vfs_vnops.c revision 275957
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11 * Copyright (c) 2013, 2014 The FreeBSD Foundation
12 *
13 * Portions of this software were developed by Konstantin Belousov
14 * under sponsorship from the FreeBSD Foundation.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD: stable/10/sys/kern/vfs_vnops.c 275957 2014-12-20 15:49:12Z kib $");
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/disk.h>
49#include <sys/fcntl.h>
50#include <sys/file.h>
51#include <sys/kdb.h>
52#include <sys/stat.h>
53#include <sys/priv.h>
54#include <sys/proc.h>
55#include <sys/limits.h>
56#include <sys/lock.h>
57#include <sys/mount.h>
58#include <sys/mutex.h>
59#include <sys/namei.h>
60#include <sys/vnode.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/filio.h>
64#include <sys/resourcevar.h>
65#include <sys/rwlock.h>
66#include <sys/sx.h>
67#include <sys/sysctl.h>
68#include <sys/ttycom.h>
69#include <sys/conf.h>
70#include <sys/syslog.h>
71#include <sys/unistd.h>
72
73#include <security/audit/audit.h>
74#include <security/mac/mac_framework.h>
75
76#include <vm/vm.h>
77#include <vm/vm_extern.h>
78#include <vm/pmap.h>
79#include <vm/vm_map.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82
83static fo_rdwr_t	vn_read;
84static fo_rdwr_t	vn_write;
85static fo_rdwr_t	vn_io_fault;
86static fo_truncate_t	vn_truncate;
87static fo_ioctl_t	vn_ioctl;
88static fo_poll_t	vn_poll;
89static fo_kqfilter_t	vn_kqfilter;
90static fo_stat_t	vn_statfile;
91static fo_close_t	vn_closefile;
92
93struct 	fileops vnops = {
94	.fo_read = vn_io_fault,
95	.fo_write = vn_io_fault,
96	.fo_truncate = vn_truncate,
97	.fo_ioctl = vn_ioctl,
98	.fo_poll = vn_poll,
99	.fo_kqfilter = vn_kqfilter,
100	.fo_stat = vn_statfile,
101	.fo_close = vn_closefile,
102	.fo_chmod = vn_chmod,
103	.fo_chown = vn_chown,
104	.fo_sendfile = vn_sendfile,
105	.fo_seek = vn_seek,
106	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
107};
108
109static const int io_hold_cnt = 16;
110static int vn_io_fault_enable = 1;
111SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
112    &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
113static u_long vn_io_faults_cnt;
114SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
115    &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
116
117/*
118 * Returns true if vn_io_fault mode of handling the i/o request should
119 * be used.
120 */
121static bool
122do_vn_io_fault(struct vnode *vp, struct uio *uio)
123{
124	struct mount *mp;
125
126	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
127	    (mp = vp->v_mount) != NULL &&
128	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
129}
130
131/*
132 * Structure used to pass arguments to vn_io_fault1(), to do either
133 * file- or vnode-based I/O calls.
134 */
135struct vn_io_fault_args {
136	enum {
137		VN_IO_FAULT_FOP,
138		VN_IO_FAULT_VOP
139	} kind;
140	struct ucred *cred;
141	int flags;
142	union {
143		struct fop_args_tag {
144			struct file *fp;
145			fo_rdwr_t *doio;
146		} fop_args;
147		struct vop_args_tag {
148			struct vnode *vp;
149		} vop_args;
150	} args;
151};
152
153static int vn_io_fault1(struct vnode *vp, struct uio *uio,
154    struct vn_io_fault_args *args, struct thread *td);
155
156int
157vn_open(ndp, flagp, cmode, fp)
158	struct nameidata *ndp;
159	int *flagp, cmode;
160	struct file *fp;
161{
162	struct thread *td = ndp->ni_cnd.cn_thread;
163
164	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
165}
166
167/*
168 * Common code for vnode open operations via a name lookup.
169 * Lookup the vnode and invoke VOP_CREATE if needed.
170 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
171 *
172 * Note that this does NOT free nameidata for the successful case,
173 * due to the NDINIT being done elsewhere.
174 */
175int
176vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
177    struct ucred *cred, struct file *fp)
178{
179	struct vnode *vp;
180	struct mount *mp;
181	struct thread *td = ndp->ni_cnd.cn_thread;
182	struct vattr vat;
183	struct vattr *vap = &vat;
184	int fmode, error;
185
186restart:
187	fmode = *flagp;
188	if (fmode & O_CREAT) {
189		ndp->ni_cnd.cn_nameiop = CREATE;
190		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF;
191		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
192			ndp->ni_cnd.cn_flags |= FOLLOW;
193		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
194			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
195		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
196			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
197		bwillwrite();
198		if ((error = namei(ndp)) != 0)
199			return (error);
200		if (ndp->ni_vp == NULL) {
201			VATTR_NULL(vap);
202			vap->va_type = VREG;
203			vap->va_mode = cmode;
204			if (fmode & O_EXCL)
205				vap->va_vaflags |= VA_EXCLUSIVE;
206			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
207				NDFREE(ndp, NDF_ONLY_PNBUF);
208				vput(ndp->ni_dvp);
209				if ((error = vn_start_write(NULL, &mp,
210				    V_XSLEEP | PCATCH)) != 0)
211					return (error);
212				goto restart;
213			}
214#ifdef MAC
215			error = mac_vnode_check_create(cred, ndp->ni_dvp,
216			    &ndp->ni_cnd, vap);
217			if (error == 0)
218#endif
219				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
220						   &ndp->ni_cnd, vap);
221			vput(ndp->ni_dvp);
222			vn_finished_write(mp);
223			if (error) {
224				NDFREE(ndp, NDF_ONLY_PNBUF);
225				return (error);
226			}
227			fmode &= ~O_TRUNC;
228			vp = ndp->ni_vp;
229		} else {
230			if (ndp->ni_dvp == ndp->ni_vp)
231				vrele(ndp->ni_dvp);
232			else
233				vput(ndp->ni_dvp);
234			ndp->ni_dvp = NULL;
235			vp = ndp->ni_vp;
236			if (fmode & O_EXCL) {
237				error = EEXIST;
238				goto bad;
239			}
240			fmode &= ~O_CREAT;
241		}
242	} else {
243		ndp->ni_cnd.cn_nameiop = LOOKUP;
244		ndp->ni_cnd.cn_flags = ISOPEN |
245		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
246		if (!(fmode & FWRITE))
247			ndp->ni_cnd.cn_flags |= LOCKSHARED;
248		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
249			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
250		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
251			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
252		if ((error = namei(ndp)) != 0)
253			return (error);
254		vp = ndp->ni_vp;
255	}
256	error = vn_open_vnode(vp, fmode, cred, td, fp);
257	if (error)
258		goto bad;
259	*flagp = fmode;
260	return (0);
261bad:
262	NDFREE(ndp, NDF_ONLY_PNBUF);
263	vput(vp);
264	*flagp = fmode;
265	ndp->ni_vp = NULL;
266	return (error);
267}
268
269/*
270 * Common code for vnode open operations once a vnode is located.
271 * Check permissions, and call the VOP_OPEN routine.
272 */
273int
274vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
275    struct thread *td, struct file *fp)
276{
277	struct mount *mp;
278	accmode_t accmode;
279	struct flock lf;
280	int error, have_flock, lock_flags, type;
281
282	if (vp->v_type == VLNK)
283		return (EMLINK);
284	if (vp->v_type == VSOCK)
285		return (EOPNOTSUPP);
286	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
287		return (ENOTDIR);
288	accmode = 0;
289	if (fmode & (FWRITE | O_TRUNC)) {
290		if (vp->v_type == VDIR)
291			return (EISDIR);
292		accmode |= VWRITE;
293	}
294	if (fmode & FREAD)
295		accmode |= VREAD;
296	if (fmode & FEXEC)
297		accmode |= VEXEC;
298	if ((fmode & O_APPEND) && (fmode & FWRITE))
299		accmode |= VAPPEND;
300#ifdef MAC
301	error = mac_vnode_check_open(cred, vp, accmode);
302	if (error)
303		return (error);
304#endif
305	if ((fmode & O_CREAT) == 0) {
306		if (accmode & VWRITE) {
307			error = vn_writechk(vp);
308			if (error)
309				return (error);
310		}
311		if (accmode) {
312		        error = VOP_ACCESS(vp, accmode, cred, td);
313			if (error)
314				return (error);
315		}
316	}
317	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
318		vn_lock(vp, LK_UPGRADE | LK_RETRY);
319	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
320		return (error);
321
322	if (fmode & (O_EXLOCK | O_SHLOCK)) {
323		KASSERT(fp != NULL, ("open with flock requires fp"));
324		lock_flags = VOP_ISLOCKED(vp);
325		VOP_UNLOCK(vp, 0);
326		lf.l_whence = SEEK_SET;
327		lf.l_start = 0;
328		lf.l_len = 0;
329		if (fmode & O_EXLOCK)
330			lf.l_type = F_WRLCK;
331		else
332			lf.l_type = F_RDLCK;
333		type = F_FLOCK;
334		if ((fmode & FNONBLOCK) == 0)
335			type |= F_WAIT;
336		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
337		have_flock = (error == 0);
338		vn_lock(vp, lock_flags | LK_RETRY);
339		if (error == 0 && vp->v_iflag & VI_DOOMED)
340			error = ENOENT;
341		/*
342		 * Another thread might have used this vnode as an
343		 * executable while the vnode lock was dropped.
