sched_ule.c revision 121605
1109864Sjeff/*-
2113357Sjeff * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3109864Sjeff * All rights reserved.
4109864Sjeff *
5109864Sjeff * Redistribution and use in source and binary forms, with or without
6109864Sjeff * modification, are permitted provided that the following conditions
7109864Sjeff * are met:
8109864Sjeff * 1. Redistributions of source code must retain the above copyright
9109864Sjeff *    notice unmodified, this list of conditions, and the following
10109864Sjeff *    disclaimer.
11109864Sjeff * 2. Redistributions in binary form must reproduce the above copyright
12109864Sjeff *    notice, this list of conditions and the following disclaimer in the
13109864Sjeff *    documentation and/or other materials provided with the distribution.
14109864Sjeff *
15109864Sjeff * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16109864Sjeff * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17109864Sjeff * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18109864Sjeff * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19109864Sjeff * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20109864Sjeff * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21109864Sjeff * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22109864Sjeff * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23109864Sjeff * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24109864Sjeff * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25109864Sjeff */
26109864Sjeff
27116182Sobrien#include <sys/cdefs.h>
28116182Sobrien__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 121605 2003-10-27 06:47:05Z jeff $");
29116182Sobrien
30109864Sjeff#include <sys/param.h>
31109864Sjeff#include <sys/systm.h>
32109864Sjeff#include <sys/kernel.h>
33109864Sjeff#include <sys/ktr.h>
34109864Sjeff#include <sys/lock.h>
35109864Sjeff#include <sys/mutex.h>
36109864Sjeff#include <sys/proc.h>
37112966Sjeff#include <sys/resource.h>
38109864Sjeff#include <sys/sched.h>
39109864Sjeff#include <sys/smp.h>
40109864Sjeff#include <sys/sx.h>
41109864Sjeff#include <sys/sysctl.h>
42109864Sjeff#include <sys/sysproto.h>
43109864Sjeff#include <sys/vmmeter.h>
44109864Sjeff#ifdef DDB
45109864Sjeff#include <ddb/ddb.h>
46109864Sjeff#endif
47109864Sjeff#ifdef KTRACE
48109864Sjeff#include <sys/uio.h>
49109864Sjeff#include <sys/ktrace.h>
50109864Sjeff#endif
51109864Sjeff
52109864Sjeff#include <machine/cpu.h>
53109864Sjeff
54113357Sjeff#define KTR_ULE         KTR_NFS
55113357Sjeff
56109864Sjeff/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
57109864Sjeff/* XXX This is bogus compatability crap for ps */
58109864Sjeffstatic fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
59109864SjeffSYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
60109864Sjeff
61109864Sjeffstatic void sched_setup(void *dummy);
62109864SjeffSYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
63109864Sjeff
64113357Sjeffstatic SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
65113357Sjeff
66113357Sjeffstatic int sched_strict;
67113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
68113357Sjeff
69113357Sjeffstatic int slice_min = 1;
70113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
71113357Sjeff
72116365Sjeffstatic int slice_max = 10;
73113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
74113357Sjeff
75111857Sjeffint realstathz;
76113357Sjeffint tickincr = 1;
77111857Sjeff
78116069Sjeff#ifdef SMP
79116069Sjeff/* Callout to handle load balancing SMP systems. */
80116069Sjeffstatic struct callout kseq_lb_callout;
81116069Sjeff#endif
82116069Sjeff
83109864Sjeff/*
84109864Sjeff * These datastructures are allocated within their parent datastructure but
85109864Sjeff * are scheduler specific.
86109864Sjeff */
87109864Sjeff
88109864Sjeffstruct ke_sched {
89109864Sjeff	int		ske_slice;
90109864Sjeff	struct runq	*ske_runq;
91109864Sjeff	/* The following variables are only used for pctcpu calculation */
92109864Sjeff	int		ske_ltick;	/* Last tick that we were running on */
93109864Sjeff	int		ske_ftick;	/* First tick that we were running on */
94109864Sjeff	int		ske_ticks;	/* Tick count */
95113357Sjeff	/* CPU that we have affinity for. */
96110260Sjeff	u_char		ske_cpu;
97109864Sjeff};
98109864Sjeff#define	ke_slice	ke_sched->ske_slice
99109864Sjeff#define	ke_runq		ke_sched->ske_runq
100109864Sjeff#define	ke_ltick	ke_sched->ske_ltick
101109864Sjeff#define	ke_ftick	ke_sched->ske_ftick
102109864Sjeff#define	ke_ticks	ke_sched->ske_ticks
103110260Sjeff#define	ke_cpu		ke_sched->ske_cpu
104109864Sjeff
105109864Sjeffstruct kg_sched {
106110645Sjeff	int	skg_slptime;		/* Number of ticks we vol. slept */
107110645Sjeff	int	skg_runtime;		/* Number of ticks we were running */
108109864Sjeff};
109109864Sjeff#define	kg_slptime	kg_sched->skg_slptime
110110645Sjeff#define	kg_runtime	kg_sched->skg_runtime
111109864Sjeff
112109864Sjeffstruct td_sched {
113109864Sjeff	int	std_slptime;
114109864Sjeff};
115109864Sjeff#define	td_slptime	td_sched->std_slptime
116109864Sjeff
117110267Sjeffstruct td_sched td_sched;
118109864Sjeffstruct ke_sched ke_sched;
119109864Sjeffstruct kg_sched kg_sched;
120109864Sjeff
121109864Sjeffstruct ke_sched *kse0_sched = &ke_sched;
122109864Sjeffstruct kg_sched *ksegrp0_sched = &kg_sched;
123109864Sjeffstruct p_sched *proc0_sched = NULL;
124109864Sjeffstruct td_sched *thread0_sched = &td_sched;
125109864Sjeff
126109864Sjeff/*
127116642Sjeff * The priority is primarily determined by the interactivity score.  Thus, we
128116642Sjeff * give lower(better) priorities to kse groups that use less CPU.  The nice
129116642Sjeff * value is then directly added to this to allow nice to have some effect
130116642Sjeff * on latency.
131111857Sjeff *
132111857Sjeff * PRI_RANGE:	Total priority range for timeshare threads.
133116642Sjeff * PRI_NRESV:	Number of nice values.
134111857Sjeff * PRI_BASE:	The start of the dynamic range.
135109864Sjeff */
136111857Sjeff#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
137112966Sjeff#define	SCHED_PRI_NRESV		PRIO_TOTAL
138112970Sjeff#define	SCHED_PRI_NHALF		(PRIO_TOTAL / 2)
139113357Sjeff#define	SCHED_PRI_NTHRESH	(SCHED_PRI_NHALF - 1)
140116642Sjeff#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
141113357Sjeff#define	SCHED_PRI_INTERACT(score)					\
142116642Sjeff    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
143109864Sjeff
144109864Sjeff/*
145111857Sjeff * These determine the interactivity of a process.
146109864Sjeff *
147110645Sjeff * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
148110645Sjeff *		before throttling back.
149116955Sjeff * SLP_RUN_THROTTLE:	Divisor for reducing slp/run time at fork time.
150116365Sjeff * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
151111857Sjeff * INTERACT_THRESH:	Threshhold for placement on the current runq.
152109864Sjeff */
153121126Sjeff#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
154116955Sjeff#define	SCHED_SLP_RUN_THROTTLE	(100)
155116365Sjeff#define	SCHED_INTERACT_MAX	(100)
156116365Sjeff#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
157121126Sjeff#define	SCHED_INTERACT_THRESH	(30)
158111857Sjeff
159109864Sjeff/*
160109864Sjeff * These parameters and macros determine the size of the time slice that is
161109864Sjeff * granted to each thread.
162109864Sjeff *
163109864Sjeff * SLICE_MIN:	Minimum time slice granted, in units of ticks.
164109864Sjeff * SLICE_MAX:	Maximum time slice granted.
165109864Sjeff * SLICE_RANGE:	Range of available time slices scaled by hz.
