sched_ule.c revision 125289
1109864Sjeff/*-
2113357Sjeff * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3109864Sjeff * All rights reserved.
4109864Sjeff *
5109864Sjeff * Redistribution and use in source and binary forms, with or without
6109864Sjeff * modification, are permitted provided that the following conditions
7109864Sjeff * are met:
8109864Sjeff * 1. Redistributions of source code must retain the above copyright
9109864Sjeff *    notice unmodified, this list of conditions, and the following
10109864Sjeff *    disclaimer.
11109864Sjeff * 2. Redistributions in binary form must reproduce the above copyright
12109864Sjeff *    notice, this list of conditions and the following disclaimer in the
13109864Sjeff *    documentation and/or other materials provided with the distribution.
14109864Sjeff *
15109864Sjeff * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16109864Sjeff * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17109864Sjeff * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18109864Sjeff * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19109864Sjeff * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20109864Sjeff * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21109864Sjeff * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22109864Sjeff * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23109864Sjeff * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24109864Sjeff * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25109864Sjeff */
26109864Sjeff
27116182Sobrien#include <sys/cdefs.h>
28116182Sobrien__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 125289 2004-02-01 02:48:36Z jeff $");
29116182Sobrien
30109864Sjeff#include <sys/param.h>
31109864Sjeff#include <sys/systm.h>
32109864Sjeff#include <sys/kernel.h>
33109864Sjeff#include <sys/ktr.h>
34109864Sjeff#include <sys/lock.h>
35109864Sjeff#include <sys/mutex.h>
36109864Sjeff#include <sys/proc.h>
37112966Sjeff#include <sys/resource.h>
38122038Sjeff#include <sys/resourcevar.h>
39109864Sjeff#include <sys/sched.h>
40109864Sjeff#include <sys/smp.h>
41109864Sjeff#include <sys/sx.h>
42109864Sjeff#include <sys/sysctl.h>
43109864Sjeff#include <sys/sysproto.h>
44109864Sjeff#include <sys/vmmeter.h>
45109864Sjeff#ifdef DDB
46109864Sjeff#include <ddb/ddb.h>
47109864Sjeff#endif
48109864Sjeff#ifdef KTRACE
49109864Sjeff#include <sys/uio.h>
50109864Sjeff#include <sys/ktrace.h>
51109864Sjeff#endif
52109864Sjeff
53109864Sjeff#include <machine/cpu.h>
54121790Sjeff#include <machine/smp.h>
55109864Sjeff
56113357Sjeff#define KTR_ULE         KTR_NFS
57113357Sjeff
58109864Sjeff/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
59109864Sjeff/* XXX This is bogus compatability crap for ps */
60109864Sjeffstatic fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
61109864SjeffSYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
62109864Sjeff
63109864Sjeffstatic void sched_setup(void *dummy);
64109864SjeffSYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
65109864Sjeff
66113357Sjeffstatic SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
67113357Sjeff
68113357Sjeffstatic int slice_min = 1;
69113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
70113357Sjeff
71116365Sjeffstatic int slice_max = 10;
72113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
73113357Sjeff
74111857Sjeffint realstathz;
75113357Sjeffint tickincr = 1;
76111857Sjeff
77116069Sjeff#ifdef SMP
78123487Sjeff/* Callouts to handle load balancing SMP systems. */
79116069Sjeffstatic struct callout kseq_lb_callout;
80123487Sjeffstatic struct callout kseq_group_callout;
81116069Sjeff#endif
82116069Sjeff
83109864Sjeff/*
84109864Sjeff * These datastructures are allocated within their parent datastructure but
85109864Sjeff * are scheduler specific.
86109864Sjeff */
87109864Sjeff
88109864Sjeffstruct ke_sched {
89109864Sjeff	int		ske_slice;
90109864Sjeff	struct runq	*ske_runq;
91109864Sjeff	/* The following variables are only used for pctcpu calculation */
92109864Sjeff	int		ske_ltick;	/* Last tick that we were running on */
93109864Sjeff	int		ske_ftick;	/* First tick that we were running on */
94109864Sjeff	int		ske_ticks;	/* Tick count */
95113357Sjeff	/* CPU that we have affinity for. */
96110260Sjeff	u_char		ske_cpu;
97109864Sjeff};
98109864Sjeff#define	ke_slice	ke_sched->ske_slice
99109864Sjeff#define	ke_runq		ke_sched->ske_runq
100109864Sjeff#define	ke_ltick	ke_sched->ske_ltick
101109864Sjeff#define	ke_ftick	ke_sched->ske_ftick
102109864Sjeff#define	ke_ticks	ke_sched->ske_ticks
103110260Sjeff#define	ke_cpu		ke_sched->ske_cpu
104121790Sjeff#define	ke_assign	ke_procq.tqe_next
105109864Sjeff
106121790Sjeff#define	KEF_ASSIGNED	KEF_SCHED0	/* KSE is being migrated. */
107122158Sjeff#define	KEF_BOUND	KEF_SCHED1	/* KSE can not migrate. */
108121790Sjeff
109109864Sjeffstruct kg_sched {
110110645Sjeff	int	skg_slptime;		/* Number of ticks we vol. slept */
111110645Sjeff	int	skg_runtime;		/* Number of ticks we were running */
112109864Sjeff};
113109864Sjeff#define	kg_slptime	kg_sched->skg_slptime
114110645Sjeff#define	kg_runtime	kg_sched->skg_runtime
115109864Sjeff
116109864Sjeffstruct td_sched {
117109864Sjeff	int	std_slptime;
118109864Sjeff};
119109864Sjeff#define	td_slptime	td_sched->std_slptime
120109864Sjeff
121110267Sjeffstruct td_sched td_sched;
122109864Sjeffstruct ke_sched ke_sched;
123109864Sjeffstruct kg_sched kg_sched;
124109864Sjeff
125109864Sjeffstruct ke_sched *kse0_sched = &ke_sched;
126109864Sjeffstruct kg_sched *ksegrp0_sched = &kg_sched;
127109864Sjeffstruct p_sched *proc0_sched = NULL;
128109864Sjeffstruct td_sched *thread0_sched = &td_sched;
129109864Sjeff
130109864Sjeff/*
131116642Sjeff * The priority is primarily determined by the interactivity score.  Thus, we
132116642Sjeff * give lower(better) priorities to kse groups that use less CPU.  The nice
133116642Sjeff * value is then directly added to this to allow nice to have some effect
134116642Sjeff * on latency.
135111857Sjeff *
136111857Sjeff * PRI_RANGE:	Total priority range for timeshare threads.
137116642Sjeff * PRI_NRESV:	Number of nice values.
138111857Sjeff * PRI_BASE:	The start of the dynamic range.
139109864Sjeff */
140111857Sjeff#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
141121869Sjeff#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
142121869Sjeff#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
143116642Sjeff#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
144113357Sjeff#define	SCHED_PRI_INTERACT(score)					\
145116642Sjeff    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
146109864Sjeff
147109864Sjeff/*
148111857Sjeff * These determine the interactivity of a process.
149109864Sjeff *
150110645Sjeff * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
151110645Sjeff *		before throttling back.
152121868Sjeff * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
153116365Sjeff * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
154111857Sjeff * INTERACT_THRESH:	Threshhold for placement on the current runq.
155109864Sjeff */
156121126Sjeff#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
157121868Sjeff#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
158116365Sjeff#define	SCHED_INTERACT_MAX	(100)
159116365Sjeff#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
160121126Sjeff#define	SCHED_INTERACT_THRESH	(30)
161111857Sjeff
162109864Sjeff/*
163109864Sjeff * These parameters and macros determine the size of the time slice that is
164109864Sjeff * granted to each thread.
165109864Sjeff *
166109864Sjeff * SLICE_MIN:	Minimum time slice granted, in units of ticks.
167109864Sjeff * SLICE_MAX:	Maximum time slice granted.
168109864Sjeff * SLICE_RANGE:	Range of available time slices scaled by hz.
169112966Sjeff * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
170112966Sjeff * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
171121871Sjeff * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
172109864Sjeff */
173113357Sjeff#define	SCHED_SLICE_MIN			(slice_min)
174113357Sjeff#define	SCHED_SLICE_MAX			(slice_max)
175123684Sjeff#define	SCHED_SLICE_INTERACTIVE		(slice_min * 4)
176121871Sjeff#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
177111857Sjeff#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
178109864Sjeff#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
179112966Sjeff#define	SCHED_SLICE_NICE(nice)						\
180121871Sjeff    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
181109864Sjeff
182109864Sjeff/*
183109864Sjeff * This macro determines whether or not the kse belongs on the current or
184109864Sjeff * next run queue.
185109864Sjeff */
186113357Sjeff#define	SCHED_INTERACTIVE(kg)						\
187113357Sjeff    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
188113417Sjeff#define	SCHED_CURR(kg, ke)						\
189121107Sjeff    (ke->ke_thread->td_priority != kg->kg_user_pri ||			\
190121107Sjeff    SCHED_INTERACTIVE(kg))
191109864Sjeff
192109864Sjeff/*
193109864Sjeff * Cpu percentage computation macros and defines.
194109864Sjeff *
195109864Sjeff * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
196109864Sjeff * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
197109864Sjeff */
198109864Sjeff
199112971Sjeff#define	SCHED_CPU_TIME	10
200109864Sjeff#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
201109864Sjeff
202109864Sjeff/*
203113357Sjeff * kseq - per processor runqs and statistics.
204109864Sjeff */
205109864Sjeffstruct kseq {
206113357Sjeff	struct runq	ksq_idle;		/* Queue of IDLE threads. */
207113357Sjeff	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
208113357Sjeff	struct runq	*ksq_next;		/* Next timeshare queue. */
209113357Sjeff	struct runq	*ksq_curr;		/* Current queue. */
210121896Sjeff	int		ksq_load_timeshare;	/* Load for timeshare. */
211113357Sjeff	int		ksq_load;		/* Aggregate load. */
212121869Sjeff	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
213113357Sjeff	short		ksq_nicemin;		/* Least nice. */
214110267Sjeff#ifdef SMP
215123433Sjeff	int			ksq_transferable;
216123433Sjeff	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
217123433Sjeff	struct kseq_group	*ksq_group;	/* Our processor group. */
218123433Sjeff	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
219125289Sjeff#else
220125289Sjeff	int		ksq_sysload;		/* For loadavg, !ITHD load. */
221110267Sjeff#endif
222109864Sjeff};
223109864Sjeff
224123433Sjeff#ifdef SMP
225109864Sjeff/*
226123433Sjeff * kseq groups are groups of processors which can cheaply share threads.  When
227123433Sjeff * one processor in the group goes idle it will check the runqs of the other
228123433Sjeff * processors in its group prior to halting and waiting for an interrupt.