344		 * Ensure the vnode is still able to be opened for
345		 * writing after the lock has been obtained.
346		 */
347		if (error == 0 && accmode & VWRITE)
348			error = vn_writechk(vp);
349		if (error) {
350			VOP_UNLOCK(vp, 0);
351			if (have_flock) {
352				lf.l_whence = SEEK_SET;
353				lf.l_start = 0;
354				lf.l_len = 0;
355				lf.l_type = F_UNLCK;
356				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
357				    F_FLOCK);
358			}
359			vn_start_write(vp, &mp, V_WAIT);
360			vn_lock(vp, lock_flags | LK_RETRY);
361			(void)VOP_CLOSE(vp, fmode, cred, td);
362			vn_finished_write(mp);
363			/* Prevent second close from fdrop()->vn_close(). */
364			if (fp != NULL)
365				fp->f_ops= &badfileops;
366			return (error);
367		}
368		fp->f_flag |= FHASLOCK;
369	}
370	if (fmode & FWRITE) {
371		VOP_ADD_WRITECOUNT(vp, 1);
372		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
373		    __func__, vp, vp->v_writecount);
374	}
375	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
376	return (0);
377}
378
379/*
380 * Check for write permissions on the specified vnode.
381 * Prototype text segments cannot be written.
382 */
383int
384vn_writechk(vp)
385	register struct vnode *vp;
386{
387
388	ASSERT_VOP_LOCKED(vp, "vn_writechk");
389	/*
390	 * If there's shared text associated with
391	 * the vnode, try to free it up once.  If
392	 * we fail, we can't allow writing.
393	 */
394	if (VOP_IS_TEXT(vp))
395		return (ETXTBSY);
396
397	return (0);
398}
399
400/*
401 * Vnode close call
402 */
403int
404vn_close(vp, flags, file_cred, td)
405	register struct vnode *vp;
406	int flags;
407	struct ucred *file_cred;
408	struct thread *td;
409{
410	struct mount *mp;
411	int error, lock_flags;
412
413	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
414	    MNT_EXTENDED_SHARED(vp->v_mount))
415		lock_flags = LK_SHARED;
416	else
417		lock_flags = LK_EXCLUSIVE;
418
419	vn_start_write(vp, &mp, V_WAIT);
420	vn_lock(vp, lock_flags | LK_RETRY);
421	if (flags & FWRITE) {
422		VNASSERT(vp->v_writecount > 0, vp,
423		    ("vn_close: negative writecount"));
424		VOP_ADD_WRITECOUNT(vp, -1);
425		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
426		    __func__, vp, vp->v_writecount);
427	}
428	error = VOP_CLOSE(vp, flags, file_cred, td);
429	vput(vp);
430	vn_finished_write(mp);
431	return (error);
432}
433
434/*
435 * Heuristic to detect sequential operation.
436 */
437static int
438sequential_heuristic(struct uio *uio, struct file *fp)
439{
440
441	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
442	if (fp->f_flag & FRDAHEAD)
443		return (fp->f_seqcount << IO_SEQSHIFT);
444
445	/*
446	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
447	 * that the first I/O is normally considered to be slightly
448	 * sequential.  Seeking to offset 0 doesn't change sequentiality
449	 * unless previous seeks have reduced f_seqcount to 0, in which
450	 * case offset 0 is not special.
451	 */
452	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
453	    uio->uio_offset == fp->f_nextoff) {
454		/*
455		 * f_seqcount is in units of fixed-size blocks so that it
456		 * depends mainly on the amount of sequential I/O and not
457		 * much on the number of sequential I/O's.  The fixed size
458		 * of 16384 is hard-coded here since it is (not quite) just
459		 * a magic size that works well here.  This size is more
460		 * closely related to the best I/O size for real disks than
461		 * to any block size used by software.
462		 */
463		fp->f_seqcount += howmany(uio->uio_resid, 16384);
464		if (fp->f_seqcount > IO_SEQMAX)
465			fp->f_seqcount = IO_SEQMAX;
466		return (fp->f_seqcount << IO_SEQSHIFT);
467	}
468
469	/* Not sequential.  Quickly draw-down sequentiality. */
470	if (fp->f_seqcount > 1)
471		fp->f_seqcount = 1;
472	else
473		fp->f_seqcount = 0;
474	return (0);
475}
476
477/*
478 * Package up an I/O request on a vnode into a uio and do it.
479 */
480int
481vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
482    enum uio_seg segflg, int ioflg, struct ucred *active_cred,
483    struct ucred *file_cred, ssize_t *aresid, struct thread *td)
484{
485	struct uio auio;
486	struct iovec aiov;
487	struct mount *mp;
488	struct ucred *cred;
489	void *rl_cookie;
490	struct vn_io_fault_args args;
491	int error, lock_flags;
492
493	auio.uio_iov = &aiov;
494	auio.uio_iovcnt = 1;
495	aiov.iov_base = base;
496	aiov.iov_len = len;
497	auio.uio_resid = len;
498	auio.uio_offset = offset;
499	auio.uio_segflg = segflg;
500	auio.uio_rw = rw;
501	auio.uio_td = td;
502	error = 0;
503
504	if ((ioflg & IO_NODELOCKED) == 0) {
505		if ((ioflg & IO_RANGELOCKED) == 0) {
506			if (rw == UIO_READ) {
507				rl_cookie = vn_rangelock_rlock(vp, offset,
508				    offset + len);
509			} else {
510				rl_cookie = vn_rangelock_wlock(vp, offset,
511				    offset + len);
512			}
513		} else
514			rl_cookie = NULL;
515		mp = NULL;
516		if (rw == UIO_WRITE) {
517			if (vp->v_type != VCHR &&
518			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
519			    != 0)
520				goto out;
521			if (MNT_SHARED_WRITES(mp) ||
522			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
523				lock_flags = LK_SHARED;
524			else
525				lock_flags = LK_EXCLUSIVE;
526		} else
527			lock_flags = LK_SHARED;
528		vn_lock(vp, lock_flags | LK_RETRY);
529	} else
530		rl_cookie = NULL;
531
532	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
533#ifdef MAC
534	if ((ioflg & IO_NOMACCHECK) == 0) {
535		if (rw == UIO_READ)
536			error = mac_vnode_check_read(active_cred, file_cred,
537			    vp);
538		else
539			error = mac_vnode_check_write(active_cred, file_cred,
540			    vp);
541	}
542#endif
543	if (error == 0) {
544		if (file_cred != NULL)
545			cred = file_cred;
546		else
547			cred = active_cred;
548		if (do_vn_io_fault(vp, &auio)) {
549			args.kind = VN_IO_FAULT_VOP;
550			args.cred = cred;
551			args.flags = ioflg;
552			args.args.vop_args.vp = vp;
553			error = vn_io_fault1(vp, &auio, &args, td);
554		} else if (rw == UIO_READ) {
555			error = VOP_READ(vp, &auio, ioflg, cred);
556		} else /* if (rw == UIO_WRITE) */ {
557			error = VOP_WRITE(vp, &auio, ioflg, cred);
558		}
559	}
560	if (aresid)
561		*aresid = auio.uio_resid;
562	else
563		if (auio.uio_resid && error == 0)
564			error = EIO;
565	if ((ioflg & IO_NODELOCKED) == 0) {
566		VOP_UNLOCK(vp, 0);
567		if (mp != NULL)
568			vn_finished_write(mp);
569	}
570 out:
571	if (rl_cookie != NULL)
572		vn_rangelock_unlock(vp, rl_cookie);
573	return (error);
574}
575
576/*
577 * Package up an I/O request on a vnode into a uio and do it.  The I/O
578 * request is split up into smaller chunks and we try to avoid saturating
579 * the buffer cache while potentially holding a vnode locked, so we
580 * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
581 * to give other processes a chance to lock the vnode (either other processes
582 * core'ing the same binary, or unrelated processes scanning the directory).
