kern_timeout.c revision 278650
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	From: @(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/10/sys/kern/kern_timeout.c 278650 2015-02-13 00:29:57Z sbruno $");
39
40#include "opt_callout_profiling.h"
41#include "opt_kdtrace.h"
42#if defined(__arm__)
43#include "opt_timer.h"
44#endif
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/bus.h>
49#include <sys/callout.h>
50#include <sys/file.h>
51#include <sys/interrupt.h>
52#include <sys/kernel.h>
53#include <sys/ktr.h>
54#include <sys/lock.h>
55#include <sys/malloc.h>
56#include <sys/mutex.h>
57#include <sys/proc.h>
58#include <sys/sdt.h>
59#include <sys/sleepqueue.h>
60#include <sys/sysctl.h>
61#include <sys/smp.h>
62
63#ifdef SMP
64#include <machine/cpu.h>
65#endif
66
67#ifndef NO_EVENTTIMERS
68DPCPU_DECLARE(sbintime_t, hardclocktime);
69#endif
70
71SDT_PROVIDER_DEFINE(callout_execute);
72SDT_PROBE_DEFINE1(callout_execute, kernel, , callout__start,
73    "struct callout *");
74SDT_PROBE_DEFINE1(callout_execute, kernel, , callout__end,
75    "struct callout *");
76
77#ifdef CALLOUT_PROFILING
78static int avg_depth;
79SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
80    "Average number of items examined per softclock call. Units = 1/1000");
81static int avg_gcalls;
82SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
83    "Average number of Giant callouts made per softclock call. Units = 1/1000");
84static int avg_lockcalls;
85SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
86    "Average number of lock callouts made per softclock call. Units = 1/1000");
87static int avg_mpcalls;
88SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
89    "Average number of MP callouts made per softclock call. Units = 1/1000");
90static int avg_depth_dir;
91SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
92    "Average number of direct callouts examined per callout_process call. "
93    "Units = 1/1000");
94static int avg_lockcalls_dir;
95SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
96    &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
97    "callout_process call. Units = 1/1000");
98static int avg_mpcalls_dir;
99SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
100    0, "Average number of MP direct callouts made per callout_process call. "
101    "Units = 1/1000");
102#endif
103
104static int ncallout;
105SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN, &ncallout, 0,
106    "Number of entries in callwheel and size of timeout() preallocation");
107
108/*
109 * TODO:
110 *	allocate more timeout table slots when table overflows.
111 */
112u_int callwheelsize, callwheelmask;
113
114/*
115 * The callout cpu exec entities represent informations necessary for
116 * describing the state of callouts currently running on the CPU and the ones
117 * necessary for migrating callouts to the new callout cpu. In particular,
118 * the first entry of the array cc_exec_entity holds informations for callout
119 * running in SWI thread context, while the second one holds informations
120 * for callout running directly from hardware interrupt context.
121 * The cached informations are very important for deferring migration when
122 * the migrating callout is already running.
123 */
124struct cc_exec {
125	struct callout		*cc_next;
126	struct callout		*cc_curr;
127#ifdef SMP
128	void			(*ce_migration_func)(void *);
129	void			*ce_migration_arg;
130	int			ce_migration_cpu;
131	sbintime_t		ce_migration_time;
132	sbintime_t		ce_migration_prec;
133#endif
134	bool			cc_cancel;
135	bool			cc_waiting;
136};
137
138/*
139 * There is one struct callout_cpu per cpu, holding all relevant
140 * state for the callout processing thread on the individual CPU.