166112966Sjeff * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
167112966Sjeff * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
168109864Sjeff */
169113357Sjeff#define	SCHED_SLICE_MIN			(slice_min)
170113357Sjeff#define	SCHED_SLICE_MAX			(slice_max)
171111857Sjeff#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
172109864Sjeff#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
173112966Sjeff#define	SCHED_SLICE_NICE(nice)						\
174113357Sjeff    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_PRI_NTHRESH))
175109864Sjeff
176109864Sjeff/*
177109864Sjeff * This macro determines whether or not the kse belongs on the current or
178109864Sjeff * next run queue.
179110645Sjeff *
180110645Sjeff * XXX nice value should effect how interactive a kg is.
181109864Sjeff */
182113357Sjeff#define	SCHED_INTERACTIVE(kg)						\
183113357Sjeff    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
184113417Sjeff#define	SCHED_CURR(kg, ke)						\
185121107Sjeff    (ke->ke_thread->td_priority != kg->kg_user_pri ||			\
186121107Sjeff    SCHED_INTERACTIVE(kg))
187109864Sjeff
188109864Sjeff/*
189109864Sjeff * Cpu percentage computation macros and defines.
190109864Sjeff *
191109864Sjeff * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
192109864Sjeff * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
193109864Sjeff */
194109864Sjeff
195112971Sjeff#define	SCHED_CPU_TIME	10
196109864Sjeff#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
197109864Sjeff
198109864Sjeff/*
199113357Sjeff * kseq - per processor runqs and statistics.
200109864Sjeff */
201109864Sjeff
202113357Sjeff#define	KSEQ_NCLASS	(PRI_IDLE + 1)	/* Number of run classes. */
203113357Sjeff
204109864Sjeffstruct kseq {
205113357Sjeff	struct runq	ksq_idle;		/* Queue of IDLE threads. */
206113357Sjeff	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
207113357Sjeff	struct runq	*ksq_next;		/* Next timeshare queue. */
208113357Sjeff	struct runq	*ksq_curr;		/* Current queue. */
209113357Sjeff	int		ksq_loads[KSEQ_NCLASS];	/* Load for each class */
210113357Sjeff	int		ksq_load;		/* Aggregate load. */
211113357Sjeff	short		ksq_nice[PRIO_TOTAL + 1]; /* KSEs in each nice bin. */
212113357Sjeff	short		ksq_nicemin;		/* Least nice. */
213110267Sjeff#ifdef SMP
214117237Sjeff	int		ksq_cpus;	/* Count of CPUs in this kseq. */
215110267Sjeff	unsigned int	ksq_rslices;	/* Slices on run queue */
216110267Sjeff#endif
217109864Sjeff};
218109864Sjeff
219109864Sjeff/*
220109864Sjeff * One kse queue per processor.
221109864Sjeff */
222110028Sjeff#ifdef SMP
223109864Sjeffstruct kseq	kseq_cpu[MAXCPU];
224117237Sjeffstruct kseq	*kseq_idmap[MAXCPU];
225117237Sjeff#define	KSEQ_SELF()	(kseq_idmap[PCPU_GET(cpuid)])
226117237Sjeff#define	KSEQ_CPU(x)	(kseq_idmap[(x)])
227110028Sjeff#else
228110028Sjeffstruct kseq	kseq_cpu;
229110028Sjeff#define	KSEQ_SELF()	(&kseq_cpu)
230110028Sjeff#define	KSEQ_CPU(x)	(&kseq_cpu)
231110028Sjeff#endif
232109864Sjeff
233112966Sjeffstatic void sched_slice(struct kse *ke);
234113357Sjeffstatic void sched_priority(struct ksegrp *kg);
235111857Sjeffstatic int sched_interact_score(struct ksegrp *kg);
236116463Sjeffstatic void sched_interact_update(struct ksegrp *kg);
237109864Sjeffvoid sched_pctcpu_update(struct kse *ke);
238109864Sjeffint sched_pickcpu(void);
239109864Sjeff
240110267Sjeff/* Operations on per processor queues */
241117326Sjeffstatic struct kse * kseq_choose(struct kseq *kseq, int steal);
242110028Sjeffstatic void kseq_setup(struct kseq *kseq);
243112994Sjeffstatic void kseq_add(struct kseq *kseq, struct kse *ke);
244113357Sjeffstatic void kseq_rem(struct kseq *kseq, struct kse *ke);
245113357Sjeffstatic void kseq_nice_add(struct kseq *kseq, int nice);
246113357Sjeffstatic void kseq_nice_rem(struct kseq *kseq, int nice);
247113660Sjeffvoid kseq_print(int cpu);
248110267Sjeff#ifdef SMP
249110267Sjeffstruct kseq * kseq_load_highest(void);
250116069Sjeffvoid kseq_balance(void *arg);
251116069Sjeffvoid kseq_move(struct kseq *from, int cpu);
252110267Sjeff#endif
253110028Sjeff
254113357Sjeffvoid
255113660Sjeffkseq_print(int cpu)
256110267Sjeff{
257113660Sjeff	struct kseq *kseq;
258113357Sjeff	int i;
259112994Sjeff
260113660Sjeff	kseq = KSEQ_CPU(cpu);
261112994Sjeff
262113357Sjeff	printf("kseq:\n");
263113357Sjeff	printf("\tload:           %d\n", kseq->ksq_load);
264113357Sjeff	printf("\tload ITHD:      %d\n", kseq->ksq_loads[PRI_ITHD]);
265113357Sjeff	printf("\tload REALTIME:  %d\n", kseq->ksq_loads[PRI_REALTIME]);
266113357Sjeff	printf("\tload TIMESHARE: %d\n", kseq->ksq_loads[PRI_TIMESHARE]);
267113357Sjeff	printf("\tload IDLE:      %d\n", kseq->ksq_loads[PRI_IDLE]);
268113357Sjeff	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
269113357Sjeff	printf("\tnice counts:\n");
270113357Sjeff	for (i = 0; i < PRIO_TOTAL + 1; i++)
271113357Sjeff		if (kseq->ksq_nice[i])
272113357Sjeff			printf("\t\t%d = %d\n",
273113357Sjeff			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
274113357Sjeff}
275112994Sjeff
276113357Sjeffstatic void
277113357Sjeffkseq_add(struct kseq *kseq, struct kse *ke)
278113357Sjeff{
279115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
280113386Sjeff	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]++;
281113357Sjeff	kseq->ksq_load++;
282113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
283113357Sjeff	CTR6(KTR_ULE, "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
284113357Sjeff	    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
285113357Sjeff	    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
286113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
287113357Sjeff		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
288110267Sjeff#ifdef SMP
289110267Sjeff	kseq->ksq_rslices += ke->ke_slice;
290110267Sjeff#endif
291110267Sjeff}
292113357Sjeff
293112994Sjeffstatic void
294110267Sjeffkseq_rem(struct kseq *kseq, struct kse *ke)
295110267Sjeff{
296115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
297113386Sjeff	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]--;
298113357Sjeff	kseq->ksq_load--;
299113357Sjeff	ke->ke_runq = NULL;
300113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
301113357Sjeff		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
302110267Sjeff#ifdef SMP
303110267Sjeff	kseq->ksq_rslices -= ke->ke_slice;
304110267Sjeff#endif
305110267Sjeff}
306110267Sjeff
307113357Sjeffstatic void
308113357Sjeffkseq_nice_add(struct kseq *kseq, int nice)
309110267Sjeff{
310115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
311113357Sjeff	/* Normalize to zero. */
312113357Sjeff	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
313115998Sjeff	if (nice < kseq->ksq_nicemin || kseq->ksq_loads[PRI_TIMESHARE] == 1)
314113357Sjeff		kseq->ksq_nicemin = nice;
315110267Sjeff}
316110267Sjeff
317113357Sjeffstatic void
318113357Sjeffkseq_nice_rem(struct kseq *kseq, int nice)
319110267Sjeff{
320113357Sjeff	int n;
321113357Sjeff
322115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
323113357Sjeff	/* Normalize to zero. */
324113357Sjeff	n = nice + SCHED_PRI_NHALF;
325113357Sjeff	kseq->ksq_nice[n]--;
326113357Sjeff	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
327113357Sjeff
328113357Sjeff	/*
329113357Sjeff	 * If this wasn't the smallest nice value or there are more in
330113357Sjeff	 * this bucket we can just return.  Otherwise we have to recalculate
331113357Sjeff	 * the smallest nice.