583 */
584int
585vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
586    file_cred, aresid, td)
587	enum uio_rw rw;
588	struct vnode *vp;
589	void *base;
590	size_t len;
591	off_t offset;
592	enum uio_seg segflg;
593	int ioflg;
594	struct ucred *active_cred;
595	struct ucred *file_cred;
596	size_t *aresid;
597	struct thread *td;
598{
599	int error = 0;
600	ssize_t iaresid;
601
602	do {
603		int chunk;
604
605		/*
606		 * Force `offset' to a multiple of MAXBSIZE except possibly
607		 * for the first chunk, so that filesystems only need to
608		 * write full blocks except possibly for the first and last
609		 * chunks.
610		 */
611		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
612
613		if (chunk > len)
614			chunk = len;
615		if (rw != UIO_READ && vp->v_type == VREG)
616			bwillwrite();
617		iaresid = 0;
618		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
619		    ioflg, active_cred, file_cred, &iaresid, td);
620		len -= chunk;	/* aresid calc already includes length */
621		if (error)
622			break;
623		offset += chunk;
624		base = (char *)base + chunk;
625		kern_yield(PRI_USER);
626	} while (len);
627	if (aresid)
628		*aresid = len + iaresid;
629	return (error);
630}
631
632off_t
633foffset_lock(struct file *fp, int flags)
634{
635	struct mtx *mtxp;
636	off_t res;
637
638	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
639
640#if OFF_MAX <= LONG_MAX
641	/*
642	 * Caller only wants the current f_offset value.  Assume that
643	 * the long and shorter integer types reads are atomic.
644	 */
645	if ((flags & FOF_NOLOCK) != 0)
646		return (fp->f_offset);
647#endif
648
649	/*
650	 * According to McKusick the vn lock was protecting f_offset here.
651	 * It is now protected by the FOFFSET_LOCKED flag.
652	 */
653	mtxp = mtx_pool_find(mtxpool_sleep, fp);
654	mtx_lock(mtxp);
655	if ((flags & FOF_NOLOCK) == 0) {
656		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
657			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
658			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
659			    "vofflock", 0);
660		}
661		fp->f_vnread_flags |= FOFFSET_LOCKED;
662	}
663	res = fp->f_offset;
664	mtx_unlock(mtxp);
665	return (res);
666}
667
668void
669foffset_unlock(struct file *fp, off_t val, int flags)
670{
671	struct mtx *mtxp;
672
673	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
674
675#if OFF_MAX <= LONG_MAX
676	if ((flags & FOF_NOLOCK) != 0) {
677		if ((flags & FOF_NOUPDATE) == 0)
678			fp->f_offset = val;
679		if ((flags & FOF_NEXTOFF) != 0)
680			fp->f_nextoff = val;
681		return;
682	}
683#endif
684
685	mtxp = mtx_pool_find(mtxpool_sleep, fp);
686	mtx_lock(mtxp);
687	if ((flags & FOF_NOUPDATE) == 0)
688		fp->f_offset = val;
689	if ((flags & FOF_NEXTOFF) != 0)
690		fp->f_nextoff = val;
691	if ((flags & FOF_NOLOCK) == 0) {
692		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
693		    ("Lost FOFFSET_LOCKED"));
694		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
695			wakeup(&fp->f_vnread_flags);
696		fp->f_vnread_flags = 0;
697	}
698	mtx_unlock(mtxp);
699}
700
701void
702foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
703{
704
705	if ((flags & FOF_OFFSET) == 0)
706		uio->uio_offset = foffset_lock(fp, flags);
707}
708
709void
710foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
711{
712
713	if ((flags & FOF_OFFSET) == 0)
714		foffset_unlock(fp, uio->uio_offset, flags);
715}
716
717static int
718get_advice(struct file *fp, struct uio *uio)
719{
720	struct mtx *mtxp;
721	int ret;
722
723	ret = POSIX_FADV_NORMAL;
724	if (fp->f_advice == NULL)
725		return (ret);
726
727	mtxp = mtx_pool_find(mtxpool_sleep, fp);
728	mtx_lock(mtxp);
729	if (uio->uio_offset >= fp->f_advice->fa_start &&
730	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
731		ret = fp->f_advice->fa_advice;
732	mtx_unlock(mtxp);
733	return (ret);
734}
735
736/*
737 * File table vnode read routine.
738 */
739static int
740vn_read(fp, uio, active_cred, flags, td)
741	struct file *fp;
742	struct uio *uio;
743	struct ucred *active_cred;
744	int flags;
745	struct thread *td;
746{
747	struct vnode *vp;
748	struct mtx *mtxp;
749	int error, ioflag;
750	int advice;
751	off_t offset, start, end;
752
753	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
754	    uio->uio_td, td));
755	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
756	vp = fp->f_vnode;
757	ioflag = 0;
758	if (fp->f_flag & FNONBLOCK)
759		ioflag |= IO_NDELAY;
760	if (fp->f_flag & O_DIRECT)
761		ioflag |= IO_DIRECT;
762	advice = get_advice(fp, uio);
763	vn_lock(vp, LK_SHARED | LK_RETRY);
764
765	switch (advice) {
766	case POSIX_FADV_NORMAL:
767	case POSIX_FADV_SEQUENTIAL:
768	case POSIX_FADV_NOREUSE:
769		ioflag |= sequential_heuristic(uio, fp);
770		break;
771	case POSIX_FADV_RANDOM:
772		/* Disable read-ahead for random I/O. */
773		break;
774	}
775	offset = uio->uio_offset;
776
777#ifdef MAC
778	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
779	if (error == 0)
780#endif
781		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
782	fp->f_nextoff = uio->uio_offset;
783	VOP_UNLOCK(vp, 0);
784	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
785	    offset != uio->uio_offset) {
786		/*
787		 * Use POSIX_FADV_DONTNEED to flush clean pages and
788		 * buffers for the backing file after a
789		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
790		 * case of using POSIX_FADV_NOREUSE with sequential
791		 * access, track the previous implicit DONTNEED
792		 * request and grow this request to include the
793		 * current read(2) in addition to the previous
794		 * DONTNEED.  With purely sequential access this will
795		 * cause the DONTNEED requests to continously grow to
796		 * cover all of the previously read regions of the
797		 * file.  This allows filesystem blocks that are
798		 * accessed by multiple calls to read(2) to be flushed
799		 * once the last read(2) finishes.
800		 */
801		start = offset;
802		end = uio->uio_offset - 1;
803		mtxp = mtx_pool_find(mtxpool_sleep, fp);
804		mtx_lock(mtxp);
805		if (fp->f_advice != NULL &&
806		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
807			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
808				start = fp->f_advice->fa_prevstart;
809			else if (fp->f_advice->fa_prevstart != 0 &&
810			    fp->f_advice->fa_prevstart == end + 1)
811				end = fp->f_advice->fa_prevend;
812			fp->f_advice->fa_prevstart = start;
813			fp->f_advice->fa_prevend = end;
814		}
815		mtx_unlock(mtxp);
816		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
817	}
818	return (error);
819}
820
821/*
822 * File table vnode write routine.