229123433Sjeff * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
230123433Sjeff * In a numa environment we'd want an idle bitmap per group and a two tiered
231123433Sjeff * load balancer.
232123433Sjeff */
233123433Sjeffstruct kseq_group {
234123433Sjeff	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
235123433Sjeff	int	ksg_cpumask;		/* Mask of cpus in this group. */
236123433Sjeff	int	ksg_idlemask;		/* Idle cpus in this group. */
237123433Sjeff	int	ksg_mask;		/* Bit mask for first cpu. */
238123487Sjeff	int	ksg_load;		/* Total load of this group. */
239123433Sjeff	int	ksg_transferable;	/* Transferable load of this group. */
240123433Sjeff	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
241123433Sjeff};
242123433Sjeff#endif
243123433Sjeff
244123433Sjeff/*
245109864Sjeff * One kse queue per processor.
246109864Sjeff */
247110028Sjeff#ifdef SMP
248121790Sjeffstatic int kseq_idle;
249123487Sjeffstatic int ksg_maxid;
250121790Sjeffstatic struct kseq	kseq_cpu[MAXCPU];
251123433Sjeffstatic struct kseq_group kseq_groups[MAXCPU];
252123433Sjeff#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
253123433Sjeff#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
254123487Sjeff#define	KSEQ_ID(x)	((x) - kseq_cpu)
255123487Sjeff#define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
256123433Sjeff#else	/* !SMP */
257121790Sjeffstatic struct kseq	kseq_cpu;
258110028Sjeff#define	KSEQ_SELF()	(&kseq_cpu)
259110028Sjeff#define	KSEQ_CPU(x)	(&kseq_cpu)
260110028Sjeff#endif
261109864Sjeff
262112966Sjeffstatic void sched_slice(struct kse *ke);
263113357Sjeffstatic void sched_priority(struct ksegrp *kg);
264111857Sjeffstatic int sched_interact_score(struct ksegrp *kg);
265116463Sjeffstatic void sched_interact_update(struct ksegrp *kg);
266121868Sjeffstatic void sched_interact_fork(struct ksegrp *kg);
267121790Sjeffstatic void sched_pctcpu_update(struct kse *ke);
268109864Sjeff
269110267Sjeff/* Operations on per processor queues */
270121790Sjeffstatic struct kse * kseq_choose(struct kseq *kseq);
271110028Sjeffstatic void kseq_setup(struct kseq *kseq);
272122744Sjeffstatic void kseq_load_add(struct kseq *kseq, struct kse *ke);
273122744Sjeffstatic void kseq_load_rem(struct kseq *kseq, struct kse *ke);
274122744Sjeffstatic __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
275122744Sjeffstatic __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
276113357Sjeffstatic void kseq_nice_add(struct kseq *kseq, int nice);
277113357Sjeffstatic void kseq_nice_rem(struct kseq *kseq, int nice);
278113660Sjeffvoid kseq_print(int cpu);
279110267Sjeff#ifdef SMP
280123433Sjeffstatic int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
281121790Sjeffstatic struct kse *runq_steal(struct runq *rq);
282122744Sjeffstatic void sched_balance(void *arg);
283123487Sjeffstatic void sched_balance_group(struct kseq_group *ksg);
284123487Sjeffstatic void sched_balance_pair(struct kseq *high, struct kseq *low);
285121790Sjeffstatic void kseq_move(struct kseq *from, int cpu);
286123433Sjeffstatic int kseq_idled(struct kseq *kseq);
287121790Sjeffstatic void kseq_notify(struct kse *ke, int cpu);
288121790Sjeffstatic void kseq_assign(struct kseq *);
289123433Sjeffstatic struct kse *kseq_steal(struct kseq *kseq, int stealidle);
290123693Sjeff/*
291123693Sjeff * On P4 Xeons the round-robin interrupt delivery is broken.  As a result of
292123693Sjeff * this, we can't pin interrupts to the cpu that they were delivered to,
293123693Sjeff * otherwise all ithreads only run on CPU 0.
294123693Sjeff */
295123693Sjeff#ifdef __i386__
296122038Sjeff#define	KSE_CAN_MIGRATE(ke, class)					\
297123693Sjeff    ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
298123693Sjeff#else /* !__i386__ */
299123693Sjeff#define	KSE_CAN_MIGRATE(ke, class)					\
300122158Sjeff    ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
301122165Sjeff    ((ke)->ke_flags & KEF_BOUND) == 0)
302123693Sjeff#endif /* !__i386__ */
303121790Sjeff#endif
304110028Sjeff
305113357Sjeffvoid
306113660Sjeffkseq_print(int cpu)
307110267Sjeff{
308113660Sjeff	struct kseq *kseq;
309113357Sjeff	int i;
310112994Sjeff
311113660Sjeff	kseq = KSEQ_CPU(cpu);
312112994Sjeff
313113357Sjeff	printf("kseq:\n");
314113357Sjeff	printf("\tload:           %d\n", kseq->ksq_load);
315122744Sjeff	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
316121896Sjeff#ifdef SMP
317123433Sjeff	printf("\tload transferable: %d\n", kseq->ksq_transferable);
318121896Sjeff#endif
319113357Sjeff	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
320113357Sjeff	printf("\tnice counts:\n");
321121869Sjeff	for (i = 0; i < SCHED_PRI_NRESV; i++)
322113357Sjeff		if (kseq->ksq_nice[i])
323113357Sjeff			printf("\t\t%d = %d\n",
324113357Sjeff			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
325113357Sjeff}
326112994Sjeff
327122744Sjeffstatic __inline void
328122744Sjeffkseq_runq_add(struct kseq *kseq, struct kse *ke)
329122744Sjeff{
330122744Sjeff#ifdef SMP
331123433Sjeff	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
332123433Sjeff		kseq->ksq_transferable++;
333123433Sjeff		kseq->ksq_group->ksg_transferable++;
334123433Sjeff	}
335122744Sjeff#endif
336122744Sjeff	runq_add(ke->ke_runq, ke);
337122744Sjeff}
338122744Sjeff
339122744Sjeffstatic __inline void
340122744Sjeffkseq_runq_rem(struct kseq *kseq, struct kse *ke)
341122744Sjeff{
342122744Sjeff#ifdef SMP
343123433Sjeff	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
344123433Sjeff		kseq->ksq_transferable--;
345123433Sjeff		kseq->ksq_group->ksg_transferable--;
346123433Sjeff	}
347122744Sjeff#endif
348122744Sjeff	runq_remove(ke->ke_runq, ke);
349122744Sjeff}
350122744Sjeff
351113357Sjeffstatic void
352122744Sjeffkseq_load_add(struct kseq *kseq, struct kse *ke)
353113357Sjeff{
354121896Sjeff	int class;
355115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
356121896Sjeff	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
357121896Sjeff	if (class == PRI_TIMESHARE)
358121896Sjeff		kseq->ksq_load_timeshare++;
359113357Sjeff	kseq->ksq_load++;
360125289Sjeff	if (class != PRI_ITHD)
361123487Sjeff#ifdef SMP
362123487Sjeff		kseq->ksq_group->ksg_load++;
363125289Sjeff#else
364125289Sjeff		kseq->ksq_sysload++;
365123487Sjeff#endif
366113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
367122744Sjeff		CTR6(KTR_ULE,
368122744Sjeff		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
369122744Sjeff		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
370122744Sjeff		    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
371113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
372113357Sjeff		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
373110267Sjeff}
374113357Sjeff
375112994Sjeffstatic void
376122744Sjeffkseq_load_rem(struct kseq *kseq, struct kse *ke)
377110267Sjeff{
378121896Sjeff	int class;
379115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
380121896Sjeff	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
381121896Sjeff	if (class == PRI_TIMESHARE)
382121896Sjeff		kseq->ksq_load_timeshare--;
383125289Sjeff	if (class != PRI_ITHD)
384123487Sjeff#ifdef SMP
385123487Sjeff		kseq->ksq_group->ksg_load--;
386125289Sjeff#else
387125289Sjeff		kseq->ksq_sysload--;
388123487Sjeff#endif
389113357Sjeff	kseq->ksq_load--;
390113357Sjeff	ke->ke_runq = NULL;
391113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
392113357Sjeff		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
393110267Sjeff}
394110267Sjeff
395113357Sjeffstatic void
396113357Sjeffkseq_nice_add(struct kseq *kseq, int nice)
397110267Sjeff{
398115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
399113357Sjeff	/* Normalize to zero. */
400113357Sjeff	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
401121896Sjeff	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
402113357Sjeff		kseq->ksq_nicemin = nice;
403110267Sjeff}
404110267Sjeff
405113357Sjeffstatic void
406113357Sjeffkseq_nice_rem(struct kseq *kseq, int nice)
407110267Sjeff{
408113357Sjeff	int n;
409113357Sjeff
410115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
411113357Sjeff	/* Normalize to zero. */
412113357Sjeff	n = nice + SCHED_PRI_NHALF;
413113357Sjeff	kseq->ksq_nice[n]--;
414113357Sjeff	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
415113357Sjeff
416113357Sjeff	/*
417113357Sjeff	 * If this wasn't the smallest nice value or there are more in
418113357Sjeff	 * this bucket we can just return.  Otherwise we have to recalculate
419113357Sjeff	 * the smallest nice.
420113357Sjeff	 */
421113357Sjeff	if (nice != kseq->ksq_nicemin ||
422113357Sjeff	    kseq->ksq_nice[n] != 0 ||
423121896Sjeff	    kseq->ksq_load_timeshare == 0)
424113357Sjeff		return;
425113357Sjeff
426121869Sjeff	for (; n < SCHED_PRI_NRESV; n++)
427113357Sjeff		if (kseq->ksq_nice[n]) {
428113357Sjeff			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
429113357Sjeff			return;
430113357Sjeff		}
431110267Sjeff}
432110267Sjeff
433113357Sjeff#ifdef SMP
434116069Sjeff/*
435122744Sjeff * sched_balance is a simple CPU load balancing algorithm.  It operates by
436116069Sjeff * finding the least loaded and most loaded cpu and equalizing their load
437116069Sjeff * by migrating some processes.