141 */
142struct callout_cpu {
143	struct mtx_padalign	cc_lock;
144	struct cc_exec 		cc_exec_entity[2];
145	struct callout		*cc_callout;
146	struct callout_list	*cc_callwheel;
147	struct callout_tailq	cc_expireq;
148	struct callout_slist	cc_callfree;
149	sbintime_t		cc_firstevent;
150	sbintime_t		cc_lastscan;
151	void			*cc_cookie;
152	u_int			cc_bucket;
153	char			cc_ktr_event_name[20];
154};
155
156#define	cc_exec_curr		cc_exec_entity[0].cc_curr
157#define	cc_exec_next		cc_exec_entity[0].cc_next
158#define	cc_exec_cancel		cc_exec_entity[0].cc_cancel
159#define	cc_exec_waiting		cc_exec_entity[0].cc_waiting
160#define	cc_exec_curr_dir	cc_exec_entity[1].cc_curr
161#define	cc_exec_next_dir	cc_exec_entity[1].cc_next
162#define	cc_exec_cancel_dir	cc_exec_entity[1].cc_cancel
163#define	cc_exec_waiting_dir	cc_exec_entity[1].cc_waiting
164
165#ifdef SMP
166#define	cc_migration_func	cc_exec_entity[0].ce_migration_func
167#define	cc_migration_arg	cc_exec_entity[0].ce_migration_arg
168#define	cc_migration_cpu	cc_exec_entity[0].ce_migration_cpu
169#define	cc_migration_time	cc_exec_entity[0].ce_migration_time
170#define	cc_migration_prec	cc_exec_entity[0].ce_migration_prec
171#define	cc_migration_func_dir	cc_exec_entity[1].ce_migration_func
172#define	cc_migration_arg_dir	cc_exec_entity[1].ce_migration_arg
173#define	cc_migration_cpu_dir	cc_exec_entity[1].ce_migration_cpu
174#define	cc_migration_time_dir	cc_exec_entity[1].ce_migration_time
175#define	cc_migration_prec_dir	cc_exec_entity[1].ce_migration_prec
176
177struct callout_cpu cc_cpu[MAXCPU];
178#define	CPUBLOCK	MAXCPU
179#define	CC_CPU(cpu)	(&cc_cpu[(cpu)])
180#define	CC_SELF()	CC_CPU(PCPU_GET(cpuid))
181#else
182struct callout_cpu cc_cpu;
183#define	CC_CPU(cpu)	&cc_cpu
184#define	CC_SELF()	&cc_cpu
185#endif
186#define	CC_LOCK(cc)	mtx_lock_spin(&(cc)->cc_lock)
187#define	CC_UNLOCK(cc)	mtx_unlock_spin(&(cc)->cc_lock)
188#define	CC_LOCK_ASSERT(cc)	mtx_assert(&(cc)->cc_lock, MA_OWNED)
189
190static int timeout_cpu;
191
192static void	callout_cpu_init(struct callout_cpu *cc, int cpu);
193static void	softclock_call_cc(struct callout *c, struct callout_cpu *cc,
194#ifdef CALLOUT_PROFILING
195		    int *mpcalls, int *lockcalls, int *gcalls,
196#endif
197		    int direct);
198
199static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
200
201/**
202 * Locked by cc_lock:
203 *   cc_curr         - If a callout is in progress, it is cc_curr.
204 *                     If cc_curr is non-NULL, threads waiting in
205 *                     callout_drain() will be woken up as soon as the
206 *                     relevant callout completes.
207 *   cc_cancel       - Changing to 1 with both callout_lock and cc_lock held
208 *                     guarantees that the current callout will not run.
209 *                     The softclock() function sets this to 0 before it
210 *                     drops callout_lock to acquire c_lock, and it calls
211 *                     the handler only if curr_cancelled is still 0 after
212 *                     cc_lock is successfully acquired.
213 *   cc_waiting      - If a thread is waiting in callout_drain(), then
214 *                     callout_wait is nonzero.  Set only when
215 *                     cc_curr is non-NULL.
216 */
217
218/*
219 * Resets the execution entity tied to a specific callout cpu.
220 */
221static void
222cc_cce_cleanup(struct callout_cpu *cc, int direct)
223{
224
225	cc->cc_exec_entity[direct].cc_curr = NULL;
226	cc->cc_exec_entity[direct].cc_next = NULL;
227	cc->cc_exec_entity[direct].cc_cancel = false;
228	cc->cc_exec_entity[direct].cc_waiting = false;
229#ifdef SMP
230	cc->cc_exec_entity[direct].ce_migration_cpu = CPUBLOCK;
231	cc->cc_exec_entity[direct].ce_migration_time = 0;
232	cc->cc_exec_entity[direct].ce_migration_prec = 0;
233	cc->cc_exec_entity[direct].ce_migration_func = NULL;
234	cc->cc_exec_entity[direct].ce_migration_arg = NULL;
235#endif
236}
237
238/*
239 * Checks if migration is requested by a specific callout cpu.
