kern_timeout.c revision 278693
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	From: @(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/10/sys/kern/kern_timeout.c 278693 2015-02-13 18:45:44Z sbruno $");
39
40#include "opt_callout_profiling.h"
41#include "opt_kdtrace.h"
42#if defined(__arm__)
43#include "opt_timer.h"
44#endif
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/bus.h>
49#include <sys/callout.h>
50#include <sys/file.h>
51#include <sys/interrupt.h>
52#include <sys/kernel.h>
53#include <sys/ktr.h>
54#include <sys/lock.h>
55#include <sys/malloc.h>
56#include <sys/mutex.h>
57#include <sys/proc.h>
58#include <sys/sdt.h>
59#include <sys/sleepqueue.h>
60#include <sys/sysctl.h>
61#include <sys/smp.h>
62
63#ifdef SMP
64#include <machine/cpu.h>
65#endif
66
67#ifndef NO_EVENTTIMERS
68DPCPU_DECLARE(sbintime_t, hardclocktime);
69#endif
70
71SDT_PROVIDER_DEFINE(callout_execute);
72SDT_PROBE_DEFINE1(callout_execute, kernel, , callout__start,
73    "struct callout *");
74SDT_PROBE_DEFINE1(callout_execute, kernel, , callout__end,
75    "struct callout *");
76
77#ifdef CALLOUT_PROFILING
78static int avg_depth;
79SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
80    "Average number of items examined per softclock call. Units = 1/1000");
81static int avg_gcalls;
82SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
83    "Average number of Giant callouts made per softclock call. Units = 1/1000");
84static int avg_lockcalls;
85SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
86    "Average number of lock callouts made per softclock call. Units = 1/1000");
87static int avg_mpcalls;
88SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
89    "Average number of MP callouts made per softclock call. Units = 1/1000");
90static int avg_depth_dir;
91SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
92    "Average number of direct callouts examined per callout_process call. "
93    "Units = 1/1000");
94static int avg_lockcalls_dir;
95SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
96    &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
97    "callout_process call. Units = 1/1000");
98static int avg_mpcalls_dir;
99SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
100    0, "Average number of MP direct callouts made per callout_process call. "
101    "Units = 1/1000");
102#endif
103
104static int ncallout;
105SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN, &ncallout, 0,
106    "Number of entries in callwheel and size of timeout() preallocation");
107
108/*
109 * TODO:
110 *	allocate more timeout table slots when table overflows.
111 */
112u_int callwheelsize, callwheelmask;
113
114/*
115 * The callout cpu exec entities represent informations necessary for
116 * describing the state of callouts currently running on the CPU and the ones
117 * necessary for migrating callouts to the new callout cpu. In particular,
118 * the first entry of the array cc_exec_entity holds informations for callout
119 * running in SWI thread context, while the second one holds informations
120 * for callout running directly from hardware interrupt context.
121 * The cached informations are very important for deferring migration when
122 * the migrating callout is already running.
123 */
124struct cc_exec {
125	struct callout		*cc_next;
126	struct callout		*cc_curr;
127#ifdef SMP
128	void			(*ce_migration_func)(void *);
129	void			*ce_migration_arg;
130	int			ce_migration_cpu;
131	sbintime_t		ce_migration_time;
132	sbintime_t		ce_migration_prec;
133#endif
134	bool			cc_cancel;
135	bool			cc_waiting;
136};
137
138/*
139 * There is one struct callout_cpu per cpu, holding all relevant
140 * state for the callout processing thread on the individual CPU.
141 */
142struct callout_cpu {
143	struct mtx_padalign	cc_lock;
144	struct cc_exec 		cc_exec_entity[2];
145	struct callout		*cc_callout;
146	struct callout_list	*cc_callwheel;
147	struct callout_tailq	cc_expireq;
148	struct callout_slist	cc_callfree;
149	sbintime_t		cc_firstevent;
150	sbintime_t		cc_lastscan;
151	void			*cc_cookie;
152	u_int			cc_bucket;
153};
154
155#define	cc_exec_curr		cc_exec_entity[0].cc_curr
156#define	cc_exec_next		cc_exec_entity[0].cc_next
157#define	cc_exec_cancel		cc_exec_entity[0].cc_cancel
158#define	cc_exec_waiting		cc_exec_entity[0].cc_waiting
159#define	cc_exec_curr_dir	cc_exec_entity[1].cc_curr
160#define	cc_exec_next_dir	cc_exec_entity[1].cc_next
161#define	cc_exec_cancel_dir	cc_exec_entity[1].cc_cancel
162#define	cc_exec_waiting_dir	cc_exec_entity[1].cc_waiting
163
164#ifdef SMP
165#define	cc_migration_func	cc_exec_entity[0].ce_migration_func
166#define	cc_migration_arg	cc_exec_entity[0].ce_migration_arg
167#define	cc_migration_cpu	cc_exec_entity[0].ce_migration_cpu
168#define	cc_migration_time	cc_exec_entity[0].ce_migration_time
169#define	cc_migration_prec	cc_exec_entity[0].ce_migration_prec
170#define	cc_migration_func_dir	cc_exec_entity[1].ce_migration_func
171#define	cc_migration_arg_dir	cc_exec_entity[1].ce_migration_arg
172#define	cc_migration_cpu_dir	cc_exec_entity[1].ce_migration_cpu
173#define	cc_migration_time_dir	cc_exec_entity[1].ce_migration_time
174#define	cc_migration_prec_dir	cc_exec_entity[1].ce_migration_prec
175
176struct callout_cpu cc_cpu[MAXCPU];
177#define	CPUBLOCK	MAXCPU
178#define	CC_CPU(cpu)	(&cc_cpu[(cpu)])
179#define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
180#else
181struct callout_cpu cc_cpu;
182#define	CC_CPU(cpu)	&cc_cpu
183#define	CC_SELF()	&cc_cpu
184#endif
185#define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
186#define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
187#define	CC_LOCK_ASSERT(cc)	mtx_assert(&(cc)->cc_lock, MA_OWNED)
188
189static int timeout_cpu;
190
191static void	callout_cpu_init(struct callout_cpu *cc);
192static void	softclock_call_cc(struct callout *c, struct callout_cpu *cc,
193#ifdef CALLOUT_PROFILING
194		    int *mpcalls, int *lockcalls, int *gcalls,
195#endif
196		    int direct);
197
198static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
199
200/**
201 * Locked by cc_lock:
202 *   cc_curr         - If a callout is in progress, it is cc_curr.
