sched_ule.c revision 255363
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 255363 2013-09-07 15:16:30Z mav $");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_kdtrace.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/sdt.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/turnstile.h>
62#include <sys/umtx.h>
63#include <sys/vmmeter.h>
64#include <sys/cpuset.h>
65#include <sys/sbuf.h>
66
67#ifdef HWPMC_HOOKS
68#include <sys/pmckern.h>
69#endif
70
71#ifdef KDTRACE_HOOKS
72#include <sys/dtrace_bsd.h>
73int				dtrace_vtime_active;
74dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75#endif
76
77#include <machine/cpu.h>
78#include <machine/smp.h>
79
80#if defined(__powerpc__) && defined(BOOKE_E500)
81#error "This architecture is not currently compatible with ULE"
82#endif
83
84#define	KTR_ULE	0
85
86#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
88#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
89
90/*
91 * Thread scheduler specific section.  All fields are protected
92 * by the thread lock.
93 */
94struct td_sched {
95	struct runq	*ts_runq;	/* Run-queue we're queued on. */
96	short		ts_flags;	/* TSF_* flags. */
97	u_char		ts_cpu;		/* CPU that we have affinity for. */
98	int		ts_rltick;	/* Real last tick, for affinity. */
99	int		ts_slice;	/* Ticks of slice remaining. */
100	u_int		ts_slptime;	/* Number of ticks we vol. slept */
101	u_int		ts_runtime;	/* Number of ticks we were running */
102	int		ts_ltick;	/* Last tick that we were running on */
103	int		ts_ftick;	/* First tick that we were running on */
104	int		ts_ticks;	/* Tick count */
105#ifdef KTR
106	char		ts_name[TS_NAME_LEN];
107#endif
108};
109/* flags kept in ts_flags */
110#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112
113static struct td_sched td_sched0;
114
115#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116#define	THREAD_CAN_SCHED(td, cpu)	\
117    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118
119/*
120 * Priority ranges used for interactive and non-interactive timeshare
121 * threads.  The timeshare priorities are split up into four ranges.
122 * The first range handles interactive threads.  The last three ranges
123 * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124 * ranges supporting nice values.
125 */
126#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129
130#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134
135/*
136 * Cpu percentage computation macros and defines.
137 *
138 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144 */
145#define	SCHED_TICK_SECS		10
146#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148#define	SCHED_TICK_SHIFT	10
149#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151
152/*
153 * These macros determine priorities for non-interactive threads.  They are
154 * assigned a priority based on their recent cpu utilization as expressed
155 * by the ratio of ticks to the tick total.  NHALF priorities at the start
156 * and end of the MIN to MAX timeshare range are only reachable with negative
157 * or positive nice respectively.
158 *
159 * PRI_RANGE:	Priority range for utilization dependent priorities.
160 * PRI_NRESV:	Number of nice values.
161 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162 * PRI_NICE:	Determines the part of the priority inherited from nice.
163 */
164#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169#define	SCHED_PRI_TICKS(ts)						\
170    (SCHED_TICK_HZ((ts)) /						\
171    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172#define	SCHED_PRI_NICE(nice)	(nice)
173
174/*
175 * These determine the interactivity of a process.  Interactivity differs from
176 * cpu utilization in that it expresses the voluntary time slept vs time ran
177 * while cpu utilization includes all time not running.  This more accurately
178 * models the intent of the thread.
179 *
180 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181 *		before throttling back.
182 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184 * INTERACT_THRESH:	Threshold for placement on the current runq.
185 */
186#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188#define	SCHED_INTERACT_MAX	(100)
189#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190#define	SCHED_INTERACT_THRESH	(30)
191
192/*
193 * These parameters determine the slice behavior for batch work.
194 */
195#define	SCHED_SLICE_DEFAULT_DIVISOR	10	/* ~94 ms, 12 stathz ticks. */
196#define	SCHED_SLICE_MIN_DIVISOR		6	/* DEFAULT/MIN = ~16 ms. */
197
198/* Flags kept in td_flags. */
199#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
200
201/*
202 * tickincr:		Converts a stathz tick into a hz domain scaled by
203 *			the shift factor.  Without the shift the error rate
204 *			due to rounding would be unacceptably high.
205 * realstathz:		stathz is sometimes 0 and run off of hz.
206 * sched_slice:		Runtime of each thread before rescheduling.
207 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
208 */
209static int sched_interact = SCHED_INTERACT_THRESH;
210static int tickincr = 8 << SCHED_TICK_SHIFT;
211static int realstathz = 127;	/* reset during boot. */
212static int sched_slice = 10;	/* reset during boot. */
213static int sched_slice_min = 1;	/* reset during boot. */
214#ifdef PREEMPTION
215#ifdef FULL_PREEMPTION
216static int preempt_thresh = PRI_MAX_IDLE;
217#else
218static int preempt_thresh = PRI_MIN_KERN;
219#endif
220#else
221static int preempt_thresh = 0;
222#endif
223static int static_boost = PRI_MIN_BATCH;
224static int sched_idlespins = 10000;
225static int sched_idlespinthresh = -1;
226
227/*
228 * tdq - per processor runqs and statistics.  All fields are protected by the
229 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
230 * locking in sched_pickcpu();
231 */
232struct tdq {
233	/*
234	 * Ordered to improve efficiency of cpu_search() and switch().
235	 * tdq_lock is padded to avoid false sharing with tdq_load and
236	 * tdq_cpu_idle.
237	 */
238	struct mtx_padalign tdq_lock;		/* run queue lock. */
239	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
240	volatile int	tdq_load;		/* Aggregate load. */
241	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
242	int		tdq_sysload;		/* For loadavg, !ITHD load. */
243	int		tdq_transferable;	/* Transferable thread count. */
244	short		tdq_switchcnt;		/* Switches this tick. */
245	short		tdq_oldswitchcnt;	/* Switches last tick. */
246	u_char		tdq_lowpri;		/* Lowest priority thread. */
247	u_char		tdq_ipipending;		/* IPI pending. */
248	u_char		tdq_idx;		/* Current insert index. */
249	u_char		tdq_ridx;		/* Current removal index. */
250	struct runq	tdq_realtime;		/* real-time run queue. */
251	struct runq	tdq_timeshare;		/* timeshare run queue. */
252	struct runq	tdq_idle;		/* Queue of IDLE threads. */
253	char		tdq_name[TDQ_NAME_LEN];
254#ifdef KTR
255	char		tdq_loadname[TDQ_LOADNAME_LEN];
256#endif
257} __aligned(64);
258
259/* Idle thread states and config. */
260#define	TDQ_RUNNING	1
261#define	TDQ_IDLE	2
262
263#ifdef SMP
264struct cpu_group *cpu_top;		/* CPU topology */
265
266#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
267#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
268
269/*
270 * Run-time tunables.
271 */
272static int rebalance = 1;
273static int balance_interval = 128;	/* Default set in sched_initticks(). */
274static int affinity;
275static int steal_idle = 1;
276static int steal_thresh = 2;
277
278/*
279 * One thread queue per processor.
280 */
281static struct tdq	tdq_cpu[MAXCPU];
282static struct tdq	*balance_tdq;
283static int balance_ticks;
284static DPCPU_DEFINE(uint32_t, randomval);
285
286#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
287#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
288#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
289#else	/* !SMP */
290static struct tdq	tdq_cpu;
291
292#define	TDQ_ID(x)	(0)
293#define	TDQ_SELF()	(&tdq_cpu)
294#define	TDQ_CPU(x)	(&tdq_cpu)
295#endif
296
297#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
298#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
299#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
300#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
301#define	TDQ_LOCKPTR(t)		((struct mtx *)(&(t)->tdq_lock))
302
303static void sched_priority(struct thread *);
304static void sched_thread_priority(struct thread *, u_char);
305static int sched_interact_score(struct thread *);
306static void sched_interact_update(struct thread *);
307static void sched_interact_fork(struct thread *);
308static void sched_pctcpu_update(struct td_sched *, int);
309
310/* Operations on per processor queues */
311static struct thread *tdq_choose(struct tdq *);
312static void tdq_setup(struct tdq *);
313static void tdq_load_add(struct tdq *, struct thread *);
314static void tdq_load_rem(struct tdq *, struct thread *);
315static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
316static __inline void tdq_runq_rem(struct tdq *, struct thread *);
317static inline int sched_shouldpreempt(int, int, int);
318void tdq_print(int cpu);
319static void runq_print(struct runq *rq);
320static void tdq_add(struct tdq *, struct thread *, int);
321#ifdef SMP
322static int tdq_move(struct tdq *, struct tdq *);
323static int tdq_idled(struct tdq *);
324static void tdq_notify(struct tdq *, struct thread *);
325static struct thread *tdq_steal(struct tdq *, int);
326static struct thread *runq_steal(struct runq *, int);
327static int sched_pickcpu(struct thread *, int);
328static void sched_balance(void);
329static int sched_balance_pair(struct tdq *, struct tdq *);
330static inline struct tdq *sched_setcpu(struct thread *, int, int);
331static inline void thread_unblock_switch(struct thread *, struct mtx *);
332static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
333static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
334static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
335    struct cpu_group *cg, int indent);
336#endif
337
338static void sched_setup(void *dummy);
339SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
340
341static void sched_initticks(void *dummy);
342SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
343    NULL);
344
345SDT_PROVIDER_DEFINE(sched);
346
347SDT_PROBE_DEFINE3(sched, , , change_pri, change-pri, "struct thread *",
348    "struct proc *", "uint8_t");
349SDT_PROBE_DEFINE3(sched, , , dequeue, dequeue, "struct thread *",
350    "struct proc *", "void *");
351SDT_PROBE_DEFINE4(sched, , , enqueue, enqueue, "struct thread *",
352    "struct proc *", "void *", "int");
353SDT_PROBE_DEFINE4(sched, , , lend_pri, lend-pri, "struct thread *",
354    "struct proc *", "uint8_t", "struct thread *");
355SDT_PROBE_DEFINE2(sched, , , load_change, load-change, "int", "int");
356SDT_PROBE_DEFINE2(sched, , , off_cpu, off-cpu, "struct thread *",
357    "struct proc *");
358SDT_PROBE_DEFINE(sched, , , on_cpu, on-cpu);
359SDT_PROBE_DEFINE(sched, , , remain_cpu, remain-cpu);
360SDT_PROBE_DEFINE2(sched, , , surrender, surrender, "struct thread *",
361    "struct proc *");
362
363/*
364 * Print the threads waiting on a run-queue.