438116069Sjeff *
439116069Sjeff * Dealing only with two CPUs at a time has two advantages.  Firstly, most
440116069Sjeff * installations will only have 2 cpus.  Secondly, load balancing too much at
441116069Sjeff * once can have an unpleasant effect on the system.  The scheduler rarely has
442116069Sjeff * enough information to make perfect decisions.  So this algorithm chooses
443116069Sjeff * algorithm simplicity and more gradual effects on load in larger systems.
444116069Sjeff *
445116069Sjeff * It could be improved by considering the priorities and slices assigned to
446116069Sjeff * each task prior to balancing them.  There are many pathological cases with
447116069Sjeff * any approach and so the semi random algorithm below may work as well as any.
448116069Sjeff *
449116069Sjeff */
450121790Sjeffstatic void
451122744Sjeffsched_balance(void *arg)
452116069Sjeff{
453123487Sjeff	struct kseq_group *high;
454123487Sjeff	struct kseq_group *low;
455123487Sjeff	struct kseq_group *ksg;
456123487Sjeff	int timo;
457123487Sjeff	int cnt;
458123487Sjeff	int i;
459123487Sjeff
460123487Sjeff	mtx_lock_spin(&sched_lock);
461123487Sjeff	if (smp_started == 0)
462123487Sjeff		goto out;
463123487Sjeff	low = high = NULL;
464123487Sjeff	i = random() % (ksg_maxid + 1);
465123487Sjeff	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
466123487Sjeff		ksg = KSEQ_GROUP(i);
467123487Sjeff		/*
468123487Sjeff		 * Find the CPU with the highest load that has some
469123487Sjeff		 * threads to transfer.
470123487Sjeff		 */
471123487Sjeff		if ((high == NULL || ksg->ksg_load > high->ksg_load)
472123487Sjeff		    && ksg->ksg_transferable)
473123487Sjeff			high = ksg;
474123487Sjeff		if (low == NULL || ksg->ksg_load < low->ksg_load)
475123487Sjeff			low = ksg;
476123487Sjeff		if (++i > ksg_maxid)
477123487Sjeff			i = 0;
478123487Sjeff	}
479123487Sjeff	if (low != NULL && high != NULL && high != low)
480123487Sjeff		sched_balance_pair(LIST_FIRST(&high->ksg_members),
481123487Sjeff		    LIST_FIRST(&low->ksg_members));
482123487Sjeffout:
483123487Sjeff	mtx_unlock_spin(&sched_lock);
484123487Sjeff	timo = random() % (hz * 2);
485123487Sjeff	callout_reset(&kseq_lb_callout, timo, sched_balance, NULL);
486123487Sjeff}
487123487Sjeff
488123487Sjeffstatic void
489123487Sjeffsched_balance_groups(void *arg)
490123487Sjeff{
491123487Sjeff	int timo;
492123487Sjeff	int i;
493123487Sjeff
494123487Sjeff	mtx_lock_spin(&sched_lock);
495123487Sjeff	if (smp_started)
496123487Sjeff		for (i = 0; i <= ksg_maxid; i++)
497123487Sjeff			sched_balance_group(KSEQ_GROUP(i));
498123487Sjeff	mtx_unlock_spin(&sched_lock);
499123487Sjeff	timo = random() % (hz * 2);
500123487Sjeff	callout_reset(&kseq_group_callout, timo, sched_balance_groups, NULL);
501123487Sjeff}
502123487Sjeff
503123487Sjeffstatic void
504123487Sjeffsched_balance_group(struct kseq_group *ksg)
505123487Sjeff{
506116069Sjeff	struct kseq *kseq;
507123487Sjeff	struct kseq *high;
508123487Sjeff	struct kseq *low;
509123487Sjeff	int load;
510123487Sjeff
511123487Sjeff	if (ksg->ksg_transferable == 0)
512123487Sjeff		return;
513123487Sjeff	low = NULL;
514123487Sjeff	high = NULL;
515123487Sjeff	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
516123487Sjeff		load = kseq->ksq_load;
517123487Sjeff		if (kseq == KSEQ_CPU(0))
518123487Sjeff			load--;
519123487Sjeff		if (high == NULL || load > high->ksq_load)
520123487Sjeff			high = kseq;
521123487Sjeff		if (low == NULL || load < low->ksq_load)
522123487Sjeff			low = kseq;
523123487Sjeff	}
524123487Sjeff	if (high != NULL && low != NULL && high != low)
525123487Sjeff		sched_balance_pair(high, low);
526123487Sjeff}
527123487Sjeff
528123487Sjeffstatic void
529123487Sjeffsched_balance_pair(struct kseq *high, struct kseq *low)
530123487Sjeff{
531123433Sjeff	int transferable;
532116069Sjeff	int high_load;
533116069Sjeff	int low_load;
534116069Sjeff	int move;
535116069Sjeff	int diff;
536116069Sjeff	int i;
537116069Sjeff
538116069Sjeff	/*
539123433Sjeff	 * If we're transfering within a group we have to use this specific
540123433Sjeff	 * kseq's transferable count, otherwise we can steal from other members
541123433Sjeff	 * of the group.
542123433Sjeff	 */
543123487Sjeff	if (high->ksq_group == low->ksq_group) {
544123487Sjeff		transferable = high->ksq_transferable;
545123487Sjeff		high_load = high->ksq_load;
546123487Sjeff		low_load = low->ksq_load;
547123487Sjeff		/*
548123487Sjeff		 * XXX If we encounter cpu 0 we must remember to reduce it's
549123487Sjeff		 * load by 1 to reflect the swi that is running the callout.
550123487Sjeff		 * At some point we should really fix load balancing of the
551123487Sjeff		 * swi and then this wont matter.
552123487Sjeff		 */
553123487Sjeff		if (high == KSEQ_CPU(0))
554123487Sjeff			high_load--;
555123487Sjeff		if (low == KSEQ_CPU(0))
556123487Sjeff			low_load--;
557123487Sjeff	} else {
558123487Sjeff		transferable = high->ksq_group->ksg_transferable;
559123487Sjeff		high_load = high->ksq_group->ksg_load;
560123487Sjeff		low_load = low->ksq_group->ksg_load;
561123487Sjeff	}
562123433Sjeff	if (transferable == 0)
563123487Sjeff		return;
564123433Sjeff	/*
565122744Sjeff	 * Determine what the imbalance is and then adjust that to how many
566123433Sjeff	 * kses we actually have to give up (transferable).
567122744Sjeff	 */
568123487Sjeff	diff = high_load - low_load;
569116069Sjeff	move = diff / 2;
570116069Sjeff	if (diff & 0x1)
571116069Sjeff		move++;
572123433Sjeff	move = min(move, transferable);
573116069Sjeff	for (i = 0; i < move; i++)
574123487Sjeff		kseq_move(high, KSEQ_ID(low));
575116069Sjeff	return;
576116069Sjeff}
577116069Sjeff
578121790Sjeffstatic void
579116069Sjeffkseq_move(struct kseq *from, int cpu)
580116069Sjeff{
581123433Sjeff	struct kseq *kseq;
582123433Sjeff	struct kseq *to;
583116069Sjeff	struct kse *ke;
584116069Sjeff
585123433Sjeff	kseq = from;
586123433Sjeff	to = KSEQ_CPU(cpu);
587123433Sjeff	ke = kseq_steal(kseq, 1);
588123433Sjeff	if (ke == NULL) {
589123433Sjeff		struct kseq_group *ksg;
590123433Sjeff
591123433Sjeff		ksg = kseq->ksq_group;
592123433Sjeff		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
593123433Sjeff			if (kseq == from || kseq->ksq_transferable == 0)
594123433Sjeff				continue;
595123433Sjeff			ke = kseq_steal(kseq, 1);
596123433Sjeff			break;
597123433Sjeff		}
598123433Sjeff		if (ke == NULL)
599123433Sjeff			panic("kseq_move: No KSEs available with a "
600123433Sjeff			    "transferable count of %d\n",
601123433Sjeff			    ksg->ksg_transferable);
602123433Sjeff	}
603123433Sjeff	if (kseq == to)
604123433Sjeff		return;
605116069Sjeff	ke->ke_state = KES_THREAD;
606123433Sjeff	kseq_runq_rem(kseq, ke);
607123433Sjeff	kseq_load_rem(kseq, ke);
608121923Sjeff	kseq_notify(ke, cpu);
609116069Sjeff}
610110267Sjeff
611123433Sjeffstatic int
612123433Sjeffkseq_idled(struct kseq *kseq)
613121790Sjeff{
614123433Sjeff	struct kseq_group *ksg;
615123433Sjeff	struct kseq *steal;
616123433Sjeff	struct kse *ke;
617123433Sjeff
618123433Sjeff	ksg = kseq->ksq_group;
619123433Sjeff	/*
620123433Sjeff	 * If we're in a cpu group, try and steal kses from another cpu in
621123433Sjeff	 * the group before idling.
622123433Sjeff	 */
623123433Sjeff	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
624123433Sjeff		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
625123433Sjeff			if (steal == kseq || steal->ksq_transferable == 0)
626123433Sjeff				continue;
627123433Sjeff			ke = kseq_steal(steal, 0);
628123433Sjeff			if (ke == NULL)
629123433Sjeff				continue;
630123433Sjeff			ke->ke_state = KES_THREAD;
631123433Sjeff			kseq_runq_rem(steal, ke);
632123433Sjeff			kseq_load_rem(steal, ke);
633123433Sjeff			ke->ke_cpu = PCPU_GET(cpuid);
634123433Sjeff			sched_add(ke->ke_thread);
635123433Sjeff			return (0);
636123433Sjeff		}
637123433Sjeff	}
638123433Sjeff	/*
639123433Sjeff	 * We only set the idled bit when all of the cpus in the group are
640123433Sjeff	 * idle.  Otherwise we could get into a situation where a KSE bounces
641123433Sjeff	 * back and forth between two idle cores on seperate physical CPUs.
