subr_vmem.c revision 282361
1/*-
2 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
3 * Copyright (c) 2013 EMC Corp.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * From:
30 *	$NetBSD: vmem_impl.h,v 1.2 2013/01/29 21:26:24 para Exp $
31 *	$NetBSD: subr_vmem.c,v 1.83 2013/03/06 11:20:10 yamt Exp $
32 */
33
34/*
35 * reference:
36 * -	Magazines and Vmem: Extending the Slab Allocator
37 *	to Many CPUs and Arbitrary Resources
38 *	http://www.usenix.org/event/usenix01/bonwick.html
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: stable/10/sys/kern/subr_vmem.c 282361 2015-05-03 07:13:14Z mav $");
43
44#include "opt_ddb.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/kernel.h>
49#include <sys/queue.h>
50#include <sys/callout.h>
51#include <sys/hash.h>
52#include <sys/lock.h>
53#include <sys/malloc.h>
54#include <sys/mutex.h>
55#include <sys/smp.h>
56#include <sys/condvar.h>
57#include <sys/sysctl.h>
58#include <sys/taskqueue.h>
59#include <sys/vmem.h>
60
61#include "opt_vm.h"
62
63#include <vm/uma.h>
64#include <vm/vm.h>
65#include <vm/pmap.h>
66#include <vm/vm_map.h>
67#include <vm/vm_object.h>
68#include <vm/vm_kern.h>
69#include <vm/vm_extern.h>
70#include <vm/vm_param.h>
71#include <vm/vm_pageout.h>
72
73#define	VMEM_OPTORDER		5
74#define	VMEM_OPTVALUE		(1 << VMEM_OPTORDER)
75#define	VMEM_MAXORDER						\
76    (VMEM_OPTVALUE - 1 + sizeof(vmem_size_t) * NBBY - VMEM_OPTORDER)
77
78#define	VMEM_HASHSIZE_MIN	16
79#define	VMEM_HASHSIZE_MAX	131072
80
81#define	VMEM_QCACHE_IDX_MAX	16
82
83#define	VMEM_FITMASK	(M_BESTFIT | M_FIRSTFIT)
84
85#define	VMEM_FLAGS						\
86    (M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM | M_BESTFIT | M_FIRSTFIT)
87
88#define	BT_FLAGS	(M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM)
89
90#define	QC_NAME_MAX	16
91
92/*
93 * Data structures private to vmem.
94 */
95MALLOC_DEFINE(M_VMEM, "vmem", "vmem internal structures");
96
97typedef struct vmem_btag bt_t;
98
99TAILQ_HEAD(vmem_seglist, vmem_btag);
100LIST_HEAD(vmem_freelist, vmem_btag);
101LIST_HEAD(vmem_hashlist, vmem_btag);
102
103struct qcache {
104	uma_zone_t	qc_cache;
105	vmem_t 		*qc_vmem;
106	vmem_size_t	qc_size;
107	char		qc_name[QC_NAME_MAX];
108};
109typedef struct qcache qcache_t;
110#define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
111
112#define	VMEM_NAME_MAX	16
113
114/* vmem arena */
115struct vmem {
116	struct mtx_padalign	vm_lock;
117	struct cv		vm_cv;
118	char			vm_name[VMEM_NAME_MAX+1];
119	LIST_ENTRY(vmem)	vm_alllist;
120	struct vmem_hashlist	vm_hash0[VMEM_HASHSIZE_MIN];
121	struct vmem_freelist	vm_freelist[VMEM_MAXORDER];
122	struct vmem_seglist	vm_seglist;
123	struct vmem_hashlist	*vm_hashlist;
124	vmem_size_t		vm_hashsize;
125
126	/* Constant after init */
127	vmem_size_t		vm_qcache_max;
128	vmem_size_t		vm_quantum_mask;
129	vmem_size_t		vm_import_quantum;
130	int			vm_quantum_shift;
131
132	/* Written on alloc/free */
133	LIST_HEAD(, vmem_btag)	vm_freetags;
134	int			vm_nfreetags;
135	int			vm_nbusytag;
136	vmem_size_t		vm_inuse;
137	vmem_size_t		vm_size;
138
139	/* Used on import. */
140	vmem_import_t		*vm_importfn;
141	vmem_release_t		*vm_releasefn;
142	void			*vm_arg;
143
144	/* Space exhaustion callback. */
145	vmem_reclaim_t		*vm_reclaimfn;
146
147	/* quantum cache */
148	qcache_t		vm_qcache[VMEM_QCACHE_IDX_MAX];
149};
150
151/* boundary tag */
152struct vmem_btag {
153	TAILQ_ENTRY(vmem_btag) bt_seglist;
154	union {
155		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
156		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
157	} bt_u;
158#define	bt_hashlist	bt_u.u_hashlist
159#define	bt_freelist	bt_u.u_freelist
160	vmem_addr_t	bt_start;
161	vmem_size_t	bt_size;
162	int		bt_type;
163};
164
165#define	BT_TYPE_SPAN		1	/* Allocated from importfn */
166#define	BT_TYPE_SPAN_STATIC	2	/* vmem_add() or create. */
167#define	BT_TYPE_FREE		3	/* Available space. */
168#define	BT_TYPE_BUSY		4	/* Used space. */
169#define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
170
171#define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size - 1)
172
173#if defined(DIAGNOSTIC)
174static int enable_vmem_check = 1;
175SYSCTL_INT(_debug, OID_AUTO, vmem_check, CTLFLAG_RWTUN,
176    &enable_vmem_check, 0, "Enable vmem check");
177static void vmem_check(vmem_t *);
178#endif
179
180static struct callout	vmem_periodic_ch;
181static int		vmem_periodic_interval;
182static struct task	vmem_periodic_wk;
183
184static struct mtx_padalign vmem_list_lock;
185static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
186
187/* ---- misc */
188#define	VMEM_CONDVAR_INIT(vm, wchan)	cv_init(&vm->vm_cv, wchan)
189#define	VMEM_CONDVAR_DESTROY(vm)	cv_destroy(&vm->vm_cv)
190#define	VMEM_CONDVAR_WAIT(vm)		cv_wait(&vm->vm_cv, &vm->vm_lock)
191#define	VMEM_CONDVAR_BROADCAST(vm)	cv_broadcast(&vm->vm_cv)
192
193
194#define	VMEM_LOCK(vm)		mtx_lock(&vm->vm_lock)
195#define	VMEM_TRYLOCK(vm)	mtx_trylock(&vm->vm_lock)
196#define	VMEM_UNLOCK(vm)		mtx_unlock(&vm->vm_lock)
197#define	VMEM_LOCK_INIT(vm, name) mtx_init(&vm->vm_lock, (name), NULL, MTX_DEF)
198#define	VMEM_LOCK_DESTROY(vm)	mtx_destroy(&vm->vm_lock)
199#define	VMEM_ASSERT_LOCKED(vm)	mtx_assert(&vm->vm_lock, MA_OWNED);
200
201#define	VMEM_ALIGNUP(addr, align)	(-(-(addr) & -(align)))
202
203#define	VMEM_CROSS_P(addr1, addr2, boundary) \
204	((((addr1) ^ (addr2)) & -(boundary)) != 0)
205
206#define	ORDER2SIZE(order)	((order) < VMEM_OPTVALUE ? ((order) + 1) : \
207    (vmem_size_t)1 << ((order) - (VMEM_OPTVALUE - VMEM_OPTORDER - 1)))
208#define	SIZE2ORDER(size)	((size) <= VMEM_OPTVALUE ? ((size) - 1) : \
209    (flsl(size) + (VMEM_OPTVALUE - VMEM_OPTORDER - 2)))
210
211/*
212 * Maximum number of boundary tags that may be required to satisfy an
213 * allocation.  Two may be required to import.  Another two may be
214 * required to clip edges.
