vfs_bio.c revision 284944
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * Copyright (c) 2013 The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * Portions of this software were developed by Konstantin Belousov
8 * under sponsorship from the FreeBSD Foundation.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32/*
33 * this file contains a new buffer I/O scheme implementing a coherent
34 * VM object and buffer cache scheme.  Pains have been taken to make
35 * sure that the performance degradation associated with schemes such
36 * as this is not realized.
37 *
38 * Author:  John S. Dyson
39 * Significant help during the development and debugging phases
40 * had been provided by David Greenman, also of the FreeBSD core team.
41 *
42 * see man buf(9) for more info.
43 */
44
45#include <sys/cdefs.h>
46__FBSDID("$FreeBSD: stable/10/sys/kern/vfs_bio.c 284944 2015-06-30 05:53:15Z kib $");
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/conf.h>
52#include <sys/buf.h>
53#include <sys/devicestat.h>
54#include <sys/eventhandler.h>
55#include <sys/fail.h>
56#include <sys/limits.h>
57#include <sys/lock.h>
58#include <sys/malloc.h>
59#include <sys/mount.h>
60#include <sys/mutex.h>
61#include <sys/kernel.h>
62#include <sys/kthread.h>
63#include <sys/proc.h>
64#include <sys/resourcevar.h>
65#include <sys/rwlock.h>
66#include <sys/sysctl.h>
67#include <sys/vmem.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70#include <geom/geom.h>
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_page.h>
76#include <vm/vm_object.h>
77#include <vm/vm_extern.h>
78#include <vm/vm_map.h>
79#include "opt_compat.h"
80#include "opt_swap.h"
81
82static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
83
84struct	bio_ops bioops;		/* I/O operation notification */
85
86struct	buf_ops buf_ops_bio = {
87	.bop_name	=	"buf_ops_bio",
88	.bop_write	=	bufwrite,
89	.bop_strategy	=	bufstrategy,
90	.bop_sync	=	bufsync,
91	.bop_bdflush	=	bufbdflush,
92};
93
94/*
95 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
96 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
97 */
98struct buf *buf;		/* buffer header pool */
99caddr_t unmapped_buf;
100
101/* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
102struct proc *bufdaemonproc;
103
104static int inmem(struct vnode *vp, daddr_t blkno);
105static void vm_hold_free_pages(struct buf *bp, int newbsize);
106static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
107		vm_offset_t to);
108static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
109static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
110		vm_page_t m);
111static void vfs_clean_pages_dirty_buf(struct buf *bp);
112static void vfs_setdirty_locked_object(struct buf *bp);
113static void vfs_vmio_release(struct buf *bp);
114static int vfs_bio_clcheck(struct vnode *vp, int size,
115		daddr_t lblkno, daddr_t blkno);
116static int buf_flush(struct vnode *vp, int);
117static int flushbufqueues(struct vnode *, int, int);
118static void buf_daemon(void);
119static void bremfreel(struct buf *bp);
120static __inline void bd_wakeup(void);
121#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
122    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
123static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
124#endif
125
126int vmiodirenable = TRUE;
127SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
128    "Use the VM system for directory writes");
129long runningbufspace;
130SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
131    "Amount of presently outstanding async buffer io");
132static long bufspace;
133#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
134    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
135SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
136    &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
137#else
138SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
139    "Virtual memory used for buffers");
140#endif
141static long unmapped_bufspace;
142SYSCTL_LONG(_vfs, OID_AUTO, unmapped_bufspace, CTLFLAG_RD,
143    &unmapped_bufspace, 0,
144    "Amount of unmapped buffers, inclusive in the bufspace");
145static long maxbufspace;
146SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
147    "Maximum allowed value of bufspace (including buf_daemon)");
148static long bufmallocspace;
149SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
150    "Amount of malloced memory for buffers");
151static long maxbufmallocspace;
152SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
153    "Maximum amount of malloced memory for buffers");
154static long lobufspace;
155SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
156    "Minimum amount of buffers we want to have");
157long hibufspace;
158SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
159    "Maximum allowed value of bufspace (excluding buf_daemon)");
160static int bufreusecnt;
161SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
162    "Number of times we have reused a buffer");
163static int buffreekvacnt;
164SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
165    "Number of times we have freed the KVA space from some buffer");
166static int bufdefragcnt;
167SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
168    "Number of times we have had to repeat buffer allocation to defragment");
169static long lorunningspace;
170SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
171    "Minimum preferred space used for in-progress I/O");
172static long hirunningspace;
173SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
174    "Maximum amount of space to use for in-progress I/O");
175int dirtybufferflushes;
176SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
177    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
178int bdwriteskip;
179SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
180    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
181int altbufferflushes;
182SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
183    0, "Number of fsync flushes to limit dirty buffers");
184static int recursiveflushes;
185SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
186    0, "Number of flushes skipped due to being recursive");
187static int numdirtybuffers;
188SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
189    "Number of buffers that are dirty (has unwritten changes) at the moment");
190static int lodirtybuffers;
191SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
192    "How many buffers we want to have free before bufdaemon can sleep");
193static int hidirtybuffers;
194SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
195    "When the number of dirty buffers is considered severe");
196int dirtybufthresh;
197SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
198    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
199static int numfreebuffers;
200SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
201    "Number of free buffers");
202static int lofreebuffers;
203SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
204   "XXX Unused");
205static int hifreebuffers;
206SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
207   "XXX Complicatedly unused");
208static int getnewbufcalls;
209SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
210   "Number of calls to getnewbuf");
211static int getnewbufrestarts;
212SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
213    "Number of times getnewbuf has had to restart a buffer aquisition");
214static int mappingrestarts;
215SYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0,
216    "Number of times getblk has had to restart a buffer mapping for "
217    "unmapped buffer");
218static int flushbufqtarget = 100;
219SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
220    "Amount of work to do in flushbufqueues when helping bufdaemon");
221static long notbufdflushes;
222SYSCTL_LONG(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes, 0,
223    "Number of dirty buffer flushes done by the bufdaemon helpers");
224static long barrierwrites;
225SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
226    "Number of barrier writes");
227SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
228    &unmapped_buf_allowed, 0,
229    "Permit the use of the unmapped i/o");
230
231/*
232 * Lock for the non-dirty bufqueues
233 */
234static struct mtx_padalign bqclean;
235
236/*
237 * Lock for the dirty queue.
238 */
239static struct mtx_padalign bqdirty;
240
241/*
242 * This lock synchronizes access to bd_request.
243 */
244static struct mtx_padalign bdlock;
245
246/*
247 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
248 * waitrunningbufspace().
249 */
250static struct mtx_padalign rbreqlock;
251
252/*
253 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
254 */
255static struct rwlock_padalign nblock;
256
257/*
258 * Lock that protects bdirtywait.
259 */
260static struct mtx_padalign bdirtylock;
261
262/*
263 * Wakeup point for bufdaemon, as well as indicator of whether it is already
264 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
265 * is idling.
266 */
267static int bd_request;
268
269/*
270 * Request for the buf daemon to write more buffers than is indicated by
271 * lodirtybuf.  This may be necessary to push out excess dependencies or
272 * defragment the address space where a simple count of the number of dirty
273 * buffers is insufficient to characterize the demand for flushing them.
274 */
275static int bd_speedupreq;
276
277/*
278 * bogus page -- for I/O to/from partially complete buffers
279 * this is a temporary solution to the problem, but it is not
280 * really that bad.  it would be better to split the buffer
281 * for input in the case of buffers partially already in memory,
282 * but the code is intricate enough already.
283 */
284vm_page_t bogus_page;
285
286/*
287 * Synchronization (sleep/wakeup) variable for active buffer space requests.
288 * Set when wait starts, cleared prior to wakeup().
289 * Used in runningbufwakeup() and waitrunningbufspace().
290 */
291static int runningbufreq;
292
293/*
294 * Synchronization (sleep/wakeup) variable for buffer requests.
295 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
296 * by and/or.
297 * Used in numdirtywakeup(), bufspacewakeup(), bufcountadd(), bwillwrite(),
298 * getnewbuf(), and getblk().
299 */
300static volatile int needsbuffer;
301
302/*
303 * Synchronization for bwillwrite() waiters.
304 */
305static int bdirtywait;
306
307/*
308 * Definitions for the buffer free lists.
309 */
310#define BUFFER_QUEUES	5	/* number of free buffer queues */
311
312#define QUEUE_NONE	0	/* on no queue */
313#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
314#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
315#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
316#define QUEUE_EMPTY	4	/* empty buffer headers */
317#define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
318
319/* Queues for free buffers with various properties */
320static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
321#ifdef INVARIANTS
322static int bq_len[BUFFER_QUEUES];
323#endif
324
325/*
326 * Single global constant for BUF_WMESG, to avoid getting multiple references.
327 * buf_wmesg is referred from macros.
328 */
329const char *buf_wmesg = BUF_WMESG;
330
331#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
332#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
333#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
334
335#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
336    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
337static int
338sysctl_bufspace(SYSCTL_HANDLER_ARGS)
339{
340	long lvalue;
341	int ivalue;
342
343	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
344		return (sysctl_handle_long(oidp, arg1, arg2, req));
345	lvalue = *(long *)arg1;
346	if (lvalue > INT_MAX)
347		/* On overflow, still write out a long to trigger ENOMEM. */
348		return (sysctl_handle_long(oidp, &lvalue, 0, req));
349	ivalue = lvalue;
350	return (sysctl_handle_int(oidp, &ivalue, 0, req));
351}
352#endif
353
354/*
355 *	bqlock:
356 *
357 *	Return the appropriate queue lock based on the index.
358 */
359static inline struct mtx *
360bqlock(int qindex)
361{
362
363	if (qindex == QUEUE_DIRTY)
364		return (struct mtx *)(&bqdirty);
365	return (struct mtx *)(&bqclean);
366}
367
368/*
369 *	bdirtywakeup:
370 *
371 *	Wakeup any bwillwrite() waiters.
372 */
373static void
374bdirtywakeup(void)
375{
376	mtx_lock(&bdirtylock);
377	if (bdirtywait) {
378		bdirtywait = 0;
379		wakeup(&bdirtywait);
380	}
381	mtx_unlock(&bdirtylock);
382}
383
384/*
385 *	bdirtysub:
386 *
387 *	Decrement the numdirtybuffers count by one and wakeup any
388 *	threads blocked in bwillwrite().
389 */
390static void
391bdirtysub(void)
392{
393
394	if (atomic_fetchadd_int(&numdirtybuffers, -1) ==
395	    (lodirtybuffers + hidirtybuffers) / 2)
396		bdirtywakeup();
397}
398
399/*
400 *	bdirtyadd:
401 *
402 *	Increment the numdirtybuffers count by one and wakeup the buf
403 *	daemon if needed.
404 */
405static void
406bdirtyadd(void)
407{
408
409	/*
410	 * Only do the wakeup once as we cross the boundary.  The
411	 * buf daemon will keep running until the condition clears.
412	 */
413	if (atomic_fetchadd_int(&numdirtybuffers, 1) ==
414	    (lodirtybuffers + hidirtybuffers) / 2)
415		bd_wakeup();
416}
417
418/*
419 *	bufspacewakeup:
420 *
421 *	Called when buffer space is potentially available for recovery.
422 *	getnewbuf() will block on this flag when it is unable to free
423 *	sufficient buffer space.  Buffer space becomes recoverable when
424 *	bp's get placed back in the queues.
425 */
426
427static __inline void
428bufspacewakeup(void)
429{
430	int need_wakeup, on;
431
432	/*
433	 * If someone is waiting for BUF space, wake them up.  Even
434	 * though we haven't freed the kva space yet, the waiting
435	 * process will be able to now.
436	 */
437	rw_rlock(&nblock);
438	for (;;) {
439		need_wakeup = 0;
440		on = needsbuffer;
441		if ((on & VFS_BIO_NEED_BUFSPACE) == 0)
442			break;
443		need_wakeup = 1;
444		if (atomic_cmpset_rel_int(&needsbuffer, on,
445		    on & ~VFS_BIO_NEED_BUFSPACE))
446			break;
447	}
448	if (need_wakeup)
449		wakeup(__DEVOLATILE(void *, &needsbuffer));
450	rw_runlock(&nblock);
451}
452
453/*
454 *	runningwakeup:
455 *
456 *	Wake up processes that are waiting on asynchronous writes to fall
457 *	below lorunningspace.
458 */
459static void
460runningwakeup(void)
461{
462
463	mtx_lock(&rbreqlock);
464	if (runningbufreq) {
465		runningbufreq = 0;
466		wakeup(&runningbufreq);
467	}
468	mtx_unlock(&rbreqlock);
469}
470
471/*
472 *	runningbufwakeup:
473 *
474 *	Decrement the outstanding write count according.
475 */
476void
477runningbufwakeup(struct buf *bp)
478{
479	long space, bspace;
480
481	bspace = bp->b_runningbufspace;
482	if (bspace == 0)
483		return;
484	space = atomic_fetchadd_long(&runningbufspace, -bspace);
485	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
486	    space, bspace));
487	bp->b_runningbufspace = 0;
488	/*
489	 * Only acquire the lock and wakeup on the transition from exceeding
490	 * the threshold to falling below it.
491	 */
492	if (space < lorunningspace)
493		return;
494	if (space - bspace > lorunningspace)
495		return;
496	runningwakeup();
497}
498
499/*
500 *	bufcountadd:
501 *
502 *	Called when a buffer has been added to one of the free queues to
503 *	account for the buffer and to wakeup anyone waiting for free buffers.
504 *	This typically occurs when large amounts of metadata are being handled
505 *	by the buffer cache ( else buffer space runs out first, usually ).
506 */
507static __inline void
508bufcountadd(struct buf *bp)
509{
510	int mask, need_wakeup, old, on;
511
512	KASSERT((bp->b_flags & B_INFREECNT) == 0,
513	    ("buf %p already counted as free", bp));
514	bp->b_flags |= B_INFREECNT;
515	old = atomic_fetchadd_int(&numfreebuffers, 1);
516	KASSERT(old >= 0 && old < nbuf,
517	    ("numfreebuffers climbed to %d", old + 1));
518	mask = VFS_BIO_NEED_ANY;
519	if (numfreebuffers >= hifreebuffers)
520		mask |= VFS_BIO_NEED_FREE;
521	rw_rlock(&nblock);
522	for (;;) {
523		need_wakeup = 0;
524		on = needsbuffer;
525		if (on == 0)
526			break;
527		need_wakeup = 1;
528		if (atomic_cmpset_rel_int(&needsbuffer, on, on & ~mask))
529			break;
530	}
531	if (need_wakeup)
532		wakeup(__DEVOLATILE(void *, &needsbuffer));
533	rw_runlock(&nblock);
534}
535
536/*
537 *	bufcountsub:
538 *
539 *	Decrement the numfreebuffers count as needed.
540 */
541static void
542bufcountsub(struct buf *bp)
543{
544	int old;
545
546	/*
547	 * Fixup numfreebuffers count.  If the buffer is invalid or not
548	 * delayed-write, the buffer was free and we must decrement
549	 * numfreebuffers.
550	 */
551	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
552		KASSERT((bp->b_flags & B_INFREECNT) != 0,
553		    ("buf %p not counted in numfreebuffers", bp));
554		bp->b_flags &= ~B_INFREECNT;
555		old = atomic_fetchadd_int(&numfreebuffers, -1);
556		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
557	}
558}
559
560/*
561 *	waitrunningbufspace()
562 *
563 *	runningbufspace is a measure of the amount of I/O currently
564 *	running.  This routine is used in async-write situations to
565 *	prevent creating huge backups of pending writes to a device.
566 *	Only asynchronous writes are governed by this function.
567 *
568 *	This does NOT turn an async write into a sync write.  It waits
569 *	for earlier writes to complete and generally returns before the
570 *	caller's write has reached the device.
571 */
572void
573waitrunningbufspace(void)
574{
575
576	mtx_lock(&rbreqlock);
577	while (runningbufspace > hirunningspace) {
578		runningbufreq = 1;
579		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
580	}
581	mtx_unlock(&rbreqlock);
582}
583
584
585/*
586 *	vfs_buf_test_cache:
587 *
588 *	Called when a buffer is extended.  This function clears the B_CACHE
589 *	bit if the newly extended portion of the buffer does not contain
590 *	valid data.
591 */
592static __inline
593void
594vfs_buf_test_cache(struct buf *bp,
595		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
596		  vm_page_t m)
597{
598
599	VM_OBJECT_ASSERT_LOCKED(m->object);
600	if (bp->b_flags & B_CACHE) {
601		int base = (foff + off) & PAGE_MASK;
602		if (vm_page_is_valid(m, base, size) == 0)
603			bp->b_flags &= ~B_CACHE;
604	}
605}
606
607/* Wake up the buffer daemon if necessary */
608static __inline void
609bd_wakeup(void)
610{
611
612	mtx_lock(&bdlock);
613	if (bd_request == 0) {
614		bd_request = 1;
615		wakeup(&bd_request);
616	}
617	mtx_unlock(&bdlock);
618}
619
620/*
621 * bd_speedup - speedup the buffer cache flushing code
622 */
623void
624bd_speedup(void)
625{
626	int needwake;
627
628	mtx_lock(&bdlock);
629	needwake = 0;
630	if (bd_speedupreq == 0 || bd_request == 0)
631		needwake = 1;
632	bd_speedupreq = 1;
633	bd_request = 1;
634	if (needwake)
635		wakeup(&bd_request);
636	mtx_unlock(&bdlock);
637}
638
639#ifndef NSWBUF_MIN
640#define	NSWBUF_MIN	16
641#endif
642
643#ifdef __i386__
644#define	TRANSIENT_DENOM	5
645#else
646#define	TRANSIENT_DENOM 10
647#endif
648
649/*
650 * Calculating buffer cache scaling values and reserve space for buffer
651 * headers.  This is called during low level kernel initialization and
652 * may be called more then once.  We CANNOT write to the memory area
653 * being reserved at this time.
654 */
655caddr_t
656kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
657{
658	int tuned_nbuf;
659	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
660
661	/*
662	 * physmem_est is in pages.  Convert it to kilobytes (assumes
663	 * PAGE_SIZE is >= 1K)
664	 */
665	physmem_est = physmem_est * (PAGE_SIZE / 1024);
666
667	/*
668	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
669	 * For the first 64MB of ram nominally allocate sufficient buffers to
670	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
671	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
672	 * the buffer cache we limit the eventual kva reservation to
673	 * maxbcache bytes.
