sched_ule.c revision 121126
1109864Sjeff/*-
2113357Sjeff * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3109864Sjeff * All rights reserved.
4109864Sjeff *
5109864Sjeff * Redistribution and use in source and binary forms, with or without
6109864Sjeff * modification, are permitted provided that the following conditions
7109864Sjeff * are met:
8109864Sjeff * 1. Redistributions of source code must retain the above copyright
9109864Sjeff *    notice unmodified, this list of conditions, and the following
10109864Sjeff *    disclaimer.
11109864Sjeff * 2. Redistributions in binary form must reproduce the above copyright
12109864Sjeff *    notice, this list of conditions and the following disclaimer in the
13109864Sjeff *    documentation and/or other materials provided with the distribution.
14109864Sjeff *
15109864Sjeff * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16109864Sjeff * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17109864Sjeff * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18109864Sjeff * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19109864Sjeff * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20109864Sjeff * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21109864Sjeff * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22109864Sjeff * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23109864Sjeff * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24109864Sjeff * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25109864Sjeff */
26109864Sjeff
27116182Sobrien#include <sys/cdefs.h>
28116182Sobrien__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 121126 2003-10-16 08:17:43Z jeff $");
29116182Sobrien
30109864Sjeff#include <sys/param.h>
31109864Sjeff#include <sys/systm.h>
32109864Sjeff#include <sys/kernel.h>
33109864Sjeff#include <sys/ktr.h>
34109864Sjeff#include <sys/lock.h>
35109864Sjeff#include <sys/mutex.h>
36109864Sjeff#include <sys/proc.h>
37112966Sjeff#include <sys/resource.h>
38109864Sjeff#include <sys/sched.h>
39109864Sjeff#include <sys/smp.h>
40109864Sjeff#include <sys/sx.h>
41109864Sjeff#include <sys/sysctl.h>
42109864Sjeff#include <sys/sysproto.h>
43109864Sjeff#include <sys/vmmeter.h>
44109864Sjeff#ifdef DDB
45109864Sjeff#include <ddb/ddb.h>
46109864Sjeff#endif
47109864Sjeff#ifdef KTRACE
48109864Sjeff#include <sys/uio.h>
49109864Sjeff#include <sys/ktrace.h>
50109864Sjeff#endif
51109864Sjeff
52109864Sjeff#include <machine/cpu.h>
53109864Sjeff
54113357Sjeff#define KTR_ULE         KTR_NFS
55113357Sjeff
56109864Sjeff/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
57109864Sjeff/* XXX This is bogus compatability crap for ps */
58109864Sjeffstatic fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
59109864SjeffSYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
60109864Sjeff
61109864Sjeffstatic void sched_setup(void *dummy);
62109864SjeffSYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
63109864Sjeff
64113357Sjeffstatic SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
65113357Sjeff
66113357Sjeffstatic int sched_strict;
67113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
68113357Sjeff
69113357Sjeffstatic int slice_min = 1;
70113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
71113357Sjeff
72116365Sjeffstatic int slice_max = 10;
73113357SjeffSYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
74113357Sjeff
75111857Sjeffint realstathz;
76113357Sjeffint tickincr = 1;
77111857Sjeff
78116069Sjeff#ifdef SMP
79116069Sjeff/* Callout to handle load balancing SMP systems. */
80116069Sjeffstatic struct callout kseq_lb_callout;
81116069Sjeff#endif
82116069Sjeff
83109864Sjeff/*
84109864Sjeff * These datastructures are allocated within their parent datastructure but
85109864Sjeff * are scheduler specific.
86109864Sjeff */
87109864Sjeff
88109864Sjeffstruct ke_sched {
89109864Sjeff	int		ske_slice;
90109864Sjeff	struct runq	*ske_runq;
91109864Sjeff	/* The following variables are only used for pctcpu calculation */
92109864Sjeff	int		ske_ltick;	/* Last tick that we were running on */
93109864Sjeff	int		ske_ftick;	/* First tick that we were running on */
94109864Sjeff	int		ske_ticks;	/* Tick count */
95113357Sjeff	/* CPU that we have affinity for. */
96110260Sjeff	u_char		ske_cpu;
97109864Sjeff};
98109864Sjeff#define	ke_slice	ke_sched->ske_slice
99109864Sjeff#define	ke_runq		ke_sched->ske_runq
100109864Sjeff#define	ke_ltick	ke_sched->ske_ltick
101109864Sjeff#define	ke_ftick	ke_sched->ske_ftick
102109864Sjeff#define	ke_ticks	ke_sched->ske_ticks
103110260Sjeff#define	ke_cpu		ke_sched->ske_cpu
104109864Sjeff
105109864Sjeffstruct kg_sched {
106110645Sjeff	int	skg_slptime;		/* Number of ticks we vol. slept */
107110645Sjeff	int	skg_runtime;		/* Number of ticks we were running */
108109864Sjeff};
109109864Sjeff#define	kg_slptime	kg_sched->skg_slptime
110110645Sjeff#define	kg_runtime	kg_sched->skg_runtime
111109864Sjeff
112109864Sjeffstruct td_sched {
113109864Sjeff	int	std_slptime;
114109864Sjeff};
115109864Sjeff#define	td_slptime	td_sched->std_slptime
116109864Sjeff
117110267Sjeffstruct td_sched td_sched;
118109864Sjeffstruct ke_sched ke_sched;
119109864Sjeffstruct kg_sched kg_sched;
120109864Sjeff
121109864Sjeffstruct ke_sched *kse0_sched = &ke_sched;
122109864Sjeffstruct kg_sched *ksegrp0_sched = &kg_sched;
123109864Sjeffstruct p_sched *proc0_sched = NULL;
124109864Sjeffstruct td_sched *thread0_sched = &td_sched;
125109864Sjeff
126109864Sjeff/*
127116642Sjeff * The priority is primarily determined by the interactivity score.  Thus, we
128116642Sjeff * give lower(better) priorities to kse groups that use less CPU.  The nice
129116642Sjeff * value is then directly added to this to allow nice to have some effect
130116642Sjeff * on latency.
131111857Sjeff *
132111857Sjeff * PRI_RANGE:	Total priority range for timeshare threads.
133116642Sjeff * PRI_NRESV:	Number of nice values.
134111857Sjeff * PRI_BASE:	The start of the dynamic range.
135109864Sjeff */
136111857Sjeff#define	SCHED_PRI_RANGE		(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
137112966Sjeff#define	SCHED_PRI_NRESV		PRIO_TOTAL
138112970Sjeff#define	SCHED_PRI_NHALF		(PRIO_TOTAL / 2)
139113357Sjeff#define	SCHED_PRI_NTHRESH	(SCHED_PRI_NHALF - 1)
140116642Sjeff#define	SCHED_PRI_BASE		(PRI_MIN_TIMESHARE)
141113357Sjeff#define	SCHED_PRI_INTERACT(score)					\
142116642Sjeff    ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
143109864Sjeff
144109864Sjeff/*
145111857Sjeff * These determine the interactivity of a process.
146109864Sjeff *
147110645Sjeff * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
148110645Sjeff *		before throttling back.
149116955Sjeff * SLP_RUN_THROTTLE:	Divisor for reducing slp/run time at fork time.
150116365Sjeff * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
151111857Sjeff * INTERACT_THRESH:	Threshhold for placement on the current runq.
152109864Sjeff */
153121126Sjeff#define	SCHED_SLP_RUN_MAX	((hz * 5) << 10)
154116955Sjeff#define	SCHED_SLP_RUN_THROTTLE	(100)
155116365Sjeff#define	SCHED_INTERACT_MAX	(100)
156116365Sjeff#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
157121126Sjeff#define	SCHED_INTERACT_THRESH	(30)
158111857Sjeff
159109864Sjeff/*
160109864Sjeff * These parameters and macros determine the size of the time slice that is
161109864Sjeff * granted to each thread.
162109864Sjeff *
163109864Sjeff * SLICE_MIN:	Minimum time slice granted, in units of ticks.
164109864Sjeff * SLICE_MAX:	Maximum time slice granted.
