sched_ule.c revision 123487
1109864Sjeff/*-
2113357Sjeff * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3109864Sjeff * All rights reserved.
4109864Sjeff *
5109864Sjeff * Redistribution and use in source and binary forms, with or without
6109864Sjeff * modification, are permitted provided that the following conditions
7109864Sjeff * are met:
8109864Sjeff * 1. Redistributions of source code must retain the above copyright
9109864Sjeff *    notice unmodified, this list of conditions, and the following
10109864Sjeff *    disclaimer.
11109864Sjeff * 2. Redistributions in binary form must reproduce the above copyright
12109864Sjeff *    notice, this list of conditions and the following disclaimer in the
13109864Sjeff *    documentation and/or other materials provided with the distribution.
14109864Sjeff *
15109864Sjeff * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16109864Sjeff * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17109864Sjeff * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18109864Sjeff * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19109864Sjeff * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20109864Sjeff * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21109864Sjeff * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22109864Sjeff * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23109864Sjeff * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24109864Sjeff * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25109864Sjeff */
26109864Sjeff
27116182Sobrien#include <sys/cdefs.h>
28116182Sobrien__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 123487 2003-12-12 07:33:51Z jeff $");
29116182Sobrien
30109864Sjeff#include <sys/param.h>
31109864Sjeff#include <sys/systm.h>
32109864Sjeff#include <sys/kernel.h>
33109864Sjeff#include <sys/ktr.h>
34109864Sjeff#include <sys/lock.h>
35109864Sjeff#include <sys/mutex.h>
36109864Sjeff#include <sys/proc.h>
37112966Sjeff#include <sys/resource.h>
38122038Sjeff#include <sys/resourcevar.h>
39109864Sjeff#include <sys/sched.h>
40109864Sjeff#include <sys/smp.h>
41109864Sjeff#include <sys/sx.h>
42109864Sjeff#include <sys/sysctl.h>
43109864Sjeff#include <sys/sysproto.h>
44109864Sjeff#include <sys/vmmeter.h>
45109864Sjeff#ifdef DDB
46109864Sjeff#include <ddb/ddb.h>
47109864Sjeff#endif
48109864Sjeff#ifdef KTRACE
49109864Sjeff#include <sys/uio.h>
50109864Sjeff#include <sys/ktrace.h>
51109864Sjeff#endif
52109864Sjeff
53109864Sjeff#include <machine/cpu.h>
54121790Sjeff#include <machine/smp.h>
55109864Sjeff
56113357Sjeff#define KTR_ULE         KTR_NFS
57113357Sjeff
58109864Sjeff/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
59109864Sjeff/* XXX This is bogus compatability crap for ps */
60109864Sjeffstatic fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
61109864SjeffSYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
62109864Sjeff
63109864Sjeffstatic void sched_setup(void *dummy);
64109864SjeffSYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
65109864Sjeff
66113357Sjeffstatic SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
67113357Sjeff
68113357Sjeffstatic int sched_strict;
69113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
70113357Sjeff
71113357Sjeffstatic int slice_min = 1;
72113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
73113357Sjeff
74116365Sjeffstatic int slice_max = 10;
75113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
76113357Sjeff
77111857Sjeffint realstathz;
78113357Sjeffint tickincr = 1;
79111857Sjeff
80116069Sjeff#ifdef SMP
81123487Sjeff/* Callouts to handle load balancing SMP systems. */
82116069Sjeffstatic struct callout kseq_lb_callout;
83123487Sjeffstatic struct callout kseq_group_callout;
84116069Sjeff#endif
85116069Sjeff
86109864Sjeff/*
87109864Sjeff * These datastructures are allocated within their parent datastructure but
88109864Sjeff * are scheduler specific.
89109864Sjeff */
90109864Sjeff
91109864Sjeffstruct ke_sched {
92109864Sjeff	int		ske_slice;
93109864Sjeff	struct runq	*ske_runq;
94109864Sjeff	/* The following variables are only used for pctcpu calculation */
95109864Sjeff	int		ske_ltick;	/* Last tick that we were running on */
96109864Sjeff	int		ske_ftick;	/* First tick that we were running on */
97109864Sjeff	int		ske_ticks;	/* Tick count */
98113357Sjeff	/* CPU that we have affinity for. */
99110260Sjeff	u_char		ske_cpu;
100109864Sjeff};
101109864Sjeff#define	ke_slice	ke_sched->ske_slice
102109864Sjeff#define	ke_runq		ke_sched->ske_runq
103109864Sjeff#define	ke_ltick	ke_sched->ske_ltick
104109864Sjeff#define	ke_ftick	ke_sched->ske_ftick
105109864Sjeff#define	ke_ticks	ke_sched->ske_ticks
106110260Sjeff#define	ke_cpu		ke_sched->ske_cpu
107121790Sjeff#define	ke_assign	ke_procq.tqe_next
108109864Sjeff
109121790Sjeff#define	KEF_ASSIGNED	KEF_SCHED0	/* KSE is being migrated. */
110122158Sjeff#define	KEF_BOUND	KEF_SCHED1	/* KSE can not migrate. */
111121790Sjeff
112109864Sjeffstruct kg_sched {
113110645Sjeff	int	skg_slptime;		/* Number of ticks we vol. slept */
114110645Sjeff	int	skg_runtime;		/* Number of ticks we were running */
115109864Sjeff};
116109864Sjeff#define	kg_slptime	kg_sched->skg_slptime
117110645Sjeff#define	kg_runtime	kg_sched->skg_runtime
118109864Sjeff
119109864Sjeffstruct td_sched {
120109864Sjeff	int	std_slptime;
121109864Sjeff};
122109864Sjeff#define	td_slptime	td_sched->std_slptime
123109864Sjeff
124110267Sjeffstruct td_sched td_sched;
125109864Sjeffstruct ke_sched ke_sched;
126109864Sjeffstruct kg_sched kg_sched;
127109864Sjeff
128109864Sjeffstruct ke_sched *kse0_sched = &ke_sched;
129109864Sjeffstruct kg_sched *ksegrp0_sched = &kg_sched;
130109864Sjeffstruct p_sched *proc0_sched = NULL;
131109864Sjeffstruct td_sched *thread0_sched = &td_sched;
132109864Sjeff
133109864Sjeff/*
134116642Sjeff * The priority is primarily determined by the interactivity score.  Thus, we
135116642Sjeff * give lower(better) priorities to kse groups that use less CPU.  The nice
136116642Sjeff * value is then directly added to this to allow nice to have some effect
137116642Sjeff * on latency.
138111857Sjeff *
139111857Sjeff * PRI_RANGE:	Total priority range for timeshare threads.
140116642Sjeff * PRI_NRESV:	Number of nice values.
141111857Sjeff * PRI_BASE:	The start of the dynamic range.
142109864Sjeff */
143111857Sjeff#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
144121869Sjeff#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
145121869Sjeff#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
146116642Sjeff#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
147113357Sjeff#define	SCHED_PRI_INTERACT(score)					\
148116642Sjeff    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
149109864Sjeff
150109864Sjeff/*
151111857Sjeff * These determine the interactivity of a process.
152109864Sjeff *
153110645Sjeff * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
154110645Sjeff *		before throttling back.
155121868Sjeff * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
156116365Sjeff * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
157111857Sjeff * INTERACT_THRESH:	Threshhold for placement on the current runq.
158109864Sjeff */
159121126Sjeff#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
160121868Sjeff#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
161116365Sjeff#define	SCHED_INTERACT_MAX	(100)
162116365Sjeff#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
163121126Sjeff#define	SCHED_INTERACT_THRESH	(30)
164111857Sjeff
165109864Sjeff/*
166109864Sjeff * These parameters and macros determine the size of the time slice that is
167109864Sjeff * granted to each thread.
168109864Sjeff *
169109864Sjeff * SLICE_MIN:	Minimum time slice granted, in units of ticks.
170109864Sjeff * SLICE_MAX:	Maximum time slice granted.
171109864Sjeff * SLICE_RANGE:	Range of available time slices scaled by hz.
172112966Sjeff * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
173112966Sjeff * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
174121871Sjeff * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
175109864Sjeff */
176113357Sjeff#define	SCHED_SLICE_MIN			(slice_min)
177113357Sjeff#define	SCHED_SLICE_MAX			(slice_max)
178121871Sjeff#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
179111857Sjeff#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
180109864Sjeff#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
181112966Sjeff#define	SCHED_SLICE_NICE(nice)						\
182121871Sjeff    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
183109864Sjeff
184109864Sjeff/*
185109864Sjeff * This macro determines whether or not the kse belongs on the current or
186109864Sjeff * next run queue.
187109864Sjeff */
188113357Sjeff#define	SCHED_INTERACTIVE(kg)						\
189113357Sjeff    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
190113417Sjeff#define	SCHED_CURR(kg, ke)						\
191121107Sjeff    (ke->ke_thread->td_priority != kg->kg_user_pri ||			\
192121107Sjeff    SCHED_INTERACTIVE(kg))
193109864Sjeff
194109864Sjeff/*
195109864Sjeff * Cpu percentage computation macros and defines.
196109864Sjeff *
197109864Sjeff * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
198109864Sjeff * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
199109864Sjeff */
200109864Sjeff
201112971Sjeff#define	SCHED_CPU_TIME	10
202109864Sjeff#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
203109864Sjeff
204109864Sjeff/*
205113357Sjeff * kseq - per processor runqs and statistics.
206109864Sjeff */
207109864Sjeffstruct kseq {
208113357Sjeff	struct runq	ksq_idle;		/* Queue of IDLE threads. */
209113357Sjeff	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
210113357Sjeff	struct runq	*ksq_next;		/* Next timeshare queue. */
211113357Sjeff	struct runq	*ksq_curr;		/* Current queue. */
212121896Sjeff	int		ksq_load_timeshare;	/* Load for timeshare. */
213113357Sjeff	int		ksq_load;		/* Aggregate load. */
214121869Sjeff	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
215113357Sjeff	short		ksq_nicemin;		/* Least nice. */
216110267Sjeff#ifdef SMP
217123433Sjeff	int			ksq_transferable;
218123433Sjeff	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
219123433Sjeff	struct kseq_group	*ksq_group;	/* Our processor group. */
220123433Sjeff	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
221110267Sjeff#endif
222109864Sjeff};
223109864Sjeff
224123433Sjeff#ifdef SMP
225109864Sjeff/*
226123433Sjeff * kseq groups are groups of processors which can cheaply share threads.  When
227123433Sjeff * one processor in the group goes idle it will check the runqs of the other
228123433Sjeff * processors in its group prior to halting and waiting for an interrupt.