674	 *
675	 * factor represents the 1/4 x ram conversion.
676	 */
677	if (nbuf == 0) {
678		int factor = 4 * BKVASIZE / 1024;
679
680		nbuf = 50;
681		if (physmem_est > 4096)
682			nbuf += min((physmem_est - 4096) / factor,
683			    65536 / factor);
684		if (physmem_est > 65536)
685			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
686			    32 * 1024 * 1024 / (factor * 5));
687
688		if (maxbcache && nbuf > maxbcache / BKVASIZE)
689			nbuf = maxbcache / BKVASIZE;
690		tuned_nbuf = 1;
691	} else
692		tuned_nbuf = 0;
693
694	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
695	maxbuf = (LONG_MAX / 3) / BKVASIZE;
696	if (nbuf > maxbuf) {
697		if (!tuned_nbuf)
698			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
699			    maxbuf);
700		nbuf = maxbuf;
701	}
702
703	/*
704	 * Ideal allocation size for the transient bio submap if 10%
705	 * of the maximal space buffer map.  This roughly corresponds
706	 * to the amount of the buffer mapped for typical UFS load.
707	 *
708	 * Clip the buffer map to reserve space for the transient
709	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
710	 * maximum buffer map extent on the platform.
711	 *
712	 * The fall-back to the maxbuf in case of maxbcache unset,
713	 * allows to not trim the buffer KVA for the architectures
714	 * with ample KVA space.
715	 */
716	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
717		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
718		buf_sz = (long)nbuf * BKVASIZE;
719		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
720		    (TRANSIENT_DENOM - 1)) {
721			/*
722			 * There is more KVA than memory.  Do not
723			 * adjust buffer map size, and assign the rest
724			 * of maxbuf to transient map.
725			 */
726			biotmap_sz = maxbuf_sz - buf_sz;
727		} else {
728			/*
729			 * Buffer map spans all KVA we could afford on
730			 * this platform.  Give 10% (20% on i386) of
731			 * the buffer map to the transient bio map.
732			 */
733			biotmap_sz = buf_sz / TRANSIENT_DENOM;
734			buf_sz -= biotmap_sz;
735		}
736		if (biotmap_sz / INT_MAX > MAXPHYS)
737			bio_transient_maxcnt = INT_MAX;
738		else
739			bio_transient_maxcnt = biotmap_sz / MAXPHYS;
740		/*
741		 * Artifically limit to 1024 simultaneous in-flight I/Os
742		 * using the transient mapping.
743		 */
744		if (bio_transient_maxcnt > 1024)
745			bio_transient_maxcnt = 1024;
746		if (tuned_nbuf)
747			nbuf = buf_sz / BKVASIZE;
748	}
749
750	/*
751	 * swbufs are used as temporary holders for I/O, such as paging I/O.
752	 * We have no less then 16 and no more then 256.
753	 */
754	nswbuf = min(nbuf / 4, 256);
755	TUNABLE_INT_FETCH("kern.nswbuf", &nswbuf);
756	if (nswbuf < NSWBUF_MIN)
757		nswbuf = NSWBUF_MIN;
758
759	/*
760	 * Reserve space for the buffer cache buffers
761	 */
762	swbuf = (void *)v;
763	v = (caddr_t)(swbuf + nswbuf);
764	buf = (void *)v;
765	v = (caddr_t)(buf + nbuf);
766
767	return(v);
768}
769
770/* Initialize the buffer subsystem.  Called before use of any buffers. */
771void
772bufinit(void)
773{
774	struct buf *bp;
775	int i;
776
777	CTASSERT(MAXBCACHEBUF >= MAXBSIZE);
778	mtx_init(&bqclean, "bufq clean lock", NULL, MTX_DEF);
779	mtx_init(&bqdirty, "bufq dirty lock", NULL, MTX_DEF);
780	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
781	rw_init(&nblock, "needsbuffer lock");
782	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
783	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
784
785	/* next, make a null set of free lists */
786	for (i = 0; i < BUFFER_QUEUES; i++)
787		TAILQ_INIT(&bufqueues[i]);
788
789	/* finally, initialize each buffer header and stick on empty q */
790	for (i = 0; i < nbuf; i++) {
791		bp = &buf[i];
792		bzero(bp, sizeof *bp);
793		bp->b_flags = B_INVAL | B_INFREECNT;
794		bp->b_rcred = NOCRED;
795		bp->b_wcred = NOCRED;
796		bp->b_qindex = QUEUE_EMPTY;
797		bp->b_xflags = 0;
798		LIST_INIT(&bp->b_dep);
799		BUF_LOCKINIT(bp);
800		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
801#ifdef INVARIANTS
802		bq_len[QUEUE_EMPTY]++;
803#endif
804	}
805
806	/*
807	 * maxbufspace is the absolute maximum amount of buffer space we are
808	 * allowed to reserve in KVM and in real terms.  The absolute maximum
809	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
810	 * used by most other processes.  The differential is required to
811	 * ensure that buf_daemon is able to run when other processes might
812	 * be blocked waiting for buffer space.
813	 *
814	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
815	 * this may result in KVM fragmentation which is not handled optimally
816	 * by the system.
817	 */
818	maxbufspace = (long)nbuf * BKVASIZE;
819	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBCACHEBUF * 10);
820	lobufspace = hibufspace - MAXBCACHEBUF;
821
822	/*
823	 * Note: The 16 MiB upper limit for hirunningspace was chosen
824	 * arbitrarily and may need further tuning. It corresponds to
825	 * 128 outstanding write IO requests (if IO size is 128 KiB),
826	 * which fits with many RAID controllers' tagged queuing limits.
827	 * The lower 1 MiB limit is the historical upper limit for
828	 * hirunningspace.
829	 */
830	hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBCACHEBUF),
831	    16 * 1024 * 1024), 1024 * 1024);
832	lorunningspace = roundup((hirunningspace * 2) / 3, MAXBCACHEBUF);
833
834/*
835 * Limit the amount of malloc memory since it is wired permanently into
836 * the kernel space.  Even though this is accounted for in the buffer
837 * allocation, we don't want the malloced region to grow uncontrolled.
838 * The malloc scheme improves memory utilization significantly on average
839 * (small) directories.
840 */
841	maxbufmallocspace = hibufspace / 20;
842
843/*
844 * Reduce the chance of a deadlock occuring by limiting the number
845 * of delayed-write dirty buffers we allow to stack up.
846 */
847	hidirtybuffers = nbuf / 4 + 20;
848	dirtybufthresh = hidirtybuffers * 9 / 10;
849	numdirtybuffers = 0;
850/*
851 * To support extreme low-memory systems, make sure hidirtybuffers cannot
852 * eat up all available buffer space.  This occurs when our minimum cannot
853 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
854 * BKVASIZE'd buffers.
855 */
856	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
857		hidirtybuffers >>= 1;
858	}
859	lodirtybuffers = hidirtybuffers / 2;
860
861/*
862 * Try to keep the number of free buffers in the specified range,
863 * and give special processes (e.g. like buf_daemon) access to an
864 * emergency reserve.
865 */
866	lofreebuffers = nbuf / 18 + 5;
867	hifreebuffers = 2 * lofreebuffers;
868	numfreebuffers = nbuf;
869
870	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
871	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
872	unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
873}
874
875#ifdef INVARIANTS
876static inline void
877vfs_buf_check_mapped(struct buf *bp)
878{
879
880	KASSERT((bp->b_flags & B_UNMAPPED) == 0,
881	    ("mapped buf %p %x", bp, bp->b_flags));
882	KASSERT(bp->b_kvabase != unmapped_buf,
883	    ("mapped buf: b_kvabase was not updated %p", bp));
884	KASSERT(bp->b_data != unmapped_buf,
885	    ("mapped buf: b_data was not updated %p", bp));
886}
887
888static inline void
889vfs_buf_check_unmapped(struct buf *bp)
890{
891
892	KASSERT((bp->b_flags & B_UNMAPPED) == B_UNMAPPED,
893	    ("unmapped buf %p %x", bp, bp->b_flags));
894	KASSERT(bp->b_kvabase == unmapped_buf,
895	    ("unmapped buf: corrupted b_kvabase %p", bp));
896	KASSERT(bp->b_data == unmapped_buf,
897	    ("unmapped buf: corrupted b_data %p", bp));
898}
899
900#define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
901#define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
902#else
903#define	BUF_CHECK_MAPPED(bp) do {} while (0)
904#define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
905#endif
906
907static void
908bpmap_qenter(struct buf *bp)
909{
910
911	BUF_CHECK_MAPPED(bp);
912
913	/*
914	 * bp->b_data is relative to bp->b_offset, but
915	 * bp->b_offset may be offset into the first page.
916	 */
917	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
918	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
919	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
920	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
921}
922
923/*
924 * bfreekva() - free the kva allocation for a buffer.
925 *
926 *	Since this call frees up buffer space, we call bufspacewakeup().
927 */
928static void
929bfreekva(struct buf *bp)
930{
931
932	if (bp->b_kvasize == 0)
933		return;
934
935	atomic_add_int(&buffreekvacnt, 1);
936	atomic_subtract_long(&bufspace, bp->b_kvasize);
937	if ((bp->b_flags & B_UNMAPPED) == 0) {
938		BUF_CHECK_MAPPED(bp);
939		vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase,
940		    bp->b_kvasize);
941	} else {
942		BUF_CHECK_UNMAPPED(bp);
943		if ((bp->b_flags & B_KVAALLOC) != 0) {
944			vmem_free(buffer_arena, (vm_offset_t)bp->b_kvaalloc,
945			    bp->b_kvasize);
946		}
947		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
948		bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
949	}
950	bp->b_kvasize = 0;
951	bufspacewakeup();
952}
953
954/*
955 *	binsfree:
956 *
957 *	Insert the buffer into the appropriate free list.
958 */
959static void
960binsfree(struct buf *bp, int qindex)
961{
962	struct mtx *olock, *nlock;
963
964	BUF_ASSERT_XLOCKED(bp);
965
966	nlock = bqlock(qindex);
967	/* Handle delayed bremfree() processing. */
968	if (bp->b_flags & B_REMFREE) {
969		olock = bqlock(bp->b_qindex);
970		mtx_lock(olock);
971		bremfreel(bp);
972		if (olock != nlock) {
973			mtx_unlock(olock);
974			mtx_lock(nlock);
975		}
976	} else
977		mtx_lock(nlock);
978
979	if (bp->b_qindex != QUEUE_NONE)
980		panic("binsfree: free buffer onto another queue???");
981
982	bp->b_qindex = qindex;
983	if (bp->b_flags & B_AGE)
984		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
985	else
986		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
987#ifdef INVARIANTS
988	bq_len[bp->b_qindex]++;
989#endif
990	mtx_unlock(nlock);
991
992	/*
993	 * Something we can maybe free or reuse.
994	 */
995	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
996		bufspacewakeup();
997
998	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
999		bufcountadd(bp);
1000}
1001
1002/*
1003 *	bremfree:
1004 *
1005 *	Mark the buffer for removal from the appropriate free list.
1006 *
1007 */
1008void
1009bremfree(struct buf *bp)
1010{
1011
1012	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1013	KASSERT((bp->b_flags & B_REMFREE) == 0,
1014	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1015	KASSERT(bp->b_qindex != QUEUE_NONE,
1016	    ("bremfree: buffer %p not on a queue.", bp));
1017	BUF_ASSERT_XLOCKED(bp);
1018
1019	bp->b_flags |= B_REMFREE;
1020	bufcountsub(bp);
1021}
1022
1023/*
1024 *	bremfreef:
1025 *
1026 *	Force an immediate removal from a free list.  Used only in nfs when
1027 *	it abuses the b_freelist pointer.
1028 */
1029void
1030bremfreef(struct buf *bp)
1031{
1032	struct mtx *qlock;
1033
1034	qlock = bqlock(bp->b_qindex);
1035	mtx_lock(qlock);
1036	bremfreel(bp);
1037	mtx_unlock(qlock);
1038}
1039
1040/*
1041 *	bremfreel:
1042 *
1043 *	Removes a buffer from the free list, must be called with the
1044 *	correct qlock held.
1045 */
1046static void
1047bremfreel(struct buf *bp)
1048{
1049
1050	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
1051	    bp, bp->b_vp, bp->b_flags);
1052	KASSERT(bp->b_qindex != QUEUE_NONE,
1053	    ("bremfreel: buffer %p not on a queue.", bp));
1054	BUF_ASSERT_XLOCKED(bp);
1055	mtx_assert(bqlock(bp->b_qindex), MA_OWNED);
1056
1057	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
1058#ifdef INVARIANTS
1059	KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow",
1060	    bp->b_qindex));
1061	bq_len[bp->b_qindex]--;
1062#endif
1063	bp->b_qindex = QUEUE_NONE;
1064	/*
1065	 * If this was a delayed bremfree() we only need to remove the buffer
1066	 * from the queue and return the stats are already done.
1067	 */
1068	if (bp->b_flags & B_REMFREE) {
1069		bp->b_flags &= ~B_REMFREE;
1070		return;
1071	}
1072	bufcountsub(bp);
1073}
1074
1075/*
1076 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
1077 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
1078 * the buffer is valid and we do not have to do anything.
1079 */
1080void
1081breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
1082    int cnt, struct ucred * cred)
1083{
1084	struct buf *rabp;
1085	int i;
1086
1087	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
1088		if (inmem(vp, *rablkno))
1089			continue;
1090		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
1091
1092		if ((rabp->b_flags & B_CACHE) == 0) {
1093			if (!TD_IS_IDLETHREAD(curthread))
1094				curthread->td_ru.ru_inblock++;
1095			rabp->b_flags |= B_ASYNC;
1096			rabp->b_flags &= ~B_INVAL;
1097			rabp->b_ioflags &= ~BIO_ERROR;
1098			rabp->b_iocmd = BIO_READ;
1099			if (rabp->b_rcred == NOCRED && cred != NOCRED)
1100				rabp->b_rcred = crhold(cred);
1101			vfs_busy_pages(rabp, 0);
1102			BUF_KERNPROC(rabp);
1103			rabp->b_iooffset = dbtob(rabp->b_blkno);
1104			bstrategy(rabp);
1105		} else {
1106			brelse(rabp);
1107		}
1108	}
1109}
1110
1111/*
1112 * Entry point for bread() and breadn() via #defines in sys/buf.h.
1113 *
1114 * Get a buffer with the specified data.  Look in the cache first.  We
1115 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
1116 * is set, the buffer is valid and we do not have to do anything, see
1117 * getblk(). Also starts asynchronous I/O on read-ahead blocks.
1118 */
1119int
1120breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
1121    int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp)
1122{
1123	struct buf *bp;
1124	int rv = 0, readwait = 0;
1125
1126	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
1127	/*
1128	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
1129	 */
1130	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
1131	if (bp == NULL)
1132		return (EBUSY);
1133
1134	/* if not found in cache, do some I/O */
1135	if ((bp->b_flags & B_CACHE) == 0) {
1136		if (!TD_IS_IDLETHREAD(curthread))
1137			curthread->td_ru.ru_inblock++;
1138		bp->b_iocmd = BIO_READ;
1139		bp->b_flags &= ~B_INVAL;
1140		bp->b_ioflags &= ~BIO_ERROR;
1141		if (bp->b_rcred == NOCRED && cred != NOCRED)
1142			bp->b_rcred = crhold(cred);
1143		vfs_busy_pages(bp, 0);
1144		bp->b_iooffset = dbtob(bp->b_blkno);
1145		bstrategy(bp);
1146		++readwait;
1147	}
1148
1149	breada(vp, rablkno, rabsize, cnt, cred);
1150
1151	if (readwait) {
1152		rv = bufwait(bp);
1153	}
1154	return (rv);
1155}
1156
1157/*
1158 * Write, release buffer on completion.  (Done by iodone
1159 * if async).  Do not bother writing anything if the buffer
1160 * is invalid.
1161 *
1162 * Note that we set B_CACHE here, indicating that buffer is
1163 * fully valid and thus cacheable.  This is true even of NFS
1164 * now so we set it generally.  This could be set either here
1165 * or in biodone() since the I/O is synchronous.  We put it
1166 * here.
1167 */
1168int
1169bufwrite(struct buf *bp)
1170{
1171	int oldflags;
1172	struct vnode *vp;
1173	long space;
1174	int vp_md;
1175
1176	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1177	if (bp->b_flags & B_INVAL) {
1178		brelse(bp);
1179		return (0);
1180	}
1181
1182	if (bp->b_flags & B_BARRIER)
1183		barrierwrites++;
1184
1185	oldflags = bp->b_flags;
1186
1187	BUF_ASSERT_HELD(bp);
1188
1189	if (bp->b_pin_count > 0)
1190		bunpin_wait(bp);
1191
1192	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
1193	    ("FFS background buffer should not get here %p", bp));
1194
1195	vp = bp->b_vp;
1196	if (vp)
1197		vp_md = vp->v_vflag & VV_MD;
1198	else
1199		vp_md = 0;
1200
1201	/*
1202	 * Mark the buffer clean.  Increment the bufobj write count
1203	 * before bundirty() call, to prevent other thread from seeing
1204	 * empty dirty list and zero counter for writes in progress,
1205	 * falsely indicating that the bufobj is clean.
1206	 */
1207	bufobj_wref(bp->b_bufobj);
1208	bundirty(bp);
1209
1210	bp->b_flags &= ~B_DONE;
1211	bp->b_ioflags &= ~BIO_ERROR;
1212	bp->b_flags |= B_CACHE;
1213	bp->b_iocmd = BIO_WRITE;
1214
1215	vfs_busy_pages(bp, 1);
1216
1217	/*
1218	 * Normal bwrites pipeline writes
1219	 */
1220	bp->b_runningbufspace = bp->b_bufsize;
1221	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
1222
1223	if (!TD_IS_IDLETHREAD(curthread))
1224		curthread->td_ru.ru_oublock++;
1225	if (oldflags & B_ASYNC)
1226		BUF_KERNPROC(bp);
1227	bp->b_iooffset = dbtob(bp->b_blkno);
1228	bstrategy(bp);
1229
1230	if ((oldflags & B_ASYNC) == 0) {
1231		int rtval = bufwait(bp);
1232		brelse(bp);
1233		return (rtval);
1234	} else if (space > hirunningspace) {
1235		/*
1236		 * don't allow the async write to saturate the I/O
1237		 * system.  We will not deadlock here because
1238		 * we are blocking waiting for I/O that is already in-progress
1239		 * to complete. We do not block here if it is the update
1240		 * or syncer daemon trying to clean up as that can lead
1241		 * to deadlock.