642123433Sjeff	 */
643123433Sjeff	ksg->ksg_idlemask |= PCPU_GET(cpumask);
644123433Sjeff	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
645123433Sjeff		return (1);
646123433Sjeff	atomic_set_int(&kseq_idle, ksg->ksg_mask);
647123433Sjeff	return (1);
648121790Sjeff}
649121790Sjeff
650121790Sjeffstatic void
651121790Sjeffkseq_assign(struct kseq *kseq)
652121790Sjeff{
653121790Sjeff	struct kse *nke;
654121790Sjeff	struct kse *ke;
655121790Sjeff
656121790Sjeff	do {
657122848Sjeff		(volatile struct kse *)ke = kseq->ksq_assigned;
658121790Sjeff	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
659121790Sjeff	for (; ke != NULL; ke = nke) {
660121790Sjeff		nke = ke->ke_assign;
661121790Sjeff		ke->ke_flags &= ~KEF_ASSIGNED;
662121790Sjeff		sched_add(ke->ke_thread);
663121790Sjeff	}
664121790Sjeff}
665121790Sjeff
666121790Sjeffstatic void
667121790Sjeffkseq_notify(struct kse *ke, int cpu)
668121790Sjeff{
669121790Sjeff	struct kseq *kseq;
670121790Sjeff	struct thread *td;
671121790Sjeff	struct pcpu *pcpu;
672121790Sjeff
673123529Sjeff	ke->ke_cpu = cpu;
674121790Sjeff	ke->ke_flags |= KEF_ASSIGNED;
675121790Sjeff
676121790Sjeff	kseq = KSEQ_CPU(cpu);
677121790Sjeff
678121790Sjeff	/*
679121790Sjeff	 * Place a KSE on another cpu's queue and force a resched.
680121790Sjeff	 */
681121790Sjeff	do {
682122848Sjeff		(volatile struct kse *)ke->ke_assign = kseq->ksq_assigned;
683121790Sjeff	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
684121790Sjeff	pcpu = pcpu_find(cpu);
685121790Sjeff	td = pcpu->pc_curthread;
686121790Sjeff	if (ke->ke_thread->td_priority < td->td_priority ||
687121790Sjeff	    td == pcpu->pc_idlethread) {
688121790Sjeff		td->td_flags |= TDF_NEEDRESCHED;
689121790Sjeff		ipi_selected(1 << cpu, IPI_AST);
690121790Sjeff	}
691121790Sjeff}
692121790Sjeff
693121790Sjeffstatic struct kse *
694121790Sjeffrunq_steal(struct runq *rq)
695121790Sjeff{
696121790Sjeff	struct rqhead *rqh;
697121790Sjeff	struct rqbits *rqb;
698121790Sjeff	struct kse *ke;
699121790Sjeff	int word;
700121790Sjeff	int bit;
701121790Sjeff
702121790Sjeff	mtx_assert(&sched_lock, MA_OWNED);
703121790Sjeff	rqb = &rq->rq_status;
704121790Sjeff	for (word = 0; word < RQB_LEN; word++) {
705121790Sjeff		if (rqb->rqb_bits[word] == 0)
706121790Sjeff			continue;
707121790Sjeff		for (bit = 0; bit < RQB_BPW; bit++) {
708123231Speter			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
709121790Sjeff				continue;
710121790Sjeff			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
711121790Sjeff			TAILQ_FOREACH(ke, rqh, ke_procq) {
712121896Sjeff				if (KSE_CAN_MIGRATE(ke,
713121896Sjeff				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
714121790Sjeff					return (ke);
715121790Sjeff			}
716121790Sjeff		}
717121790Sjeff	}
718121790Sjeff	return (NULL);
719121790Sjeff}
720121790Sjeff
721121790Sjeffstatic struct kse *
722123433Sjeffkseq_steal(struct kseq *kseq, int stealidle)
723121790Sjeff{
724121790Sjeff	struct kse *ke;
725121790Sjeff
726123433Sjeff	/*
727123433Sjeff	 * Steal from next first to try to get a non-interactive task that
728123433Sjeff	 * may not have run for a while.
729123433Sjeff	 */
730123433Sjeff	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
731123433Sjeff		return (ke);
732121790Sjeff	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
733121790Sjeff		return (ke);
734123433Sjeff	if (stealidle)
735123433Sjeff		return (runq_steal(&kseq->ksq_idle));
736123433Sjeff	return (NULL);
737121790Sjeff}
738123433Sjeff
739123433Sjeffint
740123433Sjeffkseq_transfer(struct kseq *kseq, struct kse *ke, int class)
741123433Sjeff{
742123433Sjeff	struct kseq_group *ksg;
743123433Sjeff	int cpu;
744123433Sjeff
745123685Sjeff	if (smp_started == 0)
746123685Sjeff		return (0);
747123433Sjeff	cpu = 0;
748123433Sjeff	ksg = kseq->ksq_group;
749123433Sjeff
750123433Sjeff	/*
751123685Sjeff	 * If there are any idle groups, give them our extra load.  The
752123685Sjeff	 * threshold at which we start to reassign kses has a large impact
753123685Sjeff	 * on the overall performance of the system.  Tuned too high and
754123685Sjeff	 * some CPUs may idle.  Too low and there will be excess migration
755123685Sjeff	 * and context swiches.
756123685Sjeff	 */
757123694Sjeff	if (ksg->ksg_load > (ksg->ksg_cpus * 2) && kseq_idle) {
758123433Sjeff		/*
759123433Sjeff		 * Multiple cpus could find this bit simultaneously
760123433Sjeff		 * but the race shouldn't be terrible.
761123433Sjeff		 */
762123433Sjeff		cpu = ffs(kseq_idle);
763123433Sjeff		if (cpu)
764123433Sjeff			atomic_clear_int(&kseq_idle, 1 << (cpu - 1));
765123433Sjeff	}
766123433Sjeff	/*
767123433Sjeff	 * If another cpu in this group has idled, assign a thread over
768123433Sjeff	 * to them after checking to see if there are idled groups.
769123433Sjeff	 */
770123433Sjeff	if (cpu == 0 && kseq->ksq_load > 1 && ksg->ksg_idlemask) {
771123433Sjeff		cpu = ffs(ksg->ksg_idlemask);
772123433Sjeff		if (cpu)
773123433Sjeff			ksg->ksg_idlemask &= ~(1 << (cpu - 1));
774123433Sjeff	}
775123433Sjeff	/*
776123433Sjeff	 * Now that we've found an idle CPU, migrate the thread.
777123433Sjeff	 */
778123433Sjeff	if (cpu) {
779123433Sjeff		cpu--;
780123433Sjeff		ke->ke_runq = NULL;
781123433Sjeff		kseq_notify(ke, cpu);
782123433Sjeff		return (1);
783123433Sjeff	}
784123433Sjeff	return (0);
785123433Sjeff}
786123433Sjeff
787121790Sjeff#endif	/* SMP */
788121790Sjeff
789117326Sjeff/*
790121790Sjeff * Pick the highest priority task we have and return it.
791117326Sjeff */
792117326Sjeff
793121790Sjeffstatic struct kse *
794121790Sjeffkseq_choose(struct kseq *kseq)
795110267Sjeff{
796110267Sjeff	struct kse *ke;
797110267Sjeff	struct runq *swap;
798110267Sjeff
799115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
800113357Sjeff	swap = NULL;
801112994Sjeff
802113357Sjeff	for (;;) {
803113357Sjeff		ke = runq_choose(kseq->ksq_curr);
804113357Sjeff		if (ke == NULL) {
805113357Sjeff			/*
806113357Sjeff			 * We already swaped once and didn't get anywhere.
807113357Sjeff			 */
808113357Sjeff			if (swap)
809113357Sjeff				break;
810113357Sjeff			swap = kseq->ksq_curr;
811113357Sjeff			kseq->ksq_curr = kseq->ksq_next;
812113357Sjeff			kseq->ksq_next = swap;
813113357Sjeff			continue;
814113357Sjeff		}
815113357Sjeff		/*
816113357Sjeff		 * If we encounter a slice of 0 the kse is in a
817113357Sjeff		 * TIMESHARE kse group and its nice was too far out
818113357Sjeff		 * of the range that receives slices.
819113357Sjeff		 */
820121790Sjeff		if (ke->ke_slice == 0) {
821113357Sjeff			runq_remove(ke->ke_runq, ke);
822113357Sjeff			sched_slice(ke);
823113357Sjeff			ke->ke_runq = kseq->ksq_next;
824113357Sjeff			runq_add(ke->ke_runq, ke);
825113357Sjeff			continue;
826113357Sjeff		}
827113357Sjeff		return (ke);
828110267Sjeff	}
829110267Sjeff
830113357Sjeff	return (runq_choose(&kseq->ksq_idle));
831110267Sjeff}
832110267Sjeff
833109864Sjeffstatic void
834110028Sjeffkseq_setup(struct kseq *kseq)
835110028Sjeff{
836113357Sjeff	runq_init(&kseq->ksq_timeshare[0]);
837113357Sjeff	runq_init(&kseq->ksq_timeshare[1]);
838112994Sjeff	runq_init(&kseq->ksq_idle);
839113357Sjeff	kseq->ksq_curr = &kseq->ksq_timeshare[0];
840113357Sjeff	kseq->ksq_next = &kseq->ksq_timeshare[1];
841113660Sjeff	kseq->ksq_load = 0;
842121896Sjeff	kseq->ksq_load_timeshare = 0;
843110028Sjeff}
844110028Sjeff
845110028Sjeffstatic void
846109864Sjeffsched_setup(void *dummy)
847109864Sjeff{
848117313Sjeff#ifdef SMP
849123487Sjeff	int balance_groups;
850109864Sjeff	int i;
851117313Sjeff#endif
852109864Sjeff
853116946Sjeff	slice_min = (hz/100);	/* 10ms */
854116946Sjeff	slice_max = (hz/7);	/* ~140ms */
855111857Sjeff
856117237Sjeff#ifdef SMP
857123487Sjeff	balance_groups = 0;
858123433Sjeff	/*
859123433Sjeff	 * Initialize the kseqs.
860123433Sjeff	 */
861123433Sjeff	for (i = 0; i < MAXCPU; i++) {
862123433Sjeff		struct kseq *ksq;
863123433Sjeff
864123433Sjeff		ksq = &kseq_cpu[i];
865123433Sjeff		ksq->ksq_assigned = NULL;
866123433Sjeff		kseq_setup(&kseq_cpu[i]);
867123433Sjeff	}
868117237Sjeff	if (smp_topology == NULL) {
869123433Sjeff		struct kseq_group *ksg;
870123433Sjeff		struct kseq *ksq;
871123433Sjeff
872117237Sjeff		for (i = 0; i < MAXCPU; i++) {
873123433Sjeff			ksq = &kseq_cpu[i];
874123433Sjeff			ksg = &kseq_groups[i];
875123433Sjeff			/*
876123433Sjeff			 * Setup a kse group with one member.
