sched_ule.c revision 123433
1109864Sjeff/*-
2113357Sjeff * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3109864Sjeff * All rights reserved.
4109864Sjeff *
5109864Sjeff * Redistribution and use in source and binary forms, with or without
6109864Sjeff * modification, are permitted provided that the following conditions
7109864Sjeff * are met:
8109864Sjeff * 1. Redistributions of source code must retain the above copyright
9109864Sjeff *    notice unmodified, this list of conditions, and the following
10109864Sjeff *    disclaimer.
11109864Sjeff * 2. Redistributions in binary form must reproduce the above copyright
12109864Sjeff *    notice, this list of conditions and the following disclaimer in the
13109864Sjeff *    documentation and/or other materials provided with the distribution.
14109864Sjeff *
15109864Sjeff * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16109864Sjeff * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17109864Sjeff * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18109864Sjeff * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19109864Sjeff * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20109864Sjeff * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21109864Sjeff * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22109864Sjeff * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23109864Sjeff * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24109864Sjeff * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25109864Sjeff */
26109864Sjeff
27116182Sobrien#include <sys/cdefs.h>
28116182Sobrien__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 123433 2003-12-11 03:57:10Z jeff $");
29116182Sobrien
30109864Sjeff#include <sys/param.h>
31109864Sjeff#include <sys/systm.h>
32109864Sjeff#include <sys/kernel.h>
33109864Sjeff#include <sys/ktr.h>
34109864Sjeff#include <sys/lock.h>
35109864Sjeff#include <sys/mutex.h>
36109864Sjeff#include <sys/proc.h>
37112966Sjeff#include <sys/resource.h>
38122038Sjeff#include <sys/resourcevar.h>
39109864Sjeff#include <sys/sched.h>
40109864Sjeff#include <sys/smp.h>
41109864Sjeff#include <sys/sx.h>
42109864Sjeff#include <sys/sysctl.h>
43109864Sjeff#include <sys/sysproto.h>
44109864Sjeff#include <sys/vmmeter.h>
45109864Sjeff#ifdef DDB
46109864Sjeff#include <ddb/ddb.h>
47109864Sjeff#endif
48109864Sjeff#ifdef KTRACE
49109864Sjeff#include <sys/uio.h>
50109864Sjeff#include <sys/ktrace.h>
51109864Sjeff#endif
52109864Sjeff
53109864Sjeff#include <machine/cpu.h>
54121790Sjeff#include <machine/smp.h>
55109864Sjeff
56113357Sjeff#define KTR_ULE         KTR_NFS
57113357Sjeff
58109864Sjeff/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
59109864Sjeff/* XXX This is bogus compatability crap for ps */
60109864Sjeffstatic fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
61109864SjeffSYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
62109864Sjeff
63109864Sjeffstatic void sched_setup(void *dummy);
64109864SjeffSYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
65109864Sjeff
66113357Sjeffstatic SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
67113357Sjeff
68113357Sjeffstatic int sched_strict;
69113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
70113357Sjeff
71113357Sjeffstatic int slice_min = 1;
72113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
73113357Sjeff
74116365Sjeffstatic int slice_max = 10;
75113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
76113357Sjeff
77111857Sjeffint realstathz;
78113357Sjeffint tickincr = 1;
79111857Sjeff
80116069Sjeff#ifdef SMP
81116069Sjeff/* Callout to handle load balancing SMP systems. */
82116069Sjeffstatic struct callout kseq_lb_callout;
83116069Sjeff#endif
84116069Sjeff
85109864Sjeff/*
86109864Sjeff * These datastructures are allocated within their parent datastructure but
87109864Sjeff * are scheduler specific.
88109864Sjeff */
89109864Sjeff
90109864Sjeffstruct ke_sched {
91109864Sjeff	int		ske_slice;
92109864Sjeff	struct runq	*ske_runq;
93109864Sjeff	/* The following variables are only used for pctcpu calculation */
94109864Sjeff	int		ske_ltick;	/* Last tick that we were running on */
95109864Sjeff	int		ske_ftick;	/* First tick that we were running on */
96109864Sjeff	int		ske_ticks;	/* Tick count */
97113357Sjeff	/* CPU that we have affinity for. */
98110260Sjeff	u_char		ske_cpu;
99109864Sjeff};
100109864Sjeff#define	ke_slice	ke_sched->ske_slice
101109864Sjeff#define	ke_runq		ke_sched->ske_runq
102109864Sjeff#define	ke_ltick	ke_sched->ske_ltick
103109864Sjeff#define	ke_ftick	ke_sched->ske_ftick
104109864Sjeff#define	ke_ticks	ke_sched->ske_ticks
105110260Sjeff#define	ke_cpu		ke_sched->ske_cpu
106121790Sjeff#define	ke_assign	ke_procq.tqe_next
107109864Sjeff
108121790Sjeff#define	KEF_ASSIGNED	KEF_SCHED0	/* KSE is being migrated. */
109122158Sjeff#define	KEF_BOUND	KEF_SCHED1	/* KSE can not migrate. */
110121790Sjeff
111109864Sjeffstruct kg_sched {
112110645Sjeff	int	skg_slptime;		/* Number of ticks we vol. slept */
113110645Sjeff	int	skg_runtime;		/* Number of ticks we were running */
114109864Sjeff};
115109864Sjeff#define	kg_slptime	kg_sched->skg_slptime
116110645Sjeff#define	kg_runtime	kg_sched->skg_runtime
117109864Sjeff
118109864Sjeffstruct td_sched {
119109864Sjeff	int	std_slptime;
120109864Sjeff};
121109864Sjeff#define	td_slptime	td_sched->std_slptime
122109864Sjeff
123110267Sjeffstruct td_sched td_sched;
124109864Sjeffstruct ke_sched ke_sched;
125109864Sjeffstruct kg_sched kg_sched;
126109864Sjeff
127109864Sjeffstruct ke_sched *kse0_sched = &ke_sched;
128109864Sjeffstruct kg_sched *ksegrp0_sched = &kg_sched;
129109864Sjeffstruct p_sched *proc0_sched = NULL;
130109864Sjeffstruct td_sched *thread0_sched = &td_sched;
131109864Sjeff
132109864Sjeff/*
133116642Sjeff * The priority is primarily determined by the interactivity score.  Thus, we
134116642Sjeff * give lower(better) priorities to kse groups that use less CPU.  The nice
135116642Sjeff * value is then directly added to this to allow nice to have some effect
136116642Sjeff * on latency.
137111857Sjeff *
138111857Sjeff * PRI_RANGE:	Total priority range for timeshare threads.
139116642Sjeff * PRI_NRESV:	Number of nice values.
140111857Sjeff * PRI_BASE:	The start of the dynamic range.
141109864Sjeff */
142111857Sjeff#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
143121869Sjeff#define	SCHED_PRI_NRESV		((PRIO_MAX - PRIO_MIN) + 1)
144121869Sjeff#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
145116642Sjeff#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
146113357Sjeff#define	SCHED_PRI_INTERACT(score)					\
147116642Sjeff    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
148109864Sjeff
149109864Sjeff/*
150111857Sjeff * These determine the interactivity of a process.
151109864Sjeff *
152110645Sjeff * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
153110645Sjeff *		before throttling back.
154121868Sjeff * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
155116365Sjeff * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
156111857Sjeff * INTERACT_THRESH:	Threshhold for placement on the current runq.
157109864Sjeff */
158121126Sjeff#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
159121868Sjeff#define	SCHED_SLP_RUN_FORK	((hz / 2) << 10)
160116365Sjeff#define	SCHED_INTERACT_MAX	(100)
161116365Sjeff#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
162121126Sjeff#define	SCHED_INTERACT_THRESH	(30)
163111857Sjeff
164109864Sjeff/*
165109864Sjeff * These parameters and macros determine the size of the time slice that is
166109864Sjeff * granted to each thread.
167109864Sjeff *
168109864Sjeff * SLICE_MIN:	Minimum time slice granted, in units of ticks.
169109864Sjeff * SLICE_MAX:	Maximum time slice granted.
170109864Sjeff * SLICE_RANGE:	Range of available time slices scaled by hz.
171112966Sjeff * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
172112966Sjeff * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
173121871Sjeff * SLICE_NTHRESH:	The nice cutoff point for slice assignment.
174109864Sjeff */
175113357Sjeff#define	SCHED_SLICE_MIN			(slice_min)
176113357Sjeff#define	SCHED_SLICE_MAX			(slice_max)
177121871Sjeff#define	SCHED_SLICE_NTHRESH	(SCHED_PRI_NHALF - 1)
178111857Sjeff#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
179109864Sjeff#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
180112966Sjeff#define	SCHED_SLICE_NICE(nice)						\
181121871Sjeff    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
182109864Sjeff
183109864Sjeff/*
184109864Sjeff * This macro determines whether or not the kse belongs on the current or
185109864Sjeff * next run queue.
186109864Sjeff */
187113357Sjeff#define	SCHED_INTERACTIVE(kg)						\
188113357Sjeff    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
189113417Sjeff#define	SCHED_CURR(kg, ke)						\
190121107Sjeff    (ke->ke_thread->td_priority != kg->kg_user_pri ||			\
191121107Sjeff    SCHED_INTERACTIVE(kg))
192109864Sjeff
193109864Sjeff/*
194109864Sjeff * Cpu percentage computation macros and defines.
195109864Sjeff *
196109864Sjeff * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
197109864Sjeff * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
198109864Sjeff */
199109864Sjeff
200112971Sjeff#define	SCHED_CPU_TIME	10
201109864Sjeff#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
202109864Sjeff
203109864Sjeff/*
204113357Sjeff * kseq - per processor runqs and statistics.
