uipc_usrreq.c revision 339068
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2004-2009 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * UNIX Domain (Local) Sockets
36 *
37 * This is an implementation of UNIX (local) domain sockets.  Each socket has
38 * an associated struct unpcb (UNIX protocol control block).  Stream sockets
39 * may be connected to 0 or 1 other socket.  Datagram sockets may be
40 * connected to 0, 1, or many other sockets.  Sockets may be created and
41 * connected in pairs (socketpair(2)), or bound/connected to using the file
42 * system name space.  For most purposes, only the receive socket buffer is
43 * used, as sending on one socket delivers directly to the receive socket
44 * buffer of a second socket.
45 *
46 * The implementation is substantially complicated by the fact that
47 * "ancillary data", such as file descriptors or credentials, may be passed
48 * across UNIX domain sockets.  The potential for passing UNIX domain sockets
49 * over other UNIX domain sockets requires the implementation of a simple
50 * garbage collector to find and tear down cycles of disconnected sockets.
51 *
52 * TODO:
53 *	RDM
54 *	rethink name space problems
55 *	need a proper out-of-band
56 */
57
58#include <sys/cdefs.h>
59__FBSDID("$FreeBSD: stable/10/sys/kern/uipc_usrreq.c 339068 2018-10-01 18:00:52Z asomers $");
60
61#include "opt_ddb.h"
62
63#include <sys/param.h>
64#include <sys/capsicum.h>
65#include <sys/domain.h>
66#include <sys/fcntl.h>
67#include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68#include <sys/eventhandler.h>
69#include <sys/file.h>
70#include <sys/filedesc.h>
71#include <sys/kernel.h>
72#include <sys/lock.h>
73#include <sys/mbuf.h>
74#include <sys/mount.h>
75#include <sys/mutex.h>
76#include <sys/namei.h>
77#include <sys/proc.h>
78#include <sys/protosw.h>
79#include <sys/queue.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/socket.h>
83#include <sys/socketvar.h>
84#include <sys/signalvar.h>
85#include <sys/stat.h>
86#include <sys/sx.h>
87#include <sys/sysctl.h>
88#include <sys/systm.h>
89#include <sys/taskqueue.h>
90#include <sys/un.h>
91#include <sys/unpcb.h>
92#include <sys/vnode.h>
93
94#include <net/vnet.h>
95
96#ifdef DDB
97#include <ddb/ddb.h>
98#endif
99
100#include <security/mac/mac_framework.h>
101
102#include <vm/uma.h>
103
104MALLOC_DECLARE(M_FILECAPS);
105
106/*
107 * Locking key:
108 * (l)	Locked using list lock
109 * (g)	Locked using linkage lock
110 */
111
112static uma_zone_t	unp_zone;
113static unp_gen_t	unp_gencnt;	/* (l) */
114static u_int		unp_count;	/* (l) Count of local sockets. */
115static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
116static int		unp_rights;	/* (g) File descriptors in flight. */
117static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
118static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
119static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
120
121struct unp_defer {
122	SLIST_ENTRY(unp_defer) ud_link;
123	struct file *ud_fp;
124};
125static SLIST_HEAD(, unp_defer) unp_defers;
126static int unp_defers_count;
127
128static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
129
130/*
131 * Garbage collection of cyclic file descriptor/socket references occurs
132 * asynchronously in a taskqueue context in order to avoid recursion and
133 * reentrance in the UNIX domain socket, file descriptor, and socket layer
134 * code.  See unp_gc() for a full description.
135 */
136static struct timeout_task unp_gc_task;
137
138/*
139 * The close of unix domain sockets attached as SCM_RIGHTS is
140 * postponed to the taskqueue, to avoid arbitrary recursion depth.
141 * The attached sockets might have another sockets attached.
142 */
143static struct task	unp_defer_task;
144
145/*
146 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
147 * stream sockets, although the total for sender and receiver is actually
148 * only PIPSIZ.
149 *
150 * Datagram sockets really use the sendspace as the maximum datagram size,
151 * and don't really want to reserve the sendspace.  Their recvspace should be
152 * large enough for at least one max-size datagram plus address.
153 */
154#ifndef PIPSIZ
155#define	PIPSIZ	8192
156#endif
157static u_long	unpst_sendspace = PIPSIZ;
158static u_long	unpst_recvspace = PIPSIZ;
159static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
160static u_long	unpdg_recvspace = 4*1024;
161static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
162static u_long	unpsp_recvspace = PIPSIZ;
163
164static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
165static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
166    "SOCK_STREAM");
167static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
168static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
169    "SOCK_SEQPACKET");
170
171SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
172	   &unpst_sendspace, 0, "Default stream send space.");
173SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
174	   &unpst_recvspace, 0, "Default stream receive space.");
175SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
176	   &unpdg_sendspace, 0, "Default datagram send space.");
177SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
178	   &unpdg_recvspace, 0, "Default datagram receive space.");
179SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
180	   &unpsp_sendspace, 0, "Default seqpacket send space.");
181SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
182	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
183SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
184    "File descriptors in flight.");
185SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
186    &unp_defers_count, 0,
187    "File descriptors deferred to taskqueue for close.");
188
189/*
190 * Locking and synchronization:
191 *
192 * Three types of locks exit in the local domain socket implementation: a
193 * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
194 * global locks, the list lock protects the socket count, global generation
195 * number, and stream/datagram global lists.  The linkage lock protects the
196 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
197 * held exclusively over the acquisition of multiple unpcb locks to prevent
198 * deadlock.
199 *
200 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
201 * allocated in pru_attach() and freed in pru_detach().  The validity of that
202 * pointer is an invariant, so no lock is required to dereference the so_pcb
203 * pointer if a valid socket reference is held by the caller.  In practice,
204 * this is always true during operations performed on a socket.  Each unpcb
205 * has a back-pointer to its socket, unp_socket, which will be stable under
206 * the same circumstances.
207 *
208 * This pointer may only be safely dereferenced as long as a valid reference
209 * to the unpcb is held.  Typically, this reference will be from the socket,
210 * or from another unpcb when the referring unpcb's lock is held (in order
211 * that the reference not be invalidated during use).  For example, to follow
212 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
213 * as unp_socket remains valid as long as the reference to unp_conn is valid.
214 *
215 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
216 * atomic reads without the lock may be performed "lockless", but more
217 * complex reads and read-modify-writes require the mutex to be held.  No
218 * lock order is defined between unpcb locks -- multiple unpcb locks may be
219 * acquired at the same time only when holding the linkage rwlock
220 * exclusively, which prevents deadlocks.
221 *
222 * Blocking with UNIX domain sockets is a tricky issue: unlike most network
223 * protocols, bind() is a non-atomic operation, and connect() requires
224 * potential sleeping in the protocol, due to potentially waiting on local or
225 * distributed file systems.  We try to separate "lookup" operations, which
226 * may sleep, and the IPC operations themselves, which typically can occur
227 * with relative atomicity as locks can be held over the entire operation.
228 *
229 * Another tricky issue is simultaneous multi-threaded or multi-process
230 * access to a single UNIX domain socket.  These are handled by the flags
231 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
232 * binding, both of which involve dropping UNIX domain socket locks in order
233 * to perform namei() and other file system operations.
234 */
235static struct rwlock	unp_link_rwlock;
236static struct mtx	unp_list_lock;
237static struct mtx	unp_defers_lock;
238
239#define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
240					    "unp_link_rwlock")
241
242#define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
243					    RA_LOCKED)
244#define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
245					    RA_UNLOCKED)
246
247#define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
248#define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
249#define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
250#define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
251#define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
252					    RA_WLOCKED)
253
254#define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
255					    "unp_list_lock", NULL, MTX_DEF)
256#define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
257#define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
258
259#define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
260					    "unp_defer", NULL, MTX_DEF)
261#define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
262#define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
263
264#define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
265					    "unp_mtx", "unp_mtx",	\
266					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
267#define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
268#define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
269#define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
270#define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
271
272static int	uipc_connect2(struct socket *, struct socket *);
273static int	uipc_ctloutput(struct socket *, struct sockopt *);
274static int	unp_connect(struct socket *, struct sockaddr *,
275		    struct thread *);
276static int	unp_connectat(int, struct socket *, struct sockaddr *,
277		    struct thread *);
278static int	unp_connect2(struct socket *so, struct socket *so2, int);
279static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
280static void	unp_dispose(struct mbuf *);
281static void	unp_shutdown(struct unpcb *);
282static void	unp_drop(struct unpcb *, int);
283static void	unp_gc(__unused void *, int);
284static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
285static void	unp_discard(struct file *);
286static void	unp_freerights(struct filedescent **, int);
287static void	unp_init(void);
288static int	unp_internalize(struct mbuf **, struct thread *);
289static void	unp_internalize_fp(struct file *);
290static int	unp_externalize(struct mbuf *, struct mbuf **, int);
291static int	unp_externalize_fp(struct file *);
292static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
293static void	unp_process_defers(void * __unused, int);
294
295/*
296 * Definitions of protocols supported in the LOCAL domain.
297 */
298static struct domain localdomain;
299static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
300static struct pr_usrreqs uipc_usrreqs_seqpacket;
301static struct protosw localsw[] = {
302{
303	.pr_type =		SOCK_STREAM,
304	.pr_domain =		&localdomain,
305	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
306	.pr_ctloutput =		&uipc_ctloutput,
307	.pr_usrreqs =		&uipc_usrreqs_stream
308},
309{
310	.pr_type =		SOCK_DGRAM,
311	.pr_domain =		&localdomain,
312	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
313	.pr_ctloutput =		&uipc_ctloutput,
314	.pr_usrreqs =		&uipc_usrreqs_dgram
315},
316{
317	.pr_type =		SOCK_SEQPACKET,
318	.pr_domain =		&localdomain,
319
320	/*
321	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
322	 * due to our use of sbappendaddr.  A new sbappend variants is needed
323	 * that supports both atomic record writes and control data.