1242		 */
1243		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
1244			waitrunningbufspace();
1245	}
1246
1247	return (0);
1248}
1249
1250void
1251bufbdflush(struct bufobj *bo, struct buf *bp)
1252{
1253	struct buf *nbp;
1254
1255	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
1256		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
1257		altbufferflushes++;
1258	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
1259		BO_LOCK(bo);
1260		/*
1261		 * Try to find a buffer to flush.
1262		 */
1263		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
1264			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1265			    BUF_LOCK(nbp,
1266				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
1267				continue;
1268			if (bp == nbp)
1269				panic("bdwrite: found ourselves");
1270			BO_UNLOCK(bo);
1271			/* Don't countdeps with the bo lock held. */
1272			if (buf_countdeps(nbp, 0)) {
1273				BO_LOCK(bo);
1274				BUF_UNLOCK(nbp);
1275				continue;
1276			}
1277			if (nbp->b_flags & B_CLUSTEROK) {
1278				vfs_bio_awrite(nbp);
1279			} else {
1280				bremfree(nbp);
1281				bawrite(nbp);
1282			}
1283			dirtybufferflushes++;
1284			break;
1285		}
1286		if (nbp == NULL)
1287			BO_UNLOCK(bo);
1288	}
1289}
1290
1291/*
1292 * Delayed write. (Buffer is marked dirty).  Do not bother writing
1293 * anything if the buffer is marked invalid.
1294 *
1295 * Note that since the buffer must be completely valid, we can safely
1296 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1297 * biodone() in order to prevent getblk from writing the buffer
1298 * out synchronously.
1299 */
1300void
1301bdwrite(struct buf *bp)
1302{
1303	struct thread *td = curthread;
1304	struct vnode *vp;
1305	struct bufobj *bo;
1306
1307	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1308	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1309	KASSERT((bp->b_flags & B_BARRIER) == 0,
1310	    ("Barrier request in delayed write %p", bp));
1311	BUF_ASSERT_HELD(bp);
1312
1313	if (bp->b_flags & B_INVAL) {
1314		brelse(bp);
1315		return;
1316	}
1317
1318	/*
1319	 * If we have too many dirty buffers, don't create any more.
1320	 * If we are wildly over our limit, then force a complete
1321	 * cleanup. Otherwise, just keep the situation from getting
1322	 * out of control. Note that we have to avoid a recursive
1323	 * disaster and not try to clean up after our own cleanup!
1324	 */
1325	vp = bp->b_vp;
1326	bo = bp->b_bufobj;
1327	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1328		td->td_pflags |= TDP_INBDFLUSH;
1329		BO_BDFLUSH(bo, bp);
1330		td->td_pflags &= ~TDP_INBDFLUSH;
1331	} else
1332		recursiveflushes++;
1333
1334	bdirty(bp);
1335	/*
1336	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1337	 * true even of NFS now.
1338	 */
1339	bp->b_flags |= B_CACHE;
1340
1341	/*
1342	 * This bmap keeps the system from needing to do the bmap later,
1343	 * perhaps when the system is attempting to do a sync.  Since it
1344	 * is likely that the indirect block -- or whatever other datastructure
1345	 * that the filesystem needs is still in memory now, it is a good
1346	 * thing to do this.  Note also, that if the pageout daemon is
1347	 * requesting a sync -- there might not be enough memory to do
1348	 * the bmap then...  So, this is important to do.
1349	 */
1350	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1351		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1352	}
1353
1354	/*
1355	 * Set the *dirty* buffer range based upon the VM system dirty
1356	 * pages.
1357	 *
1358	 * Mark the buffer pages as clean.  We need to do this here to
1359	 * satisfy the vnode_pager and the pageout daemon, so that it
1360	 * thinks that the pages have been "cleaned".  Note that since
1361	 * the pages are in a delayed write buffer -- the VFS layer
1362	 * "will" see that the pages get written out on the next sync,
1363	 * or perhaps the cluster will be completed.
1364	 */
1365	vfs_clean_pages_dirty_buf(bp);
1366	bqrelse(bp);
1367
1368	/*
1369	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1370	 * due to the softdep code.
1371	 */
1372}
1373
1374/*
1375 *	bdirty:
1376 *
1377 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1378 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1379 *	itself to properly update it in the dirty/clean lists.  We mark it
1380 *	B_DONE to ensure that any asynchronization of the buffer properly
1381 *	clears B_DONE ( else a panic will occur later ).
1382 *
1383 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1384 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1385 *	should only be called if the buffer is known-good.
1386 *
1387 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1388 *	count.
1389 *
1390 *	The buffer must be on QUEUE_NONE.
1391 */
1392void
1393bdirty(struct buf *bp)
1394{
1395
1396	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1397	    bp, bp->b_vp, bp->b_flags);
1398	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1399	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1400	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1401	BUF_ASSERT_HELD(bp);
1402	bp->b_flags &= ~(B_RELBUF);
1403	bp->b_iocmd = BIO_WRITE;
1404
1405	if ((bp->b_flags & B_DELWRI) == 0) {
1406		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1407		reassignbuf(bp);
1408		bdirtyadd();
1409	}
1410}
1411
1412/*
1413 *	bundirty:
1414 *
1415 *	Clear B_DELWRI for buffer.
1416 *
1417 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1418 *	count.
1419 *
1420 *	The buffer must be on QUEUE_NONE.
1421 */
1422
1423void
1424bundirty(struct buf *bp)
1425{
1426
1427	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1428	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1429	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1430	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1431	BUF_ASSERT_HELD(bp);
1432
1433	if (bp->b_flags & B_DELWRI) {
1434		bp->b_flags &= ~B_DELWRI;
1435		reassignbuf(bp);
1436		bdirtysub();
1437	}
1438	/*
1439	 * Since it is now being written, we can clear its deferred write flag.
1440	 */
1441	bp->b_flags &= ~B_DEFERRED;
1442}
1443
1444/*
1445 *	bawrite:
1446 *
1447 *	Asynchronous write.  Start output on a buffer, but do not wait for
1448 *	it to complete.  The buffer is released when the output completes.
1449 *
1450 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1451 *	B_INVAL buffers.  Not us.
1452 */
1453void
1454bawrite(struct buf *bp)
1455{
1456
1457	bp->b_flags |= B_ASYNC;
1458	(void) bwrite(bp);
1459}
1460
1461/*
1462 *	babarrierwrite:
1463 *
1464 *	Asynchronous barrier write.  Start output on a buffer, but do not
1465 *	wait for it to complete.  Place a write barrier after this write so
1466 *	that this buffer and all buffers written before it are committed to
1467 *	the disk before any buffers written after this write are committed
1468 *	to the disk.  The buffer is released when the output completes.
1469 */
1470void
1471babarrierwrite(struct buf *bp)
1472{
1473
1474	bp->b_flags |= B_ASYNC | B_BARRIER;
1475	(void) bwrite(bp);
1476}
1477
1478/*
1479 *	bbarrierwrite:
1480 *
1481 *	Synchronous barrier write.  Start output on a buffer and wait for
1482 *	it to complete.  Place a write barrier after this write so that
1483 *	this buffer and all buffers written before it are committed to
1484 *	the disk before any buffers written after this write are committed
1485 *	to the disk.  The buffer is released when the output completes.
1486 */
1487int
1488bbarrierwrite(struct buf *bp)
1489{
1490
1491	bp->b_flags |= B_BARRIER;
1492	return (bwrite(bp));
1493}
1494
1495/*
1496 *	bwillwrite:
1497 *
1498 *	Called prior to the locking of any vnodes when we are expecting to
1499 *	write.  We do not want to starve the buffer cache with too many
1500 *	dirty buffers so we block here.  By blocking prior to the locking
1501 *	of any vnodes we attempt to avoid the situation where a locked vnode
1502 *	prevents the various system daemons from flushing related buffers.
1503 */
1504void
1505bwillwrite(void)
1506{
1507
1508	if (numdirtybuffers >= hidirtybuffers) {
1509		mtx_lock(&bdirtylock);
1510		while (numdirtybuffers >= hidirtybuffers) {
1511			bdirtywait = 1;
1512			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
1513			    "flswai", 0);
1514		}
1515		mtx_unlock(&bdirtylock);
1516	}
1517}
1518
1519/*
1520 * Return true if we have too many dirty buffers.
1521 */
1522int
1523buf_dirty_count_severe(void)
1524{
1525
1526	return(numdirtybuffers >= hidirtybuffers);
1527}
1528
1529static __noinline int
1530buf_vm_page_count_severe(void)
1531{
1532
1533	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1534
1535	return vm_page_count_severe();
1536}
1537
1538/*
1539 *	brelse:
1540 *
1541 *	Release a busy buffer and, if requested, free its resources.  The
1542 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1543 *	to be accessed later as a cache entity or reused for other purposes.
1544 */
1545void
1546brelse(struct buf *bp)
1547{
1548	int qindex;
1549
1550	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1551	    bp, bp->b_vp, bp->b_flags);
1552	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1553	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1554
1555	if (BUF_LOCKRECURSED(bp)) {
1556		/*
1557		 * Do not process, in particular, do not handle the
1558		 * B_INVAL/B_RELBUF and do not release to free list.
1559		 */
1560		BUF_UNLOCK(bp);
1561		return;
1562	}
1563
1564	if (bp->b_flags & B_MANAGED) {
1565		bqrelse(bp);
1566		return;
1567	}
1568
1569	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1570	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1571		/*
1572		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1573		 * pages from being scrapped.  If the error is anything
1574		 * other than an I/O error (EIO), assume that retrying
1575		 * is futile.
1576		 */
1577		bp->b_ioflags &= ~BIO_ERROR;
1578		bdirty(bp);
1579	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1580	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1581		/*
1582		 * Either a failed I/O or we were asked to free or not
1583		 * cache the buffer.
1584		 */
1585		bp->b_flags |= B_INVAL;
1586		if (!LIST_EMPTY(&bp->b_dep))
1587			buf_deallocate(bp);
1588		if (bp->b_flags & B_DELWRI)
1589			bdirtysub();
1590		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1591		if ((bp->b_flags & B_VMIO) == 0) {
1592			if (bp->b_bufsize)
1593				allocbuf(bp, 0);
1594			if (bp->b_vp)
1595				brelvp(bp);
1596		}
1597	}
1598
1599	/*
1600	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1601	 * is called with B_DELWRI set, the underlying pages may wind up
1602	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1603	 * because pages associated with a B_DELWRI bp are marked clean.
1604	 *
1605	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1606	 * if B_DELWRI is set.
1607	 *
1608	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1609	 * on pages to return pages to the VM page queues.
1610	 */
1611	if (bp->b_flags & B_DELWRI)
1612		bp->b_flags &= ~B_RELBUF;
1613	else if (buf_vm_page_count_severe()) {
1614		/*
1615		 * BKGRDINPROG can only be set with the buf and bufobj
1616		 * locks both held.  We tolerate a race to clear it here.
1617		 */
1618		if (!(bp->b_vflags & BV_BKGRDINPROG))
1619			bp->b_flags |= B_RELBUF;
1620	}
1621
1622	/*
1623	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1624	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1625	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1626	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1627	 *
1628	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1629	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1630	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1631	 *
1632	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1633	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1634	 * the commit state and we cannot afford to lose the buffer. If the
1635	 * buffer has a background write in progress, we need to keep it
1636	 * around to prevent it from being reconstituted and starting a second
1637	 * background write.
1638	 */
1639	if ((bp->b_flags & B_VMIO)
1640	    && !(bp->b_vp->v_mount != NULL &&
1641		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1642		 !vn_isdisk(bp->b_vp, NULL) &&
1643		 (bp->b_flags & B_DELWRI))
1644	    ) {
1645
1646		int i, j, resid;
1647		vm_page_t m;
1648		off_t foff;
1649		vm_pindex_t poff;
1650		vm_object_t obj;
1651
1652		obj = bp->b_bufobj->bo_object;
1653
1654		/*
1655		 * Get the base offset and length of the buffer.  Note that
1656		 * in the VMIO case if the buffer block size is not
1657		 * page-aligned then b_data pointer may not be page-aligned.
1658		 * But our b_pages[] array *IS* page aligned.
1659		 *
1660		 * block sizes less then DEV_BSIZE (usually 512) are not
1661		 * supported due to the page granularity bits (m->valid,
1662		 * m->dirty, etc...).
1663		 *
1664		 * See man buf(9) for more information
1665		 */
1666		resid = bp->b_bufsize;
1667		foff = bp->b_offset;
1668		for (i = 0; i < bp->b_npages; i++) {
1669			int had_bogus = 0;
1670
1671			m = bp->b_pages[i];
1672
1673			/*
1674			 * If we hit a bogus page, fixup *all* the bogus pages
1675			 * now.
1676			 */
1677			if (m == bogus_page) {
1678				poff = OFF_TO_IDX(bp->b_offset);
1679				had_bogus = 1;
1680
1681				VM_OBJECT_RLOCK(obj);
1682				for (j = i; j < bp->b_npages; j++) {
1683					vm_page_t mtmp;
1684					mtmp = bp->b_pages[j];
1685					if (mtmp == bogus_page) {
1686						mtmp = vm_page_lookup(obj, poff + j);
1687						if (!mtmp) {
1688							panic("brelse: page missing\n");
1689						}
1690						bp->b_pages[j] = mtmp;
1691					}
1692				}
1693				VM_OBJECT_RUNLOCK(obj);
1694
1695				if ((bp->b_flags & (B_INVAL | B_UNMAPPED)) == 0) {
1696					BUF_CHECK_MAPPED(bp);
1697					pmap_qenter(
1698					    trunc_page((vm_offset_t)bp->b_data),
1699					    bp->b_pages, bp->b_npages);
1700				}
1701				m = bp->b_pages[i];
1702			}
1703			if ((bp->b_flags & B_NOCACHE) ||
1704			    (bp->b_ioflags & BIO_ERROR &&
1705			     bp->b_iocmd == BIO_READ)) {
1706				int poffset = foff & PAGE_MASK;
1707				int presid = resid > (PAGE_SIZE - poffset) ?
1708					(PAGE_SIZE - poffset) : resid;
1709
1710				KASSERT(presid >= 0, ("brelse: extra page"));
1711				VM_OBJECT_WLOCK(obj);
1712				while (vm_page_xbusied(m)) {
1713					vm_page_lock(m);
1714					VM_OBJECT_WUNLOCK(obj);
1715					vm_page_busy_sleep(m, "mbncsh");
1716					VM_OBJECT_WLOCK(obj);
1717				}
1718				if (pmap_page_wired_mappings(m) == 0)
1719					vm_page_set_invalid(m, poffset, presid);
1720				VM_OBJECT_WUNLOCK(obj);
1721				if (had_bogus)
1722					printf("avoided corruption bug in bogus_page/brelse code\n");
1723			}
1724			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1725			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1726		}
1727		if (bp->b_flags & (B_INVAL | B_RELBUF))
1728			vfs_vmio_release(bp);
1729
1730	} else if (bp->b_flags & B_VMIO) {
1731
1732		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1733			vfs_vmio_release(bp);
1734		}
1735
1736	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1737		if (bp->b_bufsize != 0)
1738			allocbuf(bp, 0);
1739		if (bp->b_vp != NULL)
1740			brelvp(bp);
1741	}
1742
1743	/*
1744	 * If the buffer has junk contents signal it and eventually
1745	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1746	 * doesn't find it.
1747	 */
1748	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1749	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1750		bp->b_flags |= B_INVAL;
1751	if (bp->b_flags & B_INVAL) {
1752		if (bp->b_flags & B_DELWRI)
1753			bundirty(bp);
1754		if (bp->b_vp)
1755			brelvp(bp);
1756	}
1757
1758	/* buffers with no memory */
1759	if (bp->b_bufsize == 0) {
1760		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1761		if (bp->b_vflags & BV_BKGRDINPROG)
1762			panic("losing buffer 1");
1763		if (bp->b_kvasize)
1764			qindex = QUEUE_EMPTYKVA;
1765		else
1766			qindex = QUEUE_EMPTY;
1767		bp->b_flags |= B_AGE;
1768	/* buffers with junk contents */
1769	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1770	    (bp->b_ioflags & BIO_ERROR)) {
1771		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1772		if (bp->b_vflags & BV_BKGRDINPROG)
1773			panic("losing buffer 2");
1774		qindex = QUEUE_CLEAN;
1775		bp->b_flags |= B_AGE;
1776	/* remaining buffers */
1777	} else if (bp->b_flags & B_DELWRI)
1778		qindex = QUEUE_DIRTY;
1779	else
1780		qindex = QUEUE_CLEAN;
1781
1782	binsfree(bp, qindex);
1783
1784	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1785	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1786		panic("brelse: not dirty");
1787	/* unlock */
1788	BUF_UNLOCK(bp);
1789}
1790
1791/*
1792 * Release a buffer back to the appropriate queue but do not try to free
1793 * it.  The buffer is expected to be used again soon.
1794 *
1795 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1796 * biodone() to requeue an async I/O on completion.  It is also used when
1797 * known good buffers need to be requeued but we think we may need the data
1798 * again soon.
1799 *
1800 * XXX we should be able to leave the B_RELBUF hint set on completion.
1801 */
1802void
1803bqrelse(struct buf *bp)
1804{
1805	int qindex;
1806
1807	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1808	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1809	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1810
1811	if (BUF_LOCKRECURSED(bp)) {
1812		/* do not release to free list */
1813		BUF_UNLOCK(bp);
1814		return;
1815	}
1816	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1817
1818	if (bp->b_flags & B_MANAGED) {
1819		if (bp->b_flags & B_REMFREE)
1820			bremfreef(bp);
1821		goto out;
1822	}
1823
1824	/* buffers with stale but valid contents */
1825	if (bp->b_flags & B_DELWRI) {
1826		qindex = QUEUE_DIRTY;
1827	} else {
1828		if ((bp->b_flags & B_DELWRI) == 0 &&
1829		    (bp->b_xflags & BX_VNDIRTY))
1830			panic("bqrelse: not dirty");
1831		/*
1832		 * BKGRDINPROG can only be set with the buf and bufobj
1833		 * locks both held.  We tolerate a race to clear it here.