203 *                     If cc_curr is non-NULL, threads waiting in
204 *                     callout_drain() will be woken up as soon as the
205 *                     relevant callout completes.
206 *   cc_cancel       - Changing to 1 with both callout_lock and cc_lock held
207 *                     guarantees that the current callout will not run.
208 *                     The softclock() function sets this to 0 before it
209 *                     drops callout_lock to acquire c_lock, and it calls
210 *                     the handler only if curr_cancelled is still 0 after
211 *                     cc_lock is successfully acquired.
212 *   cc_waiting      - If a thread is waiting in callout_drain(), then
213 *                     callout_wait is nonzero.  Set only when
214 *                     cc_curr is non-NULL.
215 */
216
217/*
218 * Resets the execution entity tied to a specific callout cpu.
219 */
220static void
221cc_cce_cleanup(struct callout_cpu *cc, int direct)
222{
223
224	cc->cc_exec_entity[direct].cc_curr = NULL;
225	cc->cc_exec_entity[direct].cc_next = NULL;
226	cc->cc_exec_entity[direct].cc_cancel = false;
227	cc->cc_exec_entity[direct].cc_waiting = false;
228#ifdef SMP
229	cc->cc_exec_entity[direct].ce_migration_cpu = CPUBLOCK;
230	cc->cc_exec_entity[direct].ce_migration_time = 0;
231	cc->cc_exec_entity[direct].ce_migration_prec = 0;
232	cc->cc_exec_entity[direct].ce_migration_func = NULL;
233	cc->cc_exec_entity[direct].ce_migration_arg = NULL;
234#endif
235}
236
237/*
238 * Checks if migration is requested by a specific callout cpu.
239 */
240static int
241cc_cce_migrating(struct callout_cpu *cc, int direct)
242{
243
244#ifdef SMP
245	return (cc->cc_exec_entity[direct].ce_migration_cpu != CPUBLOCK);
246#else
247	return (0);
248#endif
249}
250
251/*
252 * Kernel low level callwheel initialization
253 * called on cpu0 during kernel startup.
254 */
255static void
256callout_callwheel_init(void *dummy)
257{
258	struct callout_cpu *cc;
259
260	/*
261	 * Calculate the size of the callout wheel and the preallocated
262	 * timeout() structures.
263	 * XXX: Clip callout to result of previous function of maxusers
264	 * maximum 384.  This is still huge, but acceptable.
265	 */
266	ncallout = imin(16 + maxproc + maxfiles, 18508);
267	TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
268
269	/*
270	 * Calculate callout wheel size, should be next power of two higher
271	 * than 'ncallout'.
272	 */
273	callwheelsize = 1 << fls(ncallout);
274	callwheelmask = callwheelsize - 1;
275
276	/*
277	 * Only cpu0 handles timeout(9) and receives a preallocation.
278	 *
279	 * XXX: Once all timeout(9) consumers are converted this can
280	 * be removed.
281	 */
282	timeout_cpu = PCPU_GET(cpuid);
283	cc = CC_CPU(timeout_cpu);
284	cc->cc_callout = malloc(ncallout * sizeof(struct callout),
285	    M_CALLOUT, M_WAITOK);
286	callout_cpu_init(cc);
287}
288SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
289
290/*
291 * Initialize the per-cpu callout structures.
292 */
293static void
294callout_cpu_init(struct callout_cpu *cc)
295{
296	struct callout *c;
297	int i;
298
299	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
300	SLIST_INIT(&cc->cc_callfree);
301	cc->cc_callwheel = malloc(sizeof(struct callout_list) * callwheelsize,
302	    M_CALLOUT, M_WAITOK);
303	for (i = 0; i < callwheelsize; i++)
304		LIST_INIT(&cc->cc_callwheel[i]);
305	TAILQ_INIT(&cc->cc_expireq);
306	cc->cc_firstevent = INT64_MAX;
307	for (i = 0; i < 2; i++)
308		cc_cce_cleanup(cc, i);
309	if (cc->cc_callout == NULL)	/* Only cpu0 handles timeout(9) */
310		return;
311	for (i = 0; i < ncallout; i++) {
312		c = &cc->cc_callout[i];
313		callout_init(c, 0);
314		c->c_flags = CALLOUT_LOCAL_ALLOC;
315		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
316	}
317}
318
319#ifdef SMP
320/*
321 * Switches the cpu tied to a specific callout.
322 * The function expects a locked incoming callout cpu and returns with
323 * locked outcoming callout cpu.
324 */
325static struct callout_cpu *
326callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
327{
328	struct callout_cpu *new_cc;
329
330	MPASS(c != NULL && cc != NULL);
331	CC_LOCK_ASSERT(cc);
332
333	/*
334	 * Avoid interrupts and preemption firing after the callout cpu
335	 * is blocked in order to avoid deadlocks as the new thread
336	 * may be willing to acquire the callout cpu lock.
337	 */
338	c->c_cpu = CPUBLOCK;
339	spinlock_enter();
340	CC_UNLOCK(cc);
341	new_cc = CC_CPU(new_cpu);
342	CC_LOCK(new_cc);
343	spinlock_exit();
344	c->c_cpu = new_cpu;
345	return (new_cc);
346}
347#endif
348
349/*
350 * Start standard softclock thread.