205109864Sjeff */
206109864Sjeffstruct kseq {
207113357Sjeff	struct runq	ksq_idle;		/* Queue of IDLE threads. */
208113357Sjeff	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
209113357Sjeff	struct runq	*ksq_next;		/* Next timeshare queue. */
210113357Sjeff	struct runq	*ksq_curr;		/* Current queue. */
211121896Sjeff	int		ksq_load_timeshare;	/* Load for timeshare. */
212113357Sjeff	int		ksq_load;		/* Aggregate load. */
213121869Sjeff	short		ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
214113357Sjeff	short		ksq_nicemin;		/* Least nice. */
215110267Sjeff#ifdef SMP
216123433Sjeff	int			ksq_transferable;
217123433Sjeff	LIST_ENTRY(kseq)	ksq_siblings;	/* Next in kseq group. */
218123433Sjeff	struct kseq_group	*ksq_group;	/* Our processor group. */
219123433Sjeff	volatile struct kse	*ksq_assigned;	/* assigned by another CPU. */
220110267Sjeff#endif
221109864Sjeff};
222109864Sjeff
223123433Sjeff#ifdef SMP
224109864Sjeff/*
225123433Sjeff * kseq groups are groups of processors which can cheaply share threads.  When
226123433Sjeff * one processor in the group goes idle it will check the runqs of the other
227123433Sjeff * processors in its group prior to halting and waiting for an interrupt.
228123433Sjeff * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
229123433Sjeff * In a numa environment we'd want an idle bitmap per group and a two tiered
230123433Sjeff * load balancer.
231123433Sjeff */
232123433Sjeffstruct kseq_group {
233123433Sjeff	int	ksg_cpus;		/* Count of CPUs in this kseq group. */
234123433Sjeff	int	ksg_cpumask;		/* Mask of cpus in this group. */
235123433Sjeff	int	ksg_idlemask;		/* Idle cpus in this group. */
236123433Sjeff	int	ksg_mask;		/* Bit mask for first cpu. */
237123433Sjeff	int	ksg_transferable;	/* Transferable load of this group. */
238123433Sjeff	LIST_HEAD(, kseq)	ksg_members; /* Linked list of all members. */
239123433Sjeff};
240123433Sjeff#endif
241123433Sjeff
242123433Sjeff/*
243109864Sjeff * One kse queue per processor.
244109864Sjeff */
245110028Sjeff#ifdef SMP
246121790Sjeffstatic int kseq_idle;
247121790Sjeffstatic struct kseq	kseq_cpu[MAXCPU];
248123433Sjeffstatic struct kseq_group kseq_groups[MAXCPU];
249123433Sjeff#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
250123433Sjeff#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
251123433Sjeff#else	/* !SMP */
252121790Sjeffstatic struct kseq	kseq_cpu;
253110028Sjeff#define	KSEQ_SELF()	(&kseq_cpu)
254110028Sjeff#define	KSEQ_CPU(x)	(&kseq_cpu)
255110028Sjeff#endif
256109864Sjeff
257112966Sjeffstatic void sched_slice(struct kse *ke);
258113357Sjeffstatic void sched_priority(struct ksegrp *kg);
259111857Sjeffstatic int sched_interact_score(struct ksegrp *kg);
260116463Sjeffstatic void sched_interact_update(struct ksegrp *kg);
261121868Sjeffstatic void sched_interact_fork(struct ksegrp *kg);
262121790Sjeffstatic void sched_pctcpu_update(struct kse *ke);
263109864Sjeff
264110267Sjeff/* Operations on per processor queues */
265121790Sjeffstatic struct kse * kseq_choose(struct kseq *kseq);
266110028Sjeffstatic void kseq_setup(struct kseq *kseq);
267122744Sjeffstatic void kseq_load_add(struct kseq *kseq, struct kse *ke);
268122744Sjeffstatic void kseq_load_rem(struct kseq *kseq, struct kse *ke);
269122744Sjeffstatic __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
270122744Sjeffstatic __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
271113357Sjeffstatic void kseq_nice_add(struct kseq *kseq, int nice);
272113357Sjeffstatic void kseq_nice_rem(struct kseq *kseq, int nice);
273113660Sjeffvoid kseq_print(int cpu);
274110267Sjeff#ifdef SMP
275123433Sjeffstatic int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
276121790Sjeffstatic struct kse *runq_steal(struct runq *rq);
277122744Sjeffstatic void sched_balance(void *arg);
278121790Sjeffstatic void kseq_move(struct kseq *from, int cpu);
279123433Sjeffstatic int kseq_idled(struct kseq *kseq);
280121790Sjeffstatic void kseq_notify(struct kse *ke, int cpu);
281121790Sjeffstatic void kseq_assign(struct kseq *);
282123433Sjeffstatic struct kse *kseq_steal(struct kseq *kseq, int stealidle);
283122038Sjeff#define	KSE_CAN_MIGRATE(ke, class)					\
284122158Sjeff    ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 &&		\
285122165Sjeff    ((ke)->ke_flags & KEF_BOUND) == 0)
286121790Sjeff#endif
287110028Sjeff
288113357Sjeffvoid
289113660Sjeffkseq_print(int cpu)
290110267Sjeff{
291113660Sjeff	struct kseq *kseq;
292113357Sjeff	int i;
293112994Sjeff
294113660Sjeff	kseq = KSEQ_CPU(cpu);
295112994Sjeff
296113357Sjeff	printf("kseq:\n");
297113357Sjeff	printf("\tload:           %d\n", kseq->ksq_load);
298122744Sjeff	printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
299121896Sjeff#ifdef SMP
300123433Sjeff	printf("\tload transferable: %d\n", kseq->ksq_transferable);
301121896Sjeff#endif
302113357Sjeff	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
303113357Sjeff	printf("\tnice counts:\n");
304121869Sjeff	for (i = 0; i < SCHED_PRI_NRESV; i++)
305113357Sjeff		if (kseq->ksq_nice[i])
306113357Sjeff			printf("\t\t%d = %d\n",
307113357Sjeff			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
308113357Sjeff}
309112994Sjeff
310122744Sjeffstatic __inline void
311122744Sjeffkseq_runq_add(struct kseq *kseq, struct kse *ke)
312122744Sjeff{
313122744Sjeff#ifdef SMP
314123433Sjeff	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
315123433Sjeff		kseq->ksq_transferable++;
316123433Sjeff		kseq->ksq_group->ksg_transferable++;
317123433Sjeff	}
318122744Sjeff#endif
319122744Sjeff	runq_add(ke->ke_runq, ke);
320122744Sjeff}
321122744Sjeff
322122744Sjeffstatic __inline void
323122744Sjeffkseq_runq_rem(struct kseq *kseq, struct kse *ke)
324122744Sjeff{
325122744Sjeff#ifdef SMP
326123433Sjeff	if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
327123433Sjeff		kseq->ksq_transferable--;
328123433Sjeff		kseq->ksq_group->ksg_transferable--;
329123433Sjeff	}
330122744Sjeff#endif
331122744Sjeff	runq_remove(ke->ke_runq, ke);
332122744Sjeff}
333122744Sjeff
334113357Sjeffstatic void
335122744Sjeffkseq_load_add(struct kseq *kseq, struct kse *ke)
336113357Sjeff{
337121896Sjeff	int class;
338115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
339121896Sjeff	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
340121896Sjeff	if (class == PRI_TIMESHARE)
341121896Sjeff		kseq->ksq_load_timeshare++;
342113357Sjeff	kseq->ksq_load++;
343113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
344122744Sjeff		CTR6(KTR_ULE,
345122744Sjeff		    "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
346122744Sjeff		    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
347122744Sjeff		    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
348113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
349113357Sjeff		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
350110267Sjeff}
351113357Sjeff
352112994Sjeffstatic void
353122744Sjeffkseq_load_rem(struct kseq *kseq, struct kse *ke)
354110267Sjeff{
355121896Sjeff	int class;
356115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
357121896Sjeff	class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
358121896Sjeff	if (class == PRI_TIMESHARE)
359121896Sjeff		kseq->ksq_load_timeshare--;
360113357Sjeff	kseq->ksq_load--;
361113357Sjeff	ke->ke_runq = NULL;
362113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
363113357Sjeff		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
364110267Sjeff}
365110267Sjeff
366113357Sjeffstatic void
367113357Sjeffkseq_nice_add(struct kseq *kseq, int nice)
368110267Sjeff{
369115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
370113357Sjeff	/* Normalize to zero. */
371113357Sjeff	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
372121896Sjeff	if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
373113357Sjeff		kseq->ksq_nicemin = nice;
374110267Sjeff}
375110267Sjeff
376113357Sjeffstatic void
377113357Sjeffkseq_nice_rem(struct kseq *kseq, int nice)
378110267Sjeff{
379113357Sjeff	int n;
380113357Sjeff
381115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
382113357Sjeff	/* Normalize to zero. */
383113357Sjeff	n = nice + SCHED_PRI_NHALF;
384113357Sjeff	kseq->ksq_nice[n]--;
385113357Sjeff	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
386113357Sjeff
387113357Sjeff	/*
388113357Sjeff	 * If this wasn't the smallest nice value or there are more in
389113357Sjeff	 * this bucket we can just return.  Otherwise we have to recalculate
390113357Sjeff	 * the smallest nice.
391113357Sjeff	 */
392113357Sjeff	if (nice != kseq->ksq_nicemin ||
393113357Sjeff	    kseq->ksq_nice[n] != 0 ||
394121896Sjeff	    kseq->ksq_load_timeshare == 0)
395113357Sjeff		return;
396113357Sjeff
397121869Sjeff	for (; n < SCHED_PRI_NRESV; n++)
398113357Sjeff		if (kseq->ksq_nice[n]) {
399113357Sjeff			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
400113357Sjeff			return;
401113357Sjeff		}
402110267Sjeff}
403110267Sjeff
404113357Sjeff#ifdef SMP
405116069Sjeff/*
406122744Sjeff * sched_balance is a simple CPU load balancing algorithm.  It operates by
407116069Sjeff * finding the least loaded and most loaded cpu and equalizing their load
408116069Sjeff * by migrating some processes.
