sched_ule.c revision 121127
120253Sjoerg/*-
220302Sjoerg * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
320302Sjoerg * All rights reserved.
420253Sjoerg *
520253Sjoerg * Redistribution and use in source and binary forms, with or without
620253Sjoerg * modification, are permitted provided that the following conditions
720253Sjoerg * are met:
820253Sjoerg * 1. Redistributions of source code must retain the above copyright
920302Sjoerg *    notice unmodified, this list of conditions, and the following
1020253Sjoerg *    disclaimer.
1120253Sjoerg * 2. Redistributions in binary form must reproduce the above copyright
1220253Sjoerg *    notice, this list of conditions and the following disclaimer in the
1320253Sjoerg *    documentation and/or other materials provided with the distribution.
1420302Sjoerg *
1520253Sjoerg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
1620253Sjoerg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1720302Sjoerg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
1820253Sjoerg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
1920253Sjoerg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
2020253Sjoerg * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2120253Sjoerg * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2220253Sjoerg * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2320253Sjoerg * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
2420253Sjoerg * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2544229Sdavidn */
2620253Sjoerg
2720253Sjoerg#include <sys/cdefs.h>
2830259Scharnier__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 121127 2003-10-16 08:39:15Z jeff $");
2930259Scharnier
3050479Speter#include <sys/param.h>
3130259Scharnier#include <sys/systm.h>
3230259Scharnier#include <sys/kernel.h>
3330259Scharnier#include <sys/ktr.h>
3430259Scharnier#include <sys/lock.h>
3520253Sjoerg#include <sys/mutex.h>
3620253Sjoerg#include <sys/proc.h>
3720253Sjoerg#include <sys/resource.h>
3830259Scharnier#include <sys/sched.h>
3920253Sjoerg#include <sys/smp.h>
4020555Sdavidn#include <sys/sx.h>
4120555Sdavidn#include <sys/sysctl.h>
4220555Sdavidn#include <sys/sysproto.h>
4364918Sgreen#include <sys/vmmeter.h>
44242349Sbapt#ifdef DDB
45242349Sbapt#include <ddb/ddb.h>
46242349Sbapt#endif
4720253Sjoerg#ifdef KTRACE
4820253Sjoerg#include <sys/uio.h>
4920253Sjoerg#include <sys/ktrace.h>
5023318Sache#endif
5122394Sdavidn
5252512Sdavidn#include <machine/cpu.h>
5324214Sache
54284111Sbapt#define KTR_ULE         KTR_NFS
55284128Sbapt
56284124Sbapt/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
57284133Sbapt/* XXX This is bogus compatability crap for ps */
58284118Sbaptstatic fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
5920253SjoergSYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
6020253Sjoerg
6120253Sjoergstatic void sched_setup(void *dummy);
6220253SjoergSYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
6320253Sjoerg
6420253Sjoergstatic SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
6520253Sjoerg
6685145Sachestatic int sched_strict;
6720253SjoergSYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
68283961Sbapt
69284118Sbaptstatic int slice_min = 1;
70283961SbaptSYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
71283961Sbapt
72284118Sbaptstatic int slice_max = 10;
73283961SbaptSYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
74283961Sbapt
75283961Sbaptint realstathz;
76284118Sbaptint tickincr = 1;
77284118Sbapt
78283961Sbapt#ifdef SMP
79283961Sbapt/* Callout to handle load balancing SMP systems. */
80284118Sbaptstatic struct callout kseq_lb_callout;
81283961Sbapt#endif
82283961Sbapt
83283961Sbapt/*
84283961Sbapt * These datastructures are allocated within their parent datastructure but
85283961Sbapt * are scheduler specific.
86283961Sbapt */
87283961Sbapt
88283961Sbaptstruct ke_sched {
8920253Sjoerg	int		ske_slice;
9020253Sjoerg	struct runq	*ske_runq;
9120253Sjoerg	/* The following variables are only used for pctcpu calculation */
9220253Sjoerg	int		ske_ltick;	/* Last tick that we were running on */
9320253Sjoerg	int		ske_ftick;	/* First tick that we were running on */
9420253Sjoerg	int		ske_ticks;	/* Tick count */
9520253Sjoerg	/* CPU that we have affinity for. */
9620253Sjoerg	u_char		ske_cpu;
9720253Sjoerg};
9820253Sjoerg#define	ke_slice	ke_sched->ske_slice
9920253Sjoerg#define	ke_runq		ke_sched->ske_runq
10020253Sjoerg#define	ke_ltick	ke_sched->ske_ltick
10120253Sjoerg#define	ke_ftick	ke_sched->ske_ftick
10220253Sjoerg#define	ke_ticks	ke_sched->ske_ticks
10320253Sjoerg#define	ke_cpu		ke_sched->ske_cpu
10420253Sjoerg
10520253Sjoergstruct kg_sched {
106124382Siedowse	int	skg_slptime;		/* Number of ticks we vol. slept */
10720253Sjoerg	int	skg_runtime;		/* Number of ticks we were running */
10820253Sjoerg};
10920253Sjoerg#define	kg_slptime	kg_sched->skg_slptime
11020253Sjoerg#define	kg_runtime	kg_sched->skg_runtime
11120253Sjoerg
11220253Sjoergstruct td_sched {
11320253Sjoerg	int	std_slptime;
11420253Sjoerg};
11520253Sjoerg#define	td_slptime	td_sched->std_slptime
11620253Sjoerg
11720253Sjoergstruct td_sched td_sched;
11820253Sjoergstruct ke_sched ke_sched;
11920253Sjoergstruct kg_sched kg_sched;
12020253Sjoerg
12120253Sjoergstruct ke_sched *kse0_sched = &ke_sched;
122284128Sbaptstruct kg_sched *ksegrp0_sched = &kg_sched;
12320253Sjoergstruct p_sched *proc0_sched = NULL;
12452527Sdavidnstruct td_sched *thread0_sched = &td_sched;
12520253Sjoerg
12652512Sdavidn/*
12720253Sjoerg * The priority is primarily determined by the interactivity score.  Thus, we
12820253Sjoerg * give lower(better) priorities to kse groups that use less CPU.  The nice
12920253Sjoerg * value is then directly added to this to allow nice to have some effect
13020253Sjoerg * on latency.
131284118Sbapt *
13220747Sdavidn * PRI_RANGE:	Total priority range for timeshare threads.
133283961Sbapt * PRI_NRESV:	Number of nice values.
13482868Sdd * PRI_BASE:	The start of the dynamic range.
135167919Sle */
136167919Sle#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
13720253Sjoerg#define	SCHED_PRI_NRESV		PRIO_TOTAL
13820253Sjoerg#define	SCHED_PRI_NHALF		(PRIO_TOTAL / 2)
13920253Sjoerg#define	SCHED_PRI_NTHRESH	(SCHED_PRI_NHALF - 1)
14020253Sjoerg#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
14120253Sjoerg#define	SCHED_PRI_INTERACT(score)					\
14220253Sjoerg    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
14320253Sjoerg
14420253Sjoerg/*
14520253Sjoerg * These determine the interactivity of a process.
14620253Sjoerg *
14756000Sdavidn * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
14820253Sjoerg *		before throttling back.
14920253Sjoerg * SLP_RUN_THROTTLE:	Divisor for reducing slp/run time at fork time.
15056000Sdavidn * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
15156000Sdavidn * INTERACT_THRESH:	Threshhold for placement on the current runq.
15256000Sdavidn */
15320253Sjoerg#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
15420253Sjoerg#define	SCHED_SLP_RUN_THROTTLE	(100)
155284118Sbapt#define	SCHED_INTERACT_MAX	(100)
15652512Sdavidn#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
15720253Sjoerg#define	SCHED_INTERACT_THRESH	(30)
15820267Sjoerg
15920267Sjoerg/*
16020267Sjoerg * These parameters and macros determine the size of the time slice that is
161284149Sbapt * granted to each thread.
162284149Sbapt *
163284149Sbapt * SLICE_MIN:	Minimum time slice granted, in units of ticks.
164284149Sbapt * SLICE_MAX:	Maximum time slice granted.
165284149Sbapt * SLICE_RANGE:	Range of available time slices scaled by hz.