332113357Sjeff	 */
333113357Sjeff	if (nice != kseq->ksq_nicemin ||
334113357Sjeff	    kseq->ksq_nice[n] != 0 ||
335113357Sjeff	    kseq->ksq_loads[PRI_TIMESHARE] == 0)
336113357Sjeff		return;
337113357Sjeff
338113357Sjeff	for (; n < SCHED_PRI_NRESV + 1; n++)
339113357Sjeff		if (kseq->ksq_nice[n]) {
340113357Sjeff			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
341113357Sjeff			return;
342113357Sjeff		}
343110267Sjeff}
344110267Sjeff
345113357Sjeff#ifdef SMP
346116069Sjeff/*
347116069Sjeff * kseq_balance is a simple CPU load balancing algorithm.  It operates by
348116069Sjeff * finding the least loaded and most loaded cpu and equalizing their load
349116069Sjeff * by migrating some processes.
350116069Sjeff *
351116069Sjeff * Dealing only with two CPUs at a time has two advantages.  Firstly, most
352116069Sjeff * installations will only have 2 cpus.  Secondly, load balancing too much at
353116069Sjeff * once can have an unpleasant effect on the system.  The scheduler rarely has
354116069Sjeff * enough information to make perfect decisions.  So this algorithm chooses
355116069Sjeff * algorithm simplicity and more gradual effects on load in larger systems.
356116069Sjeff *
357116069Sjeff * It could be improved by considering the priorities and slices assigned to
358116069Sjeff * each task prior to balancing them.  There are many pathological cases with
359116069Sjeff * any approach and so the semi random algorithm below may work as well as any.
360116069Sjeff *
361116069Sjeff */
362116069Sjeffvoid
363116069Sjeffkseq_balance(void *arg)
364116069Sjeff{
365116069Sjeff	struct kseq *kseq;
366116069Sjeff	int high_load;
367116069Sjeff	int low_load;
368116069Sjeff	int high_cpu;
369116069Sjeff	int low_cpu;
370116069Sjeff	int move;
371116069Sjeff	int diff;
372116069Sjeff	int i;
373116069Sjeff
374116069Sjeff	high_cpu = 0;
375116069Sjeff	low_cpu = 0;
376116069Sjeff	high_load = 0;
377116069Sjeff	low_load = -1;
378116069Sjeff
379116069Sjeff	mtx_lock_spin(&sched_lock);
380116962Sjeff	if (smp_started == 0)
381116962Sjeff		goto out;
382116962Sjeff
383116069Sjeff	for (i = 0; i < mp_maxid; i++) {
384116970Sjeff		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
385116069Sjeff			continue;
386116069Sjeff		kseq = KSEQ_CPU(i);
387116069Sjeff		if (kseq->ksq_load > high_load) {
388116069Sjeff			high_load = kseq->ksq_load;
389116069Sjeff			high_cpu = i;
390116069Sjeff		}
391116069Sjeff		if (low_load == -1 || kseq->ksq_load < low_load) {
392116069Sjeff			low_load = kseq->ksq_load;
393116069Sjeff			low_cpu = i;
394116069Sjeff		}
395116069Sjeff	}
396116069Sjeff
397117237Sjeff	kseq = KSEQ_CPU(high_cpu);
398117237Sjeff
399116069Sjeff	/*
400116069Sjeff	 * Nothing to do.
401116069Sjeff	 */
402117237Sjeff	if (high_load < kseq->ksq_cpus + 1)
403116069Sjeff		goto out;
404116069Sjeff
405117237Sjeff	high_load -= kseq->ksq_cpus;
406117237Sjeff
407117237Sjeff	if (low_load >= high_load)
408117237Sjeff		goto out;
409117237Sjeff
410116069Sjeff	diff = high_load - low_load;
411116069Sjeff	move = diff / 2;
412116069Sjeff	if (diff & 0x1)
413116069Sjeff		move++;
414116069Sjeff
415116069Sjeff	for (i = 0; i < move; i++)
416117237Sjeff		kseq_move(kseq, low_cpu);
417116069Sjeff
418116069Sjeffout:
419116069Sjeff	mtx_unlock_spin(&sched_lock);
420116069Sjeff	callout_reset(&kseq_lb_callout, hz, kseq_balance, NULL);
421116069Sjeff
422116069Sjeff	return;
423116069Sjeff}
424116069Sjeff
425110267Sjeffstruct kseq *
426110267Sjeffkseq_load_highest(void)
427110267Sjeff{
428110267Sjeff	struct kseq *kseq;
429110267Sjeff	int load;
430110267Sjeff	int cpu;
431110267Sjeff	int i;
432110267Sjeff
433115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
434110267Sjeff	cpu = 0;
435110267Sjeff	load = 0;
436110267Sjeff
437110267Sjeff	for (i = 0; i < mp_maxid; i++) {
438116970Sjeff		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
439110267Sjeff			continue;
440110267Sjeff		kseq = KSEQ_CPU(i);
441113357Sjeff		if (kseq->ksq_load > load) {
442113357Sjeff			load = kseq->ksq_load;
443110267Sjeff			cpu = i;
444110267Sjeff		}
445110267Sjeff	}
446117237Sjeff	kseq = KSEQ_CPU(cpu);
447110267Sjeff
448117237Sjeff	if (load > kseq->ksq_cpus)
449117237Sjeff		return (kseq);
450117237Sjeff
451110267Sjeff	return (NULL);
452110267Sjeff}
453116069Sjeff
454116069Sjeffvoid
455116069Sjeffkseq_move(struct kseq *from, int cpu)
456116069Sjeff{
457116069Sjeff	struct kse *ke;
458116069Sjeff
459117326Sjeff	ke = kseq_choose(from, 1);
460116069Sjeff	runq_remove(ke->ke_runq, ke);
461116069Sjeff	ke->ke_state = KES_THREAD;
462116069Sjeff	kseq_rem(from, ke);
463116069Sjeff
464116069Sjeff	ke->ke_cpu = cpu;
465121145Sjeff	sched_add(ke->ke_thread);
466116069Sjeff}
467110267Sjeff#endif
468110267Sjeff
469117326Sjeff/*
470117326Sjeff * Pick the highest priority task we have and return it.   If steal is 1 we
471117326Sjeff * will return kses that have been denied slices due to their nice being too
472117326Sjeff * low.  In the future we should prohibit stealing interrupt threads as well.
473117326Sjeff */
474117326Sjeff
475110267Sjeffstruct kse *
476117326Sjeffkseq_choose(struct kseq *kseq, int steal)
477110267Sjeff{
478110267Sjeff	struct kse *ke;
479110267Sjeff	struct runq *swap;
480110267Sjeff
481115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
482113357Sjeff	swap = NULL;
483112994Sjeff
484113357Sjeff	for (;;) {
485113357Sjeff		ke = runq_choose(kseq->ksq_curr);
486113357Sjeff		if (ke == NULL) {
487113357Sjeff			/*
488113357Sjeff			 * We already swaped once and didn't get anywhere.
489113357Sjeff			 */
490113357Sjeff			if (swap)
491113357Sjeff				break;
492113357Sjeff			swap = kseq->ksq_curr;
493113357Sjeff			kseq->ksq_curr = kseq->ksq_next;
494113357Sjeff			kseq->ksq_next = swap;
495113357Sjeff			continue;
496113357Sjeff		}
497113357Sjeff		/*
498113357Sjeff		 * If we encounter a slice of 0 the kse is in a
499113357Sjeff		 * TIMESHARE kse group and its nice was too far out
500113357Sjeff		 * of the range that receives slices.