324	 */
325	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
326				    PR_RIGHTS,
327	.pr_ctloutput =		&uipc_ctloutput,
328	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
329},
330};
331
332static struct domain localdomain = {
333	.dom_family =		AF_LOCAL,
334	.dom_name =		"local",
335	.dom_init =		unp_init,
336	.dom_externalize =	unp_externalize,
337	.dom_dispose =		unp_dispose,
338	.dom_protosw =		localsw,
339	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
340};
341DOMAIN_SET(local);
342
343static void
344uipc_abort(struct socket *so)
345{
346	struct unpcb *unp, *unp2;
347
348	unp = sotounpcb(so);
349	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
350
351	UNP_LINK_WLOCK();
352	UNP_PCB_LOCK(unp);
353	unp2 = unp->unp_conn;
354	if (unp2 != NULL) {
355		UNP_PCB_LOCK(unp2);
356		unp_drop(unp2, ECONNABORTED);
357		UNP_PCB_UNLOCK(unp2);
358	}
359	UNP_PCB_UNLOCK(unp);
360	UNP_LINK_WUNLOCK();
361}
362
363static int
364uipc_accept(struct socket *so, struct sockaddr **nam)
365{
366	struct unpcb *unp, *unp2;
367	const struct sockaddr *sa;
368
369	/*
370	 * Pass back name of connected socket, if it was bound and we are
371	 * still connected (our peer may have closed already!).
372	 */
373	unp = sotounpcb(so);
374	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
375
376	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
377	UNP_LINK_RLOCK();
378	unp2 = unp->unp_conn;
379	if (unp2 != NULL && unp2->unp_addr != NULL) {
380		UNP_PCB_LOCK(unp2);
381		sa = (struct sockaddr *) unp2->unp_addr;
382		bcopy(sa, *nam, sa->sa_len);
383		UNP_PCB_UNLOCK(unp2);
384	} else {
385		sa = &sun_noname;
386		bcopy(sa, *nam, sa->sa_len);
387	}
388	UNP_LINK_RUNLOCK();
389	return (0);
390}
391
392static int
393uipc_attach(struct socket *so, int proto, struct thread *td)
394{
395	u_long sendspace, recvspace;
396	struct unpcb *unp;
397	int error;
398
399	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
400	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
401		switch (so->so_type) {
402		case SOCK_STREAM:
403			sendspace = unpst_sendspace;
404			recvspace = unpst_recvspace;
405			break;
406
407		case SOCK_DGRAM:
408			sendspace = unpdg_sendspace;
409			recvspace = unpdg_recvspace;
410			break;
411
412		case SOCK_SEQPACKET:
413			sendspace = unpsp_sendspace;
414			recvspace = unpsp_recvspace;
415			break;
416
417		default:
418			panic("uipc_attach");
419		}
420		error = soreserve(so, sendspace, recvspace);
421		if (error)
422			return (error);
423	}
424	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
425	if (unp == NULL)
426		return (ENOBUFS);
427	LIST_INIT(&unp->unp_refs);
428	UNP_PCB_LOCK_INIT(unp);
429	unp->unp_socket = so;
430	so->so_pcb = unp;
431	unp->unp_refcount = 1;
432	if (so->so_head != NULL)
433		unp->unp_flags |= UNP_NASCENT;
434
435	UNP_LIST_LOCK();
436	unp->unp_gencnt = ++unp_gencnt;
437	unp_count++;
438	switch (so->so_type) {
439	case SOCK_STREAM:
440		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
441		break;
442
443	case SOCK_DGRAM:
444		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
445		break;
446
447	case SOCK_SEQPACKET:
448		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
449		break;
450
451	default:
452		panic("uipc_attach");
453	}
454	UNP_LIST_UNLOCK();
455
456	return (0);
457}
458
459static int
460uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
461{
462	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
463	struct vattr vattr;
464	int error, namelen;
465	struct nameidata nd;
466	struct unpcb *unp;
467	struct vnode *vp;
468	struct mount *mp;
469	cap_rights_t rights;
470	char *buf;
471
472	if (nam->sa_family != AF_UNIX)
473		return (EAFNOSUPPORT);
474
475	unp = sotounpcb(so);
476	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
477
478	if (soun->sun_len > sizeof(struct sockaddr_un))
479		return (EINVAL);
480	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
481	if (namelen <= 0)
482		return (EINVAL);
483
484	/*
485	 * We don't allow simultaneous bind() calls on a single UNIX domain
486	 * socket, so flag in-progress operations, and return an error if an
487	 * operation is already in progress.
488	 *
489	 * Historically, we have not allowed a socket to be rebound, so this
490	 * also returns an error.  Not allowing re-binding simplifies the
491	 * implementation and avoids a great many possible failure modes.
492	 */
493	UNP_PCB_LOCK(unp);
494	if (unp->unp_vnode != NULL) {
495		UNP_PCB_UNLOCK(unp);
496		return (EINVAL);
497	}
498	if (unp->unp_flags & UNP_BINDING) {
499		UNP_PCB_UNLOCK(unp);
500		return (EALREADY);
501	}
502	unp->unp_flags |= UNP_BINDING;
503	UNP_PCB_UNLOCK(unp);
504
505	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
506	bcopy(soun->sun_path, buf, namelen);
507	buf[namelen] = 0;
508
509restart:
510	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
511	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
512/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
513	error = namei(&nd);
514	if (error)
515		goto error;
516	vp = nd.ni_vp;
517	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
518		NDFREE(&nd, NDF_ONLY_PNBUF);
519		if (nd.ni_dvp == vp)
520			vrele(nd.ni_dvp);
521		else
522			vput(nd.ni_dvp);
523		if (vp != NULL) {
524			vrele(vp);
525			error = EADDRINUSE;
526			goto error;
527		}
528		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
529		if (error)
530			goto error;
531		goto restart;
532	}
533	VATTR_NULL(&vattr);
534	vattr.va_type = VSOCK;
535	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
536#ifdef MAC
537	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
538	    &vattr);
539#endif
540	if (error == 0)
541		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
542	NDFREE(&nd, NDF_ONLY_PNBUF);
543	vput(nd.ni_dvp);
544	if (error) {
545		vn_finished_write(mp);
546		goto error;
547	}
548	vp = nd.ni_vp;
549	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
550	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
551
552	UNP_LINK_WLOCK();
553	UNP_PCB_LOCK(unp);
554	VOP_UNP_BIND(vp, unp->unp_socket);
555	unp->unp_vnode = vp;
556	unp->unp_addr = soun;
557	unp->unp_flags &= ~UNP_BINDING;
558	UNP_PCB_UNLOCK(unp);
559	UNP_LINK_WUNLOCK();
560	VOP_UNLOCK(vp, 0);
561	vn_finished_write(mp);
562	free(buf, M_TEMP);
563	return (0);
564
565error:
566	UNP_PCB_LOCK(unp);
567	unp->unp_flags &= ~UNP_BINDING;
568	UNP_PCB_UNLOCK(unp);
569	free(buf, M_TEMP);
570	return (error);
571}
572
573static int
574uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
575{
576
577	return (uipc_bindat(AT_FDCWD, so, nam, td));
578}
579
580static int
581uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
582{
583	int error;
584
585	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
586	UNP_LINK_WLOCK();
587	error = unp_connect(so, nam, td);
588	UNP_LINK_WUNLOCK();
589	return (error);
590}
591
592static int
593uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
594    struct thread *td)
595{
596	int error;
597
598	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
599	UNP_LINK_WLOCK();
600	error = unp_connectat(fd, so, nam, td);
601	UNP_LINK_WUNLOCK();
602	return (error);
603}
604
605static void
606uipc_close(struct socket *so)
607{
608	struct unpcb *unp, *unp2;
609
610	unp = sotounpcb(so);
611	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
612
613	UNP_LINK_WLOCK();
614	UNP_PCB_LOCK(unp);
615	unp2 = unp->unp_conn;
616	if (unp2 != NULL) {
617		UNP_PCB_LOCK(unp2);
618		unp_disconnect(unp, unp2);
619		UNP_PCB_UNLOCK(unp2);
620	}
621	UNP_PCB_UNLOCK(unp);
622	UNP_LINK_WUNLOCK();
623}
624
625static int
626uipc_connect2(struct socket *so1, struct socket *so2)
627{
628	struct unpcb *unp, *unp2;
629	int error;
630
631	UNP_LINK_WLOCK();
632	unp = so1->so_pcb;
633	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
634	UNP_PCB_LOCK(unp);
635	unp2 = so2->so_pcb;
636	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
637	UNP_PCB_LOCK(unp2);
638	error = unp_connect2(so1, so2, PRU_CONNECT2);
639	UNP_PCB_UNLOCK(unp2);
640	UNP_PCB_UNLOCK(unp);
641	UNP_LINK_WUNLOCK();
642	return (error);
643}
644
645static void
646uipc_detach(struct socket *so)
647{
648	struct unpcb *unp, *unp2;
649	struct sockaddr_un *saved_unp_addr;
650	struct vnode *vp;
651	int freeunp, local_unp_rights;
652
653	unp = sotounpcb(so);
654	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
655
656	vp = NULL;
657	local_unp_rights = 0;
658
659	UNP_LIST_LOCK();
660	LIST_REMOVE(unp, unp_link);
661	unp->unp_gencnt = ++unp_gencnt;
662	--unp_count;
663	UNP_LIST_UNLOCK();
664
665	if ((unp->unp_flags & UNP_NASCENT) != 0) {
666		UNP_PCB_LOCK(unp);
667		goto teardown;
668	}
669	UNP_LINK_WLOCK();
670	UNP_PCB_LOCK(unp);
671
672	/*
673	 * XXXRW: Should assert vp->v_socket == so.