166284149Sbapt * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
167284128Sbapt * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
168284149Sbapt */
16920267Sjoerg#define	SCHED_SLICE_MIN			(slice_min)
17020267Sjoerg#define	SCHED_SLICE_MAX			(slice_max)
17120267Sjoerg#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
17220253Sjoerg#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
17320253Sjoerg#define	SCHED_SLICE_NICE(nice)						\
17420253Sjoerg    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_PRI_NTHRESH))
17520253Sjoerg
17620267Sjoerg/*
17720253Sjoerg * This macro determines whether or not the kse belongs on the current or
17821052Sdavidn * next run queue.
179167919Sle *
180167919Sle * XXX nice value should effect how interactive a kg is.
181167919Sle */
182167919Sle#define	SCHED_INTERACTIVE(kg)						\
183167919Sle    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
184219408Sjkim#define	SCHED_CURR(kg, ke)						\
185167919Sle    (ke->ke_thread->td_priority != kg->kg_user_pri ||			\
186168044Sle    SCHED_INTERACTIVE(kg))
187167919Sle
18821052Sdavidn/*
18921052Sdavidn * Cpu percentage computation macros and defines.
19021052Sdavidn *
19121052Sdavidn * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
192224535Sdelphij * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
19321052Sdavidn */
19421052Sdavidn
19521052Sdavidn#define	SCHED_CPU_TIME	10
19621052Sdavidn#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
19721052Sdavidn
19821052Sdavidn/*
19930259Scharnier * kseq - per processor runqs and statistics.
20021052Sdavidn */
20121052Sdavidn
20221052Sdavidn#define	KSEQ_NCLASS	(PRI_IDLE + 1)	/* Number of run classes. */
20321052Sdavidn
20421242Sdavidnstruct kseq {
20521242Sdavidn	struct runq	ksq_idle;		/* Queue of IDLE threads. */
20621242Sdavidn	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
20721242Sdavidn	struct runq	*ksq_next;		/* Next timeshare queue. */
20821242Sdavidn	struct runq	*ksq_curr;		/* Current queue. */
20921242Sdavidn	int		ksq_loads[KSEQ_NCLASS];	/* Load for each class */
21021242Sdavidn	int		ksq_load;		/* Aggregate load. */
211282683Sbapt	short		ksq_nice[PRIO_TOTAL + 1]; /* KSEs in each nice bin. */
212219408Sjkim	short		ksq_nicemin;		/* Least nice. */
21321242Sdavidn#ifdef SMP
214148584Spjd	int		ksq_cpus;	/* Count of CPUs in this kseq. */
215148584Spjd	unsigned int	ksq_rslices;	/* Slices on run queue */
216148584Spjd#endif
217148584Spjd};
218148584Spjd
21921242Sdavidn/*
22021242Sdavidn * One kse queue per processor.
22121242Sdavidn */
222130633Srobert#ifdef SMP
223130633Srobertstruct kseq	kseq_cpu[MAXCPU];
22421242Sdavidnstruct kseq	*kseq_idmap[MAXCPU];
225252377Skientzle#define	KSEQ_SELF()	(kseq_idmap[PCPU_GET(cpuid)])
22621242Sdavidn#define	KSEQ_CPU(x)	(kseq_idmap[(x)])
22721242Sdavidn#else
228219408Sjkimstruct kseq	kseq_cpu;
22921242Sdavidn#define	KSEQ_SELF()	(&kseq_cpu)
23021242Sdavidn#define	KSEQ_CPU(x)	(&kseq_cpu)
23121242Sdavidn#endif
23230259Scharnier
23321242Sdavidnstatic void sched_slice(struct kse *ke);
23421242Sdavidnstatic void sched_priority(struct ksegrp *kg);
23521052Sdavidnstatic int sched_interact_score(struct ksegrp *kg);
23621242Sdavidnstatic void sched_interact_update(struct ksegrp *kg);
237219408Sjkimvoid sched_pctcpu_update(struct kse *ke);
23830259Scharnierint sched_pickcpu(void);
23921052Sdavidn
24021052Sdavidn/* Operations on per processor queues */
24121052Sdavidnstatic struct kse * kseq_choose(struct kseq *kseq, int steal);
24221052Sdavidnstatic void kseq_setup(struct kseq *kseq);
24330259Scharnierstatic void kseq_add(struct kseq *kseq, struct kse *ke);
24421052Sdavidnstatic void kseq_rem(struct kseq *kseq, struct kse *ke);
24521052Sdavidnstatic void kseq_nice_add(struct kseq *kseq, int nice);
24620253Sjoergstatic void kseq_nice_rem(struct kseq *kseq, int nice);
24720253Sjoergvoid kseq_print(int cpu);
24820253Sjoerg#ifdef SMP
24921330Sdavidnstruct kseq * kseq_load_highest(void);
25021330Sdavidnvoid kseq_balance(void *arg);
25121330Sdavidnvoid kseq_move(struct kseq *from, int cpu);
25220253Sjoerg#endif
25320253Sjoerg
25420253Sjoergvoid
25520253Sjoergkseq_print(int cpu)
25663596Sdavidn{
25763596Sdavidn	struct kseq *kseq;
25863596Sdavidn	int i;
25963596Sdavidn
26063596Sdavidn	kseq = KSEQ_CPU(cpu);
26163596Sdavidn
26263596Sdavidn	printf("kseq:\n");
26363596Sdavidn	printf("\tload:           %d\n", kseq->ksq_load);
26420253Sjoerg	printf("\tload ITHD:      %d\n", kseq->ksq_loads[PRI_ITHD]);
26520253Sjoerg	printf("\tload REALTIME:  %d\n", kseq->ksq_loads[PRI_REALTIME]);
26620253Sjoerg	printf("\tload TIMESHARE: %d\n", kseq->ksq_loads[PRI_TIMESHARE]);
267284110Sbapt	printf("\tload IDLE:      %d\n", kseq->ksq_loads[PRI_IDLE]);
26820253Sjoerg	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
26920253Sjoerg	printf("\tnice counts:\n");
27052527Sdavidn	for (i = 0; i < PRIO_TOTAL + 1; i++)
27120253Sjoerg		if (kseq->ksq_nice[i])
27220747Sdavidn			printf("\t\t%d = %d\n",
27344229Sdavidn			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
27461957Sache}
27530259Scharnier
27620253Sjoergstatic void
27720747Sdavidnkseq_add(struct kseq *kseq, struct kse *ke)
27820747Sdavidn{
27920253Sjoerg	mtx_assert(&sched_lock, MA_OWNED);
28020747Sdavidn	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]++;
28120253Sjoerg	kseq->ksq_load++;
28220253Sjoerg	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
28352527Sdavidn	CTR6(KTR_ULE, "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
28420253Sjoerg	    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
28526088Sdavidn	    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
28630259Scharnier	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
28720253Sjoerg		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
28852527Sdavidn#ifdef SMP
28920253Sjoerg	kseq->ksq_rslices += ke->ke_slice;
29020253Sjoerg#endif
29120253Sjoerg}
29263600Sdavidn
29363600Sdavidnstatic void
29420253Sjoergkseq_rem(struct kseq *kseq, struct kse *ke)
295284135Sbapt{
29630259Scharnier	mtx_assert(&sched_lock, MA_OWNED);
29720253Sjoerg	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]--;
29820253Sjoerg	kseq->ksq_load--;
29920253Sjoerg	ke->ke_runq = NULL;
30020253Sjoerg	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
30120253Sjoerg		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
30220253Sjoerg#ifdef SMP
30320253Sjoerg	kseq->ksq_rslices -= ke->ke_slice;
30420253Sjoerg#endif
30520253Sjoerg}
30620253Sjoerg
30720253Sjoergstatic void
30820253Sjoergkseq_nice_add(struct kseq *kseq, int nice)
30920253Sjoerg{
310284135Sbapt	mtx_assert(&sched_lock, MA_OWNED);
311284135Sbapt	/* Normalize to zero. */
312283814Sbapt	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
31320253Sjoerg	if (nice < kseq->ksq_nicemin || kseq->ksq_loads[PRI_TIMESHARE] == 1)
31452527Sdavidn		kseq->ksq_nicemin = nice;
31520253Sjoerg}
31644229Sdavidn
31744229Sdavidnstatic void
318284124Sbaptkseq_nice_rem(struct kseq *kseq, int nice)
31944229Sdavidn{
32020267Sjoerg	int n;
32120253Sjoerg
32252527Sdavidn	mtx_assert(&sched_lock, MA_OWNED);
323284128Sbapt	/* Normalize to zero. */
324284128Sbapt	n = nice + SCHED_PRI_NHALF;
32520253Sjoerg	kseq->ksq_nice[n]--;
326284128Sbapt	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
327284128Sbapt
32820253Sjoerg	/*
32920253Sjoerg	 * If this wasn't the smallest nice value or there are more in
33020253Sjoerg	 * this bucket we can just return.  Otherwise we have to recalculate
33120253Sjoerg	 * the smallest nice.