229123433Sjeff * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
230123433Sjeff * In a numa environment we'd want an idle bitmap per group and a two tiered
231123433Sjeff * load balancer.
232123433Sjeff */
233123433Sjeffstruct kseq_group {
234123433Sjeff	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
235123433Sjeff	int	ksg_cpumask;		/* Mask of cpus in this group. */
236123433Sjeff	int	ksg_idlemask;		/* Idle cpus in this group. */
237123433Sjeff	int	ksg_mask;		/* Bit mask for first cpu. */
238123487Sjeff	int	ksg_load;		/* Total load of this group. */
239123433Sjeff	int	ksg_transferable;	/* Transferable load of this group. */
240123433Sjeff	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
241123433Sjeff};
242123433Sjeff#endif
243123433Sjeff
244123433Sjeff/*
245109864Sjeff * One kse queue per processor.
246109864Sjeff */
247110028Sjeff#ifdef SMP
248121790Sjeffstatic int kseq_idle;
249123487Sjeffstatic int ksg_maxid;
250121790Sjeffstatic struct kseq	kseq_cpu[MAXCPU];
251123433Sjeffstatic struct kseq_group kseq_groups[MAXCPU];
252123433Sjeff#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
253123433Sjeff#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
254123487Sjeff#define	KSEQ_ID(x)	((x) - kseq_cpu)
255123487Sjeff#define	KSEQ_GROUP(x)	(&kseq_groups[(x)])
256123433Sjeff#else	/* !SMP */
257121790Sjeffstatic struct kseq	kseq_cpu;
258110028Sjeff#define	KSEQ_SELF()	(&kseq_cpu)
259110028Sjeff#define	KSEQ_CPU(x)	(&kseq_cpu)
260110028Sjeff#endif
261109864Sjeff
262112966Sjeffstatic void sched_slice(struct kse *ke);
263113357Sjeffstatic void sched_priority(struct ksegrp *kg);
264111857Sjeffstatic int sched_interact_score(struct ksegrp *kg);
265116463Sjeffstatic void sched_interact_update(struct ksegrp *kg);
266121868Sjeffstatic void sched_interact_fork(struct ksegrp *kg);
267121790Sjeffstatic void sched_pctcpu_update(struct kse *ke);
268109864Sjeff
269110267Sjeff/* Operations on per processor queues */
270121790Sjeffstatic struct kse * kseq_choose(struct kseq *kseq);
271110028Sjeffstatic void kseq_setup(struct kseq *kseq);
272122744Sjeffstatic void kseq_load_add(struct kseq *kseq, struct kse *ke);
273122744Sjeffstatic void kseq_load_rem(struct kseq *kseq, struct kse *ke);
274122744Sjeffstatic __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
275122744Sjeffstatic __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
276113357Sjeffstatic void kseq_nice_add(struct kseq *kseq, int nice);
277113357Sjeffstatic void kseq_nice_rem(struct kseq *kseq, int nice);
278113660Sjeffvoid kseq_print(int cpu);
279110267Sjeff#ifdef SMP
280123433Sjeffstatic int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
281121790Sjeffstatic struct kse *runq_steal(struct runq *rq);
282122744Sjeffstatic void sched_balance(void *arg);
283123487Sjeffstatic void sched_balance_group(struct kseq_group *ksg);
284123487Sjeffstatic void sched_balance_pair(struct kseq *high, struct kseq *low);
285121790Sjeffstatic void kseq_move(struct kseq *from, int cpu);
286123433Sjeffstatic int kseq_idled(struct kseq *kseq);
287121790Sjeffstatic void kseq_notify(struct kse *ke, int cpu);
288121790Sjeffstatic void kseq_assign(struct kseq *);
289123433Sjeffstatic struct kse *kseq_steal(struct kseq *kseq, int stealidle);
290122038Sjeff#define	KSE_CAN_MIGRATE(ke, class)					\
291122158Sjeff    ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
292122165Sjeff    ((ke)->ke_flags & KEF_BOUND) == 0)
293121790Sjeff#endif
294110028Sjeff
295113357Sjeffvoid
296113660Sjeffkseq_print(int cpu)
297110267Sjeff{
298113660Sjeff	struct kseq *kseq;
299113357Sjeff	int i;
300112994Sjeff
301113660Sjeff	kseq = KSEQ_CPU(cpu);
302112994Sjeff
303113357Sjeff	printf("kseq:\n");
304113357Sjeff	printf("\tload:           %d\n", kseq->ksq_load);
305122744Sjeff	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
306121896Sjeff#ifdef SMP
307123433Sjeff	printf("\tload transferable: %d\n", kseq->ksq_transferable);
308121896Sjeff#endif
309113357Sjeff	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
310113357Sjeff	printf("\tnice counts:\n");
311121869Sjeff	for (i = 0; i < SCHED_PRI_NRESV; i++)
312113357Sjeff		if (kseq->ksq_nice[i])
313113357Sjeff			printf("\t\t%d = %d\n",
314113357Sjeff			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
315113357Sjeff}
316112994Sjeff
317122744Sjeffstatic __inline void
318122744Sjeffkseq_runq_add(struct kseq *kseq, struct kse *ke)
319122744Sjeff{
320122744Sjeff#ifdef SMP
321123433Sjeff	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
322123433Sjeff		kseq->ksq_transferable++;
323123433Sjeff		kseq->ksq_group->ksg_transferable++;
324123433Sjeff	}
325122744Sjeff#endif
326122744Sjeff	runq_add(ke->ke_runq, ke);
327122744Sjeff}
328122744Sjeff
329122744Sjeffstatic __inline void
330122744Sjeffkseq_runq_rem(struct kseq *kseq, struct kse *ke)
331122744Sjeff{
332122744Sjeff#ifdef SMP
333123433Sjeff	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
334123433Sjeff		kseq->ksq_transferable--;
335123433Sjeff		kseq->ksq_group->ksg_transferable--;
336123433Sjeff	}
337122744Sjeff#endif
338122744Sjeff	runq_remove(ke->ke_runq, ke);
339122744Sjeff}
340122744Sjeff
341113357Sjeffstatic void
342122744Sjeffkseq_load_add(struct kseq *kseq, struct kse *ke)
343113357Sjeff{
344121896Sjeff	int class;
345115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
346121896Sjeff	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
347121896Sjeff	if (class == PRI_TIMESHARE)
348121896Sjeff		kseq->ksq_load_timeshare++;
349113357Sjeff	kseq->ksq_load++;
350123487Sjeff#ifdef SMP
351123487Sjeff	if (class != PRI_ITHD)
352123487Sjeff		kseq->ksq_group->ksg_load++;
353123487Sjeff#endif
354113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
355122744Sjeff		CTR6(KTR_ULE,
356122744Sjeff		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
357122744Sjeff		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
358122744Sjeff		    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
359113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
360113357Sjeff		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
361110267Sjeff}
362113357Sjeff
363112994Sjeffstatic void
364122744Sjeffkseq_load_rem(struct kseq *kseq, struct kse *ke)
365110267Sjeff{
366121896Sjeff	int class;
367115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
368121896Sjeff	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
369121896Sjeff	if (class == PRI_TIMESHARE)
370121896Sjeff		kseq->ksq_load_timeshare--;
371123487Sjeff#ifdef SMP
372123487Sjeff	if (class != PRI_ITHD)
373123487Sjeff		kseq->ksq_group->ksg_load--;
374123487Sjeff#endif
375113357Sjeff	kseq->ksq_load--;
376113357Sjeff	ke->ke_runq = NULL;
377113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
378113357Sjeff		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
379110267Sjeff}
380110267Sjeff
381113357Sjeffstatic void
382113357Sjeffkseq_nice_add(struct kseq *kseq, int nice)
383110267Sjeff{
384115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
385113357Sjeff	/* Normalize to zero. */
386113357Sjeff	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
387121896Sjeff	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
388113357Sjeff		kseq->ksq_nicemin = nice;
389110267Sjeff}
390110267Sjeff
391113357Sjeffstatic void
392113357Sjeffkseq_nice_rem(struct kseq *kseq, int nice)
393110267Sjeff{
394113357Sjeff	int n;
395113357Sjeff
396115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
397113357Sjeff	/* Normalize to zero. */
398113357Sjeff	n = nice + SCHED_PRI_NHALF;
399113357Sjeff	kseq->ksq_nice[n]--;
400113357Sjeff	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
401113357Sjeff
402113357Sjeff	/*
403113357Sjeff	 * If this wasn't the smallest nice value or there are more in
404113357Sjeff	 * this bucket we can just return.  Otherwise we have to recalculate
405113357Sjeff	 * the smallest nice.
406113357Sjeff	 */
407113357Sjeff	if (nice != kseq->ksq_nicemin ||
408113357Sjeff	    kseq->ksq_nice[n] != 0 ||
409121896Sjeff	    kseq->ksq_load_timeshare == 0)
410113357Sjeff		return;
411113357Sjeff
412121869Sjeff	for (; n < SCHED_PRI_NRESV; n++)
413113357Sjeff		if (kseq->ksq_nice[n]) {
414113357Sjeff			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
415113357Sjeff			return;
416113357Sjeff		}
417110267Sjeff}
418110267Sjeff
419113357Sjeff#ifdef SMP
420116069Sjeff/*
421122744Sjeff * sched_balance is a simple CPU load balancing algorithm.  It operates by
422116069Sjeff * finding the least loaded and most loaded cpu and equalizing their load
423116069Sjeff * by migrating some processes.
424116069Sjeff *
425116069Sjeff * Dealing only with two CPUs at a time has two advantages.  Firstly, most
426116069Sjeff * installations will only have 2 cpus.  Secondly, load balancing too much at
427116069Sjeff * once can have an unpleasant effect on the system.  The scheduler rarely has
428116069Sjeff * enough information to make perfect decisions.  So this algorithm chooses
429116069Sjeff * algorithm simplicity and more gradual effects on load in larger systems.
430116069Sjeff *
431116069Sjeff * It could be improved by considering the priorities and slices assigned to
432116069Sjeff * each task prior to balancing them.  There are many pathological cases with
433116069Sjeff * any approach and so the semi random algorithm below may work as well as any.