351 */
352static void
353start_softclock(void *dummy)
354{
355	struct callout_cpu *cc;
356#ifdef SMP
357	int cpu;
358#endif
359
360	cc = CC_CPU(timeout_cpu);
361	if (swi_add(&clk_intr_event, "clock", softclock, cc, SWI_CLOCK,
362	    INTR_MPSAFE, &cc->cc_cookie))
363		panic("died while creating standard software ithreads");
364#ifdef SMP
365	CPU_FOREACH(cpu) {
366		if (cpu == timeout_cpu)
367			continue;
368		cc = CC_CPU(cpu);
369		cc->cc_callout = NULL;	/* Only cpu0 handles timeout(9). */
370		callout_cpu_init(cc);
371		if (swi_add(NULL, "clock", softclock, cc, SWI_CLOCK,
372		    INTR_MPSAFE, &cc->cc_cookie))
373			panic("died while creating standard software ithreads");
374	}
375#endif
376}
377SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
378
379#define	CC_HASH_SHIFT	8
380
381static inline u_int
382callout_hash(sbintime_t sbt)
383{
384
385	return (sbt >> (32 - CC_HASH_SHIFT));
386}
387
388static inline u_int
389callout_get_bucket(sbintime_t sbt)
390{
391
392	return (callout_hash(sbt) & callwheelmask);
393}
394
395void
396callout_process(sbintime_t now)
397{
398	struct callout *tmp, *tmpn;
399	struct callout_cpu *cc;
400	struct callout_list *sc;
401	sbintime_t first, last, max, tmp_max;
402	uint32_t lookahead;
403	u_int firstb, lastb, nowb;
404#ifdef CALLOUT_PROFILING
405	int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
406#endif
407
408	cc = CC_SELF();
409	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
410
411	/* Compute the buckets of the last scan and present times. */
412	firstb = callout_hash(cc->cc_lastscan);
413	cc->cc_lastscan = now;
414	nowb = callout_hash(now);
415
416	/* Compute the last bucket and minimum time of the bucket after it. */
417	if (nowb == firstb)
418		lookahead = (SBT_1S / 16);
419	else if (nowb - firstb == 1)
420		lookahead = (SBT_1S / 8);
421	else
422		lookahead = (SBT_1S / 2);
423	first = last = now;
424	first += (lookahead / 2);
425	last += lookahead;
426	last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
427	lastb = callout_hash(last) - 1;
428	max = last;
429
430	/*
431	 * Check if we wrapped around the entire wheel from the last scan.
432	 * In case, we need to scan entirely the wheel for pending callouts.
433	 */
434	if (lastb - firstb >= callwheelsize) {
435		lastb = firstb + callwheelsize - 1;
436		if (nowb - firstb >= callwheelsize)
437			nowb = lastb;
438	}
439
440	/* Iterate callwheel from firstb to nowb and then up to lastb. */
441	do {
442		sc = &cc->cc_callwheel[firstb & callwheelmask];
443		tmp = LIST_FIRST(sc);
444		while (tmp != NULL) {
445			/* Run the callout if present time within allowed. */
446			if (tmp->c_time <= now) {
447				/*
448				 * Consumer told us the callout may be run
449				 * directly from hardware interrupt context.
450				 */
451				if (tmp->c_flags & CALLOUT_DIRECT) {
452#ifdef CALLOUT_PROFILING
453					++depth_dir;
454#endif
455					cc->cc_exec_next_dir =
456					    LIST_NEXT(tmp, c_links.le);
457					cc->cc_bucket = firstb & callwheelmask;
458					LIST_REMOVE(tmp, c_links.le);
459					softclock_call_cc(tmp, cc,
460#ifdef CALLOUT_PROFILING
461					    &mpcalls_dir, &lockcalls_dir, NULL,
462#endif
463					    1);
464					tmp = cc->cc_exec_next_dir;
465				} else {
466					tmpn = LIST_NEXT(tmp, c_links.le);
467					LIST_REMOVE(tmp, c_links.le);
468					TAILQ_INSERT_TAIL(&cc->cc_expireq,
469					    tmp, c_links.tqe);
470					tmp->c_flags |= CALLOUT_PROCESSED;
471					tmp = tmpn;
472				}
473				continue;
474			}
475			/* Skip events from distant future. */
476			if (tmp->c_time >= max)
477				goto next;
478			/*
479			 * Event minimal time is bigger than present maximal
480			 * time, so it cannot be aggregated.
481			 */
482			if (tmp->c_time > last) {
483				lastb = nowb;
484				goto next;
485			}
486			/* Update first and last time, respecting this event. */
487			if (tmp->c_time < first)
488				first = tmp->c_time;
489			tmp_max = tmp->c_time + tmp->c_precision;
490			if (tmp_max < last)
491				last = tmp_max;
492next:
493			tmp = LIST_NEXT(tmp, c_links.le);
494		}
495		/* Proceed with the next bucket. */
496		firstb++;
497		/*
498		 * Stop if we looked after present time and found
499		 * some event we can't execute at now.
500		 * Stop if we looked far enough into the future.
501		 */
502	} while (((int)(firstb - lastb)) <= 0);
503	cc->cc_firstevent = last;
504#ifndef NO_EVENTTIMERS
505	cpu_new_callout(curcpu, last, first);
506#endif
507#ifdef CALLOUT_PROFILING
508	avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
509	avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
510	avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
511#endif
512	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
513	/*
514	 * swi_sched acquires the thread lock, so we don't want to call it
515	 * with cc_lock held; incorrect locking order.
516	 */
517	if (!TAILQ_EMPTY(&cc->cc_expireq))
518		swi_sched(cc->cc_cookie, 0);
519}
520
521static struct callout_cpu *
522callout_lock(struct callout *c)
523{
524	struct callout_cpu *cc;
525	int cpu;
526
527	for (;;) {
528		cpu = c->c_cpu;
529#ifdef SMP
530		if (cpu == CPUBLOCK) {
531			while (c->c_cpu == CPUBLOCK)
532				cpu_spinwait();
533			continue;
534		}
535#endif
536		cc = CC_CPU(cpu);
537		CC_LOCK(cc);
538		if (cpu == c->c_cpu)
539			break;
540		CC_UNLOCK(cc);
541	}
542	return (cc);
543}
544
545static void
546callout_cc_add(struct callout *c, struct callout_cpu *cc,
547    sbintime_t sbt, sbintime_t precision, void (*func)(void *),
548    void *arg, int cpu, int flags)
549{
550	int bucket;
551
552	CC_LOCK_ASSERT(cc);
553	if (sbt < cc->cc_lastscan)
554		sbt = cc->cc_lastscan;
555	c->c_arg = arg;
556	c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
557	if (flags & C_DIRECT_EXEC)
558		c->c_flags |= CALLOUT_DIRECT;
559	c->c_flags &= ~CALLOUT_PROCESSED;
560	c->c_func = func;
561	c->c_time = sbt;
562	c->c_precision = precision;
563	bucket = callout_get_bucket(c->c_time);
564	CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
565	    c, (int)(c->c_precision >> 32),
566	    (u_int)(c->c_precision & 0xffffffff));
567	LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
568	if (cc->cc_bucket == bucket)
569		cc->cc_exec_next_dir = c;
570#ifndef NO_EVENTTIMERS
571	/*
572	 * Inform the eventtimers(4) subsystem there's a new callout
573	 * that has been inserted, but only if really required.