409116069Sjeff *
410116069Sjeff * Dealing only with two CPUs at a time has two advantages.  Firstly, most
411116069Sjeff * installations will only have 2 cpus.  Secondly, load balancing too much at
412116069Sjeff * once can have an unpleasant effect on the system.  The scheduler rarely has
413116069Sjeff * enough information to make perfect decisions.  So this algorithm chooses
414116069Sjeff * algorithm simplicity and more gradual effects on load in larger systems.
415116069Sjeff *
416116069Sjeff * It could be improved by considering the priorities and slices assigned to
417116069Sjeff * each task prior to balancing them.  There are many pathological cases with
418116069Sjeff * any approach and so the semi random algorithm below may work as well as any.
419116069Sjeff *
420116069Sjeff */
421121790Sjeffstatic void
422122744Sjeffsched_balance(void *arg)
423116069Sjeff{
424116069Sjeff	struct kseq *kseq;
425123433Sjeff	int transferable;
426116069Sjeff	int high_load;
427116069Sjeff	int low_load;
428116069Sjeff	int high_cpu;
429116069Sjeff	int low_cpu;
430116069Sjeff	int move;
431116069Sjeff	int diff;
432116069Sjeff	int i;
433116069Sjeff
434116069Sjeff	high_cpu = 0;
435116069Sjeff	low_cpu = 0;
436116069Sjeff	high_load = 0;
437116069Sjeff	low_load = -1;
438116069Sjeff
439116069Sjeff	mtx_lock_spin(&sched_lock);
440116962Sjeff	if (smp_started == 0)
441116962Sjeff		goto out;
442116962Sjeff
443123126Sjhb	for (i = 0; i <= mp_maxid; i++) {
444116970Sjeff		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
445116069Sjeff			continue;
446116069Sjeff		kseq = KSEQ_CPU(i);
447123433Sjeff		/*
448123433Sjeff		 * Find the CPU with the highest load that has some threads
449123433Sjeff		 * to transfer.
450123433Sjeff		 */
451123433Sjeff		if (kseq->ksq_load > high_load &&
452123433Sjeff		    kseq->ksq_group->ksg_transferable) {
453123433Sjeff			high_load = kseq->ksq_load;
454116069Sjeff			high_cpu = i;
455116069Sjeff		}
456116069Sjeff		if (low_load == -1 || kseq->ksq_load < low_load) {
457116069Sjeff			low_load = kseq->ksq_load;
458116069Sjeff			low_cpu = i;
459116069Sjeff		}
460116069Sjeff	}
461117237Sjeff	kseq = KSEQ_CPU(high_cpu);
462116069Sjeff	/*
463116069Sjeff	 * Nothing to do.
464116069Sjeff	 */
465123433Sjeff	if (low_load >= high_load)
466116069Sjeff		goto out;
467122744Sjeff	/*
468123433Sjeff	 * If we're transfering within a group we have to use this specific
469123433Sjeff	 * kseq's transferable count, otherwise we can steal from other members
470123433Sjeff	 * of the group.
471123433Sjeff	 */
472123433Sjeff	if (kseq->ksq_group == KSEQ_CPU(low_cpu)->ksq_group)
473123433Sjeff		transferable = kseq->ksq_transferable;
474123433Sjeff	else
475123433Sjeff		transferable = kseq->ksq_group->ksg_transferable;
476123433Sjeff	if (transferable == 0)
477123433Sjeff		goto out;
478123433Sjeff	/*
479122744Sjeff	 * Determine what the imbalance is and then adjust that to how many
480123433Sjeff	 * kses we actually have to give up (transferable).
481122744Sjeff	 */
482122744Sjeff	diff = kseq->ksq_load - low_load;
483116069Sjeff	move = diff / 2;
484116069Sjeff	if (diff & 0x1)
485116069Sjeff		move++;
486123433Sjeff	move = min(move, transferable);
487116069Sjeff	for (i = 0; i < move; i++)
488117237Sjeff		kseq_move(kseq, low_cpu);
489116069Sjeffout:
490116069Sjeff	mtx_unlock_spin(&sched_lock);
491122744Sjeff	callout_reset(&kseq_lb_callout, hz, sched_balance, NULL);
492116069Sjeff
493116069Sjeff	return;
494116069Sjeff}
495116069Sjeff
496121790Sjeffstatic void
497116069Sjeffkseq_move(struct kseq *from, int cpu)
498116069Sjeff{
499123433Sjeff	struct kseq *kseq;
500123433Sjeff	struct kseq *to;
501116069Sjeff	struct kse *ke;
502116069Sjeff
503123433Sjeff	kseq = from;
504123433Sjeff	to = KSEQ_CPU(cpu);
505123433Sjeff	ke = kseq_steal(kseq, 1);
506123433Sjeff	if (ke == NULL) {
507123433Sjeff		struct kseq_group *ksg;
508123433Sjeff
509123433Sjeff		ksg = kseq->ksq_group;
510123433Sjeff		LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
511123433Sjeff			if (kseq == from || kseq->ksq_transferable == 0)
512123433Sjeff				continue;
513123433Sjeff			ke = kseq_steal(kseq, 1);
514123433Sjeff			break;
515123433Sjeff		}
516123433Sjeff		if (ke == NULL)
517123433Sjeff			panic("kseq_move: No KSEs available with a "
518123433Sjeff			    "transferable count of %d\n",
519123433Sjeff			    ksg->ksg_transferable);
520123433Sjeff	}
521123433Sjeff	if (kseq == to)
522123433Sjeff		return;
523116069Sjeff	ke->ke_state = KES_THREAD;
524123433Sjeff	kseq_runq_rem(kseq, ke);
525123433Sjeff	kseq_load_rem(kseq, ke);
526116069Sjeff
527116069Sjeff	ke->ke_cpu = cpu;
528121923Sjeff	kseq_notify(ke, cpu);
529116069Sjeff}
530110267Sjeff
531123433Sjeffstatic int
532123433Sjeffkseq_idled(struct kseq *kseq)
533121790Sjeff{
534123433Sjeff	struct kseq_group *ksg;
535123433Sjeff	struct kseq *steal;
536123433Sjeff	struct kse *ke;
537123433Sjeff
538123433Sjeff	ksg = kseq->ksq_group;
539123433Sjeff	/*
540123433Sjeff	 * If we're in a cpu group, try and steal kses from another cpu in
541123433Sjeff	 * the group before idling.
542123433Sjeff	 */
543123433Sjeff	if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
544123433Sjeff		LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
545123433Sjeff			if (steal == kseq || steal->ksq_transferable == 0)
546123433Sjeff				continue;
547123433Sjeff			ke = kseq_steal(steal, 0);
548123433Sjeff			if (ke == NULL)
549123433Sjeff				continue;
550123433Sjeff			ke->ke_state = KES_THREAD;
551123433Sjeff			kseq_runq_rem(steal, ke);
552123433Sjeff			kseq_load_rem(steal, ke);
553123433Sjeff			ke->ke_cpu = PCPU_GET(cpuid);
554123433Sjeff			sched_add(ke->ke_thread);
555123433Sjeff			return (0);
556123433Sjeff		}
557123433Sjeff	}
558123433Sjeff	/*
559123433Sjeff	 * We only set the idled bit when all of the cpus in the group are
560123433Sjeff	 * idle.  Otherwise we could get into a situation where a KSE bounces
561123433Sjeff	 * back and forth between two idle cores on seperate physical CPUs.
562123433Sjeff	 */
563123433Sjeff	ksg->ksg_idlemask |= PCPU_GET(cpumask);
564123433Sjeff	if (ksg->ksg_idlemask != ksg->ksg_cpumask)
565123433Sjeff		return (1);
566123433Sjeff	atomic_set_int(&kseq_idle, ksg->ksg_mask);
567123433Sjeff	return (1);
568121790Sjeff}
569121790Sjeff
570121790Sjeffstatic void
571121790Sjeffkseq_assign(struct kseq *kseq)
572121790Sjeff{
573121790Sjeff	struct kse *nke;
574121790Sjeff	struct kse *ke;
575121790Sjeff
576121790Sjeff	do {
577122848Sjeff		(volatile struct kse *)ke = kseq->ksq_assigned;
578121790Sjeff	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
579121790Sjeff	for (; ke != NULL; ke = nke) {
580121790Sjeff		nke = ke->ke_assign;
581121790Sjeff		ke->ke_flags &= ~KEF_ASSIGNED;
582121790Sjeff		sched_add(ke->ke_thread);
583121790Sjeff	}
584121790Sjeff}
585121790Sjeff
586121790Sjeffstatic void
587121790Sjeffkseq_notify(struct kse *ke, int cpu)
588121790Sjeff{
589121790Sjeff	struct kseq *kseq;
590121790Sjeff	struct thread *td;
591121790Sjeff	struct pcpu *pcpu;
592121790Sjeff
593121790Sjeff	ke->ke_flags |= KEF_ASSIGNED;
594121790Sjeff
595121790Sjeff	kseq = KSEQ_CPU(cpu);
596121790Sjeff
597121790Sjeff	/*
598121790Sjeff	 * Place a KSE on another cpu's queue and force a resched.
