHARED;
540		vn_lock(vp, lock_flags | LK_RETRY);
541	} else
542		rl_cookie = NULL;
543
544	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
545#ifdef MAC
546	if ((ioflg & IO_NOMACCHECK) == 0) {
547		if (rw == UIO_READ)
548			error = mac_vnode_check_read(active_cred, file_cred,
549			    vp);
550		else
551			error = mac_vnode_check_write(active_cred, file_cred,
552			    vp);
553	}
554#endif
555	if (error == 0) {
556		if (file_cred != NULL)
557			cred = file_cred;
558		else
559			cred = active_cred;
560		if (do_vn_io_fault(vp, &auio)) {
561			args.kind = VN_IO_FAULT_VOP;
562			args.cred = cred;
563			args.flags = ioflg;
564			args.args.vop_args.vp = vp;
565			error = vn_io_fault1(vp, &auio, &args, td);
566		} else if (rw == UIO_READ) {
567			error = VOP_READ(vp, &auio, ioflg, cred);
568		} else /* if (rw == UIO_WRITE) */ {
569			error = VOP_WRITE(vp, &auio, ioflg, cred);
570		}
571	}
572	if (aresid)
573		*aresid = auio.uio_resid;
574	else
575		if (auio.uio_resid && error == 0)
576			error = EIO;
577	if ((ioflg & IO_NODELOCKED) == 0) {
578		VOP_UNLOCK(vp, 0);
579		if (mp != NULL)
580			vn_finished_write(mp);
581	}
582 out:
583	if (rl_cookie != NULL)
584		vn_rangelock_unlock(vp, rl_cookie);
585	return (error);
586}
587
588/*
589 * Package up an I/O request on a vnode into a uio and do it.  The I/O
590 * request is split up into smaller chunks and we try to avoid saturating
591 * the buffer cache while potentially holding a vnode locked, so we
592 * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
593 * to give other processes a chance to lock the vnode (either other processes
594 * core'ing the same binary, or unrelated processes scanning the directory).
595 */
596int
597vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
598    file_cred, aresid, td)
599	enum uio_rw rw;
600	struct vnode *vp;
601	void *base;
602	size_t len;
603	off_t offset;
604	enum uio_seg segflg;
605	int ioflg;
606	struct ucred *active_cred;
607	struct ucred *file_cred;
608	size_t *aresid;
609	struct thread *td;
610{
611	int error = 0;
612	ssize_t iaresid;
613
614	do {
615		int chunk;
616
617		/*
618		 * Force `offset' to a multiple of MAXBSIZE except possibly
619		 * for the first chunk, so that filesystems only need to
620		 * write full blocks except possibly for the first and last
621		 * chunks.
622		 */
623		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
624
625		if (chunk > len)
626			chunk = len;
627		if (rw != UIO_READ && vp->v_type == VREG)
628			bwillwrite();
629		iaresid = 0;
630		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
631		    ioflg, active_cred, file_cred, &iaresid, td);
632		len -= chunk;	/* aresid calc already includes length */
633		if (error)
634			break;
635		offset += chunk;
636		base = (char *)base + chunk;
637		kern_yield(PRI_USER);
638	} while (len);
639	if (aresid)
640		*aresid = len + iaresid;
641	return (error);
642}
643
644off_t
645foffset_lock(struct file *fp, int flags)
646{
647	struct mtx *mtxp;
648	off_t res;
649
650	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
651
652#if OFF_MAX <= LONG_MAX
653	/*
654	 * Caller only wants the current f_offset value.  Assume that
655	 * the long and shorter integer types reads are atomic.
656	 */
657	if ((flags & FOF_NOLOCK) != 0)
658		return (fp->f_offset);
659#endif
660
661	/*
662	 * According to McKusick the vn lock was protecting f_offset here.
663	 * It is now protected by the FOFFSET_LOCKED flag.
664	 */
665	mtxp = mtx_pool_find(mtxpool_sleep, fp);
666	mtx_lock(mtxp);
667	if ((flags & FOF_NOLOCK) == 0) {
668		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
669			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
670			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
671			    "vofflock", 0);
672		}
673		fp->f_vnread_flags |= FOFFSET_LOCKED;
674	}
675	res = fp->f_offset;
676	mtx_unlock(mtxp);
677	return (res);
678}
679
680void
681foffset_unlock(struct file *fp, off_t val, int flags)
682{
683	struct mtx *mtxp;
684
685	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
686
687#if OFF_MAX <= LONG_MAX
688	if ((flags & FOF_NOLOCK) != 0) {
689		if ((flags & FOF_NOUPDATE) == 0)
690			fp->f_offset = val;
691		if ((flags & FOF_NEXTOFF) != 0)
692			fp->f_nextoff = val;
693		return;
694	}
695#endif
696
697	mtxp = mtx_pool_find(mtxpool_sleep, fp);
698	mtx_lock(mtxp);
699	if ((flags & FOF_NOUPDATE) == 0)
700		fp->f_offset = val;
701	if ((flags & FOF_NEXTOFF) != 0)
702		fp->f_nextoff = val;
703	if ((flags & FOF_NOLOCK) == 0) {
704		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
705		    ("Lost FOFFSET_LOCKED"));
706		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
707			wakeup(&fp->f_vnread_flags);
708		fp->f_vnread_flags = 0;
709	}
710	mtx_unlock(mtxp);
711}
712
713void
714foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
715{
716
717	if ((flags & FOF_OFFSET) == 0)
718		uio->uio_offset = foffset_lock(fp, flags);
719}
720
721void
722foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
723{
724
725	if ((flags & FOF_OFFSET) == 0)
726		foffset_unlock(fp, uio->uio_offset, flags);
727}
728
729static int
730get_advice(struct file *fp, struct uio *uio)
731{
732	struct mtx *mtxp;
733	int ret;
734
735	ret = POSIX_FADV_NORMAL;
736	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
737		return (ret);
738
739	mtxp = mtx_pool_find(mtxpool_sleep, fp);
740	mtx_lock(mtxp);
741	if (fp->f_advice != NULL &&
742	    uio->uio_offset >= fp->f_advice->fa_start &&
743	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
744		ret = fp->f_advice->fa_advice;
745	mtx_unlock(mtxp);
746	return (ret);
747}
748
749/*
750 * File table vnode read routine.