215 */
216#define	BT_MAXALLOC	4
217
218/*
219 * Max free limits the number of locally cached boundary tags.  We
220 * just want to avoid hitting the zone allocator for every call.
221 */
222#define BT_MAXFREE	(BT_MAXALLOC * 8)
223
224/* Allocator for boundary tags. */
225static uma_zone_t vmem_bt_zone;
226
227/* boot time arena storage. */
228static struct vmem kernel_arena_storage;
229static struct vmem kmem_arena_storage;
230static struct vmem buffer_arena_storage;
231static struct vmem transient_arena_storage;
232vmem_t *kernel_arena = &kernel_arena_storage;
233vmem_t *kmem_arena = &kmem_arena_storage;
234vmem_t *buffer_arena = &buffer_arena_storage;
235vmem_t *transient_arena = &transient_arena_storage;
236
237#ifdef DEBUG_MEMGUARD
238static struct vmem memguard_arena_storage;
239vmem_t *memguard_arena = &memguard_arena_storage;
240#endif
241
242/*
243 * Fill the vmem's boundary tag cache.  We guarantee that boundary tag
244 * allocation will not fail once bt_fill() passes.  To do so we cache
245 * at least the maximum possible tag allocations in the arena.
246 */
247static int
248bt_fill(vmem_t *vm, int flags)
249{
250	bt_t *bt;
251
252	VMEM_ASSERT_LOCKED(vm);
253
254	/*
255	 * Only allow the kmem arena to dip into reserve tags.  It is the
256	 * vmem where new tags come from.
257	 */
258	flags &= BT_FLAGS;
259	if (vm != kmem_arena)
260		flags &= ~M_USE_RESERVE;
261
262	/*
263	 * Loop until we meet the reserve.  To minimize the lock shuffle
264	 * and prevent simultaneous fills we first try a NOWAIT regardless
265	 * of the caller's flags.  Specify M_NOVM so we don't recurse while
266	 * holding a vmem lock.
267	 */
268	while (vm->vm_nfreetags < BT_MAXALLOC) {
269		bt = uma_zalloc(vmem_bt_zone,
270		    (flags & M_USE_RESERVE) | M_NOWAIT | M_NOVM);
271		if (bt == NULL) {
272			VMEM_UNLOCK(vm);
273			bt = uma_zalloc(vmem_bt_zone, flags);
274			VMEM_LOCK(vm);
275			if (bt == NULL && (flags & M_NOWAIT) != 0)
276				break;
277		}
278		LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
279		vm->vm_nfreetags++;
280	}
281
282	if (vm->vm_nfreetags < BT_MAXALLOC)
283		return ENOMEM;
284
285	return 0;
286}
287
288/*
289 * Pop a tag off of the freetag stack.
290 */
291static bt_t *
292bt_alloc(vmem_t *vm)
293{
294	bt_t *bt;
295
296	VMEM_ASSERT_LOCKED(vm);
297	bt = LIST_FIRST(&vm->vm_freetags);
298	MPASS(bt != NULL);
299	LIST_REMOVE(bt, bt_freelist);
300	vm->vm_nfreetags--;
301
302	return bt;
303}
304
305/*
306 * Trim the per-vmem free list.  Returns with the lock released to
307 * avoid allocator recursions.
308 */
309static void
310bt_freetrim(vmem_t *vm, int freelimit)
311{
312	LIST_HEAD(, vmem_btag) freetags;
313	bt_t *bt;
314
315	LIST_INIT(&freetags);
316	VMEM_ASSERT_LOCKED(vm);
317	while (vm->vm_nfreetags > freelimit) {
318		bt = LIST_FIRST(&vm->vm_freetags);
319		LIST_REMOVE(bt, bt_freelist);
320		vm->vm_nfreetags--;
321		LIST_INSERT_HEAD(&freetags, bt, bt_freelist);
322	}
323	VMEM_UNLOCK(vm);
324	while ((bt = LIST_FIRST(&freetags)) != NULL) {
325		LIST_REMOVE(bt, bt_freelist);
326		uma_zfree(vmem_bt_zone, bt);
327	}
328}
329
330static inline void
331bt_free(vmem_t *vm, bt_t *bt)
332{
333
334	VMEM_ASSERT_LOCKED(vm);
335	MPASS(LIST_FIRST(&vm->vm_freetags) != bt);
336	LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
337	vm->vm_nfreetags++;
338}
339
340/*
341 * freelist[0] ... [1, 1]
342 * freelist[1] ... [2, 2]
343 *  :
344 * freelist[29] ... [30, 30]
345 * freelist[30] ... [31, 31]
346 * freelist[31] ... [32, 63]
347 * freelist[33] ... [64, 127]
348 *  :
349 * freelist[n] ... [(1 << (n - 26)), (1 << (n - 25)) - 1]
350 *  :
351 */
352
353static struct vmem_freelist *
354bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
355{
356	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
357	const int idx = SIZE2ORDER(qsize);
358
359	MPASS(size != 0 && qsize != 0);
360	MPASS((size & vm->vm_quantum_mask) == 0);
361	MPASS(idx >= 0);
362	MPASS(idx < VMEM_MAXORDER);
363
364	return &vm->vm_freelist[idx];
365}
366
367/*
368 * bt_freehead_toalloc: return the freelist for the given size and allocation
369 * strategy.