240 */
241static int
242cc_cce_migrating(struct callout_cpu *cc, int direct)
243{
244
245#ifdef SMP
246	return (cc->cc_exec_entity[direct].ce_migration_cpu != CPUBLOCK);
247#else
248	return (0);
249#endif
250}
251
252/*
253 * Kernel low level callwheel initialization
254 * called on cpu0 during kernel startup.
255 */
256static void
257callout_callwheel_init(void *dummy)
258{
259	struct callout_cpu *cc;
260
261	/*
262	 * Calculate the size of the callout wheel and the preallocated
263	 * timeout() structures.
264	 * XXX: Clip callout to result of previous function of maxusers
265	 * maximum 384.  This is still huge, but acceptable.
266	 */
267	ncallout = imin(16 + maxproc + maxfiles, 18508);
268	TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
269
270	/*
271	 * Calculate callout wheel size, should be next power of two higher
272	 * than 'ncallout'.
273	 */
274	callwheelsize = 1 << fls(ncallout);
275	callwheelmask = callwheelsize - 1;
276
277	/*
278	 * Only cpu0 handles timeout(9) and receives a preallocation.
279	 *
280	 * XXX: Once all timeout(9) consumers are converted this can
281	 * be removed.
282	 */
283	timeout_cpu = PCPU_GET(cpuid);
284	cc = CC_CPU(timeout_cpu);
285	cc->cc_callout = malloc(ncallout * sizeof(struct callout),
286	    M_CALLOUT, M_WAITOK);
287	callout_cpu_init(cc, timeout_cpu);
288}
289SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
290
291/*
292 * Initialize the per-cpu callout structures.
293 */
294static void
295callout_cpu_init(struct callout_cpu *cc, int cpu)
296{
297	struct callout *c;
298	int i;
299
300	mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
301	SLIST_INIT(&cc->cc_callfree);
302	cc->cc_callwheel = malloc(sizeof(struct callout_list) * callwheelsize,
303	    M_CALLOUT, M_WAITOK);
304	for (i = 0; i < callwheelsize; i++)
305		LIST_INIT(&cc->cc_callwheel[i]);
306	TAILQ_INIT(&cc->cc_expireq);
307	cc->cc_firstevent = INT64_MAX;
308	for (i = 0; i < 2; i++)
309		cc_cce_cleanup(cc, i);
310	snprintf(cc->cc_ktr_event_name, sizeof(cc->cc_ktr_event_name),
311	    "callwheel cpu %d", cpu);
312	if (cc->cc_callout == NULL)	/* Only cpu0 handles timeout(9) */
313		return;
314	for (i = 0; i < ncallout; i++) {
315		c = &cc->cc_callout[i];
316		callout_init(c, 0);
317		c->c_flags = CALLOUT_LOCAL_ALLOC;
318		SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
319	}
320}
321
322#ifdef SMP
323/*
324 * Switches the cpu tied to a specific callout.
325 * The function expects a locked incoming callout cpu and returns with
326 * locked outcoming callout cpu.
327 */
328static struct callout_cpu *
329callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
330{
331	struct callout_cpu *new_cc;
332
333	MPASS(c != NULL && cc != NULL);
334	CC_LOCK_ASSERT(cc);
335
336	/*
337	 * Avoid interrupts and preemption firing after the callout cpu
338	 * is blocked in order to avoid deadlocks as the new thread
339	 * may be willing to acquire the callout cpu lock.
340	 */
341	c->c_cpu = CPUBLOCK;
342	spinlock_enter();
343	CC_UNLOCK(cc);
344	new_cc = CC_CPU(new_cpu);
345	CC_LOCK(new_cc);
346	spinlock_exit();
347	c->c_cpu = new_cpu;
348	return (new_cc);
349}
350#endif
351
352/*
353 * Start standard softclock thread.