434116069Sjeff *
435116069Sjeff */
436121790Sjeffstatic void
437122744Sjeffsched_balance(void *arg)
438116069Sjeff{
439123487Sjeff	struct kseq_group *high;
440123487Sjeff	struct kseq_group *low;
441123487Sjeff	struct kseq_group *ksg;
442123487Sjeff	int timo;
443123487Sjeff	int cnt;
444123487Sjeff	int i;
445123487Sjeff
446123487Sjeff	mtx_lock_spin(&sched_lock);
447123487Sjeff	if (smp_started == 0)
448123487Sjeff		goto out;
449123487Sjeff	low = high = NULL;
450123487Sjeff	i = random() % (ksg_maxid + 1);
451123487Sjeff	for (cnt = 0; cnt <= ksg_maxid; cnt++) {
452123487Sjeff		ksg = KSEQ_GROUP(i);
453123487Sjeff		/*
454123487Sjeff		 * Find the CPU with the highest load that has some
455123487Sjeff		 * threads to transfer.
456123487Sjeff		 */
457123487Sjeff		if ((high == NULL || ksg->ksg_load > high->ksg_load)
458123487Sjeff		    && ksg->ksg_transferable)
459123487Sjeff			high = ksg;
460123487Sjeff		if (low == NULL || ksg->ksg_load < low->ksg_load)
461123487Sjeff			low = ksg;
462123487Sjeff		if (++i > ksg_maxid)
463123487Sjeff			i = 0;
464123487Sjeff	}
465123487Sjeff	if (low != NULL && high != NULL && high != low)
466123487Sjeff		sched_balance_pair(LIST_FIRST(&high->ksg_members),
467123487Sjeff		    LIST_FIRST(&low->ksg_members));
468123487Sjeffout:
469123487Sjeff	mtx_unlock_spin(&sched_lock);
470123487Sjeff	timo = random() % (hz * 2);
471123487Sjeff	callout_reset(&kseq_lb_callout, timo, sched_balance, NULL);
472123487Sjeff}
473123487Sjeff
474123487Sjeffstatic void
475123487Sjeffsched_balance_groups(void *arg)
476123487Sjeff{
477123487Sjeff	int timo;
478123487Sjeff	int i;
479123487Sjeff
480123487Sjeff	mtx_lock_spin(&sched_lock);
481123487Sjeff	if (smp_started)
482123487Sjeff		for (i = 0; i <= ksg_maxid; i++)
483123487Sjeff			sched_balance_group(KSEQ_GROUP(i));
484123487Sjeff	mtx_unlock_spin(&sched_lock);
485123487Sjeff	timo = random() % (hz * 2);
486123487Sjeff	callout_reset(&kseq_group_callout, timo, sched_balance_groups, NULL);
487123487Sjeff}
488123487Sjeff
489123487Sjeffstatic void
490123487Sjeffsched_balance_group(struct kseq_group *ksg)
491123487Sjeff{
492116069Sjeff	struct kseq *kseq;
493123487Sjeff	struct kseq *high;
494123487Sjeff	struct kseq *low;
495123487Sjeff	int load;
496123487Sjeff
497123487Sjeff	if (ksg->ksg_transferable == 0)
498123487Sjeff		return;
499123487Sjeff	low = NULL;
500123487Sjeff	high = NULL;
501123487Sjeff	LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
502123487Sjeff		load = kseq->ksq_load;
503123487Sjeff		if (kseq == KSEQ_CPU(0))
504123487Sjeff			load--;
505123487Sjeff		if (high == NULL || load > high->ksq_load)
506123487Sjeff			high = kseq;
507123487Sjeff		if (low == NULL || load < low->ksq_load)
508123487Sjeff			low = kseq;
509123487Sjeff	}
510123487Sjeff	if (high != NULL && low != NULL && high != low)
511123487Sjeff		sched_balance_pair(high, low);
512123487Sjeff}
513123487Sjeff
514123487Sjeffstatic void
515123487Sjeffsched_balance_pair(struct kseq *high, struct kseq *low)
516123487Sjeff{
517123433Sjeff	int transferable;
518116069Sjeff	int high_load;
519116069Sjeff	int low_load;
520116069Sjeff	int move;
521116069Sjeff	int diff;
522116069Sjeff	int i;
523116069Sjeff
524116069Sjeff	/*
525123433Sjeff	 * If we're transfering within a group we have to use this specific
526123433Sjeff	 * kseq's transferable count, otherwise we can steal from other members
527123433Sjeff	 * of the group.
528123433Sjeff	 */
529123487Sjeff	if (high->ksq_group == low->ksq_group) {
530123487Sjeff		transferable = high->ksq_transferable;
531123487Sjeff		high_load = high->ksq_load;
532123487Sjeff		low_load = low->ksq_load;
533123487Sjeff		/*
534123487Sjeff		 * XXX If we encounter cpu 0 we must remember to reduce it's
535123487Sjeff		 * load by 1 to reflect the swi that is running the callout.
536123487Sjeff		 * At some point we should really fix load balancing of the
537123487Sjeff		 * swi and then this wont matter.
538123487Sjeff		 */
539123487Sjeff		if (high == KSEQ_CPU(0))
540123487Sjeff			high_load--;
541123487Sjeff		if (low == KSEQ_CPU(0))
542123487Sjeff			low_load--;
543123487Sjeff	} else {
544123487Sjeff		transferable = high->ksq_group->ksg_transferable;
545123487Sjeff		high_load = high->ksq_group->ksg_load;
546123487Sjeff		low_load = low->ksq_group->ksg_load;
547123487Sjeff	}
548123433Sjeff	if (transferable == 0)
549123487Sjeff		return;
550123433Sjeff	/*
551122744Sjeff	 * Determine what the imbalance is and then adjust that to how many
552123433Sjeff	 * kses we actually have to give up (transferable).
553122744Sjeff	 */
554123487Sjeff	diff = high_load - low_load;
555116069Sjeff	move = diff / 2;
556116069Sjeff	if (diff & 0x1)
557116069Sjeff		move++;
558123433Sjeff	move = min(move, transferable);
559116069Sjeff	for (i = 0; i < move; i++)
560123487Sjeff		kseq_move(high, KSEQ_ID(low));
561116069Sjeff	return;
562116069Sjeff}
563116069Sjeff
564121790Sjeffstatic void
565116069Sjeffkseq_move(struct kseq *from, int cpu)
566116069Sjeff{
567123433Sjeff	struct kseq *kseq;
568123433Sjeff	struct kseq *to;
569116069Sjeff	struct kse *ke;
570116069Sjeff
571123433Sjeff	kseq = from;
572123433Sjeff	to = KSEQ_CPU(cpu);
573123433Sjeff	ke = kseq_steal(kseq, 1);
574123433Sjeff	if (ke == NULL) {
575123433Sjeff		struct kseq_group *ksg;
576123433Sjeff
577123433Sjeff		ksg = kseq->ksq_group;
578123433Sjeff		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
579123433Sjeff			if (kseq == from || kseq->ksq_transferable == 0)
580123433Sjeff				continue;
581123433Sjeff			ke = kseq_steal(kseq, 1);
582123433Sjeff			break;
583123433Sjeff		}
584123433Sjeff		if (ke == NULL)
585123433Sjeff			panic("kseq_move: No KSEs available with a "
586123433Sjeff			    "transferable count of %d\n",
587123433Sjeff			    ksg->ksg_transferable);
588123433Sjeff	}
589123433Sjeff	if (kseq == to)
590123433Sjeff		return;
591116069Sjeff	ke->ke_state = KES_THREAD;
592123433Sjeff	kseq_runq_rem(kseq, ke);
593123433Sjeff	kseq_load_rem(kseq, ke);
594116069Sjeff
595116069Sjeff	ke->ke_cpu = cpu;
596121923Sjeff	kseq_notify(ke, cpu);
597116069Sjeff}
598110267Sjeff
599123433Sjeffstatic int
600123433Sjeffkseq_idled(struct kseq *kseq)
601121790Sjeff{
602123433Sjeff	struct kseq_group *ksg;
603123433Sjeff	struct kseq *steal;
604123433Sjeff	struct kse *ke;
605123433Sjeff
606123433Sjeff	ksg = kseq->ksq_group;
607123433Sjeff	/*
608123433Sjeff	 * If we're in a cpu group, try and steal kses from another cpu in
609123433Sjeff	 * the group before idling.
610123433Sjeff	 */
611123433Sjeff	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
612123433Sjeff		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
613123433Sjeff			if (steal == kseq || steal->ksq_transferable == 0)
614123433Sjeff				continue;
615123433Sjeff			ke = kseq_steal(steal, 0);
616123433Sjeff			if (ke == NULL)
617123433Sjeff				continue;
618123433Sjeff			ke->ke_state = KES_THREAD;
619123433Sjeff			kseq_runq_rem(steal, ke);
620123433Sjeff			kseq_load_rem(steal, ke);
621123433Sjeff			ke->ke_cpu = PCPU_GET(cpuid);
622123433Sjeff			sched_add(ke->ke_thread);
623123433Sjeff			return (0);
624123433Sjeff		}
625123433Sjeff	}
626123433Sjeff	/*
627123433Sjeff	 * We only set the idled bit when all of the cpus in the group are
628123433Sjeff	 * idle.  Otherwise we could get into a situation where a KSE bounces
629123433Sjeff	 * back and forth between two idle cores on seperate physical CPUs.
630123433Sjeff	 */
631123433Sjeff	ksg->ksg_idlemask |= PCPU_GET(cpumask);
632123433Sjeff	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
633123433Sjeff		return (1);
634123433Sjeff	atomic_set_int(&kseq_idle, ksg->ksg_mask);
635123433Sjeff	return (1);
636121790Sjeff}
637121790Sjeff
638121790Sjeffstatic void
639121790Sjeffkseq_assign(struct kseq *kseq)
640121790Sjeff{
641121790Sjeff	struct kse *nke;
642121790Sjeff	struct kse *ke;
643121790Sjeff
644121790Sjeff	do {
645122848Sjeff		(volatile struct kse *)ke = kseq->ksq_assigned;
646121790Sjeff	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
647121790Sjeff	for (; ke != NULL; ke = nke) {
648121790Sjeff		nke = ke->ke_assign;
649121790Sjeff		ke->ke_flags &= ~KEF_ASSIGNED;
650121790Sjeff		sched_add(ke->ke_thread);
651121790Sjeff	}
652121790Sjeff}
653121790Sjeff
654121790Sjeffstatic void
655121790Sjeffkseq_notify(struct kse *ke, int cpu)
656121790Sjeff{
657121790Sjeff	struct kseq *kseq;
658121790Sjeff	struct thread *td;
659121790Sjeff	struct pcpu *pcpu;
660121790Sjeff
661121790Sjeff	ke->ke_flags |= KEF_ASSIGNED;
662121790Sjeff
663121790Sjeff	kseq = KSEQ_CPU(cpu);
664121790Sjeff
665121790Sjeff	/*
666121790Sjeff	 * Place a KSE on another cpu's queue and force a resched.