165109864Sjeff * SLICE_RANGE:	Range of available time slices scaled by hz.
166112966Sjeff * SLICE_SCALE:	The number slices granted per val in the range of [0, max].
167112966Sjeff * SLICE_NICE:  Determine the amount of slice granted to a scaled nice.
168109864Sjeff */
169113357Sjeff#define	SCHED_SLICE_MIN			(slice_min)
170113357Sjeff#define	SCHED_SLICE_MAX			(slice_max)
171111857Sjeff#define	SCHED_SLICE_RANGE		(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
172109864Sjeff#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
173112966Sjeff#define	SCHED_SLICE_NICE(nice)						\
174113357Sjeff    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_PRI_NTHRESH))
175109864Sjeff
176109864Sjeff/*
177109864Sjeff * This macro determines whether or not the kse belongs on the current or
178109864Sjeff * next run queue.
179110645Sjeff *
180110645Sjeff * XXX nice value should effect how interactive a kg is.
181109864Sjeff */
182113357Sjeff#define	SCHED_INTERACTIVE(kg)						\
183113357Sjeff    (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
184113417Sjeff#define	SCHED_CURR(kg, ke)						\
185121107Sjeff    (ke->ke_thread->td_priority != kg->kg_user_pri ||			\
186121107Sjeff    SCHED_INTERACTIVE(kg))
187109864Sjeff
188109864Sjeff/*
189109864Sjeff * Cpu percentage computation macros and defines.
190109864Sjeff *
191109864Sjeff * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
192109864Sjeff * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
193109864Sjeff */
194109864Sjeff
195112971Sjeff#define	SCHED_CPU_TIME	10
196109864Sjeff#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)
197109864Sjeff
198109864Sjeff/*
199113357Sjeff * kseq - per processor runqs and statistics.
200109864Sjeff */
201109864Sjeff
202113357Sjeff#define	KSEQ_NCLASS	(PRI_IDLE + 1)	/* Number of run classes. */
203113357Sjeff
204109864Sjeffstruct kseq {
205113357Sjeff	struct runq	ksq_idle;		/* Queue of IDLE threads. */
206113357Sjeff	struct runq	ksq_timeshare[2];	/* Run queues for !IDLE. */
207113357Sjeff	struct runq	*ksq_next;		/* Next timeshare queue. */
208113357Sjeff	struct runq	*ksq_curr;		/* Current queue. */
209113357Sjeff	int		ksq_loads[KSEQ_NCLASS];	/* Load for each class */
210113357Sjeff	int		ksq_load;		/* Aggregate load. */
211113357Sjeff	short		ksq_nice[PRIO_TOTAL + 1]; /* KSEs in each nice bin. */
212113357Sjeff	short		ksq_nicemin;		/* Least nice. */
213110267Sjeff#ifdef SMP
214117237Sjeff	int		ksq_cpus;	/* Count of CPUs in this kseq. */
215110267Sjeff	unsigned int	ksq_rslices;	/* Slices on run queue */
216110267Sjeff#endif
217109864Sjeff};
218109864Sjeff
219109864Sjeff/*
220109864Sjeff * One kse queue per processor.
221109864Sjeff */
222110028Sjeff#ifdef SMP
223109864Sjeffstruct kseq	kseq_cpu[MAXCPU];
224117237Sjeffstruct kseq	*kseq_idmap[MAXCPU];
225117237Sjeff#define	KSEQ_SELF()	(kseq_idmap[PCPU_GET(cpuid)])
226117237Sjeff#define	KSEQ_CPU(x)	(kseq_idmap[(x)])
227110028Sjeff#else
228110028Sjeffstruct kseq	kseq_cpu;
229110028Sjeff#define	KSEQ_SELF()	(&kseq_cpu)
230110028Sjeff#define	KSEQ_CPU(x)	(&kseq_cpu)
231110028Sjeff#endif
232109864Sjeff
233112966Sjeffstatic void sched_slice(struct kse *ke);
234113357Sjeffstatic void sched_priority(struct ksegrp *kg);
235111857Sjeffstatic int sched_interact_score(struct ksegrp *kg);
236116463Sjeffstatic void sched_interact_update(struct ksegrp *kg);
237109864Sjeffvoid sched_pctcpu_update(struct kse *ke);
238109864Sjeffint sched_pickcpu(void);
239109864Sjeff
240110267Sjeff/* Operations on per processor queues */
241117326Sjeffstatic struct kse * kseq_choose(struct kseq *kseq, int steal);
242110028Sjeffstatic void kseq_setup(struct kseq *kseq);
243112994Sjeffstatic void kseq_add(struct kseq *kseq, struct kse *ke);
244113357Sjeffstatic void kseq_rem(struct kseq *kseq, struct kse *ke);
245113357Sjeffstatic void kseq_nice_add(struct kseq *kseq, int nice);
246113357Sjeffstatic void kseq_nice_rem(struct kseq *kseq, int nice);
247113660Sjeffvoid kseq_print(int cpu);
248110267Sjeff#ifdef SMP
249110267Sjeffstruct kseq * kseq_load_highest(void);
250116069Sjeffvoid kseq_balance(void *arg);
251116069Sjeffvoid kseq_move(struct kseq *from, int cpu);
252110267Sjeff#endif
253110028Sjeff
254113357Sjeffvoid
255113660Sjeffkseq_print(int cpu)
256110267Sjeff{
257113660Sjeff	struct kseq *kseq;
258113357Sjeff	int i;
259112994Sjeff
260113660Sjeff	kseq = KSEQ_CPU(cpu);
261112994Sjeff
262113357Sjeff	printf("kseq:\n");
263113357Sjeff	printf("\tload:           %d\n", kseq->ksq_load);
264113357Sjeff	printf("\tload ITHD:      %d\n", kseq->ksq_loads[PRI_ITHD]);
265113357Sjeff	printf("\tload REALTIME:  %d\n", kseq->ksq_loads[PRI_REALTIME]);
266113357Sjeff	printf("\tload TIMESHARE: %d\n", kseq->ksq_loads[PRI_TIMESHARE]);
267113357Sjeff	printf("\tload IDLE:      %d\n", kseq->ksq_loads[PRI_IDLE]);
268113357Sjeff	printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
269113357Sjeff	printf("\tnice counts:\n");
270113357Sjeff	for (i = 0; i < PRIO_TOTAL + 1; i++)
271113357Sjeff		if (kseq->ksq_nice[i])
272113357Sjeff			printf("\t\t%d = %d\n",
273113357Sjeff			    i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
274113357Sjeff}
275112994Sjeff
276113357Sjeffstatic void
277113357Sjeffkseq_add(struct kseq *kseq, struct kse *ke)
278113357Sjeff{
279115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
280113386Sjeff	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]++;
281113357Sjeff	kseq->ksq_load++;
282113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
283113357Sjeff	CTR6(KTR_ULE, "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
284113357Sjeff	    ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
285113357Sjeff	    ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
286113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
287113357Sjeff		kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
288110267Sjeff#ifdef SMP
289110267Sjeff	kseq->ksq_rslices += ke->ke_slice;
290110267Sjeff#endif
291110267Sjeff}
292113357Sjeff
293112994Sjeffstatic void
294110267Sjeffkseq_rem(struct kseq *kseq, struct kse *ke)
295110267Sjeff{
296115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
297113386Sjeff	kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]--;
298113357Sjeff	kseq->ksq_load--;
299113357Sjeff	ke->ke_runq = NULL;
300113357Sjeff	if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
301113357Sjeff		kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
302110267Sjeff#ifdef SMP
303110267Sjeff	kseq->ksq_rslices -= ke->ke_slice;
304110267Sjeff#endif
305110267Sjeff}
306110267Sjeff
307113357Sjeffstatic void
308113357Sjeffkseq_nice_add(struct kseq *kseq, int nice)
309110267Sjeff{
310115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
311113357Sjeff	/* Normalize to zero. */
312113357Sjeff	kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
313115998Sjeff	if (nice < kseq->ksq_nicemin || kseq->ksq_loads[PRI_TIMESHARE] == 1)
314113357Sjeff		kseq->ksq_nicemin = nice;
315110267Sjeff}
316110267Sjeff
317113357Sjeffstatic void
318113357Sjeffkseq_nice_rem(struct kseq *kseq, int nice)
319110267Sjeff{
320113357Sjeff	int n;
321113357Sjeff
322115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
323113357Sjeff	/* Normalize to zero. */
324113357Sjeff	n = nice + SCHED_PRI_NHALF;
325113357Sjeff	kseq->ksq_nice[n]--;
326113357Sjeff	KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
327113357Sjeff
328113357Sjeff	/*
329113357Sjeff	 * If this wasn't the smallest nice value or there are more in
330113357Sjeff	 * this bucket we can just return.  Otherwise we have to recalculate
331113357Sjeff	 * the smallest nice.