354 */
355static void
356start_softclock(void *dummy)
357{
358	struct callout_cpu *cc;
359#ifdef SMP
360	int cpu;
361#endif
362
363	cc = CC_CPU(timeout_cpu);
364	if (swi_add(&clk_intr_event, "clock", softclock, cc, SWI_CLOCK,
365	    INTR_MPSAFE, &cc->cc_cookie))
366		panic("died while creating standard software ithreads");
367#ifdef SMP
368	CPU_FOREACH(cpu) {
369		if (cpu == timeout_cpu)
370			continue;
371		cc = CC_CPU(cpu);
372		cc->cc_callout = NULL;	/* Only cpu0 handles timeout(9). */
373		callout_cpu_init(cc, cpu);
374		if (swi_add(NULL, "clock", softclock, cc, SWI_CLOCK,
375		    INTR_MPSAFE, &cc->cc_cookie))
376			panic("died while creating standard software ithreads");
377	}
378#endif
379}
380SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
381
382#define	CC_HASH_SHIFT	8
383
384static inline u_int
385callout_hash(sbintime_t sbt)
386{
387
388	return (sbt >> (32 - CC_HASH_SHIFT));
389}
390
391static inline u_int
392callout_get_bucket(sbintime_t sbt)
393{
394
395	return (callout_hash(sbt) & callwheelmask);
396}
397
398void
399callout_process(sbintime_t now)
400{
401	struct callout *tmp, *tmpn;
402	struct callout_cpu *cc;
403	struct callout_list *sc;
404	sbintime_t first, last, max, tmp_max;
405	uint32_t lookahead;
406	u_int firstb, lastb, nowb;
407#ifdef CALLOUT_PROFILING
408	int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
409#endif
410
411	cc = CC_SELF();
412	mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
413
414	/* Compute the buckets of the last scan and present times. */
415	firstb = callout_hash(cc->cc_lastscan);
416	cc->cc_lastscan = now;
417	nowb = callout_hash(now);
418
419	/* Compute the last bucket and minimum time of the bucket after it. */
420	if (nowb == firstb)
421		lookahead = (SBT_1S / 16);
422	else if (nowb - firstb == 1)
423		lookahead = (SBT_1S / 8);
424	else
425		lookahead = (SBT_1S / 2);
426	first = last = now;
427	first += (lookahead / 2);
428	last += lookahead;
429	last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
430	lastb = callout_hash(last) - 1;
431	max = last;
432
433	/*
434	 * Check if we wrapped around the entire wheel from the last scan.
435	 * In case, we need to scan entirely the wheel for pending callouts.
436	 */
437	if (lastb - firstb >= callwheelsize) {
438		lastb = firstb + callwheelsize - 1;
439		if (nowb - firstb >= callwheelsize)
440			nowb = lastb;
441	}
442
443	/* Iterate callwheel from firstb to nowb and then up to lastb. */
444	do {
445		sc = &cc->cc_callwheel[firstb & callwheelmask];
446		tmp = LIST_FIRST(sc);
447		while (tmp != NULL) {
448			/* Run the callout if present time within allowed. */
449			if (tmp->c_time <= now) {
450				/*
451				 * Consumer told us the callout may be run
452				 * directly from hardware interrupt context.
453				 */
454				if (tmp->c_flags & CALLOUT_DIRECT) {
455#ifdef CALLOUT_PROFILING
456					++depth_dir;
457#endif
458					cc->cc_exec_next_dir =
459					    LIST_NEXT(tmp, c_links.le);
460					cc->cc_bucket = firstb & callwheelmask;
461					LIST_REMOVE(tmp, c_links.le);
462					softclock_call_cc(tmp, cc,
463#ifdef CALLOUT_PROFILING
464					    &mpcalls_dir, &lockcalls_dir, NULL,
465#endif
466					    1);
467					tmp = cc->cc_exec_next_dir;
468				} else {
469					tmpn = LIST_NEXT(tmp, c_links.le);
470					LIST_REMOVE(tmp, c_links.le);
471					TAILQ_INSERT_TAIL(&cc->cc_expireq,
472					    tmp, c_links.tqe);
473					tmp->c_flags |= CALLOUT_PROCESSED;
474					tmp = tmpn;
475				}
476				continue;
477			}
478			/* Skip events from distant future. */
479			if (tmp->c_time >= max)
480				goto next;
481			/*
482			 * Event minimal time is bigger than present maximal
483			 * time, so it cannot be aggregated.
484			 */
485			if (tmp->c_time > last) {
486				lastb = nowb;
487				goto next;
488			}
489			/* Update first and last time, respecting this event. */
490			if (tmp->c_time < first)
491				first = tmp->c_time;
492			tmp_max = tmp->c_time + tmp->c_precision;
493			if (tmp_max < last)
494				last = tmp_max;
495next:
496			tmp = LIST_NEXT(tmp, c_links.le);
497		}
498		/* Proceed with the next bucket. */
499		firstb++;
500		/*
501		 * Stop if we looked after present time and found
502		 * some event we can't execute at now.