751 */
752static int
753vn_read(fp, uio, active_cred, flags, td)
754	struct file *fp;
755	struct uio *uio;
756	struct ucred *active_cred;
757	int flags;
758	struct thread *td;
759{
760	struct vnode *vp;
761	struct mtx *mtxp;
762	int error, ioflag;
763	int advice;
764	off_t offset, start, end;
765
766	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
767	    uio->uio_td, td));
768	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
769	vp = fp->f_vnode;
770	ioflag = 0;
771	if (fp->f_flag & FNONBLOCK)
772		ioflag |= IO_NDELAY;
773	if (fp->f_flag & O_DIRECT)
774		ioflag |= IO_DIRECT;
775	advice = get_advice(fp, uio);
776	vn_lock(vp, LK_SHARED | LK_RETRY);
777
778	switch (advice) {
779	case POSIX_FADV_NORMAL:
780	case POSIX_FADV_SEQUENTIAL:
781	case POSIX_FADV_NOREUSE:
782		ioflag |= sequential_heuristic(uio, fp);
783		break;
784	case POSIX_FADV_RANDOM:
785		/* Disable read-ahead for random I/O. */
786		break;
787	}
788	offset = uio->uio_offset;
789
790#ifdef MAC
791	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
792	if (error == 0)
793#endif
794		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
795	fp->f_nextoff = uio->uio_offset;
796	VOP_UNLOCK(vp, 0);
797	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
798	    offset != uio->uio_offset) {
799		/*
800		 * Use POSIX_FADV_DONTNEED to flush clean pages and
801		 * buffers for the backing file after a
802		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
803		 * case of using POSIX_FADV_NOREUSE with sequential
804		 * access, track the previous implicit DONTNEED
805		 * request and grow this request to include the
806		 * current read(2) in addition to the previous
807		 * DONTNEED.  With purely sequential access this will
808		 * cause the DONTNEED requests to continously grow to
809		 * cover all of the previously read regions of the
810		 * file.  This allows filesystem blocks that are
811		 * accessed by multiple calls to read(2) to be flushed
812		 * once the last read(2) finishes.
813		 */
814		start = offset;
815		end = uio->uio_offset - 1;
816		mtxp = mtx_pool_find(mtxpool_sleep, fp);
817		mtx_lock(mtxp);
818		if (fp->f_advice != NULL &&
819		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
820			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
821				start = fp->f_advice->fa_prevstart;
822			else if (fp->f_advice->fa_prevstart != 0 &&
823			    fp->f_advice->fa_prevstart == end + 1)
824				end = fp->f_advice->fa_prevend;
825			fp->f_advice->fa_prevstart = start;
826			fp->f_advice->fa_prevend = end;
827		}
828		mtx_unlock(mtxp);
829		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
830	}
831	return (error);
832}
833
834/*
835 * File table vnode write routine.
836 */
837static int
838vn_write(fp, uio, active_cred, flags, td)
839	struct file *fp;
840	struct uio *uio;
841	struct ucred *active_cred;
842	int flags;
843	struct thread *td;
844{
845	struct vnode *vp;
846	struct mount *mp;
847	struct mtx *mtxp;
848	int error, ioflag, lock_flags;
849	int advice;
850	off_t offset, start, end;
851
852	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
853	    uio->uio_td, td));
854	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
855	vp = fp->f_vnode;
856	if (vp->v_type == VREG)
857		bwillwrite();
858	ioflag = IO_UNIT;
859	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
860		ioflag |= IO_APPEND;
861	if (fp->f_flag & FNONBLOCK)
862		ioflag |= IO_NDELAY;
863	if (fp->f_flag & O_DIRECT)
864		ioflag |= IO_DIRECT;
865	if ((fp->f_flag & O_FSYNC) ||
866	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
867		ioflag |= IO_SYNC;
868	mp = NULL;
869	if (vp->v_type != VCHR &&
870	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
871		goto unlock;
872
873	advice = get_advice(fp, uio);
874
875	if (MNT_SHARED_WRITES(mp) ||
876	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
877		lock_flags = LK_SHARED;
878	} else {
879		lock_flags = LK_EXCLUSIVE;
880	}
881
882	vn_lock(vp, lock_flags | LK_RETRY);
883	switch (advice) {
884	case POSIX_FADV_NORMAL:
885	case POSIX_FADV_SEQUENTIAL:
886	case POSIX_FADV_NOREUSE:
887		ioflag |= sequential_heuristic(uio, fp);
888		break;
889	case POSIX_FADV_RANDOM:
890		/* XXX: Is this correct? */
891		break;
892	}
893	offset = uio->uio_offset;
894
895#ifdef MAC
896	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
897	if (error == 0)
898#endif
899		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
900	fp->f_nextoff = uio->uio_offset;
901	VOP_UNLOCK(vp, 0);
902	if (vp->v_type != VCHR)
903		vn_finished_write(mp);
904	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
905	    offset != uio->uio_offset) {
906		/*
907		 * Use POSIX_FADV_DONTNEED to flush clean pages and
908		 * buffers for the backing file after a
909		 * POSIX_FADV_NOREUSE write(2).  To optimize the
910		 * common case of using POSIX_FADV_NOREUSE with
911		 * sequential access, track the previous implicit
912		 * DONTNEED request and grow this request to include
913		 * the current write(2) in addition to the previous
914		 * DONTNEED.  With purely sequential access this will
915		 * cause the DONTNEED requests to continously grow to
916		 * cover all of the previously written regions of the
917		 * file.
918		 *
919		 * Note that the blocks just written are almost
920		 * certainly still dirty, so this only works when
921		 * VOP_ADVISE() calls from subsequent writes push out
922		 * the data written by this write(2) once the backing
923		 * buffers are clean.  However, as compared to forcing
924		 * IO_DIRECT, this gives much saner behavior.  Write
925		 * clustering is still allowed, and clean pages are
926		 * merely moved to the cache page queue rather than
927		 * outright thrown away.  This means a subsequent
928		 * read(2) can still avoid hitting the disk if the
929		 * pages have not been reclaimed.
930		 *
931		 * This does make POSIX_FADV_NOREUSE largely useless
932		 * with non-sequential access.  However, sequential
933		 * access is the more common use case and the flag is
934		 * merely advisory.
935		 */
936		start = offset;
937		end = uio->uio_offset - 1;
938		mtxp = mtx_pool_find(mtxpool_sleep, fp);
939		mtx_lock(mtxp);
940		if (fp->f_advice != NULL &&
941		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
942			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
943				start = fp->f_advice->fa_prevstart;
944			else if (fp->f_advice->fa_prevstart != 0 &&
945			    fp->f_advice->fa_prevstart == end + 1)
946				end = fp->f_advice->fa_prevend;
947			fp->f_advice->fa_prevstart = start;
948			fp->f_advice->fa_prevend = end;
949		}
950		mtx_unlock(mtxp);
951		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
952	}
953
954unlock:
955	return (error);
956}
957
958/*
959 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
960 * prevent the following deadlock:
961 *
962 * Assume that the thread A reads from the vnode vp1 into userspace
963 * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
964 * currently not resident, then system ends up with the call chain
965 *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
966 *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
967 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
968 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
969 * backed by the pages of vnode vp1, and some page in buf2 is not
970 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
971 *
972 * To prevent the lock order reversal and deadlock, vn_io_fault() does
973 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
974 * Instead, it first tries to do the whole range i/o with pagefaults
975 * disabled. If all pages in the i/o buffer are resident and mapped,
976 * VOP will succeed (ignoring the genuine filesystem errors).