599121790Sjeff	 */
600121790Sjeff	do {
601122848Sjeff		(volatile struct kse *)ke->ke_assign = kseq->ksq_assigned;
602121790Sjeff	} while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
603121790Sjeff	pcpu = pcpu_find(cpu);
604121790Sjeff	td = pcpu->pc_curthread;
605121790Sjeff	if (ke->ke_thread->td_priority < td->td_priority ||
606121790Sjeff	    td == pcpu->pc_idlethread) {
607121790Sjeff		td->td_flags |= TDF_NEEDRESCHED;
608121790Sjeff		ipi_selected(1 << cpu, IPI_AST);
609121790Sjeff	}
610121790Sjeff}
611121790Sjeff
612121790Sjeffstatic struct kse *
613121790Sjeffrunq_steal(struct runq *rq)
614121790Sjeff{
615121790Sjeff	struct rqhead *rqh;
616121790Sjeff	struct rqbits *rqb;
617121790Sjeff	struct kse *ke;
618121790Sjeff	int word;
619121790Sjeff	int bit;
620121790Sjeff
621121790Sjeff	mtx_assert(&sched_lock, MA_OWNED);
622121790Sjeff	rqb = &rq->rq_status;
623121790Sjeff	for (word = 0; word < RQB_LEN; word++) {
624121790Sjeff		if (rqb->rqb_bits[word] == 0)
625121790Sjeff			continue;
626121790Sjeff		for (bit = 0; bit < RQB_BPW; bit++) {
627123231Speter			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
628121790Sjeff				continue;
629121790Sjeff			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
630121790Sjeff			TAILQ_FOREACH(ke, rqh, ke_procq) {
631121896Sjeff				if (KSE_CAN_MIGRATE(ke,
632121896Sjeff				    PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
633121790Sjeff					return (ke);
634121790Sjeff			}
635121790Sjeff		}
636121790Sjeff	}
637121790Sjeff	return (NULL);
638121790Sjeff}
639121790Sjeff
640121790Sjeffstatic struct kse *
641123433Sjeffkseq_steal(struct kseq *kseq, int stealidle)
642121790Sjeff{
643121790Sjeff	struct kse *ke;
644121790Sjeff
645123433Sjeff	/*
646123433Sjeff	 * Steal from next first to try to get a non-interactive task that
647123433Sjeff	 * may not have run for a while.
648123433Sjeff	 */
649123433Sjeff	if ((ke = runq_steal(kseq->ksq_next)) != NULL)
650123433Sjeff		return (ke);
651121790Sjeff	if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
652121790Sjeff		return (ke);
653123433Sjeff	if (stealidle)
654123433Sjeff		return (runq_steal(&kseq->ksq_idle));
655123433Sjeff	return (NULL);
656121790Sjeff}
657123433Sjeff
658123433Sjeffint
659123433Sjeffkseq_transfer(struct kseq *kseq, struct kse *ke, int class)
660123433Sjeff{
661123433Sjeff	struct kseq_group *ksg;
662123433Sjeff	int cpu;
663123433Sjeff
664123433Sjeff	cpu = 0;
665123433Sjeff	ksg = kseq->ksq_group;
666123433Sjeff
667123433Sjeff	/*
668123433Sjeff	 * XXX This ksg_transferable might work better if we were checking
669123433Sjeff	 * against a global group load.  As it is now, this prevents us from
670123433Sjeff	 * transfering a thread from a group that is potentially bogged down
671123433Sjeff	 * with non transferable load.
672123433Sjeff	 */
673123433Sjeff	if (ksg->ksg_transferable > ksg->ksg_cpus && kseq_idle) {
674123433Sjeff		/*
675123433Sjeff		 * Multiple cpus could find this bit simultaneously
676123433Sjeff		 * but the race shouldn't be terrible.
677123433Sjeff		 */
678123433Sjeff		cpu = ffs(kseq_idle);
679123433Sjeff		if (cpu)
680123433Sjeff			atomic_clear_int(&kseq_idle, 1 << (cpu - 1));
681123433Sjeff	}
682123433Sjeff	/*
683123433Sjeff	 * If another cpu in this group has idled, assign a thread over
684123433Sjeff	 * to them after checking to see if there are idled groups.
685123433Sjeff	 */
686123433Sjeff	if (cpu == 0 && kseq->ksq_load > 1 && ksg->ksg_idlemask) {
687123433Sjeff		cpu = ffs(ksg->ksg_idlemask);
688123433Sjeff		if (cpu)
689123433Sjeff			ksg->ksg_idlemask &= ~(1 << (cpu - 1));
690123433Sjeff	}
691123433Sjeff	/*
692123433Sjeff	 * Now that we've found an idle CPU, migrate the thread.
693123433Sjeff	 */
694123433Sjeff	if (cpu) {
695123433Sjeff		cpu--;
696123433Sjeff		ke->ke_cpu = cpu;
697123433Sjeff		ke->ke_runq = NULL;
698123433Sjeff		kseq_notify(ke, cpu);
699123433Sjeff		return (1);
700123433Sjeff	}
701123433Sjeff	return (0);
702123433Sjeff}
703123433Sjeff
704121790Sjeff#endif	/* SMP */
705121790Sjeff
706117326Sjeff/*
707121790Sjeff * Pick the highest priority task we have and return it.
708117326Sjeff */
709117326Sjeff
710121790Sjeffstatic struct kse *
711121790Sjeffkseq_choose(struct kseq *kseq)
712110267Sjeff{
713110267Sjeff	struct kse *ke;
714110267Sjeff	struct runq *swap;
715110267Sjeff
716115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
717113357Sjeff	swap = NULL;
718112994Sjeff
719113357Sjeff	for (;;) {
720113357Sjeff		ke = runq_choose(kseq->ksq_curr);
721113357Sjeff		if (ke == NULL) {
722113357Sjeff			/*
723113357Sjeff			 * We already swaped once and didn't get anywhere.
724113357Sjeff			 */
725113357Sjeff			if (swap)
726113357Sjeff				break;
727113357Sjeff			swap = kseq->ksq_curr;
728113357Sjeff			kseq->ksq_curr = kseq->ksq_next;
729113357Sjeff			kseq->ksq_next = swap;
730113357Sjeff			continue;
731113357Sjeff		}
732113357Sjeff		/*
733113357Sjeff		 * If we encounter a slice of 0 the kse is in a
734113357Sjeff		 * TIMESHARE kse group and its nice was too far out
735113357Sjeff		 * of the range that receives slices.
736113357Sjeff		 */
737121790Sjeff		if (ke->ke_slice == 0) {
738113357Sjeff			runq_remove(ke->ke_runq, ke);
739113357Sjeff			sched_slice(ke);
740113357Sjeff			ke->ke_runq = kseq->ksq_next;
741113357Sjeff			runq_add(ke->ke_runq, ke);
742113357Sjeff			continue;
743113357Sjeff		}
744113357Sjeff		return (ke);
745110267Sjeff	}
746110267Sjeff
747113357Sjeff	return (runq_choose(&kseq->ksq_idle));
748110267Sjeff}
749110267Sjeff
750109864Sjeffstatic void
751110028Sjeffkseq_setup(struct kseq *kseq)
752110028Sjeff{
753113357Sjeff	runq_init(&kseq->ksq_timeshare[0]);
754113357Sjeff	runq_init(&kseq->ksq_timeshare[1]);
755112994Sjeff	runq_init(&kseq->ksq_idle);
756113357Sjeff	kseq->ksq_curr = &kseq->ksq_timeshare[0];
757113357Sjeff	kseq->ksq_next = &kseq->ksq_timeshare[1];
758113660Sjeff	kseq->ksq_load = 0;
759121896Sjeff	kseq->ksq_load_timeshare = 0;
760110028Sjeff}
761110028Sjeff
762110028Sjeffstatic void
763109864Sjeffsched_setup(void *dummy)
764109864Sjeff{
765117313Sjeff#ifdef SMP
766109864Sjeff	int i;
767117313Sjeff#endif
768109864Sjeff
769116946Sjeff	slice_min = (hz/100);	/* 10ms */
770116946Sjeff	slice_max = (hz/7);	/* ~140ms */
771111857Sjeff
772117237Sjeff#ifdef SMP
773123433Sjeff	/*
774123433Sjeff	 * Initialize the kseqs.
775123433Sjeff	 */
776123433Sjeff	for (i = 0; i < MAXCPU; i++) {
777123433Sjeff		struct kseq *ksq;
778123433Sjeff
779123433Sjeff		ksq = &kseq_cpu[i];
780123433Sjeff		ksq->ksq_assigned = NULL;
781123433Sjeff		kseq_setup(&kseq_cpu[i]);
782123433Sjeff	}
783117237Sjeff	if (smp_topology == NULL) {
784123433Sjeff		struct kseq_group *ksg;
785123433Sjeff		struct kseq *ksq;
786123433Sjeff
787117237Sjeff		for (i = 0; i < MAXCPU; i++) {
788123433Sjeff			ksq = &kseq_cpu[i];
789123433Sjeff			ksg = &kseq_groups[i];
790123433Sjeff			/*
791123433Sjeff			 * Setup a kse group with one member.
792123433Sjeff			 */
793123433Sjeff			ksq->ksq_transferable = 0;
794123433Sjeff			ksq->ksq_group = ksg;
795123433Sjeff			ksg->ksg_cpus = 1;
796123433Sjeff			ksg->ksg_idlemask = 0;
797123433Sjeff			ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
798123433Sjeff			ksg->ksg_transferable = 0;
799123433Sjeff			LIST_INIT(&ksg->ksg_members);
800123433Sjeff			LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
801117237Sjeff		}
802117237Sjeff	} else {
803123433Sjeff		struct kseq_group *ksg;
804123433Sjeff		struct cpu_group *cg;
805117237Sjeff		int j;
806113357Sjeff
807117237Sjeff		for (i = 0; i < smp_topology->ct_count; i++) {
808117237Sjeff			cg = &smp_topology->ct_group[i];
809123433Sjeff			ksg = &kseq_groups[i];
810123433Sjeff			/*
811123433Sjeff			 * Initialize the group.
812123433Sjeff			 */
813123433Sjeff			ksg->ksg_idlemask = 0;
814123433Sjeff			ksg->ksg_transferable = 0;
815123433Sjeff			ksg->ksg_cpus = cg->cg_count;
816123433Sjeff			ksg->ksg_cpumask = cg->cg_mask;
817123433Sjeff			LIST_INIT(&ksg->ksg_members);
818123433Sjeff			/*
819123433Sjeff			 * Find all of the group members and add them.