823 */
824static int
825vn_write(fp, uio, active_cred, flags, td)
826	struct file *fp;
827	struct uio *uio;
828	struct ucred *active_cred;
829	int flags;
830	struct thread *td;
831{
832	struct vnode *vp;
833	struct mount *mp;
834	struct mtx *mtxp;
835	int error, ioflag, lock_flags;
836	int advice;
837	off_t offset, start, end;
838
839	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
840	    uio->uio_td, td));
841	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
842	vp = fp->f_vnode;
843	if (vp->v_type == VREG)
844		bwillwrite();
845	ioflag = IO_UNIT;
846	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
847		ioflag |= IO_APPEND;
848	if (fp->f_flag & FNONBLOCK)
849		ioflag |= IO_NDELAY;
850	if (fp->f_flag & O_DIRECT)
851		ioflag |= IO_DIRECT;
852	if ((fp->f_flag & O_FSYNC) ||
853	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
854		ioflag |= IO_SYNC;
855	mp = NULL;
856	if (vp->v_type != VCHR &&
857	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
858		goto unlock;
859
860	advice = get_advice(fp, uio);
861
862	if (MNT_SHARED_WRITES(mp) ||
863	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
864		lock_flags = LK_SHARED;
865	} else {
866		lock_flags = LK_EXCLUSIVE;
867	}
868
869	vn_lock(vp, lock_flags | LK_RETRY);
870	switch (advice) {
871	case POSIX_FADV_NORMAL:
872	case POSIX_FADV_SEQUENTIAL:
873	case POSIX_FADV_NOREUSE:
874		ioflag |= sequential_heuristic(uio, fp);
875		break;
876	case POSIX_FADV_RANDOM:
877		/* XXX: Is this correct? */
878		break;
879	}
880	offset = uio->uio_offset;
881
882#ifdef MAC
883	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
884	if (error == 0)
885#endif
886		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
887	fp->f_nextoff = uio->uio_offset;
888	VOP_UNLOCK(vp, 0);
889	if (vp->v_type != VCHR)
890		vn_finished_write(mp);
891	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
892	    offset != uio->uio_offset) {
893		/*
894		 * Use POSIX_FADV_DONTNEED to flush clean pages and
895		 * buffers for the backing file after a
896		 * POSIX_FADV_NOREUSE write(2).  To optimize the
897		 * common case of using POSIX_FADV_NOREUSE with
898		 * sequential access, track the previous implicit
899		 * DONTNEED request and grow this request to include
900		 * the current write(2) in addition to the previous
901		 * DONTNEED.  With purely sequential access this will
902		 * cause the DONTNEED requests to continously grow to
903		 * cover all of the previously written regions of the
904		 * file.
905		 *
906		 * Note that the blocks just written are almost
907		 * certainly still dirty, so this only works when
908		 * VOP_ADVISE() calls from subsequent writes push out
909		 * the data written by this write(2) once the backing
910		 * buffers are clean.  However, as compared to forcing
911		 * IO_DIRECT, this gives much saner behavior.  Write
912		 * clustering is still allowed, and clean pages are
913		 * merely moved to the cache page queue rather than
914		 * outright thrown away.  This means a subsequent
915		 * read(2) can still avoid hitting the disk if the
916		 * pages have not been reclaimed.
917		 *
918		 * This does make POSIX_FADV_NOREUSE largely useless
919		 * with non-sequential access.  However, sequential
920		 * access is the more common use case and the flag is
921		 * merely advisory.
922		 */
923		start = offset;
924		end = uio->uio_offset - 1;
925		mtxp = mtx_pool_find(mtxpool_sleep, fp);
926		mtx_lock(mtxp);
927		if (fp->f_advice != NULL &&
928		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
929			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
930				start = fp->f_advice->fa_prevstart;
931			else if (fp->f_advice->fa_prevstart != 0 &&
932			    fp->f_advice->fa_prevstart == end + 1)
933				end = fp->f_advice->fa_prevend;
934			fp->f_advice->fa_prevstart = start;
935			fp->f_advice->fa_prevend = end;
936		}
937		mtx_unlock(mtxp);
938		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
939	}
940
941unlock:
942	return (error);
943}
944
945/*
946 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
947 * prevent the following deadlock:
948 *
949 * Assume that the thread A reads from the vnode vp1 into userspace
950 * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
951 * currently not resident, then system ends up with the call chain
952 *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
953 *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
954 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
955 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
956 * backed by the pages of vnode vp1, and some page in buf2 is not
957 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
958 *
959 * To prevent the lock order reversal and deadlock, vn_io_fault() does
960 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
961 * Instead, it first tries to do the whole range i/o with pagefaults
962 * disabled. If all pages in the i/o buffer are resident and mapped,
963 * VOP will succeed (ignoring the genuine filesystem errors).
964 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
965 * i/o in chunks, with all pages in the chunk prefaulted and held
966 * using vm_fault_quick_hold_pages().
967 *
968 * Filesystems using this deadlock avoidance scheme should use the
969 * array of the held pages from uio, saved in the curthread->td_ma,
970 * instead of doing uiomove().  A helper function
971 * vn_io_fault_uiomove() converts uiomove request into
972 * uiomove_fromphys() over td_ma array.
973 *
974 * Since vnode locks do not cover the whole i/o anymore, rangelocks
975 * make the current i/o request atomic with respect to other i/os and
976 * truncations.
977 */
978
979/*
980 * Decode vn_io_fault_args and perform the corresponding i/o.
981 */
982static int
983vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
984    struct thread *td)
985{
986
987	switch (args->kind) {
988	case VN_IO_FAULT_FOP:
989		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
990		    uio, args->cred, args->flags, td));
991	case VN_IO_FAULT_VOP:
992		if (uio->uio_rw == UIO_READ) {
993			return (VOP_READ(args->args.vop_args.vp, uio,
994			    args->flags, args->cred));
995		} else if (uio->uio_rw == UIO_WRITE) {
996			return (VOP_WRITE(args->args.vop_args.vp, uio,
997			    args->flags, args->cred));
998		}
999		break;
1000	}
1001	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
1002	    uio->uio_rw);
1003}
1004
1005/*
1006 * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1007 * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1008 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1009 * into args and call vn_io_fault1() to handle faults during the user
1010 * mode buffer accesses.
1011 */
1012static int
1013vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1014    struct thread *td)
1015{
1016	vm_page_t ma[io_hold_cnt + 2];
1017	struct uio *uio_clone, short_uio;
1018	struct iovec short_iovec[1];
1019	vm_page_t *prev_td_ma;
1020	vm_prot_t prot;
1021	vm_offset_t addr, end;
1022	size_t len, resid;
1023	ssize_t adv;
1024	int error, cnt, save, saveheld, prev_td_ma_cnt;
1025
1026	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1027
1028	/*
1029	 * The UFS follows IO_UNIT directive and replays back both
1030	 * uio_offset and uio_resid if an error is encountered during the
1031	 * operation.  But, since the iovec may be already advanced,
1032	 * uio is still in an inconsistent state.
1033	 *
1034	 * Cache a copy of the original uio, which is advanced to the redo
1035	 * point using UIO_NOCOPY below.
1036	 */
1037	uio_clone = cloneuio(uio);
1038	resid = uio->uio_resid;
1039
1040	short_uio.uio_segflg = UIO_USERSPACE;
1041	short_uio.uio_rw = uio->uio_rw;
1042	short_uio.uio_td = uio->uio_td;
1043
1044	save = vm_fault_disable_pagefaults();
1045	error = vn_io_fault_doio(args, uio, td);
1046	if (error != EFAULT)
1047		goto out;
1048
1049	atomic_add_long(&vn_io_faults_cnt, 1);
1050	uio_clone->uio_segflg = UIO_NOCOPY;
1051	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1052	uio_clone->uio_segflg = uio->uio_segflg;
1053
1054	saveheld = curthread_pflags_set(TDP_UIOHELD);
1055	prev_td_ma = td->td_ma;
1056	prev_td_ma_cnt = td->td_ma_cnt;
1057
1058	while (uio_clone->uio_resid != 0) {
1059		len = uio_clone->uio_iov->iov_len;
1060		if (len == 0) {
1061			KASSERT(uio_clone->uio_iovcnt >= 1,
1062			    ("iovcnt underflow"));
1063			uio_clone->uio_iov++;
1064			uio_clone->uio_iovcnt--;
1065			continue;
1066		}
1067		if (len > io_hold_cnt * PAGE_SIZE)
1068			len = io_hold_cnt * PAGE_SIZE;
1069		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1070		end = round_page(addr + len);
1071		if (end < addr) {
1072			error = EFAULT;
1073			break;
1074		}
1075		cnt = atop(end - trunc_page(addr));
1076		/*
1077		 * A perfectly misaligned address and length could cause
1078		 * both the start and the end of the chunk to use partial
1079		 * page.  +2 accounts for such a situation.