365 */
366static void
367runq_print(struct runq *rq)
368{
369	struct rqhead *rqh;
370	struct thread *td;
371	int pri;
372	int j;
373	int i;
374
375	for (i = 0; i < RQB_LEN; i++) {
376		printf("\t\trunq bits %d 0x%zx\n",
377		    i, rq->rq_status.rqb_bits[i]);
378		for (j = 0; j < RQB_BPW; j++)
379			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
380				pri = j + (i << RQB_L2BPW);
381				rqh = &rq->rq_queues[pri];
382				TAILQ_FOREACH(td, rqh, td_runq) {
383					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
384					    td, td->td_name, td->td_priority,
385					    td->td_rqindex, pri);
386				}
387			}
388	}
389}
390
391/*
392 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
393 */
394void
395tdq_print(int cpu)
396{
397	struct tdq *tdq;
398
399	tdq = TDQ_CPU(cpu);
400
401	printf("tdq %d:\n", TDQ_ID(tdq));
402	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
403	printf("\tLock name:      %s\n", tdq->tdq_name);
404	printf("\tload:           %d\n", tdq->tdq_load);
405	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
406	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
407	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
408	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
409	printf("\tload transferable: %d\n", tdq->tdq_transferable);
410	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
411	printf("\trealtime runq:\n");
412	runq_print(&tdq->tdq_realtime);
413	printf("\ttimeshare runq:\n");
414	runq_print(&tdq->tdq_timeshare);
415	printf("\tidle runq:\n");
416	runq_print(&tdq->tdq_idle);
417}
418
419static inline int
420sched_shouldpreempt(int pri, int cpri, int remote)
421{
422	/*
423	 * If the new priority is not better than the current priority there is
424	 * nothing to do.
425	 */
426	if (pri >= cpri)
427		return (0);
428	/*
429	 * Always preempt idle.
430	 */
431	if (cpri >= PRI_MIN_IDLE)
432		return (1);
433	/*
434	 * If preemption is disabled don't preempt others.
435	 */
436	if (preempt_thresh == 0)
437		return (0);
438	/*
439	 * Preempt if we exceed the threshold.
440	 */
441	if (pri <= preempt_thresh)
442		return (1);
443	/*
444	 * If we're interactive or better and there is non-interactive
445	 * or worse running preempt only remote processors.
446	 */
447	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
448		return (1);
449	return (0);
450}
451
452/*
453 * Add a thread to the actual run-queue.  Keeps transferable counts up to
454 * date with what is actually on the run-queue.  Selects the correct
455 * queue position for timeshare threads.
456 */
457static __inline void
458tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
459{
460	struct td_sched *ts;
461	u_char pri;
462
463	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
464	THREAD_LOCK_ASSERT(td, MA_OWNED);
465
466	pri = td->td_priority;
467	ts = td->td_sched;
468	TD_SET_RUNQ(td);
469	if (THREAD_CAN_MIGRATE(td)) {
470		tdq->tdq_transferable++;
471		ts->ts_flags |= TSF_XFERABLE;
472	}
473	if (pri < PRI_MIN_BATCH) {
474		ts->ts_runq = &tdq->tdq_realtime;
475	} else if (pri <= PRI_MAX_BATCH) {
476		ts->ts_runq = &tdq->tdq_timeshare;
477		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
478			("Invalid priority %d on timeshare runq", pri));
479		/*
480		 * This queue contains only priorities between MIN and MAX
481		 * realtime.  Use the whole queue to represent these values.
482		 */
483		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
484			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
485			pri = (pri + tdq->tdq_idx) % RQ_NQS;
486			/*
487			 * This effectively shortens the queue by one so we
488			 * can have a one slot difference between idx and
489			 * ridx while we wait for threads to drain.
490			 */
491			if (tdq->tdq_ridx != tdq->tdq_idx &&
492			    pri == tdq->tdq_ridx)
493				pri = (unsigned char)(pri - 1) % RQ_NQS;
494		} else
495			pri = tdq->tdq_ridx;
496		runq_add_pri(ts->ts_runq, td, pri, flags);
497		return;
498	} else
499		ts->ts_runq = &tdq->tdq_idle;
500	runq_add(ts->ts_runq, td, flags);
501}
502
503/*
504 * Remove a thread from a run-queue.  This typically happens when a thread
505 * is selected to run.  Running threads are not on the queue and the
506 * transferable count does not reflect them.
507 */
508static __inline void
509tdq_runq_rem(struct tdq *tdq, struct thread *td)
510{
511	struct td_sched *ts;
512
513	ts = td->td_sched;
514	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
515	KASSERT(ts->ts_runq != NULL,
516	    ("tdq_runq_remove: thread %p null ts_runq", td));
517	if (ts->ts_flags & TSF_XFERABLE) {
518		tdq->tdq_transferable--;
519		ts->ts_flags &= ~TSF_XFERABLE;
520	}
521	if (ts->ts_runq == &tdq->tdq_timeshare) {
522		if (tdq->tdq_idx != tdq->tdq_ridx)
523			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
524		else
525			runq_remove_idx(ts->ts_runq, td, NULL);
526	} else
527		runq_remove(ts->ts_runq, td);
528}
529
530/*
531 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
532 * for this thread to the referenced thread queue.
533 */
534static void
535tdq_load_add(struct tdq *tdq, struct thread *td)
536{
537
538	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
539	THREAD_LOCK_ASSERT(td, MA_OWNED);
540
541	tdq->tdq_load++;
542	if ((td->td_flags & TDF_NOLOAD) == 0)
543		tdq->tdq_sysload++;
544	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
545	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
546}
547
548/*
549 * Remove the load from a thread that is transitioning to a sleep state or
550 * exiting.
551 */
552static void
553tdq_load_rem(struct tdq *tdq, struct thread *td)
554{
555
556	THREAD_LOCK_ASSERT(td, MA_OWNED);
557	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
558	KASSERT(tdq->tdq_load != 0,
559	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
560
561	tdq->tdq_load--;
562	if ((td->td_flags & TDF_NOLOAD) == 0)
563		tdq->tdq_sysload--;
564	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
565	SDT_PROBE2(sched, , , load_change, (int)TDQ_ID(tdq), tdq->tdq_load);
566}
567
568/*
569 * Bound timeshare latency by decreasing slice size as load increases.  We
570 * consider the maximum latency as the sum of the threads waiting to run
571 * aside from curthread and target no more than sched_slice latency but
572 * no less than sched_slice_min runtime.
573 */
574static inline int
575tdq_slice(struct tdq *tdq)
576{
577	int load;
578
579	/*
580	 * It is safe to use sys_load here because this is called from
581	 * contexts where timeshare threads are running and so there
582	 * cannot be higher priority load in the system.
583	 */
584	load = tdq->tdq_sysload - 1;
585	if (load >= SCHED_SLICE_MIN_DIVISOR)
586		return (sched_slice_min);
587	if (load <= 1)
588		return (sched_slice);
589	return (sched_slice / load);
590}
591
592/*
593 * Set lowpri to its exact value by searching the run-queue and
594 * evaluating curthread.  curthread may be passed as an optimization.
595 */
596static void
597tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
598{
599	struct thread *td;
600
601	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
602	if (ctd == NULL)
603		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
604	td = tdq_choose(tdq);
605	if (td == NULL || td->td_priority > ctd->td_priority)
606		tdq->tdq_lowpri = ctd->td_priority;
607	else
608		tdq->tdq_lowpri = td->td_priority;
609}
610
611#ifdef SMP
612struct cpu_search {
613	cpuset_t cs_mask;
614	u_int	cs_prefer;
615	int	cs_pri;		/* Min priority for low. */
616	int	cs_limit;	/* Max load for low, min load for high. */
617	int	cs_cpu;
618	int	cs_load;
619};
620
621#define	CPU_SEARCH_LOWEST	0x1
622#define	CPU_SEARCH_HIGHEST	0x2
623#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
624
625#define	CPUSET_FOREACH(cpu, mask)				\
626	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
627		if (CPU_ISSET(cpu, &mask))
628
629static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
630    struct cpu_search *high, const int match);
631int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
632int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
633int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
634    struct cpu_search *high);
635
636/*
637 * Search the tree of cpu_groups for the lowest or highest loaded cpu
638 * according to the match argument.  This routine actually compares the
639 * load on all paths through the tree and finds the least loaded cpu on
640 * the least loaded path, which may differ from the least loaded cpu in
641 * the system.  This balances work among caches and busses.
642 *
643 * This inline is instantiated in three forms below using constants for the
644 * match argument.  It is reduced to the minimum set for each case.  It is
645 * also recursive to the depth of the tree.
646 */
647static __inline int
648cpu_search(const struct cpu_group *cg, struct cpu_search *low,
649    struct cpu_search *high, const int match)
650{
651	struct cpu_search lgroup;
652	struct cpu_search hgroup;
653	cpuset_t cpumask;
654	struct cpu_group *child;
655	struct tdq *tdq;
656	int cpu, i, hload, lload, load, total, rnd, *rndptr;
657
658	total = 0;
659	cpumask = cg->cg_mask;
660	if (match & CPU_SEARCH_LOWEST) {
661		lload = INT_MAX;
662		lgroup = *low;
663	}
664	if (match & CPU_SEARCH_HIGHEST) {
665		hload = INT_MIN;
666		hgroup = *high;
667	}
668
669	/* Iterate through the child CPU groups and then remaining CPUs. */
670	for (i = cg->cg_children, cpu = mp_maxid; ; ) {
671		if (i == 0) {
672#ifdef HAVE_INLINE_FFSL
673			cpu = CPU_FFS(&cpumask) - 1;
674#else
675			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
676				cpu--;
677#endif
678			if (cpu < 0)
679				break;
680			child = NULL;
681		} else
682			child = &cg->cg_child[i - 1];
683
684		if (match & CPU_SEARCH_LOWEST)
685			lgroup.cs_cpu = -1;
686		if (match & CPU_SEARCH_HIGHEST)
687			hgroup.cs_cpu = -1;
688		if (child) {			/* Handle child CPU group. */
689			CPU_NAND(&cpumask, &child->cg_mask);
690			switch (match) {
691			case CPU_SEARCH_LOWEST:
692				load = cpu_search_lowest(child, &lgroup);
693				break;
694			case CPU_SEARCH_HIGHEST:
695				load = cpu_search_highest(child, &hgroup);
696				break;
697			case CPU_SEARCH_BOTH:
698				load = cpu_search_both(child, &lgroup, &hgroup);
699				break;
700			}
701		} else {			/* Handle child CPU. */
702			CPU_CLR(cpu, &cpumask);
703			tdq = TDQ_CPU(cpu);
704			load = tdq->tdq_load * 256;
705			rndptr = DPCPU_PTR(randomval);
706			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
707			if (match & CPU_SEARCH_LOWEST) {
708				if (cpu == low->cs_prefer)
709					load -= 64;
710				/* If that CPU is allowed and get data. */
711				if (tdq->tdq_lowpri > lgroup.cs_pri &&
712				    tdq->tdq_load <= lgroup.cs_limit &&
713				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
714					lgroup.cs_cpu = cpu;
715					lgroup.cs_load = load - rnd;
716				}
717			}
718			if (match & CPU_SEARCH_HIGHEST)
719				if (tdq->tdq_load >= hgroup.cs_limit &&
720				    tdq->tdq_transferable &&
721				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
722					hgroup.cs_cpu = cpu;
723					hgroup.cs_load = load - rnd;
724				}
725		}
726		total += load;
727
728		/* We have info about child item. Compare it. */
729		if (match & CPU_SEARCH_LOWEST) {
730			if (lgroup.cs_cpu >= 0 &&
731			    (load < lload ||
732			     (load == lload && lgroup.cs_load < low->cs_load))) {
733				lload = load;
734				low->cs_cpu = lgroup.cs_cpu;
735				low->cs_load = lgroup.cs_load;
736			}
737		}
738		if (match & CPU_SEARCH_HIGHEST)
739			if (hgroup.cs_cpu >= 0 &&
740			    (load > hload ||
741			     (load == hload && hgroup.cs_load > high->cs_load))) {
742				hload = load;
743				high->cs_cpu = hgroup.cs_cpu;
744				high->cs_load = hgroup.cs_load;
745			}
746		if (child) {
747			i--;
748			if (i == 0 && CPU_EMPTY(&cpumask))
749				break;
750		}
751#ifndef HAVE_INLINE_FFSL
752		else
753			cpu--;
754#endif
755	}
756	return (total);
757}
758
759/*
760 * cpu_search instantiations must pass constants to maintain the inline
761 * optimization.