820123433Sjeff			 */
821123433Sjeff			for (j = 0; j < MAXCPU; j++) {
822123433Sjeff				if ((cg->cg_mask & (1 << j)) != 0) {
823123433Sjeff					if (ksg->ksg_mask == 0)
824123433Sjeff						ksg->ksg_mask = 1 << j;
825123433Sjeff					kseq_cpu[j].ksq_transferable = 0;
826123433Sjeff					kseq_cpu[j].ksq_group = ksg;
827123433Sjeff					LIST_INSERT_HEAD(&ksg->ksg_members,
828123433Sjeff					    &kseq_cpu[j], ksq_siblings);
829123433Sjeff				}
830123433Sjeff			}
831117237Sjeff		}
832117237Sjeff	}
833119137Ssam	callout_init(&kseq_lb_callout, CALLOUT_MPSAFE);
834122744Sjeff	sched_balance(NULL);
835117237Sjeff#else
836117237Sjeff	kseq_setup(KSEQ_SELF());
837116069Sjeff#endif
838117237Sjeff	mtx_lock_spin(&sched_lock);
839122744Sjeff	kseq_load_add(KSEQ_SELF(), &kse0);
840117237Sjeff	mtx_unlock_spin(&sched_lock);
841109864Sjeff}
842109864Sjeff
843109864Sjeff/*
844109864Sjeff * Scale the scheduling priority according to the "interactivity" of this
845109864Sjeff * process.
846109864Sjeff */
847113357Sjeffstatic void
848109864Sjeffsched_priority(struct ksegrp *kg)
849109864Sjeff{
850109864Sjeff	int pri;
851109864Sjeff
852109864Sjeff	if (kg->kg_pri_class != PRI_TIMESHARE)
853113357Sjeff		return;
854109864Sjeff
855113357Sjeff	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
856111857Sjeff	pri += SCHED_PRI_BASE;
857109864Sjeff	pri += kg->kg_nice;
858109864Sjeff
859109864Sjeff	if (pri > PRI_MAX_TIMESHARE)
860109864Sjeff		pri = PRI_MAX_TIMESHARE;
861109864Sjeff	else if (pri < PRI_MIN_TIMESHARE)
862109864Sjeff		pri = PRI_MIN_TIMESHARE;
863109864Sjeff
864109864Sjeff	kg->kg_user_pri = pri;
865109864Sjeff
866113357Sjeff	return;
867109864Sjeff}
868109864Sjeff
869109864Sjeff/*
870112966Sjeff * Calculate a time slice based on the properties of the kseg and the runq
871112994Sjeff * that we're on.  This is only for PRI_TIMESHARE ksegrps.
872109864Sjeff */
873112966Sjeffstatic void
874112966Sjeffsched_slice(struct kse *ke)
875109864Sjeff{
876113357Sjeff	struct kseq *kseq;
877112966Sjeff	struct ksegrp *kg;
878109864Sjeff
879112966Sjeff	kg = ke->ke_ksegrp;
880113357Sjeff	kseq = KSEQ_CPU(ke->ke_cpu);
881109864Sjeff
882112966Sjeff	/*
883112966Sjeff	 * Rationale:
884112966Sjeff	 * KSEs in interactive ksegs get the minimum slice so that we
885112966Sjeff	 * quickly notice if it abuses its advantage.
886112966Sjeff	 *
887112966Sjeff	 * KSEs in non-interactive ksegs are assigned a slice that is
888112966Sjeff	 * based on the ksegs nice value relative to the least nice kseg
889112966Sjeff	 * on the run queue for this cpu.
890112966Sjeff	 *
891112966Sjeff	 * If the KSE is less nice than all others it gets the maximum
892112966Sjeff	 * slice and other KSEs will adjust their slice relative to
893112966Sjeff	 * this when they first expire.
894112966Sjeff	 *
895112966Sjeff	 * There is 20 point window that starts relative to the least
896112966Sjeff	 * nice kse on the run queue.  Slice size is determined by
897112966Sjeff	 * the kse distance from the last nice ksegrp.
898112966Sjeff	 *
899121871Sjeff	 * If the kse is outside of the window it will get no slice
900121871Sjeff	 * and will be reevaluated each time it is selected on the
901121871Sjeff	 * run queue.  The exception to this is nice 0 ksegs when
902121871Sjeff	 * a nice -20 is running.  They are always granted a minimum
903121871Sjeff	 * slice.
904112966Sjeff	 */
905113357Sjeff	if (!SCHED_INTERACTIVE(kg)) {
906112966Sjeff		int nice;
907112966Sjeff
908113357Sjeff		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
909121896Sjeff		if (kseq->ksq_load_timeshare == 0 ||
910113357Sjeff		    kg->kg_nice < kseq->ksq_nicemin)
911112966Sjeff			ke->ke_slice = SCHED_SLICE_MAX;
912121871Sjeff		else if (nice <= SCHED_SLICE_NTHRESH)
913112966Sjeff			ke->ke_slice = SCHED_SLICE_NICE(nice);
914121871Sjeff		else if (kg->kg_nice == 0)
915121871Sjeff			ke->ke_slice = SCHED_SLICE_MIN;
916112966Sjeff		else
917112966Sjeff			ke->ke_slice = 0;
918112966Sjeff	} else
919112966Sjeff		ke->ke_slice = SCHED_SLICE_MIN;
920112966Sjeff
921113357Sjeff	CTR6(KTR_ULE,
922113357Sjeff	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
923113357Sjeff	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
924121896Sjeff	    kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
925113357Sjeff
926112966Sjeff	return;
927109864Sjeff}
928109864Sjeff
929121868Sjeff/*
930121868Sjeff * This routine enforces a maximum limit on the amount of scheduling history
931121868Sjeff * kept.  It is called after either the slptime or runtime is adjusted.
932121868Sjeff * This routine will not operate correctly when slp or run times have been
933121868Sjeff * adjusted to more than double their maximum.
934121868Sjeff */
935116463Sjeffstatic void
936116463Sjeffsched_interact_update(struct ksegrp *kg)
937116463Sjeff{
938121868Sjeff	int sum;
939121605Sjeff
940121868Sjeff	sum = kg->kg_runtime + kg->kg_slptime;
941121868Sjeff	if (sum < SCHED_SLP_RUN_MAX)
942121868Sjeff		return;
943121868Sjeff	/*
944121868Sjeff	 * If we have exceeded by more than 1/5th then the algorithm below
945121868Sjeff	 * will not bring us back into range.  Dividing by two here forces
946121868Sjeff	 * us into the range of [3/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
947121868Sjeff	 */
948121868Sjeff	if (sum > (SCHED_INTERACT_MAX / 5) * 6) {
949121868Sjeff		kg->kg_runtime /= 2;
950121868Sjeff		kg->kg_slptime /= 2;
951121868Sjeff		return;
952116463Sjeff	}
953121868Sjeff	kg->kg_runtime = (kg->kg_runtime / 5) * 4;
954121868Sjeff	kg->kg_slptime = (kg->kg_slptime / 5) * 4;
955116463Sjeff}
956116463Sjeff
957121868Sjeffstatic void
958121868Sjeffsched_interact_fork(struct ksegrp *kg)
959121868Sjeff{
960121868Sjeff	int ratio;
961121868Sjeff	int sum;
962121868Sjeff
963121868Sjeff	sum = kg->kg_runtime + kg->kg_slptime;
964121868Sjeff	if (sum > SCHED_SLP_RUN_FORK) {
965121868Sjeff		ratio = sum / SCHED_SLP_RUN_FORK;
966121868Sjeff		kg->kg_runtime /= ratio;
967121868Sjeff		kg->kg_slptime /= ratio;
968121868Sjeff	}
969121868Sjeff}
970121868Sjeff
971111857Sjeffstatic int
972111857Sjeffsched_interact_score(struct ksegrp *kg)
973111857Sjeff{
974116365Sjeff	int div;
975111857Sjeff
976111857Sjeff	if (kg->kg_runtime > kg->kg_slptime) {
977116365Sjeff		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
978116365Sjeff		return (SCHED_INTERACT_HALF +
979116365Sjeff		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
980116365Sjeff	} if (kg->kg_slptime > kg->kg_runtime) {
981116365Sjeff		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
982116365Sjeff		return (kg->kg_runtime / div);
983111857Sjeff	}
984111857Sjeff
985116365Sjeff	/*
986116365Sjeff	 * This can happen if slptime and runtime are 0.
987116365Sjeff	 */
988116365Sjeff	return (0);
989111857Sjeff
990111857Sjeff}
991111857Sjeff
992113357Sjeff/*
993113357Sjeff * This is only somewhat accurate since given many processes of the same
994113357Sjeff * priority they will switch when their slices run out, which will be
995113357Sjeff * at most SCHED_SLICE_MAX.
996113357Sjeff */
997109864Sjeffint
998109864Sjeffsched_rr_interval(void)
999109864Sjeff{
1000109864Sjeff	return (SCHED_SLICE_MAX);
1001109864Sjeff}
1002109864Sjeff
1003121790Sjeffstatic void
1004109864Sjeffsched_pctcpu_update(struct kse *ke)
1005109864Sjeff{
1006109864Sjeff	/*
1007109864Sjeff	 * Adjust counters and watermark for pctcpu calc.
1008116365Sjeff	 */
1009120272Sjeff	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1010120272Sjeff		/*
1011120272Sjeff		 * Shift the tick count out so that the divide doesn't
1012120272Sjeff		 * round away our results.