1080		 */
1081		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1082		    addr, len, prot, ma, io_hold_cnt + 2);
1083		if (cnt == -1) {
1084			error = EFAULT;
1085			break;
1086		}
1087		short_uio.uio_iov = &short_iovec[0];
1088		short_iovec[0].iov_base = (void *)addr;
1089		short_uio.uio_iovcnt = 1;
1090		short_uio.uio_resid = short_iovec[0].iov_len = len;
1091		short_uio.uio_offset = uio_clone->uio_offset;
1092		td->td_ma = ma;
1093		td->td_ma_cnt = cnt;
1094
1095		error = vn_io_fault_doio(args, &short_uio, td);
1096		vm_page_unhold_pages(ma, cnt);
1097		adv = len - short_uio.uio_resid;
1098
1099		uio_clone->uio_iov->iov_base =
1100		    (char *)uio_clone->uio_iov->iov_base + adv;
1101		uio_clone->uio_iov->iov_len -= adv;
1102		uio_clone->uio_resid -= adv;
1103		uio_clone->uio_offset += adv;
1104
1105		uio->uio_resid -= adv;
1106		uio->uio_offset += adv;
1107
1108		if (error != 0 || adv == 0)
1109			break;
1110	}
1111	td->td_ma = prev_td_ma;
1112	td->td_ma_cnt = prev_td_ma_cnt;
1113	curthread_pflags_restore(saveheld);
1114out:
1115	vm_fault_enable_pagefaults(save);
1116	free(uio_clone, M_IOV);
1117	return (error);
1118}
1119
1120static int
1121vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1122    int flags, struct thread *td)
1123{
1124	fo_rdwr_t *doio;
1125	struct vnode *vp;
1126	void *rl_cookie;
1127	struct vn_io_fault_args args;
1128	int error;
1129
1130	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1131	vp = fp->f_vnode;
1132	foffset_lock_uio(fp, uio, flags);
1133	if (do_vn_io_fault(vp, uio)) {
1134		args.kind = VN_IO_FAULT_FOP;
1135		args.args.fop_args.fp = fp;
1136		args.args.fop_args.doio = doio;
1137		args.cred = active_cred;
1138		args.flags = flags | FOF_OFFSET;
1139		if (uio->uio_rw == UIO_READ) {
1140			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1141			    uio->uio_offset + uio->uio_resid);
1142		} else if ((fp->f_flag & O_APPEND) != 0 ||
1143		    (flags & FOF_OFFSET) == 0) {
1144			/* For appenders, punt and lock the whole range. */
1145			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1146		} else {
1147			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1148			    uio->uio_offset + uio->uio_resid);
1149		}
1150		error = vn_io_fault1(vp, uio, &args, td);
1151		vn_rangelock_unlock(vp, rl_cookie);
1152	} else {
1153		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1154	}
1155	foffset_unlock_uio(fp, uio, flags);
1156	return (error);
1157}
1158
1159/*
1160 * Helper function to perform the requested uiomove operation using
1161 * the held pages for io->uio_iov[0].iov_base buffer instead of
1162 * copyin/copyout.  Access to the pages with uiomove_fromphys()
1163 * instead of iov_base prevents page faults that could occur due to
1164 * pmap_collect() invalidating the mapping created by
1165 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1166 * object cleanup revoking the write access from page mappings.
1167 *
1168 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1169 * instead of plain uiomove().
1170 */
1171int
1172vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1173{
1174	struct uio transp_uio;
1175	struct iovec transp_iov[1];
1176	struct thread *td;
1177	size_t adv;
1178	int error, pgadv;
1179
1180	td = curthread;
1181	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1182	    uio->uio_segflg != UIO_USERSPACE)
1183		return (uiomove(data, xfersize, uio));
1184
1185	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1186	transp_iov[0].iov_base = data;
1187	transp_uio.uio_iov = &transp_iov[0];
1188	transp_uio.uio_iovcnt = 1;
1189	if (xfersize > uio->uio_resid)
1190		xfersize = uio->uio_resid;
1191	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1192	transp_uio.uio_offset = 0;
1193	transp_uio.uio_segflg = UIO_SYSSPACE;
1194	/*
1195	 * Since transp_iov points to data, and td_ma page array
1196	 * corresponds to original uio->uio_iov, we need to invert the
1197	 * direction of the i/o operation as passed to
1198	 * uiomove_fromphys().
1199	 */
1200	switch (uio->uio_rw) {
1201	case UIO_WRITE:
1202		transp_uio.uio_rw = UIO_READ;
1203		break;
1204	case UIO_READ:
1205		transp_uio.uio_rw = UIO_WRITE;
1206		break;
1207	}
1208	transp_uio.uio_td = uio->uio_td;
1209	error = uiomove_fromphys(td->td_ma,
1210	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1211	    xfersize, &transp_uio);
1212	adv = xfersize - transp_uio.uio_resid;
1213	pgadv =
1214	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1215	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1216	td->td_ma += pgadv;
1217	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1218	    pgadv));
1219	td->td_ma_cnt -= pgadv;
1220	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1221	uio->uio_iov->iov_len -= adv;
1222	uio->uio_resid -= adv;
1223	uio->uio_offset += adv;
1224	return (error);
1225}
1226
1227int
1228vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1229    struct uio *uio)
1230{
1231	struct thread *td;
1232	vm_offset_t iov_base;
1233	int cnt, pgadv;
1234
1235	td = curthread;
1236	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1237	    uio->uio_segflg != UIO_USERSPACE)
1238		return (uiomove_fromphys(ma, offset, xfersize, uio));
1239
1240	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1241	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1242	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1243	switch (uio->uio_rw) {
1244	case UIO_WRITE:
1245		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1246		    offset, cnt);
1247		break;
1248	case UIO_READ:
1249		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1250		    cnt);
1251		break;
1252	}
1253	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1254	td->td_ma += pgadv;
1255	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1256	    pgadv));
1257	td->td_ma_cnt -= pgadv;
1258	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1259	uio->uio_iov->iov_len -= cnt;
1260	uio->uio_resid -= cnt;
1261	uio->uio_offset += cnt;
1262	return (0);
1263}
1264
1265
1266/*
1267 * File table truncate routine.
1268 */
1269static int
1270vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1271    struct thread *td)
1272{
1273	struct vattr vattr;
1274	struct mount *mp;
1275	struct vnode *vp;
1276	void *rl_cookie;
1277	int error;
1278
1279	vp = fp->f_vnode;
1280
1281	/*
1282	 * Lock the whole range for truncation.  Otherwise split i/o
1283	 * might happen partly before and partly after the truncation.
1284	 */
1285	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1286	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1287	if (error)
1288		goto out1;
1289	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1290	if (vp->v_type == VDIR) {
1291		error = EISDIR;
1292		goto out;
1293	}
1294#ifdef MAC
1295	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1296	if (error)
1297		goto out;
1298#endif
1299	error = vn_writechk(vp);
1300	if (error == 0) {
1301		VATTR_NULL(&vattr);
1302		vattr.va_size = length;
1303		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1304	}
1305out:
1306	VOP_UNLOCK(vp, 0);
1307	vn_finished_write(mp);
1308out1:
1309	vn_rangelock_unlock(vp, rl_cookie);
1310	return (error);
1311}
1312
1313/*
1314 * File table vnode stat routine.
1315 */
1316static int
1317vn_statfile(fp, sb, active_cred, td)
1318	struct file *fp;
1319	struct stat *sb;
1320	struct ucred *active_cred;
1321	struct thread *td;
1322{
1323	struct vnode *vp = fp->f_vnode;
1324	int error;
1325
1326	vn_lock(vp, LK_SHARED | LK_RETRY);
1327	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1328	VOP_UNLOCK(vp, 0);
1329
1330	return (error);
1331}
1332
1333/*
1334 * Stat a vnode; implementation for the stat syscall
1335 */
1336int
1337vn_stat(vp, sb, active_cred, file_cred, td)
1338	struct vnode *vp;
1339	register struct stat *sb;
1340	struct ucred *active_cred;
1341	struct ucred *file_cred;
1342	struct thread *td;
1343{
1344	struct vattr vattr;
1345	register struct vattr *vap;
1346	int error;
1347	u_short mode;
1348
1349#ifdef MAC
1350	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1351	if (error)
1352		return (error);
1353#endif
1354
1355	vap = &vattr;
1356
1357	/*
1358	 * Initialize defaults for new and unusual fields, so that file
1359	 * systems which don't support these fields don't need to know
1360	 * about them.