332113357Sjeff	 */
333113357Sjeff	if (nice != kseq->ksq_nicemin ||
334113357Sjeff	    kseq->ksq_nice[n] != 0 ||
335113357Sjeff	    kseq->ksq_loads[PRI_TIMESHARE] == 0)
336113357Sjeff		return;
337113357Sjeff
338113357Sjeff	for (; n < SCHED_PRI_NRESV + 1; n++)
339113357Sjeff		if (kseq->ksq_nice[n]) {
340113357Sjeff			kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
341113357Sjeff			return;
342113357Sjeff		}
343110267Sjeff}
344110267Sjeff
345113357Sjeff#ifdef SMP
346116069Sjeff/*
347116069Sjeff * kseq_balance is a simple CPU load balancing algorithm.  It operates by
348116069Sjeff * finding the least loaded and most loaded cpu and equalizing their load
349116069Sjeff * by migrating some processes.
350116069Sjeff *
351116069Sjeff * Dealing only with two CPUs at a time has two advantages.  Firstly, most
352116069Sjeff * installations will only have 2 cpus.  Secondly, load balancing too much at
353116069Sjeff * once can have an unpleasant effect on the system.  The scheduler rarely has
354116069Sjeff * enough information to make perfect decisions.  So this algorithm chooses
355116069Sjeff * algorithm simplicity and more gradual effects on load in larger systems.
356116069Sjeff *
357116069Sjeff * It could be improved by considering the priorities and slices assigned to
358116069Sjeff * each task prior to balancing them.  There are many pathological cases with
359116069Sjeff * any approach and so the semi random algorithm below may work as well as any.
360116069Sjeff *
361116069Sjeff */
362116069Sjeffvoid
363116069Sjeffkseq_balance(void *arg)
364116069Sjeff{
365116069Sjeff	struct kseq *kseq;
366116069Sjeff	int high_load;
367116069Sjeff	int low_load;
368116069Sjeff	int high_cpu;
369116069Sjeff	int low_cpu;
370116069Sjeff	int move;
371116069Sjeff	int diff;
372116069Sjeff	int i;
373116069Sjeff
374116069Sjeff	high_cpu = 0;
375116069Sjeff	low_cpu = 0;
376116069Sjeff	high_load = 0;
377116069Sjeff	low_load = -1;
378116069Sjeff
379116069Sjeff	mtx_lock_spin(&sched_lock);
380116962Sjeff	if (smp_started == 0)
381116962Sjeff		goto out;
382116962Sjeff
383116069Sjeff	for (i = 0; i < mp_maxid; i++) {
384116970Sjeff		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
385116069Sjeff			continue;
386116069Sjeff		kseq = KSEQ_CPU(i);
387116069Sjeff		if (kseq->ksq_load > high_load) {
388116069Sjeff			high_load = kseq->ksq_load;
389116069Sjeff			high_cpu = i;
390116069Sjeff		}
391116069Sjeff		if (low_load == -1 || kseq->ksq_load < low_load) {
392116069Sjeff			low_load = kseq->ksq_load;
393116069Sjeff			low_cpu = i;
394116069Sjeff		}
395116069Sjeff	}
396116069Sjeff
397117237Sjeff	kseq = KSEQ_CPU(high_cpu);
398117237Sjeff
399116069Sjeff	/*
400116069Sjeff	 * Nothing to do.
401116069Sjeff	 */
402117237Sjeff	if (high_load < kseq->ksq_cpus + 1)
403116069Sjeff		goto out;
404116069Sjeff
405117237Sjeff	high_load -= kseq->ksq_cpus;
406117237Sjeff
407117237Sjeff	if (low_load >= high_load)
408117237Sjeff		goto out;
409117237Sjeff
410116069Sjeff	diff = high_load - low_load;
411116069Sjeff	move = diff / 2;
412116069Sjeff	if (diff & 0x1)
413116069Sjeff		move++;
414116069Sjeff
415116069Sjeff	for (i = 0; i < move; i++)
416117237Sjeff		kseq_move(kseq, low_cpu);
417116069Sjeff
418116069Sjeffout:
419116069Sjeff	mtx_unlock_spin(&sched_lock);
420116069Sjeff	callout_reset(&kseq_lb_callout, hz, kseq_balance, NULL);
421116069Sjeff
422116069Sjeff	return;
423116069Sjeff}
424116069Sjeff
425110267Sjeffstruct kseq *
426110267Sjeffkseq_load_highest(void)
427110267Sjeff{
428110267Sjeff	struct kseq *kseq;
429110267Sjeff	int load;
430110267Sjeff	int cpu;
431110267Sjeff	int i;
432110267Sjeff
433115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
434110267Sjeff	cpu = 0;
435110267Sjeff	load = 0;
436110267Sjeff
437110267Sjeff	for (i = 0; i < mp_maxid; i++) {
438116970Sjeff		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
439110267Sjeff			continue;
440110267Sjeff		kseq = KSEQ_CPU(i);
441113357Sjeff		if (kseq->ksq_load > load) {
442113357Sjeff			load = kseq->ksq_load;
443110267Sjeff			cpu = i;
444110267Sjeff		}
445110267Sjeff	}
446117237Sjeff	kseq = KSEQ_CPU(cpu);
447110267Sjeff
448117237Sjeff	if (load > kseq->ksq_cpus)
449117237Sjeff		return (kseq);
450117237Sjeff
451110267Sjeff	return (NULL);
452110267Sjeff}
453116069Sjeff
454116069Sjeffvoid
455116069Sjeffkseq_move(struct kseq *from, int cpu)
456116069Sjeff{
457116069Sjeff	struct kse *ke;
458116069Sjeff
459117326Sjeff	ke = kseq_choose(from, 1);
460116069Sjeff	runq_remove(ke->ke_runq, ke);
461116069Sjeff	ke->ke_state = KES_THREAD;
462116069Sjeff	kseq_rem(from, ke);
463116069Sjeff
464116069Sjeff	ke->ke_cpu = cpu;
465116069Sjeff	sched_add(ke);
466116069Sjeff}
467110267Sjeff#endif
468110267Sjeff
469117326Sjeff/*
470117326Sjeff * Pick the highest priority task we have and return it.   If steal is 1 we
471117326Sjeff * will return kses that have been denied slices due to their nice being too
472117326Sjeff * low.  In the future we should prohibit stealing interrupt threads as well.
473117326Sjeff */
474117326Sjeff
475110267Sjeffstruct kse *
476117326Sjeffkseq_choose(struct kseq *kseq, int steal)
477110267Sjeff{
478110267Sjeff	struct kse *ke;
479110267Sjeff	struct runq *swap;
480110267Sjeff
481115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
482113357Sjeff	swap = NULL;
483112994Sjeff
484113357Sjeff	for (;;) {
485113357Sjeff		ke = runq_choose(kseq->ksq_curr);
486113357Sjeff		if (ke == NULL) {
487113357Sjeff			/*
488113357Sjeff			 * We already swaped once and didn't get anywhere.
489113357Sjeff			 */
490113357Sjeff			if (swap)
491113357Sjeff				break;
492113357Sjeff			swap = kseq->ksq_curr;
493113357Sjeff			kseq->ksq_curr = kseq->ksq_next;
494113357Sjeff			kseq->ksq_next = swap;
495113357Sjeff			continue;
496113357Sjeff		}
497113357Sjeff		/*
498113357Sjeff		 * If we encounter a slice of 0 the kse is in a
499113357Sjeff		 * TIMESHARE kse group and its nice was too far out
500113357Sjeff		 * of the range that receives slices.