762 */
763int
764cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
765{
766	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
767}
768
769int
770cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
771{
772	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
773}
774
775int
776cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
777    struct cpu_search *high)
778{
779	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
780}
781
782/*
783 * Find the cpu with the least load via the least loaded path that has a
784 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
785 * acceptable.
786 */
787static inline int
788sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
789    int prefer)
790{
791	struct cpu_search low;
792
793	low.cs_cpu = -1;
794	low.cs_prefer = prefer;
795	low.cs_mask = mask;
796	low.cs_pri = pri;
797	low.cs_limit = maxload;
798	cpu_search_lowest(cg, &low);
799	return low.cs_cpu;
800}
801
802/*
803 * Find the cpu with the highest load via the highest loaded path.
804 */
805static inline int
806sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
807{
808	struct cpu_search high;
809
810	high.cs_cpu = -1;
811	high.cs_mask = mask;
812	high.cs_limit = minload;
813	cpu_search_highest(cg, &high);
814	return high.cs_cpu;
815}
816
817/*
818 * Simultaneously find the highest and lowest loaded cpu reachable via
819 * cg.
820 */
821static inline void
822sched_both(const struct cpu_group *cg, cpuset_t mask, int *lowcpu, int *highcpu)
823{
824	struct cpu_search high;
825	struct cpu_search low;
826
827	low.cs_cpu = -1;
828	low.cs_prefer = -1;
829	low.cs_pri = -1;
830	low.cs_limit = INT_MAX;
831	low.cs_mask = mask;
832	high.cs_cpu = -1;
833	high.cs_limit = -1;
834	high.cs_mask = mask;
835	cpu_search_both(cg, &low, &high);
836	*lowcpu = low.cs_cpu;
837	*highcpu = high.cs_cpu;
838	return;
839}
840
841static void
842sched_balance_group(struct cpu_group *cg)
843{
844	cpuset_t hmask, lmask;
845	int high, low, anylow;
846
847	CPU_FILL(&hmask);
848	for (;;) {
849		high = sched_highest(cg, hmask, 1);
850		/* Stop if there is no more CPU with transferrable threads. */
851		if (high == -1)
852			break;
853		CPU_CLR(high, &hmask);
854		CPU_COPY(&hmask, &lmask);
855		/* Stop if there is no more CPU left for low. */
856		if (CPU_EMPTY(&lmask))
857			break;
858		anylow = 1;
859nextlow:
860		low = sched_lowest(cg, lmask, -1,
861		    TDQ_CPU(high)->tdq_load - 1, high);
862		/* Stop if we looked well and found no less loaded CPU. */
863		if (anylow && low == -1)
864			break;
865		/* Go to next high if we found no less loaded CPU. */
866		if (low == -1)
867			continue;
868		/* Transfer thread from high to low. */
869		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
870			/* CPU that got thread can no longer be a donor. */
871			CPU_CLR(low, &hmask);
872		} else {
873			/*
874			 * If failed, then there is no threads on high
875			 * that can run on this low. Drop low from low
876			 * mask and look for different one.
877			 */
878			CPU_CLR(low, &lmask);
879			anylow = 0;
880			goto nextlow;
881		}
882	}
883}
884
885static void
886sched_balance(void)
887{
888	struct tdq *tdq;
889
890	/*
891	 * Select a random time between .5 * balance_interval and
892	 * 1.5 * balance_interval.
893	 */
894	balance_ticks = max(balance_interval / 2, 1);
895	balance_ticks += random() % balance_interval;
896	if (smp_started == 0 || rebalance == 0)
897		return;
898	tdq = TDQ_SELF();
899	TDQ_UNLOCK(tdq);
900	sched_balance_group(cpu_top);
901	TDQ_LOCK(tdq);
902}
903
904/*
905 * Lock two thread queues using their address to maintain lock order.
906 */
907static void
908tdq_lock_pair(struct tdq *one, struct tdq *two)
909{
910	if (one < two) {
911		TDQ_LOCK(one);
912		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
913	} else {
914		TDQ_LOCK(two);
915		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
916	}
917}
918
919/*
920 * Unlock two thread queues.  Order is not important here.
921 */
922static void
923tdq_unlock_pair(struct tdq *one, struct tdq *two)
924{
925	TDQ_UNLOCK(one);
926	TDQ_UNLOCK(two);
927}
928
929/*
930 * Transfer load between two imbalanced thread queues.
931 */
932static int
933sched_balance_pair(struct tdq *high, struct tdq *low)
934{
935	int moved;
936	int cpu;
937
938	tdq_lock_pair(high, low);
939	moved = 0;
940	/*
941	 * Determine what the imbalance is and then adjust that to how many
942	 * threads we actually have to give up (transferable).
943	 */
944	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
945	    (moved = tdq_move(high, low)) > 0) {
946		/*
947		 * In case the target isn't the current cpu IPI it to force a
948		 * reschedule with the new workload.
949		 */
950		cpu = TDQ_ID(low);
951		if (cpu != PCPU_GET(cpuid))
952			ipi_cpu(cpu, IPI_PREEMPT);
953	}
954	tdq_unlock_pair(high, low);
955	return (moved);
956}
957
958/*
959 * Move a thread from one thread queue to another.
960 */
961static int
962tdq_move(struct tdq *from, struct tdq *to)
963{
964	struct td_sched *ts;
965	struct thread *td;
966	struct tdq *tdq;
967	int cpu;
968
969	TDQ_LOCK_ASSERT(from, MA_OWNED);
970	TDQ_LOCK_ASSERT(to, MA_OWNED);
971
972	tdq = from;
973	cpu = TDQ_ID(to);
974	td = tdq_steal(tdq, cpu);
975	if (td == NULL)
976		return (0);
977	ts = td->td_sched;
978	/*
979	 * Although the run queue is locked the thread may be blocked.  Lock
980	 * it to clear this and acquire the run-queue lock.
981	 */
982	thread_lock(td);
983	/* Drop recursive lock on from acquired via thread_lock(). */
984	TDQ_UNLOCK(from);
985	sched_rem(td);
986	ts->ts_cpu = cpu;
987	td->td_lock = TDQ_LOCKPTR(to);
988	tdq_add(to, td, SRQ_YIELDING);
989	return (1);
990}
991
992/*
993 * This tdq has idled.  Try to steal a thread from another cpu and switch
994 * to it.
995 */
996static int
997tdq_idled(struct tdq *tdq)
998{
999	struct cpu_group *cg;
1000	struct tdq *steal;
1001	cpuset_t mask;
1002	int thresh;
1003	int cpu;
1004
1005	if (smp_started == 0 || steal_idle == 0)
1006		return (1);
1007	CPU_FILL(&mask);
1008	CPU_CLR(PCPU_GET(cpuid), &mask);
1009	/* We don't want to be preempted while we're iterating. */
1010	spinlock_enter();
1011	for (cg = tdq->tdq_cg; cg != NULL; ) {
1012		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
1013			thresh = steal_thresh;
1014		else
1015			thresh = 1;
1016		cpu = sched_highest(cg, mask, thresh);
1017		if (cpu == -1) {
1018			cg = cg->cg_parent;
1019			continue;
1020		}
1021		steal = TDQ_CPU(cpu);
1022		CPU_CLR(cpu, &mask);
1023		tdq_lock_pair(tdq, steal);
1024		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
1025			tdq_unlock_pair(tdq, steal);
1026			continue;
1027		}
1028		/*
1029		 * If a thread was added while interrupts were disabled don't
1030		 * steal one here.  If we fail to acquire one due to affinity
1031		 * restrictions loop again with this cpu removed from the
1032		 * set.
1033		 */
1034		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
1035			tdq_unlock_pair(tdq, steal);
1036			continue;
1037		}
1038		spinlock_exit();
1039		TDQ_UNLOCK(steal);
1040		mi_switch(SW_VOL | SWT_IDLE, NULL);
1041		thread_unlock(curthread);
1042
1043		return (0);
1044	}
1045	spinlock_exit();
1046	return (1);
1047}
1048
1049/*
1050 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1051 */
1052static void
1053tdq_notify(struct tdq *tdq, struct thread *td)
1054{
1055	struct thread *ctd;
1056	int pri;
1057	int cpu;
1058
1059	if (tdq->tdq_ipipending)
1060		return;
1061	cpu = td->td_sched->ts_cpu;
1062	pri = td->td_priority;
1063	ctd = pcpu_find(cpu)->pc_curthread;
1064	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1065		return;
1066	if (TD_IS_IDLETHREAD(ctd)) {
1067		/*
1068		 * If the MD code has an idle wakeup routine try that before
1069		 * falling back to IPI.
1070		 */
1071		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1072			return;
1073	}
1074	tdq->tdq_ipipending = 1;
1075	ipi_cpu(cpu, IPI_PREEMPT);
1076}
1077
1078/*
1079 * Steals load from a timeshare queue.  Honors the rotating queue head
1080 * index.
