sched_ule.c revision 131527
1109864Sjeff/*-
2113357Sjeff * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3109864Sjeff * All rights reserved.
4109864Sjeff *
5109864Sjeff * Redistribution and use in source and binary forms, with or without
6109864Sjeff * modification, are permitted provided that the following conditions
7109864Sjeff * are met:
8109864Sjeff * 1. Redistributions of source code must retain the above copyright
9109864Sjeff *    notice unmodified, this list of conditions, and the following
10109864Sjeff *    disclaimer.
11109864Sjeff * 2. Redistributions in binary form must reproduce the above copyright
12109864Sjeff *    notice, this list of conditions and the following disclaimer in the
13109864Sjeff *    documentation and/or other materials provided with the distribution.
14109864Sjeff *
15109864Sjeff * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16109864Sjeff * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17109864Sjeff * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18109864Sjeff * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19109864Sjeff * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20109864Sjeff * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21109864Sjeff * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22109864Sjeff * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23109864Sjeff * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24109864Sjeff * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25109864Sjeff */
26109864Sjeff
27116182Sobrien#include <sys/cdefs.h>
28116182Sobrien__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 131527 2004-07-03 16:57:51Z phk $");
29116182Sobrien
30109864Sjeff#include <sys/param.h>
31109864Sjeff#include <sys/systm.h>
32109864Sjeff#include <sys/kernel.h>
33109864Sjeff#include <sys/ktr.h>
34109864Sjeff#include <sys/lock.h>
35109864Sjeff#include <sys/mutex.h>
36109864Sjeff#include <sys/proc.h>
37112966Sjeff#include <sys/resource.h>
38122038Sjeff#include <sys/resourcevar.h>
39109864Sjeff#include <sys/sched.h>
40109864Sjeff#include <sys/smp.h>
41109864Sjeff#include <sys/sx.h>
42109864Sjeff#include <sys/sysctl.h>
43109864Sjeff#include <sys/sysproto.h>
44109864Sjeff#include <sys/vmmeter.h>
45109864Sjeff#ifdef DDB
46109864Sjeff#include <ddb/ddb.h>
47109864Sjeff#endif
48109864Sjeff#ifdef KTRACE
49109864Sjeff#include <sys/uio.h>
50109864Sjeff#include <sys/ktrace.h>
51109864Sjeff#endif
52109864Sjeff
53109864Sjeff#include <machine/cpu.h>
54121790Sjeff#include <machine/smp.h>
55109864Sjeff
56113357Sjeff#define KTR_ULE         KTR_NFS
57113357Sjeff
58109864Sjeff/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
59109864Sjeff/* XXX This is bogus compatability crap for ps */
60109864Sjeffstatic fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
61109864SjeffSYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
62109864Sjeff
63109864Sjeffstatic void sched_setup(void *dummy);
64109864SjeffSYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
65109864Sjeff
66113357Sjeffstatic SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
67113357Sjeff
68130881Sscottl#define ULE_NAME	"ule"
69130881Sscottl#define ULE_NAME_LEN	3
70130881SscottlSYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, ULE_NAME, ULE_NAME_LEN,
71130881Sscottl	      "System is using the ULE scheduler");
72130881Sscottl
73113357Sjeffstatic int slice_min = 1;
74113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
75113357Sjeff
76116365Sjeffstatic int slice_max = 10;
77113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
78113357Sjeff
79111857Sjeffint realstathz;
80113357Sjeffint tickincr = 1;
81111857Sjeff
82109864Sjeff/*
83109864Sjeff * These datastructures are allocated within their parent datastructure but
84109864Sjeff * are scheduler specific.
85109864Sjeff */
86109864Sjeff
87109864Sjeffstruct ke_sched {
88109864Sjeff	int		ske_slice;
89109864Sjeff	struct runq	*ske_runq;
90109864Sjeff	/* The following variables are only used for pctcpu calculation */
91109864Sjeff	int		ske_ltick;	/* Last tick that we were running on */
92109864Sjeff	int		ske_ftick;	/* First tick that we were running on */
93109864Sjeff	int		ske_ticks;	/* Tick count */
94113357Sjeff	/* CPU that we have affinity for. */
95110260Sjeff	u_char		ske_cpu;
96109864Sjeff};
97109864Sjeff#define	ke_slice	ke_sched->ske_slice
98109864Sjeff#define	ke_runq		ke_sched->ske_runq
99109864Sjeff#define	ke_ltick	ke_sched->ske_ltick
100109864Sjeff#define	ke_ftick	ke_sched->ske_ftick
101109864Sjeff#define	ke_ticks	ke_sched->ske_ticks
102110260Sjeff#define	ke_cpu		ke_sched->ske_cpu
103121790Sjeff#define	ke_assign	ke_procq.tqe_next
104109864Sjeff
105121790Sjeff#define	KEF_ASSIGNED	KEF_SCHED0	/* KSE is being migrated. */
106122158Sjeff#define	KEF_BOUND	KEF_SCHED1	/* KSE can not migrate. */
107121790Sjeff
108109864Sjeffstruct kg_sched {
109110645Sjeff	int	skg_slptime;		/* Number of ticks we vol. slept */
110110645Sjeff	int	skg_runtime;		/* Number of ticks we were running */
111109864Sjeff};
112109864Sjeff#define	kg_slptime	kg_sched->skg_slptime
113110645Sjeff#define	kg_runtime	kg_sched->skg_runtime
114109864Sjeff
115109864Sjeffstruct td_sched {
116109864Sjeff	int	std_slptime;
117109864Sjeff};
118109864Sjeff#define	td_slptime	td_sched->std_slptime
119109864Sjeff
120110267Sjeffstruct td_sched td_sched;
121109864Sjeffstruct ke_sched ke_sched;
122109864Sjeffstruct kg_sched kg_sched;
123109864Sjeff
124109864Sjeffstruct ke_sched *kse0_sched = &ke_sched;
125109864Sjeffstruct kg_sched *ksegrp0_sched = &kg_sched;
126109864Sjeffstruct p_sched *proc0_sched = NULL;
127109864Sjeffstruct td_sched *thread0_sched = &td_sched;
128109864Sjeff
129109864Sjeff/*
130116642Sjeff * The priority is primarily determined by the interactivity score.  Thus, we
131116642Sjeff * give lower(better) priorities to kse groups that use less CPU.  The nice
132116642Sjeff * value is then directly added to this to allow nice to have some effect
133116642Sjeff * on latency.
134111857Sjeff *
135111857Sjeff * PRI_RANGE:	Total priority range for timeshare threads.
136116642Sjeff * PRI_NRESV:	Number of nice values.
137111857Sjeff * PRI_BASE:	The start of the dynamic range.
138109864Sjeff */
139111857Sjeff#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
140121869Sjeff#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
141121869Sjeff#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
142116642Sjeff#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
143113357Sjeff#define	SCHED_PRI_INTERACT(score)					\
144116642Sjeff    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
145109864Sjeff
146109864Sjeff/*
147111857Sjeff * These determine the interactivity of a process.
148109864Sjeff *
149110645Sjeff * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
150110645Sjeff *		before throttling back.
151121868Sjeff * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
152116365Sjeff * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
153111857Sjeff * INTERACT_THRESH:	Threshhold for placement on the current runq.
154109864Sjeff */
155121126Sjeff#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
156121868Sjeff#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
157116365Sjeff#define	SCHED_INTERACT_MAX	(100)
158116365Sjeff#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
159121126Sjeff#define	SCHED_INTERACT_THRESH	(30)
160111857Sjeff
161109864Sjeff/*
162109864Sjeff * These parameters and macros determine the size of the time slice that is
163109864Sjeff * granted to each thread.
164109864Sjeff *
165109864Sjeff * SLICE_MIN:	Minimum time slice granted, in units of ticks.
166109864Sjeff * SLICE_MAX:	Maximum time slice granted.
167109864Sjeff * SLICE_RANGE:	Range of available time slices scaled by hz.
168112966Sjeff * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
169112966Sjeff * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
170121871Sjeff * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
171109864Sjeff */
172113357Sjeff#define	SCHED_SLICE_MIN			(slice_min)
173113357Sjeff#define	SCHED_SLICE_MAX			(slice_max)
174125299Sjeff#define	SCHED_SLICE_INTERACTIVE		(slice_max)
175121871Sjeff#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
176111857Sjeff#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
177109864Sjeff#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
178112966Sjeff#define	SCHED_SLICE_NICE(nice)						\
179121871Sjeff    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
180109864Sjeff
181109864Sjeff/*
182109864Sjeff * This macro determines whether or not the kse belongs on the current or
183109864Sjeff * next run queue.
184109864Sjeff */
185113357Sjeff#define	SCHED_INTERACTIVE(kg)						\
186113357Sjeff    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
187113417Sjeff#define	SCHED_CURR(kg, ke)						\
188127278Sobrien    (ke->ke_thread->td_priority < kg->kg_user_pri ||			\
189121107Sjeff    SCHED_INTERACTIVE(kg))
190109864Sjeff
191109864Sjeff/*
192109864Sjeff * Cpu percentage computation macros and defines.
193109864Sjeff *
194109864Sjeff * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
195109864Sjeff * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
196109864Sjeff */
197109864Sjeff
198112971Sjeff#define	SCHED_CPU_TIME	10
199109864Sjeff#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
200109864Sjeff
201109864Sjeff/*
202113357Sjeff * kseq - per processor runqs and statistics.
203109864Sjeff */
204109864Sjeffstruct kseq {
205113357Sjeff	struct runq	ksq_idle;		/* Queue of IDLE threads. */
206113357Sjeff	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
207113357Sjeff	struct runq	*ksq_next;		/* Next timeshare queue. */
208113357Sjeff	struct runq	*ksq_curr;		/* Current queue. */
209121896Sjeff	int		ksq_load_timeshare;	/* Load for timeshare. */
210113357Sjeff	int		ksq_load;		/* Aggregate load. */
211121869Sjeff	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
212113357Sjeff	short		ksq_nicemin;		/* Least nice. */
213110267Sjeff#ifdef SMP
214123433Sjeff	int			ksq_transferable;
215123433Sjeff	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
216123433Sjeff	struct kseq_group	*ksq_group;	/* Our processor group. */
217123433Sjeff	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
218125289Sjeff#else
219125289Sjeff	int		ksq_sysload;		/* For loadavg, !ITHD load. */
220110267Sjeff#endif
221109864Sjeff};
222109864Sjeff
223123433Sjeff#ifdef SMP
224109864Sjeff/*
225123433Sjeff * kseq groups are groups of processors which can cheaply share threads.  When
226123433Sjeff * one processor in the group goes idle it will check the runqs of the other
227123433Sjeff * processors in its group prior to halting and waiting for an interrupt.