674	 */
675	if ((vp = unp->unp_vnode) != NULL) {
676		VOP_UNP_DETACH(vp);
677		unp->unp_vnode = NULL;
678	}
679	unp2 = unp->unp_conn;
680	if (unp2 != NULL) {
681		UNP_PCB_LOCK(unp2);
682		unp_disconnect(unp, unp2);
683		UNP_PCB_UNLOCK(unp2);
684	}
685
686	/*
687	 * We hold the linkage lock exclusively, so it's OK to acquire
688	 * multiple pcb locks at a time.
689	 */
690	while (!LIST_EMPTY(&unp->unp_refs)) {
691		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
692
693		UNP_PCB_LOCK(ref);
694		unp_drop(ref, ECONNRESET);
695		UNP_PCB_UNLOCK(ref);
696	}
697	local_unp_rights = unp_rights;
698	UNP_LINK_WUNLOCK();
699teardown:
700	unp->unp_socket->so_pcb = NULL;
701	saved_unp_addr = unp->unp_addr;
702	unp->unp_addr = NULL;
703	unp->unp_refcount--;
704	freeunp = (unp->unp_refcount == 0);
705	if (saved_unp_addr != NULL)
706		free(saved_unp_addr, M_SONAME);
707	if (freeunp) {
708		UNP_PCB_LOCK_DESTROY(unp);
709		uma_zfree(unp_zone, unp);
710	} else
711		UNP_PCB_UNLOCK(unp);
712	if (vp)
713		vrele(vp);
714	if (local_unp_rights)
715		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
716}
717
718static int
719uipc_disconnect(struct socket *so)
720{
721	struct unpcb *unp, *unp2;
722
723	unp = sotounpcb(so);
724	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
725
726	UNP_LINK_WLOCK();
727	UNP_PCB_LOCK(unp);
728	unp2 = unp->unp_conn;
729	if (unp2 != NULL) {
730		UNP_PCB_LOCK(unp2);
731		unp_disconnect(unp, unp2);
732		UNP_PCB_UNLOCK(unp2);
733	}
734	UNP_PCB_UNLOCK(unp);
735	UNP_LINK_WUNLOCK();
736	return (0);
737}
738
739static int
740uipc_listen(struct socket *so, int backlog, struct thread *td)
741{
742	struct unpcb *unp;
743	int error;
744
745	unp = sotounpcb(so);
746	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
747
748	UNP_PCB_LOCK(unp);
749	if (unp->unp_vnode == NULL) {
750		UNP_PCB_UNLOCK(unp);
751		return (EINVAL);
752	}
753
754	SOCK_LOCK(so);
755	error = solisten_proto_check(so);
756	if (error == 0) {
757		cru2x(td->td_ucred, &unp->unp_peercred);
758		unp->unp_flags |= UNP_HAVEPCCACHED;
759		solisten_proto(so, backlog);
760	}
761	SOCK_UNLOCK(so);
762	UNP_PCB_UNLOCK(unp);
763	return (error);
764}
765
766static int
767uipc_peeraddr(struct socket *so, struct sockaddr **nam)
768{
769	struct unpcb *unp, *unp2;
770	const struct sockaddr *sa;
771
772	unp = sotounpcb(so);
773	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
774
775	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
776	UNP_LINK_RLOCK();
777	/*
778	 * XXX: It seems that this test always fails even when connection is
779	 * established.  So, this else clause is added as workaround to
780	 * return PF_LOCAL sockaddr.
781	 */
782	unp2 = unp->unp_conn;
783	if (unp2 != NULL) {
784		UNP_PCB_LOCK(unp2);
785		if (unp2->unp_addr != NULL)
786			sa = (struct sockaddr *) unp2->unp_addr;
787		else
788			sa = &sun_noname;
789		bcopy(sa, *nam, sa->sa_len);
790		UNP_PCB_UNLOCK(unp2);
791	} else {
792		sa = &sun_noname;
793		bcopy(sa, *nam, sa->sa_len);
794	}
795	UNP_LINK_RUNLOCK();
796	return (0);
797}
798
799static int
800uipc_rcvd(struct socket *so, int flags)
801{
802	struct unpcb *unp, *unp2;
803	struct socket *so2;
804	u_int mbcnt, sbcc;
805
806	unp = sotounpcb(so);
807	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
808
809	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
810		panic("uipc_rcvd socktype %d", so->so_type);
811
812	/*
813	 * Adjust backpressure on sender and wakeup any waiting to write.
814	 *
815	 * The unp lock is acquired to maintain the validity of the unp_conn
816	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
817	 * static as long as we don't permit unp2 to disconnect from unp,
818	 * which is prevented by the lock on unp.  We cache values from
819	 * so_rcv to avoid holding the so_rcv lock over the entire
820	 * transaction on the remote so_snd.
821	 */
822	SOCKBUF_LOCK(&so->so_rcv);
823	mbcnt = so->so_rcv.sb_mbcnt;
824	sbcc = so->so_rcv.sb_cc;
825	SOCKBUF_UNLOCK(&so->so_rcv);
826	/*
827	 * There is a benign race condition at this point.  If we're planning to
828	 * clear SB_STOP, but uipc_send is called on the connected socket at
829	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
830	 * we would erroneously clear SB_STOP below, even though the sockbuf is
831	 * full.  The race is benign because the only ill effect is to allow the
832	 * sockbuf to exceed its size limit, and the size limits are not
833	 * strictly guaranteed anyway.
834	 */
835	UNP_PCB_LOCK(unp);
836	unp2 = unp->unp_conn;
837	if (unp2 == NULL) {
838		UNP_PCB_UNLOCK(unp);
839		return (0);
840	}
841	so2 = unp2->unp_socket;
842	SOCKBUF_LOCK(&so2->so_snd);
843	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
844		so2->so_snd.sb_flags &= ~SB_STOP;
845	sowwakeup_locked(so2);
846	UNP_PCB_UNLOCK(unp);
847	return (0);
848}
849
850static int
851uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
852    struct mbuf *control, struct thread *td)
853{
854	struct unpcb *unp, *unp2;
855	struct socket *so2;
856	u_int mbcnt, sbcc;
857	int error = 0;
858
859	unp = sotounpcb(so);
860	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
861
862	if (flags & PRUS_OOB) {
863		error = EOPNOTSUPP;
864		goto release;
865	}
866	if (control != NULL && (error = unp_internalize(&control, td)))
867		goto release;
868	if ((nam != NULL) || (flags & PRUS_EOF))
869		UNP_LINK_WLOCK();
870	else
871		UNP_LINK_RLOCK();
872	switch (so->so_type) {
873	case SOCK_DGRAM:
874	{
875		const struct sockaddr *from;
876
877		unp2 = unp->unp_conn;
878		if (nam != NULL) {
879			UNP_LINK_WLOCK_ASSERT();
880			if (unp2 != NULL) {
881				error = EISCONN;
882				break;
883			}
884			error = unp_connect(so, nam, td);
885			if (error)
886				break;
887			unp2 = unp->unp_conn;
888		}
889
890		/*
891		 * Because connect() and send() are non-atomic in a sendto()
892		 * with a target address, it's possible that the socket will
893		 * have disconnected before the send() can run.  In that case
894		 * return the slightly counter-intuitive but otherwise
895		 * correct error that the socket is not connected.
896		 */
897		if (unp2 == NULL) {
898			error = ENOTCONN;
899			break;
900		}
901		/* Lockless read. */
902		if (unp2->unp_flags & UNP_WANTCRED)
903			control = unp_addsockcred(td, control);
904		UNP_PCB_LOCK(unp);
905		if (unp->unp_addr != NULL)
906			from = (struct sockaddr *)unp->unp_addr;
907		else
908			from = &sun_noname;
909		so2 = unp2->unp_socket;
910		SOCKBUF_LOCK(&so2->so_rcv);
911		if (sbappendaddr_locked(&so2->so_rcv, from, m,
912		    control)) {
913			sorwakeup_locked(so2);
914			m = NULL;
915			control = NULL;
916		} else {
917			SOCKBUF_UNLOCK(&so2->so_rcv);
918			error = ENOBUFS;
919		}
920		if (nam != NULL) {
921			UNP_LINK_WLOCK_ASSERT();
922			UNP_PCB_LOCK(unp2);
923			unp_disconnect(unp, unp2);
924			UNP_PCB_UNLOCK(unp2);
925		}
926		UNP_PCB_UNLOCK(unp);
927		break;
928	}
929
930	case SOCK_SEQPACKET:
931	case SOCK_STREAM:
932		if ((so->so_state & SS_ISCONNECTED) == 0) {
933			if (nam != NULL) {
934				UNP_LINK_WLOCK_ASSERT();
935				error = unp_connect(so, nam, td);
936				if (error)
937					break;	/* XXX */
938			} else {
939				error = ENOTCONN;
940				break;
941			}
942		}
943
944		/* Lockless read. */
945		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
946			error = EPIPE;
947			break;
948		}
949
950		/*
951		 * Because connect() and send() are non-atomic in a sendto()
952		 * with a target address, it's possible that the socket will
953		 * have disconnected before the send() can run.  In that case
954		 * return the slightly counter-intuitive but otherwise
955		 * correct error that the socket is not connected.
956		 *
957		 * Locking here must be done carefully: the linkage lock
958		 * prevents interconnections between unpcbs from changing, so
959		 * we can traverse from unp to unp2 without acquiring unp's
960		 * lock.  Socket buffer locks follow unpcb locks, so we can
961		 * acquire both remote and lock socket buffer locks.
962		 */
963		unp2 = unp->unp_conn;
964		if (unp2 == NULL) {
965			error = ENOTCONN;
966			break;
967		}
968		so2 = unp2->unp_socket;
969		UNP_PCB_LOCK(unp2);
970		SOCKBUF_LOCK(&so2->so_rcv);
971		if (unp2->unp_flags & UNP_WANTCRED) {
972			/*
973			 * Credentials are passed only once on SOCK_STREAM
974			 * and SOCK_SEQPACKET.