667121790Sjeff	 */
668121790Sjeff	do {
669122848Sjeff		(volatile struct kse *)ke->ke_assign = kseq->ksq_assigned;
670121790Sjeff	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
671121790Sjeff	pcpu = pcpu_find(cpu);
672121790Sjeff	td = pcpu->pc_curthread;
673121790Sjeff	if (ke->ke_thread->td_priority < td->td_priority ||
674121790Sjeff	    td == pcpu->pc_idlethread) {
675121790Sjeff		td->td_flags |= TDF_NEEDRESCHED;
676121790Sjeff		ipi_selected(1 << cpu, IPI_AST);
677121790Sjeff	}
678121790Sjeff}
679121790Sjeff
680121790Sjeffstatic struct kse *
681121790Sjeffrunq_steal(struct runq *rq)
682121790Sjeff{
683121790Sjeff	struct rqhead *rqh;
684121790Sjeff	struct rqbits *rqb;
685121790Sjeff	struct kse *ke;
686121790Sjeff	int word;
687121790Sjeff	int bit;
688121790Sjeff
689121790Sjeff	mtx_assert(&sched_lock, MA_OWNED);
690121790Sjeff	rqb = &rq->rq_status;
691121790Sjeff	for (word = 0; word < RQB_LEN; word++) {
692121790Sjeff		if (rqb->rqb_bits[word] == 0)
693121790Sjeff			continue;
694121790Sjeff		for (bit = 0; bit < RQB_BPW; bit++) {
695123231Speter			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
696121790Sjeff				continue;
697121790Sjeff			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
698121790Sjeff			TAILQ_FOREACH(ke, rqh, ke_procq) {
699121896Sjeff				if (KSE_CAN_MIGRATE(ke,
700121896Sjeff				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
701121790Sjeff					return (ke);
702121790Sjeff			}
703121790Sjeff		}
704121790Sjeff	}
705121790Sjeff	return (NULL);
706121790Sjeff}
707121790Sjeff
708121790Sjeffstatic struct kse *
709123433Sjeffkseq_steal(struct kseq *kseq, int stealidle)
710121790Sjeff{
711121790Sjeff	struct kse *ke;
712121790Sjeff
713123433Sjeff	/*
714123433Sjeff	 * Steal from next first to try to get a non-interactive task that
715123433Sjeff	 * may not have run for a while.
716123433Sjeff	 */
717123433Sjeff	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
718123433Sjeff		return (ke);
719121790Sjeff	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
720121790Sjeff		return (ke);
721123433Sjeff	if (stealidle)
722123433Sjeff		return (runq_steal(&kseq->ksq_idle));
723123433Sjeff	return (NULL);
724121790Sjeff}
725123433Sjeff
726123433Sjeffint
727123433Sjeffkseq_transfer(struct kseq *kseq, struct kse *ke, int class)
728123433Sjeff{
729123433Sjeff	struct kseq_group *ksg;
730123433Sjeff	int cpu;
731123433Sjeff
732123433Sjeff	cpu = 0;
733123433Sjeff	ksg = kseq->ksq_group;
734123433Sjeff
735123433Sjeff	/*
736123433Sjeff	 * XXX This ksg_transferable might work better if we were checking
737123433Sjeff	 * against a global group load.  As it is now, this prevents us from
738123433Sjeff	 * transfering a thread from a group that is potentially bogged down
739123433Sjeff	 * with non transferable load.
740123433Sjeff	 */
741123433Sjeff	if (ksg->ksg_transferable > ksg->ksg_cpus && kseq_idle) {
742123433Sjeff		/*
743123433Sjeff		 * Multiple cpus could find this bit simultaneously
744123433Sjeff		 * but the race shouldn't be terrible.
745123433Sjeff		 */
746123433Sjeff		cpu = ffs(kseq_idle);
747123433Sjeff		if (cpu)
748123433Sjeff			atomic_clear_int(&kseq_idle, 1 << (cpu - 1));
749123433Sjeff	}
750123433Sjeff	/*
751123433Sjeff	 * If another cpu in this group has idled, assign a thread over
752123433Sjeff	 * to them after checking to see if there are idled groups.
753123433Sjeff	 */
754123433Sjeff	if (cpu == 0 && kseq->ksq_load > 1 && ksg->ksg_idlemask) {
755123433Sjeff		cpu = ffs(ksg->ksg_idlemask);
756123433Sjeff		if (cpu)
757123433Sjeff			ksg->ksg_idlemask &= ~(1 << (cpu - 1));
758123433Sjeff	}
759123433Sjeff	/*
760123433Sjeff	 * Now that we've found an idle CPU, migrate the thread.
761123433Sjeff	 */
762123433Sjeff	if (cpu) {
763123433Sjeff		cpu--;
764123433Sjeff		ke->ke_cpu = cpu;
765123433Sjeff		ke->ke_runq = NULL;
766123433Sjeff		kseq_notify(ke, cpu);
767123433Sjeff		return (1);
768123433Sjeff	}
769123433Sjeff	return (0);
770123433Sjeff}
771123433Sjeff
772121790Sjeff#endif	/* SMP */
773121790Sjeff
774117326Sjeff/*
775121790Sjeff * Pick the highest priority task we have and return it.
776117326Sjeff */
777117326Sjeff
778121790Sjeffstatic struct kse *
779121790Sjeffkseq_choose(struct kseq *kseq)
780110267Sjeff{
781110267Sjeff	struct kse *ke;
782110267Sjeff	struct runq *swap;
783110267Sjeff
784115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
785113357Sjeff	swap = NULL;
786112994Sjeff
787113357Sjeff	for (;;) {
788113357Sjeff		ke = runq_choose(kseq->ksq_curr);
789113357Sjeff		if (ke == NULL) {
790113357Sjeff			/*
791113357Sjeff			 * We already swaped once and didn't get anywhere.
792113357Sjeff			 */
793113357Sjeff			if (swap)
794113357Sjeff				break;
795113357Sjeff			swap = kseq->ksq_curr;
796113357Sjeff			kseq->ksq_curr = kseq->ksq_next;
797113357Sjeff			kseq->ksq_next = swap;
798113357Sjeff			continue;
799113357Sjeff		}
800113357Sjeff		/*
801113357Sjeff		 * If we encounter a slice of 0 the kse is in a
802113357Sjeff		 * TIMESHARE kse group and its nice was too far out
803113357Sjeff		 * of the range that receives slices.
804113357Sjeff		 */
805121790Sjeff		if (ke->ke_slice == 0) {
806113357Sjeff			runq_remove(ke->ke_runq, ke);
807113357Sjeff			sched_slice(ke);
808113357Sjeff			ke->ke_runq = kseq->ksq_next;
809113357Sjeff			runq_add(ke->ke_runq, ke);
810113357Sjeff			continue;
811113357Sjeff		}
812113357Sjeff		return (ke);
813110267Sjeff	}
814110267Sjeff
815113357Sjeff	return (runq_choose(&kseq->ksq_idle));
816110267Sjeff}
817110267Sjeff
818109864Sjeffstatic void
819110028Sjeffkseq_setup(struct kseq *kseq)
820110028Sjeff{
821113357Sjeff	runq_init(&kseq->ksq_timeshare[0]);
822113357Sjeff	runq_init(&kseq->ksq_timeshare[1]);
823112994Sjeff	runq_init(&kseq->ksq_idle);
824113357Sjeff	kseq->ksq_curr = &kseq->ksq_timeshare[0];
825113357Sjeff	kseq->ksq_next = &kseq->ksq_timeshare[1];
826113660Sjeff	kseq->ksq_load = 0;
827121896Sjeff	kseq->ksq_load_timeshare = 0;
828110028Sjeff}
829110028Sjeff
830110028Sjeffstatic void
831109864Sjeffsched_setup(void *dummy)
832109864Sjeff{
833117313Sjeff#ifdef SMP
834123487Sjeff	int balance_groups;
835109864Sjeff	int i;
836117313Sjeff#endif
837109864Sjeff
838116946Sjeff	slice_min = (hz/100);	/* 10ms */
839116946Sjeff	slice_max = (hz/7);	/* ~140ms */
840111857Sjeff
841117237Sjeff#ifdef SMP
842123487Sjeff	balance_groups = 0;
843123433Sjeff	/*
844123433Sjeff	 * Initialize the kseqs.
845123433Sjeff	 */
846123433Sjeff	for (i = 0; i < MAXCPU; i++) {
847123433Sjeff		struct kseq *ksq;
848123433Sjeff
849123433Sjeff		ksq = &kseq_cpu[i];
850123433Sjeff		ksq->ksq_assigned = NULL;
851123433Sjeff		kseq_setup(&kseq_cpu[i]);
852123433Sjeff	}
853117237Sjeff	if (smp_topology == NULL) {
854123433Sjeff		struct kseq_group *ksg;
855123433Sjeff		struct kseq *ksq;
856123433Sjeff
857117237Sjeff		for (i = 0; i < MAXCPU; i++) {
858123433Sjeff			ksq = &kseq_cpu[i];
859123433Sjeff			ksg = &kseq_groups[i];
860123433Sjeff			/*
861123433Sjeff			 * Setup a kse group with one member.