1834		 */
1835		if (buf_vm_page_count_severe() &&
1836		    (bp->b_vflags & BV_BKGRDINPROG) == 0) {
1837			/*
1838			 * We are too low on memory, we have to try to free
1839			 * the buffer (most importantly: the wired pages
1840			 * making up its backing store) *now*.
1841			 */
1842			brelse(bp);
1843			return;
1844		}
1845		qindex = QUEUE_CLEAN;
1846	}
1847	binsfree(bp, qindex);
1848
1849out:
1850	/* unlock */
1851	BUF_UNLOCK(bp);
1852}
1853
1854/* Give pages used by the bp back to the VM system (where possible) */
1855static void
1856vfs_vmio_release(struct buf *bp)
1857{
1858	vm_object_t obj;
1859	vm_page_t m;
1860	int i;
1861
1862	if ((bp->b_flags & B_UNMAPPED) == 0) {
1863		BUF_CHECK_MAPPED(bp);
1864		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
1865	} else
1866		BUF_CHECK_UNMAPPED(bp);
1867	obj = bp->b_bufobj->bo_object;
1868	if (obj != NULL)
1869		VM_OBJECT_WLOCK(obj);
1870	for (i = 0; i < bp->b_npages; i++) {
1871		m = bp->b_pages[i];
1872		bp->b_pages[i] = NULL;
1873		/*
1874		 * In order to keep page LRU ordering consistent, put
1875		 * everything on the inactive queue.
1876		 */
1877		vm_page_lock(m);
1878		vm_page_unwire(m, 0);
1879
1880		/*
1881		 * Might as well free the page if we can and it has
1882		 * no valid data.  We also free the page if the
1883		 * buffer was used for direct I/O
1884		 */
1885		if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) {
1886			if (m->wire_count == 0 && !vm_page_busied(m))
1887				vm_page_free(m);
1888		} else if (bp->b_flags & B_DIRECT)
1889			vm_page_try_to_free(m);
1890		else if (buf_vm_page_count_severe())
1891			vm_page_try_to_cache(m);
1892		vm_page_unlock(m);
1893	}
1894	if (obj != NULL)
1895		VM_OBJECT_WUNLOCK(obj);
1896
1897	if (bp->b_bufsize) {
1898		bufspacewakeup();
1899		bp->b_bufsize = 0;
1900	}
1901	bp->b_npages = 0;
1902	bp->b_flags &= ~B_VMIO;
1903	if (bp->b_vp)
1904		brelvp(bp);
1905}
1906
1907/*
1908 * Check to see if a block at a particular lbn is available for a clustered
1909 * write.
1910 */
1911static int
1912vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1913{
1914	struct buf *bpa;
1915	int match;
1916
1917	match = 0;
1918
1919	/* If the buf isn't in core skip it */
1920	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1921		return (0);
1922
1923	/* If the buf is busy we don't want to wait for it */
1924	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1925		return (0);
1926
1927	/* Only cluster with valid clusterable delayed write buffers */
1928	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1929	    (B_DELWRI | B_CLUSTEROK))
1930		goto done;
1931
1932	if (bpa->b_bufsize != size)
1933		goto done;
1934
1935	/*
1936	 * Check to see if it is in the expected place on disk and that the
1937	 * block has been mapped.
1938	 */
1939	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1940		match = 1;
1941done:
1942	BUF_UNLOCK(bpa);
1943	return (match);
1944}
1945
1946/*
1947 *	vfs_bio_awrite:
1948 *
1949 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1950 *	This is much better then the old way of writing only one buffer at
1951 *	a time.  Note that we may not be presented with the buffers in the
1952 *	correct order, so we search for the cluster in both directions.
1953 */
1954int
1955vfs_bio_awrite(struct buf *bp)
1956{
1957	struct bufobj *bo;
1958	int i;
1959	int j;
1960	daddr_t lblkno = bp->b_lblkno;
1961	struct vnode *vp = bp->b_vp;
1962	int ncl;
1963	int nwritten;
1964	int size;
1965	int maxcl;
1966	int gbflags;
1967
1968	bo = &vp->v_bufobj;
1969	gbflags = (bp->b_flags & B_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
1970	/*
1971	 * right now we support clustered writing only to regular files.  If
1972	 * we find a clusterable block we could be in the middle of a cluster
1973	 * rather then at the beginning.
1974	 */
1975	if ((vp->v_type == VREG) &&
1976	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1977	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1978
1979		size = vp->v_mount->mnt_stat.f_iosize;
1980		maxcl = MAXPHYS / size;
1981
1982		BO_RLOCK(bo);
1983		for (i = 1; i < maxcl; i++)
1984			if (vfs_bio_clcheck(vp, size, lblkno + i,
1985			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1986				break;
1987
1988		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1989			if (vfs_bio_clcheck(vp, size, lblkno - j,
1990			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1991				break;
1992		BO_RUNLOCK(bo);
1993		--j;
1994		ncl = i + j;
1995		/*
1996		 * this is a possible cluster write
1997		 */
1998		if (ncl != 1) {
1999			BUF_UNLOCK(bp);
2000			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
2001			    gbflags);
2002			return (nwritten);
2003		}
2004	}
2005	bremfree(bp);
2006	bp->b_flags |= B_ASYNC;
2007	/*
2008	 * default (old) behavior, writing out only one block
2009	 *
2010	 * XXX returns b_bufsize instead of b_bcount for nwritten?
2011	 */
2012	nwritten = bp->b_bufsize;
2013	(void) bwrite(bp);
2014
2015	return (nwritten);
2016}
2017
2018static void
2019setbufkva(struct buf *bp, vm_offset_t addr, int maxsize, int gbflags)
2020{
2021
2022	KASSERT((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
2023	    bp->b_kvasize == 0, ("call bfreekva(%p)", bp));
2024	if ((gbflags & GB_UNMAPPED) == 0) {
2025		bp->b_kvabase = (caddr_t)addr;
2026	} else if ((gbflags & GB_KVAALLOC) != 0) {
2027		KASSERT((gbflags & GB_UNMAPPED) != 0,
2028		    ("GB_KVAALLOC without GB_UNMAPPED"));
2029		bp->b_kvaalloc = (caddr_t)addr;
2030		bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
2031		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
2032	}
2033	bp->b_kvasize = maxsize;
2034}
2035
2036/*
2037 * Allocate the buffer KVA and set b_kvasize. Also set b_kvabase if
2038 * needed.
2039 */
2040static int
2041allocbufkva(struct buf *bp, int maxsize, int gbflags)
2042{
2043	vm_offset_t addr;
2044
2045	bfreekva(bp);
2046	addr = 0;
2047
2048	if (vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr)) {
2049		/*
2050		 * Buffer map is too fragmented.  Request the caller
2051		 * to defragment the map.
2052		 */
2053		atomic_add_int(&bufdefragcnt, 1);
2054		return (1);
2055	}
2056	setbufkva(bp, addr, maxsize, gbflags);
2057	atomic_add_long(&bufspace, bp->b_kvasize);
2058	return (0);
2059}
2060
2061/*
2062 * Ask the bufdaemon for help, or act as bufdaemon itself, when a
2063 * locked vnode is supplied.
2064 */
2065static void
2066getnewbuf_bufd_help(struct vnode *vp, int gbflags, int slpflag, int slptimeo,
2067    int defrag)
2068{
2069	struct thread *td;
2070	char *waitmsg;
2071	int error, fl, flags, norunbuf;
2072
2073	mtx_assert(&bqclean, MA_OWNED);
2074
2075	if (defrag) {
2076		flags = VFS_BIO_NEED_BUFSPACE;
2077		waitmsg = "nbufkv";
2078	} else if (bufspace >= hibufspace) {
2079		waitmsg = "nbufbs";
2080		flags = VFS_BIO_NEED_BUFSPACE;
2081	} else {
2082		waitmsg = "newbuf";
2083		flags = VFS_BIO_NEED_ANY;
2084	}
2085	atomic_set_int(&needsbuffer, flags);
2086	mtx_unlock(&bqclean);
2087
2088	bd_speedup();	/* heeeelp */
2089	if ((gbflags & GB_NOWAIT_BD) != 0)
2090		return;
2091
2092	td = curthread;
2093	rw_wlock(&nblock);
2094	while ((needsbuffer & flags) != 0) {
2095		if (vp != NULL && vp->v_type != VCHR &&
2096		    (td->td_pflags & TDP_BUFNEED) == 0) {
2097			rw_wunlock(&nblock);
2098			/*
2099			 * getblk() is called with a vnode locked, and
2100			 * some majority of the dirty buffers may as
2101			 * well belong to the vnode.  Flushing the
2102			 * buffers there would make a progress that
2103			 * cannot be achieved by the buf_daemon, that
2104			 * cannot lock the vnode.
2105			 */
2106			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2107			    (td->td_pflags & TDP_NORUNNINGBUF);
2108
2109			/*
2110			 * Play bufdaemon.  The getnewbuf() function
2111			 * may be called while the thread owns lock
2112			 * for another dirty buffer for the same
2113			 * vnode, which makes it impossible to use
2114			 * VOP_FSYNC() there, due to the buffer lock
2115			 * recursion.
2116			 */
2117			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2118			fl = buf_flush(vp, flushbufqtarget);
2119			td->td_pflags &= norunbuf;
2120			rw_wlock(&nblock);
2121			if (fl != 0)
2122				continue;
2123			if ((needsbuffer & flags) == 0)
2124				break;
2125		}
2126		error = rw_sleep(__DEVOLATILE(void *, &needsbuffer), &nblock,
2127		    (PRIBIO + 4) | slpflag, waitmsg, slptimeo);
2128		if (error != 0)
2129			break;
2130	}
2131	rw_wunlock(&nblock);
2132}
2133
2134static void
2135getnewbuf_reuse_bp(struct buf *bp, int qindex)
2136{
2137
2138	CTR6(KTR_BUF, "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
2139	    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
2140	     bp->b_kvasize, bp->b_bufsize, qindex);
2141	mtx_assert(&bqclean, MA_NOTOWNED);
2142
2143	/*
2144	 * Note: we no longer distinguish between VMIO and non-VMIO
2145	 * buffers.
2146	 */
2147	KASSERT((bp->b_flags & B_DELWRI) == 0,
2148	    ("delwri buffer %p found in queue %d", bp, qindex));
2149
2150	if (qindex == QUEUE_CLEAN) {
2151		if (bp->b_flags & B_VMIO) {
2152			bp->b_flags &= ~B_ASYNC;
2153			vfs_vmio_release(bp);
2154		}
2155		if (bp->b_vp != NULL)
2156			brelvp(bp);
2157	}
2158
2159	/*
2160	 * Get the rest of the buffer freed up.  b_kva* is still valid
2161	 * after this operation.
2162	 */
2163
2164	if (bp->b_rcred != NOCRED) {
2165		crfree(bp->b_rcred);
2166		bp->b_rcred = NOCRED;
2167	}
2168	if (bp->b_wcred != NOCRED) {
2169		crfree(bp->b_wcred);
2170		bp->b_wcred = NOCRED;
2171	}
2172	if (!LIST_EMPTY(&bp->b_dep))
2173		buf_deallocate(bp);
2174	if (bp->b_vflags & BV_BKGRDINPROG)
2175		panic("losing buffer 3");
2176	KASSERT(bp->b_vp == NULL, ("bp: %p still has vnode %p.  qindex: %d",
2177	    bp, bp->b_vp, qindex));
2178	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
2179	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
2180
2181	if (bp->b_bufsize)
2182		allocbuf(bp, 0);
2183
2184	bp->b_flags &= B_UNMAPPED | B_KVAALLOC;
2185	bp->b_ioflags = 0;
2186	bp->b_xflags = 0;
2187	KASSERT((bp->b_flags & B_INFREECNT) == 0,
2188	    ("buf %p still counted as free?", bp));
2189	bp->b_vflags = 0;
2190	bp->b_vp = NULL;
2191	bp->b_blkno = bp->b_lblkno = 0;
2192	bp->b_offset = NOOFFSET;
2193	bp->b_iodone = 0;
2194	bp->b_error = 0;
2195	bp->b_resid = 0;
2196	bp->b_bcount = 0;
2197	bp->b_npages = 0;
2198	bp->b_dirtyoff = bp->b_dirtyend = 0;
2199	bp->b_bufobj = NULL;
2200	bp->b_pin_count = 0;
2201	bp->b_fsprivate1 = NULL;
2202	bp->b_fsprivate2 = NULL;
2203	bp->b_fsprivate3 = NULL;
2204
2205	LIST_INIT(&bp->b_dep);
2206}
2207
2208static int flushingbufs;
2209
2210static struct buf *
2211getnewbuf_scan(int maxsize, int defrag, int unmapped, int metadata)
2212{
2213	struct buf *bp, *nbp;
2214	int nqindex, qindex, pass;
2215
2216	KASSERT(!unmapped || !defrag, ("both unmapped and defrag"));
2217
2218	pass = 1;
2219restart:
2220	atomic_add_int(&getnewbufrestarts, 1);
2221
2222	/*
2223	 * Setup for scan.  If we do not have enough free buffers,
2224	 * we setup a degenerate case that immediately fails.  Note
2225	 * that if we are specially marked process, we are allowed to
2226	 * dip into our reserves.
2227	 *
2228	 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
2229	 * for the allocation of the mapped buffer.  For unmapped, the
2230	 * easiest is to start with EMPTY outright.
2231	 *
2232	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
2233	 * However, there are a number of cases (defragging, reusing, ...)
2234	 * where we cannot backup.
2235	 */
2236	nbp = NULL;
2237	mtx_lock(&bqclean);
2238	if (!defrag && unmapped) {
2239		nqindex = QUEUE_EMPTY;
2240		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2241	}
2242	if (nbp == NULL) {
2243		nqindex = QUEUE_EMPTYKVA;
2244		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2245	}
2246
2247	/*
2248	 * If no EMPTYKVA buffers and we are either defragging or
2249	 * reusing, locate a CLEAN buffer to free or reuse.  If
2250	 * bufspace useage is low skip this step so we can allocate a
2251	 * new buffer.
2252	 */
2253	if (nbp == NULL && (defrag || bufspace >= lobufspace)) {
2254		nqindex = QUEUE_CLEAN;
2255		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2256	}
2257
2258	/*
2259	 * If we could not find or were not allowed to reuse a CLEAN
2260	 * buffer, check to see if it is ok to use an EMPTY buffer.
2261	 * We can only use an EMPTY buffer if allocating its KVA would
2262	 * not otherwise run us out of buffer space.  No KVA is needed
2263	 * for the unmapped allocation.
2264	 */
2265	if (nbp == NULL && defrag == 0 && (bufspace + maxsize < hibufspace ||
2266	    metadata)) {
2267		nqindex = QUEUE_EMPTY;
2268		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2269	}
2270
2271	/*
2272	 * All available buffers might be clean, retry ignoring the
2273	 * lobufspace as the last resort.
2274	 */
2275	if (nbp == NULL && !TAILQ_EMPTY(&bufqueues[QUEUE_CLEAN])) {
2276		nqindex = QUEUE_CLEAN;
2277		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2278	}
2279
2280	/*
2281	 * Run scan, possibly freeing data and/or kva mappings on the fly
2282	 * depending.
2283	 */
2284	while ((bp = nbp) != NULL) {
2285		qindex = nqindex;
2286
2287		/*
2288		 * Calculate next bp (we can only use it if we do not
2289		 * block or do other fancy things).
2290		 */
2291		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
2292			switch (qindex) {
2293			case QUEUE_EMPTY:
2294				nqindex = QUEUE_EMPTYKVA;
2295				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2296				if (nbp != NULL)
2297					break;
2298				/* FALLTHROUGH */
2299			case QUEUE_EMPTYKVA:
2300				nqindex = QUEUE_CLEAN;
2301				nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2302				if (nbp != NULL)
2303					break;
2304				/* FALLTHROUGH */
2305			case QUEUE_CLEAN:
2306				if (metadata && pass == 1) {
2307					pass = 2;
2308					nqindex = QUEUE_EMPTY;
2309					nbp = TAILQ_FIRST(
2310					    &bufqueues[QUEUE_EMPTY]);
2311				}
2312				/*
2313				 * nbp is NULL.
2314				 */
2315				break;
2316			}
2317		}
2318		/*
2319		 * If we are defragging then we need a buffer with
2320		 * b_kvasize != 0.  XXX this situation should no longer
2321		 * occur, if defrag is non-zero the buffer's b_kvasize
2322		 * should also be non-zero at this point.  XXX
2323		 */
2324		if (defrag && bp->b_kvasize == 0) {
2325			printf("Warning: defrag empty buffer %p\n", bp);
2326			continue;
2327		}
2328
2329		/*
2330		 * Start freeing the bp.  This is somewhat involved.  nbp
2331		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
2332		 */
2333		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2334			continue;
2335		/*
2336		 * BKGRDINPROG can only be set with the buf and bufobj
2337		 * locks both held.  We tolerate a race to clear it here.
2338		 */
2339		if (bp->b_vflags & BV_BKGRDINPROG) {
2340			BUF_UNLOCK(bp);
2341			continue;
2342		}
2343
2344		KASSERT(bp->b_qindex == qindex,
2345		    ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2346
2347		bremfreel(bp);
2348		mtx_unlock(&bqclean);
2349		/*
2350		 * NOTE:  nbp is now entirely invalid.  We can only restart
2351		 * the scan from this point on.
2352		 */
2353
2354		getnewbuf_reuse_bp(bp, qindex);
2355		mtx_assert(&bqclean, MA_NOTOWNED);
2356
2357		/*
2358		 * If we are defragging then free the buffer.
2359		 */
2360		if (defrag) {
2361			bp->b_flags |= B_INVAL;
2362			bfreekva(bp);
2363			brelse(bp);
2364			defrag = 0;
2365			goto restart;
2366		}
2367
2368		/*
2369		 * Notify any waiters for the buffer lock about
2370		 * identity change by freeing the buffer.