501113357Sjeff		 */
502117326Sjeff		if (ke->ke_slice == 0 && steal == 0) {
503113357Sjeff			runq_remove(ke->ke_runq, ke);
504113357Sjeff			sched_slice(ke);
505113357Sjeff			ke->ke_runq = kseq->ksq_next;
506113357Sjeff			runq_add(ke->ke_runq, ke);
507113357Sjeff			continue;
508113357Sjeff		}
509113357Sjeff		return (ke);
510110267Sjeff	}
511110267Sjeff
512113357Sjeff	return (runq_choose(&kseq->ksq_idle));
513110267Sjeff}
514110267Sjeff
515109864Sjeffstatic void
516110028Sjeffkseq_setup(struct kseq *kseq)
517110028Sjeff{
518113357Sjeff	runq_init(&kseq->ksq_timeshare[0]);
519113357Sjeff	runq_init(&kseq->ksq_timeshare[1]);
520112994Sjeff	runq_init(&kseq->ksq_idle);
521113357Sjeff
522113357Sjeff	kseq->ksq_curr = &kseq->ksq_timeshare[0];
523113357Sjeff	kseq->ksq_next = &kseq->ksq_timeshare[1];
524113357Sjeff
525113357Sjeff	kseq->ksq_loads[PRI_ITHD] = 0;
526113357Sjeff	kseq->ksq_loads[PRI_REALTIME] = 0;
527113357Sjeff	kseq->ksq_loads[PRI_TIMESHARE] = 0;
528113357Sjeff	kseq->ksq_loads[PRI_IDLE] = 0;
529113660Sjeff	kseq->ksq_load = 0;
530110267Sjeff#ifdef SMP
531110267Sjeff	kseq->ksq_rslices = 0;
532110267Sjeff#endif
533110028Sjeff}
534110028Sjeff
535110028Sjeffstatic void
536109864Sjeffsched_setup(void *dummy)
537109864Sjeff{
538117313Sjeff#ifdef SMP
539109864Sjeff	int i;
540117313Sjeff#endif
541109864Sjeff
542116946Sjeff	slice_min = (hz/100);	/* 10ms */
543116946Sjeff	slice_max = (hz/7);	/* ~140ms */
544111857Sjeff
545117237Sjeff#ifdef SMP
546109864Sjeff	/* init kseqs */
547117237Sjeff	/* Create the idmap. */
548117237Sjeff#ifdef ULE_HTT_EXPERIMENTAL
549117237Sjeff	if (smp_topology == NULL) {
550117237Sjeff#else
551117237Sjeff	if (1) {
552117237Sjeff#endif
553117237Sjeff		for (i = 0; i < MAXCPU; i++) {
554117237Sjeff			kseq_setup(&kseq_cpu[i]);
555117237Sjeff			kseq_idmap[i] = &kseq_cpu[i];
556117237Sjeff			kseq_cpu[i].ksq_cpus = 1;
557117237Sjeff		}
558117237Sjeff	} else {
559117237Sjeff		int j;
560113357Sjeff
561117237Sjeff		for (i = 0; i < smp_topology->ct_count; i++) {
562117237Sjeff			struct cpu_group *cg;
563117237Sjeff
564117237Sjeff			cg = &smp_topology->ct_group[i];
565117237Sjeff			kseq_setup(&kseq_cpu[i]);
566117237Sjeff
567117237Sjeff			for (j = 0; j < MAXCPU; j++)
568117237Sjeff				if ((cg->cg_mask & (1 << j)) != 0)
569117237Sjeff					kseq_idmap[j] = &kseq_cpu[i];
570117237Sjeff			kseq_cpu[i].ksq_cpus = cg->cg_count;
571117237Sjeff		}
572117237Sjeff	}
573119137Ssam	callout_init(&kseq_lb_callout, CALLOUT_MPSAFE);
574116069Sjeff	kseq_balance(NULL);
575117237Sjeff#else
576117237Sjeff	kseq_setup(KSEQ_SELF());
577116069Sjeff#endif
578117237Sjeff	mtx_lock_spin(&sched_lock);
579117237Sjeff	kseq_add(KSEQ_SELF(), &kse0);
580117237Sjeff	mtx_unlock_spin(&sched_lock);
581109864Sjeff}
582109864Sjeff
583109864Sjeff/*
584109864Sjeff * Scale the scheduling priority according to the "interactivity" of this
585109864Sjeff * process.
586109864Sjeff */
587113357Sjeffstatic void
588109864Sjeffsched_priority(struct ksegrp *kg)
589109864Sjeff{
590109864Sjeff	int pri;
591109864Sjeff
592109864Sjeff	if (kg->kg_pri_class != PRI_TIMESHARE)
593113357Sjeff		return;
594109864Sjeff
595113357Sjeff	pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
596111857Sjeff	pri += SCHED_PRI_BASE;
597109864Sjeff	pri += kg->kg_nice;
598109864Sjeff
599109864Sjeff	if (pri > PRI_MAX_TIMESHARE)
600109864Sjeff		pri = PRI_MAX_TIMESHARE;
601109864Sjeff	else if (pri < PRI_MIN_TIMESHARE)
602109864Sjeff		pri = PRI_MIN_TIMESHARE;
603109864Sjeff
604109864Sjeff	kg->kg_user_pri = pri;
605109864Sjeff
606113357Sjeff	return;
607109864Sjeff}
608109864Sjeff
609109864Sjeff/*
610112966Sjeff * Calculate a time slice based on the properties of the kseg and the runq
611112994Sjeff * that we're on.  This is only for PRI_TIMESHARE ksegrps.
612109864Sjeff */
613112966Sjeffstatic void
614112966Sjeffsched_slice(struct kse *ke)
615109864Sjeff{
616113357Sjeff	struct kseq *kseq;
617112966Sjeff	struct ksegrp *kg;
618109864Sjeff
619112966Sjeff	kg = ke->ke_ksegrp;
620113357Sjeff	kseq = KSEQ_CPU(ke->ke_cpu);
621109864Sjeff
622112966Sjeff	/*
623112966Sjeff	 * Rationale:
624112966Sjeff	 * KSEs in interactive ksegs get the minimum slice so that we
625112966Sjeff	 * quickly notice if it abuses its advantage.
626112966Sjeff	 *
627112966Sjeff	 * KSEs in non-interactive ksegs are assigned a slice that is
628112966Sjeff	 * based on the ksegs nice value relative to the least nice kseg
629112966Sjeff	 * on the run queue for this cpu.
630112966Sjeff	 *
631112966Sjeff	 * If the KSE is less nice than all others it gets the maximum
632112966Sjeff	 * slice and other KSEs will adjust their slice relative to
633112966Sjeff	 * this when they first expire.
634112966Sjeff	 *
635112966Sjeff	 * There is 20 point window that starts relative to the least
636112966Sjeff	 * nice kse on the run queue.  Slice size is determined by
637112966Sjeff	 * the kse distance from the last nice ksegrp.
638112966Sjeff	 *
639112966Sjeff	 * If you are outside of the window you will get no slice and
640112966Sjeff	 * you will be reevaluated each time you are selected on the
641112966Sjeff	 * run queue.
642112966Sjeff	 *
643112966Sjeff	 */
644109864Sjeff
645113357Sjeff	if (!SCHED_INTERACTIVE(kg)) {
646112966Sjeff		int nice;
647112966Sjeff
648113357Sjeff		nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
649113357Sjeff		if (kseq->ksq_loads[PRI_TIMESHARE] == 0 ||
650113357Sjeff		    kg->kg_nice < kseq->ksq_nicemin)
651112966Sjeff			ke->ke_slice = SCHED_SLICE_MAX;
652113357Sjeff		else if (nice <= SCHED_PRI_NTHRESH)
653112966Sjeff			ke->ke_slice = SCHED_SLICE_NICE(nice);
654112966Sjeff		else
655112966Sjeff			ke->ke_slice = 0;
656112966Sjeff	} else
657112966Sjeff		ke->ke_slice = SCHED_SLICE_MIN;
658112966Sjeff
659113357Sjeff	CTR6(KTR_ULE,
660113357Sjeff	    "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
661113357Sjeff	    ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
662113357Sjeff	    kseq->ksq_loads[PRI_TIMESHARE], SCHED_INTERACTIVE(kg));
663113357Sjeff
664110645Sjeff	/*
665112994Sjeff	 * Check to see if we need to scale back the slp and run time
666112994Sjeff	 * in the kg.  This will cause us to forget old interactivity
667112994Sjeff	 * while maintaining the current ratio.