501113357Sjeff		 */
502117326Sjeff		if (ke->ke_slice == 0 && steal == 0) {
503113357Sjeff			runq_remove(ke->ke_runq, ke);
504113357Sjeff			sched_slice(ke);
505113357Sjeff			ke->ke_runq = kseq->ksq_next;
506113357Sjeff			runq_add(ke->ke_runq, ke);
507113357Sjeff			continue;
508113357Sjeff		}
509113357Sjeff		return (ke);
510110267Sjeff	}
511110267Sjeff
512113357Sjeff	return (runq_choose(&kseq->ksq_idle));
513110267Sjeff}
514110267Sjeff
515109864Sjeffstatic void
516110028Sjeffkseq_setup(struct kseq *kseq)
517110028Sjeff{
518113357Sjeff	runq_init(&kseq->ksq_timeshare[0]);
519113357Sjeff	runq_init(&kseq->ksq_timeshare[1]);
520112994Sjeff	runq_init(&kseq->ksq_idle);
521113357Sjeff
522113357Sjeff	kseq->ksq_curr = &kseq->ksq_timeshare[0];
523113357Sjeff	kseq->ksq_next = &kseq->ksq_timeshare[1];
524113357Sjeff
525113357Sjeff	kseq->ksq_loads[PRI_ITHD] = 0;
526113357Sjeff	kseq->ksq_loads[PRI_REALTIME] = 0;
527113357Sjeff	kseq->ksq_loads[PRI_TIMESHARE] = 0;
528113357Sjeff	kseq->ksq_loads[PRI_IDLE] = 0;
529113660Sjeff	kseq->ksq_load = 0;
530110267Sjeff#ifdef SMP
531110267Sjeff	kseq->ksq_rslices = 0;
532110267Sjeff#endif
533110028Sjeff}
534110028Sjeff
535110028Sjeffstatic void
536109864Sjeffsched_setup(void *dummy)
537109864Sjeff{
538117313Sjeff#ifdef SMP
539109864Sjeff	int i;
540117313Sjeff#endif
541109864Sjeff
542116946Sjeff	slice_min = (hz/100);	/* 10ms */
543116946Sjeff	slice_max = (hz/7);	/* ~140ms */
544111857Sjeff
545117237Sjeff#ifdef SMP
546109864Sjeff	/* init kseqs */
547117237Sjeff	/* Create the idmap. */
548117237Sjeff#ifdef ULE_HTT_EXPERIMENTAL
549117237Sjeff	if (smp_topology == NULL) {
550117237Sjeff#else
551117237Sjeff	if (1) {
552117237Sjeff#endif
553117237Sjeff		for (i = 0; i < MAXCPU; i++) {
554117237Sjeff			kseq_setup(&kseq_cpu[i]);
555117237Sjeff			kseq_idmap[i] = &kseq_cpu[i];
556117237Sjeff			kseq_cpu[i].ksq_cpus = 1;
557117237Sjeff		}
558117237Sjeff	} else {
559117237Sjeff		int j;
560113357Sjeff
561117237Sjeff		for (i = 0; i < smp_topology->ct_count; i++) {
562117237Sjeff			struct cpu_group *cg;
563117237Sjeff
564117237Sjeff			cg = &smp_topology->ct_group[i];
565117237Sjeff			kseq_setup(&kseq_cpu[i]);
566117237Sjeff
567117237Sjeff			for (j = 0; j < MAXCPU; j++)
568117237Sjeff				if ((cg->cg_mask & (1 << j)) != 0)
569117237Sjeff					kseq_idmap[j] = &kseq_cpu[i];
570117237Sjeff			kseq_cpu[i].ksq_cpus = cg->cg_count;
571117237Sjeff		}
572117237Sjeff	}
573119137Ssam	callout_init(&kseq_lb_callout, CALLOUT_MPSAFE);
574116069Sjeff	kseq_balance(NULL);
575117237Sjeff#else
576117237Sjeff	kseq_setup(KSEQ_SELF());
577116069Sjeff#endif
578117237Sjeff	mtx_lock_spin(&sched_lock);
579117237Sjeff	kseq_add(KSEQ_SELF(), &kse0);
580117237Sjeff	mtx_unlock_spin(&sched_lock);
581109864Sjeff}
582109864Sjeff
583109864Sjeff/*
584109864Sjeff * Scale the scheduling priority according to the "interactivity" of this
585109864Sjeff * process.
586109864Sjeff */
587113357Sjeffstatic void
588109864Sjeffsched_priority(struct ksegrp *kg)
589109864Sjeff{
590109864Sjeff	int pri;
591109864Sjeff
592109864Sjeff	if (kg->kg_pri_class != PRI_TIMESHARE)
593113357Sjeff		return;
594109864Sjeff
595113357Sjeff	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
596111857Sjeff	pri += SCHED_PRI_BASE;
597109864Sjeff	pri += kg->kg_nice;
598109864Sjeff
599109864Sjeff	if (pri > PRI_MAX_TIMESHARE)
600109864Sjeff		pri = PRI_MAX_TIMESHARE;
601109864Sjeff	else if (pri < PRI_MIN_TIMESHARE)
602109864Sjeff		pri = PRI_MIN_TIMESHARE;
603109864Sjeff
604109864Sjeff	kg->kg_user_pri = pri;
605109864Sjeff
606113357Sjeff	return;
607109864Sjeff}
608109864Sjeff
609109864Sjeff/*
610112966Sjeff * Calculate a time slice based on the properties of the kseg and the runq
611112994Sjeff * that we're on.  This is only for PRI_TIMESHARE ksegrps.
612109864Sjeff */
613112966Sjeffstatic void
614112966Sjeffsched_slice(struct kse *ke)
615109864Sjeff{
616113357Sjeff	struct kseq *kseq;
617112966Sjeff	struct ksegrp *kg;
618109864Sjeff
619112966Sjeff	kg = ke->ke_ksegrp;
620113357Sjeff	kseq = KSEQ_CPU(ke->ke_cpu);
621109864Sjeff
622112966Sjeff	/*
623112966Sjeff	 * Rationale:
624112966Sjeff	 * KSEs in interactive ksegs get the minimum slice so that we
625112966Sjeff	 * quickly notice if it abuses its advantage.
626112966Sjeff	 *
627112966Sjeff	 * KSEs in non-interactive ksegs are assigned a slice that is
628112966Sjeff	 * based on the ksegs nice value relative to the least nice kseg
629112966Sjeff	 * on the run queue for this cpu.
630112966Sjeff	 *
631112966Sjeff	 * If the KSE is less nice than all others it gets the maximum
632112966Sjeff	 * slice and other KSEs will adjust their slice relative to
633112966Sjeff	 * this when they first expire.
634112966Sjeff	 *
635112966Sjeff	 * There is 20 point window that starts relative to the least
636112966Sjeff	 * nice kse on the run queue.  Slice size is determined by
637112966Sjeff	 * the kse distance from the last nice ksegrp.
638112966Sjeff	 *
639112966Sjeff	 * If you are outside of the window you will get no slice and
640112966Sjeff	 * you will be reevaluated each time you are selected on the
641112966Sjeff	 * run queue.
642112966Sjeff	 *
643112966Sjeff	 */
644109864Sjeff
645113357Sjeff	if (!SCHED_INTERACTIVE(kg)) {
646112966Sjeff		int nice;
647112966Sjeff
648113357Sjeff		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
649113357Sjeff		if (kseq->ksq_loads[PRI_TIMESHARE] == 0 ||
650113357Sjeff		    kg->kg_nice < kseq->ksq_nicemin)
651112966Sjeff			ke->ke_slice = SCHED_SLICE_MAX;
652113357Sjeff		else if (nice <= SCHED_PRI_NTHRESH)
653112966Sjeff			ke->ke_slice = SCHED_SLICE_NICE(nice);
654112966Sjeff		else
655112966Sjeff			ke->ke_slice = 0;
656112966Sjeff	} else
657112966Sjeff		ke->ke_slice = SCHED_SLICE_MIN;
658112966Sjeff
659113357Sjeff	CTR6(KTR_ULE,
660113357Sjeff	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
661113357Sjeff	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
662113357Sjeff	    kseq->ksq_loads[PRI_TIMESHARE], SCHED_INTERACTIVE(kg));
663113357Sjeff
664110645Sjeff	/*
665112994Sjeff	 * Check to see if we need to scale back the slp and run time
666112994Sjeff	 * in the kg.  This will cause us to forget old interactivity
667112994Sjeff	 * while maintaining the current ratio.