33252512Sdavidn	 */
33352512Sdavidn	if (nice != kseq->ksq_nicemin ||
33452527Sdavidn	    kseq->ksq_nice[n] != 0 ||
335284128Sbapt	    kseq->ksq_loads[PRI_TIMESHARE] == 0)
336284128Sbapt		return;
33720253Sjoerg
33820253Sjoerg	for (; n < SCHED_PRI_NRESV + 1; n++)
33920253Sjoerg		if (kseq->ksq_nice[n]) {
340284128Sbapt			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
341284128Sbapt			return;
342284126Sbapt		}
34320253Sjoerg}
344284128Sbapt
345284128Sbapt#ifdef SMP
346284128Sbapt/*
34720253Sjoerg * kseq_balance is a simple CPU load balancing algorithm.  It operates by
34852527Sdavidn * finding the least loaded and most loaded cpu and equalizing their load
349284128Sbapt * by migrating some processes.
350284128Sbapt *
35120253Sjoerg * Dealing only with two CPUs at a time has two advantages.  Firstly, most
35220253Sjoerg * installations will only have 2 cpus.  Secondly, load balancing too much at
35352512Sdavidn * once can have an unpleasant effect on the system.  The scheduler rarely has
35452512Sdavidn * enough information to make perfect decisions.  So this algorithm chooses
35552512Sdavidn * algorithm simplicity and more gradual effects on load in larger systems.
35652512Sdavidn *
35752512Sdavidn * It could be improved by considering the priorities and slices assigned to
35852512Sdavidn * each task prior to balancing them.  There are many pathological cases with
35952512Sdavidn * any approach and so the semi random algorithm below may work as well as any.
36052512Sdavidn *
36152512Sdavidn */
36252512Sdavidnvoid
36352512Sdavidnkseq_balance(void *arg)
36452512Sdavidn{
365282685Sbapt	struct kseq *kseq;
36652512Sdavidn	int high_load;
36752512Sdavidn	int low_load;
36852512Sdavidn	int high_cpu;
36952527Sdavidn	int low_cpu;
37052512Sdavidn	int move;
37152512Sdavidn	int diff;
37252512Sdavidn	int i;
37352512Sdavidn
37452527Sdavidn	high_cpu = 0;
375284111Sbapt	low_cpu = 0;
376284128Sbapt	high_load = 0;
377284111Sbapt	low_load = -1;
378284111Sbapt
379284126Sbapt	mtx_lock_spin(&sched_lock);
38020253Sjoerg	if (smp_started == 0)
38120253Sjoerg		goto out;
38220253Sjoerg
38320253Sjoerg	for (i = 0; i < mp_maxid; i++) {
384284129Sbapt		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
38520253Sjoerg			continue;
38630259Scharnier		kseq = KSEQ_CPU(i);
387284129Sbapt		if (kseq->ksq_load > high_load) {
38852527Sdavidn			high_load = kseq->ksq_load;
38920253Sjoerg			high_cpu = i;
39052527Sdavidn		}
391284133Sbapt		if (low_load == -1 || kseq->ksq_load < low_load) {
392284133Sbapt			low_load = kseq->ksq_load;
39352527Sdavidn			low_cpu = i;
39420253Sjoerg		}
39530259Scharnier	}
39620253Sjoerg
39730259Scharnier	kseq = KSEQ_CPU(high_cpu);
39820253Sjoerg
39920253Sjoerg	/*
40052527Sdavidn	 * Nothing to do.
40152527Sdavidn	 */
40252527Sdavidn	if (high_load < kseq->ksq_cpus + 1)
40352527Sdavidn		goto out;
40461762Sdavidn
40552527Sdavidn	high_load -= kseq->ksq_cpus;
40652527Sdavidn
40752527Sdavidn	if (low_load >= high_load)
40820253Sjoerg		goto out;
40952527Sdavidn
41052527Sdavidn	diff = high_load - low_load;
41152527Sdavidn	move = diff / 2;
41252527Sdavidn	if (diff & 0x1)
41352527Sdavidn		move++;
41452527Sdavidn
41520253Sjoerg	for (i = 0; i < move; i++)
41620253Sjoerg		kseq_move(kseq, low_cpu);
41720253Sjoerg
41820253Sjoergout:
41952527Sdavidn	mtx_unlock_spin(&sched_lock);
42052527Sdavidn	callout_reset(&kseq_lb_callout, hz, kseq_balance, NULL);
42152527Sdavidn
42252527Sdavidn	return;
42320253Sjoerg}
42420253Sjoerg
42552527Sdavidnstruct kseq *
42620267Sjoergkseq_load_highest(void)
42752527Sdavidn{
42852527Sdavidn	struct kseq *kseq;
42952527Sdavidn	int load;
43052527Sdavidn	int cpu;
43152527Sdavidn	int i;
43252527Sdavidn
43320253Sjoerg	mtx_assert(&sched_lock, MA_OWNED);
43420253Sjoerg	cpu = 0;
43520253Sjoerg	load = 0;
43620253Sjoerg
43752527Sdavidn	for (i = 0; i < mp_maxid; i++) {
43852527Sdavidn		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
43952527Sdavidn			continue;
44052527Sdavidn		kseq = KSEQ_CPU(i);
44120253Sjoerg		if (kseq->ksq_load > load) {
44220253Sjoerg			load = kseq->ksq_load;
44320253Sjoerg			cpu = i;
44452527Sdavidn		}
44552527Sdavidn	}
44652527Sdavidn	kseq = KSEQ_CPU(cpu);
44752527Sdavidn
44852527Sdavidn	if (load > kseq->ksq_cpus)
44952527Sdavidn		return (kseq);
45052527Sdavidn
45152527Sdavidn	return (NULL);
45252527Sdavidn}
45320253Sjoerg
45452527Sdavidnvoid
45552527Sdavidnkseq_move(struct kseq *from, int cpu)
45652527Sdavidn{
45752527Sdavidn	struct kse *ke;
45852527Sdavidn
45952527Sdavidn	ke = kseq_choose(from, 1);
46052527Sdavidn	runq_remove(ke->ke_runq, ke);
46152527Sdavidn	ke->ke_state = KES_THREAD;
46252527Sdavidn	kseq_rem(from, ke);
46320747Sdavidn
464130629Srobert	ke->ke_cpu = cpu;
465130629Srobert	sched_add(ke);
46620747Sdavidn}
46720747Sdavidn#endif
46830259Scharnier
46920747Sdavidn/*
47030259Scharnier * Pick the highest priority task we have and return it.   If steal is 1 we
47120747Sdavidn * will return kses that have been denied slices due to their nice being too
47220747Sdavidn * low.  In the future we should prohibit stealing interrupt threads as well.
473124382Siedowse */
474124382Siedowse
47564918Sgreenstruct kse *
47664918Sgreenkseq_choose(struct kseq *kseq, int steal)
47764918Sgreen{
47864918Sgreen	struct kse *ke;
479252688Sdes	struct runq *swap;
48064918Sgreen
48164918Sgreen	mtx_assert(&sched_lock, MA_OWNED);
48220267Sjoerg	swap = NULL;
48352527Sdavidn
48452527Sdavidn	for (;;) {
48520267Sjoerg		ke = runq_choose(kseq->ksq_curr);
48620253Sjoerg		if (ke == NULL) {
48764918Sgreen			/*
48852527Sdavidn			 * We already swaped once and didn't get anywhere.