574	 */
575	if (INT64_MAX - c->c_time < c->c_precision)
576		c->c_precision = INT64_MAX - c->c_time;
577	sbt = c->c_time + c->c_precision;
578	if (sbt < cc->cc_firstevent) {
579		cc->cc_firstevent = sbt;
580		cpu_new_callout(cpu, sbt, c->c_time);
581	}
582#endif
583}
584
585static void
586callout_cc_del(struct callout *c, struct callout_cpu *cc)
587{
588
589	if ((c->c_flags & CALLOUT_LOCAL_ALLOC) == 0)
590		return;
591	c->c_func = NULL;
592	SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
593}
594
595static void
596softclock_call_cc(struct callout *c, struct callout_cpu *cc,
597#ifdef CALLOUT_PROFILING
598    int *mpcalls, int *lockcalls, int *gcalls,
599#endif
600    int direct)
601{
602	struct rm_priotracker tracker;
603	void (*c_func)(void *);
604	void *c_arg;
605	struct lock_class *class;
606	struct lock_object *c_lock;
607	uintptr_t lock_status;
608	int c_flags;
609#ifdef SMP
610	struct callout_cpu *new_cc;
611	void (*new_func)(void *);
612	void *new_arg;
613	int flags, new_cpu;
614	sbintime_t new_prec, new_time;
615#endif
616#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
617	sbintime_t sbt1, sbt2;
618	struct timespec ts2;
619	static sbintime_t maxdt = 2 * SBT_1MS;	/* 2 msec */
620	static timeout_t *lastfunc;
621#endif
622
623	KASSERT((c->c_flags & (CALLOUT_PENDING | CALLOUT_ACTIVE)) ==
624	    (CALLOUT_PENDING | CALLOUT_ACTIVE),
625	    ("softclock_call_cc: pend|act %p %x", c, c->c_flags));
626	class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
627	lock_status = 0;
628	if (c->c_flags & CALLOUT_SHAREDLOCK) {
629		if (class == &lock_class_rm)
630			lock_status = (uintptr_t)&tracker;
631		else
632			lock_status = 1;
633	}
634	c_lock = c->c_lock;
635	c_func = c->c_func;
636	c_arg = c->c_arg;
637	c_flags = c->c_flags;
638	if (c->c_flags & CALLOUT_LOCAL_ALLOC)
639		c->c_flags = CALLOUT_LOCAL_ALLOC;
640	else
641		c->c_flags &= ~CALLOUT_PENDING;
642	cc->cc_exec_entity[direct].cc_curr = c;
643	cc->cc_exec_entity[direct].cc_cancel = false;
644	CC_UNLOCK(cc);
645	if (c_lock != NULL) {
646		class->lc_lock(c_lock, lock_status);
647		/*
648		 * The callout may have been cancelled
649		 * while we switched locks.
650		 */
651		if (cc->cc_exec_entity[direct].cc_cancel) {
652			class->lc_unlock(c_lock);
653			goto skip;
654		}
655		/* The callout cannot be stopped now. */
656		cc->cc_exec_entity[direct].cc_cancel = true;
657		if (c_lock == &Giant.lock_object) {
658#ifdef CALLOUT_PROFILING
659			(*gcalls)++;
660#endif
661			CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
662			    c, c_func, c_arg);
663		} else {
664#ifdef CALLOUT_PROFILING
665			(*lockcalls)++;
666#endif
667			CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
668			    c, c_func, c_arg);
669		}
670	} else {
671#ifdef CALLOUT_PROFILING
672		(*mpcalls)++;
673#endif
674		CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
675		    c, c_func, c_arg);
676	}
677#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
678	sbt1 = sbinuptime();
679#endif
680	THREAD_NO_SLEEPING();
681	SDT_PROBE(callout_execute, kernel, , callout__start, c, 0, 0, 0, 0);
682	c_func(c_arg);
683	SDT_PROBE(callout_execute, kernel, , callout__end, c, 0, 0, 0, 0);
684	THREAD_SLEEPING_OK();
685#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
686	sbt2 = sbinuptime();
687	sbt2 -= sbt1;
688	if (sbt2 > maxdt) {
689		if (lastfunc != c_func || sbt2 > maxdt * 2) {
690			ts2 = sbttots(sbt2);
691			printf(
692		"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
693			    c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
694		}
695		maxdt = sbt2;
696		lastfunc = c_func;
697	}
698#endif
699	CTR1(KTR_CALLOUT, "callout %p finished", c);
700	if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0)
701		class->lc_unlock(c_lock);
702skip:
703	CC_LOCK(cc);
704	KASSERT(cc->cc_exec_entity[direct].cc_curr == c, ("mishandled cc_curr"));
705	cc->cc_exec_entity[direct].cc_curr = NULL;
706	if (cc->cc_exec_entity[direct].cc_waiting) {
707		/*
708		 * There is someone waiting for the
709		 * callout to complete.
710		 * If the callout was scheduled for
711		 * migration just cancel it.
712		 */
713		if (cc_cce_migrating(cc, direct)) {
714			cc_cce_cleanup(cc, direct);
715
716			/*
717			 * It should be assert here that the callout is not
718			 * destroyed but that is not easy.
719			 */
720			c->c_flags &= ~CALLOUT_DFRMIGRATION;
721		}
722		cc->cc_exec_entity[direct].cc_waiting = false;
723		CC_UNLOCK(cc);
724		wakeup(&cc->cc_exec_entity[direct].cc_waiting);
725		CC_LOCK(cc);
726	} else if (cc_cce_migrating(cc, direct)) {
727		KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0,
728		    ("Migrating legacy callout %p", c));
729#ifdef SMP
730		/*
731		 * If the callout was scheduled for
732		 * migration just perform it now.