977 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
978 * i/o in chunks, with all pages in the chunk prefaulted and held
979 * using vm_fault_quick_hold_pages().
980 *
981 * Filesystems using this deadlock avoidance scheme should use the
982 * array of the held pages from uio, saved in the curthread->td_ma,
983 * instead of doing uiomove().  A helper function
984 * vn_io_fault_uiomove() converts uiomove request into
985 * uiomove_fromphys() over td_ma array.
986 *
987 * Since vnode locks do not cover the whole i/o anymore, rangelocks
988 * make the current i/o request atomic with respect to other i/os and
989 * truncations.
990 */
991
992/*
993 * Decode vn_io_fault_args and perform the corresponding i/o.
994 */
995static int
996vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
997    struct thread *td)
998{
999
1000	switch (args->kind) {
1001	case VN_IO_FAULT_FOP:
1002		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
1003		    uio, args->cred, args->flags, td));
1004	case VN_IO_FAULT_VOP:
1005		if (uio->uio_rw == UIO_READ) {
1006			return (VOP_READ(args->args.vop_args.vp, uio,
1007			    args->flags, args->cred));
1008		} else if (uio->uio_rw == UIO_WRITE) {
1009			return (VOP_WRITE(args->args.vop_args.vp, uio,
1010			    args->flags, args->cred));
1011		}
1012		break;
1013	}
1014	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
1015	    uio->uio_rw);
1016}
1017
1018static int
1019vn_io_fault_touch(char *base, const struct uio *uio)
1020{
1021	int r;
1022
1023	r = fubyte(base);
1024	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1025		return (EFAULT);
1026	return (0);
1027}
1028
1029static int
1030vn_io_fault_prefault_user(const struct uio *uio)
1031{
1032	char *base;
1033	const struct iovec *iov;
1034	size_t len;
1035	ssize_t resid;
1036	int error, i;
1037
1038	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1039	    ("vn_io_fault_prefault userspace"));
1040
1041	error = i = 0;
1042	iov = uio->uio_iov;
1043	resid = uio->uio_resid;
1044	base = iov->iov_base;
1045	len = iov->iov_len;
1046	while (resid > 0) {
1047		error = vn_io_fault_touch(base, uio);
1048		if (error != 0)
1049			break;
1050		if (len < PAGE_SIZE) {
1051			if (len != 0) {
1052				error = vn_io_fault_touch(base + len - 1, uio);
1053				if (error != 0)
1054					break;
1055				resid -= len;
1056			}
1057			if (++i >= uio->uio_iovcnt)
1058				break;
1059			iov = uio->uio_iov + i;
1060			base = iov->iov_base;
1061			len = iov->iov_len;
1062		} else {
1063			len -= PAGE_SIZE;
1064			base += PAGE_SIZE;
1065			resid -= PAGE_SIZE;
1066		}
1067	}
1068	return (error);
1069}
1070
1071/*
1072 * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1073 * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1074 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1075 * into args and call vn_io_fault1() to handle faults during the user
1076 * mode buffer accesses.
1077 */
1078static int
1079vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1080    struct thread *td)
1081{
1082	vm_page_t ma[io_hold_cnt + 2];
1083	struct uio *uio_clone, short_uio;
1084	struct iovec short_iovec[1];
1085	vm_page_t *prev_td_ma;
1086	vm_prot_t prot;
1087	vm_offset_t addr, end;
1088	size_t len, resid;
1089	ssize_t adv;
1090	int error, cnt, save, saveheld, prev_td_ma_cnt;
1091
1092	if (vn_io_fault_prefault) {
1093		error = vn_io_fault_prefault_user(uio);
1094		if (error != 0)
1095			return (error); /* Or ignore ? */
1096	}
1097
1098	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1099
1100	/*
1101	 * The UFS follows IO_UNIT directive and replays back both
1102	 * uio_offset and uio_resid if an error is encountered during the
1103	 * operation.  But, since the iovec may be already advanced,
1104	 * uio is still in an inconsistent state.
1105	 *
1106	 * Cache a copy of the original uio, which is advanced to the redo
1107	 * point using UIO_NOCOPY below.
1108	 */
1109	uio_clone = cloneuio(uio);
1110	resid = uio->uio_resid;
1111
1112	short_uio.uio_segflg = UIO_USERSPACE;
1113	short_uio.uio_rw = uio->uio_rw;
1114	short_uio.uio_td = uio->uio_td;
1115
1116	save = vm_fault_disable_pagefaults();
1117	error = vn_io_fault_doio(args, uio, td);
1118	if (error != EFAULT)
1119		goto out;
1120
1121	atomic_add_long(&vn_io_faults_cnt, 1);
1122	uio_clone->uio_segflg = UIO_NOCOPY;
1123	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1124	uio_clone->uio_segflg = uio->uio_segflg;
1125
1126	saveheld = curthread_pflags_set(TDP_UIOHELD);
1127	prev_td_ma = td->td_ma;
1128	prev_td_ma_cnt = td->td_ma_cnt;
1129
1130	while (uio_clone->uio_resid != 0) {
1131		len = uio_clone->uio_iov->iov_len;
1132		if (len == 0) {
1133			KASSERT(uio_clone->uio_iovcnt >= 1,
1134			    ("iovcnt underflow"));
1135			uio_clone->uio_iov++;
1136			uio_clone->uio_iovcnt--;
1137			continue;
1138		}
1139		if (len > io_hold_cnt * PAGE_SIZE)
1140			len = io_hold_cnt * PAGE_SIZE;
1141		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1142		end = round_page(addr + len);
1143		if (end < addr) {
1144			error = EFAULT;
1145			break;
1146		}
1147		cnt = atop(end - trunc_page(addr));
1148		/*
1149		 * A perfectly misaligned address and length could cause
1150		 * both the start and the end of the chunk to use partial
1151		 * page.  +2 accounts for such a situation.