1081 */
1082static struct thread *
1083runq_steal_from(struct runq *rq, int cpu, u_char start)
1084{
1085	struct rqbits *rqb;
1086	struct rqhead *rqh;
1087	struct thread *td, *first;
1088	int bit;
1089	int pri;
1090	int i;
1091
1092	rqb = &rq->rq_status;
1093	bit = start & (RQB_BPW -1);
1094	pri = 0;
1095	first = NULL;
1096again:
1097	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1098		if (rqb->rqb_bits[i] == 0)
1099			continue;
1100		if (bit != 0) {
1101			for (pri = bit; pri < RQB_BPW; pri++)
1102				if (rqb->rqb_bits[i] & (1ul << pri))
1103					break;
1104			if (pri >= RQB_BPW)
1105				continue;
1106		} else
1107			pri = RQB_FFS(rqb->rqb_bits[i]);
1108		pri += (i << RQB_L2BPW);
1109		rqh = &rq->rq_queues[pri];
1110		TAILQ_FOREACH(td, rqh, td_runq) {
1111			if (first && THREAD_CAN_MIGRATE(td) &&
1112			    THREAD_CAN_SCHED(td, cpu))
1113				return (td);
1114			first = td;
1115		}
1116	}
1117	if (start != 0) {
1118		start = 0;
1119		goto again;
1120	}
1121
1122	if (first && THREAD_CAN_MIGRATE(first) &&
1123	    THREAD_CAN_SCHED(first, cpu))
1124		return (first);
1125	return (NULL);
1126}
1127
1128/*
1129 * Steals load from a standard linear queue.
1130 */
1131static struct thread *
1132runq_steal(struct runq *rq, int cpu)
1133{
1134	struct rqhead *rqh;
1135	struct rqbits *rqb;
1136	struct thread *td;
1137	int word;
1138	int bit;
1139
1140	rqb = &rq->rq_status;
1141	for (word = 0; word < RQB_LEN; word++) {
1142		if (rqb->rqb_bits[word] == 0)
1143			continue;
1144		for (bit = 0; bit < RQB_BPW; bit++) {
1145			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1146				continue;
1147			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1148			TAILQ_FOREACH(td, rqh, td_runq)
1149				if (THREAD_CAN_MIGRATE(td) &&
1150				    THREAD_CAN_SCHED(td, cpu))
1151					return (td);
1152		}
1153	}
1154	return (NULL);
1155}
1156
1157/*
1158 * Attempt to steal a thread in priority order from a thread queue.
1159 */
1160static struct thread *
1161tdq_steal(struct tdq *tdq, int cpu)
1162{
1163	struct thread *td;
1164
1165	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1166	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1167		return (td);
1168	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1169	    cpu, tdq->tdq_ridx)) != NULL)
1170		return (td);
1171	return (runq_steal(&tdq->tdq_idle, cpu));
1172}
1173
1174/*
1175 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1176 * current lock and returns with the assigned queue locked.
1177 */
1178static inline struct tdq *
1179sched_setcpu(struct thread *td, int cpu, int flags)
1180{
1181
1182	struct tdq *tdq;
1183
1184	THREAD_LOCK_ASSERT(td, MA_OWNED);
1185	tdq = TDQ_CPU(cpu);
1186	td->td_sched->ts_cpu = cpu;
1187	/*
1188	 * If the lock matches just return the queue.
1189	 */
1190	if (td->td_lock == TDQ_LOCKPTR(tdq))
1191		return (tdq);
1192#ifdef notyet
1193	/*
1194	 * If the thread isn't running its lockptr is a
1195	 * turnstile or a sleepqueue.  We can just lock_set without
1196	 * blocking.
1197	 */
1198	if (TD_CAN_RUN(td)) {
1199		TDQ_LOCK(tdq);
1200		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1201		return (tdq);
1202	}
1203#endif
1204	/*
1205	 * The hard case, migration, we need to block the thread first to
1206	 * prevent order reversals with other cpus locks.
1207	 */
1208	spinlock_enter();
1209	thread_lock_block(td);
1210	TDQ_LOCK(tdq);
1211	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1212	spinlock_exit();
1213	return (tdq);
1214}
1215
1216SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1217SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1218SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1219SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1220SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1221SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1222
1223static int
1224sched_pickcpu(struct thread *td, int flags)
1225{
1226	struct cpu_group *cg, *ccg;
1227	struct td_sched *ts;
1228	struct tdq *tdq;
1229	cpuset_t mask;
1230	int cpu, pri, self;
1231
1232	self = PCPU_GET(cpuid);
1233	ts = td->td_sched;
1234	if (smp_started == 0)
1235		return (self);
1236	/*
1237	 * Don't migrate a running thread from sched_switch().
1238	 */
1239	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1240		return (ts->ts_cpu);
1241	/*
1242	 * Prefer to run interrupt threads on the processors that generate
1243	 * the interrupt.
1244	 */
1245	pri = td->td_priority;
1246	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1247	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1248		SCHED_STAT_INC(pickcpu_intrbind);
1249		ts->ts_cpu = self;
1250		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1251			SCHED_STAT_INC(pickcpu_affinity);
1252			return (ts->ts_cpu);
1253		}
1254	}
1255	/*
1256	 * If the thread can run on the last cpu and the affinity has not
1257	 * expired or it is idle run it there.
1258	 */
1259	tdq = TDQ_CPU(ts->ts_cpu);
1260	cg = tdq->tdq_cg;
1261	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1262	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1263	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1264		if (cg->cg_flags & CG_FLAG_THREAD) {
1265			CPUSET_FOREACH(cpu, cg->cg_mask) {
1266				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1267					break;
1268			}
1269		} else
1270			cpu = INT_MAX;
1271		if (cpu > mp_maxid) {
1272			SCHED_STAT_INC(pickcpu_idle_affinity);
1273			return (ts->ts_cpu);
1274		}
1275	}
1276	/*
1277	 * Search for the last level cache CPU group in the tree.
1278	 * Skip caches with expired affinity time and SMT groups.
1279	 * Affinity to higher level caches will be handled less aggressively.
1280	 */
1281	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1282		if (cg->cg_flags & CG_FLAG_THREAD)
1283			continue;
1284		if (!SCHED_AFFINITY(ts, cg->cg_level))
1285			continue;
1286		ccg = cg;
1287	}
1288	if (ccg != NULL)
1289		cg = ccg;
1290	cpu = -1;
1291	/* Search the group for the less loaded idle CPU we can run now. */
1292	mask = td->td_cpuset->cs_mask;
1293	if (cg != NULL && cg != cpu_top &&
1294	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1295		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1296		    INT_MAX, ts->ts_cpu);
1297	/* Search globally for the less loaded CPU we can run now. */
1298	if (cpu == -1)
1299		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1300	/* Search globally for the less loaded CPU. */
1301	if (cpu == -1)
1302		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1303	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1304	/*
1305	 * Compare the lowest loaded cpu to current cpu.
1306	 */
1307	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1308	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1309	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1310		SCHED_STAT_INC(pickcpu_local);
1311		cpu = self;
1312	} else
1313		SCHED_STAT_INC(pickcpu_lowest);
1314	if (cpu != ts->ts_cpu)
1315		SCHED_STAT_INC(pickcpu_migration);
1316	return (cpu);
1317}
1318#endif
1319
1320/*
1321 * Pick the highest priority task we have and return it.
1322 */
1323static struct thread *
1324tdq_choose(struct tdq *tdq)
1325{
1326	struct thread *td;
1327
1328	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1329	td = runq_choose(&tdq->tdq_realtime);
1330	if (td != NULL)
1331		return (td);
1332	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1333	if (td != NULL) {
1334		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1335		    ("tdq_choose: Invalid priority on timeshare queue %d",
1336		    td->td_priority));
1337		return (td);
1338	}
1339	td = runq_choose(&tdq->tdq_idle);
1340	if (td != NULL) {
1341		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1342		    ("tdq_choose: Invalid priority on idle queue %d",
1343		    td->td_priority));
1344		return (td);
1345	}
1346
1347	return (NULL);
1348}
1349
1350/*
1351 * Initialize a thread queue.
1352 */
1353static void
1354tdq_setup(struct tdq *tdq)
1355{
1356
1357	if (bootverbose)
1358		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1359	runq_init(&tdq->tdq_realtime);
1360	runq_init(&tdq->tdq_timeshare);
1361	runq_init(&tdq->tdq_idle);
1362	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1363	    "sched lock %d", (int)TDQ_ID(tdq));
1364	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1365	    MTX_SPIN | MTX_RECURSE);
1366#ifdef KTR
1367	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1368	    "CPU %d load", (int)TDQ_ID(tdq));
1369#endif
1370}
1371
1372#ifdef SMP
1373static void
1374sched_setup_smp(void)
1375{
1376	struct tdq *tdq;
1377	int i;
1378
1379	cpu_top = smp_topo();
1380	CPU_FOREACH(i) {
1381		tdq = TDQ_CPU(i);
1382		tdq_setup(tdq);
1383		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1384		if (tdq->tdq_cg == NULL)
1385			panic("Can't find cpu group for %d\n", i);
1386	}
1387	balance_tdq = TDQ_SELF();
1388	sched_balance();
1389}
1390#endif
1391
1392/*
1393 * Setup the thread queues and initialize the topology based on MD
1394 * information.
1395 */
1396static void
1397sched_setup(void *dummy)
1398{
1399	struct tdq *tdq;
1400
1401	tdq = TDQ_SELF();
1402#ifdef SMP
1403	sched_setup_smp();
1404#else
1405	tdq_setup(tdq);
1406#endif
1407
1408	/* Add thread0's load since it's running. */
1409	TDQ_LOCK(tdq);
1410	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1411	tdq_load_add(tdq, &thread0);
1412	tdq->tdq_lowpri = thread0.td_priority;
1413	TDQ_UNLOCK(tdq);
1414}
1415
1416/*
1417 * This routine determines time constants after stathz and hz are setup.
1418 */
1419/* ARGSUSED */
1420static void
1421sched_initticks(void *dummy)
1422{
1423	int incr;
1424
1425	realstathz = stathz ? stathz : hz;
1426	sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
1427	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
1428	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1429	    realstathz);
1430
1431	/*
1432	 * tickincr is shifted out by 10 to avoid rounding errors due to
1433	 * hz not being evenly divisible by stathz on all platforms.
1434	 */
1435	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1436	/*
1437	 * This does not work for values of stathz that are more than
1438	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1439	 */
1440	if (incr == 0)
1441		incr = 1;
1442	tickincr = incr;
1443#ifdef SMP
1444	/*
1445	 * Set the default balance interval now that we know
1446	 * what realstathz is.
1447	 */
1448	balance_interval = realstathz;
1449	affinity = SCHED_AFFINITY_DEFAULT;
1450#endif
1451	if (sched_idlespinthresh < 0)
1452		sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
1453}
1454
1455
1456/*
1457 * This is the core of the interactivity algorithm.  Determines a score based
1458 * on past behavior.  It is the ratio of sleep time to run time scaled to
1459 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1460 * differs from the cpu usage because it does not account for time spent
1461 * waiting on a run-queue.  Would be prettier if we had floating point.
1462 */
1463static int
1464sched_interact_score(struct thread *td)
1465{
1466	struct td_sched *ts;
1467	int div;
1468
1469	ts = td->td_sched;
1470	/*
1471	 * The score is only needed if this is likely to be an interactive
1472	 * task.  Don't go through the expense of computing it if there's
1473	 * no chance.