668110645Sjeff	 */
669116463Sjeff	sched_interact_update(kg);
670110645Sjeff
671112966Sjeff	return;
672109864Sjeff}
673109864Sjeff
674116463Sjeffstatic void
675116463Sjeffsched_interact_update(struct ksegrp *kg)
676116463Sjeff{
677121126Sjeff	/* XXX Fixme, use a linear algorithm and not a while loop. */
678121126Sjeff	while ((kg->kg_runtime + kg->kg_slptime) >  SCHED_SLP_RUN_MAX) {
679121126Sjeff		kg->kg_runtime = (kg->kg_runtime / 5) * 4;
680121126Sjeff		kg->kg_slptime = (kg->kg_slptime / 5) * 4;
681116463Sjeff	}
682116463Sjeff}
683116463Sjeff
684111857Sjeffstatic int
685111857Sjeffsched_interact_score(struct ksegrp *kg)
686111857Sjeff{
687116365Sjeff	int div;
688111857Sjeff
689111857Sjeff	if (kg->kg_runtime > kg->kg_slptime) {
690116365Sjeff		div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
691116365Sjeff		return (SCHED_INTERACT_HALF +
692116365Sjeff		    (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
693116365Sjeff	} if (kg->kg_slptime > kg->kg_runtime) {
694116365Sjeff		div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
695116365Sjeff		return (kg->kg_runtime / div);
696111857Sjeff	}
697111857Sjeff
698116365Sjeff	/*
699116365Sjeff	 * This can happen if slptime and runtime are 0.
700116365Sjeff	 */
701116365Sjeff	return (0);
702111857Sjeff
703111857Sjeff}
704111857Sjeff
705113357Sjeff/*
706113357Sjeff * This is only somewhat accurate since given many processes of the same
707113357Sjeff * priority they will switch when their slices run out, which will be
708113357Sjeff * at most SCHED_SLICE_MAX.
709113357Sjeff */
710109864Sjeffint
711109864Sjeffsched_rr_interval(void)
712109864Sjeff{
713109864Sjeff	return (SCHED_SLICE_MAX);
714109864Sjeff}
715109864Sjeff
716109864Sjeffvoid
717109864Sjeffsched_pctcpu_update(struct kse *ke)
718109864Sjeff{
719109864Sjeff	/*
720109864Sjeff	 * Adjust counters and watermark for pctcpu calc.
721116365Sjeff	 */
722120272Sjeff	if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
723120272Sjeff		/*
724120272Sjeff		 * Shift the tick count out so that the divide doesn't
725120272Sjeff		 * round away our results.
726120272Sjeff		 */
727120272Sjeff		ke->ke_ticks <<= 10;
728120272Sjeff		ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
729120272Sjeff			    SCHED_CPU_TICKS;
730120272Sjeff		ke->ke_ticks >>= 10;
731120272Sjeff	} else
732120272Sjeff		ke->ke_ticks = 0;
733109864Sjeff	ke->ke_ltick = ticks;
734109864Sjeff	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
735109864Sjeff}
736109864Sjeff
737109864Sjeff#ifdef SMP
738110267Sjeff/* XXX Should be changed to kseq_load_lowest() */
739109864Sjeffint
740109864Sjeffsched_pickcpu(void)
741109864Sjeff{
742110028Sjeff	struct kseq *kseq;
743110028Sjeff	int load;
744109864Sjeff	int cpu;
745109864Sjeff	int i;
746109864Sjeff
747115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
748109864Sjeff	if (!smp_started)
749109864Sjeff		return (0);
750109864Sjeff
751110028Sjeff	load = 0;
752110028Sjeff	cpu = 0;
753109864Sjeff
754109864Sjeff	for (i = 0; i < mp_maxid; i++) {
755116970Sjeff		if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
756109864Sjeff			continue;
757110028Sjeff		kseq = KSEQ_CPU(i);
758113357Sjeff		if (kseq->ksq_load < load) {
759109864Sjeff			cpu = i;
760113357Sjeff			load = kseq->ksq_load;
761109864Sjeff		}
762109864Sjeff	}
763109864Sjeff
764109864Sjeff	CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
765109864Sjeff	return (cpu);
766109864Sjeff}
767109864Sjeff#else
768109864Sjeffint
769109864Sjeffsched_pickcpu(void)
770109864Sjeff{
771109864Sjeff	return (0);
772109864Sjeff}
773109864Sjeff#endif
774109864Sjeff
775109864Sjeffvoid
776109864Sjeffsched_prio(struct thread *td, u_char prio)
777109864Sjeff{
778109864Sjeff
779109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
780109864Sjeff	if (TD_ON_RUNQ(td)) {
781119488Sdavidxu		adjustrunqueue(td, prio);
782119488Sdavidxu	} else {
783119488Sdavidxu		td->td_priority = prio;
784109864Sjeff	}
785109864Sjeff}
786109864Sjeff
787109864Sjeffvoid
788109864Sjeffsched_switchout(struct thread *td)
789109864Sjeff{
790109864Sjeff	struct kse *ke;
791109864Sjeff
792109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
793109864Sjeff
794109864Sjeff	ke = td->td_kse;
795109864Sjeff
796109864Sjeff	td->td_last_kse = ke;
797113339Sjulian        td->td_lastcpu = td->td_oncpu;
798113339Sjulian	td->td_oncpu = NOCPU;
799111032Sjulian        td->td_flags &= ~TDF_NEEDRESCHED;
800109864Sjeff
801109864Sjeff	if (TD_IS_RUNNING(td)) {
802119488Sdavidxu		if (td->td_proc->p_flag & P_SA) {
803119488Sdavidxu			kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
804119488Sdavidxu			setrunqueue(td);
805119488Sdavidxu		} else {
806119488Sdavidxu			/*
807119488Sdavidxu			 * This queue is always correct except for idle threads which
808119488Sdavidxu			 * have a higher priority due to priority propagation.
809119488Sdavidxu			 */
810119488Sdavidxu			if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE &&
811119488Sdavidxu			    ke->ke_thread->td_priority > PRI_MIN_IDLE)
812119488Sdavidxu				ke->ke_runq = KSEQ_SELF()->ksq_curr;
813119488Sdavidxu			runq_add(ke->ke_runq, ke);
814119488Sdavidxu			/* setrunqueue(td); */
815119488Sdavidxu		}
816109864Sjeff		return;
817111857Sjeff	}
818113357Sjeff	if (ke->ke_runq)
819113357Sjeff		kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
820109864Sjeff	/*
821109864Sjeff	 * We will not be on the run queue. So we must be
822109864Sjeff	 * sleeping or similar.
823109864Sjeff	 */
824116361Sdavidxu	if (td->td_proc->p_flag & P_SA)
825109864Sjeff		kse_reassign(ke);
826109864Sjeff}
827109864Sjeff
828109864Sjeffvoid
829109864Sjeffsched_switchin(struct thread *td)
830109864Sjeff{
831109864Sjeff	/* struct kse *ke = td->td_kse; */
832109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
833109864Sjeff
834113339Sjulian	td->td_oncpu = PCPU_GET(cpuid);
835109864Sjeff}
836109864Sjeff
837109864Sjeffvoid
838109864Sjeffsched_nice(struct ksegrp *kg, int nice)
839109864Sjeff{
840113357Sjeff	struct kse *ke;
841109864Sjeff	struct thread *td;
842113357Sjeff	struct kseq *kseq;
843109864Sjeff
844113873Sjhb	PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
845113873Sjhb	mtx_assert(&sched_lock, MA_OWNED);
846113357Sjeff	/*
847113357Sjeff	 * We need to adjust the nice counts for running KSEs.