370 *
371 * For M_FIRSTFIT, return the list in which any blocks are large enough
372 * for the requested size.  otherwise, return the list which can have blocks
373 * large enough for the requested size.
374 */
375static struct vmem_freelist *
376bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, int strat)
377{
378	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
379	int idx = SIZE2ORDER(qsize);
380
381	MPASS(size != 0 && qsize != 0);
382	MPASS((size & vm->vm_quantum_mask) == 0);
383
384	if (strat == M_FIRSTFIT && ORDER2SIZE(idx) != qsize) {
385		idx++;
386		/* check too large request? */
387	}
388	MPASS(idx >= 0);
389	MPASS(idx < VMEM_MAXORDER);
390
391	return &vm->vm_freelist[idx];
392}
393
394/* ---- boundary tag hash */
395
396static struct vmem_hashlist *
397bt_hashhead(vmem_t *vm, vmem_addr_t addr)
398{
399	struct vmem_hashlist *list;
400	unsigned int hash;
401
402	hash = hash32_buf(&addr, sizeof(addr), 0);
403	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
404
405	return list;
406}
407
408static bt_t *
409bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
410{
411	struct vmem_hashlist *list;
412	bt_t *bt;
413
414	VMEM_ASSERT_LOCKED(vm);
415	list = bt_hashhead(vm, addr);
416	LIST_FOREACH(bt, list, bt_hashlist) {
417		if (bt->bt_start == addr) {
418			break;
419		}
420	}
421
422	return bt;
423}
424
425static void
426bt_rembusy(vmem_t *vm, bt_t *bt)
427{
428
429	VMEM_ASSERT_LOCKED(vm);
430	MPASS(vm->vm_nbusytag > 0);
431	vm->vm_inuse -= bt->bt_size;
432	vm->vm_nbusytag--;
433	LIST_REMOVE(bt, bt_hashlist);
434}
435
436static void
437bt_insbusy(vmem_t *vm, bt_t *bt)
438{
439	struct vmem_hashlist *list;
440
441	VMEM_ASSERT_LOCKED(vm);
442	MPASS(bt->bt_type == BT_TYPE_BUSY);
443
444	list = bt_hashhead(vm, bt->bt_start);
445	LIST_INSERT_HEAD(list, bt, bt_hashlist);
446	vm->vm_nbusytag++;
447	vm->vm_inuse += bt->bt_size;
448}
449
450/* ---- boundary tag list */
451
452static void
453bt_remseg(vmem_t *vm, bt_t *bt)
454{
455
456	TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
457	bt_free(vm, bt);
458}
459
460static void
461bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
462{
463
464	TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
465}
466
467static void
468bt_insseg_tail(vmem_t *vm, bt_t *bt)
469{
470
471	TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
472}
473
474static void
475bt_remfree(vmem_t *vm, bt_t *bt)
476{
477
478	MPASS(bt->bt_type == BT_TYPE_FREE);
479
480	LIST_REMOVE(bt, bt_freelist);
481}
482
483static void
484bt_insfree(vmem_t *vm, bt_t *bt)
485{
486	struct vmem_freelist *list;
487
488	list = bt_freehead_tofree(vm, bt->bt_size);
489	LIST_INSERT_HEAD(list, bt, bt_freelist);
490}
491
492/* ---- vmem internal functions */
493
494/*
495 * Import from the arena into the quantum cache in UMA.
496 */
497static int
498qc_import(void *arg, void **store, int cnt, int flags)
499{
500	qcache_t *qc;
501	vmem_addr_t addr;
502	int i;
503
504	qc = arg;
505	flags |= M_BESTFIT;
506	for (i = 0; i < cnt; i++) {
507		if (vmem_xalloc(qc->qc_vmem, qc->qc_size, 0, 0, 0,
508		    VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags, &addr) != 0)
509			break;
510		store[i] = (void *)addr;
511		/* Only guarantee one allocation. */
512		flags &= ~M_WAITOK;
513		flags |= M_NOWAIT;
514	}
515	return i;
516}
517
518/*
519 * Release memory from the UMA cache to the arena.
520 */
521static void
522qc_release(void *arg, void **store, int cnt)
523{
524	qcache_t *qc;
525	int i;
526
527	qc = arg;
528	for (i = 0; i < cnt; i++)
529		vmem_xfree(qc->qc_vmem, (vmem_addr_t)store[i], qc->qc_size);
530}
531
532static void
533qc_init(vmem_t *vm, vmem_size_t qcache_max)
534{
535	qcache_t *qc;
536	vmem_size_t size;
537	int qcache_idx_max;
538	int i;
539
540	MPASS((qcache_max & vm->vm_quantum_mask) == 0);
541	qcache_idx_max = MIN(qcache_max >> vm->vm_quantum_shift,
542	    VMEM_QCACHE_IDX_MAX);
543	vm->vm_qcache_max = qcache_idx_max << vm->vm_quantum_shift;
544	for (i = 0; i < qcache_idx_max; i++) {
545		qc = &vm->vm_qcache[i];
546		size = (i + 1) << vm->vm_quantum_shift;
547		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
548		    vm->vm_name, size);
549		qc->qc_vmem = vm;
550		qc->qc_size = size;
551		qc->qc_cache = uma_zcache_create(qc->qc_name, size,
552		    NULL, NULL, NULL, NULL, qc_import, qc_release, qc,
553		    UMA_ZONE_VM);
554		MPASS(qc->qc_cache);
555	}
556}
557
558static void
559qc_destroy(vmem_t *vm)
560{
561	int qcache_idx_max;
562	int i;
563
564	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
565	for (i = 0; i < qcache_idx_max; i++)
566		uma_zdestroy(vm->vm_qcache[i].qc_cache);
567}
568
569static void
570qc_drain(vmem_t *vm)
571{
572	int qcache_idx_max;
573	int i;
574
575	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
576	for (i = 0; i < qcache_idx_max; i++)
577		zone_drain(vm->vm_qcache[i].qc_cache);
578}
579
580#ifndef UMA_MD_SMALL_ALLOC
581
582static struct mtx_padalign vmem_bt_lock;
583
584/*
585 * vmem_bt_alloc:  Allocate a new page of boundary tags.