1474	 */
1475	if (sched_interact <= SCHED_INTERACT_HALF &&
1476		ts->ts_runtime >= ts->ts_slptime)
1477			return (SCHED_INTERACT_HALF);
1478
1479	if (ts->ts_runtime > ts->ts_slptime) {
1480		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1481		return (SCHED_INTERACT_HALF +
1482		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1483	}
1484	if (ts->ts_slptime > ts->ts_runtime) {
1485		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1486		return (ts->ts_runtime / div);
1487	}
1488	/* runtime == slptime */
1489	if (ts->ts_runtime)
1490		return (SCHED_INTERACT_HALF);
1491
1492	/*
1493	 * This can happen if slptime and runtime are 0.
1494	 */
1495	return (0);
1496
1497}
1498
1499/*
1500 * Scale the scheduling priority according to the "interactivity" of this
1501 * process.
1502 */
1503static void
1504sched_priority(struct thread *td)
1505{
1506	int score;
1507	int pri;
1508
1509	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1510		return;
1511	/*
1512	 * If the score is interactive we place the thread in the realtime
1513	 * queue with a priority that is less than kernel and interrupt
1514	 * priorities.  These threads are not subject to nice restrictions.
1515	 *
1516	 * Scores greater than this are placed on the normal timeshare queue
1517	 * where the priority is partially decided by the most recent cpu
1518	 * utilization and the rest is decided by nice value.
1519	 *
1520	 * The nice value of the process has a linear effect on the calculated
1521	 * score.  Negative nice values make it easier for a thread to be
1522	 * considered interactive.
1523	 */
1524	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1525	if (score < sched_interact) {
1526		pri = PRI_MIN_INTERACT;
1527		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1528		    sched_interact) * score;
1529		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1530		    ("sched_priority: invalid interactive priority %d score %d",
1531		    pri, score));
1532	} else {
1533		pri = SCHED_PRI_MIN;
1534		if (td->td_sched->ts_ticks)
1535			pri += min(SCHED_PRI_TICKS(td->td_sched),
1536			    SCHED_PRI_RANGE);
1537		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1538		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1539		    ("sched_priority: invalid priority %d: nice %d, "
1540		    "ticks %d ftick %d ltick %d tick pri %d",
1541		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1542		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1543		    SCHED_PRI_TICKS(td->td_sched)));
1544	}
1545	sched_user_prio(td, pri);
1546
1547	return;
1548}
1549
1550/*
1551 * This routine enforces a maximum limit on the amount of scheduling history
1552 * kept.  It is called after either the slptime or runtime is adjusted.  This
1553 * function is ugly due to integer math.
1554 */
1555static void
1556sched_interact_update(struct thread *td)
1557{
1558	struct td_sched *ts;
1559	u_int sum;
1560
1561	ts = td->td_sched;
1562	sum = ts->ts_runtime + ts->ts_slptime;
1563	if (sum < SCHED_SLP_RUN_MAX)
1564		return;
1565	/*
1566	 * This only happens from two places:
1567	 * 1) We have added an unusual amount of run time from fork_exit.
1568	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1569	 */
1570	if (sum > SCHED_SLP_RUN_MAX * 2) {
1571		if (ts->ts_runtime > ts->ts_slptime) {
1572			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1573			ts->ts_slptime = 1;
1574		} else {
1575			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1576			ts->ts_runtime = 1;
1577		}
1578		return;
1579	}
1580	/*
1581	 * If we have exceeded by more than 1/5th then the algorithm below
1582	 * will not bring us back into range.  Dividing by two here forces
1583	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1584	 */
1585	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1586		ts->ts_runtime /= 2;
1587		ts->ts_slptime /= 2;
1588		return;
1589	}
1590	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1591	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1592}
1593
1594/*
1595 * Scale back the interactivity history when a child thread is created.  The
1596 * history is inherited from the parent but the thread may behave totally
1597 * differently.  For example, a shell spawning a compiler process.  We want
1598 * to learn that the compiler is behaving badly very quickly.
1599 */
1600static void
1601sched_interact_fork(struct thread *td)
1602{
1603	int ratio;
1604	int sum;
1605
1606	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1607	if (sum > SCHED_SLP_RUN_FORK) {
1608		ratio = sum / SCHED_SLP_RUN_FORK;
1609		td->td_sched->ts_runtime /= ratio;
1610		td->td_sched->ts_slptime /= ratio;
1611	}
1612}
1613
1614/*
1615 * Called from proc0_init() to setup the scheduler fields.
1616 */
1617void
1618schedinit(void)
1619{
1620
1621	/*
1622	 * Set up the scheduler specific parts of proc0.
1623	 */
1624	proc0.p_sched = NULL; /* XXX */
1625	thread0.td_sched = &td_sched0;
1626	td_sched0.ts_ltick = ticks;
1627	td_sched0.ts_ftick = ticks;
1628	td_sched0.ts_slice = 0;
1629}
1630
1631/*
1632 * This is only somewhat accurate since given many processes of the same
1633 * priority they will switch when their slices run out, which will be
1634 * at most sched_slice stathz ticks.
1635 */
1636int
1637sched_rr_interval(void)
1638{
1639
1640	/* Convert sched_slice from stathz to hz. */
1641	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1642}
1643
1644/*
1645 * Update the percent cpu tracking information when it is requested or
1646 * the total history exceeds the maximum.  We keep a sliding history of
1647 * tick counts that slowly decays.  This is less precise than the 4BSD
1648 * mechanism since it happens with less regular and frequent events.
1649 */
1650static void
1651sched_pctcpu_update(struct td_sched *ts, int run)
1652{
1653	int t = ticks;
1654
1655	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1656		ts->ts_ticks = 0;
1657		ts->ts_ftick = t - SCHED_TICK_TARG;
1658	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1659		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1660		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1661		ts->ts_ftick = t - SCHED_TICK_TARG;
1662	}
1663	if (run)
1664		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1665	ts->ts_ltick = t;
1666}
1667
1668/*
1669 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1670 * if necessary.  This is the back-end for several priority related
1671 * functions.
1672 */
1673static void
1674sched_thread_priority(struct thread *td, u_char prio)
1675{
1676	struct td_sched *ts;
1677	struct tdq *tdq;
1678	int oldpri;
1679
1680	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1681	    "prio:%d", td->td_priority, "new prio:%d", prio,
1682	    KTR_ATTR_LINKED, sched_tdname(curthread));
1683	SDT_PROBE3(sched, , , change_pri, td, td->td_proc, prio);
1684	if (td != curthread && prio < td->td_priority) {
1685		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1686		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1687		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1688		SDT_PROBE4(sched, , , lend_pri, td, td->td_proc, prio,
1689		    curthread);
1690	}
1691	ts = td->td_sched;
1692	THREAD_LOCK_ASSERT(td, MA_OWNED);
1693	if (td->td_priority == prio)
1694		return;
1695	/*
1696	 * If the priority has been elevated due to priority
1697	 * propagation, we may have to move ourselves to a new
1698	 * queue.  This could be optimized to not re-add in some
1699	 * cases.
1700	 */
1701	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1702		sched_rem(td);
1703		td->td_priority = prio;
1704		sched_add(td, SRQ_BORROWING);
1705		return;
1706	}
1707	/*
1708	 * If the thread is currently running we may have to adjust the lowpri
1709	 * information so other cpus are aware of our current priority.
1710	 */
1711	if (TD_IS_RUNNING(td)) {
1712		tdq = TDQ_CPU(ts->ts_cpu);
1713		oldpri = td->td_priority;
1714		td->td_priority = prio;
1715		if (prio < tdq->tdq_lowpri)
1716			tdq->tdq_lowpri = prio;
1717		else if (tdq->tdq_lowpri == oldpri)
1718			tdq_setlowpri(tdq, td);
1719		return;
1720	}
1721	td->td_priority = prio;
1722}
1723
1724/*
1725 * Update a thread's priority when it is lent another thread's
1726 * priority.
1727 */
1728void
1729sched_lend_prio(struct thread *td, u_char prio)
1730{
1731
1732	td->td_flags |= TDF_BORROWING;
1733	sched_thread_priority(td, prio);
1734}
1735
1736/*
1737 * Restore a thread's priority when priority propagation is
1738 * over.  The prio argument is the minimum priority the thread
1739 * needs to have to satisfy other possible priority lending
1740 * requests.  If the thread's regular priority is less
1741 * important than prio, the thread will keep a priority boost
1742 * of prio.
1743 */
1744void
1745sched_unlend_prio(struct thread *td, u_char prio)
1746{
1747	u_char base_pri;
1748
1749	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1750	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1751		base_pri = td->td_user_pri;
1752	else
1753		base_pri = td->td_base_pri;
1754	if (prio >= base_pri) {
1755		td->td_flags &= ~TDF_BORROWING;
1756		sched_thread_priority(td, base_pri);
1757	} else
1758		sched_lend_prio(td, prio);
1759}
1760
1761/*
1762 * Standard entry for setting the priority to an absolute value.
1763 */
1764void
1765sched_prio(struct thread *td, u_char prio)
1766{
1767	u_char oldprio;
1768
1769	/* First, update the base priority. */
1770	td->td_base_pri = prio;
1771
1772	/*
1773	 * If the thread is borrowing another thread's priority, don't
1774	 * ever lower the priority.
1775	 */
1776	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1777		return;
1778
1779	/* Change the real priority. */
1780	oldprio = td->td_priority;
1781	sched_thread_priority(td, prio);
1782
1783	/*
1784	 * If the thread is on a turnstile, then let the turnstile update
1785	 * its state.
1786	 */
1787	if (TD_ON_LOCK(td) && oldprio != prio)
1788		turnstile_adjust(td, oldprio);
1789}
1790
1791/*
1792 * Set the base user priority, does not effect current running priority.
1793 */
1794void
1795sched_user_prio(struct thread *td, u_char prio)
1796{
1797
1798	td->td_base_user_pri = prio;
1799	if (td->td_lend_user_pri <= prio)
1800		return;
1801	td->td_user_pri = prio;
1802}
1803
1804void
1805sched_lend_user_prio(struct thread *td, u_char prio)
1806{
1807
1808	THREAD_LOCK_ASSERT(td, MA_OWNED);
1809	td->td_lend_user_pri = prio;
1810	td->td_user_pri = min(prio, td->td_base_user_pri);
1811	if (td->td_priority > td->td_user_pri)
1812		sched_prio(td, td->td_user_pri);
1813	else if (td->td_priority != td->td_user_pri)
1814		td->td_flags |= TDF_NEEDRESCHED;
1815}
1816
1817/*
1818 * Handle migration from sched_switch().  This happens only for
1819 * cpu binding.
1820 */
1821static struct mtx *
1822sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1823{
1824	struct tdq *tdn;
1825
1826	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1827#ifdef SMP
1828	tdq_load_rem(tdq, td);
1829	/*
1830	 * Do the lock dance required to avoid LOR.  We grab an extra
1831	 * spinlock nesting to prevent preemption while we're
1832	 * not holding either run-queue lock.