877123433Sjeff			 */
878123433Sjeff			ksq->ksq_transferable = 0;
879123433Sjeff			ksq->ksq_group = ksg;
880123433Sjeff			ksg->ksg_cpus = 1;
881123433Sjeff			ksg->ksg_idlemask = 0;
882123433Sjeff			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
883123487Sjeff			ksg->ksg_load = 0;
884123433Sjeff			ksg->ksg_transferable = 0;
885123433Sjeff			LIST_INIT(&ksg->ksg_members);
886123433Sjeff			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
887117237Sjeff		}
888117237Sjeff	} else {
889123433Sjeff		struct kseq_group *ksg;
890123433Sjeff		struct cpu_group *cg;
891117237Sjeff		int j;
892113357Sjeff
893117237Sjeff		for (i = 0; i < smp_topology->ct_count; i++) {
894117237Sjeff			cg = &smp_topology->ct_group[i];
895123433Sjeff			ksg = &kseq_groups[i];
896123433Sjeff			/*
897123433Sjeff			 * Initialize the group.
898123433Sjeff			 */
899123433Sjeff			ksg->ksg_idlemask = 0;
900123487Sjeff			ksg->ksg_load = 0;
901123433Sjeff			ksg->ksg_transferable = 0;
902123433Sjeff			ksg->ksg_cpus = cg->cg_count;
903123433Sjeff			ksg->ksg_cpumask = cg->cg_mask;
904123433Sjeff			LIST_INIT(&ksg->ksg_members);
905123433Sjeff			/*
906123433Sjeff			 * Find all of the group members and add them.
907123433Sjeff			 */
908123433Sjeff			for (j = 0; j < MAXCPU; j++) {
909123433Sjeff				if ((cg->cg_mask & (1 << j)) != 0) {
910123433Sjeff					if (ksg->ksg_mask == 0)
911123433Sjeff						ksg->ksg_mask = 1 << j;
912123433Sjeff					kseq_cpu[j].ksq_transferable = 0;
913123433Sjeff					kseq_cpu[j].ksq_group = ksg;
914123433Sjeff					LIST_INSERT_HEAD(&ksg->ksg_members,
915123433Sjeff					    &kseq_cpu[j], ksq_siblings);
916123433Sjeff				}
917123433Sjeff			}
918123487Sjeff			if (ksg->ksg_cpus > 1)
919123487Sjeff				balance_groups = 1;
920117237Sjeff		}
921123487Sjeff		ksg_maxid = smp_topology->ct_count - 1;
922117237Sjeff	}
923119137Ssam	callout_init(&kseq_lb_callout, CALLOUT_MPSAFE);
924123487Sjeff	callout_init(&kseq_group_callout, CALLOUT_MPSAFE);
925122744Sjeff	sched_balance(NULL);
926123487Sjeff	/*
927123487Sjeff	 * Stagger the group and global load balancer so they do not
928123487Sjeff	 * interfere with each other.
929123487Sjeff	 */
930123487Sjeff	if (balance_groups)
931123487Sjeff		callout_reset(&kseq_group_callout, hz / 2,
932123487Sjeff		    sched_balance_groups, NULL);
933117237Sjeff#else
934117237Sjeff	kseq_setup(KSEQ_SELF());
935116069Sjeff#endif
936117237Sjeff	mtx_lock_spin(&sched_lock);
937122744Sjeff	kseq_load_add(KSEQ_SELF(), &kse0);
938117237Sjeff	mtx_unlock_spin(&sched_lock);
939109864Sjeff}
940109864Sjeff
941109864Sjeff/*
942109864Sjeff * Scale the scheduling priority according to the "interactivity" of this
943109864Sjeff * process.
944109864Sjeff */
945113357Sjeffstatic void
946109864Sjeffsched_priority(struct ksegrp *kg)
947109864Sjeff{
948109864Sjeff	int pri;
949109864Sjeff
950109864Sjeff	if (kg->kg_pri_class != PRI_TIMESHARE)
951113357Sjeff		return;
952109864Sjeff
953113357Sjeff	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
954111857Sjeff	pri += SCHED_PRI_BASE;
955109864Sjeff	pri += kg->kg_nice;
956109864Sjeff
957109864Sjeff	if (pri > PRI_MAX_TIMESHARE)
958109864Sjeff		pri = PRI_MAX_TIMESHARE;
959109864Sjeff	else if (pri < PRI_MIN_TIMESHARE)
960109864Sjeff		pri = PRI_MIN_TIMESHARE;
961109864Sjeff
962109864Sjeff	kg->kg_user_pri = pri;
963109864Sjeff
964113357Sjeff	return;
965109864Sjeff}
966109864Sjeff
967109864Sjeff/*
968112966Sjeff * Calculate a time slice based on the properties of the kseg and the runq
969112994Sjeff * that we're on.  This is only for PRI_TIMESHARE ksegrps.
970109864Sjeff */
971112966Sjeffstatic void
972112966Sjeffsched_slice(struct kse *ke)
973109864Sjeff{
974113357Sjeff	struct kseq *kseq;
975112966Sjeff	struct ksegrp *kg;
976109864Sjeff
977112966Sjeff	kg = ke->ke_ksegrp;
978113357Sjeff	kseq = KSEQ_CPU(ke->ke_cpu);
979109864Sjeff
980112966Sjeff	/*
981112966Sjeff	 * Rationale:
982112966Sjeff	 * KSEs in interactive ksegs get the minimum slice so that we
983112966Sjeff	 * quickly notice if it abuses its advantage.
984112966Sjeff	 *
985112966Sjeff	 * KSEs in non-interactive ksegs are assigned a slice that is
986112966Sjeff	 * based on the ksegs nice value relative to the least nice kseg
987112966Sjeff	 * on the run queue for this cpu.
988112966Sjeff	 *
989112966Sjeff	 * If the KSE is less nice than all others it gets the maximum
990112966Sjeff	 * slice and other KSEs will adjust their slice relative to
991112966Sjeff	 * this when they first expire.
992112966Sjeff	 *
993112966Sjeff	 * There is 20 point window that starts relative to the least
994112966Sjeff	 * nice kse on the run queue.  Slice size is determined by
995112966Sjeff	 * the kse distance from the last nice ksegrp.
996112966Sjeff	 *
997121871Sjeff	 * If the kse is outside of the window it will get no slice
998121871Sjeff	 * and will be reevaluated each time it is selected on the
999121871Sjeff	 * run queue.  The exception to this is nice 0 ksegs when
1000121871Sjeff	 * a nice -20 is running.  They are always granted a minimum
1001121871Sjeff	 * slice.
1002112966Sjeff	 */
1003113357Sjeff	if (!SCHED_INTERACTIVE(kg)) {
1004112966Sjeff		int nice;
1005112966Sjeff
1006113357Sjeff		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
1007121896Sjeff		if (kseq->ksq_load_timeshare == 0 ||
1008113357Sjeff		    kg->kg_nice < kseq->ksq_nicemin)
1009112966Sjeff			ke->ke_slice = SCHED_SLICE_MAX;
1010121871Sjeff		else if (nice <= SCHED_SLICE_NTHRESH)
1011112966Sjeff			ke->ke_slice = SCHED_SLICE_NICE(nice);
1012121871Sjeff		else if (kg->kg_nice == 0)
1013121871Sjeff			ke->ke_slice = SCHED_SLICE_MIN;
1014112966Sjeff		else
1015112966Sjeff			ke->ke_slice = 0;
1016112966Sjeff	} else
1017123684Sjeff		ke->ke_slice = SCHED_SLICE_INTERACTIVE;
1018112966Sjeff
1019113357Sjeff	CTR6(KTR_ULE,
1020113357Sjeff	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
1021113357Sjeff	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
1022121896Sjeff	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
1023113357Sjeff
1024112966Sjeff	return;
1025109864Sjeff}
1026109864Sjeff
1027121868Sjeff/*
1028121868Sjeff * This routine enforces a maximum limit on the amount of scheduling history
1029121868Sjeff * kept.  It is called after either the slptime or runtime is adjusted.
1030121868Sjeff * This routine will not operate correctly when slp or run times have been
1031121868Sjeff * adjusted to more than double their maximum.
1032121868Sjeff */
1033116463Sjeffstatic void
1034116463Sjeffsched_interact_update(struct ksegrp *kg)
1035116463Sjeff{
1036121868Sjeff	int sum;
1037121605Sjeff
1038121868Sjeff	sum = kg->kg_runtime + kg->kg_slptime;
1039121868Sjeff	if (sum < SCHED_SLP_RUN_MAX)
1040121868Sjeff		return;
1041121868Sjeff	/*
1042121868Sjeff	 * If we have exceeded by more than 1/5th then the algorithm below
1043121868Sjeff	 * will not bring us back into range.  Dividing by two here forces
1044121868Sjeff	 * us into the range of [3/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1045121868Sjeff	 */
1046121868Sjeff	if (sum > (SCHED_INTERACT_MAX / 5) * 6) {
1047121868Sjeff		kg->kg_runtime /= 2;
1048121868Sjeff		kg->kg_slptime /= 2;
1049121868Sjeff		return;
1050116463Sjeff	}
1051121868Sjeff	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1052121868Sjeff	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1053116463Sjeff}
1054116463Sjeff
1055121868Sjeffstatic void
1056121868Sjeffsched_interact_fork(struct ksegrp *kg)
1057121868Sjeff{
1058121868Sjeff	int ratio;
1059121868Sjeff	int sum;
1060121868Sjeff
1061121868Sjeff	sum = kg->kg_runtime + kg->kg_slptime;
1062121868Sjeff	if (sum > SCHED_SLP_RUN_FORK) {
1063121868Sjeff		ratio = sum / SCHED_SLP_RUN_FORK;
1064121868Sjeff		kg->kg_runtime /= ratio;
1065121868Sjeff		kg->kg_slptime /= ratio;
1066121868Sjeff	}
1067121868Sjeff}
1068121868Sjeff
1069111857Sjeffstatic int
1070111857Sjeffsched_interact_score(struct ksegrp *kg)
1071111857Sjeff{
1072116365Sjeff	int div;
1073111857Sjeff
1074111857Sjeff	if (kg->kg_runtime > kg->kg_slptime) {
1075116365Sjeff		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1076116365Sjeff		return (SCHED_INTERACT_HALF +
1077116365Sjeff		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1078116365Sjeff	} if (kg->kg_slptime > kg->kg_runtime) {
1079116365Sjeff		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1080116365Sjeff		return (kg->kg_runtime / div);
1081111857Sjeff	}
1082111857Sjeff
1083116365Sjeff	/*
1084116365Sjeff	 * This can happen if slptime and runtime are 0.
1085116365Sjeff	 */
1086116365Sjeff	return (0);
1087111857Sjeff
1088111857Sjeff}
1089111857Sjeff
1090113357Sjeff/*
1091113357Sjeff * This is only somewhat accurate since given many processes of the same
1092113357Sjeff * priority they will switch when their slices run out, which will be
1093113357Sjeff * at most SCHED_SLICE_MAX.