503		 * Stop if we looked far enough into the future.
504		 */
505	} while (((int)(firstb - lastb)) <= 0);
506	cc->cc_firstevent = last;
507#ifndef NO_EVENTTIMERS
508	cpu_new_callout(curcpu, last, first);
509#endif
510#ifdef CALLOUT_PROFILING
511	avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
512	avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
513	avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
514#endif
515	mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
516	/*
517	 * swi_sched acquires the thread lock, so we don't want to call it
518	 * with cc_lock held; incorrect locking order.
519	 */
520	if (!TAILQ_EMPTY(&cc->cc_expireq))
521		swi_sched(cc->cc_cookie, 0);
522}
523
524static struct callout_cpu *
525callout_lock(struct callout *c)
526{
527	struct callout_cpu *cc;
528	int cpu;
529
530	for (;;) {
531		cpu = c->c_cpu;
532#ifdef SMP
533		if (cpu == CPUBLOCK) {
534			while (c->c_cpu == CPUBLOCK)
535				cpu_spinwait();
536			continue;
537		}
538#endif
539		cc = CC_CPU(cpu);
540		CC_LOCK(cc);
541		if (cpu == c->c_cpu)
542			break;
543		CC_UNLOCK(cc);
544	}
545	return (cc);
546}
547
548static void
549callout_cc_add(struct callout *c, struct callout_cpu *cc,
550    sbintime_t sbt, sbintime_t precision, void (*func)(void *),
551    void *arg, int cpu, int flags)
552{
553	int bucket;
554
555	CC_LOCK_ASSERT(cc);
556	if (sbt < cc->cc_lastscan)
557		sbt = cc->cc_lastscan;
558	c->c_arg = arg;
559	c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
560	if (flags & C_DIRECT_EXEC)
561		c->c_flags |= CALLOUT_DIRECT;
562	c->c_flags &= ~CALLOUT_PROCESSED;
563	c->c_func = func;
564	c->c_time = sbt;
565	c->c_precision = precision;
566	bucket = callout_get_bucket(c->c_time);
567	CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
568	    c, (int)(c->c_precision >> 32),
569	    (u_int)(c->c_precision & 0xffffffff));
570	LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
571	if (cc->cc_bucket == bucket)
572		cc->cc_exec_next_dir = c;
573#ifndef NO_EVENTTIMERS
574	/*
575	 * Inform the eventtimers(4) subsystem there's a new callout
576	 * that has been inserted, but only if really required.
577	 */
578	if (INT64_MAX - c->c_time < c->c_precision)
579		c->c_precision = INT64_MAX - c->c_time;
580	sbt = c->c_time + c->c_precision;
581	if (sbt < cc->cc_firstevent) {
582		cc->cc_firstevent = sbt;
583		cpu_new_callout(cpu, sbt, c->c_time);
584	}
585#endif
586}
587
588static void
589callout_cc_del(struct callout *c, struct callout_cpu *cc)
590{
591
592	if ((c->c_flags & CALLOUT_LOCAL_ALLOC) == 0)
593		return;
594	c->c_func = NULL;
595	SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
596}
597
598static void
599softclock_call_cc(struct callout *c, struct callout_cpu *cc,
600#ifdef CALLOUT_PROFILING
601    int *mpcalls, int *lockcalls, int *gcalls,
602#endif
603    int direct)
604{
605	struct rm_priotracker tracker;
606	void (*c_func)(void *);
607	void *c_arg;
608	struct lock_class *class;
609	struct lock_object *c_lock;
610	uintptr_t lock_status;
611	int c_flags;
612#ifdef SMP
613	struct callout_cpu *new_cc;
614	void (*new_func)(void *);
615	void *new_arg;
616	int flags, new_cpu;
617	sbintime_t new_prec, new_time;
618#endif
619#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
620	sbintime_t sbt1, sbt2;
621	struct timespec ts2;
622	static sbintime_t maxdt = 2 * SBT_1MS;	/* 2 msec */
623	static timeout_t *lastfunc;
624#endif
625
626	KASSERT((c->c_flags & (CALLOUT_PENDING | CALLOUT_ACTIVE)) ==
627	    (CALLOUT_PENDING | CALLOUT_ACTIVE),
628	    ("softclock_call_cc: pend|act %p %x", c, c->c_flags));
629	class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
630	lock_status = 0;
631	if (c->c_flags & CALLOUT_SHAREDLOCK) {
632		if (class == &lock_class_rm)
633			lock_status = (uintptr_t)&tracker;
634		else
635			lock_status = 1;
636	}
637	c_lock = c->c_lock;
638	c_func = c->c_func;
639	c_arg = c->c_arg;
640	c_flags = c->c_flags;
641	if (c->c_flags & CALLOUT_LOCAL_ALLOC)
642		c->c_flags = CALLOUT_LOCAL_ALLOC;
643	else
644		c->c_flags &= ~CALLOUT_PENDING;
645	cc->cc_exec_entity[direct].cc_curr = c;
646	cc->cc_exec_entity[direct].cc_cancel = false;
647	CC_UNLOCK(cc);
648	if (c_lock != NULL) {
649		class->lc_lock(c_lock, lock_status);
650		/*
651		 * The callout may have been cancelled
652		 * while we switched locks.