1013120272Sjeff		 */
1014120272Sjeff		ke->ke_ticks <<= 10;
1015120272Sjeff		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1016120272Sjeff			    SCHED_CPU_TICKS;
1017120272Sjeff		ke->ke_ticks >>= 10;
1018120272Sjeff	} else
1019120272Sjeff		ke->ke_ticks = 0;
1020109864Sjeff	ke->ke_ltick = ticks;
1021109864Sjeff	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1022109864Sjeff}
1023109864Sjeff
1024109864Sjeffvoid
1025109864Sjeffsched_prio(struct thread *td, u_char prio)
1026109864Sjeff{
1027121605Sjeff	struct kse *ke;
1028109864Sjeff
1029121605Sjeff	ke = td->td_kse;
1030109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1031109864Sjeff	if (TD_ON_RUNQ(td)) {
1032121605Sjeff		/*
1033121605Sjeff		 * If the priority has been elevated due to priority
1034121605Sjeff		 * propagation, we may have to move ourselves to a new
1035121605Sjeff		 * queue.  We still call adjustrunqueue below in case kse
1036121605Sjeff		 * needs to fix things up.
1037121605Sjeff		 */
1038121872Sjeff		if (prio < td->td_priority && ke &&
1039121872Sjeff		    (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1040121790Sjeff		    ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1041121605Sjeff			runq_remove(ke->ke_runq, ke);
1042121605Sjeff			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1043121605Sjeff			runq_add(ke->ke_runq, ke);
1044121605Sjeff		}
1045119488Sdavidxu		adjustrunqueue(td, prio);
1046121605Sjeff	} else
1047119488Sdavidxu		td->td_priority = prio;
1048109864Sjeff}
1049109864Sjeff
1050109864Sjeffvoid
1051121128Sjeffsched_switch(struct thread *td)
1052109864Sjeff{
1053121128Sjeff	struct thread *newtd;
1054109864Sjeff	struct kse *ke;
1055109864Sjeff
1056109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1057109864Sjeff
1058109864Sjeff	ke = td->td_kse;
1059109864Sjeff
1060109864Sjeff	td->td_last_kse = ke;
1061113339Sjulian        td->td_lastcpu = td->td_oncpu;
1062113339Sjulian	td->td_oncpu = NOCPU;
1063111032Sjulian        td->td_flags &= ~TDF_NEEDRESCHED;
1064109864Sjeff
1065109864Sjeff	if (TD_IS_RUNNING(td)) {
1066119488Sdavidxu		if (td->td_proc->p_flag & P_SA) {
1067122744Sjeff			kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1068119488Sdavidxu			setrunqueue(td);
1069123433Sjeff		} else
1070122744Sjeff			kseq_runq_add(KSEQ_SELF(), ke);
1071121146Sjeff	} else {
1072121146Sjeff		if (ke->ke_runq)
1073122744Sjeff			kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1074121146Sjeff		/*
1075121146Sjeff		 * We will not be on the run queue. So we must be
1076121146Sjeff		 * sleeping or similar.
1077121146Sjeff		 */
1078121146Sjeff		if (td->td_proc->p_flag & P_SA)
1079121146Sjeff			kse_reassign(ke);
1080121146Sjeff	}
1081121128Sjeff	newtd = choosethread();
1082121128Sjeff	if (td != newtd)
1083121128Sjeff		cpu_switch(td, newtd);
1084121128Sjeff	sched_lock.mtx_lock = (uintptr_t)td;
1085109864Sjeff
1086113339Sjulian	td->td_oncpu = PCPU_GET(cpuid);
1087109864Sjeff}
1088109864Sjeff
1089109864Sjeffvoid
1090109864Sjeffsched_nice(struct ksegrp *kg, int nice)
1091109864Sjeff{
1092113357Sjeff	struct kse *ke;
1093109864Sjeff	struct thread *td;
1094113357Sjeff	struct kseq *kseq;
1095109864Sjeff
1096113873Sjhb	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
1097113873Sjhb	mtx_assert(&sched_lock, MA_OWNED);
1098113357Sjeff	/*
1099113357Sjeff	 * We need to adjust the nice counts for running KSEs.
1100113357Sjeff	 */
1101113357Sjeff	if (kg->kg_pri_class == PRI_TIMESHARE)
1102113357Sjeff		FOREACH_KSE_IN_GROUP(kg, ke) {
1103116500Sjeff			if (ke->ke_runq == NULL)
1104113357Sjeff				continue;
1105113357Sjeff			kseq = KSEQ_CPU(ke->ke_cpu);
1106113357Sjeff			kseq_nice_rem(kseq, kg->kg_nice);
1107113357Sjeff			kseq_nice_add(kseq, nice);
1108113357Sjeff		}
1109109864Sjeff	kg->kg_nice = nice;
1110109864Sjeff	sched_priority(kg);
1111113357Sjeff	FOREACH_THREAD_IN_GROUP(kg, td)
1112111032Sjulian		td->td_flags |= TDF_NEEDRESCHED;
1113109864Sjeff}
1114109864Sjeff
1115109864Sjeffvoid
1116109864Sjeffsched_sleep(struct thread *td, u_char prio)
1117109864Sjeff{
1118109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1119109864Sjeff
1120109864Sjeff	td->td_slptime = ticks;
1121109864Sjeff	td->td_priority = prio;
1122109864Sjeff
1123113357Sjeff	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
1124113357Sjeff	    td->td_kse, td->td_slptime);
1125109864Sjeff}
1126109864Sjeff
1127109864Sjeffvoid
1128109864Sjeffsched_wakeup(struct thread *td)
1129109864Sjeff{
1130109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1131109864Sjeff
1132109864Sjeff	/*
1133109864Sjeff	 * Let the kseg know how long we slept for.  This is because process
1134109864Sjeff	 * interactivity behavior is modeled in the kseg.
1135109864Sjeff	 */
1136111788Sjeff	if (td->td_slptime) {
1137111788Sjeff		struct ksegrp *kg;
1138113357Sjeff		int hzticks;
1139109864Sjeff
1140111788Sjeff		kg = td->td_ksegrp;
1141121868Sjeff		hzticks = (ticks - td->td_slptime) << 10;
1142121868Sjeff		if (hzticks >= SCHED_SLP_RUN_MAX) {
1143121868Sjeff			kg->kg_slptime = SCHED_SLP_RUN_MAX;
1144121868Sjeff			kg->kg_runtime = 1;
1145121868Sjeff		} else {
1146121868Sjeff			kg->kg_slptime += hzticks;
1147121868Sjeff			sched_interact_update(kg);
1148121868Sjeff		}
1149111788Sjeff		sched_priority(kg);
1150116463Sjeff		if (td->td_kse)
1151116463Sjeff			sched_slice(td->td_kse);
1152113357Sjeff		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
1153113357Sjeff		    td->td_kse, hzticks);
1154111788Sjeff		td->td_slptime = 0;
1155109864Sjeff	}
1156109864Sjeff	setrunqueue(td);
1157109864Sjeff}
1158109864Sjeff
1159109864Sjeff/*
1160109864Sjeff * Penalize the parent for creating a new child and initialize the child's
1161109864Sjeff * priority.
1162109864Sjeff */
1163109864Sjeffvoid
1164113357Sjeffsched_fork(struct proc *p, struct proc *p1)
1165109864Sjeff{
1166109864Sjeff
1167109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1168109864Sjeff
1169113357Sjeff	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
1170113357Sjeff	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
1171113357Sjeff	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
1172113357Sjeff}
1173113357Sjeff
1174113357Sjeffvoid
1175113357Sjeffsched_fork_kse(struct kse *ke, struct kse *child)
1176113357Sjeff{
1177113923Sjhb
1178116365Sjeff	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
1179122847Sjeff	child->ke_cpu = ke->ke_cpu;
1180113357Sjeff	child->ke_runq = NULL;
1181113357Sjeff
1182121051Sjeff	/* Grab our parents cpu estimation information. */
1183121051Sjeff	child->ke_ticks = ke->ke_ticks;
1184121051Sjeff	child->ke_ltick = ke->ke_ltick;
1185121051Sjeff	child->ke_ftick = ke->ke_ftick;
1186113357Sjeff}
1187113357Sjeff
1188113357Sjeffvoid
1189113357Sjeffsched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1190113357Sjeff{
1191113923Sjhb	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
1192116365Sjeff
1193121868Sjeff	child->kg_slptime = kg->kg_slptime;
1194121868Sjeff	child->kg_runtime = kg->kg_runtime;
1195121868Sjeff	child->kg_user_pri = kg->kg_user_pri;
1196121868Sjeff	child->kg_nice = kg->kg_nice;
1197121868Sjeff	sched_interact_fork(child);
1198116463Sjeff	kg->kg_runtime += tickincr << 10;
1199116463Sjeff	sched_interact_update(kg);
1200113357Sjeff
1201121868Sjeff	CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1202121868Sjeff	    kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1203121868Sjeff	    child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1204113357Sjeff}
1205109864Sjeff
1206113357Sjeffvoid
1207113357Sjeffsched_fork_thread(struct thread *td, struct thread *child)
1208113357Sjeff{
1209113357Sjeff}
1210113357Sjeff
1211113357Sjeffvoid
1212113357Sjeffsched_class(struct ksegrp *kg, int class)
1213113357Sjeff{
1214113357Sjeff	struct kseq *kseq;
1215113357Sjeff	struct kse *ke;
1216121896Sjeff	int nclass;
1217121896Sjeff	int oclass;
1218113357Sjeff
1219113923Sjhb	mtx_assert(&sched_lock, MA_OWNED);
1220113357Sjeff	if (kg->kg_pri_class == class)
1221113357Sjeff		return;
1222113357Sjeff
1223121896Sjeff	nclass = PRI_BASE(class);
1224121896Sjeff	oclass = PRI_BASE(kg->kg_pri_class);
1225113357Sjeff	FOREACH_KSE_IN_GROUP(kg, ke) {
1226113357Sjeff		if (ke->ke_state != KES_ONRUNQ &&
1227113357Sjeff		    ke->ke_state != KES_THREAD)
1228113357Sjeff			continue;
1229113357Sjeff		kseq = KSEQ_CPU(ke->ke_cpu);
1230113357Sjeff
1231121896Sjeff#ifdef SMP
1232122744Sjeff		/*
1233122744Sjeff		 * On SMP if we're on the RUNQ we must adjust the transferable
1234122744Sjeff		 * count because could be changing to or from an interrupt
1235122744Sjeff		 * class.