48952527Sdavidn			 */
49052527Sdavidn			if (swap)
49152527Sdavidn				break;
49252527Sdavidn			swap = kseq->ksq_curr;
493284128Sbapt			kseq->ksq_curr = kseq->ksq_next;
49430259Scharnier			kseq->ksq_next = swap;
495284128Sbapt			continue;
496284128Sbapt		}
49720253Sjoerg		/*
49820253Sjoerg		 * If we encounter a slice of 0 the kse is in a
49920253Sjoerg		 * TIMESHARE kse group and its nice was too far out
50020253Sjoerg		 * of the range that receives slices.
50120253Sjoerg		 */
502284128Sbapt		if (ke->ke_slice == 0 && steal == 0) {
50320253Sjoerg			runq_remove(ke->ke_runq, ke);
504284133Sbapt			sched_slice(ke);
505284118Sbapt			ke->ke_runq = kseq->ksq_next;
50620253Sjoerg			runq_add(ke->ke_runq, ke);
50720253Sjoerg			continue;
50820253Sjoerg		}
50920253Sjoerg		return (ke);
51064918Sgreen	}
511272833Sdes
51264918Sgreen	return (runq_choose(&kseq->ksq_idle));
51364918Sgreen}
51464918Sgreen
51552527Sdavidnstatic void
51620253Sjoergkseq_setup(struct kseq *kseq)
51720253Sjoerg{
51830259Scharnier	runq_init(&kseq->ksq_timeshare[0]);
51920253Sjoerg	runq_init(&kseq->ksq_timeshare[1]);
52020253Sjoerg	runq_init(&kseq->ksq_idle);
52120253Sjoerg
52220253Sjoerg	kseq->ksq_curr = &kseq->ksq_timeshare[0];
52320253Sjoerg	kseq->ksq_next = &kseq->ksq_timeshare[1];
52452527Sdavidn
525284110Sbapt	kseq->ksq_loads[PRI_ITHD] = 0;
52652527Sdavidn	kseq->ksq_loads[PRI_REALTIME] = 0;
52752527Sdavidn	kseq->ksq_loads[PRI_TIMESHARE] = 0;
52852527Sdavidn	kseq->ksq_loads[PRI_IDLE] = 0;
52952527Sdavidn	kseq->ksq_load = 0;
53052527Sdavidn#ifdef SMP
53120253Sjoerg	kseq->ksq_rslices = 0;
532124382Siedowse#endif
533124382Siedowse}
53463572Sdavidn
53563572Sdavidnstatic void
53663572Sdavidnsched_setup(void *dummy)
53763572Sdavidn{
53863572Sdavidn#ifdef SMP
53963572Sdavidn	int i;
54020253Sjoerg#endif
541124382Siedowse
54220253Sjoerg	slice_min = (hz/100);	/* 10ms */
54320253Sjoerg	slice_max = (hz/7);	/* ~140ms */
54420253Sjoerg
54564918Sgreen#ifdef SMP
54620253Sjoerg	/* init kseqs */
54720253Sjoerg	/* Create the idmap. */
54820253Sjoerg#ifdef ULE_HTT_EXPERIMENTAL
54920253Sjoerg	if (smp_topology == NULL) {
55020253Sjoerg#else
55120253Sjoerg	if (1) {
55220253Sjoerg#endif
55320253Sjoerg		for (i = 0; i < MAXCPU; i++) {
55420253Sjoerg			kseq_setup(&kseq_cpu[i]);
55520253Sjoerg			kseq_idmap[i] = &kseq_cpu[i];
556124382Siedowse			kseq_cpu[i].ksq_cpus = 1;
557124382Siedowse		}
558124382Siedowse	} else {
559124382Siedowse		int j;
56020253Sjoerg
56120253Sjoerg		for (i = 0; i < smp_topology->ct_count; i++) {
56220253Sjoerg			struct cpu_group *cg;
56320253Sjoerg
56420253Sjoerg			cg = &smp_topology->ct_group[i];
56520253Sjoerg			kseq_setup(&kseq_cpu[i]);
56620253Sjoerg
56720253Sjoerg			for (j = 0; j < MAXCPU; j++)
56820253Sjoerg				if ((cg->cg_mask & (1 << j)) != 0)
569283814Sbapt					kseq_idmap[j] = &kseq_cpu[i];
570283814Sbapt			kseq_cpu[i].ksq_cpus = cg->cg_count;
571283814Sbapt		}
57220253Sjoerg	}
573168045Sle	callout_init(&kseq_lb_callout, CALLOUT_MPSAFE);
57420253Sjoerg	kseq_balance(NULL);
57520253Sjoerg#else
57630259Scharnier	kseq_setup(KSEQ_SELF());
577124382Siedowse#endif
578124382Siedowse	mtx_lock_spin(&sched_lock);
579124382Siedowse	kseq_add(KSEQ_SELF(), &kse0);
580124382Siedowse	mtx_unlock_spin(&sched_lock);
581124382Siedowse}
582124382Siedowse
583124382Siedowse/*
584272833Sdes * Scale the scheduling priority according to the "interactivity" of this
585124382Siedowse * process.
586124382Siedowse */
587124382Siedowsestatic void
588124382Siedowsesched_priority(struct ksegrp *kg)
58952527Sdavidn{
59020253Sjoerg	int pri;
59120253Sjoerg
59220267Sjoerg	if (kg->kg_pri_class != PRI_TIMESHARE)
59320267Sjoerg		return;
59420267Sjoerg
59520267Sjoerg	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
596284121Sbapt	pri += SCHED_PRI_BASE;
597284126Sbapt	pri += kg->kg_nice;
59820267Sjoerg
59921330Sdavidn	if (pri > PRI_MAX_TIMESHARE)
60052527Sdavidn		pri = PRI_MAX_TIMESHARE;
60152502Sdavidn	else if (pri < PRI_MIN_TIMESHARE)
602283814Sbapt		pri = PRI_MIN_TIMESHARE;
603283814Sbapt
604283814Sbapt	kg->kg_user_pri = pri;
605283814Sbapt
606283814Sbapt	return;
60752502Sdavidn}
60852502Sdavidn
60952502Sdavidn/*
61052502Sdavidn * Calculate a time slice based on the properties of the kseg and the runq
61152502Sdavidn * that we're on.  This is only for PRI_TIMESHARE ksegrps.
61256000Sdavidn */
61352502Sdavidnstatic void
61452502Sdavidnsched_slice(struct kse *ke)
61552512Sdavidn{
61652527Sdavidn	struct kseq *kseq;
617284128Sbapt	struct ksegrp *kg;
618283814Sbapt
619283814Sbapt	kg = ke->ke_ksegrp;
620283814Sbapt	kseq = KSEQ_CPU(ke->ke_cpu);
621283814Sbapt
62252527Sdavidn	/*
623284128Sbapt	 * Rationale:
62452527Sdavidn	 * KSEs in interactive ksegs get the minimum slice so that we
62552527Sdavidn	 * quickly notice if it abuses its advantage.
62652527Sdavidn	 *
62756000Sdavidn	 * KSEs in non-interactive ksegs are assigned a slice that is
62852527Sdavidn	 * based on the ksegs nice value relative to the least nice kseg
62952527Sdavidn	 * on the run queue for this cpu.
63052502Sdavidn	 *
63121330Sdavidn	 * If the KSE is less nice than all others it gets the maximum
63221330Sdavidn	 * slice and other KSEs will adjust their slice relative to
63320253Sjoerg	 * this when they first expire.
63420253Sjoerg	 *
63520253Sjoerg	 * There is 20 point window that starts relative to the least
63620253Sjoerg	 * nice kse on the run queue.  Slice size is determined by
637242349Sbapt	 * the kse distance from the last nice ksegrp.
638273779Sbapt	 *
639273779Sbapt	 * If you are outside of the window you will get no slice and
640273779Sbapt	 * you will be reevaluated each time you are selected on the
641273779Sbapt	 * run queue.