586 *
587 * On architectures with uma_small_alloc there is no recursion; no address
588 * space need be allocated to allocate boundary tags.  For the others, we
589 * must handle recursion.  Boundary tags are necessary to allocate new
590 * boundary tags.
591 *
592 * UMA guarantees that enough tags are held in reserve to allocate a new
593 * page of kva.  We dip into this reserve by specifying M_USE_RESERVE only
594 * when allocating the page to hold new boundary tags.  In this way the
595 * reserve is automatically filled by the allocation that uses the reserve.
596 *
597 * We still have to guarantee that the new tags are allocated atomically since
598 * many threads may try concurrently.  The bt_lock provides this guarantee.
599 * We convert WAITOK allocations to NOWAIT and then handle the blocking here
600 * on failure.  It's ok to return NULL for a WAITOK allocation as UMA will
601 * loop again after checking to see if we lost the race to allocate.
602 *
603 * There is a small race between vmem_bt_alloc() returning the page and the
604 * zone lock being acquired to add the page to the zone.  For WAITOK
605 * allocations we just pause briefly.  NOWAIT may experience a transient
606 * failure.  To alleviate this we permit a small number of simultaneous
607 * fills to proceed concurrently so NOWAIT is less likely to fail unless
608 * we are really out of KVA.
609 */
610static void *
611vmem_bt_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
612{
613	vmem_addr_t addr;
614
615	*pflag = UMA_SLAB_KMEM;
616
617	/*
618	 * Single thread boundary tag allocation so that the address space
619	 * and memory are added in one atomic operation.
620	 */
621	mtx_lock(&vmem_bt_lock);
622	if (vmem_xalloc(kmem_arena, bytes, 0, 0, 0, VMEM_ADDR_MIN,
623	    VMEM_ADDR_MAX, M_NOWAIT | M_NOVM | M_USE_RESERVE | M_BESTFIT,
624	    &addr) == 0) {
625		if (kmem_back(kmem_object, addr, bytes,
626		    M_NOWAIT | M_USE_RESERVE) == 0) {
627			mtx_unlock(&vmem_bt_lock);
628			return ((void *)addr);
629		}
630		vmem_xfree(kmem_arena, addr, bytes);
631		mtx_unlock(&vmem_bt_lock);
632		/*
633		 * Out of memory, not address space.  This may not even be
634		 * possible due to M_USE_RESERVE page allocation.
635		 */
636		if (wait & M_WAITOK)
637			VM_WAIT;
638		return (NULL);
639	}
640	mtx_unlock(&vmem_bt_lock);
641	/*
642	 * We're either out of address space or lost a fill race.
643	 */
644	if (wait & M_WAITOK)
645		pause("btalloc", 1);
646
647	return (NULL);
648}
649#endif
650
651void
652vmem_startup(void)
653{
654
655	mtx_init(&vmem_list_lock, "vmem list lock", NULL, MTX_DEF);
656	vmem_bt_zone = uma_zcreate("vmem btag",
657	    sizeof(struct vmem_btag), NULL, NULL, NULL, NULL,
658	    UMA_ALIGN_PTR, UMA_ZONE_VM);
659#ifndef UMA_MD_SMALL_ALLOC
660	mtx_init(&vmem_bt_lock, "btag lock", NULL, MTX_DEF);
661	uma_prealloc(vmem_bt_zone, BT_MAXALLOC);
662	/*
663	 * Reserve enough tags to allocate new tags.  We allow multiple
664	 * CPUs to attempt to allocate new tags concurrently to limit
665	 * false restarts in UMA.
666	 */
667	uma_zone_reserve(vmem_bt_zone, BT_MAXALLOC * (mp_ncpus + 1) / 2);
668	uma_zone_set_allocf(vmem_bt_zone, vmem_bt_alloc);
669#endif
670}
671
672/* ---- rehash */
673
674static int
675vmem_rehash(vmem_t *vm, vmem_size_t newhashsize)
676{
677	bt_t *bt;
678	int i;
679	struct vmem_hashlist *newhashlist;
680	struct vmem_hashlist *oldhashlist;
681	vmem_size_t oldhashsize;
682
683	MPASS(newhashsize > 0);
684
685	newhashlist = malloc(sizeof(struct vmem_hashlist) * newhashsize,
686	    M_VMEM, M_NOWAIT);
687	if (newhashlist == NULL)
688		return ENOMEM;
689	for (i = 0; i < newhashsize; i++) {
690		LIST_INIT(&newhashlist[i]);
691	}
692
693	VMEM_LOCK(vm);
694	oldhashlist = vm->vm_hashlist;
695	oldhashsize = vm->vm_hashsize;
696	vm->vm_hashlist = newhashlist;
697	vm->vm_hashsize = newhashsize;
698	if (oldhashlist == NULL) {
699		VMEM_UNLOCK(vm);
700		return 0;
701	}
702	for (i = 0; i < oldhashsize; i++) {
703		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
704			bt_rembusy(vm, bt);
705			bt_insbusy(vm, bt);
706		}
707	}
708	VMEM_UNLOCK(vm);
709
710	if (oldhashlist != vm->vm_hash0) {
711		free(oldhashlist, M_VMEM);
712	}
713
714	return 0;
715}
716
717static void
718vmem_periodic_kick(void *dummy)
719{
720
721	taskqueue_enqueue(taskqueue_thread, &vmem_periodic_wk);
722}
723
724static void
725vmem_periodic(void *unused, int pending)
726{
727	vmem_t *vm;
728	vmem_size_t desired;
729	vmem_size_t current;
730
731	mtx_lock(&vmem_list_lock);
732	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
733#ifdef DIAGNOSTIC
734		/* Convenient time to verify vmem state. */
735		if (enable_vmem_check == 1) {
736			VMEM_LOCK(vm);
737			vmem_check(vm);
738			VMEM_UNLOCK(vm);
739		}
740#endif
741		desired = 1 << flsl(vm->vm_nbusytag);
742		desired = MIN(MAX(desired, VMEM_HASHSIZE_MIN),
743		    VMEM_HASHSIZE_MAX);
744		current = vm->vm_hashsize;
745
746		/* Grow in powers of two.  Shrink less aggressively. */
747		if (desired >= current * 2 || desired * 4 <= current)
748			vmem_rehash(vm, desired);
749
750		/*
751		 * Periodically wake up threads waiting for resources,
752		 * so they could ask for reclamation again.