668110645Sjeff	 */
669116463Sjeff	sched_interact_update(kg);
670110645Sjeff
671112966Sjeff	return;
672109864Sjeff}
673109864Sjeff
674116463Sjeffstatic void
675116463Sjeffsched_interact_update(struct ksegrp *kg)
676116463Sjeff{
677121605Sjeff        int ratio;
678121605Sjeff
679121605Sjeff	if ((kg->kg_runtime + kg->kg_slptime) > SCHED_SLP_RUN_MAX) {
680121605Sjeff		ratio = ((SCHED_SLP_RUN_MAX * 15) / (kg->kg_runtime +
681121605Sjeff		    kg->kg_slptime ));
682121605Sjeff		kg->kg_runtime = (kg->kg_runtime * ratio) / 16;
683121605Sjeff		kg->kg_slptime = (kg->kg_slptime * ratio) / 16;
684116463Sjeff	}
685116463Sjeff}
686116463Sjeff
687111857Sjeffstatic int
688111857Sjeffsched_interact_score(struct ksegrp *kg)
689111857Sjeff{
690116365Sjeff	int div;
691111857Sjeff
692111857Sjeff	if (kg->kg_runtime > kg->kg_slptime) {
693116365Sjeff		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
694116365Sjeff		return (SCHED_INTERACT_HALF +
695116365Sjeff		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
696116365Sjeff	} if (kg->kg_slptime > kg->kg_runtime) {
697116365Sjeff		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
698116365Sjeff		return (kg->kg_runtime / div);
699111857Sjeff	}
700111857Sjeff
701116365Sjeff	/*
702116365Sjeff	 * This can happen if slptime and runtime are 0.
703116365Sjeff	 */
704116365Sjeff	return (0);
705111857Sjeff
706111857Sjeff}
707111857Sjeff
708113357Sjeff/*
709113357Sjeff * This is only somewhat accurate since given many processes of the same
710113357Sjeff * priority they will switch when their slices run out, which will be
711113357Sjeff * at most SCHED_SLICE_MAX.
712113357Sjeff */
713109864Sjeffint
714109864Sjeffsched_rr_interval(void)
715109864Sjeff{
716109864Sjeff	return (SCHED_SLICE_MAX);
717109864Sjeff}
718109864Sjeff
719109864Sjeffvoid
720109864Sjeffsched_pctcpu_update(struct kse *ke)
721109864Sjeff{
722109864Sjeff	/*
723109864Sjeff	 * Adjust counters and watermark for pctcpu calc.
724116365Sjeff	 */
725120272Sjeff	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
726120272Sjeff		/*
727120272Sjeff		 * Shift the tick count out so that the divide doesn't
728120272Sjeff		 * round away our results.
729120272Sjeff		 */
730120272Sjeff		ke->ke_ticks <<= 10;
731120272Sjeff		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
732120272Sjeff			    SCHED_CPU_TICKS;
733120272Sjeff		ke->ke_ticks >>= 10;
734120272Sjeff	} else
735120272Sjeff		ke->ke_ticks = 0;
736109864Sjeff	ke->ke_ltick = ticks;
737109864Sjeff	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
738109864Sjeff}
739109864Sjeff
740109864Sjeff#ifdef SMP
741110267Sjeff/* XXX Should be changed to kseq_load_lowest() */
742109864Sjeffint
743109864Sjeffsched_pickcpu(void)
744109864Sjeff{
745110028Sjeff	struct kseq *kseq;
746110028Sjeff	int load;
747109864Sjeff	int cpu;
748109864Sjeff	int i;
749109864Sjeff
750115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
751109864Sjeff	if (!smp_started)
752109864Sjeff		return (0);
753109864Sjeff
754110028Sjeff	load = 0;
755110028Sjeff	cpu = 0;
756109864Sjeff
757109864Sjeff	for (i = 0; i < mp_maxid; i++) {
758116970Sjeff		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
759109864Sjeff			continue;
760110028Sjeff		kseq = KSEQ_CPU(i);
761113357Sjeff		if (kseq->ksq_load < load) {
762109864Sjeff			cpu = i;
763113357Sjeff			load = kseq->ksq_load;
764109864Sjeff		}
765109864Sjeff	}
766109864Sjeff
767109864Sjeff	CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
768109864Sjeff	return (cpu);
769109864Sjeff}
770109864Sjeff#else
771109864Sjeffint
772109864Sjeffsched_pickcpu(void)
773109864Sjeff{
774109864Sjeff	return (0);
775109864Sjeff}
776109864Sjeff#endif
777109864Sjeff
778109864Sjeffvoid
779109864Sjeffsched_prio(struct thread *td, u_char prio)
780109864Sjeff{
781121605Sjeff	struct kse *ke;
782109864Sjeff
783121605Sjeff	ke = td->td_kse;
784109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
785109864Sjeff	if (TD_ON_RUNQ(td)) {
786121605Sjeff		/*
787121605Sjeff		 * If the priority has been elevated due to priority
788121605Sjeff		 * propagation, we may have to move ourselves to a new
789121605Sjeff		 * queue.  We still call adjustrunqueue below in case kse
790121605Sjeff		 * needs to fix things up.
791121605Sjeff		 */
792121605Sjeff		if ((td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
793121605Sjeff		    prio < td->td_ksegrp->kg_user_pri) ||
794121605Sjeff		    (td->td_ksegrp->kg_pri_class == PRI_IDLE &&
795121605Sjeff		    prio < PRI_MIN_IDLE)) {
796121605Sjeff			runq_remove(ke->ke_runq, ke);
797121605Sjeff			ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
798121605Sjeff			runq_add(ke->ke_runq, ke);
799121605Sjeff		}
800119488Sdavidxu		adjustrunqueue(td, prio);
801121605Sjeff	} else
802119488Sdavidxu		td->td_priority = prio;
803109864Sjeff}
804109864Sjeff
805109864Sjeffvoid
806121128Sjeffsched_switch(struct thread *td)
807109864Sjeff{
808121128Sjeff	struct thread *newtd;
809121128Sjeff	u_int sched_nest;
810109864Sjeff	struct kse *ke;
811109864Sjeff
812109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
813109864Sjeff
814109864Sjeff	ke = td->td_kse;
815109864Sjeff
816109864Sjeff	td->td_last_kse = ke;
817113339Sjulian        td->td_lastcpu = td->td_oncpu;
818113339Sjulian	td->td_oncpu = NOCPU;
819111032Sjulian        td->td_flags &= ~TDF_NEEDRESCHED;
820109864Sjeff
821109864Sjeff	if (TD_IS_RUNNING(td)) {
822119488Sdavidxu		if (td->td_proc->p_flag & P_SA) {
823119488Sdavidxu			kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
824119488Sdavidxu			setrunqueue(td);
825119488Sdavidxu		} else {
826119488Sdavidxu			/*
827121605Sjeff			 * This queue is always correct except for idle threads
828121605Sjeff			 * which have a higher priority due to priority
829121605Sjeff			 * propagation.
830119488Sdavidxu			 */
831121605Sjeff			if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE) {
832121605Sjeff				if (td->td_priority < PRI_MIN_IDLE)
833121605Sjeff					ke->ke_runq = KSEQ_SELF()->ksq_curr;
834121605Sjeff				else
835121605Sjeff					ke->ke_runq = &KSEQ_SELF()->ksq_idle;
836121605Sjeff			}
837119488Sdavidxu			runq_add(ke->ke_runq, ke);
838119488Sdavidxu			/* setrunqueue(td); */
839119488Sdavidxu		}
840121146Sjeff	} else {
841121146Sjeff		if (ke->ke_runq)
842121146Sjeff			kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
843121146Sjeff		/*
844121146Sjeff		 * We will not be on the run queue. So we must be
845121146Sjeff		 * sleeping or similar.