653		 */
654		if (cc->cc_exec_entity[direct].cc_cancel) {
655			class->lc_unlock(c_lock);
656			goto skip;
657		}
658		/* The callout cannot be stopped now. */
659		cc->cc_exec_entity[direct].cc_cancel = true;
660		if (c_lock == &Giant.lock_object) {
661#ifdef CALLOUT_PROFILING
662			(*gcalls)++;
663#endif
664			CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
665			    c, c_func, c_arg);
666		} else {
667#ifdef CALLOUT_PROFILING
668			(*lockcalls)++;
669#endif
670			CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
671			    c, c_func, c_arg);
672		}
673	} else {
674#ifdef CALLOUT_PROFILING
675		(*mpcalls)++;
676#endif
677		CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
678		    c, c_func, c_arg);
679	}
680	KTR_STATE3(KTR_SCHED, "callout", cc->cc_ktr_event_name, "running",
681	    "func:%p", c_func, "arg:%p", c_arg, "direct:%d", direct);
682#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
683	sbt1 = sbinuptime();
684#endif
685	THREAD_NO_SLEEPING();
686	SDT_PROBE(callout_execute, kernel, , callout__start, c, 0, 0, 0, 0);
687	c_func(c_arg);
688	SDT_PROBE(callout_execute, kernel, , callout__end, c, 0, 0, 0, 0);
689	THREAD_SLEEPING_OK();
690#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
691	sbt2 = sbinuptime();
692	sbt2 -= sbt1;
693	if (sbt2 > maxdt) {
694		if (lastfunc != c_func || sbt2 > maxdt * 2) {
695			ts2 = sbttots(sbt2);
696			printf(
697		"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
698			    c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
699		}
700		maxdt = sbt2;
701		lastfunc = c_func;
702	}
703#endif
704	KTR_STATE0(KTR_SCHED, "callout", cc->cc_ktr_event_name, "idle");
705	CTR1(KTR_CALLOUT, "callout %p finished", c);
706	if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0)
707		class->lc_unlock(c_lock);
708skip:
709	CC_LOCK(cc);
710	KASSERT(cc->cc_exec_entity[direct].cc_curr == c, ("mishandled cc_curr"));
711	cc->cc_exec_entity[direct].cc_curr = NULL;
712	if (cc->cc_exec_entity[direct].cc_waiting) {
713		/*
714		 * There is someone waiting for the
715		 * callout to complete.
716		 * If the callout was scheduled for
717		 * migration just cancel it.
718		 */
719		if (cc_cce_migrating(cc, direct)) {
720			cc_cce_cleanup(cc, direct);
721
722			/*
723			 * It should be assert here that the callout is not
724			 * destroyed but that is not easy.
725			 */
726			c->c_flags &= ~CALLOUT_DFRMIGRATION;
727		}
728		cc->cc_exec_entity[direct].cc_waiting = false;
729		CC_UNLOCK(cc);
730		wakeup(&cc->cc_exec_entity[direct].cc_waiting);
731		CC_LOCK(cc);
732	} else if (cc_cce_migrating(cc, direct)) {
733		KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0,
734		    ("Migrating legacy callout %p", c));
735#ifdef SMP
736		/*
737		 * If the callout was scheduled for
738		 * migration just perform it now.