975			 */
976			unp2->unp_flags &= ~UNP_WANTCRED;
977			control = unp_addsockcred(td, control);
978		}
979		/*
980		 * Send to paired receive port, and then reduce send buffer
981		 * hiwater marks to maintain backpressure.  Wake up readers.
982		 */
983		switch (so->so_type) {
984		case SOCK_STREAM:
985			if (control != NULL) {
986				if (sbappendcontrol_locked(&so2->so_rcv, m,
987				    control))
988					control = NULL;
989			} else
990				sbappend_locked(&so2->so_rcv, m);
991			break;
992
993		case SOCK_SEQPACKET: {
994			const struct sockaddr *from;
995
996			from = &sun_noname;
997			/*
998			 * Don't check for space available in so2->so_rcv.
999			 * Unix domain sockets only check for space in the
1000			 * sending sockbuf, and that check is performed one
1001			 * level up the stack.
1002			 */
1003			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1004				from, m, control))
1005				control = NULL;
1006			break;
1007			}
1008		}
1009
1010		mbcnt = so2->so_rcv.sb_mbcnt;
1011		sbcc = so2->so_rcv.sb_cc;
1012		sorwakeup_locked(so2);
1013
1014		/*
1015		 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1016		 * it would be possible for uipc_rcvd to be called at this
1017		 * point, drain the receiving sockbuf, clear SB_STOP, and then
1018		 * we would set SB_STOP below.  That could lead to an empty
1019		 * sockbuf having SB_STOP set
1020		 */
1021		SOCKBUF_LOCK(&so->so_snd);
1022		if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1023			so->so_snd.sb_flags |= SB_STOP;
1024		SOCKBUF_UNLOCK(&so->so_snd);
1025		UNP_PCB_UNLOCK(unp2);
1026		m = NULL;
1027		break;
1028
1029	default:
1030		panic("uipc_send unknown socktype");
1031	}
1032
1033	/*
1034	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1035	 */
1036	if (flags & PRUS_EOF) {
1037		UNP_PCB_LOCK(unp);
1038		socantsendmore(so);
1039		unp_shutdown(unp);
1040		UNP_PCB_UNLOCK(unp);
1041	}
1042
1043	if ((nam != NULL) || (flags & PRUS_EOF))
1044		UNP_LINK_WUNLOCK();
1045	else
1046		UNP_LINK_RUNLOCK();
1047
1048	if (control != NULL && error != 0)
1049		unp_dispose(control);
1050
1051release:
1052	if (control != NULL)
1053		m_freem(control);
1054	if (m != NULL)
1055		m_freem(m);
1056	return (error);
1057}
1058
1059static int
1060uipc_sense(struct socket *so, struct stat *sb)
1061{
1062	struct unpcb *unp;
1063
1064	unp = sotounpcb(so);
1065	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1066
1067	sb->st_blksize = so->so_snd.sb_hiwat;
1068	UNP_PCB_LOCK(unp);
1069	sb->st_dev = NODEV;
1070	if (unp->unp_ino == 0)
1071		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1072	sb->st_ino = unp->unp_ino;
1073	UNP_PCB_UNLOCK(unp);
1074	return (0);
1075}
1076
1077static int
1078uipc_shutdown(struct socket *so)
1079{
1080	struct unpcb *unp;
1081
1082	unp = sotounpcb(so);
1083	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1084
1085	UNP_LINK_WLOCK();
1086	UNP_PCB_LOCK(unp);
1087	socantsendmore(so);
1088	unp_shutdown(unp);
1089	UNP_PCB_UNLOCK(unp);
1090	UNP_LINK_WUNLOCK();
1091	return (0);
1092}
1093
1094static int
1095uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1096{
1097	struct unpcb *unp;
1098	const struct sockaddr *sa;
1099
1100	unp = sotounpcb(so);
1101	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1102
1103	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1104	UNP_PCB_LOCK(unp);
1105	if (unp->unp_addr != NULL)
1106		sa = (struct sockaddr *) unp->unp_addr;
1107	else
1108		sa = &sun_noname;
1109	bcopy(sa, *nam, sa->sa_len);
1110	UNP_PCB_UNLOCK(unp);
1111	return (0);
1112}
1113
1114static struct pr_usrreqs uipc_usrreqs_dgram = {
1115	.pru_abort = 		uipc_abort,
1116	.pru_accept =		uipc_accept,
1117	.pru_attach =		uipc_attach,
1118	.pru_bind =		uipc_bind,
1119	.pru_bindat =		uipc_bindat,
1120	.pru_connect =		uipc_connect,
1121	.pru_connectat =	uipc_connectat,
1122	.pru_connect2 =		uipc_connect2,
1123	.pru_detach =		uipc_detach,
1124	.pru_disconnect =	uipc_disconnect,
1125	.pru_listen =		uipc_listen,
1126	.pru_peeraddr =		uipc_peeraddr,
1127	.pru_rcvd =		uipc_rcvd,
1128	.pru_send =		uipc_send,
1129	.pru_sense =		uipc_sense,
1130	.pru_shutdown =		uipc_shutdown,
1131	.pru_sockaddr =		uipc_sockaddr,
1132	.pru_soreceive =	soreceive_dgram,
1133	.pru_close =		uipc_close,
1134};
1135
1136static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1137	.pru_abort =		uipc_abort,
1138	.pru_accept =		uipc_accept,
1139	.pru_attach =		uipc_attach,
1140	.pru_bind =		uipc_bind,
1141	.pru_bindat =		uipc_bindat,
1142	.pru_connect =		uipc_connect,
1143	.pru_connectat =	uipc_connectat,
1144	.pru_connect2 =		uipc_connect2,
1145	.pru_detach =		uipc_detach,
1146	.pru_disconnect =	uipc_disconnect,
1147	.pru_listen =		uipc_listen,
1148	.pru_peeraddr =		uipc_peeraddr,
1149	.pru_rcvd =		uipc_rcvd,
1150	.pru_send =		uipc_send,
1151	.pru_sense =		uipc_sense,
1152	.pru_shutdown =		uipc_shutdown,
1153	.pru_sockaddr =		uipc_sockaddr,
1154	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1155	.pru_close =		uipc_close,
1156};
1157
1158static struct pr_usrreqs uipc_usrreqs_stream = {
1159	.pru_abort = 		uipc_abort,
1160	.pru_accept =		uipc_accept,
1161	.pru_attach =		uipc_attach,
1162	.pru_bind =		uipc_bind,
1163	.pru_bindat =		uipc_bindat,
1164	.pru_connect =		uipc_connect,
1165	.pru_connectat =	uipc_connectat,
1166	.pru_connect2 =		uipc_connect2,
1167	.pru_detach =		uipc_detach,
1168	.pru_disconnect =	uipc_disconnect,
1169	.pru_listen =		uipc_listen,
1170	.pru_peeraddr =		uipc_peeraddr,
1171	.pru_rcvd =		uipc_rcvd,
1172	.pru_send =		uipc_send,
1173	.pru_sense =		uipc_sense,
1174	.pru_shutdown =		uipc_shutdown,
1175	.pru_sockaddr =		uipc_sockaddr,
1176	.pru_soreceive =	soreceive_generic,
1177	.pru_close =		uipc_close,
1178};
1179
1180static int
1181uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1182{
1183	struct unpcb *unp;
1184	struct xucred xu;
1185	int error, optval;
1186
1187	if (sopt->sopt_level != 0)
1188		return (EINVAL);
1189
1190	unp = sotounpcb(so);
1191	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1192	error = 0;
1193	switch (sopt->sopt_dir) {
1194	case SOPT_GET:
1195		switch (sopt->sopt_name) {
1196		case LOCAL_PEERCRED:
1197			UNP_PCB_LOCK(unp);
1198			if (unp->unp_flags & UNP_HAVEPC)
1199				xu = unp->unp_peercred;
1200			else {
1201				if (so->so_type == SOCK_STREAM)
1202					error = ENOTCONN;
1203				else
1204					error = EINVAL;
1205			}
1206			UNP_PCB_UNLOCK(unp);
1207			if (error == 0)
1208				error = sooptcopyout(sopt, &xu, sizeof(xu));
1209			break;
1210
1211		case LOCAL_CREDS:
1212			/* Unlocked read. */
1213			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1214			error = sooptcopyout(sopt, &optval, sizeof(optval));
1215			break;
1216
1217		case LOCAL_CONNWAIT:
1218			/* Unlocked read. */
1219			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1220			error = sooptcopyout(sopt, &optval, sizeof(optval));
1221			break;
1222
1223		default:
1224			error = EOPNOTSUPP;
1225			break;
1226		}
1227		break;
1228
1229	case SOPT_SET:
1230		switch (sopt->sopt_name) {
1231		case LOCAL_CREDS:
1232		case LOCAL_CONNWAIT:
1233			error = sooptcopyin(sopt, &optval, sizeof(optval),
1234					    sizeof(optval));
1235			if (error)
1236				break;
1237
1238#define	OPTSET(bit) do {						\
1239	UNP_PCB_LOCK(unp);						\
1240	if (optval)							\
1241		unp->unp_flags |= bit;					\
1242	else								\
1243		unp->unp_flags &= ~bit;					\
1244	UNP_PCB_UNLOCK(unp);						\
1245} while (0)
1246
1247			switch (sopt->sopt_name) {
1248			case LOCAL_CREDS:
1249				OPTSET(UNP_WANTCRED);
1250				break;
1251
1252			case LOCAL_CONNWAIT:
1253				OPTSET(UNP_CONNWAIT);
1254				break;
1255
1256			default:
1257				break;
1258			}
1259			break;
1260#undef	OPTSET
1261		default:
1262			error = ENOPROTOOPT;
1263			break;
1264		}
1265		break;
1266
1267	default:
1268		error = EOPNOTSUPP;
1269		break;
1270	}
1271	return (error);
1272}
1273
1274static int
1275unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1276{
1277
1278	return (unp_connectat(AT_FDCWD, so, nam, td));
1279}
1280
1281static int
1282unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1283    struct thread *td)
1284{
1285	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1286	struct vnode *vp;
1287	struct socket *so2, *so3;
1288	struct unpcb *unp, *unp2, *unp3;
1289	struct nameidata nd;
1290	char buf[SOCK_MAXADDRLEN];
1291	struct sockaddr *sa;
1292	cap_rights_t rights;
1293	int error, len;
1294
1295	if (nam->sa_family != AF_UNIX)
1296		return (EAFNOSUPPORT);
1297
1298	UNP_LINK_WLOCK_ASSERT();
1299
1300	unp = sotounpcb(so);
1301	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1302
1303	if (nam->sa_len > sizeof(struct sockaddr_un))
1304		return (EINVAL);
1305	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1306	if (len <= 0)
1307		return (EINVAL);
1308	bcopy(soun->sun_path, buf, len);
1309	buf[len] = 0;
1310
1311	UNP_PCB_LOCK(unp);
1312	if (unp->unp_flags & UNP_CONNECTING) {
1313		UNP_PCB_UNLOCK(unp);
1314		return (EALREADY);
1315	}
1316	UNP_LINK_WUNLOCK();
1317	unp->unp_flags |= UNP_CONNECTING;
1318	UNP_PCB_UNLOCK(unp);
1319
1320	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1321	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1322	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1323	error = namei(&nd);
1324	if (error)
1325		vp = NULL;
1326	else
1327		vp = nd.ni_vp;
1328	ASSERT_VOP_LOCKED(vp, "unp_connect");
1329	NDFREE(&nd, NDF_ONLY_PNBUF);
1330	if (error)
1331		goto bad;
1332
1333	if (vp->v_type != VSOCK) {
1334		error = ENOTSOCK;
1335		goto bad;
1336	}
1337#ifdef MAC
1338	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1339	if (error)
1340		goto bad;
1341#endif
1342	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1343	if (error)
1344		goto bad;
1345
1346	unp = sotounpcb(so);
1347	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1348
1349	/*
1350	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1351	 * and to protect simultaneous locking of multiple pcbs.