848113357Sjeff	 */
849113357Sjeff	if (kg->kg_pri_class == PRI_TIMESHARE)
850113357Sjeff		FOREACH_KSE_IN_GROUP(kg, ke) {
851116500Sjeff			if (ke->ke_runq == NULL)
852113357Sjeff				continue;
853113357Sjeff			kseq = KSEQ_CPU(ke->ke_cpu);
854113357Sjeff			kseq_nice_rem(kseq, kg->kg_nice);
855113357Sjeff			kseq_nice_add(kseq, nice);
856113357Sjeff		}
857109864Sjeff	kg->kg_nice = nice;
858109864Sjeff	sched_priority(kg);
859113357Sjeff	FOREACH_THREAD_IN_GROUP(kg, td)
860111032Sjulian		td->td_flags |= TDF_NEEDRESCHED;
861109864Sjeff}
862109864Sjeff
863109864Sjeffvoid
864109864Sjeffsched_sleep(struct thread *td, u_char prio)
865109864Sjeff{
866109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
867109864Sjeff
868109864Sjeff	td->td_slptime = ticks;
869109864Sjeff	td->td_priority = prio;
870109864Sjeff
871113357Sjeff	CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
872113357Sjeff	    td->td_kse, td->td_slptime);
873109864Sjeff}
874109864Sjeff
875109864Sjeffvoid
876109864Sjeffsched_wakeup(struct thread *td)
877109864Sjeff{
878109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
879109864Sjeff
880109864Sjeff	/*
881109864Sjeff	 * Let the kseg know how long we slept for.  This is because process
882109864Sjeff	 * interactivity behavior is modeled in the kseg.
883109864Sjeff	 */
884111788Sjeff	if (td->td_slptime) {
885111788Sjeff		struct ksegrp *kg;
886113357Sjeff		int hzticks;
887109864Sjeff
888111788Sjeff		kg = td->td_ksegrp;
889113357Sjeff		hzticks = ticks - td->td_slptime;
890113357Sjeff		kg->kg_slptime += hzticks << 10;
891116463Sjeff		sched_interact_update(kg);
892111788Sjeff		sched_priority(kg);
893116463Sjeff		if (td->td_kse)
894116463Sjeff			sched_slice(td->td_kse);
895113357Sjeff		CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
896113357Sjeff		    td->td_kse, hzticks);
897111788Sjeff		td->td_slptime = 0;
898109864Sjeff	}
899109864Sjeff	setrunqueue(td);
900109864Sjeff        if (td->td_priority < curthread->td_priority)
901111032Sjulian                curthread->td_flags |= TDF_NEEDRESCHED;
902109864Sjeff}
903109864Sjeff
904109864Sjeff/*
905109864Sjeff * Penalize the parent for creating a new child and initialize the child's
906109864Sjeff * priority.
907109864Sjeff */
908109864Sjeffvoid
909113357Sjeffsched_fork(struct proc *p, struct proc *p1)
910109864Sjeff{
911109864Sjeff
912109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
913109864Sjeff
914113357Sjeff	sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
915113357Sjeff	sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
916113357Sjeff	sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
917113357Sjeff}
918113357Sjeff
919113357Sjeffvoid
920113357Sjeffsched_fork_kse(struct kse *ke, struct kse *child)
921113357Sjeff{
922113923Sjhb
923116365Sjeff	child->ke_slice = 1;	/* Attempt to quickly learn interactivity. */
924113357Sjeff	child->ke_cpu = ke->ke_cpu; /* sched_pickcpu(); */
925113357Sjeff	child->ke_runq = NULL;
926113357Sjeff
927121051Sjeff	/* Grab our parents cpu estimation information. */
928121051Sjeff	child->ke_ticks = ke->ke_ticks;
929121051Sjeff	child->ke_ltick = ke->ke_ltick;
930121051Sjeff	child->ke_ftick = ke->ke_ftick;
931113357Sjeff}
932113357Sjeff
933113357Sjeffvoid
934113357Sjeffsched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
935113357Sjeff{
936113923Sjhb
937113923Sjhb	PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
938109864Sjeff	/* XXX Need something better here */
939116365Sjeff
940116955Sjeff	child->kg_slptime = kg->kg_slptime / SCHED_SLP_RUN_THROTTLE;
941116955Sjeff	child->kg_runtime = kg->kg_runtime / SCHED_SLP_RUN_THROTTLE;
942116463Sjeff	kg->kg_runtime += tickincr << 10;
943116463Sjeff	sched_interact_update(kg);
944113357Sjeff
945109864Sjeff	child->kg_user_pri = kg->kg_user_pri;
946113357Sjeff	child->kg_nice = kg->kg_nice;
947113357Sjeff}
948109864Sjeff
949113357Sjeffvoid
950113357Sjeffsched_fork_thread(struct thread *td, struct thread *child)
951113357Sjeff{
952113357Sjeff}
953113357Sjeff
954113357Sjeffvoid
955113357Sjeffsched_class(struct ksegrp *kg, int class)
956113357Sjeff{
957113357Sjeff	struct kseq *kseq;
958113357Sjeff	struct kse *ke;
959113357Sjeff
960113923Sjhb	mtx_assert(&sched_lock, MA_OWNED);
961113357Sjeff	if (kg->kg_pri_class == class)
962113357Sjeff		return;
963113357Sjeff
964113357Sjeff	FOREACH_KSE_IN_GROUP(kg, ke) {
965113357Sjeff		if (ke->ke_state != KES_ONRUNQ &&
966113357Sjeff		    ke->ke_state != KES_THREAD)
967113357Sjeff			continue;
968113357Sjeff		kseq = KSEQ_CPU(ke->ke_cpu);
969113357Sjeff
970113386Sjeff		kseq->ksq_loads[PRI_BASE(kg->kg_pri_class)]--;
971113386Sjeff		kseq->ksq_loads[PRI_BASE(class)]++;
972113357Sjeff
973113357Sjeff		if (kg->kg_pri_class == PRI_TIMESHARE)
974113357Sjeff			kseq_nice_rem(kseq, kg->kg_nice);
975113357Sjeff		else if (class == PRI_TIMESHARE)
976113357Sjeff			kseq_nice_add(kseq, kg->kg_nice);
977109970Sjeff	}
978109970Sjeff
979113357Sjeff	kg->kg_pri_class = class;
980109864Sjeff}
981109864Sjeff
982109864Sjeff/*
983109864Sjeff * Return some of the child's priority and interactivity to the parent.
984109864Sjeff */
985109864Sjeffvoid
986113357Sjeffsched_exit(struct proc *p, struct proc *child)
987109864Sjeff{
988109864Sjeff	/* XXX Need something better here */
989109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
990113372Sjeff	sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
991116365Sjeff	sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
992109864Sjeff}
993109864Sjeff
994109864Sjeffvoid
995113372Sjeffsched_exit_kse(struct kse *ke, struct kse *child)
996113372Sjeff{
997113372Sjeff	kseq_rem(KSEQ_CPU(child->ke_cpu), child);
998113372Sjeff}
999113372Sjeff
1000113372Sjeffvoid
1001113372Sjeffsched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1002113372Sjeff{
1003116463Sjeff	/* kg->kg_slptime += child->kg_slptime; */
1004116365Sjeff	kg->kg_runtime += child->kg_runtime;
1005116463Sjeff	sched_interact_update(kg);
1006113372Sjeff}
1007113372Sjeff
1008113372Sjeffvoid
1009113372Sjeffsched_exit_thread(struct thread *td, struct thread *child)
1010113372Sjeff{
1011113372Sjeff}
1012113372Sjeff
1013113372Sjeffvoid
1014113357Sjeffsched_clock(struct kse *ke)
1015109864Sjeff{
1016113357Sjeff	struct kseq *kseq;
1017113357Sjeff	struct ksegrp *kg;
1018113357Sjeff	struct thread *td;
1019113357Sjeff#if 0
1020109864Sjeff	struct kse *nke;
1021110267Sjeff#endif
1022109864Sjeff
1023113357Sjeff	/*
1024113357Sjeff	 * sched_setup() apparently happens prior to stathz being set.  We
1025113357Sjeff	 * need to resolve the timers earlier in the boot so we can avoid
1026113357Sjeff	 * calculating this here.