2371		 */
2372		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
2373			bp->b_flags |= B_INVAL;
2374			bfreekva(bp);
2375			brelse(bp);
2376			goto restart;
2377		}
2378
2379		if (metadata)
2380			break;
2381
2382		/*
2383		 * If we are overcomitted then recover the buffer and its
2384		 * KVM space.  This occurs in rare situations when multiple
2385		 * processes are blocked in getnewbuf() or allocbuf().
2386		 */
2387		if (bufspace >= hibufspace)
2388			flushingbufs = 1;
2389		if (flushingbufs && bp->b_kvasize != 0) {
2390			bp->b_flags |= B_INVAL;
2391			bfreekva(bp);
2392			brelse(bp);
2393			goto restart;
2394		}
2395		if (bufspace < lobufspace)
2396			flushingbufs = 0;
2397		break;
2398	}
2399	return (bp);
2400}
2401
2402/*
2403 *	getnewbuf:
2404 *
2405 *	Find and initialize a new buffer header, freeing up existing buffers
2406 *	in the bufqueues as necessary.  The new buffer is returned locked.
2407 *
2408 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
2409 *	buffer away, the caller must set B_INVAL prior to calling brelse().
2410 *
2411 *	We block if:
2412 *		We have insufficient buffer headers
2413 *		We have insufficient buffer space
2414 *		buffer_arena is too fragmented ( space reservation fails )
2415 *		If we have to flush dirty buffers ( but we try to avoid this )
2416 */
2417static struct buf *
2418getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
2419    int gbflags)
2420{
2421	struct buf *bp;
2422	int defrag, metadata;
2423
2424	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
2425	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
2426	if (!unmapped_buf_allowed)
2427		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
2428
2429	defrag = 0;
2430	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
2431	    vp->v_type == VCHR)
2432		metadata = 1;
2433	else
2434		metadata = 0;
2435	/*
2436	 * We can't afford to block since we might be holding a vnode lock,
2437	 * which may prevent system daemons from running.  We deal with
2438	 * low-memory situations by proactively returning memory and running
2439	 * async I/O rather then sync I/O.
2440	 */
2441	atomic_add_int(&getnewbufcalls, 1);
2442	atomic_subtract_int(&getnewbufrestarts, 1);
2443restart:
2444	bp = getnewbuf_scan(maxsize, defrag, (gbflags & (GB_UNMAPPED |
2445	    GB_KVAALLOC)) == GB_UNMAPPED, metadata);
2446	if (bp != NULL)
2447		defrag = 0;
2448
2449	/*
2450	 * If we exhausted our list, sleep as appropriate.  We may have to
2451	 * wakeup various daemons and write out some dirty buffers.
2452	 *
2453	 * Generally we are sleeping due to insufficient buffer space.
2454	 */
2455	if (bp == NULL) {
2456		mtx_assert(&bqclean, MA_OWNED);
2457		getnewbuf_bufd_help(vp, gbflags, slpflag, slptimeo, defrag);
2458		mtx_assert(&bqclean, MA_NOTOWNED);
2459	} else if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == GB_UNMAPPED) {
2460		mtx_assert(&bqclean, MA_NOTOWNED);
2461
2462		bfreekva(bp);
2463		bp->b_flags |= B_UNMAPPED;
2464		bp->b_kvabase = bp->b_data = unmapped_buf;
2465		bp->b_kvasize = maxsize;
2466		atomic_add_long(&bufspace, bp->b_kvasize);
2467		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
2468		atomic_add_int(&bufreusecnt, 1);
2469	} else {
2470		mtx_assert(&bqclean, MA_NOTOWNED);
2471
2472		/*
2473		 * We finally have a valid bp.  We aren't quite out of the
2474		 * woods, we still have to reserve kva space.  In order
2475		 * to keep fragmentation sane we only allocate kva in
2476		 * BKVASIZE chunks.
2477		 */
2478		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2479
2480		if (maxsize != bp->b_kvasize || (bp->b_flags & (B_UNMAPPED |
2481		    B_KVAALLOC)) == B_UNMAPPED) {
2482			if (allocbufkva(bp, maxsize, gbflags)) {
2483				defrag = 1;
2484				bp->b_flags |= B_INVAL;
2485				brelse(bp);
2486				goto restart;
2487			}
2488			atomic_add_int(&bufreusecnt, 1);
2489		} else if ((bp->b_flags & B_KVAALLOC) != 0 &&
2490		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == 0) {
2491			/*
2492			 * If the reused buffer has KVA allocated,
2493			 * reassign b_kvaalloc to b_kvabase.
2494			 */
2495			bp->b_kvabase = bp->b_kvaalloc;
2496			bp->b_flags &= ~B_KVAALLOC;
2497			atomic_subtract_long(&unmapped_bufspace,
2498			    bp->b_kvasize);
2499			atomic_add_int(&bufreusecnt, 1);
2500		} else if ((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
2501		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == (GB_UNMAPPED |
2502		    GB_KVAALLOC)) {
2503			/*
2504			 * The case of reused buffer already have KVA
2505			 * mapped, but the request is for unmapped
2506			 * buffer with KVA allocated.
2507			 */
2508			bp->b_kvaalloc = bp->b_kvabase;
2509			bp->b_data = bp->b_kvabase = unmapped_buf;
2510			bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
2511			atomic_add_long(&unmapped_bufspace,
2512			    bp->b_kvasize);
2513			atomic_add_int(&bufreusecnt, 1);
2514		}
2515		if ((gbflags & GB_UNMAPPED) == 0) {
2516			bp->b_saveaddr = bp->b_kvabase;
2517			bp->b_data = bp->b_saveaddr;
2518			bp->b_flags &= ~B_UNMAPPED;
2519			BUF_CHECK_MAPPED(bp);
2520		}
2521	}
2522	return (bp);
2523}
2524
2525/*
2526 *	buf_daemon:
2527 *
2528 *	buffer flushing daemon.  Buffers are normally flushed by the
2529 *	update daemon but if it cannot keep up this process starts to
2530 *	take the load in an attempt to prevent getnewbuf() from blocking.
2531 */
2532
2533static struct kproc_desc buf_kp = {
2534	"bufdaemon",
2535	buf_daemon,
2536	&bufdaemonproc
2537};
2538SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2539
2540static int
2541buf_flush(struct vnode *vp, int target)
2542{
2543	int flushed;
2544
2545	flushed = flushbufqueues(vp, target, 0);
2546	if (flushed == 0) {
2547		/*
2548		 * Could not find any buffers without rollback
2549		 * dependencies, so just write the first one
2550		 * in the hopes of eventually making progress.
2551		 */
2552		if (vp != NULL && target > 2)
2553			target /= 2;
2554		flushbufqueues(vp, target, 1);
2555	}
2556	return (flushed);
2557}
2558
2559static void
2560buf_daemon()
2561{
2562	int lodirty;
2563
2564	/*
2565	 * This process needs to be suspended prior to shutdown sync.
2566	 */
2567	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2568	    SHUTDOWN_PRI_LAST);
2569
2570	/*
2571	 * This process is allowed to take the buffer cache to the limit
2572	 */
2573	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2574	mtx_lock(&bdlock);
2575	for (;;) {
2576		bd_request = 0;
2577		mtx_unlock(&bdlock);
2578
2579		kproc_suspend_check(bufdaemonproc);
2580		lodirty = lodirtybuffers;
2581		if (bd_speedupreq) {
2582			lodirty = numdirtybuffers / 2;
2583			bd_speedupreq = 0;
2584		}
2585		/*
2586		 * Do the flush.  Limit the amount of in-transit I/O we
2587		 * allow to build up, otherwise we would completely saturate
2588		 * the I/O system.
2589		 */
2590		while (numdirtybuffers > lodirty) {
2591			if (buf_flush(NULL, numdirtybuffers - lodirty) == 0)
2592				break;
2593			kern_yield(PRI_USER);
2594		}
2595
2596		/*
2597		 * Only clear bd_request if we have reached our low water
2598		 * mark.  The buf_daemon normally waits 1 second and
2599		 * then incrementally flushes any dirty buffers that have
2600		 * built up, within reason.
2601		 *
2602		 * If we were unable to hit our low water mark and couldn't
2603		 * find any flushable buffers, we sleep for a short period
2604		 * to avoid endless loops on unlockable buffers.
2605		 */
2606		mtx_lock(&bdlock);
2607		if (numdirtybuffers <= lodirtybuffers) {
2608			/*
2609			 * We reached our low water mark, reset the
2610			 * request and sleep until we are needed again.
2611			 * The sleep is just so the suspend code works.
2612			 */
2613			bd_request = 0;
2614			/*
2615			 * Do an extra wakeup in case dirty threshold
2616			 * changed via sysctl and the explicit transition
2617			 * out of shortfall was missed.
2618			 */
2619			bdirtywakeup();
2620			if (runningbufspace <= lorunningspace)
2621				runningwakeup();
2622			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2623		} else {
2624			/*
2625			 * We couldn't find any flushable dirty buffers but
2626			 * still have too many dirty buffers, we
2627			 * have to sleep and try again.  (rare)
2628			 */
2629			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2630		}
2631	}
2632}
2633
2634/*
2635 *	flushbufqueues:
2636 *
2637 *	Try to flush a buffer in the dirty queue.  We must be careful to
2638 *	free up B_INVAL buffers instead of write them, which NFS is
2639 *	particularly sensitive to.
2640 */
2641static int flushwithdeps = 0;
2642SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2643    0, "Number of buffers flushed with dependecies that require rollbacks");
2644
2645static int
2646flushbufqueues(struct vnode *lvp, int target, int flushdeps)
2647{
2648	struct buf *sentinel;
2649	struct vnode *vp;
2650	struct mount *mp;
2651	struct buf *bp;
2652	int hasdeps;
2653	int flushed;
2654	int queue;
2655	int error;
2656	bool unlock;
2657
2658	flushed = 0;
2659	queue = QUEUE_DIRTY;
2660	bp = NULL;
2661	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2662	sentinel->b_qindex = QUEUE_SENTINEL;
2663	mtx_lock(&bqdirty);
2664	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2665	mtx_unlock(&bqdirty);
2666	while (flushed != target) {
2667		maybe_yield();
2668		mtx_lock(&bqdirty);
2669		bp = TAILQ_NEXT(sentinel, b_freelist);
2670		if (bp != NULL) {
2671			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2672			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2673			    b_freelist);
2674		} else {
2675			mtx_unlock(&bqdirty);
2676			break;
2677		}
2678		/*
2679		 * Skip sentinels inserted by other invocations of the
2680		 * flushbufqueues(), taking care to not reorder them.
2681		 *
2682		 * Only flush the buffers that belong to the
2683		 * vnode locked by the curthread.
2684		 */
2685		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
2686		    bp->b_vp != lvp)) {
2687			mtx_unlock(&bqdirty);
2688 			continue;
2689		}
2690		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
2691		mtx_unlock(&bqdirty);
2692		if (error != 0)
2693			continue;
2694		if (bp->b_pin_count > 0) {
2695			BUF_UNLOCK(bp);
2696			continue;
2697		}
2698		/*
2699		 * BKGRDINPROG can only be set with the buf and bufobj
2700		 * locks both held.  We tolerate a race to clear it here.
2701		 */
2702		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2703		    (bp->b_flags & B_DELWRI) == 0) {
2704			BUF_UNLOCK(bp);
2705			continue;
2706		}
2707		if (bp->b_flags & B_INVAL) {
2708			bremfreef(bp);
2709			brelse(bp);
2710			flushed++;
2711			continue;
2712		}
2713
2714		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2715			if (flushdeps == 0) {
2716				BUF_UNLOCK(bp);
2717				continue;
2718			}
2719			hasdeps = 1;
2720		} else
2721			hasdeps = 0;
2722		/*
2723		 * We must hold the lock on a vnode before writing
2724		 * one of its buffers. Otherwise we may confuse, or
2725		 * in the case of a snapshot vnode, deadlock the
2726		 * system.
2727		 *
2728		 * The lock order here is the reverse of the normal
2729		 * of vnode followed by buf lock.  This is ok because
2730		 * the NOWAIT will prevent deadlock.
2731		 */
2732		vp = bp->b_vp;
2733		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2734			BUF_UNLOCK(bp);
2735			continue;
2736		}
2737		if (lvp == NULL) {
2738			unlock = true;
2739			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
2740		} else {
2741			ASSERT_VOP_LOCKED(vp, "getbuf");
2742			unlock = false;
2743			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
2744			    vn_lock(vp, LK_TRYUPGRADE);
2745		}
2746		if (error == 0) {
2747			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2748			    bp, bp->b_vp, bp->b_flags);
2749			if (curproc == bufdaemonproc) {
2750				vfs_bio_awrite(bp);
2751			} else {
2752				bremfree(bp);
2753				bwrite(bp);
2754				notbufdflushes++;
2755			}
2756			vn_finished_write(mp);
2757			if (unlock)
2758				VOP_UNLOCK(vp, 0);
2759			flushwithdeps += hasdeps;
2760			flushed++;
2761
2762			/*
2763			 * Sleeping on runningbufspace while holding
2764			 * vnode lock leads to deadlock.
2765			 */
2766			if (curproc == bufdaemonproc &&
2767			    runningbufspace > hirunningspace)
2768				waitrunningbufspace();
2769			continue;
2770		}
2771		vn_finished_write(mp);
2772		BUF_UNLOCK(bp);
2773	}
2774	mtx_lock(&bqdirty);
2775	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2776	mtx_unlock(&bqdirty);
2777	free(sentinel, M_TEMP);
2778	return (flushed);
2779}
2780
2781/*
2782 * Check to see if a block is currently memory resident.
2783 */
2784struct buf *
2785incore(struct bufobj *bo, daddr_t blkno)
2786{
2787	struct buf *bp;
2788
2789	BO_RLOCK(bo);
2790	bp = gbincore(bo, blkno);
2791	BO_RUNLOCK(bo);
2792	return (bp);
2793}
2794
2795/*
2796 * Returns true if no I/O is needed to access the
2797 * associated VM object.  This is like incore except
2798 * it also hunts around in the VM system for the data.
2799 */
2800
2801static int
2802inmem(struct vnode * vp, daddr_t blkno)
2803{
2804	vm_object_t obj;
2805	vm_offset_t toff, tinc, size;
2806	vm_page_t m;
2807	vm_ooffset_t off;
2808
2809	ASSERT_VOP_LOCKED(vp, "inmem");
2810
2811	if (incore(&vp->v_bufobj, blkno))
2812		return 1;
2813	if (vp->v_mount == NULL)
2814		return 0;
2815	obj = vp->v_object;
2816	if (obj == NULL)
2817		return (0);
2818
2819	size = PAGE_SIZE;
2820	if (size > vp->v_mount->mnt_stat.f_iosize)
2821		size = vp->v_mount->mnt_stat.f_iosize;
2822	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2823
2824	VM_OBJECT_RLOCK(obj);
2825	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2826		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2827		if (!m)
2828			goto notinmem;
2829		tinc = size;
2830		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2831			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2832		if (vm_page_is_valid(m,
2833		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2834			goto notinmem;
2835	}
2836	VM_OBJECT_RUNLOCK(obj);
2837	return 1;
2838
2839notinmem:
2840	VM_OBJECT_RUNLOCK(obj);
2841	return (0);
2842}
2843
2844/*
2845 * Set the dirty range for a buffer based on the status of the dirty
2846 * bits in the pages comprising the buffer.  The range is limited
2847 * to the size of the buffer.
2848 *
2849 * Tell the VM system that the pages associated with this buffer
2850 * are clean.  This is used for delayed writes where the data is
2851 * going to go to disk eventually without additional VM intevention.
2852 *
2853 * Note that while we only really need to clean through to b_bcount, we
2854 * just go ahead and clean through to b_bufsize.
2855 */
2856static void
2857vfs_clean_pages_dirty_buf(struct buf *bp)
2858{
2859	vm_ooffset_t foff, noff, eoff;
2860	vm_page_t m;
2861	int i;
2862
2863	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
2864		return;
2865
2866	foff = bp->b_offset;
2867	KASSERT(bp->b_offset != NOOFFSET,
2868	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
2869
2870	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
2871	vfs_drain_busy_pages(bp);
2872	vfs_setdirty_locked_object(bp);
2873	for (i = 0; i < bp->b_npages; i++) {
2874		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2875		eoff = noff;
2876		if (eoff > bp->b_offset + bp->b_bufsize)
2877			eoff = bp->b_offset + bp->b_bufsize;
2878		m = bp->b_pages[i];
2879		vfs_page_set_validclean(bp, foff, m);
2880		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2881		foff = noff;
2882	}
2883	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
2884}
2885
2886static void
2887vfs_setdirty_locked_object(struct buf *bp)
2888{
2889	vm_object_t object;
2890	int i;
2891
2892	object = bp->b_bufobj->bo_object;
2893	VM_OBJECT_ASSERT_WLOCKED(object);
2894
2895	/*
2896	 * We qualify the scan for modified pages on whether the
2897	 * object has been flushed yet.
2898	 */
2899	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
2900		vm_offset_t boffset;
2901		vm_offset_t eoffset;
2902
2903		/*
2904		 * test the pages to see if they have been modified directly
2905		 * by users through the VM system.
2906		 */
2907		for (i = 0; i < bp->b_npages; i++)
2908			vm_page_test_dirty(bp->b_pages[i]);
2909
2910		/*
2911		 * Calculate the encompassing dirty range, boffset and eoffset,
2912		 * (eoffset - boffset) bytes.
2913		 */
2914
2915		for (i = 0; i < bp->b_npages; i++) {
2916			if (bp->b_pages[i]->dirty)
2917				break;
2918		}
2919		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2920
2921		for (i = bp->b_npages - 1; i >= 0; --i) {
2922			if (bp->b_pages[i]->dirty) {
2923				break;
2924			}
2925		}
2926		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2927
2928		/*
2929		 * Fit it to the buffer.
2930		 */
2931
2932		if (eoffset > bp->b_bcount)
2933			eoffset = bp->b_bcount;
2934
2935		/*
2936		 * If we have a good dirty range, merge with the existing
2937		 * dirty range.