753		 */
754		VMEM_CONDVAR_BROADCAST(vm);
755	}
756	mtx_unlock(&vmem_list_lock);
757
758	callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
759	    vmem_periodic_kick, NULL);
760}
761
762static void
763vmem_start_callout(void *unused)
764{
765
766	TASK_INIT(&vmem_periodic_wk, 0, vmem_periodic, NULL);
767	vmem_periodic_interval = hz * 10;
768	callout_init(&vmem_periodic_ch, CALLOUT_MPSAFE);
769	callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
770	    vmem_periodic_kick, NULL);
771}
772SYSINIT(vfs, SI_SUB_CONFIGURE, SI_ORDER_ANY, vmem_start_callout, NULL);
773
774static void
775vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int type)
776{
777	bt_t *btspan;
778	bt_t *btfree;
779
780	MPASS(type == BT_TYPE_SPAN || type == BT_TYPE_SPAN_STATIC);
781	MPASS((size & vm->vm_quantum_mask) == 0);
782
783	btspan = bt_alloc(vm);
784	btspan->bt_type = type;
785	btspan->bt_start = addr;
786	btspan->bt_size = size;
787	bt_insseg_tail(vm, btspan);
788
789	btfree = bt_alloc(vm);
790	btfree->bt_type = BT_TYPE_FREE;
791	btfree->bt_start = addr;
792	btfree->bt_size = size;
793	bt_insseg(vm, btfree, btspan);
794	bt_insfree(vm, btfree);
795
796	vm->vm_size += size;
797}
798
799static void
800vmem_destroy1(vmem_t *vm)
801{
802	bt_t *bt;
803
804	/*
805	 * Drain per-cpu quantum caches.
806	 */
807	qc_destroy(vm);
808
809	/*
810	 * The vmem should now only contain empty segments.
811	 */
812	VMEM_LOCK(vm);
813	MPASS(vm->vm_nbusytag == 0);
814
815	while ((bt = TAILQ_FIRST(&vm->vm_seglist)) != NULL)
816		bt_remseg(vm, bt);
817
818	if (vm->vm_hashlist != NULL && vm->vm_hashlist != vm->vm_hash0)
819		free(vm->vm_hashlist, M_VMEM);
820
821	bt_freetrim(vm, 0);
822
823	VMEM_CONDVAR_DESTROY(vm);
824	VMEM_LOCK_DESTROY(vm);
825	free(vm, M_VMEM);
826}
827
828static int
829vmem_import(vmem_t *vm, vmem_size_t size, vmem_size_t align, int flags)
830{
831	vmem_addr_t addr;
832	int error;
833
834	if (vm->vm_importfn == NULL)
835		return EINVAL;
836
837	/*
838	 * To make sure we get a span that meets the alignment we double it
839	 * and add the size to the tail.  This slightly overestimates.
840	 */
841	if (align != vm->vm_quantum_mask + 1)
842		size = (align * 2) + size;
843	size = roundup(size, vm->vm_import_quantum);
844
845	/*
846	 * Hide MAXALLOC tags so we're guaranteed to be able to add this
847	 * span and the tag we want to allocate from it.
848	 */
849	MPASS(vm->vm_nfreetags >= BT_MAXALLOC);
850	vm->vm_nfreetags -= BT_MAXALLOC;
851	VMEM_UNLOCK(vm);
852	error = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
853	VMEM_LOCK(vm);
854	vm->vm_nfreetags += BT_MAXALLOC;
855	if (error)
856		return ENOMEM;
857
858	vmem_add1(vm, addr, size, BT_TYPE_SPAN);
859
860	return 0;
861}
862
863/*
864 * vmem_fit: check if a bt can satisfy the given restrictions.
865 *
866 * it's a caller's responsibility to ensure the region is big enough
867 * before calling us.
868 */
869static int
870vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
871    vmem_size_t phase, vmem_size_t nocross, vmem_addr_t minaddr,
872    vmem_addr_t maxaddr, vmem_addr_t *addrp)
873{
874	vmem_addr_t start;
875	vmem_addr_t end;
876
877	MPASS(size > 0);
878	MPASS(bt->bt_size >= size); /* caller's responsibility */
879
880	/*
881	 * XXX assumption: vmem_addr_t and vmem_size_t are
882	 * unsigned integer of the same size.
883	 */
884
885	start = bt->bt_start;
886	if (start < minaddr) {
887		start = minaddr;
888	}
889	end = BT_END(bt);
890	if (end > maxaddr)
891		end = maxaddr;
892	if (start > end)
893		return (ENOMEM);
894
895	start = VMEM_ALIGNUP(start - phase, align) + phase;
896	if (start < bt->bt_start)
897		start += align;
898	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
899		MPASS(align < nocross);
900		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
901	}
902	if (start <= end && end - start >= size - 1) {
903		MPASS((start & (align - 1)) == phase);
904		MPASS(!VMEM_CROSS_P(start, start + size - 1, nocross));
905		MPASS(minaddr <= start);
906		MPASS(maxaddr == 0 || start + size - 1 <= maxaddr);
907		MPASS(bt->bt_start <= start);
908		MPASS(BT_END(bt) - start >= size - 1);
909		*addrp = start;
910
911		return (0);
912	}
913	return (ENOMEM);
914}
915
916/*
917 * vmem_clip:  Trim the boundary tag edges to the requested start and size.