1352	 */
1353	UNP_LINK_WLOCK();
1354	VOP_UNP_CONNECT(vp, &so2);
1355	if (so2 == NULL) {
1356		error = ECONNREFUSED;
1357		goto bad2;
1358	}
1359	if (so->so_type != so2->so_type) {
1360		error = EPROTOTYPE;
1361		goto bad2;
1362	}
1363	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1364		if (so2->so_options & SO_ACCEPTCONN) {
1365			CURVNET_SET(so2->so_vnet);
1366			so3 = sonewconn(so2, 0);
1367			CURVNET_RESTORE();
1368		} else
1369			so3 = NULL;
1370		if (so3 == NULL) {
1371			error = ECONNREFUSED;
1372			goto bad2;
1373		}
1374		unp = sotounpcb(so);
1375		unp2 = sotounpcb(so2);
1376		unp3 = sotounpcb(so3);
1377		UNP_PCB_LOCK(unp);
1378		UNP_PCB_LOCK(unp2);
1379		UNP_PCB_LOCK(unp3);
1380		if (unp2->unp_addr != NULL) {
1381			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1382			unp3->unp_addr = (struct sockaddr_un *) sa;
1383			sa = NULL;
1384		}
1385
1386		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1387		    ("unp_connect: listener without cached peercred"));
1388		unp_copy_peercred(td, unp3, unp, unp2);
1389
1390		UNP_PCB_UNLOCK(unp3);
1391		UNP_PCB_UNLOCK(unp2);
1392		UNP_PCB_UNLOCK(unp);
1393#ifdef MAC
1394		mac_socketpeer_set_from_socket(so, so3);
1395		mac_socketpeer_set_from_socket(so3, so);
1396#endif
1397
1398		so2 = so3;
1399	}
1400	unp = sotounpcb(so);
1401	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1402	unp2 = sotounpcb(so2);
1403	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1404	UNP_PCB_LOCK(unp);
1405	UNP_PCB_LOCK(unp2);
1406	error = unp_connect2(so, so2, PRU_CONNECT);
1407	UNP_PCB_UNLOCK(unp2);
1408	UNP_PCB_UNLOCK(unp);
1409bad2:
1410	UNP_LINK_WUNLOCK();
1411bad:
1412	if (vp != NULL)
1413		vput(vp);
1414	free(sa, M_SONAME);
1415	UNP_LINK_WLOCK();
1416	UNP_PCB_LOCK(unp);
1417	unp->unp_flags &= ~UNP_CONNECTING;
1418	UNP_PCB_UNLOCK(unp);
1419	return (error);
1420}
1421
1422/*
1423 * Set socket peer credentials at connection time.
1424 *
1425 * The client's PCB credentials are copied from its process structure.  The
1426 * server's PCB credentials are copied from the socket on which it called
1427 * listen(2).  uipc_listen cached that process's credentials at the time.
1428 */
1429void
1430unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
1431    struct unpcb *server_unp, struct unpcb *listen_unp)
1432{
1433	cru2x(td->td_ucred, &client_unp->unp_peercred);
1434	client_unp->unp_flags |= UNP_HAVEPC;
1435
1436	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
1437	    sizeof(server_unp->unp_peercred));
1438	server_unp->unp_flags |= UNP_HAVEPC;
1439	if (listen_unp->unp_flags & UNP_WANTCRED)
1440		client_unp->unp_flags |= UNP_WANTCRED;
1441}
1442
1443static int
1444unp_connect2(struct socket *so, struct socket *so2, int req)
1445{
1446	struct unpcb *unp;
1447	struct unpcb *unp2;
1448
1449	unp = sotounpcb(so);
1450	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1451	unp2 = sotounpcb(so2);
1452	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1453
1454	UNP_LINK_WLOCK_ASSERT();
1455	UNP_PCB_LOCK_ASSERT(unp);
1456	UNP_PCB_LOCK_ASSERT(unp2);
1457
1458	if (so2->so_type != so->so_type)
1459		return (EPROTOTYPE);
1460	unp2->unp_flags &= ~UNP_NASCENT;
1461	unp->unp_conn = unp2;
1462
1463	switch (so->so_type) {
1464	case SOCK_DGRAM:
1465		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1466		soisconnected(so);
1467		break;
1468
1469	case SOCK_STREAM:
1470	case SOCK_SEQPACKET:
1471		unp2->unp_conn = unp;
1472		if (req == PRU_CONNECT &&
1473		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1474			soisconnecting(so);
1475		else
1476			soisconnected(so);
1477		soisconnected(so2);
1478		break;
1479
1480	default:
1481		panic("unp_connect2");
1482	}
1483	return (0);
1484}
1485
1486static void
1487unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1488{
1489	struct socket *so;
1490
1491	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1492
1493	UNP_LINK_WLOCK_ASSERT();
1494	UNP_PCB_LOCK_ASSERT(unp);
1495	UNP_PCB_LOCK_ASSERT(unp2);
1496
1497	unp->unp_conn = NULL;
1498	switch (unp->unp_socket->so_type) {
1499	case SOCK_DGRAM:
1500		LIST_REMOVE(unp, unp_reflink);
1501		so = unp->unp_socket;
1502		SOCK_LOCK(so);
1503		so->so_state &= ~SS_ISCONNECTED;
1504		SOCK_UNLOCK(so);
1505		break;
1506
1507	case SOCK_STREAM:
1508	case SOCK_SEQPACKET:
1509		soisdisconnected(unp->unp_socket);
1510		unp2->unp_conn = NULL;
1511		soisdisconnected(unp2->unp_socket);
1512		break;
1513	}
1514}
1515
1516/*
1517 * unp_pcblist() walks the global list of struct unpcb's to generate a
1518 * pointer list, bumping the refcount on each unpcb.  It then copies them out
1519 * sequentially, validating the generation number on each to see if it has
1520 * been detached.  All of this is necessary because copyout() may sleep on
1521 * disk I/O.
1522 */
1523static int
1524unp_pcblist(SYSCTL_HANDLER_ARGS)
1525{
1526	int error, i, n;
1527	int freeunp;
1528	struct unpcb *unp, **unp_list;
1529	unp_gen_t gencnt;
1530	struct xunpgen *xug;
1531	struct unp_head *head;
1532	struct xunpcb *xu;
1533
1534	switch ((intptr_t)arg1) {
1535	case SOCK_STREAM:
1536		head = &unp_shead;
1537		break;
1538
1539	case SOCK_DGRAM:
1540		head = &unp_dhead;
1541		break;
1542
1543	case SOCK_SEQPACKET:
1544		head = &unp_sphead;
1545		break;
1546
1547	default:
1548		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1549	}
1550
1551	/*
1552	 * The process of preparing the PCB list is too time-consuming and
1553	 * resource-intensive to repeat twice on every request.
1554	 */
1555	if (req->oldptr == NULL) {
1556		n = unp_count;
1557		req->oldidx = 2 * (sizeof *xug)
1558			+ (n + n/8) * sizeof(struct xunpcb);
1559		return (0);
1560	}
1561
1562	if (req->newptr != NULL)
1563		return (EPERM);
1564
1565	/*
1566	 * OK, now we're committed to doing something.