1027113357Sjeff	 */
1028113357Sjeff	if (realstathz == 0) {
1029113357Sjeff		realstathz = stathz ? stathz : hz;
1030113357Sjeff		tickincr = hz / realstathz;
1031113357Sjeff		/*
1032113357Sjeff		 * XXX This does not work for values of stathz that are much
1033113357Sjeff		 * larger than hz.
1034113357Sjeff		 */
1035113357Sjeff		if (tickincr == 0)
1036113357Sjeff			tickincr = 1;
1037113357Sjeff	}
1038109864Sjeff
1039113357Sjeff	td = ke->ke_thread;
1040113357Sjeff	kg = ke->ke_ksegrp;
1041109864Sjeff
1042110028Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1043110028Sjeff	KASSERT((td != NULL), ("schedclock: null thread pointer"));
1044110028Sjeff
1045110028Sjeff	/* Adjust ticks for pctcpu */
1046111793Sjeff	ke->ke_ticks++;
1047109971Sjeff	ke->ke_ltick = ticks;
1048112994Sjeff
1049109971Sjeff	/* Go up to one second beyond our max and then trim back down */
1050109971Sjeff	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1051109971Sjeff		sched_pctcpu_update(ke);
1052109971Sjeff
1053114496Sjulian	if (td->td_flags & TDF_IDLETD)
1054109864Sjeff		return;
1055110028Sjeff
1056113357Sjeff	CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1057113357Sjeff	    ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1058113357Sjeff
1059110028Sjeff	/*
1060113357Sjeff	 * We only do slicing code for TIMESHARE ksegrps.
1061113357Sjeff	 */
1062113357Sjeff	if (kg->kg_pri_class != PRI_TIMESHARE)
1063113357Sjeff		return;
1064113357Sjeff	/*
1065110028Sjeff	 * Check for a higher priority task on the run queue.  This can happen
1066110028Sjeff	 * on SMP if another processor woke up a process on our runq.
1067110028Sjeff	 */
1068110028Sjeff	kseq = KSEQ_SELF();
1069113357Sjeff#if 0
1070117326Sjeff	if (kseq->ksq_load > 1 && (nke = kseq_choose(kseq, 0)) != NULL) {
1071113357Sjeff		if (sched_strict &&
1072113357Sjeff		    nke->ke_thread->td_priority < td->td_priority)
1073113357Sjeff			td->td_flags |= TDF_NEEDRESCHED;
1074113357Sjeff		else if (nke->ke_thread->td_priority <
1075113357Sjeff		    td->td_priority SCHED_PRIO_SLOP)
1076113357Sjeff
1077113357Sjeff		if (nke->ke_thread->td_priority < td->td_priority)
1078113357Sjeff			td->td_flags |= TDF_NEEDRESCHED;
1079113357Sjeff	}
1080110267Sjeff#endif
1081109864Sjeff	/*
1082110645Sjeff	 * We used a tick charge it to the ksegrp so that we can compute our
1083113357Sjeff	 * interactivity.
1084109864Sjeff	 */
1085113357Sjeff	kg->kg_runtime += tickincr << 10;
1086116463Sjeff	sched_interact_update(kg);
1087110645Sjeff
1088109864Sjeff	/*
1089109864Sjeff	 * We used up one time slice.
1090109864Sjeff	 */
1091109864Sjeff	ke->ke_slice--;
1092113357Sjeff#ifdef SMP
1093113370Sjeff	kseq->ksq_rslices--;
1094113357Sjeff#endif
1095113357Sjeff
1096113357Sjeff	if (ke->ke_slice > 0)
1097113357Sjeff		return;
1098109864Sjeff	/*
1099113357Sjeff	 * We're out of time, recompute priorities and requeue.
1100109864Sjeff	 */
1101113357Sjeff	kseq_rem(kseq, ke);
1102113357Sjeff	sched_priority(kg);
1103113357Sjeff	sched_slice(ke);
1104113357Sjeff	if (SCHED_CURR(kg, ke))
1105113357Sjeff		ke->ke_runq = kseq->ksq_curr;
1106113357Sjeff	else
1107113357Sjeff		ke->ke_runq = kseq->ksq_next;
1108113357Sjeff	kseq_add(kseq, ke);
1109113357Sjeff	td->td_flags |= TDF_NEEDRESCHED;
1110109864Sjeff}
1111109864Sjeff
1112109864Sjeffint
1113109864Sjeffsched_runnable(void)
1114109864Sjeff{
1115109864Sjeff	struct kseq *kseq;
1116115998Sjeff	int load;
1117109864Sjeff
1118115998Sjeff	load = 1;
1119115998Sjeff
1120115998Sjeff	mtx_lock_spin(&sched_lock);
1121110028Sjeff	kseq = KSEQ_SELF();
1122109864Sjeff
1123113357Sjeff	if (kseq->ksq_load)
1124115998Sjeff		goto out;
1125109970Sjeff#ifdef SMP
1126110028Sjeff	/*
1127110028Sjeff	 * For SMP we may steal other processor's KSEs.  Just search until we
1128110028Sjeff	 * verify that at least on other cpu has a runnable task.
1129110028Sjeff	 */
1130109970Sjeff	if (smp_started) {
1131109970Sjeff		int i;
1132109970Sjeff
1133109970Sjeff		for (i = 0; i < mp_maxid; i++) {
1134116970Sjeff			if (CPU_ABSENT(i) || (i & stopped_cpus) != 0)
1135109970Sjeff				continue;
1136110028Sjeff			kseq = KSEQ_CPU(i);
1137117237Sjeff			if (kseq->ksq_load > kseq->ksq_cpus)
1138115998Sjeff				goto out;
1139109970Sjeff		}
1140109970Sjeff	}
1141109970Sjeff#endif
1142115998Sjeff	load = 0;
1143115998Sjeffout:
1144115998Sjeff	mtx_unlock_spin(&sched_lock);
1145115998Sjeff	return (load);
1146109864Sjeff}
1147109864Sjeff
1148109864Sjeffvoid
1149109864Sjeffsched_userret(struct thread *td)
1150109864Sjeff{
1151109864Sjeff	struct ksegrp *kg;
1152121107Sjeff#if 0
1153116365Sjeff	struct kseq *kseq;
1154116365Sjeff	struct kse *ke;
1155121107Sjeff#endif
1156109864Sjeff
1157109864Sjeff	kg = td->td_ksegrp;
1158109864Sjeff
1159109864Sjeff	if (td->td_priority != kg->kg_user_pri) {
1160109864Sjeff		mtx_lock_spin(&sched_lock);
1161109864Sjeff		td->td_priority = kg->kg_user_pri;
1162121107Sjeff		/*
1163121107Sjeff		 * This optimization is temporarily disabled because it
1164121107Sjeff		 * breaks priority propagation.