2938		 */
2939
2940		if (boffset < eoffset) {
2941			if (bp->b_dirtyoff > boffset)
2942				bp->b_dirtyoff = boffset;
2943			if (bp->b_dirtyend < eoffset)
2944				bp->b_dirtyend = eoffset;
2945		}
2946	}
2947}
2948
2949/*
2950 * Allocate the KVA mapping for an existing buffer. It handles the
2951 * cases of both B_UNMAPPED buffer, and buffer with the preallocated
2952 * KVA which is not mapped (B_KVAALLOC).
2953 */
2954static void
2955bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
2956{
2957	struct buf *scratch_bp;
2958	int bsize, maxsize, need_mapping, need_kva;
2959	off_t offset;
2960
2961	need_mapping = (bp->b_flags & B_UNMAPPED) != 0 &&
2962	    (gbflags & GB_UNMAPPED) == 0;
2963	need_kva = (bp->b_flags & (B_KVAALLOC | B_UNMAPPED)) == B_UNMAPPED &&
2964	    (gbflags & GB_KVAALLOC) != 0;
2965	if (!need_mapping && !need_kva)
2966		return;
2967
2968	BUF_CHECK_UNMAPPED(bp);
2969
2970	if (need_mapping && (bp->b_flags & B_KVAALLOC) != 0) {
2971		/*
2972		 * Buffer is not mapped, but the KVA was already
2973		 * reserved at the time of the instantiation.  Use the
2974		 * allocated space.
2975		 */
2976		bp->b_flags &= ~B_KVAALLOC;
2977		KASSERT(bp->b_kvaalloc != 0, ("kvaalloc == 0"));
2978		bp->b_kvabase = bp->b_kvaalloc;
2979		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
2980		goto has_addr;
2981	}
2982
2983	/*
2984	 * Calculate the amount of the address space we would reserve
2985	 * if the buffer was mapped.
2986	 */
2987	bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
2988	offset = blkno * bsize;
2989	maxsize = size + (offset & PAGE_MASK);
2990	maxsize = imax(maxsize, bsize);
2991
2992mapping_loop:
2993	if (allocbufkva(bp, maxsize, gbflags)) {
2994		/*
2995		 * Request defragmentation. getnewbuf() returns us the
2996		 * allocated space by the scratch buffer KVA.
2997		 */
2998		scratch_bp = getnewbuf(bp->b_vp, 0, 0, size, maxsize, gbflags |
2999		    (GB_UNMAPPED | GB_KVAALLOC));
3000		if (scratch_bp == NULL) {
3001			if ((gbflags & GB_NOWAIT_BD) != 0) {
3002				/*
3003				 * XXXKIB: defragmentation cannot
3004				 * succeed, not sure what else to do.
3005				 */
3006				panic("GB_NOWAIT_BD and B_UNMAPPED %p", bp);
3007			}
3008			atomic_add_int(&mappingrestarts, 1);
3009			goto mapping_loop;
3010		}
3011		KASSERT((scratch_bp->b_flags & B_KVAALLOC) != 0,
3012		    ("scratch bp !B_KVAALLOC %p", scratch_bp));
3013		setbufkva(bp, (vm_offset_t)scratch_bp->b_kvaalloc,
3014		    scratch_bp->b_kvasize, gbflags);
3015
3016		/* Get rid of the scratch buffer. */
3017		scratch_bp->b_kvasize = 0;
3018		scratch_bp->b_flags |= B_INVAL;
3019		scratch_bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
3020		brelse(scratch_bp);
3021	}
3022	if (!need_mapping)
3023		return;
3024
3025has_addr:
3026	bp->b_saveaddr = bp->b_kvabase;
3027	bp->b_data = bp->b_saveaddr; /* b_offset is handled by bpmap_qenter */
3028	bp->b_flags &= ~B_UNMAPPED;
3029	BUF_CHECK_MAPPED(bp);
3030	bpmap_qenter(bp);
3031}
3032
3033/*
3034 *	getblk:
3035 *
3036 *	Get a block given a specified block and offset into a file/device.
3037 *	The buffers B_DONE bit will be cleared on return, making it almost
3038 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3039 *	return.  The caller should clear B_INVAL prior to initiating a
3040 *	READ.
3041 *
3042 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3043 *	an existing buffer.
3044 *
3045 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3046 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3047 *	and then cleared based on the backing VM.  If the previous buffer is
3048 *	non-0-sized but invalid, B_CACHE will be cleared.
3049 *
3050 *	If getblk() must create a new buffer, the new buffer is returned with
3051 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3052 *	case it is returned with B_INVAL clear and B_CACHE set based on the
3053 *	backing VM.
3054 *
3055 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
3056 *	B_CACHE bit is clear.
3057 *
3058 *	What this means, basically, is that the caller should use B_CACHE to
3059 *	determine whether the buffer is fully valid or not and should clear
3060 *	B_INVAL prior to issuing a read.  If the caller intends to validate
3061 *	the buffer by loading its data area with something, the caller needs
3062 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3063 *	the caller should set B_CACHE ( as an optimization ), else the caller
3064 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3065 *	a write attempt or if it was a successfull read.  If the caller
3066 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3067 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3068 */
3069struct buf *
3070getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3071    int flags)
3072{
3073	struct buf *bp;
3074	struct bufobj *bo;
3075	int bsize, error, maxsize, vmio;
3076	off_t offset;
3077
3078	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3079	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3080	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3081	ASSERT_VOP_LOCKED(vp, "getblk");
3082	if (size > MAXBCACHEBUF)
3083		panic("getblk: size(%d) > MAXBCACHEBUF(%d)\n", size,
3084		    MAXBCACHEBUF);
3085	if (!unmapped_buf_allowed)
3086		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3087
3088	bo = &vp->v_bufobj;
3089loop:
3090	BO_RLOCK(bo);
3091	bp = gbincore(bo, blkno);
3092	if (bp != NULL) {
3093		int lockflags;
3094		/*
3095		 * Buffer is in-core.  If the buffer is not busy nor managed,
3096		 * it must be on a queue.
3097		 */
3098		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
3099
3100		if (flags & GB_LOCK_NOWAIT)
3101			lockflags |= LK_NOWAIT;
3102
3103		error = BUF_TIMELOCK(bp, lockflags,
3104		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3105
3106		/*
3107		 * If we slept and got the lock we have to restart in case
3108		 * the buffer changed identities.
3109		 */
3110		if (error == ENOLCK)
3111			goto loop;
3112		/* We timed out or were interrupted. */
3113		else if (error)
3114			return (NULL);
3115		/* If recursed, assume caller knows the rules. */
3116		else if (BUF_LOCKRECURSED(bp))
3117			goto end;
3118
3119		/*
3120		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3121		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3122		 * and for a VMIO buffer B_CACHE is adjusted according to the
3123		 * backing VM cache.
3124		 */
3125		if (bp->b_flags & B_INVAL)
3126			bp->b_flags &= ~B_CACHE;
3127		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3128			bp->b_flags |= B_CACHE;
3129		if (bp->b_flags & B_MANAGED)
3130			MPASS(bp->b_qindex == QUEUE_NONE);
3131		else
3132			bremfree(bp);
3133
3134		/*
3135		 * check for size inconsistencies for non-VMIO case.
3136		 */
3137		if (bp->b_bcount != size) {
3138			if ((bp->b_flags & B_VMIO) == 0 ||
3139			    (size > bp->b_kvasize)) {
3140				if (bp->b_flags & B_DELWRI) {
3141					/*
3142					 * If buffer is pinned and caller does
3143					 * not want sleep  waiting for it to be
3144					 * unpinned, bail out
3145					 * */
3146					if (bp->b_pin_count > 0) {
3147						if (flags & GB_LOCK_NOWAIT) {
3148							bqrelse(bp);
3149							return (NULL);
3150						} else {
3151							bunpin_wait(bp);
3152						}
3153					}
3154					bp->b_flags |= B_NOCACHE;
3155					bwrite(bp);
3156				} else {
3157					if (LIST_EMPTY(&bp->b_dep)) {
3158						bp->b_flags |= B_RELBUF;
3159						brelse(bp);
3160					} else {
3161						bp->b_flags |= B_NOCACHE;
3162						bwrite(bp);
3163					}
3164				}
3165				goto loop;
3166			}
3167		}
3168
3169		/*
3170		 * Handle the case of unmapped buffer which should
3171		 * become mapped, or the buffer for which KVA
3172		 * reservation is requested.
3173		 */
3174		bp_unmapped_get_kva(bp, blkno, size, flags);
3175
3176		/*
3177		 * If the size is inconsistant in the VMIO case, we can resize
3178		 * the buffer.  This might lead to B_CACHE getting set or
3179		 * cleared.  If the size has not changed, B_CACHE remains
3180		 * unchanged from its previous state.
3181		 */
3182		if (bp->b_bcount != size)
3183			allocbuf(bp, size);
3184
3185		KASSERT(bp->b_offset != NOOFFSET,
3186		    ("getblk: no buffer offset"));
3187
3188		/*
3189		 * A buffer with B_DELWRI set and B_CACHE clear must
3190		 * be committed before we can return the buffer in
3191		 * order to prevent the caller from issuing a read
3192		 * ( due to B_CACHE not being set ) and overwriting
3193		 * it.
3194		 *
3195		 * Most callers, including NFS and FFS, need this to
3196		 * operate properly either because they assume they
3197		 * can issue a read if B_CACHE is not set, or because
3198		 * ( for example ) an uncached B_DELWRI might loop due
3199		 * to softupdates re-dirtying the buffer.  In the latter
3200		 * case, B_CACHE is set after the first write completes,
3201		 * preventing further loops.
3202		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3203		 * above while extending the buffer, we cannot allow the
3204		 * buffer to remain with B_CACHE set after the write
3205		 * completes or it will represent a corrupt state.  To
3206		 * deal with this we set B_NOCACHE to scrap the buffer
3207		 * after the write.
3208		 *
3209		 * We might be able to do something fancy, like setting
3210		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3211		 * so the below call doesn't set B_CACHE, but that gets real
3212		 * confusing.  This is much easier.
3213		 */
3214
3215		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3216			bp->b_flags |= B_NOCACHE;
3217			bwrite(bp);
3218			goto loop;
3219		}
3220		bp->b_flags &= ~B_DONE;
3221	} else {
3222		/*
3223		 * Buffer is not in-core, create new buffer.  The buffer
3224		 * returned by getnewbuf() is locked.  Note that the returned
3225		 * buffer is also considered valid (not marked B_INVAL).
3226		 */
3227		BO_RUNLOCK(bo);
3228		/*
3229		 * If the user does not want us to create the buffer, bail out
3230		 * here.
3231		 */
3232		if (flags & GB_NOCREAT)
3233			return NULL;
3234		if (numfreebuffers == 0 && TD_IS_IDLETHREAD(curthread))
3235			return NULL;
3236
3237		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
3238		offset = blkno * bsize;
3239		vmio = vp->v_object != NULL;
3240		if (vmio) {
3241			maxsize = size + (offset & PAGE_MASK);
3242		} else {
3243			maxsize = size;
3244			/* Do not allow non-VMIO notmapped buffers. */
3245			flags &= ~GB_UNMAPPED;
3246		}
3247		maxsize = imax(maxsize, bsize);
3248
3249		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
3250		if (bp == NULL) {
3251			if (slpflag || slptimeo)
3252				return NULL;
3253			goto loop;
3254		}
3255
3256		/*
3257		 * This code is used to make sure that a buffer is not
3258		 * created while the getnewbuf routine is blocked.
3259		 * This can be a problem whether the vnode is locked or not.
3260		 * If the buffer is created out from under us, we have to
3261		 * throw away the one we just created.
3262		 *
3263		 * Note: this must occur before we associate the buffer
3264		 * with the vp especially considering limitations in
3265		 * the splay tree implementation when dealing with duplicate
3266		 * lblkno's.
3267		 */
3268		BO_LOCK(bo);
3269		if (gbincore(bo, blkno)) {
3270			BO_UNLOCK(bo);
3271			bp->b_flags |= B_INVAL;
3272			brelse(bp);
3273			goto loop;
3274		}
3275
3276		/*
3277		 * Insert the buffer into the hash, so that it can
3278		 * be found by incore.
3279		 */
3280		bp->b_blkno = bp->b_lblkno = blkno;
3281		bp->b_offset = offset;
3282		bgetvp(vp, bp);
3283		BO_UNLOCK(bo);
3284
3285		/*
3286		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
3287		 * buffer size starts out as 0, B_CACHE will be set by
3288		 * allocbuf() for the VMIO case prior to it testing the
3289		 * backing store for validity.
3290		 */
3291
3292		if (vmio) {
3293			bp->b_flags |= B_VMIO;
3294			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
3295			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
3296			    bp, vp->v_object, bp->b_bufobj->bo_object));
3297		} else {
3298			bp->b_flags &= ~B_VMIO;
3299			KASSERT(bp->b_bufobj->bo_object == NULL,
3300			    ("ARGH! has b_bufobj->bo_object %p %p\n",
3301			    bp, bp->b_bufobj->bo_object));
3302			BUF_CHECK_MAPPED(bp);
3303		}
3304
3305		allocbuf(bp, size);
3306		bp->b_flags &= ~B_DONE;
3307	}
3308	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
3309	BUF_ASSERT_HELD(bp);
3310end:
3311	KASSERT(bp->b_bufobj == bo,
3312	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3313	return (bp);
3314}
3315
3316/*
3317 * Get an empty, disassociated buffer of given size.  The buffer is initially
3318 * set to B_INVAL.
3319 */
3320struct buf *
3321geteblk(int size, int flags)
3322{
3323	struct buf *bp;
3324	int maxsize;
3325
3326	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3327	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
3328		if ((flags & GB_NOWAIT_BD) &&
3329		    (curthread->td_pflags & TDP_BUFNEED) != 0)
3330			return (NULL);
3331	}
3332	allocbuf(bp, size);
3333	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3334	BUF_ASSERT_HELD(bp);
3335	return (bp);
3336}
3337
3338
3339/*
3340 * This code constitutes the buffer memory from either anonymous system
3341 * memory (in the case of non-VMIO operations) or from an associated
3342 * VM object (in the case of VMIO operations).  This code is able to
3343 * resize a buffer up or down.
3344 *
3345 * Note that this code is tricky, and has many complications to resolve
3346 * deadlock or inconsistant data situations.  Tread lightly!!!
3347 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3348 * the caller.  Calling this code willy nilly can result in the loss of data.
3349 *
3350 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3351 * B_CACHE for the non-VMIO case.
3352 */
3353
3354int
3355allocbuf(struct buf *bp, int size)
3356{
3357	int newbsize, mbsize;
3358	int i;
3359
3360	BUF_ASSERT_HELD(bp);
3361
3362	if (bp->b_kvasize < size)
3363		panic("allocbuf: buffer too small");
3364
3365	if ((bp->b_flags & B_VMIO) == 0) {
3366		caddr_t origbuf;
3367		int origbufsize;
3368		/*
3369		 * Just get anonymous memory from the kernel.  Don't
3370		 * mess with B_CACHE.
3371		 */
3372		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3373		if (bp->b_flags & B_MALLOC)
3374			newbsize = mbsize;
3375		else
3376			newbsize = round_page(size);
3377
3378		if (newbsize < bp->b_bufsize) {
3379			/*
3380			 * malloced buffers are not shrunk
3381			 */
3382			if (bp->b_flags & B_MALLOC) {
3383				if (newbsize) {
3384					bp->b_bcount = size;
3385				} else {
3386					free(bp->b_data, M_BIOBUF);
3387					if (bp->b_bufsize) {
3388						atomic_subtract_long(
3389						    &bufmallocspace,
3390						    bp->b_bufsize);
3391						bufspacewakeup();
3392						bp->b_bufsize = 0;
3393					}
3394					bp->b_saveaddr = bp->b_kvabase;
3395					bp->b_data = bp->b_saveaddr;
3396					bp->b_bcount = 0;
3397					bp->b_flags &= ~B_MALLOC;
3398				}
3399				return 1;
3400			}
3401			vm_hold_free_pages(bp, newbsize);
3402		} else if (newbsize > bp->b_bufsize) {
3403			/*
3404			 * We only use malloced memory on the first allocation.
3405			 * and revert to page-allocated memory when the buffer
3406			 * grows.
3407			 */
3408			/*
3409			 * There is a potential smp race here that could lead
3410			 * to bufmallocspace slightly passing the max.  It
3411			 * is probably extremely rare and not worth worrying
3412			 * over.
3413			 */
3414			if ( (bufmallocspace < maxbufmallocspace) &&
3415				(bp->b_bufsize == 0) &&
3416				(mbsize <= PAGE_SIZE/2)) {
3417
3418				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
3419				bp->b_bufsize = mbsize;
3420				bp->b_bcount = size;
3421				bp->b_flags |= B_MALLOC;
3422				atomic_add_long(&bufmallocspace, mbsize);
3423				return 1;
3424			}
3425			origbuf = NULL;
3426			origbufsize = 0;
3427			/*
3428			 * If the buffer is growing on its other-than-first allocation,
3429			 * then we revert to the page-allocation scheme.
3430			 */
3431			if (bp->b_flags & B_MALLOC) {
3432				origbuf = bp->b_data;
3433				origbufsize = bp->b_bufsize;
3434				bp->b_data = bp->b_kvabase;
3435				if (bp->b_bufsize) {
3436					atomic_subtract_long(&bufmallocspace,
3437					    bp->b_bufsize);
3438					bufspacewakeup();
3439					bp->b_bufsize = 0;
3440				}
3441				bp->b_flags &= ~B_MALLOC;
3442				newbsize = round_page(newbsize);
3443			}
3444			vm_hold_load_pages(
3445			    bp,
3446			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3447			    (vm_offset_t) bp->b_data + newbsize);
3448			if (origbuf) {
3449				bcopy(origbuf, bp->b_data, origbufsize);
3450				free(origbuf, M_BIOBUF);
3451			}
3452		}
3453	} else {
3454		int desiredpages;
3455
3456		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3457		desiredpages = (size == 0) ? 0 :
3458			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
3459
3460		if (bp->b_flags & B_MALLOC)
3461			panic("allocbuf: VMIO buffer can't be malloced");
3462		/*
3463		 * Set B_CACHE initially if buffer is 0 length or will become
3464		 * 0-length.