1567	 */
1568	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1569	UNP_LIST_LOCK();
1570	gencnt = unp_gencnt;
1571	n = unp_count;
1572	UNP_LIST_UNLOCK();
1573
1574	xug->xug_len = sizeof *xug;
1575	xug->xug_count = n;
1576	xug->xug_gen = gencnt;
1577	xug->xug_sogen = so_gencnt;
1578	error = SYSCTL_OUT(req, xug, sizeof *xug);
1579	if (error) {
1580		free(xug, M_TEMP);
1581		return (error);
1582	}
1583
1584	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1585
1586	UNP_LIST_LOCK();
1587	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1588	     unp = LIST_NEXT(unp, unp_link)) {
1589		UNP_PCB_LOCK(unp);
1590		if (unp->unp_gencnt <= gencnt) {
1591			if (cr_cansee(req->td->td_ucred,
1592			    unp->unp_socket->so_cred)) {
1593				UNP_PCB_UNLOCK(unp);
1594				continue;
1595			}
1596			unp_list[i++] = unp;
1597			unp->unp_refcount++;
1598		}
1599		UNP_PCB_UNLOCK(unp);
1600	}
1601	UNP_LIST_UNLOCK();
1602	n = i;			/* In case we lost some during malloc. */
1603
1604	error = 0;
1605	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1606	for (i = 0; i < n; i++) {
1607		unp = unp_list[i];
1608		UNP_PCB_LOCK(unp);
1609		unp->unp_refcount--;
1610	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1611			xu->xu_len = sizeof *xu;
1612			xu->xu_unpp = unp;
1613			/*
1614			 * XXX - need more locking here to protect against
1615			 * connect/disconnect races for SMP.
1616			 */
1617			if (unp->unp_addr != NULL)
1618				bcopy(unp->unp_addr, &xu->xu_addr,
1619				      unp->unp_addr->sun_len);
1620			if (unp->unp_conn != NULL &&
1621			    unp->unp_conn->unp_addr != NULL)
1622				bcopy(unp->unp_conn->unp_addr,
1623				      &xu->xu_caddr,
1624				      unp->unp_conn->unp_addr->sun_len);
1625			bcopy(unp, &xu->xu_unp, sizeof *unp);
1626			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1627			UNP_PCB_UNLOCK(unp);
1628			error = SYSCTL_OUT(req, xu, sizeof *xu);
1629		} else {
1630			freeunp = (unp->unp_refcount == 0);
1631			UNP_PCB_UNLOCK(unp);
1632			if (freeunp) {
1633				UNP_PCB_LOCK_DESTROY(unp);
1634				uma_zfree(unp_zone, unp);
1635			}
1636		}
1637	}
1638	free(xu, M_TEMP);
1639	if (!error) {
1640		/*
1641		 * Give the user an updated idea of our state.  If the
1642		 * generation differs from what we told her before, she knows
1643		 * that something happened while we were processing this
1644		 * request, and it might be necessary to retry.
1645		 */
1646		xug->xug_gen = unp_gencnt;
1647		xug->xug_sogen = so_gencnt;
1648		xug->xug_count = unp_count;
1649		error = SYSCTL_OUT(req, xug, sizeof *xug);
1650	}
1651	free(unp_list, M_TEMP);
1652	free(xug, M_TEMP);
1653	return (error);
1654}
1655
1656SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1657    (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1658    "List of active local datagram sockets");
1659SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1660    (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1661    "List of active local stream sockets");
1662SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1663    CTLTYPE_OPAQUE | CTLFLAG_RD,
1664    (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1665    "List of active local seqpacket sockets");
1666
1667static void
1668unp_shutdown(struct unpcb *unp)
1669{
1670	struct unpcb *unp2;
1671	struct socket *so;
1672
1673	UNP_LINK_WLOCK_ASSERT();
1674	UNP_PCB_LOCK_ASSERT(unp);
1675
1676	unp2 = unp->unp_conn;
1677	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1678	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1679		so = unp2->unp_socket;
1680		if (so != NULL)
1681			socantrcvmore(so);
1682	}
1683}
1684
1685static void
1686unp_drop(struct unpcb *unp, int errno)
1687{
1688	struct socket *so = unp->unp_socket;
1689	struct unpcb *unp2;
1690
1691	UNP_LINK_WLOCK_ASSERT();
1692	UNP_PCB_LOCK_ASSERT(unp);
1693
1694	so->so_error = errno;
1695	unp2 = unp->unp_conn;
1696	if (unp2 == NULL)
1697		return;
1698	UNP_PCB_LOCK(unp2);
1699	unp_disconnect(unp, unp2);
1700	UNP_PCB_UNLOCK(unp2);
1701}
1702
1703static void
1704unp_freerights(struct filedescent **fdep, int fdcount)
1705{
1706	struct file *fp;
1707	int i;
1708
1709	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1710
1711	for (i = 0; i < fdcount; i++) {
1712		fp = fdep[i]->fde_file;
1713		filecaps_free(&fdep[i]->fde_caps);
1714		unp_discard(fp);
1715	}
1716	free(fdep[0], M_FILECAPS);
1717}
1718
1719static int
1720unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1721{
1722	struct thread *td = curthread;		/* XXX */
1723	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1724	int i;
1725	int *fdp;
1726	struct filedesc *fdesc = td->td_proc->p_fd;
1727	struct filedescent *fde, **fdep;
1728	void *data;
1729	socklen_t clen = control->m_len, datalen;
1730	int error, newfds;
1731	u_int newlen;
1732
1733	UNP_LINK_UNLOCK_ASSERT();
1734
1735	error = 0;
1736	if (controlp != NULL) /* controlp == NULL => free control messages */
1737		*controlp = NULL;
1738	while (cm != NULL) {
1739		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1740			error = EINVAL;
1741			break;
1742		}
1743		data = CMSG_DATA(cm);
1744		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1745		if (cm->cmsg_level == SOL_SOCKET
1746		    && cm->cmsg_type == SCM_RIGHTS) {
1747			newfds = datalen / sizeof(*fdep);
1748			if (newfds == 0)
1749				goto next;
1750			fdep = data;
1751
1752			/* If we're not outputting the descriptors free them. */
1753			if (error || controlp == NULL) {
1754				unp_freerights(fdep, newfds);
1755				goto next;
1756			}
1757			FILEDESC_XLOCK(fdesc);
1758
1759			/*
1760			 * Now change each pointer to an fd in the global
1761			 * table to an integer that is the index to the local
1762			 * fd table entry that we set up to point to the
1763			 * global one we are transferring.
1764			 */
1765			newlen = newfds * sizeof(int);
1766			*controlp = sbcreatecontrol(NULL, newlen,
1767			    SCM_RIGHTS, SOL_SOCKET);
1768			if (*controlp == NULL) {
1769				FILEDESC_XUNLOCK(fdesc);
1770				error = E2BIG;
1771				unp_freerights(fdep, newfds);
1772				goto next;
1773			}
1774
1775			fdp = (int *)
1776			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1777			if (fdallocn(td, 0, fdp, newfds) != 0) {
1778				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1779				error = EMSGSIZE;
1780				unp_freerights(fdep, newfds);
1781				m_freem(*controlp);
1782				*controlp = NULL;
1783				goto next;
1784			}
1785			for (i = 0; i < newfds; i++, fdp++) {
1786				fde = &fdesc->fd_ofiles[*fdp];
1787				fde->fde_file = fdep[i]->fde_file;
1788				filecaps_move(&fdep[i]->fde_caps,
1789				    &fde->fde_caps);
1790				if ((flags & MSG_CMSG_CLOEXEC) != 0)
1791					fde->fde_flags |= UF_EXCLOSE;
1792				unp_externalize_fp(fde->fde_file);
1793			}
1794			FILEDESC_XUNLOCK(fdesc);
1795			free(fdep[0], M_FILECAPS);
1796		} else {
1797			/* We can just copy anything else across. */
1798			if (error || controlp == NULL)
1799				goto next;
1800			*controlp = sbcreatecontrol(NULL, datalen,
1801			    cm->cmsg_type, cm->cmsg_level);
1802			if (*controlp == NULL) {
1803				error = ENOBUFS;
1804				goto next;
1805			}
1806			bcopy(data,
1807			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1808			    datalen);
1809		}
1810		controlp = &(*controlp)->m_next;
1811
1812next:
1813		if (CMSG_SPACE(datalen) < clen) {
1814			clen -= CMSG_SPACE(datalen);
1815			cm = (struct cmsghdr *)
1816			    ((caddr_t)cm + CMSG_SPACE(datalen));
1817		} else {
1818			clen = 0;
1819			cm = NULL;
1820		}
1821	}
1822
1823	m_freem(control);
1824	return (error);
1825}
1826
1827static void
1828unp_zone_change(void *tag)
1829{
1830
1831	uma_zone_set_max(unp_zone, maxsockets);
1832}
1833
1834static void
1835unp_init(void)
1836{
1837
1838#ifdef VIMAGE
1839	if (!IS_DEFAULT_VNET(curvnet))
1840		return;
1841#endif
1842	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1843	    NULL, NULL, UMA_ALIGN_PTR, 0);
1844	if (unp_zone == NULL)
1845		panic("unp_init");
1846	uma_zone_set_max(unp_zone, maxsockets);
1847	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
1848	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1849	    NULL, EVENTHANDLER_PRI_ANY);
1850	LIST_INIT(&unp_dhead);
1851	LIST_INIT(&unp_shead);
1852	LIST_INIT(&unp_sphead);
1853	SLIST_INIT(&unp_defers);
1854	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
1855	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1856	UNP_LINK_LOCK_INIT();
1857	UNP_LIST_LOCK_INIT();
1858	UNP_DEFERRED_LOCK_INIT();
1859}
1860
1861static int
1862unp_internalize(struct mbuf **controlp, struct thread *td)
1863{
1864	struct mbuf *control = *controlp;
1865	struct proc *p = td->td_proc;
1866	struct filedesc *fdesc = p->p_fd;
1867	struct bintime *bt;
1868	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1869	struct cmsgcred *cmcred;
1870	struct filedescent *fde, **fdep, *fdev;
1871	struct file *fp;
1872	struct timeval *tv;
1873	int i, *fdp;
1874	void *data;
1875	socklen_t clen = control->m_len, datalen;
1876	int error, oldfds;
1877	u_int newlen;
1878
1879	UNP_LINK_UNLOCK_ASSERT();
1880
1881	error = 0;
1882	*controlp = NULL;
1883	while (cm != NULL) {
1884		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1885		    || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
1886			error = EINVAL;
1887			goto out;
1888		}
1889		data = CMSG_DATA(cm);
1890		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1891
1892		switch (cm->cmsg_type) {
1893		/*
1894		 * Fill in credential information.