862123433Sjeff			 */
863123433Sjeff			ksq->ksq_transferable = 0;
864123433Sjeff			ksq->ksq_group = ksg;
865123433Sjeff			ksg->ksg_cpus = 1;
866123433Sjeff			ksg->ksg_idlemask = 0;
867123433Sjeff			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
868123487Sjeff			ksg->ksg_load = 0;
869123433Sjeff			ksg->ksg_transferable = 0;
870123433Sjeff			LIST_INIT(&ksg->ksg_members);
871123433Sjeff			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
872117237Sjeff		}
873117237Sjeff	} else {
874123433Sjeff		struct kseq_group *ksg;
875123433Sjeff		struct cpu_group *cg;
876117237Sjeff		int j;
877113357Sjeff
878117237Sjeff		for (i = 0; i < smp_topology->ct_count; i++) {
879117237Sjeff			cg = &smp_topology->ct_group[i];
880123433Sjeff			ksg = &kseq_groups[i];
881123433Sjeff			/*
882123433Sjeff			 * Initialize the group.
883123433Sjeff			 */
884123433Sjeff			ksg->ksg_idlemask = 0;
885123487Sjeff			ksg->ksg_load = 0;
886123433Sjeff			ksg->ksg_transferable = 0;
887123433Sjeff			ksg->ksg_cpus = cg->cg_count;
888123433Sjeff			ksg->ksg_cpumask = cg->cg_mask;
889123433Sjeff			LIST_INIT(&ksg->ksg_members);
890123433Sjeff			/*
891123433Sjeff			 * Find all of the group members and add them.
892123433Sjeff			 */
893123433Sjeff			for (j = 0; j < MAXCPU; j++) {
894123433Sjeff				if ((cg->cg_mask & (1 << j)) != 0) {
895123433Sjeff					if (ksg->ksg_mask == 0)
896123433Sjeff						ksg->ksg_mask = 1 << j;
897123433Sjeff					kseq_cpu[j].ksq_transferable = 0;
898123433Sjeff					kseq_cpu[j].ksq_group = ksg;
899123433Sjeff					LIST_INSERT_HEAD(&ksg->ksg_members,
900123433Sjeff					    &kseq_cpu[j], ksq_siblings);
901123433Sjeff				}
902123433Sjeff			}
903123487Sjeff			if (ksg->ksg_cpus > 1)
904123487Sjeff				balance_groups = 1;
905117237Sjeff		}
906123487Sjeff		ksg_maxid = smp_topology->ct_count - 1;
907117237Sjeff	}
908119137Ssam	callout_init(&kseq_lb_callout, CALLOUT_MPSAFE);
909123487Sjeff	callout_init(&kseq_group_callout, CALLOUT_MPSAFE);
910122744Sjeff	sched_balance(NULL);
911123487Sjeff	/*
912123487Sjeff	 * Stagger the group and global load balancer so they do not
913123487Sjeff	 * interfere with each other.
914123487Sjeff	 */
915123487Sjeff	if (balance_groups)
916123487Sjeff		callout_reset(&kseq_group_callout, hz / 2,
917123487Sjeff		    sched_balance_groups, NULL);
918117237Sjeff#else
919117237Sjeff	kseq_setup(KSEQ_SELF());
920116069Sjeff#endif
921117237Sjeff	mtx_lock_spin(&sched_lock);
922122744Sjeff	kseq_load_add(KSEQ_SELF(), &kse0);
923117237Sjeff	mtx_unlock_spin(&sched_lock);
924109864Sjeff}
925109864Sjeff
926109864Sjeff/*
927109864Sjeff * Scale the scheduling priority according to the "interactivity" of this
928109864Sjeff * process.
929109864Sjeff */
930113357Sjeffstatic void
931109864Sjeffsched_priority(struct ksegrp *kg)
932109864Sjeff{
933109864Sjeff	int pri;
934109864Sjeff
935109864Sjeff	if (kg->kg_pri_class != PRI_TIMESHARE)
936113357Sjeff		return;
937109864Sjeff
938113357Sjeff	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
939111857Sjeff	pri += SCHED_PRI_BASE;
940109864Sjeff	pri += kg->kg_nice;
941109864Sjeff
942109864Sjeff	if (pri > PRI_MAX_TIMESHARE)
943109864Sjeff		pri = PRI_MAX_TIMESHARE;
944109864Sjeff	else if (pri < PRI_MIN_TIMESHARE)
945109864Sjeff		pri = PRI_MIN_TIMESHARE;
946109864Sjeff
947109864Sjeff	kg->kg_user_pri = pri;
948109864Sjeff
949113357Sjeff	return;
950109864Sjeff}
951109864Sjeff
952109864Sjeff/*
953112966Sjeff * Calculate a time slice based on the properties of the kseg and the runq
954112994Sjeff * that we're on.  This is only for PRI_TIMESHARE ksegrps.
955109864Sjeff */
956112966Sjeffstatic void
957112966Sjeffsched_slice(struct kse *ke)
958109864Sjeff{
959113357Sjeff	struct kseq *kseq;
960112966Sjeff	struct ksegrp *kg;
961109864Sjeff
962112966Sjeff	kg = ke->ke_ksegrp;
963113357Sjeff	kseq = KSEQ_CPU(ke->ke_cpu);
964109864Sjeff
965112966Sjeff	/*
966112966Sjeff	 * Rationale:
967112966Sjeff	 * KSEs in interactive ksegs get the minimum slice so that we
968112966Sjeff	 * quickly notice if it abuses its advantage.
969112966Sjeff	 *
970112966Sjeff	 * KSEs in non-interactive ksegs are assigned a slice that is
971112966Sjeff	 * based on the ksegs nice value relative to the least nice kseg
972112966Sjeff	 * on the run queue for this cpu.
973112966Sjeff	 *
974112966Sjeff	 * If the KSE is less nice than all others it gets the maximum
975112966Sjeff	 * slice and other KSEs will adjust their slice relative to
976112966Sjeff	 * this when they first expire.
977112966Sjeff	 *
978112966Sjeff	 * There is 20 point window that starts relative to the least
979112966Sjeff	 * nice kse on the run queue.  Slice size is determined by
980112966Sjeff	 * the kse distance from the last nice ksegrp.
981112966Sjeff	 *
982121871Sjeff	 * If the kse is outside of the window it will get no slice
983121871Sjeff	 * and will be reevaluated each time it is selected on the
984121871Sjeff	 * run queue.  The exception to this is nice 0 ksegs when
985121871Sjeff	 * a nice -20 is running.  They are always granted a minimum
986121871Sjeff	 * slice.
987112966Sjeff	 */
988113357Sjeff	if (!SCHED_INTERACTIVE(kg)) {
989112966Sjeff		int nice;
990112966Sjeff
991113357Sjeff		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
992121896Sjeff		if (kseq->ksq_load_timeshare == 0 ||
993113357Sjeff		    kg->kg_nice < kseq->ksq_nicemin)
994112966Sjeff			ke->ke_slice = SCHED_SLICE_MAX;
995121871Sjeff		else if (nice <= SCHED_SLICE_NTHRESH)
996112966Sjeff			ke->ke_slice = SCHED_SLICE_NICE(nice);
997121871Sjeff		else if (kg->kg_nice == 0)
998121871Sjeff			ke->ke_slice = SCHED_SLICE_MIN;
999112966Sjeff		else
1000112966Sjeff			ke->ke_slice = 0;
1001112966Sjeff	} else
1002112966Sjeff		ke->ke_slice = SCHED_SLICE_MIN;
1003112966Sjeff
1004113357Sjeff	CTR6(KTR_ULE,
1005113357Sjeff	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
1006113357Sjeff	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
1007121896Sjeff	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
1008113357Sjeff
1009112966Sjeff	return;
1010109864Sjeff}
1011109864Sjeff
1012121868Sjeff/*
1013121868Sjeff * This routine enforces a maximum limit on the amount of scheduling history
1014121868Sjeff * kept.  It is called after either the slptime or runtime is adjusted.
1015121868Sjeff * This routine will not operate correctly when slp or run times have been
1016121868Sjeff * adjusted to more than double their maximum.
1017121868Sjeff */
1018116463Sjeffstatic void
1019116463Sjeffsched_interact_update(struct ksegrp *kg)
1020116463Sjeff{
1021121868Sjeff	int sum;
1022121605Sjeff
1023121868Sjeff	sum = kg->kg_runtime + kg->kg_slptime;
1024121868Sjeff	if (sum < SCHED_SLP_RUN_MAX)
1025121868Sjeff		return;
1026121868Sjeff	/*
1027121868Sjeff	 * If we have exceeded by more than 1/5th then the algorithm below
1028121868Sjeff	 * will not bring us back into range.  Dividing by two here forces
1029121868Sjeff	 * us into the range of [3/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1030121868Sjeff	 */
1031121868Sjeff	if (sum > (SCHED_INTERACT_MAX / 5) * 6) {
1032121868Sjeff		kg->kg_runtime /= 2;
1033121868Sjeff		kg->kg_slptime /= 2;
1034121868Sjeff		return;
1035116463Sjeff	}
1036121868Sjeff	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1037121868Sjeff	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1038116463Sjeff}
1039116463Sjeff
1040121868Sjeffstatic void
1041121868Sjeffsched_interact_fork(struct ksegrp *kg)
1042121868Sjeff{
1043121868Sjeff	int ratio;
1044121868Sjeff	int sum;
1045121868Sjeff
1046121868Sjeff	sum = kg->kg_runtime + kg->kg_slptime;
1047121868Sjeff	if (sum > SCHED_SLP_RUN_FORK) {
1048121868Sjeff		ratio = sum / SCHED_SLP_RUN_FORK;
1049121868Sjeff		kg->kg_runtime /= ratio;
1050121868Sjeff		kg->kg_slptime /= ratio;
1051121868Sjeff	}
1052121868Sjeff}
1053121868Sjeff
1054111857Sjeffstatic int
1055111857Sjeffsched_interact_score(struct ksegrp *kg)
1056111857Sjeff{
1057116365Sjeff	int div;
1058111857Sjeff
1059111857Sjeff	if (kg->kg_runtime > kg->kg_slptime) {
1060116365Sjeff		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1061116365Sjeff		return (SCHED_INTERACT_HALF +
1062116365Sjeff		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1063116365Sjeff	} if (kg->kg_slptime > kg->kg_runtime) {
1064116365Sjeff		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1065116365Sjeff		return (kg->kg_runtime / div);
1066111857Sjeff	}
1067111857Sjeff
1068116365Sjeff	/*
1069116365Sjeff	 * This can happen if slptime and runtime are 0.
1070116365Sjeff	 */
1071116365Sjeff	return (0);
1072111857Sjeff
1073111857Sjeff}
1074111857Sjeff
1075113357Sjeff/*
1076113357Sjeff * This is only somewhat accurate since given many processes of the same
1077113357Sjeff * priority they will switch when their slices run out, which will be
1078113357Sjeff * at most SCHED_SLICE_MAX.