3465		 */
3466		if (size == 0 || bp->b_bufsize == 0)
3467			bp->b_flags |= B_CACHE;
3468
3469		if (newbsize < bp->b_bufsize) {
3470			/*
3471			 * DEV_BSIZE aligned new buffer size is less then the
3472			 * DEV_BSIZE aligned existing buffer size.  Figure out
3473			 * if we have to remove any pages.
3474			 */
3475			if (desiredpages < bp->b_npages) {
3476				vm_page_t m;
3477
3478				if ((bp->b_flags & B_UNMAPPED) == 0) {
3479					BUF_CHECK_MAPPED(bp);
3480					pmap_qremove((vm_offset_t)trunc_page(
3481					    (vm_offset_t)bp->b_data) +
3482					    (desiredpages << PAGE_SHIFT),
3483					    (bp->b_npages - desiredpages));
3484				} else
3485					BUF_CHECK_UNMAPPED(bp);
3486				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3487				for (i = desiredpages; i < bp->b_npages; i++) {
3488					/*
3489					 * the page is not freed here -- it
3490					 * is the responsibility of
3491					 * vnode_pager_setsize
3492					 */
3493					m = bp->b_pages[i];
3494					KASSERT(m != bogus_page,
3495					    ("allocbuf: bogus page found"));
3496					while (vm_page_sleep_if_busy(m,
3497					    "biodep"))
3498						continue;
3499
3500					bp->b_pages[i] = NULL;
3501					vm_page_lock(m);
3502					vm_page_unwire(m, 0);
3503					vm_page_unlock(m);
3504				}
3505				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3506				bp->b_npages = desiredpages;
3507			}
3508		} else if (size > bp->b_bcount) {
3509			/*
3510			 * We are growing the buffer, possibly in a
3511			 * byte-granular fashion.
3512			 */
3513			vm_object_t obj;
3514			vm_offset_t toff;
3515			vm_offset_t tinc;
3516
3517			/*
3518			 * Step 1, bring in the VM pages from the object,
3519			 * allocating them if necessary.  We must clear
3520			 * B_CACHE if these pages are not valid for the
3521			 * range covered by the buffer.
3522			 */
3523
3524			obj = bp->b_bufobj->bo_object;
3525
3526			VM_OBJECT_WLOCK(obj);
3527			while (bp->b_npages < desiredpages) {
3528				vm_page_t m;
3529
3530				/*
3531				 * We must allocate system pages since blocking
3532				 * here could interfere with paging I/O, no
3533				 * matter which process we are.
3534				 *
3535				 * Only exclusive busy can be tested here.
3536				 * Blocking on shared busy might lead to
3537				 * deadlocks once allocbuf() is called after
3538				 * pages are vfs_busy_pages().
3539				 */
3540				m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
3541				    bp->b_npages, VM_ALLOC_NOBUSY |
3542				    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
3543				    VM_ALLOC_IGN_SBUSY |
3544				    VM_ALLOC_COUNT(desiredpages - bp->b_npages));
3545				if (m->valid == 0)
3546					bp->b_flags &= ~B_CACHE;
3547				bp->b_pages[bp->b_npages] = m;
3548				++bp->b_npages;
3549			}
3550
3551			/*
3552			 * Step 2.  We've loaded the pages into the buffer,
3553			 * we have to figure out if we can still have B_CACHE
3554			 * set.  Note that B_CACHE is set according to the
3555			 * byte-granular range ( bcount and size ), new the
3556			 * aligned range ( newbsize ).
3557			 *
3558			 * The VM test is against m->valid, which is DEV_BSIZE
3559			 * aligned.  Needless to say, the validity of the data
3560			 * needs to also be DEV_BSIZE aligned.  Note that this
3561			 * fails with NFS if the server or some other client
3562			 * extends the file's EOF.  If our buffer is resized,
3563			 * B_CACHE may remain set! XXX
3564			 */
3565
3566			toff = bp->b_bcount;
3567			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3568
3569			while ((bp->b_flags & B_CACHE) && toff < size) {
3570				vm_pindex_t pi;
3571
3572				if (tinc > (size - toff))
3573					tinc = size - toff;
3574
3575				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3576				    PAGE_SHIFT;
3577
3578				vfs_buf_test_cache(
3579				    bp,
3580				    bp->b_offset,
3581				    toff,
3582				    tinc,
3583				    bp->b_pages[pi]
3584				);
3585				toff += tinc;
3586				tinc = PAGE_SIZE;
3587			}
3588			VM_OBJECT_WUNLOCK(obj);
3589
3590			/*
3591			 * Step 3, fixup the KVM pmap.
3592			 */
3593			if ((bp->b_flags & B_UNMAPPED) == 0)
3594				bpmap_qenter(bp);
3595			else
3596				BUF_CHECK_UNMAPPED(bp);
3597		}
3598	}
3599	if (newbsize < bp->b_bufsize)
3600		bufspacewakeup();
3601	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3602	bp->b_bcount = size;		/* requested buffer size	*/
3603	return 1;
3604}
3605
3606extern int inflight_transient_maps;
3607
3608void
3609biodone(struct bio *bp)
3610{
3611	struct mtx *mtxp;
3612	void (*done)(struct bio *);
3613	vm_offset_t start, end;
3614
3615	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
3616		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
3617		bp->bio_flags |= BIO_UNMAPPED;
3618		start = trunc_page((vm_offset_t)bp->bio_data);
3619		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
3620		pmap_qremove(start, OFF_TO_IDX(end - start));
3621		vmem_free(transient_arena, start, end - start);
3622		atomic_add_int(&inflight_transient_maps, -1);
3623	}
3624	done = bp->bio_done;
3625	if (done == NULL) {
3626		mtxp = mtx_pool_find(mtxpool_sleep, bp);
3627		mtx_lock(mtxp);
3628		bp->bio_flags |= BIO_DONE;
3629		wakeup(bp);
3630		mtx_unlock(mtxp);
3631	} else {
3632		bp->bio_flags |= BIO_DONE;
3633		done(bp);
3634	}
3635}
3636
3637/*
3638 * Wait for a BIO to finish.
3639 */
3640int
3641biowait(struct bio *bp, const char *wchan)
3642{
3643	struct mtx *mtxp;
3644
3645	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3646	mtx_lock(mtxp);
3647	while ((bp->bio_flags & BIO_DONE) == 0)
3648		msleep(bp, mtxp, PRIBIO, wchan, 0);
3649	mtx_unlock(mtxp);
3650	if (bp->bio_error != 0)
3651		return (bp->bio_error);
3652	if (!(bp->bio_flags & BIO_ERROR))
3653		return (0);
3654	return (EIO);
3655}
3656
3657void
3658biofinish(struct bio *bp, struct devstat *stat, int error)
3659{
3660
3661	if (error) {
3662		bp->bio_error = error;
3663		bp->bio_flags |= BIO_ERROR;
3664	}
3665	if (stat != NULL)
3666		devstat_end_transaction_bio(stat, bp);
3667	biodone(bp);
3668}
3669
3670/*
3671 *	bufwait:
3672 *
3673 *	Wait for buffer I/O completion, returning error status.  The buffer
3674 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3675 *	error and cleared.
3676 */
3677int
3678bufwait(struct buf *bp)
3679{
3680	if (bp->b_iocmd == BIO_READ)
3681		bwait(bp, PRIBIO, "biord");
3682	else
3683		bwait(bp, PRIBIO, "biowr");
3684	if (bp->b_flags & B_EINTR) {
3685		bp->b_flags &= ~B_EINTR;
3686		return (EINTR);
3687	}
3688	if (bp->b_ioflags & BIO_ERROR) {
3689		return (bp->b_error ? bp->b_error : EIO);
3690	} else {
3691		return (0);
3692	}
3693}
3694
3695 /*
3696  * Call back function from struct bio back up to struct buf.
3697  */
3698static void
3699bufdonebio(struct bio *bip)
3700{
3701	struct buf *bp;
3702
3703	bp = bip->bio_caller2;
3704	bp->b_resid = bp->b_bcount - bip->bio_completed;
3705	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3706	bp->b_ioflags = bip->bio_flags;
3707	bp->b_error = bip->bio_error;
3708	if (bp->b_error)
3709		bp->b_ioflags |= BIO_ERROR;
3710	bufdone(bp);
3711	g_destroy_bio(bip);
3712}
3713
3714void
3715dev_strategy(struct cdev *dev, struct buf *bp)
3716{
3717	struct cdevsw *csw;
3718	int ref;
3719
3720	KASSERT(dev->si_refcount > 0,
3721	    ("dev_strategy on un-referenced struct cdev *(%s) %p",
3722	    devtoname(dev), dev));
3723
3724	csw = dev_refthread(dev, &ref);
3725	dev_strategy_csw(dev, csw, bp);
3726	dev_relthread(dev, ref);
3727}
3728
3729void
3730dev_strategy_csw(struct cdev *dev, struct cdevsw *csw, struct buf *bp)
3731{
3732	struct bio *bip;
3733
3734	KASSERT(bp->b_iocmd == BIO_READ || bp->b_iocmd == BIO_WRITE,
3735	    ("b_iocmd botch"));
3736	KASSERT(((dev->si_flags & SI_ETERNAL) != 0 && csw != NULL) ||
3737	    dev->si_threadcount > 0,
3738	    ("dev_strategy_csw threadcount cdev *(%s) %p", devtoname(dev),
3739	    dev));
3740	if (csw == NULL) {
3741		bp->b_error = ENXIO;
3742		bp->b_ioflags = BIO_ERROR;
3743		bufdone(bp);
3744		return;
3745	}
3746	for (;;) {
3747		bip = g_new_bio();
3748		if (bip != NULL)
3749			break;
3750		/* Try again later */
3751		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3752	}
3753	bip->bio_cmd = bp->b_iocmd;
3754	bip->bio_offset = bp->b_iooffset;
3755	bip->bio_length = bp->b_bcount;
3756	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3757	bdata2bio(bp, bip);
3758	bip->bio_done = bufdonebio;
3759	bip->bio_caller2 = bp;
3760	bip->bio_dev = dev;
3761	(*csw->d_strategy)(bip);
3762}
3763
3764/*
3765 *	bufdone:
3766 *
3767 *	Finish I/O on a buffer, optionally calling a completion function.
3768 *	This is usually called from an interrupt so process blocking is
3769 *	not allowed.
3770 *
3771 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3772 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3773 *	assuming B_INVAL is clear.
3774 *
3775 *	For the VMIO case, we set B_CACHE if the op was a read and no
3776 *	read error occured, or if the op was a write.  B_CACHE is never
3777 *	set if the buffer is invalid or otherwise uncacheable.
3778 *
3779 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3780 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3781 *	in the biodone routine.
3782 */
3783void
3784bufdone(struct buf *bp)
3785{
3786	struct bufobj *dropobj;
3787	void    (*biodone)(struct buf *);
3788
3789	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3790	dropobj = NULL;
3791
3792	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3793	BUF_ASSERT_HELD(bp);
3794
3795	runningbufwakeup(bp);
3796	if (bp->b_iocmd == BIO_WRITE)
3797		dropobj = bp->b_bufobj;
3798	/* call optional completion function if requested */
3799	if (bp->b_iodone != NULL) {
3800		biodone = bp->b_iodone;
3801		bp->b_iodone = NULL;
3802		(*biodone) (bp);
3803		if (dropobj)
3804			bufobj_wdrop(dropobj);
3805		return;
3806	}
3807
3808	bufdone_finish(bp);
3809
3810	if (dropobj)
3811		bufobj_wdrop(dropobj);
3812}
3813
3814void
3815bufdone_finish(struct buf *bp)
3816{
3817	BUF_ASSERT_HELD(bp);
3818
3819	if (!LIST_EMPTY(&bp->b_dep))
3820		buf_complete(bp);
3821
3822	if (bp->b_flags & B_VMIO) {
3823		vm_ooffset_t foff;
3824		vm_page_t m;
3825		vm_object_t obj;
3826		struct vnode *vp;
3827		int bogus, i, iosize;
3828
3829		obj = bp->b_bufobj->bo_object;
3830		KASSERT(obj->paging_in_progress >= bp->b_npages,
3831		    ("biodone_finish: paging in progress(%d) < b_npages(%d)",
3832		    obj->paging_in_progress, bp->b_npages));
3833
3834		vp = bp->b_vp;
3835		KASSERT(vp->v_holdcnt > 0,
3836		    ("biodone_finish: vnode %p has zero hold count", vp));
3837		KASSERT(vp->v_object != NULL,
3838		    ("biodone_finish: vnode %p has no vm_object", vp));
3839
3840		foff = bp->b_offset;
3841		KASSERT(bp->b_offset != NOOFFSET,
3842		    ("biodone_finish: bp %p has no buffer offset", bp));
3843
3844		/*
3845		 * Set B_CACHE if the op was a normal read and no error
3846		 * occured.  B_CACHE is set for writes in the b*write()
3847		 * routines.
3848		 */
3849		iosize = bp->b_bcount - bp->b_resid;
3850		if (bp->b_iocmd == BIO_READ &&
3851		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3852		    !(bp->b_ioflags & BIO_ERROR)) {
3853			bp->b_flags |= B_CACHE;
3854		}
3855		bogus = 0;
3856		VM_OBJECT_WLOCK(obj);
3857		for (i = 0; i < bp->b_npages; i++) {
3858			int bogusflag = 0;
3859			int resid;
3860
3861			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3862			if (resid > iosize)
3863				resid = iosize;
3864
3865			/*
3866			 * cleanup bogus pages, restoring the originals
3867			 */
3868			m = bp->b_pages[i];
3869			if (m == bogus_page) {
3870				bogus = bogusflag = 1;
3871				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3872				if (m == NULL)
3873					panic("biodone: page disappeared!");
3874				bp->b_pages[i] = m;
3875			}
3876			KASSERT(OFF_TO_IDX(foff) == m->pindex,
3877			    ("biodone_finish: foff(%jd)/pindex(%ju) mismatch",
3878			    (intmax_t)foff, (uintmax_t)m->pindex));
3879
3880			/*
3881			 * In the write case, the valid and clean bits are
3882			 * already changed correctly ( see bdwrite() ), so we
3883			 * only need to do this here in the read case.
3884			 */
3885			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3886				KASSERT((m->dirty & vm_page_bits(foff &
3887				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3888				    " page %p has unexpected dirty bits", m));
3889				vfs_page_set_valid(bp, foff, m);
3890			}
3891
3892			vm_page_sunbusy(m);
3893			vm_object_pip_subtract(obj, 1);
3894			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3895			iosize -= resid;
3896		}
3897		vm_object_pip_wakeupn(obj, 0);
3898		VM_OBJECT_WUNLOCK(obj);
3899		if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
3900			BUF_CHECK_MAPPED(bp);
3901			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3902			    bp->b_pages, bp->b_npages);
3903		}
3904	}
3905
3906	/*
3907	 * For asynchronous completions, release the buffer now. The brelse
3908	 * will do a wakeup there if necessary - so no need to do a wakeup
3909	 * here in the async case. The sync case always needs to do a wakeup.
3910	 */
3911
3912	if (bp->b_flags & B_ASYNC) {
3913		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3914			brelse(bp);
3915		else
3916			bqrelse(bp);
3917	} else
3918		bdone(bp);
3919}
3920
3921/*
3922 * This routine is called in lieu of iodone in the case of
3923 * incomplete I/O.  This keeps the busy status for pages
3924 * consistant.
3925 */
3926void
3927vfs_unbusy_pages(struct buf *bp)
3928{
3929	int i;
3930	vm_object_t obj;
3931	vm_page_t m;
3932
3933	runningbufwakeup(bp);
3934	if (!(bp->b_flags & B_VMIO))
3935		return;
3936
3937	obj = bp->b_bufobj->bo_object;
3938	VM_OBJECT_WLOCK(obj);
3939	for (i = 0; i < bp->b_npages; i++) {
3940		m = bp->b_pages[i];
3941		if (m == bogus_page) {
3942			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3943			if (!m)
3944				panic("vfs_unbusy_pages: page missing\n");
3945			bp->b_pages[i] = m;
3946			if ((bp->b_flags & B_UNMAPPED) == 0) {
3947				BUF_CHECK_MAPPED(bp);
3948				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3949				    bp->b_pages, bp->b_npages);
3950			} else
3951				BUF_CHECK_UNMAPPED(bp);
3952		}
3953		vm_object_pip_subtract(obj, 1);
3954		vm_page_sunbusy(m);
3955	}
3956	vm_object_pip_wakeupn(obj, 0);
3957	VM_OBJECT_WUNLOCK(obj);
3958}
3959
3960/*
3961 * vfs_page_set_valid:
3962 *
3963 *	Set the valid bits in a page based on the supplied offset.   The
3964 *	range is restricted to the buffer's size.
3965 *
3966 *	This routine is typically called after a read completes.
3967 */
3968static void
3969vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3970{
3971	vm_ooffset_t eoff;
3972
3973	/*
3974	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3975	 * page boundary and eoff is not greater than the end of the buffer.
3976	 * The end of the buffer, in this case, is our file EOF, not the
3977	 * allocation size of the buffer.
3978	 */
3979	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3980	if (eoff > bp->b_offset + bp->b_bcount)
3981		eoff = bp->b_offset + bp->b_bcount;
3982
3983	/*
3984	 * Set valid range.  This is typically the entire buffer and thus the
3985	 * entire page.
3986	 */
3987	if (eoff > off)
3988		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
3989}
3990
3991/*
3992 * vfs_page_set_validclean:
3993 *
3994 *	Set the valid bits and clear the dirty bits in a page based on the
3995 *	supplied offset.   The range is restricted to the buffer's size.
3996 */
3997static void
3998vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3999{
4000	vm_ooffset_t soff, eoff;
4001
4002	/*
4003	 * Start and end offsets in buffer.  eoff - soff may not cross a
4004	 * page boundry or cross the end of the buffer.  The end of the
4005	 * buffer, in this case, is our file EOF, not the allocation size
4006	 * of the buffer.
4007	 */
4008	soff = off;
4009	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4010	if (eoff > bp->b_offset + bp->b_bcount)
4011		eoff = bp->b_offset + bp->b_bcount;
4012
4013	/*
4014	 * Set valid range.  This is typically the entire buffer and thus the
4015	 * entire page.