1094113357Sjeff */
1095109864Sjeffint
1096109864Sjeffsched_rr_interval(void)
1097109864Sjeff{
1098109864Sjeff	return (SCHED_SLICE_MAX);
1099109864Sjeff}
1100109864Sjeff
1101121790Sjeffstatic void
1102109864Sjeffsched_pctcpu_update(struct kse *ke)
1103109864Sjeff{
1104109864Sjeff	/*
1105109864Sjeff	 * Adjust counters and watermark for pctcpu calc.
1106116365Sjeff	 */
1107120272Sjeff	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1108120272Sjeff		/*
1109120272Sjeff		 * Shift the tick count out so that the divide doesn't
1110120272Sjeff		 * round away our results.
1111120272Sjeff		 */
1112120272Sjeff		ke->ke_ticks <<= 10;
1113120272Sjeff		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1114120272Sjeff			    SCHED_CPU_TICKS;
1115120272Sjeff		ke->ke_ticks >>= 10;
1116120272Sjeff	} else
1117120272Sjeff		ke->ke_ticks = 0;
1118109864Sjeff	ke->ke_ltick = ticks;
1119109864Sjeff	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1120109864Sjeff}
1121109864Sjeff
1122109864Sjeffvoid
1123109864Sjeffsched_prio(struct thread *td, u_char prio)
1124109864Sjeff{
1125121605Sjeff	struct kse *ke;
1126109864Sjeff
1127121605Sjeff	ke = td->td_kse;
1128109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1129109864Sjeff	if (TD_ON_RUNQ(td)) {
1130121605Sjeff		/*
1131121605Sjeff		 * If the priority has been elevated due to priority
1132121605Sjeff		 * propagation, we may have to move ourselves to a new
1133121605Sjeff		 * queue.  We still call adjustrunqueue below in case kse
1134121605Sjeff		 * needs to fix things up.
1135121605Sjeff		 */
1136121872Sjeff		if (prio < td->td_priority && ke &&
1137121872Sjeff		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1138121790Sjeff		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1139121605Sjeff			runq_remove(ke->ke_runq, ke);
1140121605Sjeff			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1141121605Sjeff			runq_add(ke->ke_runq, ke);
1142121605Sjeff		}
1143119488Sdavidxu		adjustrunqueue(td, prio);
1144121605Sjeff	} else
1145119488Sdavidxu		td->td_priority = prio;
1146109864Sjeff}
1147109864Sjeff
1148109864Sjeffvoid
1149121128Sjeffsched_switch(struct thread *td)
1150109864Sjeff{
1151121128Sjeff	struct thread *newtd;
1152109864Sjeff	struct kse *ke;
1153109864Sjeff
1154109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1155109864Sjeff
1156109864Sjeff	ke = td->td_kse;
1157109864Sjeff
1158109864Sjeff	td->td_last_kse = ke;
1159113339Sjulian        td->td_lastcpu = td->td_oncpu;
1160113339Sjulian	td->td_oncpu = NOCPU;
1161111032Sjulian        td->td_flags &= ~TDF_NEEDRESCHED;
1162109864Sjeff
1163123434Sjeff	/*
1164123434Sjeff	 * If the KSE has been assigned it may be in the process of switching
1165123434Sjeff	 * to the new cpu.  This is the case in sched_bind().
1166123434Sjeff	 */
1167123434Sjeff	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1168123434Sjeff		if (TD_IS_RUNNING(td)) {
1169123434Sjeff			if (td->td_proc->p_flag & P_SA) {
1170123434Sjeff				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1171123434Sjeff				setrunqueue(td);
1172123434Sjeff			} else
1173123434Sjeff				kseq_runq_add(KSEQ_SELF(), ke);
1174123434Sjeff		} else {
1175125289Sjeff			if (ke->ke_runq) {
1176123434Sjeff				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1177125289Sjeff			} else if ((td->td_flags & TDF_IDLETD) == 0)
1178125289Sjeff				backtrace();
1179123434Sjeff			/*
1180123434Sjeff			 * We will not be on the run queue. So we must be
1181123434Sjeff			 * sleeping or similar.
1182123434Sjeff			 */
1183123434Sjeff			if (td->td_proc->p_flag & P_SA)
1184123434Sjeff				kse_reassign(ke);
1185123434Sjeff		}
1186121146Sjeff	}
1187121128Sjeff	newtd = choosethread();
1188121128Sjeff	if (td != newtd)
1189121128Sjeff		cpu_switch(td, newtd);
1190121128Sjeff	sched_lock.mtx_lock = (uintptr_t)td;
1191109864Sjeff
1192113339Sjulian	td->td_oncpu = PCPU_GET(cpuid);
1193109864Sjeff}
1194109864Sjeff
1195109864Sjeffvoid
1196109864Sjeffsched_nice(struct ksegrp *kg, int nice)
1197109864Sjeff{
1198113357Sjeff	struct kse *ke;
1199109864Sjeff	struct thread *td;
1200113357Sjeff	struct kseq *kseq;
1201109864Sjeff
1202113873Sjhb	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
1203113873Sjhb	mtx_assert(&sched_lock, MA_OWNED);
1204113357Sjeff	/*
1205113357Sjeff	 * We need to adjust the nice counts for running KSEs.
1206113357Sjeff	 */
1207113357Sjeff	if (kg->kg_pri_class == PRI_TIMESHARE)
1208113357Sjeff		FOREACH_KSE_IN_GROUP(kg, ke) {
1209116500Sjeff			if (ke->ke_runq == NULL)
1210113357Sjeff				continue;
1211113357Sjeff			kseq = KSEQ_CPU(ke->ke_cpu);
1212113357Sjeff			kseq_nice_rem(kseq, kg->kg_nice);
1213113357Sjeff			kseq_nice_add(kseq, nice);
1214113357Sjeff		}
1215109864Sjeff	kg->kg_nice = nice;
1216109864Sjeff	sched_priority(kg);
1217113357Sjeff	FOREACH_THREAD_IN_GROUP(kg, td)
1218111032Sjulian		td->td_flags |= TDF_NEEDRESCHED;
1219109864Sjeff}
1220109864Sjeff
1221109864Sjeffvoid
1222109864Sjeffsched_sleep(struct thread *td, u_char prio)
1223109864Sjeff{
1224109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1225109864Sjeff
1226109864Sjeff	td->td_slptime = ticks;
1227109864Sjeff	td->td_priority = prio;
1228109864Sjeff
1229113357Sjeff	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
1230113357Sjeff	    td->td_kse, td->td_slptime);
1231109864Sjeff}
1232109864Sjeff
1233109864Sjeffvoid
1234109864Sjeffsched_wakeup(struct thread *td)
1235109864Sjeff{
1236109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1237109864Sjeff
1238109864Sjeff	/*
1239109864Sjeff	 * Let the kseg know how long we slept for.  This is because process
1240109864Sjeff	 * interactivity behavior is modeled in the kseg.
1241109864Sjeff	 */
1242111788Sjeff	if (td->td_slptime) {
1243111788Sjeff		struct ksegrp *kg;
1244113357Sjeff		int hzticks;
1245109864Sjeff
1246111788Sjeff		kg = td->td_ksegrp;
1247121868Sjeff		hzticks = (ticks - td->td_slptime) << 10;
1248121868Sjeff		if (hzticks >= SCHED_SLP_RUN_MAX) {
1249121868Sjeff			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1250121868Sjeff			kg->kg_runtime = 1;
1251121868Sjeff		} else {
1252121868Sjeff			kg->kg_slptime += hzticks;
1253121868Sjeff			sched_interact_update(kg);
1254121868Sjeff		}
1255111788Sjeff		sched_priority(kg);
1256116463Sjeff		if (td->td_kse)
1257116463Sjeff			sched_slice(td->td_kse);
1258113357Sjeff		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
1259113357Sjeff		    td->td_kse, hzticks);
1260111788Sjeff		td->td_slptime = 0;
1261109864Sjeff	}
1262109864Sjeff	setrunqueue(td);
1263109864Sjeff}
1264109864Sjeff
1265109864Sjeff/*
1266109864Sjeff * Penalize the parent for creating a new child and initialize the child's
1267109864Sjeff * priority.
1268109864Sjeff */
1269109864Sjeffvoid
1270113357Sjeffsched_fork(struct proc *p, struct proc *p1)
1271109864Sjeff{
1272109864Sjeff
1273109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1274109864Sjeff
1275113357Sjeff	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
1276113357Sjeff	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
1277113357Sjeff	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
1278113357Sjeff}
1279113357Sjeff
1280113357Sjeffvoid
1281113357Sjeffsched_fork_kse(struct kse *ke, struct kse *child)
1282113357Sjeff{
1283113923Sjhb
1284116365Sjeff	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1285122847Sjeff	child->ke_cpu = ke->ke_cpu;
1286113357Sjeff	child->ke_runq = NULL;
1287113357Sjeff
1288121051Sjeff	/* Grab our parents cpu estimation information. */
1289121051Sjeff	child->ke_ticks = ke->ke_ticks;
1290121051Sjeff	child->ke_ltick = ke->ke_ltick;
1291121051Sjeff	child->ke_ftick = ke->ke_ftick;
1292113357Sjeff}
1293113357Sjeff
1294113357Sjeffvoid
1295113357Sjeffsched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1296113357Sjeff{
1297113923Sjhb	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
1298116365Sjeff
1299121868Sjeff	child->kg_slptime = kg->kg_slptime;
1300121868Sjeff	child->kg_runtime = kg->kg_runtime;
1301121868Sjeff	child->kg_user_pri = kg->kg_user_pri;
1302121868Sjeff	child->kg_nice = kg->kg_nice;
1303121868Sjeff	sched_interact_fork(child);
1304116463Sjeff	kg->kg_runtime += tickincr << 10;
1305116463Sjeff	sched_interact_update(kg);
1306113357Sjeff
1307121868Sjeff	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1308121868Sjeff	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1309121868Sjeff	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1310113357Sjeff}
1311109864Sjeff
1312113357Sjeffvoid
1313113357Sjeffsched_fork_thread(struct thread *td, struct thread *child)
1314113357Sjeff{
1315113357Sjeff}
1316113357Sjeff
1317113357Sjeffvoid
1318113357Sjeffsched_class(struct ksegrp *kg, int class)
1319113357Sjeff{
1320113357Sjeff	struct kseq *kseq;
1321113357Sjeff	struct kse *ke;
1322121896Sjeff	int nclass;
1323121896Sjeff	int oclass;
1324113357Sjeff
1325113923Sjhb	mtx_assert(&sched_lock, MA_OWNED);
1326113357Sjeff	if (kg->kg_pri_class == class)
1327113357Sjeff		return;
1328113357Sjeff
1329121896Sjeff	nclass = PRI_BASE(class);
1330121896Sjeff	oclass = PRI_BASE(kg->kg_pri_class);
1331113357Sjeff	FOREACH_KSE_IN_GROUP(kg, ke) {
1332113357Sjeff		if (ke->ke_state != KES_ONRUNQ &&
1333113357Sjeff		    ke->ke_state != KES_THREAD)
1334113357Sjeff			continue;
1335113357Sjeff		kseq = KSEQ_CPU(ke->ke_cpu);
1336113357Sjeff
1337121896Sjeff#ifdef SMP
1338122744Sjeff		/*
1339122744Sjeff		 * On SMP if we're on the RUNQ we must adjust the transferable
1340122744Sjeff		 * count because could be changing to or from an interrupt
1341122744Sjeff		 * class.