739		 */
740		new_cpu = cc->cc_exec_entity[direct].ce_migration_cpu;
741		new_time = cc->cc_exec_entity[direct].ce_migration_time;
742		new_prec = cc->cc_exec_entity[direct].ce_migration_prec;
743		new_func = cc->cc_exec_entity[direct].ce_migration_func;
744		new_arg = cc->cc_exec_entity[direct].ce_migration_arg;
745		cc_cce_cleanup(cc, direct);
746
747		/*
748		 * It should be assert here that the callout is not destroyed
749		 * but that is not easy.
750		 *
751		 * As first thing, handle deferred callout stops.
752		 */
753		if ((c->c_flags & CALLOUT_DFRMIGRATION) == 0) {
754			CTR3(KTR_CALLOUT,
755			     "deferred cancelled %p func %p arg %p",
756			     c, new_func, new_arg);
757			callout_cc_del(c, cc);
758			return;
759		}
760		c->c_flags &= ~CALLOUT_DFRMIGRATION;
761
762		new_cc = callout_cpu_switch(c, cc, new_cpu);
763		flags = (direct) ? C_DIRECT_EXEC : 0;
764		callout_cc_add(c, new_cc, new_time, new_prec, new_func,
765		    new_arg, new_cpu, flags);
766		CC_UNLOCK(new_cc);
767		CC_LOCK(cc);
768#else
769		panic("migration should not happen");
770#endif
771	}
772	/*
773	 * If the current callout is locally allocated (from
774	 * timeout(9)) then put it on the freelist.
775	 *
776	 * Note: we need to check the cached copy of c_flags because
777	 * if it was not local, then it's not safe to deref the
778	 * callout pointer.
779	 */
780	KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0 ||
781	    c->c_flags == CALLOUT_LOCAL_ALLOC,
782	    ("corrupted callout"));
783	if (c_flags & CALLOUT_LOCAL_ALLOC)
784		callout_cc_del(c, cc);
785}
786
787/*
788 * The callout mechanism is based on the work of Adam M. Costello and
789 * George Varghese, published in a technical report entitled "Redesigning
790 * the BSD Callout and Timer Facilities" and modified slightly for inclusion
791 * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
792 * used in this implementation was published by G. Varghese and T. Lauck in
793 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
794 * the Efficient Implementation of a Timer Facility" in the Proceedings of
795 * the 11th ACM Annual Symposium on Operating Systems Principles,
796 * Austin, Texas Nov 1987.
797 */
798
799/*
800 * Software (low priority) clock interrupt.
801 * Run periodic events from timeout queue.
802 */
803void
804softclock(void *arg)
805{
806	struct callout_cpu *cc;
807	struct callout *c;
808#ifdef CALLOUT_PROFILING
809	int depth = 0, gcalls = 0, lockcalls = 0, mpcalls = 0;
810#endif
811
812	cc = (struct callout_cpu *)arg;
813	CC_LOCK(cc);
814	while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
815		TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
816		softclock_call_cc(c, cc,
817#ifdef CALLOUT_PROFILING
818		    &mpcalls, &lockcalls, &gcalls,
819#endif
820		    0);
821#ifdef CALLOUT_PROFILING
822		++depth;
823#endif
824	}
825#ifdef CALLOUT_PROFILING
826	avg_depth += (depth * 1000 - avg_depth) >> 8;
827	avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
828	avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
829	avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
830#endif
831	CC_UNLOCK(cc);
832}
833
834/*
835 * timeout --
836 *	Execute a function after a specified length of time.
837 *
838 * untimeout --
839 *	Cancel previous timeout function call.
840 *
841 * callout_handle_init --
842 *	Initialize a handle so that using it with untimeout is benign.
843 *
844 *	See AT&T BCI Driver Reference Manual for specification.  This
845 *	implementation differs from that one in that although an
846 *	identification value is returned from timeout, the original
847 *	arguments to timeout as well as the identifier are used to
848 *	identify entries for untimeout.