918 */
919static void
920vmem_clip(vmem_t *vm, bt_t *bt, vmem_addr_t start, vmem_size_t size)
921{
922	bt_t *btnew;
923	bt_t *btprev;
924
925	VMEM_ASSERT_LOCKED(vm);
926	MPASS(bt->bt_type == BT_TYPE_FREE);
927	MPASS(bt->bt_size >= size);
928	bt_remfree(vm, bt);
929	if (bt->bt_start != start) {
930		btprev = bt_alloc(vm);
931		btprev->bt_type = BT_TYPE_FREE;
932		btprev->bt_start = bt->bt_start;
933		btprev->bt_size = start - bt->bt_start;
934		bt->bt_start = start;
935		bt->bt_size -= btprev->bt_size;
936		bt_insfree(vm, btprev);
937		bt_insseg(vm, btprev,
938		    TAILQ_PREV(bt, vmem_seglist, bt_seglist));
939	}
940	MPASS(bt->bt_start == start);
941	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
942		/* split */
943		btnew = bt_alloc(vm);
944		btnew->bt_type = BT_TYPE_BUSY;
945		btnew->bt_start = bt->bt_start;
946		btnew->bt_size = size;
947		bt->bt_start = bt->bt_start + size;
948		bt->bt_size -= size;
949		bt_insfree(vm, bt);
950		bt_insseg(vm, btnew,
951		    TAILQ_PREV(bt, vmem_seglist, bt_seglist));
952		bt_insbusy(vm, btnew);
953		bt = btnew;
954	} else {
955		bt->bt_type = BT_TYPE_BUSY;
956		bt_insbusy(vm, bt);
957	}
958	MPASS(bt->bt_size >= size);
959	bt->bt_type = BT_TYPE_BUSY;
960}
961
962/* ---- vmem API */
963
964void
965vmem_set_import(vmem_t *vm, vmem_import_t *importfn,
966     vmem_release_t *releasefn, void *arg, vmem_size_t import_quantum)
967{
968
969	VMEM_LOCK(vm);
970	vm->vm_importfn = importfn;
971	vm->vm_releasefn = releasefn;
972	vm->vm_arg = arg;
973	vm->vm_import_quantum = import_quantum;
974	VMEM_UNLOCK(vm);
975}
976
977void
978vmem_set_reclaim(vmem_t *vm, vmem_reclaim_t *reclaimfn)
979{
980
981	VMEM_LOCK(vm);
982	vm->vm_reclaimfn = reclaimfn;
983	VMEM_UNLOCK(vm);
984}
985
986/*
987 * vmem_init: Initializes vmem arena.
988 */
989vmem_t *
990vmem_init(vmem_t *vm, const char *name, vmem_addr_t base, vmem_size_t size,
991    vmem_size_t quantum, vmem_size_t qcache_max, int flags)
992{
993	int i;
994
995	MPASS(quantum > 0);
996	MPASS((quantum & (quantum - 1)) == 0);
997
998	bzero(vm, sizeof(*vm));
999
1000	VMEM_CONDVAR_INIT(vm, name);
1001	VMEM_LOCK_INIT(vm, name);
1002	vm->vm_nfreetags = 0;
1003	LIST_INIT(&vm->vm_freetags);
1004	strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
1005	vm->vm_quantum_mask = quantum - 1;
1006	vm->vm_quantum_shift = flsl(quantum) - 1;
1007	vm->vm_nbusytag = 0;
1008	vm->vm_size = 0;
1009	vm->vm_inuse = 0;
1010	qc_init(vm, qcache_max);
1011
1012	TAILQ_INIT(&vm->vm_seglist);
1013	for (i = 0; i < VMEM_MAXORDER; i++) {
1014		LIST_INIT(&vm->vm_freelist[i]);
1015	}
1016	memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
1017	vm->vm_hashsize = VMEM_HASHSIZE_MIN;
1018	vm->vm_hashlist = vm->vm_hash0;
1019
1020	if (size != 0) {
1021		if (vmem_add(vm, base, size, flags) != 0) {
1022			vmem_destroy1(vm);
1023			return NULL;
1024		}
1025	}
1026
1027	mtx_lock(&vmem_list_lock);
1028	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1029	mtx_unlock(&vmem_list_lock);
1030
1031	return vm;
1032}
1033
1034/*
1035 * vmem_create: create an arena.
1036 */
1037vmem_t *
1038vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1039    vmem_size_t quantum, vmem_size_t qcache_max, int flags)
1040{
1041
1042	vmem_t *vm;
1043
1044	vm = malloc(sizeof(*vm), M_VMEM, flags & (M_WAITOK|M_NOWAIT));
1045	if (vm == NULL)
1046		return (NULL);
1047	if (vmem_init(vm, name, base, size, quantum, qcache_max,
1048	    flags) == NULL) {
1049		free(vm, M_VMEM);
1050		return (NULL);
1051	}
1052	return (vm);
1053}
1054
1055void
1056vmem_destroy(vmem_t *vm)
1057{
1058
1059	mtx_lock(&vmem_list_lock);
1060	LIST_REMOVE(vm, vm_alllist);
1061	mtx_unlock(&vmem_list_lock);
1062
1063	vmem_destroy1(vm);
1064}
1065
1066vmem_size_t
1067vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1068{
1069
1070	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1071}
1072
1073/*
1074 * vmem_alloc: allocate resource from the arena.
1075 */
1076int
1077vmem_alloc(vmem_t *vm, vmem_size_t size, int flags, vmem_addr_t *addrp)
1078{
1079	const int strat __unused = flags & VMEM_FITMASK;
1080	qcache_t *qc;
1081
1082	flags &= VMEM_FLAGS;
1083	MPASS(size > 0);
1084	MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT);
1085	if ((flags & M_NOWAIT) == 0)
1086		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_alloc");
1087
1088	if (size <= vm->vm_qcache_max) {
1089		qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
1090		*addrp = (vmem_addr_t)uma_zalloc(qc->qc_cache, flags);
1091		if (*addrp == 0)
1092			return (ENOMEM);
1093		return (0);
1094	}
1095
1096	return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1097	    flags, addrp);
1098}
1099
1100int
1101vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1102    const vmem_size_t phase, const vmem_size_t nocross,
1103    const vmem_addr_t minaddr, const vmem_addr_t maxaddr, int flags,
1104    vmem_addr_t *addrp)
1105{
1106	const vmem_size_t size = vmem_roundup_size(vm, size0);
1107	struct vmem_freelist *list;
1108	struct vmem_freelist *first;
1109	struct vmem_freelist *end;
1110	vmem_size_t avail;
1111	bt_t *bt;
1112	int error;
1113	int strat;
1114
1115	flags &= VMEM_FLAGS;
1116	strat = flags & VMEM_FITMASK;
1117	MPASS(size0 > 0);
1118	MPASS(size > 0);
1119	MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT);
1120	MPASS((flags & (M_NOWAIT|M_WAITOK)) != (M_NOWAIT|M_WAITOK));
1121	if ((flags & M_NOWAIT) == 0)
1122		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_xalloc");
1123	MPASS((align & vm->vm_quantum_mask) == 0);
1124	MPASS((align & (align - 1)) == 0);
1125	MPASS((phase & vm->vm_quantum_mask) == 0);
1126	MPASS((nocross & vm->vm_quantum_mask) == 0);
1127	MPASS((nocross & (nocross - 1)) == 0);
1128	MPASS((align == 0 && phase == 0) || phase < align);
1129	MPASS(nocross == 0 || nocross >= size);
1130	MPASS(minaddr <= maxaddr);
1131	MPASS(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1132
1133	if (align == 0)
1134		align = vm->vm_quantum_mask + 1;
1135
1136	*addrp = 0;
1137	end = &vm->vm_freelist[VMEM_MAXORDER];
1138	/*
1139	 * choose a free block from which we allocate.