228123433Sjeff * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
229123433Sjeff * In a numa environment we'd want an idle bitmap per group and a two tiered
230123433Sjeff * load balancer.
231123433Sjeff */
232123433Sjeffstruct kseq_group {
233123433Sjeff	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
234127498Smarcel	cpumask_t ksg_cpumask;		/* Mask of cpus in this group. */
235127498Smarcel	cpumask_t ksg_idlemask;		/* Idle cpus in this group. */
236127498Smarcel	cpumask_t ksg_mask;		/* Bit mask for first cpu. */
237123487Sjeff	int	ksg_load;		/* Total load of this group. */
238123433Sjeff	int	ksg_transferable;	/* Transferable load of this group. */
239123433Sjeff	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
240123433Sjeff};
241123433Sjeff#endif
242123433Sjeff
243123433Sjeff/*
244109864Sjeff * One kse queue per processor.
245109864Sjeff */
246110028Sjeff#ifdef SMP
247127498Smarcelstatic cpumask_t kseq_idle;
248123487Sjeffstatic int ksg_maxid;
249121790Sjeffstatic struct kseq	kseq_cpu[MAXCPU];
250123433Sjeffstatic struct kseq_group kseq_groups[MAXCPU];
251129982Sjeffstatic int bal_tick;
252129982Sjeffstatic int gbal_tick;
253129982Sjeff
254123433Sjeff#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
255123433Sjeff#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
256123487Sjeff#define	KSEQ_ID(x)	((x) - kseq_cpu)
257123487Sjeff#define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
258123433Sjeff#else	/* !SMP */
259121790Sjeffstatic struct kseq	kseq_cpu;
260129982Sjeff
261110028Sjeff#define	KSEQ_SELF()	(&kseq_cpu)
262110028Sjeff#define	KSEQ_CPU(x)	(&kseq_cpu)
263110028Sjeff#endif
264109864Sjeff
265112966Sjeffstatic void sched_slice(struct kse *ke);
266113357Sjeffstatic void sched_priority(struct ksegrp *kg);
267111857Sjeffstatic int sched_interact_score(struct ksegrp *kg);
268116463Sjeffstatic void sched_interact_update(struct ksegrp *kg);
269121868Sjeffstatic void sched_interact_fork(struct ksegrp *kg);
270121790Sjeffstatic void sched_pctcpu_update(struct kse *ke);
271109864Sjeff
272110267Sjeff/* Operations on per processor queues */
273121790Sjeffstatic struct kse * kseq_choose(struct kseq *kseq);
274110028Sjeffstatic void kseq_setup(struct kseq *kseq);
275122744Sjeffstatic void kseq_load_add(struct kseq *kseq, struct kse *ke);
276122744Sjeffstatic void kseq_load_rem(struct kseq *kseq, struct kse *ke);
277122744Sjeffstatic __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
278122744Sjeffstatic __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
279113357Sjeffstatic void kseq_nice_add(struct kseq *kseq, int nice);
280113357Sjeffstatic void kseq_nice_rem(struct kseq *kseq, int nice);
281113660Sjeffvoid kseq_print(int cpu);
282110267Sjeff#ifdef SMP
283123433Sjeffstatic int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
284121790Sjeffstatic struct kse *runq_steal(struct runq *rq);
285129982Sjeffstatic void sched_balance(void);
286129982Sjeffstatic void sched_balance_groups(void);
287123487Sjeffstatic void sched_balance_group(struct kseq_group *ksg);
288123487Sjeffstatic void sched_balance_pair(struct kseq *high, struct kseq *low);
289121790Sjeffstatic void kseq_move(struct kseq *from, int cpu);
290123433Sjeffstatic int kseq_idled(struct kseq *kseq);
291121790Sjeffstatic void kseq_notify(struct kse *ke, int cpu);
292121790Sjeffstatic void kseq_assign(struct kseq *);
293123433Sjeffstatic struct kse *kseq_steal(struct kseq *kseq, int stealidle);
294123693Sjeff/*
295123693Sjeff * On P4 Xeons the round-robin interrupt delivery is broken.  As a result of
296123693Sjeff * this, we can't pin interrupts to the cpu that they were delivered to,
297123693Sjeff * otherwise all ithreads only run on CPU 0.
298123693Sjeff */
299123693Sjeff#ifdef __i386__
300122038Sjeff#define	KSE_CAN_MIGRATE(ke, class)					\
301123693Sjeff    ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
302123693Sjeff#else /* !__i386__ */
303123693Sjeff#define	KSE_CAN_MIGRATE(ke, class)					\
304122158Sjeff    ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
305122165Sjeff    ((ke)->ke_flags & KEF_BOUND) == 0)
306123693Sjeff#endif /* !__i386__ */
307121790Sjeff#endif
308110028Sjeff
309113357Sjeffvoid
310113660Sjeffkseq_print(int cpu)
311110267Sjeff{
312113660Sjeff	struct kseq *kseq;
313113357Sjeff	int i;
314112994Sjeff
315113660Sjeff	kseq = KSEQ_CPU(cpu);
316112994Sjeff
317113357Sjeff	printf("kseq:\n");
318113357Sjeff	printf("\tload:           %d\n", kseq->ksq_load);
319122744Sjeff	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
320121896Sjeff#ifdef SMP
321123433Sjeff	printf("\tload transferable: %d\n", kseq->ksq_transferable);
322121896Sjeff#endif
323113357Sjeff	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
324113357Sjeff	printf("\tnice counts:\n");
325121869Sjeff	for (i = 0; i < SCHED_PRI_NRESV; i++)
326113357Sjeff		if (kseq->ksq_nice[i])
327113357Sjeff			printf("\t\t%d = %d\n",
328113357Sjeff			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
329113357Sjeff}
330112994Sjeff
331122744Sjeffstatic __inline void
332122744Sjeffkseq_runq_add(struct kseq *kseq, struct kse *ke)
333122744Sjeff{
334122744Sjeff#ifdef SMP
335123433Sjeff	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
336123433Sjeff		kseq->ksq_transferable++;
337123433Sjeff		kseq->ksq_group->ksg_transferable++;
338123433Sjeff	}
339122744Sjeff#endif
340122744Sjeff	runq_add(ke->ke_runq, ke);
341122744Sjeff}
342122744Sjeff
343122744Sjeffstatic __inline void
344122744Sjeffkseq_runq_rem(struct kseq *kseq, struct kse *ke)
345122744Sjeff{
346122744Sjeff#ifdef SMP
347123433Sjeff	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
348123433Sjeff		kseq->ksq_transferable--;
349123433Sjeff		kseq->ksq_group->ksg_transferable--;
350123433Sjeff	}
351122744Sjeff#endif
352122744Sjeff	runq_remove(ke->ke_runq, ke);
353122744Sjeff}
354122744Sjeff
355113357Sjeffstatic void
356122744Sjeffkseq_load_add(struct kseq *kseq, struct kse *ke)
357113357Sjeff{
358121896Sjeff	int class;
359115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
360121896Sjeff	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
361121896Sjeff	if (class == PRI_TIMESHARE)
362121896Sjeff		kseq->ksq_load_timeshare++;
363113357Sjeff	kseq->ksq_load++;
364128563Sobrien	if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
365123487Sjeff#ifdef SMP
366123487Sjeff		kseq->ksq_group->ksg_load++;
367125289Sjeff#else
368125289Sjeff		kseq->ksq_sysload++;
369123487Sjeff#endif
370113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
371122744Sjeff		CTR6(KTR_ULE,
372122744Sjeff		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
373122744Sjeff		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
374130551Sjulian		    ke->ke_proc->p_nice, kseq->ksq_nicemin);
375113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
376130551Sjulian		kseq_nice_add(kseq, ke->ke_proc->p_nice);
377110267Sjeff}
378113357Sjeff
379112994Sjeffstatic void
380122744Sjeffkseq_load_rem(struct kseq *kseq, struct kse *ke)
381110267Sjeff{
382121896Sjeff	int class;
383115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
384121896Sjeff	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
385121896Sjeff	if (class == PRI_TIMESHARE)
386121896Sjeff		kseq->ksq_load_timeshare--;
387128563Sobrien	if (class != PRI_ITHD  && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
388123487Sjeff#ifdef SMP
389123487Sjeff		kseq->ksq_group->ksg_load--;
390125289Sjeff#else
391125289Sjeff		kseq->ksq_sysload--;
392123487Sjeff#endif
393113357Sjeff	kseq->ksq_load--;
394113357Sjeff	ke->ke_runq = NULL;
395113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
396130551Sjulian		kseq_nice_rem(kseq, ke->ke_proc->p_nice);
397110267Sjeff}
398110267Sjeff
399113357Sjeffstatic void
400113357Sjeffkseq_nice_add(struct kseq *kseq, int nice)
401110267Sjeff{
402115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
403113357Sjeff	/* Normalize to zero. */
404113357Sjeff	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
405121896Sjeff	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
406113357Sjeff		kseq->ksq_nicemin = nice;
407110267Sjeff}
408110267Sjeff
409113357Sjeffstatic void
410113357Sjeffkseq_nice_rem(struct kseq *kseq, int nice)
411110267Sjeff{
412113357Sjeff	int n;
413113357Sjeff
414115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
415113357Sjeff	/* Normalize to zero. */
416113357Sjeff	n = nice + SCHED_PRI_NHALF;
417113357Sjeff	kseq->ksq_nice[n]--;
418113357Sjeff	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
419113357Sjeff
420113357Sjeff	/*
421113357Sjeff	 * If this wasn't the smallest nice value or there are more in
422113357Sjeff	 * this bucket we can just return.  Otherwise we have to recalculate
423113357Sjeff	 * the smallest nice.
424113357Sjeff	 */
425113357Sjeff	if (nice != kseq->ksq_nicemin ||
426113357Sjeff	    kseq->ksq_nice[n] != 0 ||
427121896Sjeff	    kseq->ksq_load_timeshare == 0)
428113357Sjeff		return;
429113357Sjeff
430121869Sjeff	for (; n < SCHED_PRI_NRESV; n++)
431113357Sjeff		if (kseq->ksq_nice[n]) {
432113357Sjeff			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
433113357Sjeff			return;
434113357Sjeff		}
435110267Sjeff}
436110267Sjeff
437113357Sjeff#ifdef SMP
438116069Sjeff/*
439122744Sjeff * sched_balance is a simple CPU load balancing algorithm.  It operates by
440116069Sjeff * finding the least loaded and most loaded cpu and equalizing their load
441116069Sjeff * by migrating some processes.