642273779Sbapt	 *
643273779Sbapt	 */
644273779Sbapt
645273779Sbapt	if (!SCHED_INTERACTIVE(kg)) {
646273779Sbapt		int nice;
647273779Sbapt
648273779Sbapt		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
649273779Sbapt		if (kseq->ksq_loads[PRI_TIMESHARE] == 0 ||
650273779Sbapt		    kg->kg_nice < kseq->ksq_nicemin)
651273779Sbapt			ke->ke_slice = SCHED_SLICE_MAX;
652273779Sbapt		else if (nice <= SCHED_PRI_NTHRESH)
653273779Sbapt			ke->ke_slice = SCHED_SLICE_NICE(nice);
654273779Sbapt		else
655273779Sbapt			ke->ke_slice = 0;
656273779Sbapt	} else
657242349Sbapt		ke->ke_slice = SCHED_SLICE_MIN;
658242349Sbapt
659244737Sbapt	CTR6(KTR_ULE,
660244737Sbapt	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
661244737Sbapt	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
662244737Sbapt	    kseq->ksq_loads[PRI_TIMESHARE], SCHED_INTERACTIVE(kg));
663244737Sbapt
664244737Sbapt	/*
665244737Sbapt	 * Check to see if we need to scale back the slp and run time
666244737Sbapt	 * in the kg.  This will cause us to forget old interactivity
667242349Sbapt	 * while maintaining the current ratio.
668242349Sbapt	 */
669245114Smjg	sched_interact_update(kg);
670242349Sbapt
671242349Sbapt	return;
672242349Sbapt}
673242349Sbapt
67461759Sdavidnstatic void
675284128Sbaptsched_interact_update(struct ksegrp *kg)
67661759Sdavidn{
67761759Sdavidn	/* XXX Fixme, use a linear algorithm and not a while loop. */
678284129Sbapt	while ((kg->kg_runtime + kg->kg_slptime) >  SCHED_SLP_RUN_MAX) {
679284129Sbapt		kg->kg_runtime = (kg->kg_runtime / 5) * 4;
680284128Sbapt		kg->kg_slptime = (kg->kg_slptime / 5) * 4;
68161759Sdavidn	}
68261759Sdavidn}
68361759Sdavidn
684284128Sbaptstatic int
68520253Sjoergsched_interact_score(struct ksegrp *kg)
68644229Sdavidn{
687283842Sbapt	int div;
688283842Sbapt
689283842Sbapt	if (kg->kg_runtime > kg->kg_slptime) {
69020253Sjoerg		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
69120253Sjoerg		return (SCHED_INTERACT_HALF +
69220253Sjoerg		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
69320253Sjoerg	} if (kg->kg_slptime > kg->kg_runtime) {
69420253Sjoerg		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
69520253Sjoerg		return (kg->kg_runtime / div);
69620253Sjoerg	}
69720253Sjoerg
698283961Sbapt	/*
699283961Sbapt	 * This can happen if slptime and runtime are 0.
700283961Sbapt	 */
701283961Sbapt	return (0);
702283961Sbapt
70344229Sdavidn}
704283961Sbapt
70520253Sjoerg/*
70620253Sjoerg * This is only somewhat accurate since given many processes of the same
70752527Sdavidn * priority they will switch when their slices run out, which will be
70820253Sjoerg * at most SCHED_SLICE_MAX.
70982868Sdd */
71020253Sjoergint
71120253Sjoergsched_rr_interval(void)
71220253Sjoerg{
713283961Sbapt	return (SCHED_SLICE_MAX);
714283961Sbapt}
715284118Sbapt
71652527Sdavidnvoid
71782868Sddsched_pctcpu_update(struct kse *ke)
71882868Sdd{
71982868Sdd	/*
72082868Sdd	 * Adjust counters and watermark for pctcpu calc.
72182868Sdd	 */
72282868Sdd	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
72382868Sdd		/*
72482868Sdd		 * Shift the tick count out so that the divide doesn't
72582868Sdd		 * round away our results.
72682868Sdd		 */
72782868Sdd		ke->ke_ticks <<= 10;
72882868Sdd		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
72982868Sdd			    SCHED_CPU_TICKS;
73082868Sdd		ke->ke_ticks >>= 10;
73182868Sdd	} else
732283842Sbapt		ke->ke_ticks = 0;
733283842Sbapt	ke->ke_ltick = ticks;
73482868Sdd	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
73582868Sdd}
73682868Sdd
73782868Sdd#ifdef SMP
73820267Sjoerg/* XXX Should be changed to kseq_load_lowest() */
73920253Sjoergint
74020253Sjoergsched_pickcpu(void)
74120253Sjoerg{
74220253Sjoerg	struct kseq *kseq;
743284133Sbapt	int load;
74420253Sjoerg	int cpu;
74520253Sjoerg	int i;
74620253Sjoerg
74720253Sjoerg	mtx_assert(&sched_lock, MA_OWNED);
74820253Sjoerg	if (!smp_started)
74920253Sjoerg		return (0);
75020253Sjoerg
751284133Sbapt	load = 0;
752284133Sbapt	cpu = 0;
75320253Sjoerg
754284133Sbapt	for (i = 0; i < mp_maxid; i++) {
755283842Sbapt		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
75620253Sjoerg			continue;
75720253Sjoerg		kseq = KSEQ_CPU(i);
75820253Sjoerg		if (kseq->ksq_load < load) {
75920253Sjoerg			cpu = i;
76020253Sjoerg			load = kseq->ksq_load;
76120253Sjoerg		}
76220253Sjoerg	}
76320253Sjoerg
76420253Sjoerg	CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
76520253Sjoerg	return (cpu);
76620253Sjoerg}
76720253Sjoerg#else
76820253Sjoergint
76920253Sjoergsched_pickcpu(void)
77020253Sjoerg{
77120253Sjoerg	return (0);
77220253Sjoerg}
77320253Sjoerg#endif
77444229Sdavidn
77544229Sdavidnvoid
77644229Sdavidnsched_prio(struct thread *td, u_char prio)
77720253Sjoerg{
77844229Sdavidn
77920253Sjoerg	mtx_assert(&sched_lock, MA_OWNED);
78020253Sjoerg	if (TD_ON_RUNQ(td)) {
78120253Sjoerg		adjustrunqueue(td, prio);
78220253Sjoerg	} else {
78320253Sjoerg		td->td_priority = prio;
78420253Sjoerg	}
78520253Sjoerg}
78620253Sjoerg
78720253Sjoergvoid
78820253Sjoergsched_switchout(struct thread *td)
78920253Sjoerg{
79030259Scharnier	struct kse *ke;
79120253Sjoerg
79220253Sjoerg	mtx_assert(&sched_lock, MA_OWNED);
79320253Sjoerg
79420253Sjoerg	ke = td->td_kse;
79520253Sjoerg
79620253Sjoerg	td->td_last_kse = ke;
79720253Sjoerg        td->td_lastcpu = td->td_oncpu;
798284118Sbapt	td->td_oncpu = NOCPU;
79920253Sjoerg        td->td_flags &= ~TDF_NEEDRESCHED;
80020253Sjoerg
80120253Sjoerg	if (TD_IS_RUNNING(td)) {
80220253Sjoerg		if (td->td_proc->p_flag & P_SA) {
803284118Sbapt			kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
80420253Sjoerg			setrunqueue(td);
80520253Sjoerg		} else {
80620253Sjoerg			/*
80720253Sjoerg			 * This queue is always correct except for idle threads which
80820253Sjoerg			 * have a higher priority due to priority propagation.
80920253Sjoerg			 */
81020253Sjoerg			if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE &&
81120253Sjoerg			    ke->ke_thread->td_priority > PRI_MIN_IDLE)
81220253Sjoerg				ke->ke_runq = KSEQ_SELF()->ksq_curr;
81320253Sjoerg			runq_add(ke->ke_runq, ke);
81444229Sdavidn			/* setrunqueue(td); */
81520253Sjoerg		}
81644229Sdavidn		return;
81720253Sjoerg	}
81861957Sache	if (ke->ke_runq)
81930259Scharnier		kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
82020253Sjoerg	/*
82120253Sjoerg	 * We will not be on the run queue. So we must be
822262865Sjulian	 * sleeping or similar.