1361	 */
1362	vap->va_birthtime.tv_sec = -1;
1363	vap->va_birthtime.tv_nsec = 0;
1364	vap->va_fsid = VNOVAL;
1365	vap->va_rdev = NODEV;
1366
1367	error = VOP_GETATTR(vp, vap, active_cred);
1368	if (error)
1369		return (error);
1370
1371	/*
1372	 * Zero the spare stat fields
1373	 */
1374	bzero(sb, sizeof *sb);
1375
1376	/*
1377	 * Copy from vattr table
1378	 */
1379	if (vap->va_fsid != VNOVAL)
1380		sb->st_dev = vap->va_fsid;
1381	else
1382		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1383	sb->st_ino = vap->va_fileid;
1384	mode = vap->va_mode;
1385	switch (vap->va_type) {
1386	case VREG:
1387		mode |= S_IFREG;
1388		break;
1389	case VDIR:
1390		mode |= S_IFDIR;
1391		break;
1392	case VBLK:
1393		mode |= S_IFBLK;
1394		break;
1395	case VCHR:
1396		mode |= S_IFCHR;
1397		break;
1398	case VLNK:
1399		mode |= S_IFLNK;
1400		break;
1401	case VSOCK:
1402		mode |= S_IFSOCK;
1403		break;
1404	case VFIFO:
1405		mode |= S_IFIFO;
1406		break;
1407	default:
1408		return (EBADF);
1409	};
1410	sb->st_mode = mode;
1411	sb->st_nlink = vap->va_nlink;
1412	sb->st_uid = vap->va_uid;
1413	sb->st_gid = vap->va_gid;
1414	sb->st_rdev = vap->va_rdev;
1415	if (vap->va_size > OFF_MAX)
1416		return (EOVERFLOW);
1417	sb->st_size = vap->va_size;
1418	sb->st_atim = vap->va_atime;
1419	sb->st_mtim = vap->va_mtime;
1420	sb->st_ctim = vap->va_ctime;
1421	sb->st_birthtim = vap->va_birthtime;
1422
1423        /*
1424	 * According to www.opengroup.org, the meaning of st_blksize is
1425	 *   "a filesystem-specific preferred I/O block size for this
1426	 *    object.  In some filesystem types, this may vary from file
1427	 *    to file"
1428	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1429	 */
1430
1431	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1432
1433	sb->st_flags = vap->va_flags;
1434	if (priv_check(td, PRIV_VFS_GENERATION))
1435		sb->st_gen = 0;
1436	else
1437		sb->st_gen = vap->va_gen;
1438
1439	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1440	return (0);
1441}
1442
1443/*
1444 * File table vnode ioctl routine.
1445 */
1446static int
1447vn_ioctl(fp, com, data, active_cred, td)
1448	struct file *fp;
1449	u_long com;
1450	void *data;
1451	struct ucred *active_cred;
1452	struct thread *td;
1453{
1454	struct vattr vattr;
1455	struct vnode *vp;
1456	int error;
1457
1458	vp = fp->f_vnode;
1459	switch (vp->v_type) {
1460	case VDIR:
1461	case VREG:
1462		switch (com) {
1463		case FIONREAD:
1464			vn_lock(vp, LK_SHARED | LK_RETRY);
1465			error = VOP_GETATTR(vp, &vattr, active_cred);
1466			VOP_UNLOCK(vp, 0);
1467			if (error == 0)
1468				*(int *)data = vattr.va_size - fp->f_offset;
1469			return (error);
1470		case FIONBIO:
1471		case FIOASYNC:
1472			return (0);
1473		default:
1474			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1475			    active_cred, td));
1476		}
1477	default:
1478		return (ENOTTY);
1479	}
1480}
1481
1482/*
1483 * File table vnode poll routine.
1484 */
1485static int
1486vn_poll(fp, events, active_cred, td)
1487	struct file *fp;
1488	int events;
1489	struct ucred *active_cred;
1490	struct thread *td;
1491{
1492	struct vnode *vp;
1493	int error;
1494
1495	vp = fp->f_vnode;
1496#ifdef MAC
1497	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1498	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1499	VOP_UNLOCK(vp, 0);
1500	if (!error)
1501#endif
1502
1503	error = VOP_POLL(vp, events, fp->f_cred, td);
1504	return (error);
1505}
1506
1507/*
1508 * Acquire the requested lock and then check for validity.  LK_RETRY
1509 * permits vn_lock to return doomed vnodes.
1510 */
1511int
1512_vn_lock(struct vnode *vp, int flags, char *file, int line)
1513{
1514	int error;
1515
1516	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1517	    ("vn_lock called with no locktype."));
1518	do {
1519#ifdef DEBUG_VFS_LOCKS
1520		KASSERT(vp->v_holdcnt != 0,
1521		    ("vn_lock %p: zero hold count", vp));
1522#endif
1523		error = VOP_LOCK1(vp, flags, file, line);
1524		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1525		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1526		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1527		    flags, error));
1528		/*
1529		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1530		 * If RETRY is not set, we return ENOENT instead.
1531		 */
1532		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1533		    (flags & LK_RETRY) == 0) {
1534			VOP_UNLOCK(vp, 0);
1535			error = ENOENT;
1536			break;
1537		}
1538	} while (flags & LK_RETRY && error != 0);
1539	return (error);
1540}
1541
1542/*
1543 * File table vnode close routine.
1544 */
1545static int
1546vn_closefile(fp, td)
1547	struct file *fp;
1548	struct thread *td;
1549{
1550	struct vnode *vp;
1551	struct flock lf;
1552	int error;
1553
1554	vp = fp->f_vnode;
1555	fp->f_ops = &badfileops;
1556
1557	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1558		vref(vp);
1559
1560	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1561
1562	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1563		lf.l_whence = SEEK_SET;
1564		lf.l_start = 0;
1565		lf.l_len = 0;
1566		lf.l_type = F_UNLCK;
1567		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1568		vrele(vp);
1569	}
1570	return (error);
1571}
1572
1573/*
1574 * Preparing to start a filesystem write operation. If the operation is
1575 * permitted, then we bump the count of operations in progress and
1576 * proceed. If a suspend request is in progress, we wait until the
1577 * suspension is over, and then proceed.
1578 */
1579static int
1580vn_start_write_locked(struct mount *mp, int flags)
1581{
1582	int error, mflags;
1583
1584	mtx_assert(MNT_MTX(mp), MA_OWNED);
1585	error = 0;
1586
1587	/*
1588	 * Check on status of suspension.
1589	 */
1590	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1591	    mp->mnt_susp_owner != curthread) {
1592		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1593		    (flags & PCATCH) : 0) | (PUSER - 1);
1594		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1595			if (flags & V_NOWAIT) {
1596				error = EWOULDBLOCK;
1597				goto unlock;
1598			}
1599			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1600			    "suspfs", 0);
1601			if (error)
1602				goto unlock;
1603		}
1604	}
1605	if (flags & V_XSLEEP)
1606		goto unlock;
1607	mp->mnt_writeopcount++;
1608unlock:
1609	if (error != 0 || (flags & V_XSLEEP) != 0)
1610		MNT_REL(mp);
1611	MNT_IUNLOCK(mp);
1612	return (error);
1613}
1614
1615int
1616vn_start_write(vp, mpp, flags)
1617	struct vnode *vp;
1618	struct mount **mpp;
1619	int flags;
1620{
1621	struct mount *mp;
1622	int error;
1623
1624	error = 0;
1625	/*
1626	 * If a vnode is provided, get and return the mount point that
1627	 * to which it will write.
1628	 */
1629	if (vp != NULL) {
1630		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1631			*mpp = NULL;
1632			if (error != EOPNOTSUPP)
1633				return (error);
1634			return (0);
1635		}
1636	}
1637	if ((mp = *mpp) == NULL)
1638		return (0);
1639
1640	/*
1641	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1642	 * a vfs_ref().
1643	 * As long as a vnode is not provided we need to acquire a
1644	 * refcount for the provided mountpoint too, in order to
1645	 * emulate a vfs_ref().
1646	 */
1647	MNT_ILOCK(mp);
1648	if (vp == NULL)
1649		MNT_REF(mp);
1650
1651	return (vn_start_write_locked(mp, flags));
1652}
1653
1654/*
1655 * Secondary suspension. Used by operations such as vop_inactive
1656 * routines that are needed by the higher level functions. These
1657 * are allowed to proceed until all the higher level functions have
1658 * completed (indicated by mnt_writeopcount dropping to zero). At that
1659 * time, these operations are halted until the suspension is over.