442116069Sjeff *
443116069Sjeff * Dealing only with two CPUs at a time has two advantages.  Firstly, most
444116069Sjeff * installations will only have 2 cpus.  Secondly, load balancing too much at
445116069Sjeff * once can have an unpleasant effect on the system.  The scheduler rarely has
446116069Sjeff * enough information to make perfect decisions.  So this algorithm chooses
447116069Sjeff * algorithm simplicity and more gradual effects on load in larger systems.
448116069Sjeff *
449116069Sjeff * It could be improved by considering the priorities and slices assigned to
450116069Sjeff * each task prior to balancing them.  There are many pathological cases with
451116069Sjeff * any approach and so the semi random algorithm below may work as well as any.
452116069Sjeff *
453116069Sjeff */
454121790Sjeffstatic void
455129982Sjeffsched_balance(void)
456116069Sjeff{
457123487Sjeff	struct kseq_group *high;
458123487Sjeff	struct kseq_group *low;
459123487Sjeff	struct kseq_group *ksg;
460123487Sjeff	int cnt;
461123487Sjeff	int i;
462123487Sjeff
463123487Sjeff	if (smp_started == 0)
464123487Sjeff		goto out;
465123487Sjeff	low = high = NULL;
466123487Sjeff	i = random() % (ksg_maxid + 1);
467123487Sjeff	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
468123487Sjeff		ksg = KSEQ_GROUP(i);
469123487Sjeff		/*
470123487Sjeff		 * Find the CPU with the highest load that has some
471123487Sjeff		 * threads to transfer.
472123487Sjeff		 */
473123487Sjeff		if ((high == NULL || ksg->ksg_load > high->ksg_load)
474123487Sjeff		    && ksg->ksg_transferable)
475123487Sjeff			high = ksg;
476123487Sjeff		if (low == NULL || ksg->ksg_load < low->ksg_load)
477123487Sjeff			low = ksg;
478123487Sjeff		if (++i > ksg_maxid)
479123487Sjeff			i = 0;
480123487Sjeff	}
481123487Sjeff	if (low != NULL && high != NULL && high != low)
482123487Sjeff		sched_balance_pair(LIST_FIRST(&high->ksg_members),
483123487Sjeff		    LIST_FIRST(&low->ksg_members));
484123487Sjeffout:
485129982Sjeff	bal_tick = ticks + (random() % (hz * 2));
486123487Sjeff}
487123487Sjeff
488123487Sjeffstatic void
489129982Sjeffsched_balance_groups(void)
490123487Sjeff{
491123487Sjeff	int i;
492123487Sjeff
493129982Sjeff	mtx_assert(&sched_lock, MA_OWNED);
494123487Sjeff	if (smp_started)
495123487Sjeff		for (i = 0; i <= ksg_maxid; i++)
496123487Sjeff			sched_balance_group(KSEQ_GROUP(i));
497129982Sjeff	gbal_tick = ticks + (random() % (hz * 2));
498123487Sjeff}
499123487Sjeff
500123487Sjeffstatic void
501123487Sjeffsched_balance_group(struct kseq_group *ksg)
502123487Sjeff{
503116069Sjeff	struct kseq *kseq;
504123487Sjeff	struct kseq *high;
505123487Sjeff	struct kseq *low;
506123487Sjeff	int load;
507123487Sjeff
508123487Sjeff	if (ksg->ksg_transferable == 0)
509123487Sjeff		return;
510123487Sjeff	low = NULL;
511123487Sjeff	high = NULL;
512123487Sjeff	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
513123487Sjeff		load = kseq->ksq_load;
514123487Sjeff		if (high == NULL || load > high->ksq_load)
515123487Sjeff			high = kseq;
516123487Sjeff		if (low == NULL || load < low->ksq_load)
517123487Sjeff			low = kseq;
518123487Sjeff	}
519123487Sjeff	if (high != NULL && low != NULL && high != low)
520123487Sjeff		sched_balance_pair(high, low);
521123487Sjeff}
522123487Sjeff
523123487Sjeffstatic void
524123487Sjeffsched_balance_pair(struct kseq *high, struct kseq *low)
525123487Sjeff{
526123433Sjeff	int transferable;
527116069Sjeff	int high_load;
528116069Sjeff	int low_load;
529116069Sjeff	int move;
530116069Sjeff	int diff;
531116069Sjeff	int i;
532116069Sjeff
533116069Sjeff	/*
534123433Sjeff	 * If we're transfering within a group we have to use this specific
535123433Sjeff	 * kseq's transferable count, otherwise we can steal from other members
536123433Sjeff	 * of the group.
537123433Sjeff	 */
538123487Sjeff	if (high->ksq_group == low->ksq_group) {
539123487Sjeff		transferable = high->ksq_transferable;
540123487Sjeff		high_load = high->ksq_load;
541123487Sjeff		low_load = low->ksq_load;
542123487Sjeff	} else {
543123487Sjeff		transferable = high->ksq_group->ksg_transferable;
544123487Sjeff		high_load = high->ksq_group->ksg_load;
545123487Sjeff		low_load = low->ksq_group->ksg_load;
546123487Sjeff	}
547123433Sjeff	if (transferable == 0)
548123487Sjeff		return;
549123433Sjeff	/*
550122744Sjeff	 * Determine what the imbalance is and then adjust that to how many
551123433Sjeff	 * kses we actually have to give up (transferable).
552122744Sjeff	 */
553123487Sjeff	diff = high_load - low_load;
554116069Sjeff	move = diff / 2;
555116069Sjeff	if (diff & 0x1)
556116069Sjeff		move++;
557123433Sjeff	move = min(move, transferable);
558116069Sjeff	for (i = 0; i < move; i++)
559123487Sjeff		kseq_move(high, KSEQ_ID(low));
560116069Sjeff	return;
561116069Sjeff}
562116069Sjeff
563121790Sjeffstatic void
564116069Sjeffkseq_move(struct kseq *from, int cpu)
565116069Sjeff{
566123433Sjeff	struct kseq *kseq;
567123433Sjeff	struct kseq *to;
568116069Sjeff	struct kse *ke;
569116069Sjeff
570123433Sjeff	kseq = from;
571123433Sjeff	to = KSEQ_CPU(cpu);
572123433Sjeff	ke = kseq_steal(kseq, 1);
573123433Sjeff	if (ke == NULL) {
574123433Sjeff		struct kseq_group *ksg;
575123433Sjeff
576123433Sjeff		ksg = kseq->ksq_group;
577123433Sjeff		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
578123433Sjeff			if (kseq == from || kseq->ksq_transferable == 0)
579123433Sjeff				continue;
580123433Sjeff			ke = kseq_steal(kseq, 1);
581123433Sjeff			break;
582123433Sjeff		}
583123433Sjeff		if (ke == NULL)
584123433Sjeff			panic("kseq_move: No KSEs available with a "
585123433Sjeff			    "transferable count of %d\n",
586123433Sjeff			    ksg->ksg_transferable);
587123433Sjeff	}
588123433Sjeff	if (kseq == to)
589123433Sjeff		return;
590116069Sjeff	ke->ke_state = KES_THREAD;
591123433Sjeff	kseq_runq_rem(kseq, ke);
592123433Sjeff	kseq_load_rem(kseq, ke);
593121923Sjeff	kseq_notify(ke, cpu);
594116069Sjeff}
595110267Sjeff
596123433Sjeffstatic int
597123433Sjeffkseq_idled(struct kseq *kseq)
598121790Sjeff{
599123433Sjeff	struct kseq_group *ksg;
600123433Sjeff	struct kseq *steal;
601123433Sjeff	struct kse *ke;
602123433Sjeff
603123433Sjeff	ksg = kseq->ksq_group;
604123433Sjeff	/*
605123433Sjeff	 * If we're in a cpu group, try and steal kses from another cpu in
606123433Sjeff	 * the group before idling.
607123433Sjeff	 */
608123433Sjeff	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
609123433Sjeff		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
610123433Sjeff			if (steal == kseq || steal->ksq_transferable == 0)
611123433Sjeff				continue;
612123433Sjeff			ke = kseq_steal(steal, 0);
613123433Sjeff			if (ke == NULL)
614123433Sjeff				continue;
615123433Sjeff			ke->ke_state = KES_THREAD;
616123433Sjeff			kseq_runq_rem(steal, ke);
617123433Sjeff			kseq_load_rem(steal, ke);
618123433Sjeff			ke->ke_cpu = PCPU_GET(cpuid);
619123433Sjeff			sched_add(ke->ke_thread);
620123433Sjeff			return (0);
621123433Sjeff		}
622123433Sjeff	}
623123433Sjeff	/*
624123433Sjeff	 * We only set the idled bit when all of the cpus in the group are
625123433Sjeff	 * idle.  Otherwise we could get into a situation where a KSE bounces
626123433Sjeff	 * back and forth between two idle cores on seperate physical CPUs.
627123433Sjeff	 */
628123433Sjeff	ksg->ksg_idlemask |= PCPU_GET(cpumask);
629123433Sjeff	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
630123433Sjeff		return (1);
631123433Sjeff	atomic_set_int(&kseq_idle, ksg->ksg_mask);
632123433Sjeff	return (1);
633121790Sjeff}
634121790Sjeff
635121790Sjeffstatic void
636121790Sjeffkseq_assign(struct kseq *kseq)
637121790Sjeff{
638121790Sjeff	struct kse *nke;
639121790Sjeff	struct kse *ke;
640121790Sjeff
641121790Sjeff	do {
642122848Sjeff		(volatile struct kse *)ke = kseq->ksq_assigned;
643121790Sjeff	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
644121790Sjeff	for (; ke != NULL; ke = nke) {
645121790Sjeff		nke = ke->ke_assign;
646121790Sjeff		ke->ke_flags &= ~KEF_ASSIGNED;
647121790Sjeff		sched_add(ke->ke_thread);
648121790Sjeff	}
649121790Sjeff}
650121790Sjeff
651121790Sjeffstatic void
652121790Sjeffkseq_notify(struct kse *ke, int cpu)
653121790Sjeff{
654121790Sjeff	struct kseq *kseq;
655121790Sjeff	struct thread *td;
656121790Sjeff	struct pcpu *pcpu;
657121790Sjeff
658123529Sjeff	ke->ke_cpu = cpu;
659121790Sjeff	ke->ke_flags |= KEF_ASSIGNED;
660121790Sjeff
661121790Sjeff	kseq = KSEQ_CPU(cpu);
662121790Sjeff
663121790Sjeff	/*
664121790Sjeff	 * Place a KSE on another cpu's queue and force a resched.