823262865Sjulian	 */
82420267Sjoerg	if (td->td_proc->p_flag & P_SA)
82520253Sjoerg		kse_reassign(ke);
82620253Sjoerg}
82720253Sjoerg
82820253Sjoergvoid
82920253Sjoergsched_switchin(struct thread *td)
83020253Sjoerg{
83120253Sjoerg	/* struct kse *ke = td->td_kse; */
83220253Sjoerg	mtx_assert(&sched_lock, MA_OWNED);
83320253Sjoerg
83420253Sjoerg	td->td_oncpu = PCPU_GET(cpuid);
83520253Sjoerg}
83620253Sjoerg
83720253Sjoergvoid
83820253Sjoergsched_nice(struct ksegrp *kg, int nice)
83920253Sjoerg{
84044229Sdavidn	struct kse *ke;
841282700Sbapt	struct thread *td;
84220253Sjoerg	struct kseq *kseq;
84320253Sjoerg
844284121Sbapt	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
84520267Sjoerg	mtx_assert(&sched_lock, MA_OWNED);
846284128Sbapt	/*
84720267Sjoerg	 * We need to adjust the nice counts for running KSEs.
84820267Sjoerg	 */
84920267Sjoerg	if (kg->kg_pri_class == PRI_TIMESHARE)
850284128Sbapt		FOREACH_KSE_IN_GROUP(kg, ke) {
85144229Sdavidn			if (ke->ke_runq == NULL)
85220267Sjoerg				continue;
85320267Sjoerg			kseq = KSEQ_CPU(ke->ke_cpu);
85470486Sben			kseq_nice_rem(kseq, kg->kg_nice);
85520253Sjoerg			kseq_nice_add(kseq, nice);
85670486Sben		}
85720253Sjoerg	kg->kg_nice = nice;
85820253Sjoerg	sched_priority(kg);
85920253Sjoerg	FOREACH_THREAD_IN_GROUP(kg, td)
86020253Sjoerg		td->td_flags |= TDF_NEEDRESCHED;
86144229Sdavidn}
86220253Sjoerg
86320253Sjoergvoid
86420253Sjoergsched_sleep(struct thread *td, u_char prio)
86520253Sjoerg{
86620253Sjoerg	mtx_assert(&sched_lock, MA_OWNED);
86720253Sjoerg
86820253Sjoerg	td->td_slptime = ticks;
86920253Sjoerg	td->td_priority = prio;
87020253Sjoerg
87127831Sdavidn	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
87220253Sjoerg	    td->td_kse, td->td_slptime);
87320253Sjoerg}
87420253Sjoerg
87530259Scharniervoid
87620253Sjoergsched_wakeup(struct thread *td)
87720253Sjoerg{
87820253Sjoerg	mtx_assert(&sched_lock, MA_OWNED);
87920253Sjoerg
88020253Sjoerg	/*
88120253Sjoerg	 * Let the kseg know how long we slept for.  This is because process
88220253Sjoerg	 * interactivity behavior is modeled in the kseg.
88320253Sjoerg	 */
88420253Sjoerg	if (td->td_slptime) {
88520253Sjoerg		struct ksegrp *kg;
88620253Sjoerg		int hzticks;
88720253Sjoerg
88820253Sjoerg		kg = td->td_ksegrp;
88920253Sjoerg		hzticks = ticks - td->td_slptime;
89020253Sjoerg		kg->kg_slptime += hzticks << 10;
89130259Scharnier		sched_interact_update(kg);
89220253Sjoerg		sched_priority(kg);
89320253Sjoerg		if (td->td_kse)
89420253Sjoerg			sched_slice(td->td_kse);
89520253Sjoerg		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
89620253Sjoerg		    td->td_kse, hzticks);
89720253Sjoerg		td->td_slptime = 0;
89820253Sjoerg	}
89920253Sjoerg	setrunqueue(td);
90020253Sjoerg        if (td->td_priority < curthread->td_priority)
90120253Sjoerg                curthread->td_flags |= TDF_NEEDRESCHED;
902282699Sbapt}
90320253Sjoerg
90420253Sjoerg/*
905282699Sbapt * Penalize the parent for creating a new child and initialize the child's
90620253Sjoerg * priority.
907282699Sbapt */
908282699Sbaptvoid
909282699Sbaptsched_fork(struct proc *p, struct proc *p1)
910282699Sbapt{
911282699Sbapt
91220253Sjoerg	mtx_assert(&sched_lock, MA_OWNED);
91320253Sjoerg
91420253Sjoerg	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
91520253Sjoerg	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
91620253Sjoerg	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
91720253Sjoerg}
91820253Sjoerg
91920253Sjoergvoid
92020253Sjoergsched_fork_kse(struct kse *ke, struct kse *child)
92120253Sjoerg{
92220253Sjoerg
92320253Sjoerg	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
92420253Sjoerg	child->ke_cpu = ke->ke_cpu; /* sched_pickcpu(); */
92520253Sjoerg	child->ke_runq = NULL;
926130633Srobert
92720253Sjoerg	/* Grab our parents cpu estimation information. */
92820253Sjoerg	child->ke_ticks = ke->ke_ticks;
92920253Sjoerg	child->ke_ltick = ke->ke_ltick;
93020253Sjoerg	child->ke_ftick = ke->ke_ftick;
93120253Sjoerg}
932282700Sbapt
93320253Sjoergvoid
93420253Sjoergsched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
93520253Sjoerg{
93620253Sjoerg
937282700Sbapt	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
93820253Sjoerg	/* XXX Need something better here */
93920253Sjoerg
94020253Sjoerg	child->kg_slptime = kg->kg_slptime / SCHED_SLP_RUN_THROTTLE;
94120253Sjoerg	child->kg_runtime = kg->kg_runtime / SCHED_SLP_RUN_THROTTLE;
94220253Sjoerg	kg->kg_runtime += tickincr << 10;
94330259Scharnier	sched_interact_update(kg);
94430259Scharnier
94520253Sjoerg	child->kg_user_pri = kg->kg_user_pri;
94620253Sjoerg	child->kg_nice = kg->kg_nice;
94720253Sjoerg}
94820253Sjoerg
94920253Sjoergvoid
95020253Sjoergsched_fork_thread(struct thread *td, struct thread *child)
95120253Sjoerg{
95220253Sjoerg}
95320253Sjoerg
95420253Sjoergvoid
95520253Sjoergsched_class(struct ksegrp *kg, int class)
95620253Sjoerg{
95720253Sjoerg	struct kseq *kseq;
95820253Sjoerg	struct kse *ke;
95920253Sjoerg
96020253Sjoerg	mtx_assert(&sched_lock, MA_OWNED);
961179365Santoine	if (kg->kg_pri_class == class)
96220253Sjoerg		return;
963179365Santoine
964179365Santoine	FOREACH_KSE_IN_GROUP(kg, ke) {
96520253Sjoerg		if (ke->ke_state != KES_ONRUNQ &&
96620253Sjoerg		    ke->ke_state != KES_THREAD)
96720253Sjoerg			continue;
96820253Sjoerg		kseq = KSEQ_CPU(ke->ke_cpu);
969179365Santoine
970231994Skevlo		kseq->ksq_loads[PRI_BASE(kg->kg_pri_class)]--;
97120253Sjoerg		kseq->ksq_loads[PRI_BASE(class)]++;
97220253Sjoerg
97320253Sjoerg		if (kg->kg_pri_class == PRI_TIMESHARE)
97420253Sjoerg			kseq_nice_rem(kseq, kg->kg_nice);
97520253Sjoerg		else if (class == PRI_TIMESHARE)
97620253Sjoerg			kseq_nice_add(kseq, kg->kg_nice);
977179365Santoine	}
978181785Sache
979179365Santoine	kg->kg_pri_class = class;
98020253Sjoerg}
981231994Skevlo
982231994Skevlo/*
983231994Skevlo * Return some of the child's priority and interactivity to the parent.