1140	 */
1141	first = bt_freehead_toalloc(vm, size, strat);
1142	VMEM_LOCK(vm);
1143	for (;;) {
1144		/*
1145		 * Make sure we have enough tags to complete the
1146		 * operation.
1147		 */
1148		if (vm->vm_nfreetags < BT_MAXALLOC &&
1149		    bt_fill(vm, flags) != 0) {
1150			error = ENOMEM;
1151			break;
1152		}
1153		/*
1154	 	 * Scan freelists looking for a tag that satisfies the
1155		 * allocation.  If we're doing BESTFIT we may encounter
1156		 * sizes below the request.  If we're doing FIRSTFIT we
1157		 * inspect only the first element from each list.
1158		 */
1159		for (list = first; list < end; list++) {
1160			LIST_FOREACH(bt, list, bt_freelist) {
1161				if (bt->bt_size >= size) {
1162					error = vmem_fit(bt, size, align, phase,
1163					    nocross, minaddr, maxaddr, addrp);
1164					if (error == 0) {
1165						vmem_clip(vm, bt, *addrp, size);
1166						goto out;
1167					}
1168				}
1169				/* FIRST skips to the next list. */
1170				if (strat == M_FIRSTFIT)
1171					break;
1172			}
1173		}
1174		/*
1175		 * Retry if the fast algorithm failed.
1176		 */
1177		if (strat == M_FIRSTFIT) {
1178			strat = M_BESTFIT;
1179			first = bt_freehead_toalloc(vm, size, strat);
1180			continue;
1181		}
1182		/*
1183		 * XXX it is possible to fail to meet restrictions with the
1184		 * imported region.  It is up to the user to specify the
1185		 * import quantum such that it can satisfy any allocation.
1186		 */
1187		if (vmem_import(vm, size, align, flags) == 0)
1188			continue;
1189
1190		/*
1191		 * Try to free some space from the quantum cache or reclaim
1192		 * functions if available.
1193		 */
1194		if (vm->vm_qcache_max != 0 || vm->vm_reclaimfn != NULL) {
1195			avail = vm->vm_size - vm->vm_inuse;
1196			VMEM_UNLOCK(vm);
1197			if (vm->vm_qcache_max != 0)
1198				qc_drain(vm);
1199			if (vm->vm_reclaimfn != NULL)
1200				vm->vm_reclaimfn(vm, flags);
1201			VMEM_LOCK(vm);
1202			/* If we were successful retry even NOWAIT. */
1203			if (vm->vm_size - vm->vm_inuse > avail)
1204				continue;
1205		}
1206		if ((flags & M_NOWAIT) != 0) {
1207			error = ENOMEM;
1208			break;
1209		}
1210		VMEM_CONDVAR_WAIT(vm);
1211	}
1212out:
1213	VMEM_UNLOCK(vm);
1214	if (error != 0 && (flags & M_NOWAIT) == 0)
1215		panic("failed to allocate waiting allocation\n");
1216
1217	return (error);
1218}
1219
1220/*
1221 * vmem_free: free the resource to the arena.
1222 */
1223void
1224vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1225{
1226	qcache_t *qc;
1227	MPASS(size > 0);
1228
1229	if (size <= vm->vm_qcache_max) {
1230		qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
1231		uma_zfree(qc->qc_cache, (void *)addr);
1232	} else
1233		vmem_xfree(vm, addr, size);
1234}
1235
1236void
1237vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1238{
1239	bt_t *bt;
1240	bt_t *t;
1241
1242	MPASS(size > 0);
1243
1244	VMEM_LOCK(vm);
1245	bt = bt_lookupbusy(vm, addr);
1246	MPASS(bt != NULL);
1247	MPASS(bt->bt_start == addr);
1248	MPASS(bt->bt_size == vmem_roundup_size(vm, size) ||
1249	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1250	MPASS(bt->bt_type == BT_TYPE_BUSY);
1251	bt_rembusy(vm, bt);
1252	bt->bt_type = BT_TYPE_FREE;
1253
1254	/* coalesce */
1255	t = TAILQ_NEXT(bt, bt_seglist);
1256	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1257		MPASS(BT_END(bt) < t->bt_start);	/* YYY */
1258		bt->bt_size += t->bt_size;
1259		bt_remfree(vm, t);
1260		bt_remseg(vm, t);
1261	}
1262	t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1263	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1264		MPASS(BT_END(t) < bt->bt_start);	/* YYY */
1265		bt->bt_size += t->bt_size;
1266		bt->bt_start = t->bt_start;
1267		bt_remfree(vm, t);
1268		bt_remseg(vm, t);
1269	}
1270
1271	t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1272	MPASS(t != NULL);
1273	MPASS(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1274	if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1275	    t->bt_size == bt->bt_size) {
1276		vmem_addr_t spanaddr;
1277		vmem_size_t spansize;
1278
1279		MPASS(t->bt_start == bt->bt_start);
1280		spanaddr = bt->bt_start;
1281		spansize = bt->bt_size;
1282		bt_remseg(vm, bt);
1283		bt_remseg(vm, t);
1284		vm->vm_size -= spansize;
1285		VMEM_CONDVAR_BROADCAST(vm);
1286		bt_freetrim(vm, BT_MAXFREE);
1287		(*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1288	} else {
1289		bt_insfree(vm, bt);
1290		VMEM_CONDVAR_BROADCAST(vm);
1291		bt_freetrim(vm, BT_MAXFREE);
1292	}
1293}
1294
1295/*
1296 * vmem_add:
1297 *
1298 */
1299int
1300vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int flags)
1301{
1302	int error;
1303
1304	error = 0;
1305	flags &= VMEM_FLAGS;
1306	VMEM_LOCK(vm);