1152		 */
1153		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1154		    addr, len, prot, ma, io_hold_cnt + 2);
1155		if (cnt == -1) {
1156			error = EFAULT;
1157			break;
1158		}
1159		short_uio.uio_iov = &short_iovec[0];
1160		short_iovec[0].iov_base = (void *)addr;
1161		short_uio.uio_iovcnt = 1;
1162		short_uio.uio_resid = short_iovec[0].iov_len = len;
1163		short_uio.uio_offset = uio_clone->uio_offset;
1164		td->td_ma = ma;
1165		td->td_ma_cnt = cnt;
1166
1167		error = vn_io_fault_doio(args, &short_uio, td);
1168		vm_page_unhold_pages(ma, cnt);
1169		adv = len - short_uio.uio_resid;
1170
1171		uio_clone->uio_iov->iov_base =
1172		    (char *)uio_clone->uio_iov->iov_base + adv;
1173		uio_clone->uio_iov->iov_len -= adv;
1174		uio_clone->uio_resid -= adv;
1175		uio_clone->uio_offset += adv;
1176
1177		uio->uio_resid -= adv;
1178		uio->uio_offset += adv;
1179
1180		if (error != 0 || adv == 0)
1181			break;
1182	}
1183	td->td_ma = prev_td_ma;
1184	td->td_ma_cnt = prev_td_ma_cnt;
1185	curthread_pflags_restore(saveheld);
1186out:
1187	vm_fault_enable_pagefaults(save);
1188	free(uio_clone, M_IOV);
1189	return (error);
1190}
1191
1192static int
1193vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1194    int flags, struct thread *td)
1195{
1196	fo_rdwr_t *doio;
1197	struct vnode *vp;
1198	void *rl_cookie;
1199	struct vn_io_fault_args args;
1200	int error;
1201
1202	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1203	vp = fp->f_vnode;
1204	foffset_lock_uio(fp, uio, flags);
1205	if (do_vn_io_fault(vp, uio)) {
1206		args.kind = VN_IO_FAULT_FOP;
1207		args.args.fop_args.fp = fp;
1208		args.args.fop_args.doio = doio;
1209		args.cred = active_cred;
1210		args.flags = flags | FOF_OFFSET;
1211		if (uio->uio_rw == UIO_READ) {
1212			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1213			    uio->uio_offset + uio->uio_resid);
1214		} else if ((fp->f_flag & O_APPEND) != 0 ||
1215		    (flags & FOF_OFFSET) == 0) {
1216			/* For appenders, punt and lock the whole range. */
1217			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1218		} else {
1219			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1220			    uio->uio_offset + uio->uio_resid);
1221		}
1222		error = vn_io_fault1(vp, uio, &args, td);
1223		vn_rangelock_unlock(vp, rl_cookie);
1224	} else {
1225		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1226	}
1227	foffset_unlock_uio(fp, uio, flags);
1228	return (error);
1229}
1230
1231/*
1232 * Helper function to perform the requested uiomove operation using
1233 * the held pages for io->uio_iov[0].iov_base buffer instead of
1234 * copyin/copyout.  Access to the pages with uiomove_fromphys()
1235 * instead of iov_base prevents page faults that could occur due to
1236 * pmap_collect() invalidating the mapping created by
1237 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1238 * object cleanup revoking the write access from page mappings.
1239 *
1240 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1241 * instead of plain uiomove().
1242 */
1243int
1244vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1245{
1246	struct uio transp_uio;
1247	struct iovec transp_iov[1];
1248	struct thread *td;
1249	size_t adv;
1250	int error, pgadv;
1251
1252	td = curthread;
1253	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1254	    uio->uio_segflg != UIO_USERSPACE)
1255		return (uiomove(data, xfersize, uio));
1256
1257	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1258	transp_iov[0].iov_base = data;
1259	transp_uio.uio_iov = &transp_iov[0];
1260	transp_uio.uio_iovcnt = 1;
1261	if (xfersize > uio->uio_resid)
1262		xfersize = uio->uio_resid;
1263	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1264	transp_uio.uio_offset = 0;
1265	transp_uio.uio_segflg = UIO_SYSSPACE;
1266	/*
1267	 * Since transp_iov points to data, and td_ma page array
1268	 * corresponds to original uio->uio_iov, we need to invert the
1269	 * direction of the i/o operation as passed to
1270	 * uiomove_fromphys().
1271	 */
1272	switch (uio->uio_rw) {
1273	case UIO_WRITE:
1274		transp_uio.uio_rw = UIO_READ;
1275		break;
1276	case UIO_READ:
1277		transp_uio.uio_rw = UIO_WRITE;
1278		break;
1279	}
1280	transp_uio.uio_td = uio->uio_td;
1281	error = uiomove_fromphys(td->td_ma,
1282	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1283	    xfersize, &transp_uio);
1284	adv = xfersize - transp_uio.uio_resid;
1285	pgadv =
1286	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1287	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1288	td->td_ma += pgadv;
1289	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1290	    pgadv));
1291	td->td_ma_cnt -= pgadv;
1292	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1293	uio->uio_iov->iov_len -= adv;
1294	uio->uio_resid -= adv;
1295	uio->uio_offset += adv;
1296	return (error);
1297}
1298
1299int
1300vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1301    struct uio *uio)
1302{
1303	struct thread *td;
1304	vm_offset_t iov_base;
1305	int cnt, pgadv;
1306
1307	td = curthread;
1308	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1309	    uio->uio_segflg != UIO_USERSPACE)
1310		return (uiomove_fromphys(ma, offset, xfersize, uio));
1311
1312	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1313	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1314	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1315	switch (uio->uio_rw) {
1316	case UIO_WRITE:
1317		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1318		    offset, cnt);
1319		break;
1320	case UIO_READ:
1321		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1322		    cnt);
1323		break;
1324	}
1325	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1326	td->td_ma += pgadv;
1327	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1328	    pgadv));
1329	td->td_ma_cnt -= pgadv;
1330	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1331	uio->uio_iov->iov_len -= cnt;
1332	uio->uio_resid -= cnt;
1333	uio->uio_offset += cnt;
1334	return (0);
1335}
1336
1337
1338/*
1339 * File table truncate routine.
1340 */
1341static int
1342vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1343    struct thread *td)
1344{
1345	struct vattr vattr;
1346	struct mount *mp;
1347	struct vnode *vp;
1348	void *rl_cookie;
1349	int error;
1350
1351	vp = fp->f_vnode;
1352
1353	/*
1354	 * Lock the whole range for truncation.  Otherwise split i/o
1355	 * might happen partly before and partly after the truncation.
1356	 */
1357	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1358	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1359	if (error)
1360		goto out1;
1361	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1362	if (vp->v_type == VDIR) {
1363		error = EISDIR;
1364		goto out;
1365	}
1366#ifdef MAC
1367	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1368	if (error)
1369		goto out;
1370#endif
1371	error = vn_writechk(vp);
1372	if (error == 0) {
1373		VATTR_NULL(&vattr);
1374		vattr.va_size = length;
1375		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1376	}
1377out:
1378	VOP_UNLOCK(vp, 0);
1379	vn_finished_write(mp);
1380out1:
1381	vn_rangelock_unlock(vp, rl_cookie);
1382	return (error);
1383}
1384
1385/*
1386 * File table vnode stat routine.