733		 */
734		new_cpu = cc->cc_exec_entity[direct].ce_migration_cpu;
735		new_time = cc->cc_exec_entity[direct].ce_migration_time;
736		new_prec = cc->cc_exec_entity[direct].ce_migration_prec;
737		new_func = cc->cc_exec_entity[direct].ce_migration_func;
738		new_arg = cc->cc_exec_entity[direct].ce_migration_arg;
739		cc_cce_cleanup(cc, direct);
740
741		/*
742		 * It should be assert here that the callout is not destroyed
743		 * but that is not easy.
744		 *
745		 * As first thing, handle deferred callout stops.
746		 */
747		if ((c->c_flags & CALLOUT_DFRMIGRATION) == 0) {
748			CTR3(KTR_CALLOUT,
749			     "deferred cancelled %p func %p arg %p",
750			     c, new_func, new_arg);
751			callout_cc_del(c, cc);
752			return;
753		}
754		c->c_flags &= ~CALLOUT_DFRMIGRATION;
755
756		new_cc = callout_cpu_switch(c, cc, new_cpu);
757		flags = (direct) ? C_DIRECT_EXEC : 0;
758		callout_cc_add(c, new_cc, new_time, new_prec, new_func,
759		    new_arg, new_cpu, flags);
760		CC_UNLOCK(new_cc);
761		CC_LOCK(cc);
762#else
763		panic("migration should not happen");
764#endif
765	}
766	/*
767	 * If the current callout is locally allocated (from
768	 * timeout(9)) then put it on the freelist.
769	 *
770	 * Note: we need to check the cached copy of c_flags because
771	 * if it was not local, then it's not safe to deref the
772	 * callout pointer.
773	 */
774	KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0 ||
775	    c->c_flags == CALLOUT_LOCAL_ALLOC,
776	    ("corrupted callout"));
777	if (c_flags & CALLOUT_LOCAL_ALLOC)
778		callout_cc_del(c, cc);
779}
780
781/*
782 * The callout mechanism is based on the work of Adam M. Costello and
783 * George Varghese, published in a technical report entitled "Redesigning
784 * the BSD Callout and Timer Facilities" and modified slightly for inclusion
785 * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
786 * used in this implementation was published by G. Varghese and T. Lauck in
787 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
788 * the Efficient Implementation of a Timer Facility" in the Proceedings of
789 * the 11th ACM Annual Symposium on Operating Systems Principles,
790 * Austin, Texas Nov 1987.
791 */
792
793/*
794 * Software (low priority) clock interrupt.
795 * Run periodic events from timeout queue.
796 */
797void
798softclock(void *arg)
799{
800	struct callout_cpu *cc;
801	struct callout *c;
802#ifdef CALLOUT_PROFILING
803	int depth = 0, gcalls = 0, lockcalls = 0, mpcalls = 0;
804#endif
805
806	cc = (struct callout_cpu *)arg;
807	CC_LOCK(cc);
808	while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
809		TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
810		softclock_call_cc(c, cc,
811#ifdef CALLOUT_PROFILING
812		    &mpcalls, &lockcalls, &gcalls,
813#endif
814		    0);
815#ifdef CALLOUT_PROFILING
816		++depth;
817#endif
818	}
819#ifdef CALLOUT_PROFILING
820	avg_depth += (depth * 1000 - avg_depth) >> 8;
821	avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
822	avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
823	avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
824#endif
825	CC_UNLOCK(cc);
826}
827
828/*
829 * timeout --
830 *	Execute a function after a specified length of time.
831 *
832 * untimeout --
833 *	Cancel previous timeout function call.
834 *
835 * callout_handle_init --
836 *	Initialize a handle so that using it with untimeout is benign.
837 *
838 *	See AT&T BCI Driver Reference Manual for specification.  This
839 *	implementation differs from that one in that although an
840 *	identification value is returned from timeout, the original
841 *	arguments to timeout as well as the identifier are used to
842 *	identify entries for untimeout.
843 */
844struct callout_handle
845timeout(ftn, arg, to_ticks)
846	timeout_t *ftn;
847	void *arg;
848	int to_ticks;
849{
850	struct callout_cpu *cc;
851	struct callout *new;
852	struct callout_handle handle;
853
854	cc = CC_CPU(timeout_cpu);
855	CC_LOCK(cc);
856	/* Fill in the next free callout structure. */
857	new = SLIST_FIRST(&cc->cc_callfree);
858	if (new == NULL)
859		/* XXX Attempt to malloc first */
860		panic("timeout table full");
861	SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
862	callout_reset(new, to_ticks, ftn, arg);
863	handle.callout = new;
864	CC_UNLOCK(cc);
865
866	return (handle);
867}
868
869void
870untimeout(ftn, arg, handle)
871	timeout_t *ftn;
872	void *arg;
873	struct callout_handle handle;
874{
875	struct callout_cpu *cc;
876
877	/*
878	 * Check for a handle that was initialized
879	 * by callout_handle_init, but never used
880	 * for a real timeout.
881	 */
882	if (handle.callout == NULL)
883		return;
884
885	cc = callout_lock(handle.callout);
886	if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
887		callout_stop(handle.callout);
888	CC_UNLOCK(cc);
889}
890
891void
892callout_handle_init(struct callout_handle *handle)
893{
894	handle->callout = NULL;
895}
896
897/*
898 * New interface; clients allocate their own callout structures.
899 *
900 * callout_reset() - establish or change a timeout
901 * callout_stop() - disestablish a timeout
902 * callout_init() - initialize a callout structure so that it can
903 *	safely be passed to callout_reset() and callout_stop()
904 *
905 * <sys/callout.h> defines three convenience macros:
906 *
907 * callout_active() - returns truth if callout has not been stopped,
908 *	drained, or deactivated since the last time the callout was
909 *	reset.
910 * callout_pending() - returns truth if callout is still waiting for timeout
911 * callout_deactivate() - marks the callout as having been serviced
912 */
913int
914callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t precision,
915    void (*ftn)(void *), void *arg, int cpu, int flags)
916{
917	sbintime_t to_sbt, pr;
918	struct callout_cpu *cc;
919	int cancelled, direct;
920
921	cancelled = 0;
922	if (flags & C_ABSOLUTE) {
923		to_sbt = sbt;
924	} else {
925		if ((flags & C_HARDCLOCK) && (sbt < tick_sbt))
926			sbt = tick_sbt;
927		if ((flags & C_HARDCLOCK) ||
928#ifdef NO_EVENTTIMERS
929		    sbt >= sbt_timethreshold) {
930			to_sbt = getsbinuptime();
931
932			/* Add safety belt for the case of hz > 1000. */
933			to_sbt += tc_tick_sbt - tick_sbt;
934#else
935		    sbt >= sbt_tickthreshold) {
936			/*
937			 * Obtain the time of the last hardclock() call on
938			 * this CPU directly from the kern_clocksource.c.