846121146Sjeff		 */
847121146Sjeff		if (td->td_proc->p_flag & P_SA)
848121146Sjeff			kse_reassign(ke);
849121146Sjeff	}
850121128Sjeff	sched_nest = sched_lock.mtx_recurse;
851121128Sjeff	newtd = choosethread();
852121128Sjeff	if (td != newtd)
853121128Sjeff		cpu_switch(td, newtd);
854121128Sjeff	sched_lock.mtx_recurse = sched_nest;
855121128Sjeff	sched_lock.mtx_lock = (uintptr_t)td;
856109864Sjeff
857113339Sjulian	td->td_oncpu = PCPU_GET(cpuid);
858109864Sjeff}
859109864Sjeff
860109864Sjeffvoid
861109864Sjeffsched_nice(struct ksegrp *kg, int nice)
862109864Sjeff{
863113357Sjeff	struct kse *ke;
864109864Sjeff	struct thread *td;
865113357Sjeff	struct kseq *kseq;
866109864Sjeff
867113873Sjhb	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
868113873Sjhb	mtx_assert(&sched_lock, MA_OWNED);
869113357Sjeff	/*
870113357Sjeff	 * We need to adjust the nice counts for running KSEs.
871113357Sjeff	 */
872113357Sjeff	if (kg->kg_pri_class == PRI_TIMESHARE)
873113357Sjeff		FOREACH_KSE_IN_GROUP(kg, ke) {
874116500Sjeff			if (ke->ke_runq == NULL)
875113357Sjeff				continue;
876113357Sjeff			kseq = KSEQ_CPU(ke->ke_cpu);
877113357Sjeff			kseq_nice_rem(kseq, kg->kg_nice);
878113357Sjeff			kseq_nice_add(kseq, nice);
879113357Sjeff		}
880109864Sjeff	kg->kg_nice = nice;
881109864Sjeff	sched_priority(kg);
882113357Sjeff	FOREACH_THREAD_IN_GROUP(kg, td)
883111032Sjulian		td->td_flags |= TDF_NEEDRESCHED;
884109864Sjeff}
885109864Sjeff
886109864Sjeffvoid
887109864Sjeffsched_sleep(struct thread *td, u_char prio)
888109864Sjeff{
889109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
890109864Sjeff
891109864Sjeff	td->td_slptime = ticks;
892109864Sjeff	td->td_priority = prio;
893109864Sjeff
894113357Sjeff	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
895113357Sjeff	    td->td_kse, td->td_slptime);
896109864Sjeff}
897109864Sjeff
898109864Sjeffvoid
899109864Sjeffsched_wakeup(struct thread *td)
900109864Sjeff{
901109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
902109864Sjeff
903109864Sjeff	/*
904109864Sjeff	 * Let the kseg know how long we slept for.  This is because process
905109864Sjeff	 * interactivity behavior is modeled in the kseg.
906109864Sjeff	 */
907111788Sjeff	if (td->td_slptime) {
908111788Sjeff		struct ksegrp *kg;
909113357Sjeff		int hzticks;
910109864Sjeff
911111788Sjeff		kg = td->td_ksegrp;
912113357Sjeff		hzticks = ticks - td->td_slptime;
913113357Sjeff		kg->kg_slptime += hzticks << 10;
914116463Sjeff		sched_interact_update(kg);
915111788Sjeff		sched_priority(kg);
916116463Sjeff		if (td->td_kse)
917116463Sjeff			sched_slice(td->td_kse);
918113357Sjeff		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
919113357Sjeff		    td->td_kse, hzticks);
920111788Sjeff		td->td_slptime = 0;
921109864Sjeff	}
922109864Sjeff	setrunqueue(td);
923109864Sjeff        if (td->td_priority < curthread->td_priority)
924111032Sjulian                curthread->td_flags |= TDF_NEEDRESCHED;
925109864Sjeff}
926109864Sjeff
927109864Sjeff/*
928109864Sjeff * Penalize the parent for creating a new child and initialize the child's
929109864Sjeff * priority.
930109864Sjeff */
931109864Sjeffvoid
932113357Sjeffsched_fork(struct proc *p, struct proc *p1)
933109864Sjeff{
934109864Sjeff
935109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
936109864Sjeff
937113357Sjeff	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
938113357Sjeff	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
939113357Sjeff	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
940113357Sjeff}
941113357Sjeff
942113357Sjeffvoid
943113357Sjeffsched_fork_kse(struct kse *ke, struct kse *child)
944113357Sjeff{
945113923Sjhb
946116365Sjeff	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
947113357Sjeff	child->ke_cpu = ke->ke_cpu; /* sched_pickcpu(); */
948113357Sjeff	child->ke_runq = NULL;
949113357Sjeff
950121051Sjeff	/* Grab our parents cpu estimation information. */
951121051Sjeff	child->ke_ticks = ke->ke_ticks;
952121051Sjeff	child->ke_ltick = ke->ke_ltick;
953121051Sjeff	child->ke_ftick = ke->ke_ftick;
954113357Sjeff}
955113357Sjeff
956113357Sjeffvoid
957113357Sjeffsched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
958113357Sjeff{
959113923Sjhb
960113923Sjhb	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
961109864Sjeff	/* XXX Need something better here */
962116365Sjeff
963116955Sjeff	child->kg_slptime = kg->kg_slptime / SCHED_SLP_RUN_THROTTLE;
964116955Sjeff	child->kg_runtime = kg->kg_runtime / SCHED_SLP_RUN_THROTTLE;
965116463Sjeff	kg->kg_runtime += tickincr << 10;
966116463Sjeff	sched_interact_update(kg);
967113357Sjeff
968109864Sjeff	child->kg_user_pri = kg->kg_user_pri;
969113357Sjeff	child->kg_nice = kg->kg_nice;
970113357Sjeff}
971109864Sjeff
972113357Sjeffvoid
973113357Sjeffsched_fork_thread(struct thread *td, struct thread *child)
974113357Sjeff{
975113357Sjeff}
976113357Sjeff
977113357Sjeffvoid
978113357Sjeffsched_class(struct ksegrp *kg, int class)
979113357Sjeff{
980113357Sjeff	struct kseq *kseq;
981113357Sjeff	struct kse *ke;
982113357Sjeff
983113923Sjhb	mtx_assert(&sched_lock, MA_OWNED);
984113357Sjeff	if (kg->kg_pri_class == class)
985113357Sjeff		return;
986113357Sjeff
987113357Sjeff	FOREACH_KSE_IN_GROUP(kg, ke) {
988113357Sjeff		if (ke->ke_state != KES_ONRUNQ &&
989113357Sjeff		    ke->ke_state != KES_THREAD)
990113357Sjeff			continue;
991113357Sjeff		kseq = KSEQ_CPU(ke->ke_cpu);
992113357Sjeff
993113386Sjeff		kseq->ksq_loads[PRI_BASE(kg->kg_pri_class)]--;
994113386Sjeff		kseq->ksq_loads[PRI_BASE(class)]++;
995113357Sjeff
996113357Sjeff		if (kg->kg_pri_class == PRI_TIMESHARE)
997113357Sjeff			kseq_nice_rem(kseq, kg->kg_nice);
998113357Sjeff		else if (class == PRI_TIMESHARE)
999113357Sjeff			kseq_nice_add(kseq, kg->kg_nice);
1000109970Sjeff	}
1001109970Sjeff
1002113357Sjeff	kg->kg_pri_class = class;
1003109864Sjeff}
1004109864Sjeff
1005109864Sjeff/*
1006109864Sjeff * Return some of the child's priority and interactivity to the parent.