1387 */
1388static int
1389vn_statfile(fp, sb, active_cred, td)
1390	struct file *fp;
1391	struct stat *sb;
1392	struct ucred *active_cred;
1393	struct thread *td;
1394{
1395	struct vnode *vp = fp->f_vnode;
1396	int error;
1397
1398	vn_lock(vp, LK_SHARED | LK_RETRY);
1399	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1400	VOP_UNLOCK(vp, 0);
1401
1402	return (error);
1403}
1404
1405/*
1406 * Stat a vnode; implementation for the stat syscall
1407 */
1408int
1409vn_stat(vp, sb, active_cred, file_cred, td)
1410	struct vnode *vp;
1411	register struct stat *sb;
1412	struct ucred *active_cred;
1413	struct ucred *file_cred;
1414	struct thread *td;
1415{
1416	struct vattr vattr;
1417	register struct vattr *vap;
1418	int error;
1419	u_short mode;
1420
1421#ifdef MAC
1422	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1423	if (error)
1424		return (error);
1425#endif
1426
1427	vap = &vattr;
1428
1429	/*
1430	 * Initialize defaults for new and unusual fields, so that file
1431	 * systems which don't support these fields don't need to know
1432	 * about them.
1433	 */
1434	vap->va_birthtime.tv_sec = -1;
1435	vap->va_birthtime.tv_nsec = 0;
1436	vap->va_fsid = VNOVAL;
1437	vap->va_rdev = NODEV;
1438
1439	error = VOP_GETATTR(vp, vap, active_cred);
1440	if (error)
1441		return (error);
1442
1443	/*
1444	 * Zero the spare stat fields
1445	 */
1446	bzero(sb, sizeof *sb);
1447
1448	/*
1449	 * Copy from vattr table
1450	 */
1451	if (vap->va_fsid != VNOVAL)
1452		sb->st_dev = vap->va_fsid;
1453	else
1454		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1455	sb->st_ino = vap->va_fileid;
1456	mode = vap->va_mode;
1457	switch (vap->va_type) {
1458	case VREG:
1459		mode |= S_IFREG;
1460		break;
1461	case VDIR:
1462		mode |= S_IFDIR;
1463		break;
1464	case VBLK:
1465		mode |= S_IFBLK;
1466		break;
1467	case VCHR:
1468		mode |= S_IFCHR;
1469		break;
1470	case VLNK:
1471		mode |= S_IFLNK;
1472		break;
1473	case VSOCK:
1474		mode |= S_IFSOCK;
1475		break;
1476	case VFIFO:
1477		mode |= S_IFIFO;
1478		break;
1479	default:
1480		return (EBADF);
1481	};
1482	sb->st_mode = mode;
1483	sb->st_nlink = vap->va_nlink;
1484	sb->st_uid = vap->va_uid;
1485	sb->st_gid = vap->va_gid;
1486	sb->st_rdev = vap->va_rdev;
1487	if (vap->va_size > OFF_MAX)
1488		return (EOVERFLOW);
1489	sb->st_size = vap->va_size;
1490	sb->st_atim = vap->va_atime;
1491	sb->st_mtim = vap->va_mtime;
1492	sb->st_ctim = vap->va_ctime;
1493	sb->st_birthtim = vap->va_birthtime;
1494
1495        /*
1496	 * According to www.opengroup.org, the meaning of st_blksize is
1497	 *   "a filesystem-specific preferred I/O block size for this
1498	 *    object.  In some filesystem types, this may vary from file
1499	 *    to file"
1500	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1501	 */
1502
1503	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1504
1505	sb->st_flags = vap->va_flags;
1506	if (priv_check(td, PRIV_VFS_GENERATION))
1507		sb->st_gen = 0;
1508	else
1509		sb->st_gen = vap->va_gen;
1510
1511	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1512	return (0);
1513}
1514
1515/*
1516 * File table vnode ioctl routine.
1517 */
1518static int
1519vn_ioctl(fp, com, data, active_cred, td)
1520	struct file *fp;
1521	u_long com;
1522	void *data;
1523	struct ucred *active_cred;
1524	struct thread *td;
1525{
1526	struct vattr vattr;
1527	struct vnode *vp;
1528	int error;
1529
1530	vp = fp->f_vnode;
1531	switch (vp->v_type) {
1532	case VDIR:
1533	case VREG:
1534		switch (com) {
1535		case FIONREAD:
1536			vn_lock(vp, LK_SHARED | LK_RETRY);
1537			error = VOP_GETATTR(vp, &vattr, active_cred);
1538			VOP_UNLOCK(vp, 0);
1539			if (error == 0)
1540				*(int *)data = vattr.va_size - fp->f_offset;
1541			return (error);
1542		case FIONBIO:
1543		case FIOASYNC:
1544			return (0);
1545		default:
1546			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1547			    active_cred, td));
1548		}
1549	default:
1550		return (ENOTTY);
1551	}
1552}
1553
1554/*
1555 * File table vnode poll routine.
1556 */
1557static int
1558vn_poll(fp, events, active_cred, td)
1559	struct file *fp;
1560	int events;
1561	struct ucred *active_cred;
1562	struct thread *td;
1563{
1564	struct vnode *vp;
1565	int error;
1566
1567	vp = fp->f_vnode;
1568#ifdef MAC
1569	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1570	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1571	VOP_UNLOCK(vp, 0);
1572	if (!error)
1573#endif
1574
1575	error = VOP_POLL(vp, events, fp->f_cred, td);
1576	return (error);
1577}
1578
1579/*
1580 * Acquire the requested lock and then check for validity.  LK_RETRY
1581 * permits vn_lock to return doomed vnodes.
1582 */
1583int
1584_vn_lock(struct vnode *vp, int flags, char *file, int line)
1585{
1586	int error;
1587
1588	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1589	    ("vn_lock called with no locktype."));
1590	do {
1591#ifdef DEBUG_VFS_LOCKS
1592		KASSERT(vp->v_holdcnt != 0,
1593		    ("vn_lock %p: zero hold count", vp));
1594#endif
1595		error = VOP_LOCK1(vp, flags, file, line);
1596		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1597		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1598		    ("LK_RETRY set with incompatible flags (0x%x) or an error occurred (%d)",
1599		    flags, error));
1600		/*
1601		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1602		 * If RETRY is not set, we return ENOENT instead.
1603		 */
1604		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1605		    (flags & LK_RETRY) == 0) {
1606			VOP_UNLOCK(vp, 0);
1607			error = ENOENT;
1608			break;
1609		}
1610	} while (flags & LK_RETRY && error != 0);
1611	return (error);
1612}
1613
1614/*
1615 * File table vnode close routine.