665121790Sjeff	 */
666121790Sjeff	do {
667122848Sjeff		(volatile struct kse *)ke->ke_assign = kseq->ksq_assigned;
668121790Sjeff	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
669121790Sjeff	pcpu = pcpu_find(cpu);
670121790Sjeff	td = pcpu->pc_curthread;
671121790Sjeff	if (ke->ke_thread->td_priority < td->td_priority ||
672121790Sjeff	    td == pcpu->pc_idlethread) {
673121790Sjeff		td->td_flags |= TDF_NEEDRESCHED;
674121790Sjeff		ipi_selected(1 << cpu, IPI_AST);
675121790Sjeff	}
676121790Sjeff}
677121790Sjeff
678121790Sjeffstatic struct kse *
679121790Sjeffrunq_steal(struct runq *rq)
680121790Sjeff{
681121790Sjeff	struct rqhead *rqh;
682121790Sjeff	struct rqbits *rqb;
683121790Sjeff	struct kse *ke;
684121790Sjeff	int word;
685121790Sjeff	int bit;
686121790Sjeff
687121790Sjeff	mtx_assert(&sched_lock, MA_OWNED);
688121790Sjeff	rqb = &rq->rq_status;
689121790Sjeff	for (word = 0; word < RQB_LEN; word++) {
690121790Sjeff		if (rqb->rqb_bits[word] == 0)
691121790Sjeff			continue;
692121790Sjeff		for (bit = 0; bit < RQB_BPW; bit++) {
693123231Speter			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
694121790Sjeff				continue;
695121790Sjeff			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
696121790Sjeff			TAILQ_FOREACH(ke, rqh, ke_procq) {
697121896Sjeff				if (KSE_CAN_MIGRATE(ke,
698121896Sjeff				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
699121790Sjeff					return (ke);
700121790Sjeff			}
701121790Sjeff		}
702121790Sjeff	}
703121790Sjeff	return (NULL);
704121790Sjeff}
705121790Sjeff
706121790Sjeffstatic struct kse *
707123433Sjeffkseq_steal(struct kseq *kseq, int stealidle)
708121790Sjeff{
709121790Sjeff	struct kse *ke;
710121790Sjeff
711123433Sjeff	/*
712123433Sjeff	 * Steal from next first to try to get a non-interactive task that
713123433Sjeff	 * may not have run for a while.
714123433Sjeff	 */
715123433Sjeff	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
716123433Sjeff		return (ke);
717121790Sjeff	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
718121790Sjeff		return (ke);
719123433Sjeff	if (stealidle)
720123433Sjeff		return (runq_steal(&kseq->ksq_idle));
721123433Sjeff	return (NULL);
722121790Sjeff}
723123433Sjeff
724123433Sjeffint
725123433Sjeffkseq_transfer(struct kseq *kseq, struct kse *ke, int class)
726123433Sjeff{
727123433Sjeff	struct kseq_group *ksg;
728123433Sjeff	int cpu;
729123433Sjeff
730123685Sjeff	if (smp_started == 0)
731123685Sjeff		return (0);
732123433Sjeff	cpu = 0;
733123433Sjeff	ksg = kseq->ksq_group;
734123433Sjeff
735123433Sjeff	/*
736123685Sjeff	 * If there are any idle groups, give them our extra load.  The
737123685Sjeff	 * threshold at which we start to reassign kses has a large impact
738123685Sjeff	 * on the overall performance of the system.  Tuned too high and
739123685Sjeff	 * some CPUs may idle.  Too low and there will be excess migration
740128055Scognet	 * and context switches.
741123685Sjeff	 */
742123694Sjeff	if (ksg->ksg_load > (ksg->ksg_cpus * 2) && kseq_idle) {
743123433Sjeff		/*
744123433Sjeff		 * Multiple cpus could find this bit simultaneously
745123433Sjeff		 * but the race shouldn't be terrible.
746123433Sjeff		 */
747123433Sjeff		cpu = ffs(kseq_idle);
748123433Sjeff		if (cpu)
749123433Sjeff			atomic_clear_int(&kseq_idle, 1 << (cpu - 1));
750123433Sjeff	}
751123433Sjeff	/*
752123433Sjeff	 * If another cpu in this group has idled, assign a thread over
753123433Sjeff	 * to them after checking to see if there are idled groups.
754123433Sjeff	 */
755123433Sjeff	if (cpu == 0 && kseq->ksq_load > 1 && ksg->ksg_idlemask) {
756123433Sjeff		cpu = ffs(ksg->ksg_idlemask);
757123433Sjeff		if (cpu)
758123433Sjeff			ksg->ksg_idlemask &= ~(1 << (cpu - 1));
759123433Sjeff	}
760123433Sjeff	/*
761123433Sjeff	 * Now that we've found an idle CPU, migrate the thread.
762123433Sjeff	 */
763123433Sjeff	if (cpu) {
764123433Sjeff		cpu--;
765123433Sjeff		ke->ke_runq = NULL;
766123433Sjeff		kseq_notify(ke, cpu);
767123433Sjeff		return (1);
768123433Sjeff	}
769123433Sjeff	return (0);
770123433Sjeff}
771123433Sjeff
772121790Sjeff#endif	/* SMP */
773121790Sjeff
774117326Sjeff/*
775121790Sjeff * Pick the highest priority task we have and return it.
776117326Sjeff */
777117326Sjeff
778121790Sjeffstatic struct kse *
779121790Sjeffkseq_choose(struct kseq *kseq)
780110267Sjeff{
781110267Sjeff	struct kse *ke;
782110267Sjeff	struct runq *swap;
783110267Sjeff
784115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
785113357Sjeff	swap = NULL;
786112994Sjeff
787113357Sjeff	for (;;) {
788113357Sjeff		ke = runq_choose(kseq->ksq_curr);
789113357Sjeff		if (ke == NULL) {
790113357Sjeff			/*
791131473Sjhb			 * We already swapped once and didn't get anywhere.
792113357Sjeff			 */
793113357Sjeff			if (swap)
794113357Sjeff				break;
795113357Sjeff			swap = kseq->ksq_curr;
796113357Sjeff			kseq->ksq_curr = kseq->ksq_next;
797113357Sjeff			kseq->ksq_next = swap;
798113357Sjeff			continue;
799113357Sjeff		}
800113357Sjeff		/*
801113357Sjeff		 * If we encounter a slice of 0 the kse is in a
802113357Sjeff		 * TIMESHARE kse group and its nice was too far out
803113357Sjeff		 * of the range that receives slices.
804113357Sjeff		 */
805121790Sjeff		if (ke->ke_slice == 0) {
806113357Sjeff			runq_remove(ke->ke_runq, ke);
807113357Sjeff			sched_slice(ke);
808113357Sjeff			ke->ke_runq = kseq->ksq_next;
809113357Sjeff			runq_add(ke->ke_runq, ke);
810113357Sjeff			continue;
811113357Sjeff		}
812113357Sjeff		return (ke);
813110267Sjeff	}
814110267Sjeff
815113357Sjeff	return (runq_choose(&kseq->ksq_idle));
816110267Sjeff}
817110267Sjeff
818109864Sjeffstatic void
819110028Sjeffkseq_setup(struct kseq *kseq)
820110028Sjeff{
821113357Sjeff	runq_init(&kseq->ksq_timeshare[0]);
822113357Sjeff	runq_init(&kseq->ksq_timeshare[1]);
823112994Sjeff	runq_init(&kseq->ksq_idle);
824113357Sjeff	kseq->ksq_curr = &kseq->ksq_timeshare[0];
825113357Sjeff	kseq->ksq_next = &kseq->ksq_timeshare[1];
826113660Sjeff	kseq->ksq_load = 0;
827121896Sjeff	kseq->ksq_load_timeshare = 0;
828110028Sjeff}
829110028Sjeff
830110028Sjeffstatic void
831109864Sjeffsched_setup(void *dummy)
832109864Sjeff{
833117313Sjeff#ifdef SMP
834123487Sjeff	int balance_groups;
835109864Sjeff	int i;
836117313Sjeff#endif
837109864Sjeff
838116946Sjeff	slice_min = (hz/100);	/* 10ms */
839116946Sjeff	slice_max = (hz/7);	/* ~140ms */
840111857Sjeff
841117237Sjeff#ifdef SMP
842123487Sjeff	balance_groups = 0;
843123433Sjeff	/*
844123433Sjeff	 * Initialize the kseqs.
845123433Sjeff	 */
846123433Sjeff	for (i = 0; i < MAXCPU; i++) {
847123433Sjeff		struct kseq *ksq;
848123433Sjeff
849123433Sjeff		ksq = &kseq_cpu[i];
850123433Sjeff		ksq->ksq_assigned = NULL;
851123433Sjeff		kseq_setup(&kseq_cpu[i]);
852123433Sjeff	}
853117237Sjeff	if (smp_topology == NULL) {
854123433Sjeff		struct kseq_group *ksg;
855123433Sjeff		struct kseq *ksq;
856123433Sjeff
857117237Sjeff		for (i = 0; i < MAXCPU; i++) {
858123433Sjeff			ksq = &kseq_cpu[i];
859123433Sjeff			ksg = &kseq_groups[i];
860123433Sjeff			/*
861129982Sjeff			 * Setup a kseq group with one member.
862123433Sjeff			 */
863123433Sjeff			ksq->ksq_transferable = 0;
864123433Sjeff			ksq->ksq_group = ksg;
865123433Sjeff			ksg->ksg_cpus = 1;
866123433Sjeff			ksg->ksg_idlemask = 0;
867123433Sjeff			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
868123487Sjeff			ksg->ksg_load = 0;
869123433Sjeff			ksg->ksg_transferable = 0;
870123433Sjeff			LIST_INIT(&ksg->ksg_members);
871123433Sjeff			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
872117237Sjeff		}
873117237Sjeff	} else {
874123433Sjeff		struct kseq_group *ksg;
875123433Sjeff		struct cpu_group *cg;
876117237Sjeff		int j;
877113357Sjeff
878117237Sjeff		for (i = 0; i < smp_topology->ct_count; i++) {
879117237Sjeff			cg = &smp_topology->ct_group[i];
880123433Sjeff			ksg = &kseq_groups[i];
881123433Sjeff			/*
882123433Sjeff			 * Initialize the group.