1165121107Sjeff		 */
1166121107Sjeff#if 0
1167116365Sjeff		kseq = KSEQ_SELF();
1168116365Sjeff		if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
1169117237Sjeff#ifdef SMP
1170117237Sjeff		    kseq->ksq_load > kseq->ksq_cpus &&
1171117237Sjeff#else
1172116365Sjeff		    kseq->ksq_load > 1 &&
1173117237Sjeff#endif
1174117326Sjeff		    (ke = kseq_choose(kseq, 0)) != NULL &&
1175116365Sjeff		    ke->ke_thread->td_priority < td->td_priority)
1176121107Sjeff#endif
1177116365Sjeff			curthread->td_flags |= TDF_NEEDRESCHED;
1178109864Sjeff		mtx_unlock_spin(&sched_lock);
1179109864Sjeff	}
1180109864Sjeff}
1181109864Sjeff
1182109864Sjeffstruct kse *
1183109970Sjeffsched_choose(void)
1184109970Sjeff{
1185110028Sjeff	struct kseq *kseq;
1186109970Sjeff	struct kse *ke;
1187109970Sjeff
1188115998Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1189113357Sjeff#ifdef SMP
1190112966Sjeffretry:
1191113357Sjeff#endif
1192113370Sjeff	kseq = KSEQ_SELF();
1193117326Sjeff	ke = kseq_choose(kseq, 0);
1194109864Sjeff	if (ke) {
1195113357Sjeff		runq_remove(ke->ke_runq, ke);
1196109864Sjeff		ke->ke_state = KES_THREAD;
1197112966Sjeff
1198113357Sjeff		if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1199113357Sjeff			CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1200113357Sjeff			    ke, ke->ke_runq, ke->ke_slice,
1201113357Sjeff			    ke->ke_thread->td_priority);
1202113357Sjeff		}
1203113357Sjeff		return (ke);
1204109864Sjeff	}
1205109864Sjeff
1206109970Sjeff#ifdef SMP
1207113370Sjeff	if (smp_started) {
1208109970Sjeff		/*
1209109970Sjeff		 * Find the cpu with the highest load and steal one proc.
1210109970Sjeff		 */
1211113370Sjeff		if ((kseq = kseq_load_highest()) == NULL)
1212113370Sjeff			return (NULL);
1213113370Sjeff
1214113370Sjeff		/*
1215113370Sjeff		 * Remove this kse from this kseq and runq and then requeue
1216113370Sjeff		 * on the current processor.  Then we will dequeue it
1217113370Sjeff		 * normally above.
1218113370Sjeff		 */
1219116069Sjeff		kseq_move(kseq, PCPU_GET(cpuid));
1220113370Sjeff		goto retry;
1221109970Sjeff	}
1222109970Sjeff#endif
1223113357Sjeff
1224113357Sjeff	return (NULL);
1225109864Sjeff}
1226109864Sjeff
1227109864Sjeffvoid
1228109864Sjeffsched_add(struct kse *ke)
1229109864Sjeff{
1230110267Sjeff	struct kseq *kseq;
1231113357Sjeff	struct ksegrp *kg;
1232109864Sjeff
1233109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1234110267Sjeff	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
1235109864Sjeff	KASSERT((ke->ke_thread->td_kse != NULL),
1236110267Sjeff	    ("sched_add: No KSE on thread"));
1237109864Sjeff	KASSERT(ke->ke_state != KES_ONRUNQ,
1238110267Sjeff	    ("sched_add: kse %p (%s) already in run queue", ke,
1239109864Sjeff	    ke->ke_proc->p_comm));
1240109864Sjeff	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1241110267Sjeff	    ("sched_add: process swapped out"));
1242113387Sjeff	KASSERT(ke->ke_runq == NULL,
1243113387Sjeff	    ("sched_add: KSE %p is still assigned to a run queue", ke));
1244109864Sjeff
1245113357Sjeff	kg = ke->ke_ksegrp;
1246113357Sjeff
1247113386Sjeff	switch (PRI_BASE(kg->kg_pri_class)) {
1248112994Sjeff	case PRI_ITHD:
1249112994Sjeff	case PRI_REALTIME:
1250112994Sjeff		kseq = KSEQ_SELF();
1251113357Sjeff		ke->ke_runq = kseq->ksq_curr;
1252113357Sjeff		ke->ke_slice = SCHED_SLICE_MAX;
1253113660Sjeff		ke->ke_cpu = PCPU_GET(cpuid);
1254112994Sjeff		break;
1255112994Sjeff	case PRI_TIMESHARE:
1256113357Sjeff		kseq = KSEQ_CPU(ke->ke_cpu);
1257113387Sjeff		if (SCHED_CURR(kg, ke))
1258113387Sjeff			ke->ke_runq = kseq->ksq_curr;
1259113387Sjeff		else
1260113387Sjeff			ke->ke_runq = kseq->ksq_next;
1261113357Sjeff		break;
1262112994Sjeff	case PRI_IDLE:
1263111789Sjeff		kseq = KSEQ_CPU(ke->ke_cpu);
1264113357Sjeff		/*
1265113357Sjeff		 * This is for priority prop.
1266113357Sjeff		 */
1267116365Sjeff		if (ke->ke_thread->td_priority > PRI_MIN_IDLE)
1268113357Sjeff			ke->ke_runq = kseq->ksq_curr;
1269113357Sjeff		else
1270113357Sjeff			ke->ke_runq = &kseq->ksq_idle;
1271113357Sjeff		ke->ke_slice = SCHED_SLICE_MIN;
1272112994Sjeff		break;
1273113357Sjeff	default:
1274113357Sjeff		panic("Unknown pri class.\n");
1275113357Sjeff		break;
1276112994Sjeff	}
1277109864Sjeff
1278109864Sjeff	ke->ke_ksegrp->kg_runq_kses++;
1279109864Sjeff	ke->ke_state = KES_ONRUNQ;
1280109864Sjeff
1281113357Sjeff	runq_add(ke->ke_runq, ke);
1282113387Sjeff	kseq_add(kseq, ke);
1283109864Sjeff}
1284109864Sjeff
1285109864Sjeffvoid
1286109864Sjeffsched_rem(struct kse *ke)
1287109864Sjeff{
1288113357Sjeff	struct kseq *kseq;
1289113357Sjeff
1290109864Sjeff	mtx_assert(&sched_lock, MA_OWNED);
1291113387Sjeff	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
1292109864Sjeff
1293109864Sjeff	ke->ke_state = KES_THREAD;
1294109864Sjeff	ke->ke_ksegrp->kg_runq_kses--;
1295113357Sjeff	kseq = KSEQ_CPU(ke->ke_cpu);
1296113357Sjeff	runq_remove(ke->ke_runq, ke);
1297113357Sjeff	kseq_rem(kseq, ke);
1298109864Sjeff}
1299109864Sjeff
1300109864Sjefffixpt_t
1301109864Sjeffsched_pctcpu(struct kse *ke)
1302109864Sjeff{
1303109864Sjeff	fixpt_t pctcpu;
1304109864Sjeff
1305109864Sjeff	pctcpu = 0;
1306109864Sjeff
1307115998Sjeff	mtx_lock_spin(&sched_lock);
1308109864Sjeff	if (ke->ke_ticks) {
1309109864Sjeff		int rtick;
1310109864Sjeff
1311116365Sjeff		/*
1312116365Sjeff		 * Don't update more frequently than twice a second.  Allowing
1313116365Sjeff		 * this causes the cpu usage to decay away too quickly due to
1314116365Sjeff		 * rounding errors.
1315116365Sjeff		 */
1316116365Sjeff		if (ke->ke_ltick < (ticks - (hz / 2)))
1317116365Sjeff			sched_pctcpu_update(ke);
1318109864Sjeff		/* How many rtick per second ? */
1319116365Sjeff		rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1320110226Sscottl		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1321109864Sjeff	}
1322109864Sjeff
1323109864Sjeff	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1324113865Sjhb	mtx_unlock_spin(&sched_lock);
1325109864Sjeff
1326109864Sjeff	return (pctcpu);
1327109864Sjeff}
1328109864Sjeff
1329109864Sjeffint
1330109864Sjeffsched_sizeof_kse(void)
1331109864Sjeff{
1332109864Sjeff	return (sizeof(struct kse) + sizeof(struct ke_sched));
1333109864Sjeff}
1334109864Sjeff
1335109864Sjeffint
1336109864Sjeffsched_sizeof_ksegrp(void)
1337109864Sjeff{
1338109864Sjeff	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1339109864Sjeff}
1340109864Sjeff
1341109864Sjeffint
1342109864Sjeffsched_sizeof_proc(void)
1343109864Sjeff{
1344109864Sjeff	return (sizeof(struct proc));
1345109864Sjeff}
1346109864Sjeff
1347109864Sjeffint
1348109864Sjeffsched_sizeof_thread(void)
1349109864Sjeff{
1350109864Sjeff	return (sizeof(struct thread) + sizeof(struct td_sched));
1351109864Sjeff}
1352