1895		 */
1896		case SCM_CREDS:
1897			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1898			    SCM_CREDS, SOL_SOCKET);
1899			if (*controlp == NULL) {
1900				error = ENOBUFS;
1901				goto out;
1902			}
1903			cmcred = (struct cmsgcred *)
1904			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1905			cmcred->cmcred_pid = p->p_pid;
1906			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1907			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1908			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1909			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1910			    CMGROUP_MAX);
1911			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1912				cmcred->cmcred_groups[i] =
1913				    td->td_ucred->cr_groups[i];
1914			break;
1915
1916		case SCM_RIGHTS:
1917			oldfds = datalen / sizeof (int);
1918			if (oldfds == 0)
1919				break;
1920			/*
1921			 * Check that all the FDs passed in refer to legal
1922			 * files.  If not, reject the entire operation.
1923			 */
1924			fdp = data;
1925			FILEDESC_SLOCK(fdesc);
1926			for (i = 0; i < oldfds; i++, fdp++) {
1927				fp = fget_locked(fdesc, *fdp);
1928				if (fp == NULL) {
1929					FILEDESC_SUNLOCK(fdesc);
1930					error = EBADF;
1931					goto out;
1932				}
1933				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1934					FILEDESC_SUNLOCK(fdesc);
1935					error = EOPNOTSUPP;
1936					goto out;
1937				}
1938
1939			}
1940
1941			/*
1942			 * Now replace the integer FDs with pointers to the
1943			 * file structure and capability rights.
1944			 */
1945			newlen = oldfds * sizeof(fdep[0]);
1946			*controlp = sbcreatecontrol(NULL, newlen,
1947			    SCM_RIGHTS, SOL_SOCKET);
1948			if (*controlp == NULL) {
1949				FILEDESC_SUNLOCK(fdesc);
1950				error = E2BIG;
1951				goto out;
1952			}
1953			fdp = data;
1954			fdep = (struct filedescent **)
1955			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1956			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
1957			    M_WAITOK);
1958			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
1959				fde = &fdesc->fd_ofiles[*fdp];
1960				fdep[i] = fdev;
1961				fdep[i]->fde_file = fde->fde_file;
1962				filecaps_copy(&fde->fde_caps,
1963				    &fdep[i]->fde_caps);
1964				unp_internalize_fp(fdep[i]->fde_file);
1965			}
1966			FILEDESC_SUNLOCK(fdesc);
1967			break;
1968
1969		case SCM_TIMESTAMP:
1970			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1971			    SCM_TIMESTAMP, SOL_SOCKET);
1972			if (*controlp == NULL) {
1973				error = ENOBUFS;
1974				goto out;
1975			}
1976			tv = (struct timeval *)
1977			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1978			microtime(tv);
1979			break;
1980
1981		case SCM_BINTIME:
1982			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
1983			    SCM_BINTIME, SOL_SOCKET);
1984			if (*controlp == NULL) {
1985				error = ENOBUFS;
1986				goto out;
1987			}
1988			bt = (struct bintime *)
1989			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1990			bintime(bt);
1991			break;
1992
1993		default:
1994			error = EINVAL;
1995			goto out;
1996		}
1997
1998		controlp = &(*controlp)->m_next;
1999		if (CMSG_SPACE(datalen) < clen) {
2000			clen -= CMSG_SPACE(datalen);
2001			cm = (struct cmsghdr *)
2002			    ((caddr_t)cm + CMSG_SPACE(datalen));
2003		} else {
2004			clen = 0;
2005			cm = NULL;
2006		}
2007	}
2008
2009out:
2010	m_freem(control);
2011	return (error);
2012}
2013
2014static struct mbuf *
2015unp_addsockcred(struct thread *td, struct mbuf *control)
2016{
2017	struct mbuf *m, *n, *n_prev;
2018	struct sockcred *sc;
2019	const struct cmsghdr *cm;
2020	int ngroups;
2021	int i;
2022
2023	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2024	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2025	if (m == NULL)
2026		return (control);
2027
2028	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2029	sc->sc_uid = td->td_ucred->cr_ruid;
2030	sc->sc_euid = td->td_ucred->cr_uid;
2031	sc->sc_gid = td->td_ucred->cr_rgid;
2032	sc->sc_egid = td->td_ucred->cr_gid;
2033	sc->sc_ngroups = ngroups;
2034	for (i = 0; i < sc->sc_ngroups; i++)
2035		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2036
2037	/*
2038	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2039	 * created SCM_CREDS control message (struct sockcred) has another
2040	 * format.
2041	 */
2042	if (control != NULL)
2043		for (n = control, n_prev = NULL; n != NULL;) {
2044			cm = mtod(n, struct cmsghdr *);
2045    			if (cm->cmsg_level == SOL_SOCKET &&
2046			    cm->cmsg_type == SCM_CREDS) {
2047    				if (n_prev == NULL)
2048					control = n->m_next;
2049				else
2050					n_prev->m_next = n->m_next;
2051				n = m_free(n);
2052			} else {
2053				n_prev = n;
2054				n = n->m_next;
2055			}
2056		}
2057
2058	/* Prepend it to the head. */
2059	m->m_next = control;
2060	return (m);
2061}
2062
2063static struct unpcb *
2064fptounp(struct file *fp)
2065{
2066	struct socket *so;
2067
2068	if (fp->f_type != DTYPE_SOCKET)
2069		return (NULL);
2070	if ((so = fp->f_data) == NULL)
2071		return (NULL);
2072	if (so->so_proto->pr_domain != &localdomain)
2073		return (NULL);
2074	return sotounpcb(so);
2075}
2076
2077static void
2078unp_discard(struct file *fp)
2079{
2080	struct unp_defer *dr;
2081
2082	if (unp_externalize_fp(fp)) {
2083		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2084		dr->ud_fp = fp;
2085		UNP_DEFERRED_LOCK();
2086		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2087		UNP_DEFERRED_UNLOCK();
2088		atomic_add_int(&unp_defers_count, 1);
2089		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2090	} else
2091		(void) closef(fp, (struct thread *)NULL);
2092}
2093
2094static void
2095unp_process_defers(void *arg __unused, int pending)
2096{
2097	struct unp_defer *dr;
2098	SLIST_HEAD(, unp_defer) drl;
2099	int count;
2100
2101	SLIST_INIT(&drl);
2102	for (;;) {
2103		UNP_DEFERRED_LOCK();
2104		if (SLIST_FIRST(&unp_defers) == NULL) {
2105			UNP_DEFERRED_UNLOCK();
2106			break;
2107		}
2108		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2109		UNP_DEFERRED_UNLOCK();
2110		count = 0;
2111		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2112			SLIST_REMOVE_HEAD(&drl, ud_link);
2113			closef(dr->ud_fp, NULL);
2114			free(dr, M_TEMP);
2115			count++;
2116		}
2117		atomic_add_int(&unp_defers_count, -count);
2118	}
2119}
2120
2121static void
2122unp_internalize_fp(struct file *fp)
2123{
2124	struct unpcb *unp;
2125
2126	UNP_LINK_WLOCK();
2127	if ((unp = fptounp(fp)) != NULL) {
2128		unp->unp_file = fp;
2129		unp->unp_msgcount++;
2130	}
2131	fhold(fp);
2132	unp_rights++;
2133	UNP_LINK_WUNLOCK();
2134}
2135
2136static int
2137unp_externalize_fp(struct file *fp)
2138{
2139	struct unpcb *unp;
2140	int ret;
2141
2142	UNP_LINK_WLOCK();
2143	if ((unp = fptounp(fp)) != NULL) {
2144		unp->unp_msgcount--;
2145		ret = 1;
2146	} else
2147		ret = 0;
2148	unp_rights--;
2149	UNP_LINK_WUNLOCK();
2150	return (ret);
2151}
2152
2153/*
2154 * unp_defer indicates whether additional work has been defered for a future
2155 * pass through unp_gc().  It is thread local and does not require explicit
2156 * synchronization.
2157 */
2158static int	unp_marked;
2159static int	unp_unreachable;
2160
2161static void
2162unp_accessable(struct filedescent **fdep, int fdcount)
2163{
2164	struct unpcb *unp;
2165	struct file *fp;
2166	int i;
2167
2168	for (i = 0; i < fdcount; i++) {
2169		fp = fdep[i]->fde_file;
2170		if ((unp = fptounp(fp)) == NULL)
2171			continue;
2172		if (unp->unp_gcflag & UNPGC_REF)
2173			continue;
2174		unp->unp_gcflag &= ~UNPGC_DEAD;
2175		unp->unp_gcflag |= UNPGC_REF;
2176		unp_marked++;
2177	}
2178}
2179
2180static void
2181unp_gc_process(struct unpcb *unp)
2182{
2183	struct socket *soa;
2184	struct socket *so;
2185	struct file *fp;
2186
2187	/* Already processed. */
2188	if (unp->unp_gcflag & UNPGC_SCANNED)
2189		return;
2190	fp = unp->unp_file;
2191
2192	/*
2193	 * Check for a socket potentially in a cycle.  It must be in a
2194	 * queue as indicated by msgcount, and this must equal the file
2195	 * reference count.  Note that when msgcount is 0 the file is NULL.
2196	 */
2197	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2198	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2199		unp->unp_gcflag |= UNPGC_DEAD;
2200		unp_unreachable++;
2201		return;
2202	}
2203
2204	/*
2205	 * Mark all sockets we reference with RIGHTS.