1833	 */
1834	spinlock_enter();
1835	thread_lock_block(td);	/* This releases the lock on tdq. */
1836
1837	/*
1838	 * Acquire both run-queue locks before placing the thread on the new
1839	 * run-queue to avoid deadlocks created by placing a thread with a
1840	 * blocked lock on the run-queue of a remote processor.  The deadlock
1841	 * occurs when a third processor attempts to lock the two queues in
1842	 * question while the target processor is spinning with its own
1843	 * run-queue lock held while waiting for the blocked lock to clear.
1844	 */
1845	tdq_lock_pair(tdn, tdq);
1846	tdq_add(tdn, td, flags);
1847	tdq_notify(tdn, td);
1848	TDQ_UNLOCK(tdn);
1849	spinlock_exit();
1850#endif
1851	return (TDQ_LOCKPTR(tdn));
1852}
1853
1854/*
1855 * Variadic version of thread_lock_unblock() that does not assume td_lock
1856 * is blocked.
1857 */
1858static inline void
1859thread_unblock_switch(struct thread *td, struct mtx *mtx)
1860{
1861	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1862	    (uintptr_t)mtx);
1863}
1864
1865/*
1866 * Switch threads.  This function has to handle threads coming in while
1867 * blocked for some reason, running, or idle.  It also must deal with
1868 * migrating a thread from one queue to another as running threads may
1869 * be assigned elsewhere via binding.
1870 */
1871void
1872sched_switch(struct thread *td, struct thread *newtd, int flags)
1873{
1874	struct tdq *tdq;
1875	struct td_sched *ts;
1876	struct mtx *mtx;
1877	int srqflag;
1878	int cpuid, preempted;
1879
1880	THREAD_LOCK_ASSERT(td, MA_OWNED);
1881	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1882
1883	cpuid = PCPU_GET(cpuid);
1884	tdq = TDQ_CPU(cpuid);
1885	ts = td->td_sched;
1886	mtx = td->td_lock;
1887	sched_pctcpu_update(ts, 1);
1888	ts->ts_rltick = ticks;
1889	td->td_lastcpu = td->td_oncpu;
1890	td->td_oncpu = NOCPU;
1891	preempted = !(td->td_flags & TDF_SLICEEND);
1892	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
1893	td->td_owepreempt = 0;
1894	if (!TD_IS_IDLETHREAD(td))
1895		tdq->tdq_switchcnt++;
1896	/*
1897	 * The lock pointer in an idle thread should never change.  Reset it
1898	 * to CAN_RUN as well.
1899	 */
1900	if (TD_IS_IDLETHREAD(td)) {
1901		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1902		TD_SET_CAN_RUN(td);
1903	} else if (TD_IS_RUNNING(td)) {
1904		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1905		srqflag = preempted ?
1906		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1907		    SRQ_OURSELF|SRQ_YIELDING;
1908#ifdef SMP
1909		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1910			ts->ts_cpu = sched_pickcpu(td, 0);
1911#endif
1912		if (ts->ts_cpu == cpuid)
1913			tdq_runq_add(tdq, td, srqflag);
1914		else {
1915			KASSERT(THREAD_CAN_MIGRATE(td) ||
1916			    (ts->ts_flags & TSF_BOUND) != 0,
1917			    ("Thread %p shouldn't migrate", td));
1918			mtx = sched_switch_migrate(tdq, td, srqflag);
1919		}
1920	} else {
1921		/* This thread must be going to sleep. */
1922		TDQ_LOCK(tdq);
1923		mtx = thread_lock_block(td);
1924		tdq_load_rem(tdq, td);
1925	}
1926	/*
1927	 * We enter here with the thread blocked and assigned to the
1928	 * appropriate cpu run-queue or sleep-queue and with the current
1929	 * thread-queue locked.
1930	 */
1931	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1932	newtd = choosethread();
1933	/*
1934	 * Call the MD code to switch contexts if necessary.
1935	 */
1936	if (td != newtd) {
1937#ifdef	HWPMC_HOOKS
1938		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1939			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1940#endif
1941		SDT_PROBE2(sched, , , off_cpu, newtd, newtd->td_proc);
1942		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1943		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1944		sched_pctcpu_update(newtd->td_sched, 0);
1945
1946#ifdef KDTRACE_HOOKS
1947		/*
1948		 * If DTrace has set the active vtime enum to anything
1949		 * other than INACTIVE (0), then it should have set the
1950		 * function to call.
1951		 */
1952		if (dtrace_vtime_active)
1953			(*dtrace_vtime_switch_func)(newtd);
1954#endif
1955
1956		cpu_switch(td, newtd, mtx);
1957		/*
1958		 * We may return from cpu_switch on a different cpu.  However,
1959		 * we always return with td_lock pointing to the current cpu's
1960		 * run queue lock.
1961		 */
1962		cpuid = PCPU_GET(cpuid);
1963		tdq = TDQ_CPU(cpuid);
1964		lock_profile_obtain_lock_success(
1965		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1966
1967		SDT_PROBE0(sched, , , on_cpu);
1968#ifdef	HWPMC_HOOKS
1969		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1970			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1971#endif
1972	} else {
1973		thread_unblock_switch(td, mtx);
1974		SDT_PROBE0(sched, , , remain_cpu);
1975	}
1976	/*
1977	 * Assert that all went well and return.
1978	 */
1979	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1980	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1981	td->td_oncpu = cpuid;
1982}
1983
1984/*
1985 * Adjust thread priorities as a result of a nice request.
1986 */
1987void
1988sched_nice(struct proc *p, int nice)
1989{
1990	struct thread *td;
1991
1992	PROC_LOCK_ASSERT(p, MA_OWNED);
1993
1994	p->p_nice = nice;
1995	FOREACH_THREAD_IN_PROC(p, td) {
1996		thread_lock(td);
1997		sched_priority(td);
1998		sched_prio(td, td->td_base_user_pri);
1999		thread_unlock(td);
2000	}
2001}
2002
2003/*
2004 * Record the sleep time for the interactivity scorer.
2005 */
2006void
2007sched_sleep(struct thread *td, int prio)
2008{
2009
2010	THREAD_LOCK_ASSERT(td, MA_OWNED);
2011
2012	td->td_slptick = ticks;
2013	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
2014		td->td_flags |= TDF_CANSWAP;
2015	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
2016		return;
2017	if (static_boost == 1 && prio)
2018		sched_prio(td, prio);
2019	else if (static_boost && td->td_priority > static_boost)
2020		sched_prio(td, static_boost);
2021}
2022
2023/*
2024 * Schedule a thread to resume execution and record how long it voluntarily
2025 * slept.  We also update the pctcpu, interactivity, and priority.
2026 */
2027void
2028sched_wakeup(struct thread *td)
2029{
2030	struct td_sched *ts;
2031	int slptick;
2032
2033	THREAD_LOCK_ASSERT(td, MA_OWNED);
2034	ts = td->td_sched;
2035	td->td_flags &= ~TDF_CANSWAP;
2036	/*
2037	 * If we slept for more than a tick update our interactivity and
2038	 * priority.
2039	 */
2040	slptick = td->td_slptick;
2041	td->td_slptick = 0;
2042	if (slptick && slptick != ticks) {
2043		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2044		sched_interact_update(td);
2045		sched_pctcpu_update(ts, 0);
2046	}
2047	/*
2048	 * Reset the slice value since we slept and advanced the round-robin.
2049	 */
2050	ts->ts_slice = 0;
2051	sched_add(td, SRQ_BORING);
2052}
2053
2054/*
2055 * Penalize the parent for creating a new child and initialize the child's
2056 * priority.
2057 */
2058void
2059sched_fork(struct thread *td, struct thread *child)
2060{
2061	THREAD_LOCK_ASSERT(td, MA_OWNED);
2062	sched_pctcpu_update(td->td_sched, 1);
2063	sched_fork_thread(td, child);
2064	/*
2065	 * Penalize the parent and child for forking.
2066	 */
2067	sched_interact_fork(child);
2068	sched_priority(child);
2069	td->td_sched->ts_runtime += tickincr;
2070	sched_interact_update(td);
2071	sched_priority(td);
2072}
2073
2074/*
2075 * Fork a new thread, may be within the same process.
2076 */
2077void
2078sched_fork_thread(struct thread *td, struct thread *child)
2079{
2080	struct td_sched *ts;
2081	struct td_sched *ts2;
2082	struct tdq *tdq;
2083
2084	tdq = TDQ_SELF();
2085	THREAD_LOCK_ASSERT(td, MA_OWNED);
2086	/*
2087	 * Initialize child.
2088	 */
2089	ts = td->td_sched;
2090	ts2 = child->td_sched;
2091	child->td_lock = TDQ_LOCKPTR(tdq);
2092	child->td_cpuset = cpuset_ref(td->td_cpuset);
2093	ts2->ts_cpu = ts->ts_cpu;
2094	ts2->ts_flags = 0;
2095	/*
2096	 * Grab our parents cpu estimation information.
2097	 */
2098	ts2->ts_ticks = ts->ts_ticks;
2099	ts2->ts_ltick = ts->ts_ltick;
2100	ts2->ts_ftick = ts->ts_ftick;
2101	/*
2102	 * Do not inherit any borrowed priority from the parent.
2103	 */
2104	child->td_priority = child->td_base_pri;
2105	/*
2106	 * And update interactivity score.
2107	 */
2108	ts2->ts_slptime = ts->ts_slptime;
2109	ts2->ts_runtime = ts->ts_runtime;
2110	/* Attempt to quickly learn interactivity. */
2111	ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
2112#ifdef KTR
2113	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2114#endif
2115}
2116
2117/*
2118 * Adjust the priority class of a thread.
2119 */
2120void
2121sched_class(struct thread *td, int class)
2122{
2123
2124	THREAD_LOCK_ASSERT(td, MA_OWNED);
2125	if (td->td_pri_class == class)
2126		return;
2127	td->td_pri_class = class;
2128}
2129
2130/*
2131 * Return some of the child's priority and interactivity to the parent.
2132 */
2133void
2134sched_exit(struct proc *p, struct thread *child)
2135{
2136	struct thread *td;
2137
2138	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2139	    "prio:%d", child->td_priority);
2140	PROC_LOCK_ASSERT(p, MA_OWNED);
2141	td = FIRST_THREAD_IN_PROC(p);
2142	sched_exit_thread(td, child);
2143}
2144
2145/*
2146 * Penalize another thread for the time spent on this one.  This helps to
2147 * worsen the priority and interactivity of processes which schedule batch
2148 * jobs such as make.  This has little effect on the make process itself but
2149 * causes new processes spawned by it to receive worse scores immediately.