883123433Sjeff			 */
884123433Sjeff			ksg->ksg_idlemask = 0;
885123487Sjeff			ksg->ksg_load = 0;
886123433Sjeff			ksg->ksg_transferable = 0;
887123433Sjeff			ksg->ksg_cpus = cg->cg_count;
888123433Sjeff			ksg->ksg_cpumask = cg->cg_mask;
889123433Sjeff			LIST_INIT(&ksg->ksg_members);
890123433Sjeff			/*
891123433Sjeff			 * Find all of the group members and add them.
892123433Sjeff			 */
893123433Sjeff			for (j = 0; j < MAXCPU; j++) {
894123433Sjeff				if ((cg->cg_mask & (1 << j)) != 0) {
895123433Sjeff					if (ksg->ksg_mask == 0)
896123433Sjeff						ksg->ksg_mask = 1 << j;
897123433Sjeff					kseq_cpu[j].ksq_transferable = 0;
898123433Sjeff					kseq_cpu[j].ksq_group = ksg;
899123433Sjeff					LIST_INSERT_HEAD(&ksg->ksg_members,
900123433Sjeff					    &kseq_cpu[j], ksq_siblings);
901123433Sjeff				}
902123433Sjeff			}
903123487Sjeff			if (ksg->ksg_cpus > 1)
904123487Sjeff				balance_groups = 1;
905117237Sjeff		}
906123487Sjeff		ksg_maxid = smp_topology->ct_count - 1;
907117237Sjeff	}
908123487Sjeff	/*
909123487Sjeff	 * Stagger the group and global load balancer so they do not
910123487Sjeff	 * interfere with each other.
911123487Sjeff	 */
912129982Sjeff	bal_tick = ticks + hz;
913123487Sjeff	if (balance_groups)
914129982Sjeff		gbal_tick = ticks + (hz / 2);
915117237Sjeff#else
916117237Sjeff	kseq_setup(KSEQ_SELF());
917116069Sjeff#endif
918117237Sjeff	mtx_lock_spin(&sched_lock);
919122744Sjeff	kseq_load_add(KSEQ_SELF(), &kse0);
920117237Sjeff	mtx_unlock_spin(&sched_lock);
921109864Sjeff}
922109864Sjeff
923109864Sjeff/*
924109864Sjeff * Scale the scheduling priority according to the "interactivity" of this
925109864Sjeff * process.
926109864Sjeff */
927113357Sjeffstatic void
928109864Sjeffsched_priority(struct ksegrp *kg)
929109864Sjeff{
930109864Sjeff	int pri;
931109864Sjeff
932109864Sjeff	if (kg->kg_pri_class != PRI_TIMESHARE)
933113357Sjeff		return;
934109864Sjeff
935113357Sjeff	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
936111857Sjeff	pri += SCHED_PRI_BASE;
937130551Sjulian	pri += kg->kg_proc->p_nice;
938109864Sjeff
939109864Sjeff	if (pri > PRI_MAX_TIMESHARE)
940109864Sjeff		pri = PRI_MAX_TIMESHARE;
941109864Sjeff	else if (pri < PRI_MIN_TIMESHARE)
942109864Sjeff		pri = PRI_MIN_TIMESHARE;
943109864Sjeff
944109864Sjeff	kg->kg_user_pri = pri;
945109864Sjeff
946113357Sjeff	return;
947109864Sjeff}
948109864Sjeff
949109864Sjeff/*
950112966Sjeff * Calculate a time slice based on the properties of the kseg and the runq
951112994Sjeff * that we're on.  This is only for PRI_TIMESHARE ksegrps.
952109864Sjeff */
953112966Sjeffstatic void
954112966Sjeffsched_slice(struct kse *ke)
955109864Sjeff{
956113357Sjeff	struct kseq *kseq;
957112966Sjeff	struct ksegrp *kg;
958109864Sjeff
959112966Sjeff	kg = ke->ke_ksegrp;
960113357Sjeff	kseq = KSEQ_CPU(ke->ke_cpu);
961109864Sjeff
962112966Sjeff	/*
963112966Sjeff	 * Rationale:
964112966Sjeff	 * KSEs in interactive ksegs get the minimum slice so that we
965112966Sjeff	 * quickly notice if it abuses its advantage.
966112966Sjeff	 *
967112966Sjeff	 * KSEs in non-interactive ksegs are assigned a slice that is
968112966Sjeff	 * based on the ksegs nice value relative to the least nice kseg
969112966Sjeff	 * on the run queue for this cpu.
970112966Sjeff	 *
971112966Sjeff	 * If the KSE is less nice than all others it gets the maximum
972112966Sjeff	 * slice and other KSEs will adjust their slice relative to
973112966Sjeff	 * this when they first expire.
974112966Sjeff	 *
975112966Sjeff	 * There is 20 point window that starts relative to the least
976112966Sjeff	 * nice kse on the run queue.  Slice size is determined by
977112966Sjeff	 * the kse distance from the last nice ksegrp.
978112966Sjeff	 *
979121871Sjeff	 * If the kse is outside of the window it will get no slice
980121871Sjeff	 * and will be reevaluated each time it is selected on the
981121871Sjeff	 * run queue.  The exception to this is nice 0 ksegs when
982121871Sjeff	 * a nice -20 is running.  They are always granted a minimum
983121871Sjeff	 * slice.
984112966Sjeff	 */
985113357Sjeff	if (!SCHED_INTERACTIVE(kg)) {
986112966Sjeff		int nice;
987112966Sjeff
988130551Sjulian		nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
989121896Sjeff		if (kseq->ksq_load_timeshare == 0 ||
990130551Sjulian		    kg->kg_proc->p_nice < kseq->ksq_nicemin)
991112966Sjeff			ke->ke_slice = SCHED_SLICE_MAX;
992121871Sjeff		else if (nice <= SCHED_SLICE_NTHRESH)
993112966Sjeff			ke->ke_slice = SCHED_SLICE_NICE(nice);
994130551Sjulian		else if (kg->kg_proc->p_nice == 0)
995121871Sjeff			ke->ke_slice = SCHED_SLICE_MIN;
996112966Sjeff		else
997112966Sjeff			ke->ke_slice = 0;
998112966Sjeff	} else
999123684Sjeff		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
1000112966Sjeff
1001113357Sjeff	CTR6(KTR_ULE,
1002113357Sjeff	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
1003130551Sjulian	    ke, ke->ke_slice, kg->kg_proc->p_nice, kseq->ksq_nicemin,
1004121896Sjeff	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
1005113357Sjeff
1006112966Sjeff	return;
1007109864Sjeff}
1008109864Sjeff
1009121868Sjeff/*
1010121868Sjeff * This routine enforces a maximum limit on the amount of scheduling history
1011121868Sjeff * kept.  It is called after either the slptime or runtime is adjusted.
1012121868Sjeff * This routine will not operate correctly when slp or run times have been
1013121868Sjeff * adjusted to more than double their maximum.
1014121868Sjeff */
1015116463Sjeffstatic void
1016116463Sjeffsched_interact_update(struct ksegrp *kg)
1017116463Sjeff{
1018121868Sjeff	int sum;
1019121605Sjeff
1020121868Sjeff	sum = kg->kg_runtime + kg->kg_slptime;
1021121868Sjeff	if (sum < SCHED_SLP_RUN_MAX)
1022121868Sjeff		return;
1023121868Sjeff	/*
1024121868Sjeff	 * If we have exceeded by more than 1/5th then the algorithm below
1025121868Sjeff	 * will not bring us back into range.  Dividing by two here forces
1026121868Sjeff	 * us into the range of [3/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1027121868Sjeff	 */
1028127850Sjeff	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1029121868Sjeff		kg->kg_runtime /= 2;
1030121868Sjeff		kg->kg_slptime /= 2;
1031121868Sjeff		return;
1032116463Sjeff	}
1033121868Sjeff	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1034121868Sjeff	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1035116463Sjeff}
1036116463Sjeff
1037121868Sjeffstatic void
1038121868Sjeffsched_interact_fork(struct ksegrp *kg)
1039121868Sjeff{
1040121868Sjeff	int ratio;
1041121868Sjeff	int sum;
1042121868Sjeff
1043121868Sjeff	sum = kg->kg_runtime + kg->kg_slptime;
1044121868Sjeff	if (sum > SCHED_SLP_RUN_FORK) {
1045121868Sjeff		ratio = sum / SCHED_SLP_RUN_FORK;
1046121868Sjeff		kg->kg_runtime /= ratio;
1047121868Sjeff		kg->kg_slptime /= ratio;
1048121868Sjeff	}
1049121868Sjeff}
1050121868Sjeff
1051111857Sjeffstatic int
1052111857Sjeffsched_interact_score(struct ksegrp *kg)
1053111857Sjeff{
1054116365Sjeff	int div;
1055111857Sjeff
1056111857Sjeff	if (kg->kg_runtime > kg->kg_slptime) {
1057116365Sjeff		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1058116365Sjeff		return (SCHED_INTERACT_HALF +
1059116365Sjeff		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1060116365Sjeff	} if (kg->kg_slptime > kg->kg_runtime) {
1061116365Sjeff		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1062116365Sjeff		return (kg->kg_runtime / div);
1063111857Sjeff	}
1064111857Sjeff
1065116365Sjeff	/*
1066116365Sjeff	 * This can happen if slptime and runtime are 0.
1067116365Sjeff	 */
1068116365Sjeff	return (0);
1069111857Sjeff
1070111857Sjeff}
1071111857Sjeff
1072113357Sjeff/*
1073113357Sjeff * This is only somewhat accurate since given many processes of the same
1074113357Sjeff * priority they will switch when their slices run out, which will be
1075113357Sjeff * at most SCHED_SLICE_MAX.
1076113357Sjeff */
1077109864Sjeffint
1078109864Sjeffsched_rr_interval(void)
1079109864Sjeff{
1080109864Sjeff	return (SCHED_SLICE_MAX);
1081109864Sjeff}
1082109864Sjeff
1083121790Sjeffstatic void
1084109864Sjeffsched_pctcpu_update(struct kse *ke)
1085109864Sjeff{
1086109864Sjeff	/*
1087109864Sjeff	 * Adjust counters and watermark for pctcpu calc.
1088116365Sjeff	 */
1089120272Sjeff	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1090120272Sjeff		/*
1091120272Sjeff		 * Shift the tick count out so that the divide doesn't
1092120272Sjeff		 * round away our results.