1236122744Sjeff		 */
1237122744Sjeff		if (ke->ke_state == KES_ONRUNQ) {
1238123433Sjeff			if (KSE_CAN_MIGRATE(ke, oclass)) {
1239123433Sjeff				kseq->ksq_transferable--;
1240123433Sjeff				kseq->ksq_group->ksg_transferable--;
1241123433Sjeff			}
1242123433Sjeff			if (KSE_CAN_MIGRATE(ke, nclass)) {
1243123433Sjeff				kseq->ksq_transferable++;
1244123433Sjeff				kseq->ksq_group->ksg_transferable++;
1245123433Sjeff			}
1246122744Sjeff		}
1247121896Sjeff#endif
1248122744Sjeff		if (oclass == PRI_TIMESHARE) {
1249121896Sjeff			kseq->ksq_load_timeshare--;
1250122744Sjeff			kseq_nice_rem(kseq, kg->kg_nice);
1251122744Sjeff		}
1252122744Sjeff		if (nclass == PRI_TIMESHARE) {
1253121896Sjeff			kseq->ksq_load_timeshare++;
1254113357Sjeff			kseq_nice_add(kseq, kg->kg_nice);
1255122744Sjeff		}
1256109970Sjeff	}
1257109970Sjeff
1258113357Sjeff	kg->kg_pri_class = class;
1259109864Sjeff}
1260109864Sjeff
1261109864Sjeff/*
1262109864Sjeff * Return some of the child's priority and interactivity to the parent.
1263109864Sjeff */
1264109864Sjeffvoid
1265113357Sjeffsched_exit(struct proc *p, struct proc *child)
1266109864Sjeff{
1267109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1268113372Sjeff	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
1269116365Sjeff	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
1270109864Sjeff}
1271109864Sjeff
1272109864Sjeffvoid
1273113372Sjeffsched_exit_kse(struct kse *ke, struct kse *child)
1274113372Sjeff{
1275122744Sjeff	kseq_load_rem(KSEQ_CPU(child->ke_cpu), child);
1276113372Sjeff}
1277113372Sjeff
1278113372Sjeffvoid
1279113372Sjeffsched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1280113372Sjeff{
1281116463Sjeff	/* kg->kg_slptime += child->kg_slptime; */
1282116365Sjeff	kg->kg_runtime += child->kg_runtime;
1283116463Sjeff	sched_interact_update(kg);
1284113372Sjeff}
1285113372Sjeff
1286113372Sjeffvoid
1287113372Sjeffsched_exit_thread(struct thread *td, struct thread *child)
1288113372Sjeff{
1289113372Sjeff}
1290113372Sjeff
1291113372Sjeffvoid
1292121127Sjeffsched_clock(struct thread *td)
1293109864Sjeff{
1294113357Sjeff	struct kseq *kseq;
1295113357Sjeff	struct ksegrp *kg;
1296121127Sjeff	struct kse *ke;
1297109864Sjeff
1298113357Sjeff	/*
1299113357Sjeff	 * sched_setup() apparently happens prior to stathz being set.  We
1300113357Sjeff	 * need to resolve the timers earlier in the boot so we can avoid
1301113357Sjeff	 * calculating this here.
1302113357Sjeff	 */
1303113357Sjeff	if (realstathz == 0) {
1304113357Sjeff		realstathz = stathz ? stathz : hz;
1305113357Sjeff		tickincr = hz / realstathz;
1306113357Sjeff		/*
1307113357Sjeff		 * XXX This does not work for values of stathz that are much
1308113357Sjeff		 * larger than hz.
1309113357Sjeff		 */
1310113357Sjeff		if (tickincr == 0)
1311113357Sjeff			tickincr = 1;
1312113357Sjeff	}
1313109864Sjeff
1314121127Sjeff	ke = td->td_kse;
1315113357Sjeff	kg = ke->ke_ksegrp;
1316109864Sjeff
1317110028Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1318110028Sjeff	KASSERT((td != NULL), ("schedclock: null thread pointer"));
1319110028Sjeff
1320110028Sjeff	/* Adjust ticks for pctcpu */
1321111793Sjeff	ke->ke_ticks++;
1322109971Sjeff	ke->ke_ltick = ticks;
1323112994Sjeff
1324109971Sjeff	/* Go up to one second beyond our max and then trim back down */
1325109971Sjeff	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1326109971Sjeff		sched_pctcpu_update(ke);
1327109971Sjeff
1328114496Sjulian	if (td->td_flags & TDF_IDLETD)
1329109864Sjeff		return;
1330110028Sjeff
1331113357Sjeff	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1332113357Sjeff	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1333110028Sjeff	/*
1334113357Sjeff	 * We only do slicing code for TIMESHARE ksegrps.
1335113357Sjeff	 */
1336113357Sjeff	if (kg->kg_pri_class != PRI_TIMESHARE)
1337113357Sjeff		return;
1338113357Sjeff	/*
1339110645Sjeff	 * We used a tick charge it to the ksegrp so that we can compute our
1340113357Sjeff	 * interactivity.
1341109864Sjeff	 */
1342113357Sjeff	kg->kg_runtime += tickincr << 10;
1343116463Sjeff	sched_interact_update(kg);
1344110645Sjeff
1345109864Sjeff	/*
1346109864Sjeff	 * We used up one time slice.
1347109864Sjeff	 */
1348122847Sjeff	if (--ke->ke_slice > 0)
1349113357Sjeff		return;
1350109864Sjeff	/*
1351113357Sjeff	 * We're out of time, recompute priorities and requeue.
1352109864Sjeff	 */
1353122847Sjeff	kseq = KSEQ_SELF();
1354122744Sjeff	kseq_load_rem(kseq, ke);
1355113357Sjeff	sched_priority(kg);
1356113357Sjeff	sched_slice(ke);
1357113357Sjeff	if (SCHED_CURR(kg, ke))
1358113357Sjeff		ke->ke_runq = kseq->ksq_curr;
1359113357Sjeff	else
1360113357Sjeff		ke->ke_runq = kseq->ksq_next;
1361122744Sjeff	kseq_load_add(kseq, ke);
1362113357Sjeff	td->td_flags |= TDF_NEEDRESCHED;
1363109864Sjeff}
1364109864Sjeff
1365109864Sjeffint
1366109864Sjeffsched_runnable(void)
1367109864Sjeff{
1368109864Sjeff	struct kseq *kseq;
1369115998Sjeff	int load;
1370109864Sjeff
1371115998Sjeff	load = 1;
1372115998Sjeff
1373110028Sjeff	kseq = KSEQ_SELF();
1374121790Sjeff#ifdef SMP
1375122094Sjeff	if (kseq->ksq_assigned) {
1376122094Sjeff		mtx_lock_spin(&sched_lock);
1377121790Sjeff		kseq_assign(kseq);
1378122094Sjeff		mtx_unlock_spin(&sched_lock);
1379122094Sjeff	}
1380121790Sjeff#endif
1381121605Sjeff	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1382121605Sjeff		if (kseq->ksq_load > 0)
1383121605Sjeff			goto out;
1384121605Sjeff	} else
1385121605Sjeff		if (kseq->ksq_load - 1 > 0)
1386121605Sjeff			goto out;
1387115998Sjeff	load = 0;
1388115998Sjeffout:
1389115998Sjeff	return (load);
1390109864Sjeff}
1391109864Sjeff
1392109864Sjeffvoid
1393109864Sjeffsched_userret(struct thread *td)
1394109864Sjeff{
1395109864Sjeff	struct ksegrp *kg;
1396121605Sjeff
1397121605Sjeff	kg = td->td_ksegrp;
1398109864Sjeff
1399109864Sjeff	if (td->td_priority != kg->kg_user_pri) {
1400109864Sjeff		mtx_lock_spin(&sched_lock);
1401109864Sjeff		td->td_priority = kg->kg_user_pri;
1402109864Sjeff		mtx_unlock_spin(&sched_lock);
1403109864Sjeff	}
1404109864Sjeff}
1405109864Sjeff
1406109864Sjeffstruct kse *
1407109970Sjeffsched_choose(void)
1408109970Sjeff{
1409110028Sjeff	struct kseq *kseq;
1410109970Sjeff	struct kse *ke;
1411109970Sjeff
1412115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1413121790Sjeff	kseq = KSEQ_SELF();
1414113357Sjeff#ifdef SMP
1415123433Sjeffrestart:
1416121790Sjeff	if (kseq->ksq_assigned)
1417121790Sjeff		kseq_assign(kseq);
1418113357Sjeff#endif
1419121790Sjeff	ke = kseq_choose(kseq);
1420109864Sjeff	if (ke) {
1421121790Sjeff#ifdef SMP
1422121790Sjeff		if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1423123433Sjeff			if (kseq_idled(kseq) == 0)
1424123433Sjeff				goto restart;
1425121790Sjeff#endif
1426122744Sjeff		kseq_runq_rem(kseq, ke);
1427109864Sjeff		ke->ke_state = KES_THREAD;
1428112966Sjeff
1429113357Sjeff		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1430113357Sjeff			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1431113357Sjeff			    ke, ke->ke_runq, ke->ke_slice,
1432113357Sjeff			    ke->ke_thread->td_priority);
1433113357Sjeff		}
1434113357Sjeff		return (ke);
1435109864Sjeff	}
1436109970Sjeff#ifdef SMP
1437123433Sjeff	if (kseq_idled(kseq) == 0)
1438123433Sjeff		goto restart;
1439109970Sjeff#endif
1440113357Sjeff	return (NULL);
1441109864Sjeff}
1442109864Sjeff
1443109864Sjeffvoid
1444121127Sjeffsched_add(struct thread *td)
1445109864Sjeff{
1446110267Sjeff	struct kseq *kseq;
1447113357Sjeff	struct ksegrp *kg;
1448121127Sjeff	struct kse *ke;
1449121790Sjeff	int class;
1450109864Sjeff
1451121790Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1452121127Sjeff	ke = td->td_kse;
1453121127Sjeff	kg = td->td_ksegrp;
1454121790Sjeff	if (ke->ke_flags & KEF_ASSIGNED)
1455121790Sjeff		return;
1456121790Sjeff	kseq = KSEQ_SELF();
1457110267Sjeff	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
1458109864Sjeff	KASSERT((ke->ke_thread->td_kse != NULL),
1459110267Sjeff	    ("sched_add: No KSE on thread"));
1460109864Sjeff	KASSERT(ke->ke_state != KES_ONRUNQ,
1461110267Sjeff	    ("sched_add: kse %p (%s) already in run queue", ke,
1462109864Sjeff	    ke->ke_proc->p_comm));
1463109864Sjeff	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1464110267Sjeff	    ("sched_add: process swapped out"));
1465113387Sjeff	KASSERT(ke->ke_runq == NULL,
1466113387Sjeff	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1467109864Sjeff
1468121790Sjeff	class = PRI_BASE(kg->kg_pri_class);
1469121790Sjeff	switch (class) {
1470112994Sjeff	case PRI_ITHD:
1471112994Sjeff	case PRI_REALTIME:
1472113357Sjeff		ke->ke_runq = kseq->ksq_curr;
1473113357Sjeff		ke->ke_slice = SCHED_SLICE_MAX;
1474113660Sjeff		ke->ke_cpu = PCPU_GET(cpuid);
1475112994Sjeff		break;
1476112994Sjeff	case PRI_TIMESHARE:
1477113387Sjeff		if (SCHED_CURR(kg, ke))
1478113387Sjeff			ke->ke_runq = kseq->ksq_curr;
1479113387Sjeff		else
1480113387Sjeff			ke->ke_runq = kseq->ksq_next;
1481113357Sjeff		break;
1482112994Sjeff	case PRI_IDLE:
1483113357Sjeff		/*
1484113357Sjeff		 * This is for priority prop.