939			 * This value is per-CPU, but it is equal for all
940			 * active ones.
941			 */
942#ifdef __LP64__
943			to_sbt = DPCPU_GET(hardclocktime);
944#else
945			spinlock_enter();
946			to_sbt = DPCPU_GET(hardclocktime);
947			spinlock_exit();
948#endif
949#endif
950			if ((flags & C_HARDCLOCK) == 0)
951				to_sbt += tick_sbt;
952		} else
953			to_sbt = sbinuptime();
954		if (INT64_MAX - to_sbt < sbt)
955			to_sbt = INT64_MAX;
956		else
957			to_sbt += sbt;
958		pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
959		    sbt >> C_PRELGET(flags));
960		if (pr > precision)
961			precision = pr;
962	}
963	/*
964	 * Don't allow migration of pre-allocated callouts lest they
965	 * become unbalanced.
966	 */
967	if (c->c_flags & CALLOUT_LOCAL_ALLOC)
968		cpu = c->c_cpu;
969	direct = (c->c_flags & CALLOUT_DIRECT) != 0;
970	KASSERT(!direct || c->c_lock == NULL,
971	    ("%s: direct callout %p has lock", __func__, c));
972	cc = callout_lock(c);
973	if (cc->cc_exec_entity[direct].cc_curr == c) {
974		/*
975		 * We're being asked to reschedule a callout which is
976		 * currently in progress.  If there is a lock then we
977		 * can cancel the callout if it has not really started.
978		 */
979		if (c->c_lock != NULL && !cc->cc_exec_entity[direct].cc_cancel)
980			cancelled = cc->cc_exec_entity[direct].cc_cancel = true;
981		if (cc->cc_exec_entity[direct].cc_waiting) {
982			/*
983			 * Someone has called callout_drain to kill this
984			 * callout.  Don't reschedule.
985			 */
986			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
987			    cancelled ? "cancelled" : "failed to cancel",
988			    c, c->c_func, c->c_arg);
989			CC_UNLOCK(cc);
990			return (cancelled);
991		}
992	}
993	if (c->c_flags & CALLOUT_PENDING) {
994		if ((c->c_flags & CALLOUT_PROCESSED) == 0) {
995			if (cc->cc_exec_next_dir == c)
996				cc->cc_exec_next_dir = LIST_NEXT(c, c_links.le);
997			LIST_REMOVE(c, c_links.le);
998		} else
999			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1000		cancelled = 1;
1001		c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1002	}
1003
1004#ifdef SMP
1005	/*
1006	 * If the callout must migrate try to perform it immediately.
1007	 * If the callout is currently running, just defer the migration
1008	 * to a more appropriate moment.
1009	 */
1010	if (c->c_cpu != cpu) {
1011		if (cc->cc_exec_entity[direct].cc_curr == c) {
1012			cc->cc_exec_entity[direct].ce_migration_cpu = cpu;
1013			cc->cc_exec_entity[direct].ce_migration_time
1014			    = to_sbt;
1015			cc->cc_exec_entity[direct].ce_migration_prec
1016			    = precision;
1017			cc->cc_exec_entity[direct].ce_migration_func = ftn;
1018			cc->cc_exec_entity[direct].ce_migration_arg = arg;
1019			c->c_flags |= CALLOUT_DFRMIGRATION;
1020			CTR6(KTR_CALLOUT,
1021		    "migration of %p func %p arg %p in %d.%08x to %u deferred",
1022			    c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1023			    (u_int)(to_sbt & 0xffffffff), cpu);
1024			CC_UNLOCK(cc);
1025			return (cancelled);
1026		}
1027		cc = callout_cpu_switch(c, cc, cpu);
1028	}
1029#endif
1030
1031	callout_cc_add(c, cc, to_sbt, precision, ftn, arg, cpu, flags);
1032	CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
1033	    cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1034	    (u_int)(to_sbt & 0xffffffff));
1035	CC_UNLOCK(cc);
1036
1037	return (cancelled);
1038}
1039
1040/*
1041 * Common idioms that can be optimized in the future.
1042 */
1043int
1044callout_schedule_on(struct callout *c, int to_ticks, int cpu)
1045{
1046	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
1047}
1048
1049int
1050callout_schedule(struct callout *c, int to_ticks)
1051{
1052	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
1053}
1054
1055int
1056_callout_stop_safe(c, safe)
1057	struct	callout *c;
1058	int	safe;
1059{
1060	struct callout_cpu *cc, *old_cc;
1061	struct lock_class *class;
1062	int direct, sq_locked, use_lock;
1063
1064	/*
1065	 * Some old subsystems don't hold Giant while running a callout_stop(),
1066	 * so just discard this check for the moment.
1067	 */
1068	if (!safe && c->c_lock != NULL) {
1069		if (c->c_lock == &Giant.lock_object)
1070			use_lock = mtx_owned(&Giant);
1071		else {
1072			use_lock = 1;
1073			class = LOCK_CLASS(c->c_lock);
1074			class->lc_assert(c->c_lock, LA_XLOCKED);
1075		}
1076	} else
1077		use_lock = 0;
1078	direct = (c->c_flags & CALLOUT_DIRECT) != 0;
1079	sq_locked = 0;
1080	old_cc = NULL;
1081again:
1082	cc = callout_lock(c);
1083
1084	/*
1085	 * If the callout was migrating while the callout cpu lock was
1086	 * dropped,  just drop the sleepqueue lock and check the states
1087	 * again.
1088	 */
1089	if (sq_locked != 0 && cc != old_cc) {
1090#ifdef SMP
1091		CC_UNLOCK(cc);
1092		sleepq_release(&old_cc->cc_exec_entity[direct].cc_waiting);
1093		sq_locked = 0;
1094		old_cc = NULL;
1095		goto again;
1096#else
1097		panic("migration should not happen");
1098#endif
1099	}
1100
1101	/*
1102	 * If the callout isn't pending, it's not on the queue, so
1103	 * don't attempt to remove it from the queue.  We can try to
1104	 * stop it by other means however.