1342122744Sjeff		 */
1343122744Sjeff		if (ke->ke_state == KES_ONRUNQ) {
1344123433Sjeff			if (KSE_CAN_MIGRATE(ke, oclass)) {
1345123433Sjeff				kseq->ksq_transferable--;
1346123433Sjeff				kseq->ksq_group->ksg_transferable--;
1347123433Sjeff			}
1348123433Sjeff			if (KSE_CAN_MIGRATE(ke, nclass)) {
1349123433Sjeff				kseq->ksq_transferable++;
1350123433Sjeff				kseq->ksq_group->ksg_transferable++;
1351123433Sjeff			}
1352122744Sjeff		}
1353121896Sjeff#endif
1354122744Sjeff		if (oclass == PRI_TIMESHARE) {
1355121896Sjeff			kseq->ksq_load_timeshare--;
1356122744Sjeff			kseq_nice_rem(kseq, kg->kg_nice);
1357122744Sjeff		}
1358122744Sjeff		if (nclass == PRI_TIMESHARE) {
1359121896Sjeff			kseq->ksq_load_timeshare++;
1360113357Sjeff			kseq_nice_add(kseq, kg->kg_nice);
1361122744Sjeff		}
1362109970Sjeff	}
1363109970Sjeff
1364113357Sjeff	kg->kg_pri_class = class;
1365109864Sjeff}
1366109864Sjeff
1367109864Sjeff/*
1368109864Sjeff * Return some of the child's priority and interactivity to the parent.
1369109864Sjeff */
1370109864Sjeffvoid
1371113357Sjeffsched_exit(struct proc *p, struct proc *child)
1372109864Sjeff{
1373109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1374113372Sjeff	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
1375116365Sjeff	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
1376109864Sjeff}
1377109864Sjeff
1378109864Sjeffvoid
1379113372Sjeffsched_exit_kse(struct kse *ke, struct kse *child)
1380113372Sjeff{
1381122744Sjeff	kseq_load_rem(KSEQ_CPU(child->ke_cpu), child);
1382113372Sjeff}
1383113372Sjeff
1384113372Sjeffvoid
1385113372Sjeffsched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1386113372Sjeff{
1387116463Sjeff	/* kg->kg_slptime += child->kg_slptime; */
1388116365Sjeff	kg->kg_runtime += child->kg_runtime;
1389116463Sjeff	sched_interact_update(kg);
1390113372Sjeff}
1391113372Sjeff
1392113372Sjeffvoid
1393113372Sjeffsched_exit_thread(struct thread *td, struct thread *child)
1394113372Sjeff{
1395113372Sjeff}
1396113372Sjeff
1397113372Sjeffvoid
1398121127Sjeffsched_clock(struct thread *td)
1399109864Sjeff{
1400113357Sjeff	struct kseq *kseq;
1401113357Sjeff	struct ksegrp *kg;
1402121127Sjeff	struct kse *ke;
1403109864Sjeff
1404113357Sjeff	/*
1405113357Sjeff	 * sched_setup() apparently happens prior to stathz being set.  We
1406113357Sjeff	 * need to resolve the timers earlier in the boot so we can avoid
1407113357Sjeff	 * calculating this here.
1408113357Sjeff	 */
1409113357Sjeff	if (realstathz == 0) {
1410113357Sjeff		realstathz = stathz ? stathz : hz;
1411113357Sjeff		tickincr = hz / realstathz;
1412113357Sjeff		/*
1413113357Sjeff		 * XXX This does not work for values of stathz that are much
1414113357Sjeff		 * larger than hz.
1415113357Sjeff		 */
1416113357Sjeff		if (tickincr == 0)
1417113357Sjeff			tickincr = 1;
1418113357Sjeff	}
1419109864Sjeff
1420121127Sjeff	ke = td->td_kse;
1421113357Sjeff	kg = ke->ke_ksegrp;
1422109864Sjeff
1423110028Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1424110028Sjeff	/* Adjust ticks for pctcpu */
1425111793Sjeff	ke->ke_ticks++;
1426109971Sjeff	ke->ke_ltick = ticks;
1427112994Sjeff
1428109971Sjeff	/* Go up to one second beyond our max and then trim back down */
1429109971Sjeff	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1430109971Sjeff		sched_pctcpu_update(ke);
1431109971Sjeff
1432114496Sjulian	if (td->td_flags & TDF_IDLETD)
1433109864Sjeff		return;
1434110028Sjeff
1435113357Sjeff	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1436113357Sjeff	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1437110028Sjeff	/*
1438113357Sjeff	 * We only do slicing code for TIMESHARE ksegrps.
1439113357Sjeff	 */
1440113357Sjeff	if (kg->kg_pri_class != PRI_TIMESHARE)
1441113357Sjeff		return;
1442113357Sjeff	/*
1443110645Sjeff	 * We used a tick charge it to the ksegrp so that we can compute our
1444113357Sjeff	 * interactivity.
1445109864Sjeff	 */
1446113357Sjeff	kg->kg_runtime += tickincr << 10;
1447116463Sjeff	sched_interact_update(kg);
1448110645Sjeff
1449109864Sjeff	/*
1450109864Sjeff	 * We used up one time slice.
1451109864Sjeff	 */
1452122847Sjeff	if (--ke->ke_slice > 0)
1453113357Sjeff		return;
1454109864Sjeff	/*
1455113357Sjeff	 * We're out of time, recompute priorities and requeue.
1456109864Sjeff	 */
1457122847Sjeff	kseq = KSEQ_SELF();
1458122744Sjeff	kseq_load_rem(kseq, ke);
1459113357Sjeff	sched_priority(kg);
1460113357Sjeff	sched_slice(ke);
1461113357Sjeff	if (SCHED_CURR(kg, ke))
1462113357Sjeff		ke->ke_runq = kseq->ksq_curr;
1463113357Sjeff	else
1464113357Sjeff		ke->ke_runq = kseq->ksq_next;
1465122744Sjeff	kseq_load_add(kseq, ke);
1466113357Sjeff	td->td_flags |= TDF_NEEDRESCHED;
1467109864Sjeff}
1468109864Sjeff
1469109864Sjeffint
1470109864Sjeffsched_runnable(void)
1471109864Sjeff{
1472109864Sjeff	struct kseq *kseq;
1473115998Sjeff	int load;
1474109864Sjeff
1475115998Sjeff	load = 1;
1476115998Sjeff
1477110028Sjeff	kseq = KSEQ_SELF();
1478121790Sjeff#ifdef SMP
1479122094Sjeff	if (kseq->ksq_assigned) {
1480122094Sjeff		mtx_lock_spin(&sched_lock);
1481121790Sjeff		kseq_assign(kseq);
1482122094Sjeff		mtx_unlock_spin(&sched_lock);
1483122094Sjeff	}
1484121790Sjeff#endif
1485121605Sjeff	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1486121605Sjeff		if (kseq->ksq_load > 0)
1487121605Sjeff			goto out;
1488121605Sjeff	} else
1489121605Sjeff		if (kseq->ksq_load - 1 > 0)
1490121605Sjeff			goto out;
1491115998Sjeff	load = 0;
1492115998Sjeffout:
1493115998Sjeff	return (load);
1494109864Sjeff}
1495109864Sjeff
1496109864Sjeffvoid
1497109864Sjeffsched_userret(struct thread *td)
1498109864Sjeff{
1499109864Sjeff	struct ksegrp *kg;
1500121605Sjeff
1501121605Sjeff	kg = td->td_ksegrp;
1502109864Sjeff
1503109864Sjeff	if (td->td_priority != kg->kg_user_pri) {
1504109864Sjeff		mtx_lock_spin(&sched_lock);
1505109864Sjeff		td->td_priority = kg->kg_user_pri;
1506109864Sjeff		mtx_unlock_spin(&sched_lock);
1507109864Sjeff	}
1508109864Sjeff}
1509109864Sjeff
1510109864Sjeffstruct kse *
1511109970Sjeffsched_choose(void)
1512109970Sjeff{
1513110028Sjeff	struct kseq *kseq;
1514109970Sjeff	struct kse *ke;
1515109970Sjeff
1516115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1517121790Sjeff	kseq = KSEQ_SELF();
1518113357Sjeff#ifdef SMP
1519123433Sjeffrestart:
1520121790Sjeff	if (kseq->ksq_assigned)
1521121790Sjeff		kseq_assign(kseq);
1522113357Sjeff#endif
1523121790Sjeff	ke = kseq_choose(kseq);
1524109864Sjeff	if (ke) {
1525121790Sjeff#ifdef SMP
1526121790Sjeff		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1527123433Sjeff			if (kseq_idled(kseq) == 0)
1528123433Sjeff				goto restart;
1529121790Sjeff#endif
1530122744Sjeff		kseq_runq_rem(kseq, ke);
1531109864Sjeff		ke->ke_state = KES_THREAD;
1532112966Sjeff
1533113357Sjeff		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1534113357Sjeff			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1535113357Sjeff			    ke, ke->ke_runq, ke->ke_slice,
1536113357Sjeff			    ke->ke_thread->td_priority);
1537113357Sjeff		}
1538113357Sjeff		return (ke);
1539109864Sjeff	}
1540109970Sjeff#ifdef SMP
1541123433Sjeff	if (kseq_idled(kseq) == 0)
1542123433Sjeff		goto restart;
1543109970Sjeff#endif
1544113357Sjeff	return (NULL);
1545109864Sjeff}
1546109864Sjeff
1547109864Sjeffvoid
1548121127Sjeffsched_add(struct thread *td)
1549109864Sjeff{
1550110267Sjeff	struct kseq *kseq;
1551113357Sjeff	struct ksegrp *kg;
1552121127Sjeff	struct kse *ke;
1553121790Sjeff	int class;
1554109864Sjeff
1555121790Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1556121127Sjeff	ke = td->td_kse;
1557121127Sjeff	kg = td->td_ksegrp;
1558121790Sjeff	if (ke->ke_flags & KEF_ASSIGNED)
1559121790Sjeff		return;
1560121790Sjeff	kseq = KSEQ_SELF();
1561124958Sjeff	KASSERT((ke->ke_thread != NULL),
1562124958Sjeff	    ("sched_add: No thread on KSE"));
1563109864Sjeff	KASSERT((ke->ke_thread->td_kse != NULL),
1564110267Sjeff	    ("sched_add: No KSE on thread"));
1565109864Sjeff	KASSERT(ke->ke_state != KES_ONRUNQ,
1566110267Sjeff	    ("sched_add: kse %p (%s) already in run queue", ke,
1567109864Sjeff	    ke->ke_proc->p_comm));
1568109864Sjeff	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1569110267Sjeff	    ("sched_add: process swapped out"));
1570113387Sjeff	KASSERT(ke->ke_runq == NULL,
1571113387Sjeff	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1572109864Sjeff
1573121790Sjeff	class = PRI_BASE(kg->kg_pri_class);
1574121790Sjeff	switch (class) {
1575112994Sjeff	case PRI_ITHD:
1576112994Sjeff	case PRI_REALTIME:
1577113357Sjeff		ke->ke_runq = kseq->ksq_curr;
1578113357Sjeff		ke->ke_slice = SCHED_SLICE_MAX;
1579113660Sjeff		ke->ke_cpu = PCPU_GET(cpuid);
1580112994Sjeff		break;
1581112994Sjeff	case PRI_TIMESHARE:
1582113387Sjeff		if (SCHED_CURR(kg, ke))
1583113387Sjeff			ke->ke_runq = kseq->ksq_curr;
1584113387Sjeff		else
1585113387Sjeff			ke->ke_runq = kseq->ksq_next;
1586113357Sjeff		break;
1587112994Sjeff	case PRI_IDLE:
1588113357Sjeff		/*
1589113357Sjeff		 * This is for priority prop.