1616 */
1617static int
1618vn_closefile(fp, td)
1619	struct file *fp;
1620	struct thread *td;
1621{
1622	struct vnode *vp;
1623	struct flock lf;
1624	int error;
1625
1626	vp = fp->f_vnode;
1627	fp->f_ops = &badfileops;
1628
1629	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1630		vref(vp);
1631
1632	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1633
1634	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1635		lf.l_whence = SEEK_SET;
1636		lf.l_start = 0;
1637		lf.l_len = 0;
1638		lf.l_type = F_UNLCK;
1639		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1640		vrele(vp);
1641	}
1642	return (error);
1643}
1644
1645/*
1646 * Preparing to start a filesystem write operation. If the operation is
1647 * permitted, then we bump the count of operations in progress and
1648 * proceed. If a suspend request is in progress, we wait until the
1649 * suspension is over, and then proceed.
1650 */
1651static int
1652vn_start_write_locked(struct mount *mp, int flags)
1653{
1654	int error, mflags;
1655
1656	mtx_assert(MNT_MTX(mp), MA_OWNED);
1657	error = 0;
1658
1659	/*
1660	 * Check on status of suspension.
1661	 */
1662	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1663	    mp->mnt_susp_owner != curthread) {
1664		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1665		    (flags & PCATCH) : 0) | (PUSER - 1);
1666		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1667			if (flags & V_NOWAIT) {
1668				error = EWOULDBLOCK;
1669				goto unlock;
1670			}
1671			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1672			    "suspfs", 0);
1673			if (error)
1674				goto unlock;
1675		}
1676	}
1677	if (flags & V_XSLEEP)
1678		goto unlock;
1679	mp->mnt_writeopcount++;
1680unlock:
1681	if (error != 0 || (flags & V_XSLEEP) != 0)
1682		MNT_REL(mp);
1683	MNT_IUNLOCK(mp);
1684	return (error);
1685}
1686
1687int
1688vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1689{
1690	struct mount *mp;
1691	int error;
1692
1693	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1694	    ("V_MNTREF requires mp"));
1695
1696	error = 0;
1697	/*
1698	 * If a vnode is provided, get and return the mount point that
1699	 * to which it will write.
1700	 */
1701	if (vp != NULL) {
1702		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1703			*mpp = NULL;
1704			if (error != EOPNOTSUPP)
1705				return (error);
1706			return (0);
1707		}
1708	}
1709	if ((mp = *mpp) == NULL)
1710		return (0);
1711
1712	/*
1713	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1714	 * a vfs_ref().
1715	 * As long as a vnode is not provided we need to acquire a
1716	 * refcount for the provided mountpoint too, in order to
1717	 * emulate a vfs_ref().
1718	 */
1719	MNT_ILOCK(mp);
1720	if (vp == NULL && (flags & V_MNTREF) == 0)
1721		MNT_REF(mp);
1722
1723	return (vn_start_write_locked(mp, flags));
1724}
1725
1726/*
1727 * Secondary suspension. Used by operations such as vop_inactive
1728 * routines that are needed by the higher level functions. These
1729 * are allowed to proceed until all the higher level functions have
1730 * completed (indicated by mnt_writeopcount dropping to zero). At that
1731 * time, these operations are halted until the suspension is over.
1732 */
1733int
1734vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1735{
1736	struct mount *mp;
1737	int error;
1738
1739	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1740	    ("V_MNTREF requires mp"));
1741
1742 retry:
1743	if (vp != NULL) {
1744		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1745			*mpp = NULL;
1746			if (error != EOPNOTSUPP)
1747				return (error);
1748			return (0);
1749		}
1750	}
1751	/*
1752	 * If we are not suspended or have not yet reached suspended
1753	 * mode, then let the operation proceed.
1754	 */
1755	if ((mp = *mpp) == NULL)
1756		return (0);
1757
1758	/*
1759	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1760	 * a vfs_ref().
1761	 * As long as a vnode is not provided we need to acquire a
1762	 * refcount for the provided mountpoint too, in order to
1763	 * emulate a vfs_ref().
1764	 */
1765	MNT_ILOCK(mp);
1766	if (vp == NULL && (flags & V_MNTREF) == 0)
1767		MNT_REF(mp);
1768	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1769		mp->mnt_secondary_writes++;
1770		mp->mnt_secondary_accwrites++;
1771		MNT_IUNLOCK(mp);
1772		return (0);
1773	}
1774	if (flags & V_NOWAIT) {
1775		MNT_REL(mp);
1776		MNT_IUNLOCK(mp);
1777		return (EWOULDBLOCK);
1778	}
1779	/*
1780	 * Wait for the suspension to finish.
1781	 */
1782	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1783	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1784	    "suspfs", 0);
1785	vfs_rel(mp);
1786	if (error == 0)
1787		goto retry;
1788	return (error);
1789}
1790
1791/*
1792 * Filesystem write operation has completed. If we are suspending and this
1793 * operation is the last one, notify the suspender that the suspension is
1794 * now in effect.
1795 */
1796void
1797vn_finished_write(mp)
1798	struct mount *mp;
1799{
1800	if (mp == NULL)
1801		return;
1802	MNT_ILOCK(mp);
1803	MNT_REL(mp);
1804	mp->mnt_writeopcount--;
1805	if (mp->mnt_writeopcount < 0)
1806		panic("vn_finished_write: neg cnt");
1807	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1808	    mp->mnt_writeopcount <= 0)
1809		wakeup(&mp->mnt_writeopcount);
1810	MNT_IUNLOCK(mp);
1811}
1812
1813
1814/*
1815 * Filesystem secondary write operation has completed. If we are
1816 * suspending and this operation is the last one, notify the suspender
1817 * that the suspension is now in effect.
1818 */
1819void
1820vn_finished_secondary_write(mp)
1821	struct mount *mp;
1822{
1823	if (mp == NULL)
1824		return;
1825	MNT_ILOCK(mp);
1826	MNT_REL(mp);
1827	mp->mnt_secondary_writes--;
1828	if (mp->mnt_secondary_writes < 0)
1829		panic("vn_finished_secondary_write: neg cnt");
1830	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1831	    mp->mnt_secondary_writes <= 0)
1832		wakeup(&mp->mnt_secondary_writes);
1833	MNT_IUNLOCK(mp);
1834}
1835
1836
1837
1838/*
1839 * Request a filesystem to suspend write operations.
1840 */
1841int
1842vfs_write_suspend(struct mount *mp, int flags)
1843{
1844	int error;
1845
1846	MNT_ILOCK(mp);
1847	if (mp->mnt_susp_owner == curthread) {
1848		MNT_IUNLOCK(mp);
1849		return (EALREADY);
1850	}
1851	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1852		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1853
1854	/*
1855	 * Unmount holds a write reference on the mount point.  If we
1856	 * own busy reference and drain for writers, we deadlock with
1857	 * the reference draining in the unmount path.  Callers of
1858	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1859	 * vfs_busy() reference is owned and caller is not in the
1860	 * unmount context.