1079113357Sjeff */
1080109864Sjeffint
1081109864Sjeffsched_rr_interval(void)
1082109864Sjeff{
1083109864Sjeff	return (SCHED_SLICE_MAX);
1084109864Sjeff}
1085109864Sjeff
1086121790Sjeffstatic void
1087109864Sjeffsched_pctcpu_update(struct kse *ke)
1088109864Sjeff{
1089109864Sjeff	/*
1090109864Sjeff	 * Adjust counters and watermark for pctcpu calc.
1091116365Sjeff	 */
1092120272Sjeff	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1093120272Sjeff		/*
1094120272Sjeff		 * Shift the tick count out so that the divide doesn't
1095120272Sjeff		 * round away our results.
1096120272Sjeff		 */
1097120272Sjeff		ke->ke_ticks <<= 10;
1098120272Sjeff		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1099120272Sjeff			    SCHED_CPU_TICKS;
1100120272Sjeff		ke->ke_ticks >>= 10;
1101120272Sjeff	} else
1102120272Sjeff		ke->ke_ticks = 0;
1103109864Sjeff	ke->ke_ltick = ticks;
1104109864Sjeff	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1105109864Sjeff}
1106109864Sjeff
1107109864Sjeffvoid
1108109864Sjeffsched_prio(struct thread *td, u_char prio)
1109109864Sjeff{
1110121605Sjeff	struct kse *ke;
1111109864Sjeff
1112121605Sjeff	ke = td->td_kse;
1113109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1114109864Sjeff	if (TD_ON_RUNQ(td)) {
1115121605Sjeff		/*
1116121605Sjeff		 * If the priority has been elevated due to priority
1117121605Sjeff		 * propagation, we may have to move ourselves to a new
1118121605Sjeff		 * queue.  We still call adjustrunqueue below in case kse
1119121605Sjeff		 * needs to fix things up.
1120121605Sjeff		 */
1121121872Sjeff		if (prio < td->td_priority && ke &&
1122121872Sjeff		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1123121790Sjeff		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1124121605Sjeff			runq_remove(ke->ke_runq, ke);
1125121605Sjeff			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1126121605Sjeff			runq_add(ke->ke_runq, ke);
1127121605Sjeff		}
1128119488Sdavidxu		adjustrunqueue(td, prio);
1129121605Sjeff	} else
1130119488Sdavidxu		td->td_priority = prio;
1131109864Sjeff}
1132109864Sjeff
1133109864Sjeffvoid
1134121128Sjeffsched_switch(struct thread *td)
1135109864Sjeff{
1136121128Sjeff	struct thread *newtd;
1137109864Sjeff	struct kse *ke;
1138109864Sjeff
1139109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1140109864Sjeff
1141109864Sjeff	ke = td->td_kse;
1142109864Sjeff
1143109864Sjeff	td->td_last_kse = ke;
1144113339Sjulian        td->td_lastcpu = td->td_oncpu;
1145113339Sjulian	td->td_oncpu = NOCPU;
1146111032Sjulian        td->td_flags &= ~TDF_NEEDRESCHED;
1147109864Sjeff
1148123434Sjeff	/*
1149123434Sjeff	 * If the KSE has been assigned it may be in the process of switching
1150123434Sjeff	 * to the new cpu.  This is the case in sched_bind().
1151123434Sjeff	 */
1152123434Sjeff	if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1153123434Sjeff		if (TD_IS_RUNNING(td)) {
1154123434Sjeff			if (td->td_proc->p_flag & P_SA) {
1155123434Sjeff				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1156123434Sjeff				setrunqueue(td);
1157123434Sjeff			} else
1158123434Sjeff				kseq_runq_add(KSEQ_SELF(), ke);
1159123434Sjeff		} else {
1160123434Sjeff			if (ke->ke_runq)
1161123434Sjeff				kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1162123434Sjeff			/*
1163123434Sjeff			 * We will not be on the run queue. So we must be
1164123434Sjeff			 * sleeping or similar.
1165123434Sjeff			 */
1166123434Sjeff			if (td->td_proc->p_flag & P_SA)
1167123434Sjeff				kse_reassign(ke);
1168123434Sjeff		}
1169121146Sjeff	}
1170121128Sjeff	newtd = choosethread();
1171121128Sjeff	if (td != newtd)
1172121128Sjeff		cpu_switch(td, newtd);
1173121128Sjeff	sched_lock.mtx_lock = (uintptr_t)td;
1174109864Sjeff
1175113339Sjulian	td->td_oncpu = PCPU_GET(cpuid);
1176109864Sjeff}
1177109864Sjeff
1178109864Sjeffvoid
1179109864Sjeffsched_nice(struct ksegrp *kg, int nice)
1180109864Sjeff{
1181113357Sjeff	struct kse *ke;
1182109864Sjeff	struct thread *td;
1183113357Sjeff	struct kseq *kseq;
1184109864Sjeff
1185113873Sjhb	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
1186113873Sjhb	mtx_assert(&sched_lock, MA_OWNED);
1187113357Sjeff	/*
1188113357Sjeff	 * We need to adjust the nice counts for running KSEs.
1189113357Sjeff	 */
1190113357Sjeff	if (kg->kg_pri_class == PRI_TIMESHARE)
1191113357Sjeff		FOREACH_KSE_IN_GROUP(kg, ke) {
1192116500Sjeff			if (ke->ke_runq == NULL)
1193113357Sjeff				continue;
1194113357Sjeff			kseq = KSEQ_CPU(ke->ke_cpu);
1195113357Sjeff			kseq_nice_rem(kseq, kg->kg_nice);
1196113357Sjeff			kseq_nice_add(kseq, nice);
1197113357Sjeff		}
1198109864Sjeff	kg->kg_nice = nice;
1199109864Sjeff	sched_priority(kg);
1200113357Sjeff	FOREACH_THREAD_IN_GROUP(kg, td)
1201111032Sjulian		td->td_flags |= TDF_NEEDRESCHED;
1202109864Sjeff}
1203109864Sjeff
1204109864Sjeffvoid
1205109864Sjeffsched_sleep(struct thread *td, u_char prio)
1206109864Sjeff{
1207109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1208109864Sjeff
1209109864Sjeff	td->td_slptime = ticks;
1210109864Sjeff	td->td_priority = prio;
1211109864Sjeff
1212113357Sjeff	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
1213113357Sjeff	    td->td_kse, td->td_slptime);
1214109864Sjeff}
1215109864Sjeff
1216109864Sjeffvoid
1217109864Sjeffsched_wakeup(struct thread *td)
1218109864Sjeff{
1219109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1220109864Sjeff
1221109864Sjeff	/*
1222109864Sjeff	 * Let the kseg know how long we slept for.  This is because process
1223109864Sjeff	 * interactivity behavior is modeled in the kseg.
1224109864Sjeff	 */
1225111788Sjeff	if (td->td_slptime) {
1226111788Sjeff		struct ksegrp *kg;
1227113357Sjeff		int hzticks;
1228109864Sjeff
1229111788Sjeff		kg = td->td_ksegrp;
1230121868Sjeff		hzticks = (ticks - td->td_slptime) << 10;
1231121868Sjeff		if (hzticks >= SCHED_SLP_RUN_MAX) {
1232121868Sjeff			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1233121868Sjeff			kg->kg_runtime = 1;
1234121868Sjeff		} else {
1235121868Sjeff			kg->kg_slptime += hzticks;
1236121868Sjeff			sched_interact_update(kg);
1237121868Sjeff		}
1238111788Sjeff		sched_priority(kg);
1239116463Sjeff		if (td->td_kse)
1240116463Sjeff			sched_slice(td->td_kse);
1241113357Sjeff		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
1242113357Sjeff		    td->td_kse, hzticks);
1243111788Sjeff		td->td_slptime = 0;
1244109864Sjeff	}
1245109864Sjeff	setrunqueue(td);
1246109864Sjeff}
1247109864Sjeff
1248109864Sjeff/*
1249109864Sjeff * Penalize the parent for creating a new child and initialize the child's
1250109864Sjeff * priority.
1251109864Sjeff */
1252109864Sjeffvoid
1253113357Sjeffsched_fork(struct proc *p, struct proc *p1)
1254109864Sjeff{
1255109864Sjeff
1256109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1257109864Sjeff
1258113357Sjeff	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
1259113357Sjeff	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
1260113357Sjeff	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
1261113357Sjeff}
1262113357Sjeff
1263113357Sjeffvoid
1264113357Sjeffsched_fork_kse(struct kse *ke, struct kse *child)
1265113357Sjeff{
1266113923Sjhb
1267116365Sjeff	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1268122847Sjeff	child->ke_cpu = ke->ke_cpu;
1269113357Sjeff	child->ke_runq = NULL;
1270113357Sjeff
1271121051Sjeff	/* Grab our parents cpu estimation information. */
1272121051Sjeff	child->ke_ticks = ke->ke_ticks;
1273121051Sjeff	child->ke_ltick = ke->ke_ltick;
1274121051Sjeff	child->ke_ftick = ke->ke_ftick;
1275113357Sjeff}
1276113357Sjeff
1277113357Sjeffvoid
1278113357Sjeffsched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1279113357Sjeff{
1280113923Sjhb	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
1281116365Sjeff
1282121868Sjeff	child->kg_slptime = kg->kg_slptime;
1283121868Sjeff	child->kg_runtime = kg->kg_runtime;
1284121868Sjeff	child->kg_user_pri = kg->kg_user_pri;
1285121868Sjeff	child->kg_nice = kg->kg_nice;
1286121868Sjeff	sched_interact_fork(child);
1287116463Sjeff	kg->kg_runtime += tickincr << 10;
1288116463Sjeff	sched_interact_update(kg);
1289113357Sjeff
1290121868Sjeff	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1291121868Sjeff	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1292121868Sjeff	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1293113357Sjeff}
1294109864Sjeff
1295113357Sjeffvoid
1296113357Sjeffsched_fork_thread(struct thread *td, struct thread *child)
1297113357Sjeff{
1298113357Sjeff}
1299113357Sjeff
1300113357Sjeffvoid
1301113357Sjeffsched_class(struct ksegrp *kg, int class)
1302113357Sjeff{
1303113357Sjeff	struct kseq *kseq;
1304113357Sjeff	struct kse *ke;
1305121896Sjeff	int nclass;
1306121896Sjeff	int oclass;
1307113357Sjeff
1308113923Sjhb	mtx_assert(&sched_lock, MA_OWNED);
1309113357Sjeff	if (kg->kg_pri_class == class)
1310113357Sjeff		return;
1311113357Sjeff
1312121896Sjeff	nclass = PRI_BASE(class);
1313121896Sjeff	oclass = PRI_BASE(kg->kg_pri_class);
1314113357Sjeff	FOREACH_KSE_IN_GROUP(kg, ke) {
1315113357Sjeff		if (ke->ke_state != KES_ONRUNQ &&
1316113357Sjeff		    ke->ke_state != KES_THREAD)
1317113357Sjeff			continue;
1318113357Sjeff		kseq = KSEQ_CPU(ke->ke_cpu);
1319113357Sjeff
1320121896Sjeff#ifdef SMP
1321122744Sjeff		/*
1322122744Sjeff		 * On SMP if we're on the RUNQ we must adjust the transferable
1323122744Sjeff		 * count because could be changing to or from an interrupt
1324122744Sjeff		 * class.