2150 */
2151void
2152sched_exit_thread(struct thread *td, struct thread *child)
2153{
2154
2155	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2156	    "prio:%d", child->td_priority);
2157	/*
2158	 * Give the child's runtime to the parent without returning the
2159	 * sleep time as a penalty to the parent.  This causes shells that
2160	 * launch expensive things to mark their children as expensive.
2161	 */
2162	thread_lock(td);
2163	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2164	sched_interact_update(td);
2165	sched_priority(td);
2166	thread_unlock(td);
2167}
2168
2169void
2170sched_preempt(struct thread *td)
2171{
2172	struct tdq *tdq;
2173
2174	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2175
2176	thread_lock(td);
2177	tdq = TDQ_SELF();
2178	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2179	tdq->tdq_ipipending = 0;
2180	if (td->td_priority > tdq->tdq_lowpri) {
2181		int flags;
2182
2183		flags = SW_INVOL | SW_PREEMPT;
2184		if (td->td_critnest > 1)
2185			td->td_owepreempt = 1;
2186		else if (TD_IS_IDLETHREAD(td))
2187			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2188		else
2189			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2190	}
2191	thread_unlock(td);
2192}
2193
2194/*
2195 * Fix priorities on return to user-space.  Priorities may be elevated due
2196 * to static priorities in msleep() or similar.
2197 */
2198void
2199sched_userret(struct thread *td)
2200{
2201	/*
2202	 * XXX we cheat slightly on the locking here to avoid locking in
2203	 * the usual case.  Setting td_priority here is essentially an
2204	 * incomplete workaround for not setting it properly elsewhere.
2205	 * Now that some interrupt handlers are threads, not setting it
2206	 * properly elsewhere can clobber it in the window between setting
2207	 * it here and returning to user mode, so don't waste time setting
2208	 * it perfectly here.
2209	 */
2210	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2211	    ("thread with borrowed priority returning to userland"));
2212	if (td->td_priority != td->td_user_pri) {
2213		thread_lock(td);
2214		td->td_priority = td->td_user_pri;
2215		td->td_base_pri = td->td_user_pri;
2216		tdq_setlowpri(TDQ_SELF(), td);
2217		thread_unlock(td);
2218        }
2219}
2220
2221/*
2222 * Handle a stathz tick.  This is really only relevant for timeshare
2223 * threads.
2224 */
2225void
2226sched_clock(struct thread *td)
2227{
2228	struct tdq *tdq;
2229	struct td_sched *ts;
2230
2231	THREAD_LOCK_ASSERT(td, MA_OWNED);
2232	tdq = TDQ_SELF();
2233#ifdef SMP
2234	/*
2235	 * We run the long term load balancer infrequently on the first cpu.
2236	 */
2237	if (balance_tdq == tdq) {
2238		if (balance_ticks && --balance_ticks == 0)
2239			sched_balance();
2240	}
2241#endif
2242	/*
2243	 * Save the old switch count so we have a record of the last ticks
2244	 * activity.   Initialize the new switch count based on our load.
2245	 * If there is some activity seed it to reflect that.
2246	 */
2247	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2248	tdq->tdq_switchcnt = tdq->tdq_load;
2249	/*
2250	 * Advance the insert index once for each tick to ensure that all
2251	 * threads get a chance to run.
2252	 */
2253	if (tdq->tdq_idx == tdq->tdq_ridx) {
2254		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2255		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2256			tdq->tdq_ridx = tdq->tdq_idx;
2257	}
2258	ts = td->td_sched;
2259	sched_pctcpu_update(ts, 1);
2260	if (td->td_pri_class & PRI_FIFO_BIT)
2261		return;
2262	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2263		/*
2264		 * We used a tick; charge it to the thread so
2265		 * that we can compute our interactivity.
2266		 */
2267		td->td_sched->ts_runtime += tickincr;
2268		sched_interact_update(td);
2269		sched_priority(td);
2270	}
2271
2272	/*
2273	 * Force a context switch if the current thread has used up a full
2274	 * time slice (default is 100ms).
2275	 */
2276	if (!TD_IS_IDLETHREAD(td) && ++ts->ts_slice >= tdq_slice(tdq)) {
2277		ts->ts_slice = 0;
2278		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2279	}
2280}
2281
2282/*
2283 * Called once per hz tick.
2284 */
2285void
2286sched_tick(int cnt)
2287{
2288
2289}
2290
2291/*
2292 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2293 * cooperative idle threads.
2294 */
2295int
2296sched_runnable(void)
2297{
2298	struct tdq *tdq;
2299	int load;
2300
2301	load = 1;
2302
2303	tdq = TDQ_SELF();
2304	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2305		if (tdq->tdq_load > 0)
2306			goto out;
2307	} else
2308		if (tdq->tdq_load - 1 > 0)
2309			goto out;
2310	load = 0;
2311out:
2312	return (load);
2313}
2314
2315/*
2316 * Choose the highest priority thread to run.  The thread is removed from
2317 * the run-queue while running however the load remains.  For SMP we set
2318 * the tdq in the global idle bitmask if it idles here.
2319 */
2320struct thread *
2321sched_choose(void)
2322{
2323	struct thread *td;
2324	struct tdq *tdq;
2325
2326	tdq = TDQ_SELF();
2327	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2328	td = tdq_choose(tdq);
2329	if (td) {
2330		tdq_runq_rem(tdq, td);
2331		tdq->tdq_lowpri = td->td_priority;
2332		return (td);
2333	}
2334	tdq->tdq_lowpri = PRI_MAX_IDLE;
2335	return (PCPU_GET(idlethread));
2336}
2337
2338/*
2339 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2340 * we always request it once we exit a critical section.
2341 */
2342static inline void
2343sched_setpreempt(struct thread *td)
2344{
2345	struct thread *ctd;
2346	int cpri;
2347	int pri;
2348
2349	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2350
2351	ctd = curthread;
2352	pri = td->td_priority;
2353	cpri = ctd->td_priority;
2354	if (pri < cpri)
2355		ctd->td_flags |= TDF_NEEDRESCHED;
2356	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2357		return;
2358	if (!sched_shouldpreempt(pri, cpri, 0))
2359		return;
2360	ctd->td_owepreempt = 1;
2361}
2362
2363/*
2364 * Add a thread to a thread queue.  Select the appropriate runq and add the
2365 * thread to it.  This is the internal function called when the tdq is
2366 * predetermined.
2367 */
2368void
2369tdq_add(struct tdq *tdq, struct thread *td, int flags)
2370{
2371
2372	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2373	KASSERT((td->td_inhibitors == 0),
2374	    ("sched_add: trying to run inhibited thread"));
2375	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2376	    ("sched_add: bad thread state"));
2377	KASSERT(td->td_flags & TDF_INMEM,
2378	    ("sched_add: thread swapped out"));
2379
2380	if (td->td_priority < tdq->tdq_lowpri)
2381		tdq->tdq_lowpri = td->td_priority;
2382	tdq_runq_add(tdq, td, flags);
2383	tdq_load_add(tdq, td);
2384}
2385
2386/*
2387 * Select the target thread queue and add a thread to it.  Request
2388 * preemption or IPI a remote processor if required.
2389 */
2390void
2391sched_add(struct thread *td, int flags)
2392{
2393	struct tdq *tdq;
2394#ifdef SMP
2395	int cpu;
2396#endif
2397
2398	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2399	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2400	    sched_tdname(curthread));
2401	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2402	    KTR_ATTR_LINKED, sched_tdname(td));
2403	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2404	    flags & SRQ_PREEMPTED);
2405	THREAD_LOCK_ASSERT(td, MA_OWNED);
2406	/*
2407	 * Recalculate the priority before we select the target cpu or
2408	 * run-queue.
2409	 */
2410	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2411		sched_priority(td);
2412#ifdef SMP
2413	/*
2414	 * Pick the destination cpu and if it isn't ours transfer to the
2415	 * target cpu.
2416	 */
2417	cpu = sched_pickcpu(td, flags);
2418	tdq = sched_setcpu(td, cpu, flags);
2419	tdq_add(tdq, td, flags);
2420	if (cpu != PCPU_GET(cpuid)) {
2421		tdq_notify(tdq, td);
2422		return;
2423	}
2424#else
2425	tdq = TDQ_SELF();
2426	TDQ_LOCK(tdq);
2427	/*
2428	 * Now that the thread is moving to the run-queue, set the lock
2429	 * to the scheduler's lock.
2430	 */
2431	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2432	tdq_add(tdq, td, flags);
2433#endif
2434	if (!(flags & SRQ_YIELDING))
2435		sched_setpreempt(td);
2436}
2437
2438/*
2439 * Remove a thread from a run-queue without running it.  This is used
2440 * when we're stealing a thread from a remote queue.  Otherwise all threads
2441 * exit by calling sched_exit_thread() and sched_throw() themselves.
2442 */
2443void
2444sched_rem(struct thread *td)
2445{
2446	struct tdq *tdq;
2447
2448	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2449	    "prio:%d", td->td_priority);
2450	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2451	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2452	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2453	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2454	KASSERT(TD_ON_RUNQ(td),
2455	    ("sched_rem: thread not on run queue"));
2456	tdq_runq_rem(tdq, td);
2457	tdq_load_rem(tdq, td);
2458	TD_SET_CAN_RUN(td);
2459	if (td->td_priority == tdq->tdq_lowpri)
2460		tdq_setlowpri(tdq, NULL);
2461}
2462
2463/*
2464 * Fetch cpu utilization information.  Updates on demand.
2465 */
2466fixpt_t
2467sched_pctcpu(struct thread *td)
2468{
2469	fixpt_t pctcpu;
2470	struct td_sched *ts;
2471
2472	pctcpu = 0;
2473	ts = td->td_sched;
2474	if (ts == NULL)
2475		return (0);
2476
2477	THREAD_LOCK_ASSERT(td, MA_OWNED);
2478	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2479	if (ts->ts_ticks) {
2480		int rtick;
2481
2482		/* How many rtick per second ? */
2483		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2484		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2485	}
2486
2487	return (pctcpu);
2488}
2489
2490/*
2491 * Enforce affinity settings for a thread.  Called after adjustments to
2492 * cpumask.
2493 */
2494void
2495sched_affinity(struct thread *td)
2496{
2497#ifdef SMP
2498	struct td_sched *ts;
2499
2500	THREAD_LOCK_ASSERT(td, MA_OWNED);
2501	ts = td->td_sched;
2502	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2503		return;
2504	if (TD_ON_RUNQ(td)) {
2505		sched_rem(td);
2506		sched_add(td, SRQ_BORING);
2507		return;
2508	}
2509	if (!TD_IS_RUNNING(td))
2510		return;
2511	/*
2512	 * Force a switch before returning to userspace.  If the
2513	 * target thread is not running locally send an ipi to force
2514	 * the issue.
2515	 */
2516	td->td_flags |= TDF_NEEDRESCHED;
2517	if (td != curthread)
2518		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2519#endif
2520}
2521
2522/*
2523 * Bind a thread to a target cpu.