1590113357Sjeff		 */
1591121605Sjeff		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1592113357Sjeff			ke->ke_runq = kseq->ksq_curr;
1593113357Sjeff		else
1594113357Sjeff			ke->ke_runq = &kseq->ksq_idle;
1595113357Sjeff		ke->ke_slice = SCHED_SLICE_MIN;
1596112994Sjeff		break;
1597113357Sjeff	default:
1598121868Sjeff		panic("Unknown pri class.");
1599113357Sjeff		break;
1600112994Sjeff	}
1601121790Sjeff#ifdef SMP
1602123433Sjeff	if (ke->ke_cpu != PCPU_GET(cpuid)) {
1603123529Sjeff		ke->ke_runq = NULL;
1604123433Sjeff		kseq_notify(ke, ke->ke_cpu);
1605123433Sjeff		return;
1606123433Sjeff	}
1607121790Sjeff	/*
1608123685Sjeff	 * If we had been idle, clear our bit in the group and potentially
1609123685Sjeff	 * the global bitmap.  If not, see if we should transfer this thread.
1610121790Sjeff	 */
1611123433Sjeff	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1612123433Sjeff	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1613121790Sjeff		/*
1614123433Sjeff		 * Check to see if our group is unidling, and if so, remove it
1615123433Sjeff		 * from the global idle mask.
1616121790Sjeff		 */
1617123433Sjeff		if (kseq->ksq_group->ksg_idlemask ==
1618123433Sjeff		    kseq->ksq_group->ksg_cpumask)
1619123433Sjeff			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1620123433Sjeff		/*
1621123433Sjeff		 * Now remove ourselves from the group specific idle mask.
1622123433Sjeff		 */
1623123433Sjeff		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1624123685Sjeff	} else if (kseq->ksq_load > 1 && KSE_CAN_MIGRATE(ke, class))
1625123685Sjeff		if (kseq_transfer(kseq, ke, class))
1626123685Sjeff			return;
1627121790Sjeff#endif
1628121790Sjeff        if (td->td_priority < curthread->td_priority)
1629121790Sjeff                curthread->td_flags |= TDF_NEEDRESCHED;
1630121790Sjeff
1631109864Sjeff	ke->ke_ksegrp->kg_runq_kses++;
1632109864Sjeff	ke->ke_state = KES_ONRUNQ;
1633109864Sjeff
1634122744Sjeff	kseq_runq_add(kseq, ke);
1635122744Sjeff	kseq_load_add(kseq, ke);
1636109864Sjeff}
1637109864Sjeff
1638109864Sjeffvoid
1639121127Sjeffsched_rem(struct thread *td)
1640109864Sjeff{
1641113357Sjeff	struct kseq *kseq;
1642121127Sjeff	struct kse *ke;
1643113357Sjeff
1644121127Sjeff	ke = td->td_kse;
1645121790Sjeff	/*
1646121790Sjeff	 * It is safe to just return here because sched_rem() is only ever
1647121790Sjeff	 * used in places where we're immediately going to add the
1648121790Sjeff	 * kse back on again.  In that case it'll be added with the correct
1649121790Sjeff	 * thread and priority when the caller drops the sched_lock.
1650121790Sjeff	 */
1651121790Sjeff	if (ke->ke_flags & KEF_ASSIGNED)
1652121790Sjeff		return;
1653109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1654124958Sjeff	KASSERT((ke->ke_state == KES_ONRUNQ),
1655124958Sjeff	    ("sched_rem: KSE not on run queue"));
1656109864Sjeff
1657109864Sjeff	ke->ke_state = KES_THREAD;
1658109864Sjeff	ke->ke_ksegrp->kg_runq_kses--;
1659113357Sjeff	kseq = KSEQ_CPU(ke->ke_cpu);
1660122744Sjeff	kseq_runq_rem(kseq, ke);
1661122744Sjeff	kseq_load_rem(kseq, ke);
1662109864Sjeff}
1663109864Sjeff
1664109864Sjefffixpt_t
1665121127Sjeffsched_pctcpu(struct thread *td)
1666109864Sjeff{
1667109864Sjeff	fixpt_t pctcpu;
1668121127Sjeff	struct kse *ke;
1669109864Sjeff
1670109864Sjeff	pctcpu = 0;
1671121127Sjeff	ke = td->td_kse;
1672121290Sjeff	if (ke == NULL)
1673121290Sjeff		return (0);
1674109864Sjeff
1675115998Sjeff	mtx_lock_spin(&sched_lock);
1676109864Sjeff	if (ke->ke_ticks) {
1677109864Sjeff		int rtick;
1678109864Sjeff
1679116365Sjeff		/*
1680116365Sjeff		 * Don't update more frequently than twice a second.  Allowing
1681116365Sjeff		 * this causes the cpu usage to decay away too quickly due to
1682116365Sjeff		 * rounding errors.
1683116365Sjeff		 */
1684123435Sjeff		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1685123435Sjeff		    ke->ke_ltick < (ticks - (hz / 2)))
1686116365Sjeff			sched_pctcpu_update(ke);
1687109864Sjeff		/* How many rtick per second ? */
1688116365Sjeff		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1689110226Sscottl		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1690109864Sjeff	}
1691109864Sjeff
1692109864Sjeff	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1693113865Sjhb	mtx_unlock_spin(&sched_lock);
1694109864Sjeff
1695109864Sjeff	return (pctcpu);
1696109864Sjeff}
1697109864Sjeff
1698122038Sjeffvoid
1699122038Sjeffsched_bind(struct thread *td, int cpu)
1700122038Sjeff{
1701122038Sjeff	struct kse *ke;
1702122038Sjeff
1703122038Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1704122038Sjeff	ke = td->td_kse;
1705122038Sjeff	ke->ke_flags |= KEF_BOUND;
1706123433Sjeff#ifdef SMP
1707123433Sjeff	if (PCPU_GET(cpuid) == cpu)
1708122038Sjeff		return;
1709122038Sjeff	/* sched_rem without the runq_remove */
1710122038Sjeff	ke->ke_state = KES_THREAD;
1711122038Sjeff	ke->ke_ksegrp->kg_runq_kses--;
1712122744Sjeff	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1713122038Sjeff	kseq_notify(ke, cpu);
1714122038Sjeff	/* When we return from mi_switch we'll be on the correct cpu. */
1715124944Sjeff	mi_switch(SW_VOL);
1716122038Sjeff#endif
1717122038Sjeff}
1718122038Sjeff
1719122038Sjeffvoid
1720122038Sjeffsched_unbind(struct thread *td)
1721122038Sjeff{
1722122038Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1723122038Sjeff	td->td_kse->ke_flags &= ~KEF_BOUND;
1724122038Sjeff}
1725122038Sjeff
1726109864Sjeffint
1727125289Sjeffsched_load(void)
1728125289Sjeff{
1729125289Sjeff#ifdef SMP
1730125289Sjeff	int total;
1731125289Sjeff	int i;
1732125289Sjeff
1733125289Sjeff	total = 0;
1734125289Sjeff	for (i = 0; i <= ksg_maxid; i++)
1735125289Sjeff		total += KSEQ_GROUP(i)->ksg_load;
1736125289Sjeff	return (total);
1737125289Sjeff#else
1738125289Sjeff	return (KSEQ_SELF()->ksq_sysload);
1739125289Sjeff#endif
1740125289Sjeff}
1741125289Sjeff
1742125289Sjeffint
1743109864Sjeffsched_sizeof_kse(void)
1744109864Sjeff{
1745109864Sjeff	return (sizeof(struct kse) + sizeof(struct ke_sched));
1746109864Sjeff}
1747109864Sjeff
1748109864Sjeffint
1749109864Sjeffsched_sizeof_ksegrp(void)
1750109864Sjeff{
1751109864Sjeff	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1752109864Sjeff}
1753109864Sjeff
1754109864Sjeffint
1755109864Sjeffsched_sizeof_proc(void)
1756109864Sjeff{
1757109864Sjeff	return (sizeof(struct proc));
1758109864Sjeff}
1759109864Sjeff
1760109864Sjeffint
1761109864Sjeffsched_sizeof_thread(void)
1762109864Sjeff{
1763109864Sjeff	return (sizeof(struct thread) + sizeof(struct td_sched));
1764109864Sjeff}
1765