1861	 */
1862	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1863	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1864		MNT_IUNLOCK(mp);
1865		return (EBUSY);
1866	}
1867
1868	mp->mnt_kern_flag |= MNTK_SUSPEND;
1869	mp->mnt_susp_owner = curthread;
1870	if (mp->mnt_writeopcount > 0)
1871		(void) msleep(&mp->mnt_writeopcount,
1872		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1873	else
1874		MNT_IUNLOCK(mp);
1875	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1876		vfs_write_resume(mp, 0);
1877	return (error);
1878}
1879
1880/*
1881 * Request a filesystem to resume write operations.
1882 */
1883void
1884vfs_write_resume(struct mount *mp, int flags)
1885{
1886
1887	MNT_ILOCK(mp);
1888	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1889		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1890		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1891				       MNTK_SUSPENDED);
1892		mp->mnt_susp_owner = NULL;
1893		wakeup(&mp->mnt_writeopcount);
1894		wakeup(&mp->mnt_flag);
1895		curthread->td_pflags &= ~TDP_IGNSUSP;
1896		if ((flags & VR_START_WRITE) != 0) {
1897			MNT_REF(mp);
1898			mp->mnt_writeopcount++;
1899		}
1900		MNT_IUNLOCK(mp);
1901		if ((flags & VR_NO_SUSPCLR) == 0)
1902			VFS_SUSP_CLEAN(mp);
1903	} else if ((flags & VR_START_WRITE) != 0) {
1904		MNT_REF(mp);
1905		vn_start_write_locked(mp, 0);
1906	} else {
1907		MNT_IUNLOCK(mp);
1908	}
1909}
1910
1911/*
1912 * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1913 * methods.
1914 */
1915int
1916vfs_write_suspend_umnt(struct mount *mp)
1917{
1918	int error;
1919
1920	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1921	    ("vfs_write_suspend_umnt: recursed"));
1922
1923	/* dounmount() already called vn_start_write(). */
1924	for (;;) {
1925		vn_finished_write(mp);
1926		error = vfs_write_suspend(mp, 0);
1927		if (error != 0) {
1928			vn_start_write(NULL, &mp, V_WAIT);
1929			return (error);
1930		}
1931		MNT_ILOCK(mp);
1932		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1933			break;
1934		MNT_IUNLOCK(mp);
1935		vn_start_write(NULL, &mp, V_WAIT);
1936	}
1937	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1938	wakeup(&mp->mnt_flag);
1939	MNT_IUNLOCK(mp);
1940	curthread->td_pflags |= TDP_IGNSUSP;
1941	return (0);
1942}
1943
1944/*
1945 * Implement kqueues for files by translating it to vnode operation.
1946 */
1947static int
1948vn_kqfilter(struct file *fp, struct knote *kn)
1949{
1950
1951	return (VOP_KQFILTER(fp->f_vnode, kn));
1952}
1953
1954/*
1955 * Simplified in-kernel wrapper calls for extended attribute access.
1956 * Both calls pass in a NULL credential, authorizing as "kernel" access.
1957 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1958 */
1959int
1960vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1961    const char *attrname, int *buflen, char *buf, struct thread *td)
1962{
1963	struct uio	auio;
1964	struct iovec	iov;
1965	int	error;
1966
1967	iov.iov_len = *buflen;
1968	iov.iov_base = buf;
1969
1970	auio.uio_iov = &iov;
1971	auio.uio_iovcnt = 1;
1972	auio.uio_rw = UIO_READ;
1973	auio.uio_segflg = UIO_SYSSPACE;
1974	auio.uio_td = td;
1975	auio.uio_offset = 0;
1976	auio.uio_resid = *buflen;
1977
1978	if ((ioflg & IO_NODELOCKED) == 0)
1979		vn_lock(vp, LK_SHARED | LK_RETRY);
1980
1981	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1982
1983	/* authorize attribute retrieval as kernel */
1984	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1985	    td);
1986
1987	if ((ioflg & IO_NODELOCKED) == 0)
1988		VOP_UNLOCK(vp, 0);
1989
1990	if (error == 0) {
1991		*buflen = *buflen - auio.uio_resid;
1992	}
1993
1994	return (error);
1995}
1996
1997/*
1998 * XXX failure mode if partially written?
1999 */
2000int
2001vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2002    const char *attrname, int buflen, char *buf, struct thread *td)
2003{
2004	struct uio	auio;
2005	struct iovec	iov;
2006	struct mount	*mp;
2007	int	error;
2008
2009	iov.iov_len = buflen;
2010	iov.iov_base = buf;
2011
2012	auio.uio_iov = &iov;
2013	auio.uio_iovcnt = 1;
2014	auio.uio_rw = UIO_WRITE;
2015	auio.uio_segflg = UIO_SYSSPACE;
2016	auio.uio_td = td;
2017	auio.uio_offset = 0;
2018	auio.uio_resid = buflen;
2019
2020	if ((ioflg & IO_NODELOCKED) == 0) {
2021		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2022			return (error);
2023		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2024	}
2025
2026	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2027
2028	/* authorize attribute setting as kernel */
2029	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2030
2031	if ((ioflg & IO_NODELOCKED) == 0) {
2032		vn_finished_write(mp);
2033		VOP_UNLOCK(vp, 0);
2034	}
2035
2036	return (error);
2037}
2038
2039int
2040vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2041    const char *attrname, struct thread *td)
2042{
2043	struct mount	*mp;
2044	int	error;
2045
2046	if ((ioflg & IO_NODELOCKED) == 0) {
2047		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2048			return (error);
2049		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2050	}
2051
2052	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2053
2054	/* authorize attribute removal as kernel */
2055	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2056	if (error == EOPNOTSUPP)
2057		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2058		    NULL, td);
2059
2060	if ((ioflg & IO_NODELOCKED) == 0) {
2061		vn_finished_write(mp);
2062		VOP_UNLOCK(vp, 0);
2063	}
2064
2065	return (error);
2066}
2067
2068static int
2069vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2070    struct vnode **rvp)
2071{
2072
2073	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2074}
2075
2076int
2077vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2078{
2079
2080	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2081	    lkflags, rvp));
2082}
2083
2084int
2085vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2086    int lkflags, struct vnode **rvp)
2087{
2088	struct mount *mp;
2089	int ltype, error;
2090
2091	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2092	mp = vp->v_mount;
2093	ltype = VOP_ISLOCKED(vp);