4016	 */
4017	if (eoff > soff) {
4018		vm_page_set_validclean(
4019		    m,
4020		   (vm_offset_t) (soff & PAGE_MASK),
4021		   (vm_offset_t) (eoff - soff)
4022		);
4023	}
4024}
4025
4026/*
4027 * Ensure that all buffer pages are not exclusive busied.  If any page is
4028 * exclusive busy, drain it.
4029 */
4030void
4031vfs_drain_busy_pages(struct buf *bp)
4032{
4033	vm_page_t m;
4034	int i, last_busied;
4035
4036	VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
4037	last_busied = 0;
4038	for (i = 0; i < bp->b_npages; i++) {
4039		m = bp->b_pages[i];
4040		if (vm_page_xbusied(m)) {
4041			for (; last_busied < i; last_busied++)
4042				vm_page_sbusy(bp->b_pages[last_busied]);
4043			while (vm_page_xbusied(m)) {
4044				vm_page_lock(m);
4045				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4046				vm_page_busy_sleep(m, "vbpage");
4047				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4048			}
4049		}
4050	}
4051	for (i = 0; i < last_busied; i++)
4052		vm_page_sunbusy(bp->b_pages[i]);
4053}
4054
4055/*
4056 * This routine is called before a device strategy routine.
4057 * It is used to tell the VM system that paging I/O is in
4058 * progress, and treat the pages associated with the buffer
4059 * almost as being exclusive busy.  Also the object paging_in_progress
4060 * flag is handled to make sure that the object doesn't become
4061 * inconsistant.
4062 *
4063 * Since I/O has not been initiated yet, certain buffer flags
4064 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
4065 * and should be ignored.
4066 */
4067void
4068vfs_busy_pages(struct buf *bp, int clear_modify)
4069{
4070	int i, bogus;
4071	vm_object_t obj;
4072	vm_ooffset_t foff;
4073	vm_page_t m;
4074
4075	if (!(bp->b_flags & B_VMIO))
4076		return;
4077
4078	obj = bp->b_bufobj->bo_object;
4079	foff = bp->b_offset;
4080	KASSERT(bp->b_offset != NOOFFSET,
4081	    ("vfs_busy_pages: no buffer offset"));
4082	VM_OBJECT_WLOCK(obj);
4083	vfs_drain_busy_pages(bp);
4084	if (bp->b_bufsize != 0)
4085		vfs_setdirty_locked_object(bp);
4086	bogus = 0;
4087	for (i = 0; i < bp->b_npages; i++) {
4088		m = bp->b_pages[i];
4089
4090		if ((bp->b_flags & B_CLUSTER) == 0) {
4091			vm_object_pip_add(obj, 1);
4092			vm_page_sbusy(m);
4093		}
4094		/*
4095		 * When readying a buffer for a read ( i.e
4096		 * clear_modify == 0 ), it is important to do
4097		 * bogus_page replacement for valid pages in
4098		 * partially instantiated buffers.  Partially
4099		 * instantiated buffers can, in turn, occur when
4100		 * reconstituting a buffer from its VM backing store
4101		 * base.  We only have to do this if B_CACHE is
4102		 * clear ( which causes the I/O to occur in the
4103		 * first place ).  The replacement prevents the read
4104		 * I/O from overwriting potentially dirty VM-backed
4105		 * pages.  XXX bogus page replacement is, uh, bogus.
4106		 * It may not work properly with small-block devices.
4107		 * We need to find a better way.
4108		 */
4109		if (clear_modify) {
4110			pmap_remove_write(m);
4111			vfs_page_set_validclean(bp, foff, m);
4112		} else if (m->valid == VM_PAGE_BITS_ALL &&
4113		    (bp->b_flags & B_CACHE) == 0) {
4114			bp->b_pages[i] = bogus_page;
4115			bogus++;
4116		}
4117		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4118	}
4119	VM_OBJECT_WUNLOCK(obj);
4120	if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
4121		BUF_CHECK_MAPPED(bp);
4122		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4123		    bp->b_pages, bp->b_npages);
4124	}
4125}
4126
4127/*
4128 *	vfs_bio_set_valid:
4129 *
4130 *	Set the range within the buffer to valid.  The range is
4131 *	relative to the beginning of the buffer, b_offset.  Note that
4132 *	b_offset itself may be offset from the beginning of the first
4133 *	page.
4134 */
4135void
4136vfs_bio_set_valid(struct buf *bp, int base, int size)
4137{
4138	int i, n;
4139	vm_page_t m;
4140
4141	if (!(bp->b_flags & B_VMIO))
4142		return;
4143
4144	/*
4145	 * Fixup base to be relative to beginning of first page.
4146	 * Set initial n to be the maximum number of bytes in the
4147	 * first page that can be validated.
4148	 */
4149	base += (bp->b_offset & PAGE_MASK);
4150	n = PAGE_SIZE - (base & PAGE_MASK);
4151
4152	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4153	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4154		m = bp->b_pages[i];
4155		if (n > size)
4156			n = size;
4157		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4158		base += n;
4159		size -= n;
4160		n = PAGE_SIZE;
4161	}
4162	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4163}
4164
4165/*
4166 *	vfs_bio_clrbuf:
4167 *
4168 *	If the specified buffer is a non-VMIO buffer, clear the entire
4169 *	buffer.  If the specified buffer is a VMIO buffer, clear and
4170 *	validate only the previously invalid portions of the buffer.
4171 *	This routine essentially fakes an I/O, so we need to clear
4172 *	BIO_ERROR and B_INVAL.
4173 *
4174 *	Note that while we only theoretically need to clear through b_bcount,
4175 *	we go ahead and clear through b_bufsize.
4176 */
4177void
4178vfs_bio_clrbuf(struct buf *bp)
4179{
4180	int i, j, mask, sa, ea, slide;
4181
4182	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4183		clrbuf(bp);
4184		return;
4185	}
4186	bp->b_flags &= ~B_INVAL;
4187	bp->b_ioflags &= ~BIO_ERROR;
4188	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4189	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4190	    (bp->b_offset & PAGE_MASK) == 0) {
4191		if (bp->b_pages[0] == bogus_page)
4192			goto unlock;
4193		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4194		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
4195		if ((bp->b_pages[0]->valid & mask) == mask)
4196			goto unlock;
4197		if ((bp->b_pages[0]->valid & mask) == 0) {
4198			pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
4199			bp->b_pages[0]->valid |= mask;
4200			goto unlock;
4201		}
4202	}
4203	sa = bp->b_offset & PAGE_MASK;
4204	slide = 0;
4205	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4206		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4207		ea = slide & PAGE_MASK;
4208		if (ea == 0)
4209			ea = PAGE_SIZE;
4210		if (bp->b_pages[i] == bogus_page)
4211			continue;
4212		j = sa / DEV_BSIZE;
4213		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4214		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
4215		if ((bp->b_pages[i]->valid & mask) == mask)
4216			continue;
4217		if ((bp->b_pages[i]->valid & mask) == 0)
4218			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4219		else {
4220			for (; sa < ea; sa += DEV_BSIZE, j++) {
4221				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4222					pmap_zero_page_area(bp->b_pages[i],
4223					    sa, DEV_BSIZE);
4224				}
4225			}
4226		}
4227		bp->b_pages[i]->valid |= mask;
4228	}
4229unlock:
4230	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4231	bp->b_resid = 0;
4232}
4233
4234void
4235vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4236{
4237	vm_page_t m;
4238	int i, n;
4239
4240	if ((bp->b_flags & B_UNMAPPED) == 0) {
4241		BUF_CHECK_MAPPED(bp);
4242		bzero(bp->b_data + base, size);
4243	} else {
4244		BUF_CHECK_UNMAPPED(bp);
4245		n = PAGE_SIZE - (base & PAGE_MASK);
4246		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4247			m = bp->b_pages[i];
4248			if (n > size)
4249				n = size;
4250			pmap_zero_page_area(m, base & PAGE_MASK, n);
4251			base += n;
4252			size -= n;
4253			n = PAGE_SIZE;
4254		}
4255	}
4256}
4257
4258/*
4259 * vm_hold_load_pages and vm_hold_free_pages get pages into
4260 * a buffers address space.  The pages are anonymous and are
4261 * not associated with a file object.
4262 */
4263static void
4264vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4265{
4266	vm_offset_t pg;
4267	vm_page_t p;
4268	int index;
4269
4270	BUF_CHECK_MAPPED(bp);
4271
4272	to = round_page(to);
4273	from = round_page(from);
4274	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4275
4276	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4277tryagain:
4278		/*
4279		 * note: must allocate system pages since blocking here
4280		 * could interfere with paging I/O, no matter which
4281		 * process we are.
4282		 */
4283		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4284		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
4285		if (p == NULL) {
4286			VM_WAIT;
4287			goto tryagain;
4288		}
4289		pmap_qenter(pg, &p, 1);
4290		bp->b_pages[index] = p;
4291	}
4292	bp->b_npages = index;
4293}
4294
4295/* Return pages associated with this buf to the vm system */
4296static void
4297vm_hold_free_pages(struct buf *bp, int newbsize)
4298{
4299	vm_offset_t from;
4300	vm_page_t p;
4301	int index, newnpages;
4302
4303	BUF_CHECK_MAPPED(bp);
4304
4305	from = round_page((vm_offset_t)bp->b_data + newbsize);
4306	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4307	if (bp->b_npages > newnpages)
4308		pmap_qremove(from, bp->b_npages - newnpages);
4309	for (index = newnpages; index < bp->b_npages; index++) {
4310		p = bp->b_pages[index];
4311		bp->b_pages[index] = NULL;
4312		if (vm_page_sbusied(p))
4313			printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
4314			    (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
4315		p->wire_count--;
4316		vm_page_free(p);
4317		atomic_subtract_int(&cnt.v_wire_count, 1);
4318	}
4319	bp->b_npages = newnpages;
4320}
4321
4322/*
4323 * Map an IO request into kernel virtual address space.
4324 *
4325 * All requests are (re)mapped into kernel VA space.
4326 * Notice that we use b_bufsize for the size of the buffer
4327 * to be mapped.  b_bcount might be modified by the driver.
4328 *
4329 * Note that even if the caller determines that the address space should
4330 * be valid, a race or a smaller-file mapped into a larger space may
4331 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4332 * check the return value.
4333 */
4334int
4335vmapbuf(struct buf *bp, int mapbuf)
4336{
4337	caddr_t kva;
4338	vm_prot_t prot;
4339	int pidx;
4340
4341	if (bp->b_bufsize < 0)
4342		return (-1);
4343	prot = VM_PROT_READ;
4344	if (bp->b_iocmd == BIO_READ)
4345		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4346	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4347	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
4348	    btoc(MAXPHYS))) < 0)
4349		return (-1);
4350	bp->b_npages = pidx;
4351	if (mapbuf || !unmapped_buf_allowed) {
4352		pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
4353		kva = bp->b_saveaddr;
4354		bp->b_saveaddr = bp->b_data;
4355		bp->b_data = kva + (((vm_offset_t)bp->b_data) & PAGE_MASK);
4356		bp->b_flags &= ~B_UNMAPPED;
4357	} else {
4358		bp->b_flags |= B_UNMAPPED;
4359		bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
4360		bp->b_saveaddr = bp->b_data;
4361		bp->b_data = unmapped_buf;
4362	}
4363	return(0);
4364}
4365
4366/*
4367 * Free the io map PTEs associated with this IO operation.
4368 * We also invalidate the TLB entries and restore the original b_addr.
4369 */
4370void
4371vunmapbuf(struct buf *bp)
4372{
4373	int npages;
4374
4375	npages = bp->b_npages;
4376	if (bp->b_flags & B_UNMAPPED)
4377		bp->b_flags &= ~B_UNMAPPED;
4378	else
4379		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4380	vm_page_unhold_pages(bp->b_pages, npages);
4381
4382	bp->b_data = bp->b_saveaddr;
4383}
4384
4385void
4386bdone(struct buf *bp)
4387{
4388	struct mtx *mtxp;
4389
4390	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4391	mtx_lock(mtxp);
4392	bp->b_flags |= B_DONE;
4393	wakeup(bp);
4394	mtx_unlock(mtxp);
4395}
4396
4397void
4398bwait(struct buf *bp, u_char pri, const char *wchan)
4399{
4400	struct mtx *mtxp;
4401
4402	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4403	mtx_lock(mtxp);
4404	while ((bp->b_flags & B_DONE) == 0)
4405		msleep(bp, mtxp, pri, wchan, 0);
4406	mtx_unlock(mtxp);
4407}
4408
4409int
4410bufsync(struct bufobj *bo, int waitfor)
4411{
4412
4413	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
4414}
4415
4416void
4417bufstrategy(struct bufobj *bo, struct buf *bp)
4418{
4419	int i = 0;
4420	struct vnode *vp;
4421
4422	vp = bp->b_vp;
4423	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
4424	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
4425	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
4426	i = VOP_STRATEGY(vp, bp);
4427	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
4428}
4429
4430void
4431bufobj_wrefl(struct bufobj *bo)
4432{
4433
4434	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4435	ASSERT_BO_WLOCKED(bo);
4436	bo->bo_numoutput++;
4437}
4438
4439void
4440bufobj_wref(struct bufobj *bo)
4441{
4442
4443	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4444	BO_LOCK(bo);
4445	bo->bo_numoutput++;
4446	BO_UNLOCK(bo);
4447}
4448
4449void
4450bufobj_wdrop(struct bufobj *bo)
4451{
4452
4453	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
4454	BO_LOCK(bo);
4455	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
4456	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
4457		bo->bo_flag &= ~BO_WWAIT;
4458		wakeup(&bo->bo_numoutput);
4459	}
4460	BO_UNLOCK(bo);
4461}
4462
4463int
4464bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
4465{
4466	int error;
4467
4468	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
4469	ASSERT_BO_WLOCKED(bo);
4470	error = 0;
4471	while (bo->bo_numoutput) {
4472		bo->bo_flag |= BO_WWAIT;
4473		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
4474		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
4475		if (error)
4476			break;
4477	}
4478	return (error);
4479}
4480
4481void
4482bpin(struct buf *bp)
4483{
4484	struct mtx *mtxp;
4485
4486	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4487	mtx_lock(mtxp);
4488	bp->b_pin_count++;
4489	mtx_unlock(mtxp);
4490}
4491
4492void
4493bunpin(struct buf *bp)
4494{
4495	struct mtx *mtxp;
4496
4497	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4498	mtx_lock(mtxp);
4499	if (--bp->b_pin_count == 0)
4500		wakeup(bp);
4501	mtx_unlock(mtxp);
4502}
4503
4504void
4505bunpin_wait(struct buf *bp)
4506{
4507	struct mtx *mtxp;
4508
4509	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4510	mtx_lock(mtxp);
4511	while (bp->b_pin_count > 0)
4512		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4513	mtx_unlock(mtxp);
4514}
4515
4516/*
4517 * Set bio_data or bio_ma for struct bio from the struct buf.
4518 */
4519void
4520bdata2bio(struct buf *bp, struct bio *bip)
4521{
4522
4523	if ((bp->b_flags & B_UNMAPPED) != 0) {
4524		KASSERT(unmapped_buf_allowed, ("unmapped"));
4525		bip->bio_ma = bp->b_pages;
4526		bip->bio_ma_n = bp->b_npages;
4527		bip->bio_data = unmapped_buf;
4528		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
4529		bip->bio_flags |= BIO_UNMAPPED;
4530		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
4531		    PAGE_SIZE == bp->b_npages,
4532		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
4533		    (long long)bip->bio_length, bip->bio_ma_n));
4534	} else {
4535		bip->bio_data = bp->b_data;
4536		bip->bio_ma = NULL;
4537	}
4538}
4539
4540#include "opt_ddb.h"
4541#ifdef DDB
4542#include <ddb/ddb.h>
4543
4544/* DDB command to show buffer data */
4545DB_SHOW_COMMAND(buffer, db_show_buffer)
4546{
4547	/* get args */
4548	struct buf *bp = (struct buf *)addr;
4549
4550	if (!have_addr) {
4551		db_printf("usage: show buffer <addr>\n");
4552		return;
4553	}
4554
4555	db_printf("buf at %p\n", bp);
4556	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
4557	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
4558	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
4559	db_printf(
4560	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4561	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
4562	    "b_dep = %p\n",
4563	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4564	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4565	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
4566	if (bp->b_npages) {
4567		int i;
4568		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4569		for (i = 0; i < bp->b_npages; i++) {
4570			vm_page_t m;
4571			m = bp->b_pages[i];
4572			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4573			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4574			if ((i + 1) < bp->b_npages)
4575				db_printf(",");
4576		}
4577		db_printf("\n");
4578	}
4579	db_printf(" ");
4580	BUF_LOCKPRINTINFO(bp);
4581}
4582
4583DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4584{
4585	struct buf *bp;
4586	int i;
4587
4588	for (i = 0; i < nbuf; i++) {
4589		bp = &buf[i];
4590		if (BUF_ISLOCKED(bp)) {
4591			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4592			db_printf("\n");
4593		}
4594	}
4595}
4596
4597DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4598{
4599	struct vnode *vp;
4600	struct buf *bp;
4601
4602	if (!have_addr) {
4603		db_printf("usage: show vnodebufs <addr>\n");
4604		return;
4605	}
4606	vp = (struct vnode *)addr;
4607	db_printf("Clean buffers:\n");
4608	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4609		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4610		db_printf("\n");
4611	}
4612	db_printf("Dirty buffers:\n");
4613	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4614		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4615		db_printf("\n");
4616	}
4617}
4618
4619DB_COMMAND(countfreebufs, db_coundfreebufs)
4620{
4621	struct buf *bp;
4622	int i, used = 0, nfree = 0;
4623
4624	if (have_addr) {
4625		db_printf("usage: countfreebufs\n");
4626		return;
4627	}
4628
4629	for (i = 0; i < nbuf; i++) {
4630		bp = &buf[i];
4631		if ((bp->b_flags & B_INFREECNT) != 0)
4632			nfree++;
4633		else
4634			used++;
4635	}
4636
4637	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
4638	    nfree + used);
4639	db_printf("numfreebuffers is %d\n", numfreebuffers);
4640}
4641#endif /* DDB */
4642