1105	 */
1106	if (!(c->c_flags & CALLOUT_PENDING)) {
1107		c->c_flags &= ~CALLOUT_ACTIVE;
1108
1109		/*
1110		 * If it wasn't on the queue and it isn't the current
1111		 * callout, then we can't stop it, so just bail.
1112		 */
1113		if (cc->cc_exec_entity[direct].cc_curr != c) {
1114			CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1115			    c, c->c_func, c->c_arg);
1116			CC_UNLOCK(cc);
1117			if (sq_locked)
1118				sleepq_release(
1119				    &cc->cc_exec_entity[direct].cc_waiting);
1120			return (0);
1121		}
1122
1123		if (safe) {
1124			/*
1125			 * The current callout is running (or just
1126			 * about to run) and blocking is allowed, so
1127			 * just wait for the current invocation to
1128			 * finish.
1129			 */
1130			while (cc->cc_exec_entity[direct].cc_curr == c) {
1131				/*
1132				 * Use direct calls to sleepqueue interface
1133				 * instead of cv/msleep in order to avoid
1134				 * a LOR between cc_lock and sleepqueue
1135				 * chain spinlocks.  This piece of code
1136				 * emulates a msleep_spin() call actually.
1137				 *
1138				 * If we already have the sleepqueue chain
1139				 * locked, then we can safely block.  If we
1140				 * don't already have it locked, however,
1141				 * we have to drop the cc_lock to lock
1142				 * it.  This opens several races, so we
1143				 * restart at the beginning once we have
1144				 * both locks.  If nothing has changed, then
1145				 * we will end up back here with sq_locked
1146				 * set.
1147				 */
1148				if (!sq_locked) {
1149					CC_UNLOCK(cc);
1150					sleepq_lock(
1151					&cc->cc_exec_entity[direct].cc_waiting);
1152					sq_locked = 1;
1153					old_cc = cc;
1154					goto again;
1155				}
1156
1157				/*
1158				 * Migration could be cancelled here, but
1159				 * as long as it is still not sure when it
1160				 * will be packed up, just let softclock()
1161				 * take care of it.
1162				 */
1163				cc->cc_exec_entity[direct].cc_waiting = true;
1164				DROP_GIANT();
1165				CC_UNLOCK(cc);
1166				sleepq_add(
1167				    &cc->cc_exec_entity[direct].cc_waiting,
1168				    &cc->cc_lock.lock_object, "codrain",
1169				    SLEEPQ_SLEEP, 0);
1170				sleepq_wait(
1171				    &cc->cc_exec_entity[direct].cc_waiting,
1172					     0);
1173				sq_locked = 0;
1174				old_cc = NULL;
1175
1176				/* Reacquire locks previously released. */
1177				PICKUP_GIANT();
1178				CC_LOCK(cc);
1179			}
1180		} else if (use_lock &&
1181			    !cc->cc_exec_entity[direct].cc_cancel) {
1182			/*
1183			 * The current callout is waiting for its
1184			 * lock which we hold.  Cancel the callout
1185			 * and return.  After our caller drops the
1186			 * lock, the callout will be skipped in
1187			 * softclock().
1188			 */
1189			cc->cc_exec_entity[direct].cc_cancel = true;
1190			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1191			    c, c->c_func, c->c_arg);
1192			KASSERT(!cc_cce_migrating(cc, direct),
1193			    ("callout wrongly scheduled for migration"));
1194			CC_UNLOCK(cc);
1195			KASSERT(!sq_locked, ("sleepqueue chain locked"));
1196			return (1);
1197		} else if ((c->c_flags & CALLOUT_DFRMIGRATION) != 0) {
1198			c->c_flags &= ~CALLOUT_DFRMIGRATION;
1199			CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1200			    c, c->c_func, c->c_arg);
1201			CC_UNLOCK(cc);
1202			return (1);
1203		}
1204		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1205		    c, c->c_func, c->c_arg);
1206		CC_UNLOCK(cc);
1207		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1208		return (0);
1209	}
1210	if (sq_locked)
1211		sleepq_release(&cc->cc_exec_entity[direct].cc_waiting);
1212
1213	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1214
1215	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1216	    c, c->c_func, c->c_arg);
1217	if ((c->c_flags & CALLOUT_PROCESSED) == 0) {
1218		if (cc->cc_exec_next_dir == c)
1219			cc->cc_exec_next_dir = LIST_NEXT(c, c_links.le);
1220		LIST_REMOVE(c, c_links.le);
1221	} else
1222		TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1223	callout_cc_del(c, cc);
1224
1225	CC_UNLOCK(cc);
1226	return (1);
1227}
1228
1229void
1230callout_init(c, mpsafe)
1231	struct	callout *c;
1232	int mpsafe;
1233{
1234	bzero(c, sizeof *c);
1235	if (mpsafe) {
1236		c->c_lock = NULL;
1237		c->c_flags = CALLOUT_RETURNUNLOCKED;
1238	} else {
1239		c->c_lock = &Giant.lock_object;
1240		c->c_flags = 0;
1241	}
1242	c->c_cpu = timeout_cpu;
1243}
1244
1245void
1246_callout_init_lock(c, lock, flags)
1247	struct	callout *c;
1248	struct	lock_object *lock;
1249	int flags;
1250{
1251	bzero(c, sizeof *c);
1252	c->c_lock = lock;
1253	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1254	    ("callout_init_lock: bad flags %d", flags));
1255	KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1256	    ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1257	KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
1258	    (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
1259	    __func__));
1260	c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1261	c->c_cpu = timeout_cpu;
1262}
1263
1264#ifdef APM_FIXUP_CALLTODO
1265/*
1266 * Adjust the kernel calltodo timeout list.  This routine is used after
1267 * an APM resume to recalculate the calltodo timer list values with the
1268 * number of hz's we have been sleeping.  The next hardclock() will detect
1269 * that there are fired timers and run softclock() to execute them.