1660 */
1661int
1662vn_start_secondary_write(vp, mpp, flags)
1663	struct vnode *vp;
1664	struct mount **mpp;
1665	int flags;
1666{
1667	struct mount *mp;
1668	int error;
1669
1670 retry:
1671	if (vp != NULL) {
1672		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1673			*mpp = NULL;
1674			if (error != EOPNOTSUPP)
1675				return (error);
1676			return (0);
1677		}
1678	}
1679	/*
1680	 * If we are not suspended or have not yet reached suspended
1681	 * mode, then let the operation proceed.
1682	 */
1683	if ((mp = *mpp) == NULL)
1684		return (0);
1685
1686	/*
1687	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1688	 * a vfs_ref().
1689	 * As long as a vnode is not provided we need to acquire a
1690	 * refcount for the provided mountpoint too, in order to
1691	 * emulate a vfs_ref().
1692	 */
1693	MNT_ILOCK(mp);
1694	if (vp == NULL)
1695		MNT_REF(mp);
1696	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1697		mp->mnt_secondary_writes++;
1698		mp->mnt_secondary_accwrites++;
1699		MNT_IUNLOCK(mp);
1700		return (0);
1701	}
1702	if (flags & V_NOWAIT) {
1703		MNT_REL(mp);
1704		MNT_IUNLOCK(mp);
1705		return (EWOULDBLOCK);
1706	}
1707	/*
1708	 * Wait for the suspension to finish.
1709	 */
1710	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1711	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1712	    "suspfs", 0);
1713	vfs_rel(mp);
1714	if (error == 0)
1715		goto retry;
1716	return (error);
1717}
1718
1719/*
1720 * Filesystem write operation has completed. If we are suspending and this
1721 * operation is the last one, notify the suspender that the suspension is
1722 * now in effect.
1723 */
1724void
1725vn_finished_write(mp)
1726	struct mount *mp;
1727{
1728	if (mp == NULL)
1729		return;
1730	MNT_ILOCK(mp);
1731	MNT_REL(mp);
1732	mp->mnt_writeopcount--;
1733	if (mp->mnt_writeopcount < 0)
1734		panic("vn_finished_write: neg cnt");
1735	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1736	    mp->mnt_writeopcount <= 0)
1737		wakeup(&mp->mnt_writeopcount);
1738	MNT_IUNLOCK(mp);
1739}
1740
1741
1742/*
1743 * Filesystem secondary write operation has completed. If we are
1744 * suspending and this operation is the last one, notify the suspender
1745 * that the suspension is now in effect.
1746 */
1747void
1748vn_finished_secondary_write(mp)
1749	struct mount *mp;
1750{
1751	if (mp == NULL)
1752		return;
1753	MNT_ILOCK(mp);
1754	MNT_REL(mp);
1755	mp->mnt_secondary_writes--;
1756	if (mp->mnt_secondary_writes < 0)
1757		panic("vn_finished_secondary_write: neg cnt");
1758	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1759	    mp->mnt_secondary_writes <= 0)
1760		wakeup(&mp->mnt_secondary_writes);
1761	MNT_IUNLOCK(mp);
1762}
1763
1764
1765
1766/*
1767 * Request a filesystem to suspend write operations.
1768 */
1769int
1770vfs_write_suspend(struct mount *mp, int flags)
1771{
1772	int error;
1773
1774	MNT_ILOCK(mp);
1775	if (mp->mnt_susp_owner == curthread) {
1776		MNT_IUNLOCK(mp);
1777		return (EALREADY);
1778	}
1779	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1780		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1781
1782	/*
1783	 * Unmount holds a write reference on the mount point.  If we
1784	 * own busy reference and drain for writers, we deadlock with
1785	 * the reference draining in the unmount path.  Callers of
1786	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1787	 * vfs_busy() reference is owned and caller is not in the
1788	 * unmount context.
1789	 */
1790	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1791	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1792		MNT_IUNLOCK(mp);
1793		return (EBUSY);
1794	}
1795
1796	mp->mnt_kern_flag |= MNTK_SUSPEND;
1797	mp->mnt_susp_owner = curthread;
1798	if (mp->mnt_writeopcount > 0)
1799		(void) msleep(&mp->mnt_writeopcount,
1800		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1801	else
1802		MNT_IUNLOCK(mp);
1803	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1804		vfs_write_resume(mp, 0);
1805	return (error);
1806}
1807
1808/*
1809 * Request a filesystem to resume write operations.
1810 */
1811void
1812vfs_write_resume(struct mount *mp, int flags)
1813{
1814
1815	MNT_ILOCK(mp);
1816	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1817		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1818		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1819				       MNTK_SUSPENDED);
1820		mp->mnt_susp_owner = NULL;
1821		wakeup(&mp->mnt_writeopcount);
1822		wakeup(&mp->mnt_flag);
1823		curthread->td_pflags &= ~TDP_IGNSUSP;
1824		if ((flags & VR_START_WRITE) != 0) {
1825			MNT_REF(mp);
1826			mp->mnt_writeopcount++;
1827		}
1828		MNT_IUNLOCK(mp);
1829		if ((flags & VR_NO_SUSPCLR) == 0)
1830			VFS_SUSP_CLEAN(mp);
1831	} else if ((flags & VR_START_WRITE) != 0) {
1832		MNT_REF(mp);
1833		vn_start_write_locked(mp, 0);
1834	} else {
1835		MNT_IUNLOCK(mp);
1836	}
1837}
1838
1839/*
1840 * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1841 * methods.
1842 */
1843int
1844vfs_write_suspend_umnt(struct mount *mp)
1845{
1846	int error;
1847
1848	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1849	    ("vfs_write_suspend_umnt: recursed"));
1850
1851	/* dounmount() already called vn_start_write(). */
1852	for (;;) {
1853		vn_finished_write(mp);
1854		error = vfs_write_suspend(mp, 0);
1855		if (error != 0) {
1856			vn_start_write(NULL, &mp, V_WAIT);
1857			return (error);
1858		}
1859		MNT_ILOCK(mp);
1860		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1861			break;
1862		MNT_IUNLOCK(mp);
1863		vn_start_write(NULL, &mp, V_WAIT);
1864	}
1865	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1866	wakeup(&mp->mnt_flag);
1867	MNT_IUNLOCK(mp);
1868	curthread->td_pflags |= TDP_IGNSUSP;
1869	return (0);
1870}
1871
1872/*
1873 * Implement kqueues for files by translating it to vnode operation.
1874 */
1875static int
1876vn_kqfilter(struct file *fp, struct knote *kn)
1877{
1878
1879	return (VOP_KQFILTER(fp->f_vnode, kn));
1880}
1881
1882/*
1883 * Simplified in-kernel wrapper calls for extended attribute access.
1884 * Both calls pass in a NULL credential, authorizing as "kernel" access.
1885 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1886 */
1887int
1888vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1889    const char *attrname, int *buflen, char *buf, struct thread *td)
1890{
1891	struct uio	auio;
1892	struct iovec	iov;
1893	int	error;
1894
1895	iov.iov_len = *buflen;
1896	iov.iov_base = buf;
1897
1898	auio.uio_iov = &iov;
1899	auio.uio_iovcnt = 1;
1900	auio.uio_rw = UIO_READ;
1901	auio.uio_segflg = UIO_SYSSPACE;
1902	auio.uio_td = td;
1903	auio.uio_offset = 0;
1904	auio.uio_resid = *buflen;
1905
1906	if ((ioflg & IO_NODELOCKED) == 0)
1907		vn_lock(vp, LK_SHARED | LK_RETRY);
1908
1909	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1910
1911	/* authorize attribute retrieval as kernel */
1912	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1913	    td);
1914
1915	if ((ioflg & IO_NODELOCKED) == 0)
1916		VOP_UNLOCK(vp, 0);
1917
1918	if (error == 0) {
1919		*buflen = *buflen - auio.uio_resid;
1920	}
1921
1922	return (error);
1923}
1924
1925/*
1926 * XXX failure mode if partially written?