2094	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2095	    ("vn_vget_ino: vp not locked"));
2096	error = vfs_busy(mp, MBF_NOWAIT);
2097	if (error != 0) {
2098		vfs_ref(mp);
2099		VOP_UNLOCK(vp, 0);
2100		error = vfs_busy(mp, 0);
2101		vn_lock(vp, ltype | LK_RETRY);
2102		vfs_rel(mp);
2103		if (error != 0)
2104			return (ENOENT);
2105		if (vp->v_iflag & VI_DOOMED) {
2106			vfs_unbusy(mp);
2107			return (ENOENT);
2108		}
2109	}
2110	VOP_UNLOCK(vp, 0);
2111	error = alloc(mp, alloc_arg, lkflags, rvp);
2112	vfs_unbusy(mp);
2113	if (*rvp != vp)
2114		vn_lock(vp, ltype | LK_RETRY);
2115	if (vp->v_iflag & VI_DOOMED) {
2116		if (error == 0) {
2117			if (*rvp == vp)
2118				vunref(vp);
2119			else
2120				vput(*rvp);
2121		}
2122		error = ENOENT;
2123	}
2124	return (error);
2125}
2126
2127int
2128vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2129    const struct thread *td)
2130{
2131
2132	if (vp->v_type != VREG || td == NULL)
2133		return (0);
2134	PROC_LOCK(td->td_proc);
2135	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2136	    lim_cur(td->td_proc, RLIMIT_FSIZE)) {
2137		kern_psignal(td->td_proc, SIGXFSZ);
2138		PROC_UNLOCK(td->td_proc);
2139		return (EFBIG);
2140	}
2141	PROC_UNLOCK(td->td_proc);
2142	return (0);
2143}
2144
2145int
2146vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2147    struct thread *td)
2148{
2149	struct vnode *vp;
2150
2151	vp = fp->f_vnode;
2152#ifdef AUDIT
2153	vn_lock(vp, LK_SHARED | LK_RETRY);
2154	AUDIT_ARG_VNODE1(vp);
2155	VOP_UNLOCK(vp, 0);
2156#endif
2157	return (setfmode(td, active_cred, vp, mode));
2158}
2159
2160int
2161vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2162    struct thread *td)
2163{
2164	struct vnode *vp;
2165
2166	vp = fp->f_vnode;
2167#ifdef AUDIT
2168	vn_lock(vp, LK_SHARED | LK_RETRY);
2169	AUDIT_ARG_VNODE1(vp);
2170	VOP_UNLOCK(vp, 0);
2171#endif
2172	return (setfown(td, active_cred, vp, uid, gid));
2173}
2174
2175void
2176vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2177{
2178	vm_object_t object;
2179
2180	if ((object = vp->v_object) == NULL)
2181		return;
2182	VM_OBJECT_WLOCK(object);
2183	vm_object_page_remove(object, start, end, 0);
2184	VM_OBJECT_WUNLOCK(object);
2185}
2186
2187int
2188vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2189{
2190	struct vattr va;
2191	daddr_t bn, bnp;
2192	uint64_t bsize;
2193	off_t noff;
2194	int error;
2195
2196	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2197	    ("Wrong command %lu", cmd));
2198
2199	if (vn_lock(vp, LK_SHARED) != 0)
2200		return (EBADF);
2201	if (vp->v_type != VREG) {
2202		error = ENOTTY;
2203		goto unlock;
2204	}
2205	error = VOP_GETATTR(vp, &va, cred);
2206	if (error != 0)
2207		goto unlock;
2208	noff = *off;
2209	if (noff >= va.va_size) {
2210		error = ENXIO;
2211		goto unlock;
2212	}
2213	bsize = vp->v_mount->mnt_stat.f_iosize;
2214	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2215		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2216		if (error == EOPNOTSUPP) {
2217			error = ENOTTY;
2218			goto unlock;
2219		}
2220		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2221		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2222			noff = bn * bsize;
2223			if (noff < *off)
2224				noff = *off;
2225			goto unlock;
2226		}
2227	}
2228	if (noff > va.va_size)
2229		noff = va.va_size;
2230	/* noff == va.va_size. There is an implicit hole at the end of file. */
2231	if (cmd == FIOSEEKDATA)
2232		error = ENXIO;
2233unlock:
2234	VOP_UNLOCK(vp, 0);
2235	if (error == 0)
2236		*off = noff;
2237	return (error);
2238}
2239
2240int
2241vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2242{
2243	struct ucred *cred;
2244	struct vnode *vp;
2245	struct vattr vattr;
2246	off_t foffset, size;
2247	int error, noneg;
2248
2249	cred = td->td_ucred;
2250	vp = fp->f_vnode;
2251	foffset = foffset_lock(fp, 0);
2252	noneg = (vp->v_type != VCHR);
2253	error = 0;
2254	switch (whence) {
2255	case L_INCR:
2256		if (noneg &&
2257		    (foffset < 0 ||
2258		    (offset > 0 && foffset > OFF_MAX - offset))) {
2259			error = EOVERFLOW;
2260			break;
2261		}
2262		offset += foffset;
2263		break;
2264	case L_XTND:
2265		vn_lock(vp, LK_SHARED | LK_RETRY);
2266		error = VOP_GETATTR(vp, &vattr, cred);
2267		VOP_UNLOCK(vp, 0);
2268		if (error)
2269			break;
2270
2271		/*
2272		 * If the file references a disk device, then fetch
2273		 * the media size and use that to determine the ending
2274		 * offset.
2275		 */
2276		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2277		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2278			vattr.va_size = size;
2279		if (noneg &&
2280		    (vattr.va_size > OFF_MAX ||
2281		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2282			error = EOVERFLOW;
2283			break;
2284		}
2285		offset += vattr.va_size;
2286		break;
2287	case L_SET:
2288		break;
2289	case SEEK_DATA:
2290		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2291		break;
2292	case SEEK_HOLE:
2293		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2294		break;
2295	default:
2296		error = EINVAL;
2297	}
2298	if (error == 0 && noneg && offset < 0)
2299		error = EINVAL;
2300	if (error != 0)
2301		goto drop;
2302	VFS_KNOTE_UNLOCKED(vp, 0);
2303	*(off_t *)(td->td_retval) = offset;
2304drop:
2305	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2306	return (error);
2307}
2308
2309int
2310vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2311    struct thread *td)
2312{
2313	int error;
2314
2315	/*
2316	 * Grant permission if the caller is the owner of the file, or
2317	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2318	 * on the file.  If the time pointer is null, then write
2319	 * permission on the file is also sufficient.
2320	 *
2321	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2322	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2323	 * will be allowed to set the times [..] to the current
2324	 * server time.
2325	 */
2326	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2327	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2328		error = VOP_ACCESS(vp, VWRITE, cred, td);
2329	return (error);
2330}
2331