1093120272Sjeff		 */
1094120272Sjeff		ke->ke_ticks <<= 10;
1095120272Sjeff		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1096120272Sjeff			    SCHED_CPU_TICKS;
1097120272Sjeff		ke->ke_ticks >>= 10;
1098120272Sjeff	} else
1099120272Sjeff		ke->ke_ticks = 0;
1100109864Sjeff	ke->ke_ltick = ticks;
1101109864Sjeff	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1102109864Sjeff}
1103109864Sjeff
1104109864Sjeffvoid
1105109864Sjeffsched_prio(struct thread *td, u_char prio)
1106109864Sjeff{
1107121605Sjeff	struct kse *ke;
1108109864Sjeff
1109121605Sjeff	ke = td->td_kse;
1110109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1111109864Sjeff	if (TD_ON_RUNQ(td)) {
1112121605Sjeff		/*
1113121605Sjeff		 * If the priority has been elevated due to priority
1114121605Sjeff		 * propagation, we may have to move ourselves to a new
1115121605Sjeff		 * queue.  We still call adjustrunqueue below in case kse
1116121605Sjeff		 * needs to fix things up.
1117121605Sjeff		 */
1118121872Sjeff		if (prio < td->td_priority && ke &&
1119121872Sjeff		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1120121790Sjeff		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1121121605Sjeff			runq_remove(ke->ke_runq, ke);
1122121605Sjeff			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1123121605Sjeff			runq_add(ke->ke_runq, ke);
1124121605Sjeff		}
1125119488Sdavidxu		adjustrunqueue(td, prio);
1126121605Sjeff	} else
1127119488Sdavidxu		td->td_priority = prio;
1128109864Sjeff}
1129109864Sjeff
1130109864Sjeffvoid
1131131473Sjhbsched_switch(struct thread *td, struct thread *newtd)
1132109864Sjeff{
1133109864Sjeff	struct kse *ke;
1134109864Sjeff
1135109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1136109864Sjeff
1137109864Sjeff	ke = td->td_kse;
1138109864Sjeff
1139109864Sjeff	td->td_last_kse = ke;
1140113339Sjulian        td->td_lastcpu = td->td_oncpu;
1141113339Sjulian	td->td_oncpu = NOCPU;
1142131481Sjhb	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_OWEPREEMPT);
1143109864Sjeff
1144123434Sjeff	/*
1145123434Sjeff	 * If the KSE has been assigned it may be in the process of switching
1146123434Sjeff	 * to the new cpu.  This is the case in sched_bind().
1147123434Sjeff	 */
1148123434Sjeff	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1149131473Sjhb		if (td == PCPU_GET(idlethread))
1150131473Sjhb			TD_SET_CAN_RUN(td);
1151131473Sjhb		else if (TD_IS_RUNNING(td)) {
1152127278Sobrien			kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1153127278Sobrien			setrunqueue(td);
1154123434Sjeff		} else {
1155125289Sjeff			if (ke->ke_runq) {
1156123434Sjeff				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1157125289Sjeff			} else if ((td->td_flags & TDF_IDLETD) == 0)
1158125289Sjeff				backtrace();
1159123434Sjeff			/*
1160123434Sjeff			 * We will not be on the run queue. So we must be
1161123434Sjeff			 * sleeping or similar.
1162123434Sjeff			 */
1163123434Sjeff			if (td->td_proc->p_flag & P_SA)
1164123434Sjeff				kse_reassign(ke);
1165123434Sjeff		}
1166121146Sjeff	}
1167131473Sjhb	if (newtd == NULL)
1168131473Sjhb		newtd = choosethread();
1169131473Sjhb	else
1170131473Sjhb		kseq_load_add(KSEQ_SELF(), newtd->td_kse);
1171121128Sjeff	if (td != newtd)
1172121128Sjeff		cpu_switch(td, newtd);
1173121128Sjeff	sched_lock.mtx_lock = (uintptr_t)td;
1174109864Sjeff
1175113339Sjulian	td->td_oncpu = PCPU_GET(cpuid);
1176109864Sjeff}
1177109864Sjeff
1178109864Sjeffvoid
1179130551Sjuliansched_nice(struct proc *p, int nice)
1180109864Sjeff{
1181130551Sjulian	struct ksegrp *kg;
1182113357Sjeff	struct kse *ke;
1183109864Sjeff	struct thread *td;
1184113357Sjeff	struct kseq *kseq;
1185109864Sjeff
1186130551Sjulian	PROC_LOCK_ASSERT(p, MA_OWNED);
1187113873Sjhb	mtx_assert(&sched_lock, MA_OWNED);
1188113357Sjeff	/*
1189113357Sjeff	 * We need to adjust the nice counts for running KSEs.
1190113357Sjeff	 */
1191130551Sjulian	FOREACH_KSEGRP_IN_PROC(p, kg) {
1192130551Sjulian		if (kg->kg_pri_class == PRI_TIMESHARE) {
1193130551Sjulian			FOREACH_KSE_IN_GROUP(kg, ke) {
1194130551Sjulian				if (ke->ke_runq == NULL)
1195130551Sjulian					continue;
1196130551Sjulian				kseq = KSEQ_CPU(ke->ke_cpu);
1197130551Sjulian				kseq_nice_rem(kseq, p->p_nice);
1198130551Sjulian				kseq_nice_add(kseq, nice);
1199130551Sjulian			}
1200113357Sjeff		}
1201130551Sjulian	}
1202130551Sjulian	p->p_nice = nice;
1203130551Sjulian	FOREACH_KSEGRP_IN_PROC(p, kg) {
1204130551Sjulian		sched_priority(kg);
1205130551Sjulian		FOREACH_THREAD_IN_GROUP(kg, td)
1206130551Sjulian			td->td_flags |= TDF_NEEDRESCHED;
1207130551Sjulian	}
1208109864Sjeff}
1209109864Sjeff
1210109864Sjeffvoid
1211126326Sjhbsched_sleep(struct thread *td)
1212109864Sjeff{
1213109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1214109864Sjeff
1215109864Sjeff	td->td_slptime = ticks;
1216126326Sjhb	td->td_base_pri = td->td_priority;
1217109864Sjeff
1218113357Sjeff	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
1219113357Sjeff	    td->td_kse, td->td_slptime);
1220109864Sjeff}
1221109864Sjeff
1222109864Sjeffvoid
1223109864Sjeffsched_wakeup(struct thread *td)
1224109864Sjeff{
1225109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1226109864Sjeff
1227109864Sjeff	/*
1228109864Sjeff	 * Let the kseg know how long we slept for.  This is because process
1229109864Sjeff	 * interactivity behavior is modeled in the kseg.
1230109864Sjeff	 */
1231111788Sjeff	if (td->td_slptime) {
1232111788Sjeff		struct ksegrp *kg;
1233113357Sjeff		int hzticks;
1234109864Sjeff
1235111788Sjeff		kg = td->td_ksegrp;
1236121868Sjeff		hzticks = (ticks - td->td_slptime) << 10;
1237121868Sjeff		if (hzticks >= SCHED_SLP_RUN_MAX) {
1238121868Sjeff			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1239121868Sjeff			kg->kg_runtime = 1;
1240121868Sjeff		} else {
1241121868Sjeff			kg->kg_slptime += hzticks;
1242121868Sjeff			sched_interact_update(kg);
1243121868Sjeff		}
1244111788Sjeff		sched_priority(kg);
1245116463Sjeff		if (td->td_kse)
1246116463Sjeff			sched_slice(td->td_kse);
1247113357Sjeff		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
1248113357Sjeff		    td->td_kse, hzticks);
1249111788Sjeff		td->td_slptime = 0;
1250109864Sjeff	}
1251109864Sjeff	setrunqueue(td);
1252109864Sjeff}
1253109864Sjeff
1254109864Sjeff/*
1255109864Sjeff * Penalize the parent for creating a new child and initialize the child's
1256109864Sjeff * priority.
1257109864Sjeff */
1258109864Sjeffvoid
1259113357Sjeffsched_fork(struct proc *p, struct proc *p1)
1260109864Sjeff{
1261109864Sjeff
1262109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1263109864Sjeff
1264130551Sjulian	p1->p_nice = p->p_nice;
1265113357Sjeff	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
1266113357Sjeff	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
1267113357Sjeff	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
1268113357Sjeff}
1269113357Sjeff
1270113357Sjeffvoid
1271113357Sjeffsched_fork_kse(struct kse *ke, struct kse *child)
1272113357Sjeff{
1273113923Sjhb
1274116365Sjeff	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1275122847Sjeff	child->ke_cpu = ke->ke_cpu;
1276113357Sjeff	child->ke_runq = NULL;
1277113357Sjeff
1278121051Sjeff	/* Grab our parents cpu estimation information. */
1279121051Sjeff	child->ke_ticks = ke->ke_ticks;
1280121051Sjeff	child->ke_ltick = ke->ke_ltick;
1281121051Sjeff	child->ke_ftick = ke->ke_ftick;
1282113357Sjeff}
1283113357Sjeff
1284113357Sjeffvoid
1285113357Sjeffsched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1286113357Sjeff{
1287113923Sjhb	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
1288116365Sjeff
1289121868Sjeff	child->kg_slptime = kg->kg_slptime;
1290121868Sjeff	child->kg_runtime = kg->kg_runtime;
1291121868Sjeff	child->kg_user_pri = kg->kg_user_pri;
1292121868Sjeff	sched_interact_fork(child);
1293116463Sjeff	kg->kg_runtime += tickincr << 10;
1294116463Sjeff	sched_interact_update(kg);
1295113357Sjeff
1296121868Sjeff	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1297121868Sjeff	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1298121868Sjeff	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1299113357Sjeff}
1300109864Sjeff
1301113357Sjeffvoid
1302113357Sjeffsched_fork_thread(struct thread *td, struct thread *child)
1303113357Sjeff{
1304113357Sjeff}
1305113357Sjeff
1306113357Sjeffvoid
1307113357Sjeffsched_class(struct ksegrp *kg, int class)
1308113357Sjeff{
1309113357Sjeff	struct kseq *kseq;
1310113357Sjeff	struct kse *ke;
1311121896Sjeff	int nclass;
1312121896Sjeff	int oclass;
1313113357Sjeff
1314113923Sjhb	mtx_assert(&sched_lock, MA_OWNED);
1315113357Sjeff	if (kg->kg_pri_class == class)
1316113357Sjeff		return;
1317113357Sjeff
1318121896Sjeff	nclass = PRI_BASE(class);
1319121896Sjeff	oclass = PRI_BASE(kg->kg_pri_class);
1320113357Sjeff	FOREACH_KSE_IN_GROUP(kg, ke) {
1321113357Sjeff		if (ke->ke_state != KES_ONRUNQ &&
1322113357Sjeff		    ke->ke_state != KES_THREAD)
1323113357Sjeff			continue;
1324113357Sjeff		kseq = KSEQ_CPU(ke->ke_cpu);
1325113357Sjeff
1326121896Sjeff#ifdef SMP
1327122744Sjeff		/*
1328122744Sjeff		 * On SMP if we're on the RUNQ we must adjust the transferable
1329122744Sjeff		 * count because could be changing to or from an interrupt
1330122744Sjeff		 * class.