1325122744Sjeff		 */
1326122744Sjeff		if (ke->ke_state == KES_ONRUNQ) {
1327123433Sjeff			if (KSE_CAN_MIGRATE(ke, oclass)) {
1328123433Sjeff				kseq->ksq_transferable--;
1329123433Sjeff				kseq->ksq_group->ksg_transferable--;
1330123433Sjeff			}
1331123433Sjeff			if (KSE_CAN_MIGRATE(ke, nclass)) {
1332123433Sjeff				kseq->ksq_transferable++;
1333123433Sjeff				kseq->ksq_group->ksg_transferable++;
1334123433Sjeff			}
1335122744Sjeff		}
1336121896Sjeff#endif
1337122744Sjeff		if (oclass == PRI_TIMESHARE) {
1338121896Sjeff			kseq->ksq_load_timeshare--;
1339122744Sjeff			kseq_nice_rem(kseq, kg->kg_nice);
1340122744Sjeff		}
1341122744Sjeff		if (nclass == PRI_TIMESHARE) {
1342121896Sjeff			kseq->ksq_load_timeshare++;
1343113357Sjeff			kseq_nice_add(kseq, kg->kg_nice);
1344122744Sjeff		}
1345109970Sjeff	}
1346109970Sjeff
1347113357Sjeff	kg->kg_pri_class = class;
1348109864Sjeff}
1349109864Sjeff
1350109864Sjeff/*
1351109864Sjeff * Return some of the child's priority and interactivity to the parent.
1352109864Sjeff */
1353109864Sjeffvoid
1354113357Sjeffsched_exit(struct proc *p, struct proc *child)
1355109864Sjeff{
1356109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1357113372Sjeff	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
1358116365Sjeff	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
1359109864Sjeff}
1360109864Sjeff
1361109864Sjeffvoid
1362113372Sjeffsched_exit_kse(struct kse *ke, struct kse *child)
1363113372Sjeff{
1364122744Sjeff	kseq_load_rem(KSEQ_CPU(child->ke_cpu), child);
1365113372Sjeff}
1366113372Sjeff
1367113372Sjeffvoid
1368113372Sjeffsched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1369113372Sjeff{
1370116463Sjeff	/* kg->kg_slptime += child->kg_slptime; */
1371116365Sjeff	kg->kg_runtime += child->kg_runtime;
1372116463Sjeff	sched_interact_update(kg);
1373113372Sjeff}
1374113372Sjeff
1375113372Sjeffvoid
1376113372Sjeffsched_exit_thread(struct thread *td, struct thread *child)
1377113372Sjeff{
1378113372Sjeff}
1379113372Sjeff
1380113372Sjeffvoid
1381121127Sjeffsched_clock(struct thread *td)
1382109864Sjeff{
1383113357Sjeff	struct kseq *kseq;
1384113357Sjeff	struct ksegrp *kg;
1385121127Sjeff	struct kse *ke;
1386109864Sjeff
1387113357Sjeff	/*
1388113357Sjeff	 * sched_setup() apparently happens prior to stathz being set.  We
1389113357Sjeff	 * need to resolve the timers earlier in the boot so we can avoid
1390113357Sjeff	 * calculating this here.
1391113357Sjeff	 */
1392113357Sjeff	if (realstathz == 0) {
1393113357Sjeff		realstathz = stathz ? stathz : hz;
1394113357Sjeff		tickincr = hz / realstathz;
1395113357Sjeff		/*
1396113357Sjeff		 * XXX This does not work for values of stathz that are much
1397113357Sjeff		 * larger than hz.
1398113357Sjeff		 */
1399113357Sjeff		if (tickincr == 0)
1400113357Sjeff			tickincr = 1;
1401113357Sjeff	}
1402109864Sjeff
1403121127Sjeff	ke = td->td_kse;
1404113357Sjeff	kg = ke->ke_ksegrp;
1405109864Sjeff
1406110028Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1407110028Sjeff	KASSERT((td != NULL), ("schedclock: null thread pointer"));
1408110028Sjeff
1409110028Sjeff	/* Adjust ticks for pctcpu */
1410111793Sjeff	ke->ke_ticks++;
1411109971Sjeff	ke->ke_ltick = ticks;
1412112994Sjeff
1413109971Sjeff	/* Go up to one second beyond our max and then trim back down */
1414109971Sjeff	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1415109971Sjeff		sched_pctcpu_update(ke);
1416109971Sjeff
1417114496Sjulian	if (td->td_flags & TDF_IDLETD)
1418109864Sjeff		return;
1419110028Sjeff
1420113357Sjeff	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1421113357Sjeff	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1422110028Sjeff	/*
1423113357Sjeff	 * We only do slicing code for TIMESHARE ksegrps.
1424113357Sjeff	 */
1425113357Sjeff	if (kg->kg_pri_class != PRI_TIMESHARE)
1426113357Sjeff		return;
1427113357Sjeff	/*
1428110645Sjeff	 * We used a tick charge it to the ksegrp so that we can compute our
1429113357Sjeff	 * interactivity.
1430109864Sjeff	 */
1431113357Sjeff	kg->kg_runtime += tickincr << 10;
1432116463Sjeff	sched_interact_update(kg);
1433110645Sjeff
1434109864Sjeff	/*
1435109864Sjeff	 * We used up one time slice.
1436109864Sjeff	 */
1437122847Sjeff	if (--ke->ke_slice > 0)
1438113357Sjeff		return;
1439109864Sjeff	/*
1440113357Sjeff	 * We're out of time, recompute priorities and requeue.
1441109864Sjeff	 */
1442122847Sjeff	kseq = KSEQ_SELF();
1443122744Sjeff	kseq_load_rem(kseq, ke);
1444113357Sjeff	sched_priority(kg);
1445113357Sjeff	sched_slice(ke);
1446113357Sjeff	if (SCHED_CURR(kg, ke))
1447113357Sjeff		ke->ke_runq = kseq->ksq_curr;
1448113357Sjeff	else
1449113357Sjeff		ke->ke_runq = kseq->ksq_next;
1450122744Sjeff	kseq_load_add(kseq, ke);
1451113357Sjeff	td->td_flags |= TDF_NEEDRESCHED;
1452109864Sjeff}
1453109864Sjeff
1454109864Sjeffint
1455109864Sjeffsched_runnable(void)
1456109864Sjeff{
1457109864Sjeff	struct kseq *kseq;
1458115998Sjeff	int load;
1459109864Sjeff
1460115998Sjeff	load = 1;
1461115998Sjeff
1462110028Sjeff	kseq = KSEQ_SELF();
1463121790Sjeff#ifdef SMP
1464122094Sjeff	if (kseq->ksq_assigned) {
1465122094Sjeff		mtx_lock_spin(&sched_lock);
1466121790Sjeff		kseq_assign(kseq);
1467122094Sjeff		mtx_unlock_spin(&sched_lock);
1468122094Sjeff	}
1469121790Sjeff#endif
1470121605Sjeff	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1471121605Sjeff		if (kseq->ksq_load > 0)
1472121605Sjeff			goto out;
1473121605Sjeff	} else
1474121605Sjeff		if (kseq->ksq_load - 1 > 0)
1475121605Sjeff			goto out;
1476115998Sjeff	load = 0;
1477115998Sjeffout:
1478115998Sjeff	return (load);
1479109864Sjeff}
1480109864Sjeff
1481109864Sjeffvoid
1482109864Sjeffsched_userret(struct thread *td)
1483109864Sjeff{
1484109864Sjeff	struct ksegrp *kg;
1485121605Sjeff
1486121605Sjeff	kg = td->td_ksegrp;
1487109864Sjeff
1488109864Sjeff	if (td->td_priority != kg->kg_user_pri) {
1489109864Sjeff		mtx_lock_spin(&sched_lock);
1490109864Sjeff		td->td_priority = kg->kg_user_pri;
1491109864Sjeff		mtx_unlock_spin(&sched_lock);
1492109864Sjeff	}
1493109864Sjeff}
1494109864Sjeff
1495109864Sjeffstruct kse *
1496109970Sjeffsched_choose(void)
1497109970Sjeff{
1498110028Sjeff	struct kseq *kseq;
1499109970Sjeff	struct kse *ke;
1500109970Sjeff
1501115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1502121790Sjeff	kseq = KSEQ_SELF();
1503113357Sjeff#ifdef SMP
1504123433Sjeffrestart:
1505121790Sjeff	if (kseq->ksq_assigned)
1506121790Sjeff		kseq_assign(kseq);
1507113357Sjeff#endif
1508121790Sjeff	ke = kseq_choose(kseq);
1509109864Sjeff	if (ke) {
1510121790Sjeff#ifdef SMP
1511121790Sjeff		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1512123433Sjeff			if (kseq_idled(kseq) == 0)
1513123433Sjeff				goto restart;
1514121790Sjeff#endif
1515122744Sjeff		kseq_runq_rem(kseq, ke);
1516109864Sjeff		ke->ke_state = KES_THREAD;
1517112966Sjeff
1518113357Sjeff		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1519113357Sjeff			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1520113357Sjeff			    ke, ke->ke_runq, ke->ke_slice,
1521113357Sjeff			    ke->ke_thread->td_priority);
1522113357Sjeff		}
1523113357Sjeff		return (ke);
1524109864Sjeff	}
1525109970Sjeff#ifdef SMP
1526123433Sjeff	if (kseq_idled(kseq) == 0)
1527123433Sjeff		goto restart;
1528109970Sjeff#endif
1529113357Sjeff	return (NULL);
1530109864Sjeff}
1531109864Sjeff
1532109864Sjeffvoid
1533121127Sjeffsched_add(struct thread *td)
1534109864Sjeff{
1535110267Sjeff	struct kseq *kseq;
1536113357Sjeff	struct ksegrp *kg;
1537121127Sjeff	struct kse *ke;
1538121790Sjeff	int class;
1539109864Sjeff
1540121790Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1541121127Sjeff	ke = td->td_kse;
1542121127Sjeff	kg = td->td_ksegrp;
1543121790Sjeff	if (ke->ke_flags & KEF_ASSIGNED)
1544121790Sjeff		return;
1545121790Sjeff	kseq = KSEQ_SELF();
1546110267Sjeff	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
1547109864Sjeff	KASSERT((ke->ke_thread->td_kse != NULL),
1548110267Sjeff	    ("sched_add: No KSE on thread"));
1549109864Sjeff	KASSERT(ke->ke_state != KES_ONRUNQ,
1550110267Sjeff	    ("sched_add: kse %p (%s) already in run queue", ke,
1551109864Sjeff	    ke->ke_proc->p_comm));
1552109864Sjeff	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1553110267Sjeff	    ("sched_add: process swapped out"));
1554113387Sjeff	KASSERT(ke->ke_runq == NULL,
1555113387Sjeff	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1556109864Sjeff
1557121790Sjeff	class = PRI_BASE(kg->kg_pri_class);
1558121790Sjeff	switch (class) {
1559112994Sjeff	case PRI_ITHD:
1560112994Sjeff	case PRI_REALTIME:
1561113357Sjeff		ke->ke_runq = kseq->ksq_curr;
1562113357Sjeff		ke->ke_slice = SCHED_SLICE_MAX;
1563113660Sjeff		ke->ke_cpu = PCPU_GET(cpuid);
1564112994Sjeff		break;
1565112994Sjeff	case PRI_TIMESHARE:
1566113387Sjeff		if (SCHED_CURR(kg, ke))
1567113387Sjeff			ke->ke_runq = kseq->ksq_curr;
1568113387Sjeff		else
1569113387Sjeff			ke->ke_runq = kseq->ksq_next;
1570113357Sjeff		break;
1571112994Sjeff	case PRI_IDLE:
1572113357Sjeff		/*
1573113357Sjeff		 * This is for priority prop.