1485113357Sjeff		 */
1486121605Sjeff		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1487113357Sjeff			ke->ke_runq = kseq->ksq_curr;
1488113357Sjeff		else
1489113357Sjeff			ke->ke_runq = &kseq->ksq_idle;
1490113357Sjeff		ke->ke_slice = SCHED_SLICE_MIN;
1491112994Sjeff		break;
1492113357Sjeff	default:
1493121868Sjeff		panic("Unknown pri class.");
1494113357Sjeff		break;
1495112994Sjeff	}
1496121790Sjeff#ifdef SMP
1497123433Sjeff	if (ke->ke_cpu != PCPU_GET(cpuid)) {
1498123433Sjeff		kseq_notify(ke, ke->ke_cpu);
1499123433Sjeff		return;
1500123433Sjeff	}
1501121790Sjeff	/*
1502123433Sjeff	 * If there are any idle groups, give them our extra load.  The
1503122744Sjeff	 * threshold at which we start to reassign kses has a large impact
1504122744Sjeff	 * on the overall performance of the system.  Tuned too high and
1505122744Sjeff	 * some CPUs may idle.  Too low and there will be excess migration
1506122744Sjeff	 * and context swiches.
1507121790Sjeff	 */
1508123433Sjeff	if (kseq->ksq_load > 1 && KSE_CAN_MIGRATE(ke, class))
1509123433Sjeff		if (kseq_transfer(kseq, ke, class))
1510123433Sjeff			return;
1511123433Sjeff	if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1512123433Sjeff	    (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1513121790Sjeff		/*
1514123433Sjeff		 * Check to see if our group is unidling, and if so, remove it
1515123433Sjeff		 * from the global idle mask.
1516121790Sjeff		 */
1517123433Sjeff		if (kseq->ksq_group->ksg_idlemask ==
1518123433Sjeff		    kseq->ksq_group->ksg_cpumask)
1519123433Sjeff			atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1520123433Sjeff		/*
1521123433Sjeff		 * Now remove ourselves from the group specific idle mask.
1522123433Sjeff		 */
1523123433Sjeff		kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1524121790Sjeff	}
1525121790Sjeff#endif
1526121790Sjeff        if (td->td_priority < curthread->td_priority)
1527121790Sjeff                curthread->td_flags |= TDF_NEEDRESCHED;
1528121790Sjeff
1529109864Sjeff	ke->ke_ksegrp->kg_runq_kses++;
1530109864Sjeff	ke->ke_state = KES_ONRUNQ;
1531109864Sjeff
1532122744Sjeff	kseq_runq_add(kseq, ke);
1533122744Sjeff	kseq_load_add(kseq, ke);
1534109864Sjeff}
1535109864Sjeff
1536109864Sjeffvoid
1537121127Sjeffsched_rem(struct thread *td)
1538109864Sjeff{
1539113357Sjeff	struct kseq *kseq;
1540121127Sjeff	struct kse *ke;
1541113357Sjeff
1542121127Sjeff	ke = td->td_kse;
1543121790Sjeff	/*
1544121790Sjeff	 * It is safe to just return here because sched_rem() is only ever
1545121790Sjeff	 * used in places where we're immediately going to add the
1546121790Sjeff	 * kse back on again.  In that case it'll be added with the correct
1547121790Sjeff	 * thread and priority when the caller drops the sched_lock.
1548121790Sjeff	 */
1549121790Sjeff	if (ke->ke_flags & KEF_ASSIGNED)
1550121790Sjeff		return;
1551109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1552113387Sjeff	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
1553109864Sjeff
1554109864Sjeff	ke->ke_state = KES_THREAD;
1555109864Sjeff	ke->ke_ksegrp->kg_runq_kses--;
1556113357Sjeff	kseq = KSEQ_CPU(ke->ke_cpu);
1557122744Sjeff	kseq_runq_rem(kseq, ke);
1558122744Sjeff	kseq_load_rem(kseq, ke);
1559109864Sjeff}
1560109864Sjeff
1561109864Sjefffixpt_t
1562121127Sjeffsched_pctcpu(struct thread *td)
1563109864Sjeff{
1564109864Sjeff	fixpt_t pctcpu;
1565121127Sjeff	struct kse *ke;
1566109864Sjeff
1567109864Sjeff	pctcpu = 0;
1568121127Sjeff	ke = td->td_kse;
1569121290Sjeff	if (ke == NULL)
1570121290Sjeff		return (0);
1571109864Sjeff
1572115998Sjeff	mtx_lock_spin(&sched_lock);
1573109864Sjeff	if (ke->ke_ticks) {
1574109864Sjeff		int rtick;
1575109864Sjeff
1576116365Sjeff		/*
1577116365Sjeff		 * Don't update more frequently than twice a second.  Allowing
1578116365Sjeff		 * this causes the cpu usage to decay away too quickly due to
1579116365Sjeff		 * rounding errors.
1580116365Sjeff		 */
1581116365Sjeff		if (ke->ke_ltick < (ticks - (hz / 2)))
1582116365Sjeff			sched_pctcpu_update(ke);
1583109864Sjeff		/* How many rtick per second ? */
1584116365Sjeff		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1585110226Sscottl		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1586109864Sjeff	}
1587109864Sjeff
1588109864Sjeff	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1589113865Sjhb	mtx_unlock_spin(&sched_lock);
1590109864Sjeff
1591109864Sjeff	return (pctcpu);
1592109864Sjeff}
1593109864Sjeff
1594122038Sjeffvoid
1595122038Sjeffsched_bind(struct thread *td, int cpu)
1596122038Sjeff{
1597122038Sjeff	struct kse *ke;
1598122038Sjeff
1599122038Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1600122038Sjeff	ke = td->td_kse;
1601122038Sjeff	ke->ke_flags |= KEF_BOUND;
1602123433Sjeff#ifdef SMP
1603123433Sjeff	if (PCPU_GET(cpuid) == cpu)
1604122038Sjeff		return;
1605122038Sjeff	/* sched_rem without the runq_remove */
1606122038Sjeff	ke->ke_state = KES_THREAD;
1607122038Sjeff	ke->ke_ksegrp->kg_runq_kses--;
1608122744Sjeff	kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1609122038Sjeff	ke->ke_cpu = cpu;
1610122038Sjeff	kseq_notify(ke, cpu);
1611122038Sjeff	/* When we return from mi_switch we'll be on the correct cpu. */
1612122038Sjeff	td->td_proc->p_stats->p_ru.ru_nvcsw++;
1613122038Sjeff	mi_switch();
1614122038Sjeff#endif
1615122038Sjeff}
1616122038Sjeff
1617122038Sjeffvoid
1618122038Sjeffsched_unbind(struct thread *td)
1619122038Sjeff{
1620122038Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1621122038Sjeff	td->td_kse->ke_flags &= ~KEF_BOUND;
1622122038Sjeff}
1623122038Sjeff
1624109864Sjeffint
1625109864Sjeffsched_sizeof_kse(void)
1626109864Sjeff{
1627109864Sjeff	return (sizeof(struct kse) + sizeof(struct ke_sched));
1628109864Sjeff}
1629109864Sjeff
1630109864Sjeffint
1631109864Sjeffsched_sizeof_ksegrp(void)
1632109864Sjeff{
1633109864Sjeff	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1634109864Sjeff}
1635109864Sjeff
1636109864Sjeffint
1637109864Sjeffsched_sizeof_proc(void)
1638109864Sjeff{
1639109864Sjeff	return (sizeof(struct proc));
1640109864Sjeff}
1641109864Sjeff
1642109864Sjeffint
1643109864Sjeffsched_sizeof_thread(void)
1644109864Sjeff{
1645109864Sjeff	return (sizeof(struct thread) + sizeof(struct td_sched));
1646109864Sjeff}
1647