1007109864Sjeff */
1008109864Sjeffvoid
1009113357Sjeffsched_exit(struct proc *p, struct proc *child)
1010109864Sjeff{
1011109864Sjeff	/* XXX Need something better here */
1012109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1013113372Sjeff	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
1014116365Sjeff	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
1015109864Sjeff}
1016109864Sjeff
1017109864Sjeffvoid
1018113372Sjeffsched_exit_kse(struct kse *ke, struct kse *child)
1019113372Sjeff{
1020113372Sjeff	kseq_rem(KSEQ_CPU(child->ke_cpu), child);
1021113372Sjeff}
1022113372Sjeff
1023113372Sjeffvoid
1024113372Sjeffsched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1025113372Sjeff{
1026116463Sjeff	/* kg->kg_slptime += child->kg_slptime; */
1027116365Sjeff	kg->kg_runtime += child->kg_runtime;
1028116463Sjeff	sched_interact_update(kg);
1029113372Sjeff}
1030113372Sjeff
1031113372Sjeffvoid
1032113372Sjeffsched_exit_thread(struct thread *td, struct thread *child)
1033113372Sjeff{
1034113372Sjeff}
1035113372Sjeff
1036113372Sjeffvoid
1037121127Sjeffsched_clock(struct thread *td)
1038109864Sjeff{
1039113357Sjeff	struct kseq *kseq;
1040113357Sjeff	struct ksegrp *kg;
1041121127Sjeff	struct kse *ke;
1042109864Sjeff
1043113357Sjeff	/*
1044113357Sjeff	 * sched_setup() apparently happens prior to stathz being set.  We
1045113357Sjeff	 * need to resolve the timers earlier in the boot so we can avoid
1046113357Sjeff	 * calculating this here.
1047113357Sjeff	 */
1048113357Sjeff	if (realstathz == 0) {
1049113357Sjeff		realstathz = stathz ? stathz : hz;
1050113357Sjeff		tickincr = hz / realstathz;
1051113357Sjeff		/*
1052113357Sjeff		 * XXX This does not work for values of stathz that are much
1053113357Sjeff		 * larger than hz.
1054113357Sjeff		 */
1055113357Sjeff		if (tickincr == 0)
1056113357Sjeff			tickincr = 1;
1057113357Sjeff	}
1058109864Sjeff
1059121127Sjeff	ke = td->td_kse;
1060113357Sjeff	kg = ke->ke_ksegrp;
1061109864Sjeff
1062110028Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1063110028Sjeff	KASSERT((td != NULL), ("schedclock: null thread pointer"));
1064110028Sjeff
1065110028Sjeff	/* Adjust ticks for pctcpu */
1066111793Sjeff	ke->ke_ticks++;
1067109971Sjeff	ke->ke_ltick = ticks;
1068112994Sjeff
1069109971Sjeff	/* Go up to one second beyond our max and then trim back down */
1070109971Sjeff	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1071109971Sjeff		sched_pctcpu_update(ke);
1072109971Sjeff
1073114496Sjulian	if (td->td_flags & TDF_IDLETD)
1074109864Sjeff		return;
1075110028Sjeff
1076113357Sjeff	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1077113357Sjeff	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1078113357Sjeff
1079110028Sjeff	/*
1080121605Sjeff	 * Idle tasks should always resched.
1081121605Sjeff	 */
1082121605Sjeff	if (kg->kg_pri_class == PRI_IDLE) {
1083121605Sjeff		td->td_flags |= TDF_NEEDRESCHED;
1084121605Sjeff		return;
1085121605Sjeff	}
1086121605Sjeff	/*
1087113357Sjeff	 * We only do slicing code for TIMESHARE ksegrps.
1088113357Sjeff	 */
1089113357Sjeff	if (kg->kg_pri_class != PRI_TIMESHARE)
1090113357Sjeff		return;
1091113357Sjeff	/*
1092110645Sjeff	 * We used a tick charge it to the ksegrp so that we can compute our
1093113357Sjeff	 * interactivity.
1094109864Sjeff	 */
1095113357Sjeff	kg->kg_runtime += tickincr << 10;
1096116463Sjeff	sched_interact_update(kg);
1097110645Sjeff
1098109864Sjeff	/*
1099109864Sjeff	 * We used up one time slice.
1100109864Sjeff	 */
1101109864Sjeff	ke->ke_slice--;
1102121605Sjeff	kseq = KSEQ_SELF();
1103113357Sjeff#ifdef SMP
1104113370Sjeff	kseq->ksq_rslices--;
1105113357Sjeff#endif
1106113357Sjeff
1107113357Sjeff	if (ke->ke_slice > 0)
1108113357Sjeff		return;
1109109864Sjeff	/*
1110113357Sjeff	 * We're out of time, recompute priorities and requeue.
1111109864Sjeff	 */
1112113357Sjeff	kseq_rem(kseq, ke);
1113113357Sjeff	sched_priority(kg);
1114113357Sjeff	sched_slice(ke);
1115113357Sjeff	if (SCHED_CURR(kg, ke))
1116113357Sjeff		ke->ke_runq = kseq->ksq_curr;
1117113357Sjeff	else
1118113357Sjeff		ke->ke_runq = kseq->ksq_next;
1119113357Sjeff	kseq_add(kseq, ke);
1120113357Sjeff	td->td_flags |= TDF_NEEDRESCHED;
1121109864Sjeff}
1122109864Sjeff
1123109864Sjeffint
1124109864Sjeffsched_runnable(void)
1125109864Sjeff{
1126109864Sjeff	struct kseq *kseq;
1127115998Sjeff	int load;
1128109864Sjeff
1129115998Sjeff	load = 1;
1130115998Sjeff
1131115998Sjeff	mtx_lock_spin(&sched_lock);
1132110028Sjeff	kseq = KSEQ_SELF();
1133109864Sjeff
1134121605Sjeff	if ((curthread->td_flags & TDF_IDLETD) != 0) {
1135121605Sjeff		if (kseq->ksq_load > 0)
1136121605Sjeff			goto out;
1137121605Sjeff	} else
1138121605Sjeff		if (kseq->ksq_load - 1 > 0)
1139121605Sjeff			goto out;
1140109970Sjeff#ifdef SMP
1141110028Sjeff	/*
1142110028Sjeff	 * For SMP we may steal other processor's KSEs.  Just search until we
1143110028Sjeff	 * verify that at least on other cpu has a runnable task.
1144110028Sjeff	 */
1145109970Sjeff	if (smp_started) {
1146109970Sjeff		int i;
1147109970Sjeff
1148109970Sjeff		for (i = 0; i < mp_maxid; i++) {
1149116970Sjeff			if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
1150109970Sjeff				continue;
1151110028Sjeff			kseq = KSEQ_CPU(i);
1152117237Sjeff			if (kseq->ksq_load > kseq->ksq_cpus)
1153115998Sjeff				goto out;
1154109970Sjeff		}
1155109970Sjeff	}
1156109970Sjeff#endif
1157115998Sjeff	load = 0;
1158115998Sjeffout:
1159115998Sjeff	mtx_unlock_spin(&sched_lock);
1160115998Sjeff	return (load);
1161109864Sjeff}
1162109864Sjeff
1163109864Sjeffvoid
1164109864Sjeffsched_userret(struct thread *td)
1165109864Sjeff{
1166109864Sjeff	struct ksegrp *kg;
1167121605Sjeff
1168121605Sjeff	kg = td->td_ksegrp;
1169109864Sjeff
1170109864Sjeff	if (td->td_priority != kg->kg_user_pri) {
1171109864Sjeff		mtx_lock_spin(&sched_lock);
1172109864Sjeff		td->td_priority = kg->kg_user_pri;
1173109864Sjeff		mtx_unlock_spin(&sched_lock);
1174109864Sjeff	}
1175109864Sjeff}
1176109864Sjeff
1177109864Sjeffstruct kse *
1178109970Sjeffsched_choose(void)
1179109970Sjeff{
1180110028Sjeff	struct kseq *kseq;
1181109970Sjeff	struct kse *ke;
1182109970Sjeff
1183115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1184113357Sjeff#ifdef SMP
1185112966Sjeffretry:
1186113357Sjeff#endif
1187113370Sjeff	kseq = KSEQ_SELF();
1188117326Sjeff	ke = kseq_choose(kseq, 0);
1189109864Sjeff	if (ke) {
1190113357Sjeff		runq_remove(ke->ke_runq, ke);
1191109864Sjeff		ke->ke_state = KES_THREAD;
1192112966Sjeff
1193113357Sjeff		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1194113357Sjeff			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1195113357Sjeff			    ke, ke->ke_runq, ke->ke_slice,
1196113357Sjeff			    ke->ke_thread->td_priority);
1197113357Sjeff		}
1198113357Sjeff		return (ke);
1199109864Sjeff	}
1200109864Sjeff
1201109970Sjeff#ifdef SMP
1202113370Sjeff	if (smp_started) {
1203109970Sjeff		/*
1204109970Sjeff		 * Find the cpu with the highest load and steal one proc.