1270 *
1271 * Please note, I have not done an exhaustive analysis of what code this
1272 * might break.  I am motivated to have my select()'s and alarm()'s that
1273 * have expired during suspend firing upon resume so that the applications
1274 * which set the timer can do the maintanence the timer was for as close
1275 * as possible to the originally intended time.  Testing this code for a
1276 * week showed that resuming from a suspend resulted in 22 to 25 timers
1277 * firing, which seemed independant on whether the suspend was 2 hours or
1278 * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
1279 */
1280void
1281adjust_timeout_calltodo(time_change)
1282    struct timeval *time_change;
1283{
1284	register struct callout *p;
1285	unsigned long delta_ticks;
1286
1287	/*
1288	 * How many ticks were we asleep?
1289	 * (stolen from tvtohz()).
1290	 */
1291
1292	/* Don't do anything */
1293	if (time_change->tv_sec < 0)
1294		return;
1295	else if (time_change->tv_sec <= LONG_MAX / 1000000)
1296		delta_ticks = (time_change->tv_sec * 1000000 +
1297			       time_change->tv_usec + (tick - 1)) / tick + 1;
1298	else if (time_change->tv_sec <= LONG_MAX / hz)
1299		delta_ticks = time_change->tv_sec * hz +
1300			      (time_change->tv_usec + (tick - 1)) / tick + 1;
1301	else
1302		delta_ticks = LONG_MAX;
1303
1304	if (delta_ticks > INT_MAX)
1305		delta_ticks = INT_MAX;
1306
1307	/*
1308	 * Now rip through the timer calltodo list looking for timers
1309	 * to expire.
1310	 */
1311
1312	/* don't collide with softclock() */
1313	CC_LOCK(cc);
1314	for (p = calltodo.c_next; p != NULL; p = p->c_next) {
1315		p->c_time -= delta_ticks;
1316
1317		/* Break if the timer had more time on it than delta_ticks */
1318		if (p->c_time > 0)
1319			break;
1320
1321		/* take back the ticks the timer didn't use (p->c_time <= 0) */
1322		delta_ticks = -p->c_time;
1323	}
1324	CC_UNLOCK(cc);
1325
1326	return;
1327}
1328#endif /* APM_FIXUP_CALLTODO */
1329
1330static int
1331flssbt(sbintime_t sbt)
1332{
1333
1334	sbt += (uint64_t)sbt >> 1;
1335	if (sizeof(long) >= sizeof(sbintime_t))
1336		return (flsl(sbt));
1337	if (sbt >= SBT_1S)
1338		return (flsl(((uint64_t)sbt) >> 32) + 32);
1339	return (flsl(sbt));
1340}
1341
1342/*
1343 * Dump immediate statistic snapshot of the scheduled callouts.
1344 */
1345static int
1346sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
1347{
1348	struct callout *tmp;
1349	struct callout_cpu *cc;
1350	struct callout_list *sc;
1351	sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
1352	int ct[64], cpr[64], ccpbk[32];
1353	int error, val, i, count, tcum, pcum, maxc, c, medc;
1354#ifdef SMP
1355	int cpu;
1356#endif
1357
1358	val = 0;
1359	error = sysctl_handle_int(oidp, &val, 0, req);
1360	if (error != 0 || req->newptr == NULL)
1361		return (error);
1362	count = maxc = 0;
1363	st = spr = maxt = maxpr = 0;
1364	bzero(ccpbk, sizeof(ccpbk));
1365	bzero(ct, sizeof(ct));
1366	bzero(cpr, sizeof(cpr));
1367	now = sbinuptime();
1368#ifdef SMP
1369	CPU_FOREACH(cpu) {
1370		cc = CC_CPU(cpu);
1371#else
1372		cc = CC_CPU(timeout_cpu);
1373#endif
1374		CC_LOCK(cc);
1375		for (i = 0; i < callwheelsize; i++) {
1376			sc = &cc->cc_callwheel[i];
1377			c = 0;
1378			LIST_FOREACH(tmp, sc, c_links.le) {
1379				c++;
1380				t = tmp->c_time - now;
1381				if (t < 0)
1382					t = 0;
1383				st += t / SBT_1US;
1384				spr += tmp->c_precision / SBT_1US;
1385				if (t > maxt)
1386					maxt = t;
1387				if (tmp->c_precision > maxpr)
1388					maxpr = tmp->c_precision;
1389				ct[flssbt(t)]++;
1390				cpr[flssbt(tmp->c_precision)]++;
1391			}
1392			if (c > maxc)
1393				maxc = c;
1394			ccpbk[fls(c + c / 2)]++;
1395			count += c;
1396		}
1397		CC_UNLOCK(cc);
1398#ifdef SMP
1399	}
1400#endif
1401
1402	for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
1403		tcum += ct[i];
1404	medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1405	for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
1406		pcum += cpr[i];
1407	medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1408	for (i = 0, c = 0; i < 32 && c < count / 2; i++)
1409		c += ccpbk[i];
1410	medc = (i >= 2) ? (1 << (i - 2)) : 0;
1411
1412	printf("Scheduled callouts statistic snapshot:\n");
1413	printf("  Callouts: %6d  Buckets: %6d*%-3d  Bucket size: 0.%06ds\n",
1414	    count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
1415	printf("  C/Bk: med %5d         avg %6d.%06jd  max %6d\n",
1416	    medc,
1417	    count / callwheelsize / mp_ncpus,
1418	    (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
1419	    maxc);
1420	printf("  Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1421	    medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
1422	    (st / count) / 1000000, (st / count) % 1000000,
1423	    maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
1424	printf("  Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1425	    medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
1426	    (spr / count) / 1000000, (spr / count) % 1000000,
1427	    maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
1428	printf("  Distribution:       \tbuckets\t   time\t   tcum\t"
1429	    "   prec\t   pcum\n");
1430	for (i = 0, tcum = pcum = 0; i < 64; i++) {
1431		if (ct[i] == 0 && cpr[i] == 0)
1432			continue;
1433		t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
1434		tcum += ct[i];
1435		pcum += cpr[i];
1436		printf("  %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
1437		    t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
1438		    i - 1 - (32 - CC_HASH_SHIFT),
1439		    ct[i], tcum, cpr[i], pcum);
1440	}
1441	return (error);
1442}
1443SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
1444    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1445    0, 0, sysctl_kern_callout_stat, "I",
1446    "Dump immediate statistic snapshot of the scheduled callouts");
1447