2524 */
2525void
2526sched_bind(struct thread *td, int cpu)
2527{
2528	struct td_sched *ts;
2529
2530	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2531	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2532	ts = td->td_sched;
2533	if (ts->ts_flags & TSF_BOUND)
2534		sched_unbind(td);
2535	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2536	ts->ts_flags |= TSF_BOUND;
2537	sched_pin();
2538	if (PCPU_GET(cpuid) == cpu)
2539		return;
2540	ts->ts_cpu = cpu;
2541	/* When we return from mi_switch we'll be on the correct cpu. */
2542	mi_switch(SW_VOL, NULL);
2543}
2544
2545/*
2546 * Release a bound thread.
2547 */
2548void
2549sched_unbind(struct thread *td)
2550{
2551	struct td_sched *ts;
2552
2553	THREAD_LOCK_ASSERT(td, MA_OWNED);
2554	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2555	ts = td->td_sched;
2556	if ((ts->ts_flags & TSF_BOUND) == 0)
2557		return;
2558	ts->ts_flags &= ~TSF_BOUND;
2559	sched_unpin();
2560}
2561
2562int
2563sched_is_bound(struct thread *td)
2564{
2565	THREAD_LOCK_ASSERT(td, MA_OWNED);
2566	return (td->td_sched->ts_flags & TSF_BOUND);
2567}
2568
2569/*
2570 * Basic yield call.
2571 */
2572void
2573sched_relinquish(struct thread *td)
2574{
2575	thread_lock(td);
2576	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2577	thread_unlock(td);
2578}
2579
2580/*
2581 * Return the total system load.
2582 */
2583int
2584sched_load(void)
2585{
2586#ifdef SMP
2587	int total;
2588	int i;
2589
2590	total = 0;
2591	CPU_FOREACH(i)
2592		total += TDQ_CPU(i)->tdq_sysload;
2593	return (total);
2594#else
2595	return (TDQ_SELF()->tdq_sysload);
2596#endif
2597}
2598
2599int
2600sched_sizeof_proc(void)
2601{
2602	return (sizeof(struct proc));
2603}
2604
2605int
2606sched_sizeof_thread(void)
2607{
2608	return (sizeof(struct thread) + sizeof(struct td_sched));
2609}
2610
2611#ifdef SMP
2612#define	TDQ_IDLESPIN(tdq)						\
2613    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2614#else
2615#define	TDQ_IDLESPIN(tdq)	1
2616#endif
2617
2618/*
2619 * The actual idle process.
2620 */
2621void
2622sched_idletd(void *dummy)
2623{
2624	struct thread *td;
2625	struct tdq *tdq;
2626	int oldswitchcnt, switchcnt;
2627	int i;
2628
2629	mtx_assert(&Giant, MA_NOTOWNED);
2630	td = curthread;
2631	tdq = TDQ_SELF();
2632	THREAD_NO_SLEEPING();
2633	oldswitchcnt = -1;
2634	for (;;) {
2635		if (tdq->tdq_load) {
2636			thread_lock(td);
2637			mi_switch(SW_VOL | SWT_IDLE, NULL);
2638			thread_unlock(td);
2639		}
2640		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2641#ifdef SMP
2642		if (switchcnt != oldswitchcnt) {
2643			oldswitchcnt = switchcnt;
2644			if (tdq_idled(tdq) == 0)
2645				continue;
2646		}
2647		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2648#else
2649		oldswitchcnt = switchcnt;
2650#endif
2651		/*
2652		 * If we're switching very frequently, spin while checking
2653		 * for load rather than entering a low power state that
2654		 * may require an IPI.  However, don't do any busy
2655		 * loops while on SMT machines as this simply steals
2656		 * cycles from cores doing useful work.
2657		 */
2658		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2659			for (i = 0; i < sched_idlespins; i++) {
2660				if (tdq->tdq_load)
2661					break;
2662				cpu_spinwait();
2663			}
2664		}
2665
2666		/* If there was context switch during spin, restart it. */
2667		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2668		if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
2669			continue;
2670
2671		/* Run main MD idle handler. */
2672		tdq->tdq_cpu_idle = 1;
2673		cpu_idle(switchcnt * 4 > sched_idlespinthresh);
2674		tdq->tdq_cpu_idle = 0;
2675
2676		/*
2677		 * Account thread-less hardware interrupts and
2678		 * other wakeup reasons equal to context switches.
2679		 */
2680		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2681		if (switchcnt != oldswitchcnt)
2682			continue;
2683		tdq->tdq_switchcnt++;
2684		oldswitchcnt++;
2685	}
2686}
2687
2688/*
2689 * A CPU is entering for the first time or a thread is exiting.
2690 */
2691void
2692sched_throw(struct thread *td)
2693{
2694	struct thread *newtd;
2695	struct tdq *tdq;
2696
2697	tdq = TDQ_SELF();
2698	if (td == NULL) {
2699		/* Correct spinlock nesting and acquire the correct lock. */
2700		TDQ_LOCK(tdq);
2701		spinlock_exit();
2702		PCPU_SET(switchtime, cpu_ticks());
2703		PCPU_SET(switchticks, ticks);
2704	} else {
2705		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2706		tdq_load_rem(tdq, td);
2707		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2708	}
2709	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2710	newtd = choosethread();
2711	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2712	cpu_throw(td, newtd);		/* doesn't return */
2713}
2714
2715/*
2716 * This is called from fork_exit().  Just acquire the correct locks and
2717 * let fork do the rest of the work.
2718 */
2719void
2720sched_fork_exit(struct thread *td)
2721{
2722	struct td_sched *ts;
2723	struct tdq *tdq;
2724	int cpuid;
2725
2726	/*
2727	 * Finish setting up thread glue so that it begins execution in a
2728	 * non-nested critical section with the scheduler lock held.
2729	 */
2730	cpuid = PCPU_GET(cpuid);
2731	tdq = TDQ_CPU(cpuid);
2732	ts = td->td_sched;
2733	if (TD_IS_IDLETHREAD(td))
2734		td->td_lock = TDQ_LOCKPTR(tdq);
2735	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2736	td->td_oncpu = cpuid;
2737	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2738	lock_profile_obtain_lock_success(
2739	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2740}
2741
2742/*
2743 * Create on first use to catch odd startup conditons.
2744 */
2745char *
2746sched_tdname(struct thread *td)
2747{
2748#ifdef KTR
2749	struct td_sched *ts;
2750
2751	ts = td->td_sched;
2752	if (ts->ts_name[0] == '\0')
2753		snprintf(ts->ts_name, sizeof(ts->ts_name),
2754		    "%s tid %d", td->td_name, td->td_tid);
2755	return (ts->ts_name);
2756#else
2757	return (td->td_name);
2758#endif
2759}
2760
2761#ifdef KTR
2762void
2763sched_clear_tdname(struct thread *td)
2764{
2765	struct td_sched *ts;
2766
2767	ts = td->td_sched;
2768	ts->ts_name[0] = '\0';
2769}
2770#endif
2771
2772#ifdef SMP
2773
2774/*
2775 * Build the CPU topology dump string. Is recursively called to collect
2776 * the topology tree.
2777 */
2778static int
2779sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2780    int indent)
2781{
2782	char cpusetbuf[CPUSETBUFSIZ];
2783	int i, first;
2784
2785	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2786	    "", 1 + indent / 2, cg->cg_level);
2787	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2788	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2789	first = TRUE;
2790	for (i = 0; i < MAXCPU; i++) {
2791		if (CPU_ISSET(i, &cg->cg_mask)) {
2792			if (!first)
2793				sbuf_printf(sb, ", ");
2794			else
2795				first = FALSE;
2796			sbuf_printf(sb, "%d", i);
2797		}
2798	}
2799	sbuf_printf(sb, "</cpu>\n");
2800
2801	if (cg->cg_flags != 0) {
2802		sbuf_printf(sb, "%*s <flags>", indent, "");
2803		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2804			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2805		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2806			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2807		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2808			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2809		sbuf_printf(sb, "</flags>\n");
2810	}
2811
2812	if (cg->cg_children > 0) {
2813		sbuf_printf(sb, "%*s <children>\n", indent, "");
2814		for (i = 0; i < cg->cg_children; i++)
2815			sysctl_kern_sched_topology_spec_internal(sb,
2816			    &cg->cg_child[i], indent+2);
2817		sbuf_printf(sb, "%*s </children>\n", indent, "");
2818	}
2819	sbuf_printf(sb, "%*s</group>\n", indent, "");
2820	return (0);
2821}
2822
2823/*
2824 * Sysctl handler for retrieving topology dump. It's a wrapper for
2825 * the recursive sysctl_kern_smp_topology_spec_internal().
2826 */
2827static int
2828sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2829{
2830	struct sbuf *topo;
2831	int err;
2832
2833	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2834
2835	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2836	if (topo == NULL)
2837		return (ENOMEM);
2838
2839	sbuf_printf(topo, "<groups>\n");
2840	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2841	sbuf_printf(topo, "</groups>\n");
2842
2843	if (err == 0) {
2844		sbuf_finish(topo);
2845		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2846	}
2847	sbuf_delete(topo);
2848	return (err);
2849}
2850
2851#endif
2852
2853static int
2854sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
2855{
2856	int error, new_val, period;
2857
2858	period = 1000000 / realstathz;
2859	new_val = period * sched_slice;
2860	error = sysctl_handle_int(oidp, &new_val, 0, req);
2861	if (error != 0 || req->newptr == NULL)
2862		return (error);
2863	if (new_val <= 0)
2864		return (EINVAL);
2865	sched_slice = imax(1, (new_val + period / 2) / period);
2866	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
2867	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
2868	    realstathz);
2869	return (0);
2870}
2871
2872SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2873SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2874    "Scheduler name");
2875SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
2876    NULL, 0, sysctl_kern_quantum, "I",
2877    "Quantum for timeshare threads in microseconds");
2878SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2879    "Quantum for timeshare threads in stathz ticks");
2880SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2881    "Interactivity score threshold");
2882SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
2883    &preempt_thresh, 0,
2884    "Maximal (lowest) priority for preemption");
2885SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
2886    "Assign static kernel priorities to sleeping threads");
2887SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
2888    "Number of times idle thread will spin waiting for new work");
2889SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
2890    &sched_idlespinthresh, 0,
2891    "Threshold before we will permit idle thread spinning");
2892#ifdef SMP
2893SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2894    "Number of hz ticks to keep thread affinity for");
2895SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2896    "Enables the long-term load balancer");
2897SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2898    &balance_interval, 0,
2899    "Average period in stathz ticks to run the long-term balancer");
2900SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2901    "Attempts to steal work from other cores before idling");
2902SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2903    "Minimum load on remote CPU before we'll steal");
2904SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2905    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2906    "XML dump of detected CPU topology");
2907#endif
2908
2909/* ps compat.  All cpu percentages from ULE are weighted. */
2910static int ccpu = 0;
2911SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2912