1331122744Sjeff		 */
1332122744Sjeff		if (ke->ke_state == KES_ONRUNQ) {
1333123433Sjeff			if (KSE_CAN_MIGRATE(ke, oclass)) {
1334123433Sjeff				kseq->ksq_transferable--;
1335123433Sjeff				kseq->ksq_group->ksg_transferable--;
1336123433Sjeff			}
1337123433Sjeff			if (KSE_CAN_MIGRATE(ke, nclass)) {
1338123433Sjeff				kseq->ksq_transferable++;
1339123433Sjeff				kseq->ksq_group->ksg_transferable++;
1340123433Sjeff			}
1341122744Sjeff		}
1342121896Sjeff#endif
1343122744Sjeff		if (oclass == PRI_TIMESHARE) {
1344121896Sjeff			kseq->ksq_load_timeshare--;
1345130551Sjulian			kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1346122744Sjeff		}
1347122744Sjeff		if (nclass == PRI_TIMESHARE) {
1348121896Sjeff			kseq->ksq_load_timeshare++;
1349130551Sjulian			kseq_nice_add(kseq, kg->kg_proc->p_nice);
1350122744Sjeff		}
1351109970Sjeff	}
1352109970Sjeff
1353113357Sjeff	kg->kg_pri_class = class;
1354109864Sjeff}
1355109864Sjeff
1356109864Sjeff/*
1357109864Sjeff * Return some of the child's priority and interactivity to the parent.
1358109864Sjeff */
1359109864Sjeffvoid
1360113357Sjeffsched_exit(struct proc *p, struct proc *child)
1361109864Sjeff{
1362109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1363113372Sjeff	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
1364116365Sjeff	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
1365109864Sjeff}
1366109864Sjeff
1367109864Sjeffvoid
1368113372Sjeffsched_exit_kse(struct kse *ke, struct kse *child)
1369113372Sjeff{
1370122744Sjeff	kseq_load_rem(KSEQ_CPU(child->ke_cpu), child);
1371113372Sjeff}
1372113372Sjeff
1373113372Sjeffvoid
1374113372Sjeffsched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1375113372Sjeff{
1376116463Sjeff	/* kg->kg_slptime += child->kg_slptime; */
1377116365Sjeff	kg->kg_runtime += child->kg_runtime;
1378116463Sjeff	sched_interact_update(kg);
1379113372Sjeff}
1380113372Sjeff
1381113372Sjeffvoid
1382113372Sjeffsched_exit_thread(struct thread *td, struct thread *child)
1383113372Sjeff{
1384113372Sjeff}
1385113372Sjeff
1386113372Sjeffvoid
1387121127Sjeffsched_clock(struct thread *td)
1388109864Sjeff{
1389113357Sjeff	struct kseq *kseq;
1390113357Sjeff	struct ksegrp *kg;
1391121127Sjeff	struct kse *ke;
1392109864Sjeff
1393129982Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1394129982Sjeff#ifdef SMP
1395129982Sjeff	if (ticks == bal_tick)
1396129982Sjeff		sched_balance();
1397129982Sjeff	if (ticks == gbal_tick)
1398129982Sjeff		sched_balance_groups();
1399129982Sjeff#endif
1400113357Sjeff	/*
1401113357Sjeff	 * sched_setup() apparently happens prior to stathz being set.  We
1402113357Sjeff	 * need to resolve the timers earlier in the boot so we can avoid
1403113357Sjeff	 * calculating this here.
1404113357Sjeff	 */
1405113357Sjeff	if (realstathz == 0) {
1406113357Sjeff		realstathz = stathz ? stathz : hz;
1407113357Sjeff		tickincr = hz / realstathz;
1408113357Sjeff		/*
1409113357Sjeff		 * XXX This does not work for values of stathz that are much
1410113357Sjeff		 * larger than hz.
1411113357Sjeff		 */
1412113357Sjeff		if (tickincr == 0)
1413113357Sjeff			tickincr = 1;
1414113357Sjeff	}
1415109864Sjeff
1416121127Sjeff	ke = td->td_kse;
1417113357Sjeff	kg = ke->ke_ksegrp;
1418109864Sjeff
1419110028Sjeff	/* Adjust ticks for pctcpu */
1420111793Sjeff	ke->ke_ticks++;
1421109971Sjeff	ke->ke_ltick = ticks;
1422112994Sjeff
1423109971Sjeff	/* Go up to one second beyond our max and then trim back down */
1424109971Sjeff	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1425109971Sjeff		sched_pctcpu_update(ke);
1426109971Sjeff
1427114496Sjulian	if (td->td_flags & TDF_IDLETD)
1428109864Sjeff		return;
1429110028Sjeff
1430113357Sjeff	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1431113357Sjeff	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1432110028Sjeff	/*
1433113357Sjeff	 * We only do slicing code for TIMESHARE ksegrps.
1434113357Sjeff	 */
1435113357Sjeff	if (kg->kg_pri_class != PRI_TIMESHARE)
1436113357Sjeff		return;
1437113357Sjeff	/*
1438110645Sjeff	 * We used a tick charge it to the ksegrp so that we can compute our
1439113357Sjeff	 * interactivity.
1440109864Sjeff	 */
1441113357Sjeff	kg->kg_runtime += tickincr << 10;
1442116463Sjeff	sched_interact_update(kg);
1443110645Sjeff
1444109864Sjeff	/*
1445109864Sjeff	 * We used up one time slice.
1446109864Sjeff	 */
1447122847Sjeff	if (--ke->ke_slice > 0)
1448113357Sjeff		return;
1449109864Sjeff	/*
1450113357Sjeff	 * We're out of time, recompute priorities and requeue.
1451109864Sjeff	 */
1452122847Sjeff	kseq = KSEQ_SELF();
1453122744Sjeff	kseq_load_rem(kseq, ke);
1454113357Sjeff	sched_priority(kg);
1455113357Sjeff	sched_slice(ke);
1456113357Sjeff	if (SCHED_CURR(kg, ke))
1457113357Sjeff		ke->ke_runq = kseq->ksq_curr;
1458113357Sjeff	else
1459113357Sjeff		ke->ke_runq = kseq->ksq_next;
1460122744Sjeff	kseq_load_add(kseq, ke);
1461113357Sjeff	td->td_flags |= TDF_NEEDRESCHED;
1462109864Sjeff}
1463109864Sjeff
1464109864Sjeffint
1465109864Sjeffsched_runnable(void)
1466109864Sjeff{
1467109864Sjeff	struct kseq *kseq;
1468115998Sjeff	int load;
1469109864Sjeff
1470115998Sjeff	load = 1;
1471115998Sjeff
1472110028Sjeff	kseq = KSEQ_SELF();
1473121790Sjeff#ifdef SMP
1474122094Sjeff	if (kseq->ksq_assigned) {
1475122094Sjeff		mtx_lock_spin(&sched_lock);
1476121790Sjeff		kseq_assign(kseq);
1477122094Sjeff		mtx_unlock_spin(&sched_lock);
1478122094Sjeff	}
1479121790Sjeff#endif
1480121605Sjeff	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1481121605Sjeff		if (kseq->ksq_load > 0)
1482121605Sjeff			goto out;
1483121605Sjeff	} else
1484121605Sjeff		if (kseq->ksq_load - 1 > 0)
1485121605Sjeff			goto out;
1486115998Sjeff	load = 0;
1487115998Sjeffout:
1488115998Sjeff	return (load);
1489109864Sjeff}
1490109864Sjeff
1491109864Sjeffvoid
1492109864Sjeffsched_userret(struct thread *td)
1493109864Sjeff{
1494109864Sjeff	struct ksegrp *kg;
1495121605Sjeff
1496121605Sjeff	kg = td->td_ksegrp;
1497109864Sjeff
1498109864Sjeff	if (td->td_priority != kg->kg_user_pri) {
1499109864Sjeff		mtx_lock_spin(&sched_lock);
1500109864Sjeff		td->td_priority = kg->kg_user_pri;
1501109864Sjeff		mtx_unlock_spin(&sched_lock);
1502109864Sjeff	}
1503109864Sjeff}
1504109864Sjeff
1505109864Sjeffstruct kse *
1506109970Sjeffsched_choose(void)
1507109970Sjeff{
1508110028Sjeff	struct kseq *kseq;
1509109970Sjeff	struct kse *ke;
1510109970Sjeff
1511115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1512121790Sjeff	kseq = KSEQ_SELF();
1513113357Sjeff#ifdef SMP
1514123433Sjeffrestart:
1515121790Sjeff	if (kseq->ksq_assigned)
1516121790Sjeff		kseq_assign(kseq);
1517113357Sjeff#endif
1518121790Sjeff	ke = kseq_choose(kseq);
1519109864Sjeff	if (ke) {
1520121790Sjeff#ifdef SMP
1521121790Sjeff		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1522123433Sjeff			if (kseq_idled(kseq) == 0)
1523123433Sjeff				goto restart;
1524121790Sjeff#endif
1525122744Sjeff		kseq_runq_rem(kseq, ke);
1526109864Sjeff		ke->ke_state = KES_THREAD;
1527112966Sjeff
1528113357Sjeff		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1529113357Sjeff			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1530113357Sjeff			    ke, ke->ke_runq, ke->ke_slice,
1531113357Sjeff			    ke->ke_thread->td_priority);
1532113357Sjeff		}
1533113357Sjeff		return (ke);
1534109864Sjeff	}
1535109970Sjeff#ifdef SMP
1536123433Sjeff	if (kseq_idled(kseq) == 0)
1537123433Sjeff		goto restart;
1538109970Sjeff#endif
1539113357Sjeff	return (NULL);
1540109864Sjeff}
1541109864Sjeff
1542109864Sjeffvoid
1543121127Sjeffsched_add(struct thread *td)
1544109864Sjeff{
1545110267Sjeff	struct kseq *kseq;
1546113357Sjeff	struct ksegrp *kg;
1547121127Sjeff	struct kse *ke;
1548121790Sjeff	int class;
1549109864Sjeff
1550121790Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1551121127Sjeff	ke = td->td_kse;
1552121127Sjeff	kg = td->td_ksegrp;
1553121790Sjeff	if (ke->ke_flags & KEF_ASSIGNED)
1554121790Sjeff		return;
1555121790Sjeff	kseq = KSEQ_SELF();
1556124958Sjeff	KASSERT((ke->ke_thread != NULL),
1557124958Sjeff	    ("sched_add: No thread on KSE"));
1558109864Sjeff	KASSERT((ke->ke_thread->td_kse != NULL),
1559110267Sjeff	    ("sched_add: No KSE on thread"));
1560109864Sjeff	KASSERT(ke->ke_state != KES_ONRUNQ,
1561110267Sjeff	    ("sched_add: kse %p (%s) already in run queue", ke,
1562109864Sjeff	    ke->ke_proc->p_comm));
1563109864Sjeff	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1564110267Sjeff	    ("sched_add: process swapped out"));
1565113387Sjeff	KASSERT(ke->ke_runq == NULL,
1566113387Sjeff	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1567109864Sjeff
1568121790Sjeff	class = PRI_BASE(kg->kg_pri_class);
1569121790Sjeff	switch (class) {
1570112994Sjeff	case PRI_ITHD:
1571112994Sjeff	case PRI_REALTIME:
1572113357Sjeff		ke->ke_runq = kseq->ksq_curr;
1573113357Sjeff		ke->ke_slice = SCHED_SLICE_MAX;
1574113660Sjeff		ke->ke_cpu = PCPU_GET(cpuid);
1575112994Sjeff		break;
1576112994Sjeff	case PRI_TIMESHARE:
1577113387Sjeff		if (SCHED_CURR(kg, ke))
1578113387Sjeff			ke->ke_runq = kseq->ksq_curr;
1579113387Sjeff		else
1580113387Sjeff			ke->ke_runq = kseq->ksq_next;
1581113357Sjeff		break;
1582112994Sjeff	case PRI_IDLE:
1583113357Sjeff		/*
1584113357Sjeff		 * This is for priority prop.