2206	 */
2207	so = unp->unp_socket;
2208	if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2209		SOCKBUF_LOCK(&so->so_rcv);
2210		unp_scan(so->so_rcv.sb_mb, unp_accessable);
2211		SOCKBUF_UNLOCK(&so->so_rcv);
2212	}
2213
2214	/*
2215	 * Mark all sockets in our accept queue.
2216	 */
2217	ACCEPT_LOCK();
2218	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2219		if ((sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) != 0)
2220			continue;
2221		SOCKBUF_LOCK(&soa->so_rcv);
2222		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2223		SOCKBUF_UNLOCK(&soa->so_rcv);
2224	}
2225	ACCEPT_UNLOCK();
2226	unp->unp_gcflag |= UNPGC_SCANNED;
2227}
2228
2229static int unp_recycled;
2230SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2231    "Number of unreachable sockets claimed by the garbage collector.");
2232
2233static int unp_taskcount;
2234SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2235    "Number of times the garbage collector has run.");
2236
2237static void
2238unp_gc(__unused void *arg, int pending)
2239{
2240	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2241				    NULL };
2242	struct unp_head **head;
2243	struct file *f, **unref;
2244	struct unpcb *unp;
2245	int i, total;
2246
2247	unp_taskcount++;
2248	UNP_LIST_LOCK();
2249	/*
2250	 * First clear all gc flags from previous runs, apart from
2251	 * UNPGC_IGNORE_RIGHTS.
2252	 */
2253	for (head = heads; *head != NULL; head++)
2254		LIST_FOREACH(unp, *head, unp_link)
2255			unp->unp_gcflag =
2256			    (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS);
2257
2258	/*
2259	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2260	 * is reachable all of the sockets it references are reachable.
2261	 * Stop the scan once we do a complete loop without discovering
2262	 * a new reachable socket.
2263	 */
2264	do {
2265		unp_unreachable = 0;
2266		unp_marked = 0;
2267		for (head = heads; *head != NULL; head++)
2268			LIST_FOREACH(unp, *head, unp_link)
2269				unp_gc_process(unp);
2270	} while (unp_marked);
2271	UNP_LIST_UNLOCK();
2272	if (unp_unreachable == 0)
2273		return;
2274
2275	/*
2276	 * Allocate space for a local list of dead unpcbs.
2277	 */
2278	unref = malloc(unp_unreachable * sizeof(struct file *),
2279	    M_TEMP, M_WAITOK);
2280
2281	/*
2282	 * Iterate looking for sockets which have been specifically marked
2283	 * as as unreachable and store them locally.
2284	 */
2285	UNP_LINK_RLOCK();
2286	UNP_LIST_LOCK();
2287	for (total = 0, head = heads; *head != NULL; head++)
2288		LIST_FOREACH(unp, *head, unp_link)
2289			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2290				f = unp->unp_file;
2291				if (unp->unp_msgcount == 0 || f == NULL ||
2292				    f->f_count != unp->unp_msgcount)
2293					continue;
2294				unref[total++] = f;
2295				fhold(f);
2296				KASSERT(total <= unp_unreachable,
2297				    ("unp_gc: incorrect unreachable count."));
2298			}
2299	UNP_LIST_UNLOCK();
2300	UNP_LINK_RUNLOCK();
2301
2302	/*
2303	 * Now flush all sockets, free'ing rights.  This will free the
2304	 * struct files associated with these sockets but leave each socket
2305	 * with one remaining ref.
2306	 */
2307	for (i = 0; i < total; i++) {
2308		struct socket *so;
2309
2310		so = unref[i]->f_data;
2311		CURVNET_SET(so->so_vnet);
2312		sorflush(so);
2313		CURVNET_RESTORE();
2314	}
2315
2316	/*
2317	 * And finally release the sockets so they can be reclaimed.
2318	 */
2319	for (i = 0; i < total; i++)
2320		fdrop(unref[i], NULL);
2321	unp_recycled += total;
2322	free(unref, M_TEMP);
2323}
2324
2325static void
2326unp_dispose(struct mbuf *m)
2327{
2328
2329	if (m)
2330		unp_scan(m, unp_freerights);
2331}
2332
2333/*
2334 * Synchronize against unp_gc, which can trip over data as we are freeing it.
2335 */
2336void
2337unp_dispose_so(struct socket *so)
2338{
2339	struct unpcb *unp;
2340
2341	unp = sotounpcb(so);
2342	UNP_LIST_LOCK();
2343	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2344	UNP_LIST_UNLOCK();
2345	unp_dispose(so->so_rcv.sb_mb);
2346}
2347
2348static void
2349unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2350{
2351	struct mbuf *m;
2352	struct cmsghdr *cm;
2353	void *data;
2354	socklen_t clen, datalen;
2355
2356	while (m0 != NULL) {
2357		for (m = m0; m; m = m->m_next) {
2358			if (m->m_type != MT_CONTROL)
2359				continue;
2360
2361			cm = mtod(m, struct cmsghdr *);
2362			clen = m->m_len;
2363
2364			while (cm != NULL) {
2365				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2366					break;
2367
2368				data = CMSG_DATA(cm);
2369				datalen = (caddr_t)cm + cm->cmsg_len
2370				    - (caddr_t)data;
2371
2372				if (cm->cmsg_level == SOL_SOCKET &&
2373				    cm->cmsg_type == SCM_RIGHTS) {
2374					(*op)(data, datalen /
2375					    sizeof(struct filedescent *));
2376				}
2377
2378				if (CMSG_SPACE(datalen) < clen) {
2379					clen -= CMSG_SPACE(datalen);
2380					cm = (struct cmsghdr *)
2381					    ((caddr_t)cm + CMSG_SPACE(datalen));
2382				} else {
2383					clen = 0;
2384					cm = NULL;
2385				}
2386			}
2387		}
2388		m0 = m0->m_nextpkt;
2389	}
2390}
2391
2392/*
2393 * A helper function called by VFS before socket-type vnode reclamation.
2394 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2395 * use count.
2396 */
2397void
2398vfs_unp_reclaim(struct vnode *vp)
2399{
2400	struct socket *so;
2401	struct unpcb *unp;
2402	int active;
2403
2404	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2405	KASSERT(vp->v_type == VSOCK,
2406	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2407
2408	active = 0;
2409	UNP_LINK_WLOCK();
2410	VOP_UNP_CONNECT(vp, &so);
2411	if (so == NULL)
2412		goto done;
2413	unp = sotounpcb(so);
2414	if (unp == NULL)
2415		goto done;
2416	UNP_PCB_LOCK(unp);
2417	if (unp->unp_vnode == vp) {
2418		VOP_UNP_DETACH(vp);
2419		unp->unp_vnode = NULL;
2420		active = 1;
2421	}
2422	UNP_PCB_UNLOCK(unp);
2423done:
2424	UNP_LINK_WUNLOCK();
2425	if (active)
2426		vunref(vp);
2427}
2428
2429#ifdef DDB
2430static void
2431db_print_indent(int indent)
2432{
2433	int i;
2434
2435	for (i = 0; i < indent; i++)
2436		db_printf(" ");
2437}
2438
2439static void
2440db_print_unpflags(int unp_flags)
2441{
2442	int comma;
2443
2444	comma = 0;
2445	if (unp_flags & UNP_HAVEPC) {
2446		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2447		comma = 1;
2448	}
2449	if (unp_flags & UNP_HAVEPCCACHED) {
2450		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2451		comma = 1;
2452	}
2453	if (unp_flags & UNP_WANTCRED) {
2454		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2455		comma = 1;
2456	}
2457	if (unp_flags & UNP_CONNWAIT) {
2458		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2459		comma = 1;
2460	}
2461	if (unp_flags & UNP_CONNECTING) {
2462		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2463		comma = 1;
2464	}
2465	if (unp_flags & UNP_BINDING) {
2466		db_printf("%sUNP_BINDING", comma ? ", " : "");
2467		comma = 1;
2468	}
2469}
2470
2471static void
2472db_print_xucred(int indent, struct xucred *xu)
2473{
2474	int comma, i;
2475
2476	db_print_indent(indent);
2477	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2478	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2479	db_print_indent(indent);
2480	db_printf("cr_groups: ");
2481	comma = 0;
2482	for (i = 0; i < xu->cr_ngroups; i++) {
2483		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2484		comma = 1;
2485	}
2486	db_printf("\n");
2487}
2488
2489static void
2490db_print_unprefs(int indent, struct unp_head *uh)
2491{
2492	struct unpcb *unp;
2493	int counter;
2494
2495	counter = 0;
2496	LIST_FOREACH(unp, uh, unp_reflink) {
2497		if (counter % 4 == 0)
2498			db_print_indent(indent);
2499		db_printf("%p  ", unp);
2500		if (counter % 4 == 3)
2501			db_printf("\n");
2502		counter++;
2503	}
2504	if (counter != 0 && counter % 4 != 0)
2505		db_printf("\n");
2506}
2507
2508DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2509{
2510	struct unpcb *unp;
2511
2512        if (!have_addr) {
2513                db_printf("usage: show unpcb <addr>\n");
2514                return;
2515        }
2516        unp = (struct unpcb *)addr;
2517
2518	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2519	    unp->unp_vnode);
2520
2521	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2522	    unp->unp_conn);
2523
2524	db_printf("unp_refs:\n");
2525	db_print_unprefs(2, &unp->unp_refs);
2526
2527	/* XXXRW: Would be nice to print the full address, if any. */
2528	db_printf("unp_addr: %p\n", unp->unp_addr);
2529
2530	db_printf("unp_gencnt: %llu\n",
2531	    (unsigned long long)unp->unp_gencnt);
2532
2533	db_printf("unp_flags: %x (", unp->unp_flags);
2534	db_print_unpflags(unp->unp_flags);
2535	db_printf(")\n");
2536
2537	db_printf("unp_peercred:\n");
2538	db_print_xucred(2, &unp->unp_peercred);
2539
2540	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2541}
2542#endif
2543