1574113357Sjeff		 */
1575121605Sjeff		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1576113357Sjeff			ke->ke_runq = kseq->ksq_curr;
1577113357Sjeff		else
1578113357Sjeff			ke->ke_runq = &kseq->ksq_idle;
1579113357Sjeff		ke->ke_slice = SCHED_SLICE_MIN;
1580112994Sjeff		break;
1581113357Sjeff	default:
1582121868Sjeff		panic("Unknown pri class.");
1583113357Sjeff		break;
1584112994Sjeff	}
1585121790Sjeff#ifdef SMP
1586123433Sjeff	if (ke->ke_cpu != PCPU_GET(cpuid)) {
1587123433Sjeff		kseq_notify(ke, ke->ke_cpu);
1588123433Sjeff		return;
1589123433Sjeff	}
1590121790Sjeff	/*
1591123433Sjeff	 * If there are any idle groups, give them our extra load.  The
1592122744Sjeff	 * threshold at which we start to reassign kses has a large impact
1593122744Sjeff	 * on the overall performance of the system.  Tuned too high and
1594122744Sjeff	 * some CPUs may idle.  Too low and there will be excess migration
1595122744Sjeff	 * and context swiches.
1596121790Sjeff	 */
1597123433Sjeff	if (kseq->ksq_load > 1 && KSE_CAN_MIGRATE(ke, class))
1598123433Sjeff		if (kseq_transfer(kseq, ke, class))
1599123433Sjeff			return;
1600123433Sjeff	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1601123433Sjeff	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1602121790Sjeff		/*
1603123433Sjeff		 * Check to see if our group is unidling, and if so, remove it
1604123433Sjeff		 * from the global idle mask.
1605121790Sjeff		 */
1606123433Sjeff		if (kseq->ksq_group->ksg_idlemask ==
1607123433Sjeff		    kseq->ksq_group->ksg_cpumask)
1608123433Sjeff			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1609123433Sjeff		/*
1610123433Sjeff		 * Now remove ourselves from the group specific idle mask.
1611123433Sjeff		 */
1612123433Sjeff		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1613121790Sjeff	}
1614121790Sjeff#endif
1615121790Sjeff        if (td->td_priority < curthread->td_priority)
1616121790Sjeff                curthread->td_flags |= TDF_NEEDRESCHED;
1617121790Sjeff
1618109864Sjeff	ke->ke_ksegrp->kg_runq_kses++;
1619109864Sjeff	ke->ke_state = KES_ONRUNQ;
1620109864Sjeff
1621122744Sjeff	kseq_runq_add(kseq, ke);
1622122744Sjeff	kseq_load_add(kseq, ke);
1623109864Sjeff}
1624109864Sjeff
1625109864Sjeffvoid
1626121127Sjeffsched_rem(struct thread *td)
1627109864Sjeff{
1628113357Sjeff	struct kseq *kseq;
1629121127Sjeff	struct kse *ke;
1630113357Sjeff
1631121127Sjeff	ke = td->td_kse;
1632121790Sjeff	/*
1633121790Sjeff	 * It is safe to just return here because sched_rem() is only ever
1634121790Sjeff	 * used in places where we're immediately going to add the
1635121790Sjeff	 * kse back on again.  In that case it'll be added with the correct
1636121790Sjeff	 * thread and priority when the caller drops the sched_lock.
1637121790Sjeff	 */
1638121790Sjeff	if (ke->ke_flags & KEF_ASSIGNED)
1639121790Sjeff		return;
1640109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1641113387Sjeff	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
1642109864Sjeff
1643109864Sjeff	ke->ke_state = KES_THREAD;
1644109864Sjeff	ke->ke_ksegrp->kg_runq_kses--;
1645113357Sjeff	kseq = KSEQ_CPU(ke->ke_cpu);
1646122744Sjeff	kseq_runq_rem(kseq, ke);
1647122744Sjeff	kseq_load_rem(kseq, ke);
1648109864Sjeff}
1649109864Sjeff
1650109864Sjefffixpt_t
1651121127Sjeffsched_pctcpu(struct thread *td)
1652109864Sjeff{
1653109864Sjeff	fixpt_t pctcpu;
1654121127Sjeff	struct kse *ke;
1655109864Sjeff
1656109864Sjeff	pctcpu = 0;
1657121127Sjeff	ke = td->td_kse;
1658121290Sjeff	if (ke == NULL)
1659121290Sjeff		return (0);
1660109864Sjeff
1661115998Sjeff	mtx_lock_spin(&sched_lock);
1662109864Sjeff	if (ke->ke_ticks) {
1663109864Sjeff		int rtick;
1664109864Sjeff
1665116365Sjeff		/*
1666116365Sjeff		 * Don't update more frequently than twice a second.  Allowing
1667116365Sjeff		 * this causes the cpu usage to decay away too quickly due to
1668116365Sjeff		 * rounding errors.
1669116365Sjeff		 */
1670123435Sjeff		if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1671123435Sjeff		    ke->ke_ltick < (ticks - (hz / 2)))
1672116365Sjeff			sched_pctcpu_update(ke);
1673109864Sjeff		/* How many rtick per second ? */
1674116365Sjeff		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1675110226Sscottl		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1676109864Sjeff	}
1677109864Sjeff
1678109864Sjeff	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1679113865Sjhb	mtx_unlock_spin(&sched_lock);
1680109864Sjeff
1681109864Sjeff	return (pctcpu);
1682109864Sjeff}
1683109864Sjeff
1684122038Sjeffvoid
1685122038Sjeffsched_bind(struct thread *td, int cpu)
1686122038Sjeff{
1687122038Sjeff	struct kse *ke;
1688122038Sjeff
1689122038Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1690122038Sjeff	ke = td->td_kse;
1691122038Sjeff	ke->ke_flags |= KEF_BOUND;
1692123433Sjeff#ifdef SMP
1693123433Sjeff	if (PCPU_GET(cpuid) == cpu)
1694122038Sjeff		return;
1695122038Sjeff	/* sched_rem without the runq_remove */
1696122038Sjeff	ke->ke_state = KES_THREAD;
1697122038Sjeff	ke->ke_ksegrp->kg_runq_kses--;
1698122744Sjeff	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1699122038Sjeff	ke->ke_cpu = cpu;
1700122038Sjeff	kseq_notify(ke, cpu);
1701122038Sjeff	/* When we return from mi_switch we'll be on the correct cpu. */
1702122038Sjeff	td->td_proc->p_stats->p_ru.ru_nvcsw++;
1703122038Sjeff	mi_switch();
1704122038Sjeff#endif
1705122038Sjeff}
1706122038Sjeff
1707122038Sjeffvoid
1708122038Sjeffsched_unbind(struct thread *td)
1709122038Sjeff{
1710122038Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1711122038Sjeff	td->td_kse->ke_flags &= ~KEF_BOUND;
1712122038Sjeff}
1713122038Sjeff
1714109864Sjeffint
1715109864Sjeffsched_sizeof_kse(void)
1716109864Sjeff{
1717109864Sjeff	return (sizeof(struct kse) + sizeof(struct ke_sched));
1718109864Sjeff}
1719109864Sjeff
1720109864Sjeffint
1721109864Sjeffsched_sizeof_ksegrp(void)
1722109864Sjeff{
1723109864Sjeff	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1724109864Sjeff}
1725109864Sjeff
1726109864Sjeffint
1727109864Sjeffsched_sizeof_proc(void)
1728109864Sjeff{
1729109864Sjeff	return (sizeof(struct proc));
1730109864Sjeff}
1731109864Sjeff
1732109864Sjeffint
1733109864Sjeffsched_sizeof_thread(void)
1734109864Sjeff{
1735109864Sjeff	return (sizeof(struct thread) + sizeof(struct td_sched));
1736109864Sjeff}
1737