984231994Skevlo */
98520253Sjoergvoid
98620253Sjoergsched_exit(struct proc *p, struct proc *child)
98720590Sdavidn{
98820253Sjoerg	/* XXX Need something better here */
98920253Sjoerg	mtx_assert(&sched_lock, MA_OWNED);
99020253Sjoerg	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
99120253Sjoerg	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
99220253Sjoerg}
99320253Sjoerg
99420253Sjoergvoid
99520253Sjoergsched_exit_kse(struct kse *ke, struct kse *child)
99673563Skris{
99720253Sjoerg	kseq_rem(KSEQ_CPU(child->ke_cpu), child);
998181785Sache}
99920253Sjoerg
100020253Sjoergvoid
100120253Sjoergsched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
100220253Sjoerg{
100320253Sjoerg	/* kg->kg_slptime += child->kg_slptime; */
1004124382Siedowse	kg->kg_runtime += child->kg_runtime;
1005284121Sbapt	sched_interact_update(kg);
100661957Sache}
100720712Sdavidn
100820253Sjoergvoid
100920253Sjoergsched_exit_thread(struct thread *td, struct thread *child)
101020253Sjoerg{
101120253Sjoerg}
101220253Sjoerg
101320253Sjoergvoid
101420253Sjoergsched_clock(struct thread *td)
101520253Sjoerg{
101620253Sjoerg	struct kseq *kseq;
101720253Sjoerg	struct ksegrp *kg;
101820253Sjoerg	struct kse *ke;
101920253Sjoerg#if 0
102020253Sjoerg	struct kse *nke;
1021130633Srobert#endif
102220253Sjoerg
102320253Sjoerg	/*
102420253Sjoerg	 * sched_setup() apparently happens prior to stathz being set.  We
102520253Sjoerg	 * need to resolve the timers earlier in the boot so we can avoid
102620253Sjoerg	 * calculating this here.
1027284111Sbapt	 */
1028284128Sbapt	if (realstathz == 0) {
1029284111Sbapt		realstathz = stathz ? stathz : hz;
1030284111Sbapt		tickincr = hz / realstathz;
1031284111Sbapt		/*
1032284111Sbapt		 * XXX This does not work for values of stathz that are much
1033284111Sbapt		 * larger than hz.
1034284111Sbapt		 */
1035284111Sbapt		if (tickincr == 0)
1036284111Sbapt			tickincr = 1;
1037284111Sbapt	}
103820253Sjoerg
1039284111Sbapt	ke = td->td_kse;
1040284111Sbapt	kg = ke->ke_ksegrp;
1041284111Sbapt
1042284111Sbapt	mtx_assert(&sched_lock, MA_OWNED);
1043284111Sbapt	KASSERT((td != NULL), ("schedclock: null thread pointer"));
1044284111Sbapt
1045284111Sbapt	/* Adjust ticks for pctcpu */
1046284111Sbapt	ke->ke_ticks++;
1047284111Sbapt	ke->ke_ltick = ticks;
1048284111Sbapt
1049284111Sbapt	/* Go up to one second beyond our max and then trim back down */
1050284111Sbapt	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1051284111Sbapt		sched_pctcpu_update(ke);
1052284111Sbapt
1053284111Sbapt	if (td->td_flags & TDF_IDLETD)
1054284111Sbapt		return;
1055284111Sbapt
1056284111Sbapt	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1057284111Sbapt	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1058284111Sbapt
1059284111Sbapt	/*
1060284111Sbapt	 * We only do slicing code for TIMESHARE ksegrps.
1061284111Sbapt	 */
1062284111Sbapt	if (kg->kg_pri_class != PRI_TIMESHARE)
1063284111Sbapt		return;
1064284111Sbapt	/*
1065284111Sbapt	 * Check for a higher priority task on the run queue.  This can happen
1066284111Sbapt	 * on SMP if another processor woke up a process on our runq.
1067284111Sbapt	 */
1068284111Sbapt	kseq = KSEQ_SELF();
1069284111Sbapt#if 0
1070284111Sbapt	if (kseq->ksq_load > 1 && (nke = kseq_choose(kseq, 0)) != NULL) {
1071284111Sbapt		if (sched_strict &&
1072284111Sbapt		    nke->ke_thread->td_priority < td->td_priority)
1073284111Sbapt			td->td_flags |= TDF_NEEDRESCHED;
1074284111Sbapt		else if (nke->ke_thread->td_priority <
1075284111Sbapt		    td->td_priority SCHED_PRIO_SLOP)
1076284111Sbapt
1077284128Sbapt		if (nke->ke_thread->td_priority < td->td_priority)
1078284111Sbapt			td->td_flags |= TDF_NEEDRESCHED;
1079284111Sbapt	}
1080284111Sbapt#endif
1081284111Sbapt	/*
1082284111Sbapt	 * We used a tick charge it to the ksegrp so that we can compute our
1083284111Sbapt	 * interactivity.
1084284111Sbapt	 */
1085284128Sbapt	kg->kg_runtime += tickincr << 10;
1086284111Sbapt	sched_interact_update(kg);
1087284111Sbapt
1088284128Sbapt	/*
1089284128Sbapt	 * We used up one time slice.
1090284111Sbapt	 */
1091284111Sbapt	ke->ke_slice--;
1092284111Sbapt#ifdef SMP
1093284111Sbapt	kseq->ksq_rslices--;
1094284113Sbapt#endif
1095284113Sbapt
1096284113Sbapt	if (ke->ke_slice > 0)
1097284113Sbapt		return;
1098284128Sbapt	/*
1099284113Sbapt	 * We're out of time, recompute priorities and requeue.
1100284113Sbapt	 */
1101284113Sbapt	kseq_rem(kseq, ke);
1102284113Sbapt	sched_priority(kg);
1103284113Sbapt	sched_slice(ke);
1104284113Sbapt	if (SCHED_CURR(kg, ke))
1105284111Sbapt		ke->ke_runq = kseq->ksq_curr;
1106284111Sbapt	else
1107284111Sbapt		ke->ke_runq = kseq->ksq_next;
1108284111Sbapt	kseq_add(kseq, ke);
1109284128Sbapt	td->td_flags |= TDF_NEEDRESCHED;
1110284111Sbapt}
1111284117Sbapt
1112284111Sbaptint
1113284111Sbaptsched_runnable(void)
1114284111Sbapt{
1115284111Sbapt	struct kseq *kseq;
1116284111Sbapt	int load;
1117284111Sbapt
1118284111Sbapt	load = 1;
1119284111Sbapt
1120284111Sbapt	mtx_lock_spin(&sched_lock);
1121284111Sbapt	kseq = KSEQ_SELF();
1122284111Sbapt
1123284111Sbapt	if (kseq->ksq_load)
1124284111Sbapt		goto out;
1125284111Sbapt#ifdef SMP
1126284112Sbapt	/*
1127284112Sbapt	 * For SMP we may steal other processor's KSEs.  Just search until we
1128284112Sbapt	 * verify that at least on other cpu has a runnable task.
1129284112Sbapt	 */
1130284128Sbapt	if (smp_started) {
1131284112Sbapt		int i;
1132284111Sbapt
1133284111Sbapt		for (i = 0; i < mp_maxid; i++) {
1134284111Sbapt			if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
1135284111Sbapt				continue;
1136284111Sbapt			kseq = KSEQ_CPU(i);
1137284111Sbapt			if (kseq->ksq_load > kseq->ksq_cpus)
113820253Sjoerg				goto out;
1139284124Sbapt		}
114020253Sjoerg	}
1141284122Sbapt#endif
1142242349Sbapt	load = 0;
114320253Sjoergout:
1144284124Sbapt	mtx_unlock_spin(&sched_lock);
1145242349Sbapt	return (load);
1146242349Sbapt}
114720253Sjoerg
114820267Sjoergvoid
114920253Sjoergsched_userret(struct thread *td)
115044229Sdavidn{
115120253Sjoerg	struct ksegrp *kg;
115220253Sjoerg#if 0
115320590Sdavidn	struct kseq *kseq;
115420590Sdavidn	struct kse *ke;
115520253Sjoerg#endif
115620253Sjoerg
1157130633Srobert	kg = td->td_ksegrp;
115820253Sjoerg
1159130633Srobert	if (td->td_priority != kg->kg_user_pri) {
116020253Sjoerg		mtx_lock_spin(&sched_lock);
1161130633Srobert		td->td_priority = kg->kg_user_pri;
116220253Sjoerg		/*
1163130633Srobert		 * This optimization is temporarily disabled because it
1164130633Srobert		 * breaks priority propagation.