1307	if (vm->vm_nfreetags >= BT_MAXALLOC || bt_fill(vm, flags) == 0)
1308		vmem_add1(vm, addr, size, BT_TYPE_SPAN_STATIC);
1309	else
1310		error = ENOMEM;
1311	VMEM_UNLOCK(vm);
1312
1313	return (error);
1314}
1315
1316/*
1317 * vmem_size: information about arenas size
1318 */
1319vmem_size_t
1320vmem_size(vmem_t *vm, int typemask)
1321{
1322	int i;
1323
1324	switch (typemask) {
1325	case VMEM_ALLOC:
1326		return vm->vm_inuse;
1327	case VMEM_FREE:
1328		return vm->vm_size - vm->vm_inuse;
1329	case VMEM_FREE|VMEM_ALLOC:
1330		return vm->vm_size;
1331	case VMEM_MAXFREE:
1332		VMEM_LOCK(vm);
1333		for (i = VMEM_MAXORDER - 1; i >= 0; i--) {
1334			if (LIST_EMPTY(&vm->vm_freelist[i]))
1335				continue;
1336			VMEM_UNLOCK(vm);
1337			return ((vmem_size_t)ORDER2SIZE(i) <<
1338			    vm->vm_quantum_shift);
1339		}
1340		VMEM_UNLOCK(vm);
1341		return (0);
1342	default:
1343		panic("vmem_size");
1344	}
1345}
1346
1347/* ---- debug */
1348
1349#if defined(DDB) || defined(DIAGNOSTIC)
1350
1351static void bt_dump(const bt_t *, int (*)(const char *, ...)
1352    __printflike(1, 2));
1353
1354static const char *
1355bt_type_string(int type)
1356{
1357
1358	switch (type) {
1359	case BT_TYPE_BUSY:
1360		return "busy";
1361	case BT_TYPE_FREE:
1362		return "free";
1363	case BT_TYPE_SPAN:
1364		return "span";
1365	case BT_TYPE_SPAN_STATIC:
1366		return "static span";
1367	default:
1368		break;
1369	}
1370	return "BOGUS";
1371}
1372
1373static void
1374bt_dump(const bt_t *bt, int (*pr)(const char *, ...))
1375{
1376
1377	(*pr)("\t%p: %jx %jx, %d(%s)\n",
1378	    bt, (intmax_t)bt->bt_start, (intmax_t)bt->bt_size,
1379	    bt->bt_type, bt_type_string(bt->bt_type));
1380}
1381
1382static void
1383vmem_dump(const vmem_t *vm , int (*pr)(const char *, ...) __printflike(1, 2))
1384{
1385	const bt_t *bt;
1386	int i;
1387
1388	(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1389	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1390		bt_dump(bt, pr);
1391	}
1392
1393	for (i = 0; i < VMEM_MAXORDER; i++) {
1394		const struct vmem_freelist *fl = &vm->vm_freelist[i];
1395
1396		if (LIST_EMPTY(fl)) {
1397			continue;
1398		}
1399
1400		(*pr)("freelist[%d]\n", i);
1401		LIST_FOREACH(bt, fl, bt_freelist) {
1402			bt_dump(bt, pr);
1403		}
1404	}
1405}
1406
1407#endif /* defined(DDB) || defined(DIAGNOSTIC) */
1408
1409#if defined(DDB)
1410static bt_t *
1411vmem_whatis_lookup(vmem_t *vm, vmem_addr_t addr)
1412{
1413	bt_t *bt;
1414
1415	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1416		if (BT_ISSPAN_P(bt)) {
1417			continue;
1418		}
1419		if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1420			return bt;
1421		}
1422	}
1423
1424	return NULL;
1425}
1426
1427void
1428vmem_whatis(vmem_addr_t addr, int (*pr)(const char *, ...))
1429{
1430	vmem_t *vm;
1431
1432	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1433		bt_t *bt;
1434
1435		bt = vmem_whatis_lookup(vm, addr);
1436		if (bt == NULL) {
1437			continue;
1438		}
1439		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1440		    (void *)addr, (void *)bt->bt_start,
1441		    (vmem_size_t)(addr - bt->bt_start), vm->vm_name,
1442		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1443	}
1444}
1445
1446void
1447vmem_printall(const char *modif, int (*pr)(const char *, ...))
1448{
1449	const vmem_t *vm;
1450
1451	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1452		vmem_dump(vm, pr);
1453	}
1454}
1455
1456void
1457vmem_print(vmem_addr_t addr, const char *modif, int (*pr)(const char *, ...))
1458{
1459	const vmem_t *vm = (const void *)addr;
1460
1461	vmem_dump(vm, pr);
1462}
1463#endif /* defined(DDB) */
1464
1465#define vmem_printf printf
1466
1467#if defined(DIAGNOSTIC)
1468
1469static bool
1470vmem_check_sanity(vmem_t *vm)
1471{
1472	const bt_t *bt, *bt2;
1473
1474	MPASS(vm != NULL);
1475
1476	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1477		if (bt->bt_start > BT_END(bt)) {
1478			printf("corrupted tag\n");
1479			bt_dump(bt, vmem_printf);
1480			return false;
1481		}
1482	}
1483	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1484		TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1485			if (bt == bt2) {
1486				continue;
1487			}
1488			if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1489				continue;
1490			}
1491			if (bt->bt_start <= BT_END(bt2) &&
1492			    bt2->bt_start <= BT_END(bt)) {
1493				printf("overwrapped tags\n");
1494				bt_dump(bt, vmem_printf);
1495				bt_dump(bt2, vmem_printf);
1496				return false;
1497			}
1498		}
1499	}
1500
1501	return true;
1502}
1503
1504static void
1505vmem_check(vmem_t *vm)
1506{
1507
1508	if (!vmem_check_sanity(vm)) {
1509		panic("insanity vmem %p", vm);
1510	}
1511}
1512
1513#endif /* defined(DIAGNOSTIC) */
1514