1205109970Sjeff		 */
1206113370Sjeff		if ((kseq = kseq_load_highest()) == NULL)
1207113370Sjeff			return (NULL);
1208113370Sjeff
1209113370Sjeff		/*
1210113370Sjeff		 * Remove this kse from this kseq and runq and then requeue
1211113370Sjeff		 * on the current processor.  Then we will dequeue it
1212113370Sjeff		 * normally above.
1213113370Sjeff		 */
1214116069Sjeff		kseq_move(kseq, PCPU_GET(cpuid));
1215113370Sjeff		goto retry;
1216109970Sjeff	}
1217109970Sjeff#endif
1218113357Sjeff
1219113357Sjeff	return (NULL);
1220109864Sjeff}
1221109864Sjeff
1222109864Sjeffvoid
1223121127Sjeffsched_add(struct thread *td)
1224109864Sjeff{
1225110267Sjeff	struct kseq *kseq;
1226113357Sjeff	struct ksegrp *kg;
1227121127Sjeff	struct kse *ke;
1228109864Sjeff
1229121127Sjeff	ke = td->td_kse;
1230121127Sjeff	kg = td->td_ksegrp;
1231109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1232110267Sjeff	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
1233109864Sjeff	KASSERT((ke->ke_thread->td_kse != NULL),
1234110267Sjeff	    ("sched_add: No KSE on thread"));
1235109864Sjeff	KASSERT(ke->ke_state != KES_ONRUNQ,
1236110267Sjeff	    ("sched_add: kse %p (%s) already in run queue", ke,
1237109864Sjeff	    ke->ke_proc->p_comm));
1238109864Sjeff	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1239110267Sjeff	    ("sched_add: process swapped out"));
1240113387Sjeff	KASSERT(ke->ke_runq == NULL,
1241113387Sjeff	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1242109864Sjeff
1243113357Sjeff
1244113386Sjeff	switch (PRI_BASE(kg->kg_pri_class)) {
1245112994Sjeff	case PRI_ITHD:
1246112994Sjeff	case PRI_REALTIME:
1247112994Sjeff		kseq = KSEQ_SELF();
1248113357Sjeff		ke->ke_runq = kseq->ksq_curr;
1249113357Sjeff		ke->ke_slice = SCHED_SLICE_MAX;
1250113660Sjeff		ke->ke_cpu = PCPU_GET(cpuid);
1251112994Sjeff		break;
1252112994Sjeff	case PRI_TIMESHARE:
1253113357Sjeff		kseq = KSEQ_CPU(ke->ke_cpu);
1254113387Sjeff		if (SCHED_CURR(kg, ke))
1255113387Sjeff			ke->ke_runq = kseq->ksq_curr;
1256113387Sjeff		else
1257113387Sjeff			ke->ke_runq = kseq->ksq_next;
1258113357Sjeff		break;
1259112994Sjeff	case PRI_IDLE:
1260111789Sjeff		kseq = KSEQ_CPU(ke->ke_cpu);
1261113357Sjeff		/*
1262113357Sjeff		 * This is for priority prop.
1263113357Sjeff		 */
1264121605Sjeff		if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1265113357Sjeff			ke->ke_runq = kseq->ksq_curr;
1266113357Sjeff		else
1267113357Sjeff			ke->ke_runq = &kseq->ksq_idle;
1268113357Sjeff		ke->ke_slice = SCHED_SLICE_MIN;
1269112994Sjeff		break;
1270113357Sjeff	default:
1271113357Sjeff		panic("Unknown pri class.\n");
1272113357Sjeff		break;
1273112994Sjeff	}
1274109864Sjeff
1275109864Sjeff	ke->ke_ksegrp->kg_runq_kses++;
1276109864Sjeff	ke->ke_state = KES_ONRUNQ;
1277109864Sjeff
1278113357Sjeff	runq_add(ke->ke_runq, ke);
1279113387Sjeff	kseq_add(kseq, ke);
1280109864Sjeff}
1281109864Sjeff
1282109864Sjeffvoid
1283121127Sjeffsched_rem(struct thread *td)
1284109864Sjeff{
1285113357Sjeff	struct kseq *kseq;
1286121127Sjeff	struct kse *ke;
1287113357Sjeff
1288121127Sjeff	ke = td->td_kse;
1289121127Sjeff
1290109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1291113387Sjeff	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
1292109864Sjeff
1293109864Sjeff	ke->ke_state = KES_THREAD;
1294109864Sjeff	ke->ke_ksegrp->kg_runq_kses--;
1295113357Sjeff	kseq = KSEQ_CPU(ke->ke_cpu);
1296113357Sjeff	runq_remove(ke->ke_runq, ke);
1297113357Sjeff	kseq_rem(kseq, ke);
1298109864Sjeff}
1299109864Sjeff
1300109864Sjefffixpt_t
1301121127Sjeffsched_pctcpu(struct thread *td)
1302109864Sjeff{
1303109864Sjeff	fixpt_t pctcpu;
1304121127Sjeff	struct kse *ke;
1305109864Sjeff
1306109864Sjeff	pctcpu = 0;
1307121127Sjeff	ke = td->td_kse;
1308121290Sjeff	if (ke == NULL)
1309121290Sjeff		return (0);
1310109864Sjeff
1311115998Sjeff	mtx_lock_spin(&sched_lock);
1312109864Sjeff	if (ke->ke_ticks) {
1313109864Sjeff		int rtick;
1314109864Sjeff
1315116365Sjeff		/*
1316116365Sjeff		 * Don't update more frequently than twice a second.  Allowing
1317116365Sjeff		 * this causes the cpu usage to decay away too quickly due to
1318116365Sjeff		 * rounding errors.
1319116365Sjeff		 */
1320116365Sjeff		if (ke->ke_ltick < (ticks - (hz / 2)))
1321116365Sjeff			sched_pctcpu_update(ke);
1322109864Sjeff		/* How many rtick per second ? */
1323116365Sjeff		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1324110226Sscottl		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1325109864Sjeff	}
1326109864Sjeff
1327109864Sjeff	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1328113865Sjhb	mtx_unlock_spin(&sched_lock);
1329109864Sjeff
1330109864Sjeff	return (pctcpu);
1331109864Sjeff}
1332109864Sjeff
1333109864Sjeffint
1334109864Sjeffsched_sizeof_kse(void)
1335109864Sjeff{
1336109864Sjeff	return (sizeof(struct kse) + sizeof(struct ke_sched));
1337109864Sjeff}
1338109864Sjeff
1339109864Sjeffint
1340109864Sjeffsched_sizeof_ksegrp(void)
1341109864Sjeff{
1342109864Sjeff	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1343109864Sjeff}
1344109864Sjeff
1345109864Sjeffint
1346109864Sjeffsched_sizeof_proc(void)
1347109864Sjeff{
1348109864Sjeff	return (sizeof(struct proc));
1349109864Sjeff}
1350109864Sjeff
1351109864Sjeffint
1352109864Sjeffsched_sizeof_thread(void)
1353109864Sjeff{
1354109864Sjeff	return (sizeof(struct thread) + sizeof(struct td_sched));
1355109864Sjeff}
1356