1585113357Sjeff		 */
1586121605Sjeff		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1587113357Sjeff			ke->ke_runq = kseq->ksq_curr;
1588113357Sjeff		else
1589113357Sjeff			ke->ke_runq = &kseq->ksq_idle;
1590113357Sjeff		ke->ke_slice = SCHED_SLICE_MIN;
1591112994Sjeff		break;
1592113357Sjeff	default:
1593121868Sjeff		panic("Unknown pri class.");
1594113357Sjeff		break;
1595112994Sjeff	}
1596121790Sjeff#ifdef SMP
1597123433Sjeff	if (ke->ke_cpu != PCPU_GET(cpuid)) {
1598123529Sjeff		ke->ke_runq = NULL;
1599123433Sjeff		kseq_notify(ke, ke->ke_cpu);
1600123433Sjeff		return;
1601123433Sjeff	}
1602121790Sjeff	/*
1603123685Sjeff	 * If we had been idle, clear our bit in the group and potentially
1604123685Sjeff	 * the global bitmap.  If not, see if we should transfer this thread.
1605121790Sjeff	 */
1606123433Sjeff	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1607123433Sjeff	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1608121790Sjeff		/*
1609123433Sjeff		 * Check to see if our group is unidling, and if so, remove it
1610123433Sjeff		 * from the global idle mask.
1611121790Sjeff		 */
1612123433Sjeff		if (kseq->ksq_group->ksg_idlemask ==
1613123433Sjeff		    kseq->ksq_group->ksg_cpumask)
1614123433Sjeff			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1615123433Sjeff		/*
1616123433Sjeff		 * Now remove ourselves from the group specific idle mask.
1617123433Sjeff		 */
1618123433Sjeff		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1619123685Sjeff	} else if (kseq->ksq_load > 1 && KSE_CAN_MIGRATE(ke, class))
1620123685Sjeff		if (kseq_transfer(kseq, ke, class))
1621123685Sjeff			return;
1622121790Sjeff#endif
1623121790Sjeff        if (td->td_priority < curthread->td_priority)
1624121790Sjeff                curthread->td_flags |= TDF_NEEDRESCHED;
1625121790Sjeff
1626131481Sjhb#ifdef SMP
1627131481Sjhb	/*
1628131481Sjhb	 * Only try to preempt if the thread is unpinned or pinned to the
1629131481Sjhb	 * current CPU.
1630131481Sjhb	 */
1631131510Sbmilekic	if (KSE_CAN_MIGRATE(ke, class) || ke->ke_cpu == PCPU_GET(cpuid))
1632131481Sjhb#endif
1633131481Sjhb	if (maybe_preempt(td))
1634131481Sjhb		return;
1635109864Sjeff	ke->ke_ksegrp->kg_runq_kses++;
1636109864Sjeff	ke->ke_state = KES_ONRUNQ;
1637109864Sjeff
1638122744Sjeff	kseq_runq_add(kseq, ke);
1639122744Sjeff	kseq_load_add(kseq, ke);
1640109864Sjeff}
1641109864Sjeff
1642109864Sjeffvoid
1643121127Sjeffsched_rem(struct thread *td)
1644109864Sjeff{
1645113357Sjeff	struct kseq *kseq;
1646121127Sjeff	struct kse *ke;
1647113357Sjeff
1648121127Sjeff	ke = td->td_kse;
1649121790Sjeff	/*
1650121790Sjeff	 * It is safe to just return here because sched_rem() is only ever
1651121790Sjeff	 * used in places where we're immediately going to add the
1652121790Sjeff	 * kse back on again.  In that case it'll be added with the correct
1653121790Sjeff	 * thread and priority when the caller drops the sched_lock.
1654121790Sjeff	 */
1655121790Sjeff	if (ke->ke_flags & KEF_ASSIGNED)
1656121790Sjeff		return;
1657109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1658124958Sjeff	KASSERT((ke->ke_state == KES_ONRUNQ),
1659124958Sjeff	    ("sched_rem: KSE not on run queue"));
1660109864Sjeff
1661109864Sjeff	ke->ke_state = KES_THREAD;
1662109864Sjeff	ke->ke_ksegrp->kg_runq_kses--;
1663113357Sjeff	kseq = KSEQ_CPU(ke->ke_cpu);
1664122744Sjeff	kseq_runq_rem(kseq, ke);
1665122744Sjeff	kseq_load_rem(kseq, ke);
1666109864Sjeff}
1667109864Sjeff
1668109864Sjefffixpt_t
1669121127Sjeffsched_pctcpu(struct thread *td)
1670109864Sjeff{
1671109864Sjeff	fixpt_t pctcpu;
1672121127Sjeff	struct kse *ke;
1673109864Sjeff
1674109864Sjeff	pctcpu = 0;
1675121127Sjeff	ke = td->td_kse;
1676121290Sjeff	if (ke == NULL)
1677121290Sjeff		return (0);
1678109864Sjeff
1679115998Sjeff	mtx_lock_spin(&sched_lock);
1680109864Sjeff	if (ke->ke_ticks) {
1681109864Sjeff		int rtick;
1682109864Sjeff
1683116365Sjeff		/*
1684116365Sjeff		 * Don't update more frequently than twice a second.  Allowing
1685116365Sjeff		 * this causes the cpu usage to decay away too quickly due to
1686116365Sjeff		 * rounding errors.
1687116365Sjeff		 */
1688123435Sjeff		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1689123435Sjeff		    ke->ke_ltick < (ticks - (hz / 2)))
1690116365Sjeff			sched_pctcpu_update(ke);
1691109864Sjeff		/* How many rtick per second ? */
1692116365Sjeff		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1693110226Sscottl		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1694109864Sjeff	}
1695109864Sjeff
1696109864Sjeff	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1697113865Sjhb	mtx_unlock_spin(&sched_lock);
1698109864Sjeff
1699109864Sjeff	return (pctcpu);
1700109864Sjeff}
1701109864Sjeff
1702122038Sjeffvoid
1703122038Sjeffsched_bind(struct thread *td, int cpu)
1704122038Sjeff{
1705122038Sjeff	struct kse *ke;
1706122038Sjeff
1707122038Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1708122038Sjeff	ke = td->td_kse;
1709122038Sjeff	ke->ke_flags |= KEF_BOUND;
1710123433Sjeff#ifdef SMP
1711123433Sjeff	if (PCPU_GET(cpuid) == cpu)
1712122038Sjeff		return;
1713122038Sjeff	/* sched_rem without the runq_remove */
1714122038Sjeff	ke->ke_state = KES_THREAD;
1715122038Sjeff	ke->ke_ksegrp->kg_runq_kses--;
1716122744Sjeff	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1717122038Sjeff	kseq_notify(ke, cpu);
1718122038Sjeff	/* When we return from mi_switch we'll be on the correct cpu. */
1719131527Sphk	mi_switch(SW_VOL, NULL);
1720122038Sjeff#endif
1721122038Sjeff}
1722122038Sjeff
1723122038Sjeffvoid
1724122038Sjeffsched_unbind(struct thread *td)
1725122038Sjeff{
1726122038Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1727122038Sjeff	td->td_kse->ke_flags &= ~KEF_BOUND;
1728122038Sjeff}
1729122038Sjeff
1730109864Sjeffint
1731125289Sjeffsched_load(void)
1732125289Sjeff{
1733125289Sjeff#ifdef SMP
1734125289Sjeff	int total;
1735125289Sjeff	int i;
1736125289Sjeff
1737125289Sjeff	total = 0;
1738125289Sjeff	for (i = 0; i <= ksg_maxid; i++)
1739125289Sjeff		total += KSEQ_GROUP(i)->ksg_load;
1740125289Sjeff	return (total);
1741125289Sjeff#else
1742125289Sjeff	return (KSEQ_SELF()->ksq_sysload);
1743125289Sjeff#endif
1744125289Sjeff}
1745125289Sjeff
1746125289Sjeffint
1747109864Sjeffsched_sizeof_kse(void)
1748109864Sjeff{
1749109864Sjeff	return (sizeof(struct kse) + sizeof(struct ke_sched));
1750109864Sjeff}
1751109864Sjeff
1752109864Sjeffint
1753109864Sjeffsched_sizeof_ksegrp(void)
1754109864Sjeff{
1755109864Sjeff	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1756109864Sjeff}
1757109864Sjeff
1758109864Sjeffint
1759109864Sjeffsched_sizeof_proc(void)
1760109864Sjeff{
1761109864Sjeff	return (sizeof(struct proc));
1762109864Sjeff}
1763109864Sjeff
1764109864Sjeffint
1765109864Sjeffsched_sizeof_thread(void)
1766109864Sjeff{
1767109864Sjeff	return (sizeof(struct thread) + sizeof(struct td_sched));
1768109864Sjeff}
1769