116520253Sjoerg		 */
116620253Sjoerg#if 0
116720253Sjoerg		kseq = KSEQ_SELF();
116820253Sjoerg		if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
116920253Sjoerg#ifdef SMP
117020253Sjoerg		    kseq->ksq_load > kseq->ksq_cpus &&
117120253Sjoerg#else
117220253Sjoerg		    kseq->ksq_load > 1 &&
117320253Sjoerg#endif
117420253Sjoerg		    (ke = kseq_choose(kseq, 0)) != NULL &&
117520253Sjoerg		    ke->ke_thread->td_priority < td->td_priority)
117620253Sjoerg#endif
117720253Sjoerg			curthread->td_flags |= TDF_NEEDRESCHED;
117861957Sache		mtx_unlock_spin(&sched_lock);
117920253Sjoerg	}
118020590Sdavidn}
118174569Sache
118261957Sachestruct kse *
118374569Sachesched_choose(void)
1184283842Sbapt{
118520747Sdavidn	struct kseq *kseq;
118620747Sdavidn	struct kse *ke;
118720747Sdavidn
118820747Sdavidn	mtx_assert(&sched_lock, MA_OWNED);
118920747Sdavidn#ifdef SMP
1190283842Sbaptretry:
1191283842Sbapt#endif
119220253Sjoerg	kseq = KSEQ_SELF();
119320590Sdavidn	ke = kseq_choose(kseq, 0);
119420590Sdavidn	if (ke) {
119544229Sdavidn		runq_remove(ke->ke_runq, ke);
119620267Sjoerg		ke->ke_state = KES_THREAD;
119744229Sdavidn
119820267Sjoerg		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
119920267Sjoerg			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1200262865Sjulian			    ke, ke->ke_runq, ke->ke_slice,
1201262865Sjulian			    ke->ke_thread->td_priority);
120220267Sjoerg		}
1203262865Sjulian		return (ke);
1204262865Sjulian	}
1205262865Sjulian
1206262865Sjulian#ifdef SMP
1207262865Sjulian	if (smp_started) {
1208262865Sjulian		/*
120920267Sjoerg		 * Find the cpu with the highest load and steal one proc.
121020267Sjoerg		 */
121120267Sjoerg		if ((kseq = kseq_load_highest()) == NULL)
121244229Sdavidn			return (NULL);
121361957Sache
121420253Sjoerg		/*
121520267Sjoerg		 * Remove this kse from this kseq and runq and then requeue
121620253Sjoerg		 * on the current processor.  Then we will dequeue it
121720253Sjoerg		 * normally above.
1218284110Sbapt		 */
1219284110Sbapt		kseq_move(kseq, PCPU_GET(cpuid));
122020253Sjoerg		goto retry;
1221109961Sgad	}
1222284110Sbapt#endif
1223109961Sgad
122420253Sjoerg	return (NULL);
1225109961Sgad}
1226109961Sgad
1227109961Sgadvoid
1228109961Sgadsched_add(struct thread *td)
1229109961Sgad{
1230109961Sgad	struct kseq *kseq;
1231109961Sgad	struct ksegrp *kg;
1232109961Sgad	struct kse *ke;
1233109961Sgad
1234109961Sgad	ke = td->td_kse;
1235109961Sgad	kg = td->td_ksegrp;
1236109961Sgad	mtx_assert(&sched_lock, MA_OWNED);
1237109961Sgad	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
123820253Sjoerg	KASSERT((ke->ke_thread->td_kse != NULL),
1239109961Sgad	    ("sched_add: No KSE on thread"));
1240109961Sgad	KASSERT(ke->ke_state != KES_ONRUNQ,
1241109961Sgad	    ("sched_add: kse %p (%s) already in run queue", ke,
1242109961Sgad	    ke->ke_proc->p_comm));
1243109961Sgad	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1244109961Sgad	    ("sched_add: process swapped out"));
1245109961Sgad	KASSERT(ke->ke_runq == NULL,
1246109961Sgad	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1247109961Sgad
1248109961Sgad
1249109961Sgad	switch (PRI_BASE(kg->kg_pri_class)) {
1250109961Sgad	case PRI_ITHD:
1251109961Sgad	case PRI_REALTIME:
1252109961Sgad		kseq = KSEQ_SELF();
1253109961Sgad		ke->ke_runq = kseq->ksq_curr;
1254109961Sgad		ke->ke_slice = SCHED_SLICE_MAX;
1255109961Sgad		ke->ke_cpu = PCPU_GET(cpuid);
1256109961Sgad		break;
1257109961Sgad	case PRI_TIMESHARE:
1258109961Sgad		kseq = KSEQ_CPU(ke->ke_cpu);
1259109961Sgad		if (SCHED_CURR(kg, ke))
1260109961Sgad			ke->ke_runq = kseq->ksq_curr;
1261109961Sgad		else
1262109961Sgad			ke->ke_runq = kseq->ksq_next;
1263109961Sgad		break;
1264109961Sgad	case PRI_IDLE:
1265109961Sgad		kseq = KSEQ_CPU(ke->ke_cpu);
1266109961Sgad		/*
1267228673Sdim		 * This is for priority prop.
1268109961Sgad		 */
1269109961Sgad		if (ke->ke_thread->td_priority > PRI_MIN_IDLE)
1270109961Sgad			ke->ke_runq = kseq->ksq_curr;
1271109961Sgad		else
1272109961Sgad			ke->ke_runq = &kseq->ksq_idle;
1273284110Sbapt		ke->ke_slice = SCHED_SLICE_MIN;
1274284110Sbapt		break;
127520253Sjoerg	default:
127620253Sjoerg		panic("Unknown pri class.\n");
127720253Sjoerg		break;
127820253Sjoerg	}
127920253Sjoerg
128020253Sjoerg	ke->ke_ksegrp->kg_runq_kses++;
128120253Sjoerg	ke->ke_state = KES_ONRUNQ;
128220253Sjoerg
128320253Sjoerg	runq_add(ke->ke_runq, ke);
128420253Sjoerg	kseq_add(kseq, ke);
128520253Sjoerg}
128620253Sjoerg
128720253Sjoergvoid
128820253Sjoergsched_rem(struct thread *td)
128920253Sjoerg{
129020253Sjoerg	struct kseq *kseq;
129120253Sjoerg	struct kse *ke;
129220253Sjoerg
129320253Sjoerg	ke = td->td_kse;
129420253Sjoerg
1295282700Sbapt	mtx_assert(&sched_lock, MA_OWNED);
129620253Sjoerg	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
129720253Sjoerg
129820253Sjoerg	ke->ke_state = KES_THREAD;
129920253Sjoerg	ke->ke_ksegrp->kg_runq_kses--;
130020253Sjoerg	kseq = KSEQ_CPU(ke->ke_cpu);
130120253Sjoerg	runq_remove(ke->ke_runq, ke);
130220747Sdavidn	kseq_rem(kseq, ke);
130320747Sdavidn}
130485145Sache
130520747Sdavidnfixpt_t
130685145Sachesched_pctcpu(struct thread *td)
130785145Sache{
130820747Sdavidn	fixpt_t pctcpu;
130921052Sdavidn	struct kse *ke;
131021052Sdavidn
131121052Sdavidn	pctcpu = 0;
131221052Sdavidn	ke = td->td_kse;
131320747Sdavidn
131421052Sdavidn	mtx_lock_spin(&sched_lock);
131521052Sdavidn	if (ke->ke_ticks) {
131621052Sdavidn		int rtick;
131721052Sdavidn
131821052Sdavidn		/*
131921052Sdavidn		 * Don't update more frequently than twice a second.  Allowing
132020747Sdavidn		 * this causes the cpu usage to decay away too quickly due to
132121052Sdavidn		 * rounding errors.
132220747Sdavidn		 */
132321052Sdavidn		if (ke->ke_ltick < (ticks - (hz / 2)))
132421052Sdavidn			sched_pctcpu_update(ke);
132521052Sdavidn		/* How many rtick per second ? */
132621052Sdavidn		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
132720747Sdavidn		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
132820747Sdavidn	}
132920747Sdavidn
1330	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1331	mtx_unlock_spin(&sched_lock);
1332
1333	return (pctcpu);
1334}
1335
1336int
1337sched_sizeof_kse(void)
1338{
1339	return (sizeof(struct kse) + sizeof(struct ke_sched));
1340}
1341
1342int
1343sched_sizeof_ksegrp(void)
1344{
1345	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1346}
1347
1348int
1349sched_sizeof_proc(void)
1350{
1351	return (sizeof(struct proc));
1352}
1353
1354int
1355sched_sizeof_thread(void)
1356{
1357	return (sizeof(struct thread) + sizeof(struct td_sched));
1358}
1359