1927 */
1928int
1929vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1930    const char *attrname, int buflen, char *buf, struct thread *td)
1931{
1932	struct uio	auio;
1933	struct iovec	iov;
1934	struct mount	*mp;
1935	int	error;
1936
1937	iov.iov_len = buflen;
1938	iov.iov_base = buf;
1939
1940	auio.uio_iov = &iov;
1941	auio.uio_iovcnt = 1;
1942	auio.uio_rw = UIO_WRITE;
1943	auio.uio_segflg = UIO_SYSSPACE;
1944	auio.uio_td = td;
1945	auio.uio_offset = 0;
1946	auio.uio_resid = buflen;
1947
1948	if ((ioflg & IO_NODELOCKED) == 0) {
1949		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1950			return (error);
1951		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1952	}
1953
1954	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1955
1956	/* authorize attribute setting as kernel */
1957	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1958
1959	if ((ioflg & IO_NODELOCKED) == 0) {
1960		vn_finished_write(mp);
1961		VOP_UNLOCK(vp, 0);
1962	}
1963
1964	return (error);
1965}
1966
1967int
1968vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
1969    const char *attrname, struct thread *td)
1970{
1971	struct mount	*mp;
1972	int	error;
1973
1974	if ((ioflg & IO_NODELOCKED) == 0) {
1975		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1976			return (error);
1977		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1978	}
1979
1980	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1981
1982	/* authorize attribute removal as kernel */
1983	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
1984	if (error == EOPNOTSUPP)
1985		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
1986		    NULL, td);
1987
1988	if ((ioflg & IO_NODELOCKED) == 0) {
1989		vn_finished_write(mp);
1990		VOP_UNLOCK(vp, 0);
1991	}
1992
1993	return (error);
1994}
1995
1996static int
1997vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
1998    struct vnode **rvp)
1999{
2000
2001	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2002}
2003
2004int
2005vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2006{
2007
2008	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2009	    lkflags, rvp));
2010}
2011
2012int
2013vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2014    int lkflags, struct vnode **rvp)
2015{
2016	struct mount *mp;
2017	int ltype, error;
2018
2019	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2020	mp = vp->v_mount;
2021	ltype = VOP_ISLOCKED(vp);
2022	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2023	    ("vn_vget_ino: vp not locked"));
2024	error = vfs_busy(mp, MBF_NOWAIT);
2025	if (error != 0) {
2026		vfs_ref(mp);
2027		VOP_UNLOCK(vp, 0);
2028		error = vfs_busy(mp, 0);
2029		vn_lock(vp, ltype | LK_RETRY);
2030		vfs_rel(mp);
2031		if (error != 0)
2032			return (ENOENT);
2033		if (vp->v_iflag & VI_DOOMED) {
2034			vfs_unbusy(mp);
2035			return (ENOENT);
2036		}
2037	}
2038	VOP_UNLOCK(vp, 0);
2039	error = alloc(mp, alloc_arg, lkflags, rvp);
2040	vfs_unbusy(mp);
2041	if (*rvp != vp)
2042		vn_lock(vp, ltype | LK_RETRY);
2043	if (vp->v_iflag & VI_DOOMED) {
2044		if (error == 0) {
2045			if (*rvp == vp)
2046				vunref(vp);
2047			else
2048				vput(*rvp);
2049		}
2050		error = ENOENT;
2051	}
2052	return (error);
2053}
2054
2055int
2056vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2057    const struct thread *td)
2058{
2059
2060	if (vp->v_type != VREG || td == NULL)
2061		return (0);
2062	PROC_LOCK(td->td_proc);
2063	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2064	    lim_cur(td->td_proc, RLIMIT_FSIZE)) {
2065		kern_psignal(td->td_proc, SIGXFSZ);
2066		PROC_UNLOCK(td->td_proc);
2067		return (EFBIG);
2068	}
2069	PROC_UNLOCK(td->td_proc);
2070	return (0);
2071}
2072
2073int
2074vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2075    struct thread *td)
2076{
2077	struct vnode *vp;
2078
2079	vp = fp->f_vnode;
2080#ifdef AUDIT
2081	vn_lock(vp, LK_SHARED | LK_RETRY);
2082	AUDIT_ARG_VNODE1(vp);
2083	VOP_UNLOCK(vp, 0);
2084#endif
2085	return (setfmode(td, active_cred, vp, mode));
2086}
2087
2088int
2089vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2090    struct thread *td)
2091{
2092	struct vnode *vp;
2093
2094	vp = fp->f_vnode;
2095#ifdef AUDIT
2096	vn_lock(vp, LK_SHARED | LK_RETRY);
2097	AUDIT_ARG_VNODE1(vp);
2098	VOP_UNLOCK(vp, 0);
2099#endif
2100	return (setfown(td, active_cred, vp, uid, gid));
2101}
2102
2103void
2104vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2105{
2106	vm_object_t object;
2107
2108	if ((object = vp->v_object) == NULL)
2109		return;
2110	VM_OBJECT_WLOCK(object);
2111	vm_object_page_remove(object, start, end, 0);
2112	VM_OBJECT_WUNLOCK(object);
2113}
2114
2115int
2116vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2117{
2118	struct vattr va;
2119	daddr_t bn, bnp;
2120	uint64_t bsize;
2121	off_t noff;
2122	int error;
2123
2124	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2125	    ("Wrong command %lu", cmd));
2126
2127	if (vn_lock(vp, LK_SHARED) != 0)
2128		return (EBADF);
2129	if (vp->v_type != VREG) {
2130		error = ENOTTY;
2131		goto unlock;
2132	}
2133	error = VOP_GETATTR(vp, &va, cred);
2134	if (error != 0)
2135		goto unlock;
2136	noff = *off;
2137	if (noff >= va.va_size) {
2138		error = ENXIO;
2139		goto unlock;
2140	}
2141	bsize = vp->v_mount->mnt_stat.f_iosize;
2142	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2143		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2144		if (error == EOPNOTSUPP) {
2145			error = ENOTTY;
2146			goto unlock;
2147		}
2148		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2149		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2150			noff = bn * bsize;
2151			if (noff < *off)
2152				noff = *off;
2153			goto unlock;
2154		}
2155	}
2156	if (noff > va.va_size)
2157		noff = va.va_size;
2158	/* noff == va.va_size. There is an implicit hole at the end of file. */
2159	if (cmd == FIOSEEKDATA)
2160		error = ENXIO;
2161unlock:
2162	VOP_UNLOCK(vp, 0);
2163	if (error == 0)
2164		*off = noff;
2165	return (error);
2166}
2167
2168int
2169vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2170{
2171	struct ucred *cred;
2172	struct vnode *vp;
2173	struct vattr vattr;
2174	off_t foffset, size;
2175	int error, noneg;
2176
2177	cred = td->td_ucred;
2178	vp = fp->f_vnode;
2179	foffset = foffset_lock(fp, 0);
2180	noneg = (vp->v_type != VCHR);
2181	error = 0;
2182	switch (whence) {
2183	case L_INCR:
2184		if (noneg &&
2185		    (foffset < 0 ||
2186		    (offset > 0 && foffset > OFF_MAX - offset))) {
2187			error = EOVERFLOW;
2188			break;
2189		}
2190		offset += foffset;
2191		break;
2192	case L_XTND:
2193		vn_lock(vp, LK_SHARED | LK_RETRY);
2194		error = VOP_GETATTR(vp, &vattr, cred);
2195		VOP_UNLOCK(vp, 0);
2196		if (error)
2197			break;
2198
2199		/*
2200		 * If the file references a disk device, then fetch
2201		 * the media size and use that to determine the ending
2202		 * offset.
2203		 */
2204		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2205		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2206			vattr.va_size = size;
2207		if (noneg &&
2208		    (vattr.va_size > OFF_MAX ||
2209		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2210			error = EOVERFLOW;
2211			break;
2212		}
2213		offset += vattr.va_size;
2214		break;
2215	case L_SET:
2216		break;
2217	case SEEK_DATA:
2218		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2219		break;
2220	case SEEK_HOLE:
2221		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2222		break;
2223	default:
2224		error = EINVAL;
2225	}
2226	if (error == 0 && noneg && offset < 0)
2227		error = EINVAL;
2228	if (error != 0)
2229		goto drop;
2230	VFS_KNOTE_UNLOCKED(vp, 0);
2231	*(off_t *)(td->td_retval) = offset;
2232drop:
2233	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2234	return (error);
2235}
2236
2237int
2238vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2239    struct thread *td)
2240{
2241	int error;
2242
2243	/*
2244	 * Grant permission if the caller is the owner of the file, or
2245	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2246	 * on the file.  If the time pointer is null, then write
2247	 * permission on the file is also sufficient.
2248	 *
2249	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2250	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2251	 * will be allowed to set the times [..] to the current
2252	 * server time.
2253	 */
2254	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2255	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2256		error = VOP_ACCESS(vp, VWRITE, cred, td);
2257	return (error);
2258}
2259