849 */
850struct callout_handle
851timeout(ftn, arg, to_ticks)
852	timeout_t *ftn;
853	void *arg;
854	int to_ticks;
855{
856	struct callout_cpu *cc;
857	struct callout *new;
858	struct callout_handle handle;
859
860	cc = CC_CPU(timeout_cpu);
861	CC_LOCK(cc);
862	/* Fill in the next free callout structure. */
863	new = SLIST_FIRST(&cc->cc_callfree);
864	if (new == NULL)
865		/* XXX Attempt to malloc first */
866		panic("timeout table full");
867	SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
868	callout_reset(new, to_ticks, ftn, arg);
869	handle.callout = new;
870	CC_UNLOCK(cc);
871
872	return (handle);
873}
874
875void
876untimeout(ftn, arg, handle)
877	timeout_t *ftn;
878	void *arg;
879	struct callout_handle handle;
880{
881	struct callout_cpu *cc;
882
883	/*
884	 * Check for a handle that was initialized
885	 * by callout_handle_init, but never used
886	 * for a real timeout.
887	 */
888	if (handle.callout == NULL)
889		return;
890
891	cc = callout_lock(handle.callout);
892	if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
893		callout_stop(handle.callout);
894	CC_UNLOCK(cc);
895}
896
897void
898callout_handle_init(struct callout_handle *handle)
899{
900	handle->callout = NULL;
901}
902
903/*
904 * New interface; clients allocate their own callout structures.
905 *
906 * callout_reset() - establish or change a timeout
907 * callout_stop() - disestablish a timeout
908 * callout_init() - initialize a callout structure so that it can
909 *	safely be passed to callout_reset() and callout_stop()
910 *
911 * <sys/callout.h> defines three convenience macros:
912 *
913 * callout_active() - returns truth if callout has not been stopped,
914 *	drained, or deactivated since the last time the callout was
915 *	reset.
916 * callout_pending() - returns truth if callout is still waiting for timeout
917 * callout_deactivate() - marks the callout as having been serviced
918 */
919int
920callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t precision,
921    void (*ftn)(void *), void *arg, int cpu, int flags)
922{
923	sbintime_t to_sbt, pr;
924	struct callout_cpu *cc;
925	int cancelled, direct;
926
927	cancelled = 0;
928	if (flags & C_ABSOLUTE) {
929		to_sbt = sbt;
930	} else {
931		if ((flags & C_HARDCLOCK) && (sbt < tick_sbt))
932			sbt = tick_sbt;
933		if ((flags & C_HARDCLOCK) ||
934#ifdef NO_EVENTTIMERS
935		    sbt >= sbt_timethreshold) {
936			to_sbt = getsbinuptime();
937
938			/* Add safety belt for the case of hz > 1000. */
939			to_sbt += tc_tick_sbt - tick_sbt;
940#else
941		    sbt >= sbt_tickthreshold) {
942			/*
943			 * Obtain the time of the last hardclock() call on
944			 * this CPU directly from the kern_clocksource.c.
945			 * This value is per-CPU, but it is equal for all
946			 * active ones.
947			 */
948#ifdef __LP64__
949			to_sbt = DPCPU_GET(hardclocktime);
950#else
951			spinlock_enter();
952			to_sbt = DPCPU_GET(hardclocktime);
953			spinlock_exit();
954#endif
955#endif
956			if ((flags & C_HARDCLOCK) == 0)
957				to_sbt += tick_sbt;
958		} else
959			to_sbt = sbinuptime();
960		if (INT64_MAX - to_sbt < sbt)
961			to_sbt = INT64_MAX;
962		else
963			to_sbt += sbt;
964		pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
965		    sbt >> C_PRELGET(flags));
966		if (pr > precision)
967			precision = pr;
968	}
969	/*
970	 * Don't allow migration of pre-allocated callouts lest they
971	 * become unbalanced.
972	 */
973	if (c->c_flags & CALLOUT_LOCAL_ALLOC)
974		cpu = c->c_cpu;
975	direct = (c->c_flags & CALLOUT_DIRECT) != 0;
976	KASSERT(!direct || c->c_lock == NULL,
977	    ("%s: direct callout %p has lock", __func__, c));
978	cc = callout_lock(c);
979	if (cc->cc_exec_entity[direct].cc_curr == c) {
980		/*
981		 * We're being asked to reschedule a callout which is
982		 * currently in progress.  If there is a lock then we
983		 * can cancel the callout if it has not really started.
984		 */
985		if (c->c_lock != NULL && !cc->cc_exec_entity[direct].cc_cancel)
986			cancelled = cc->cc_exec_entity[direct].cc_cancel = true;
987		if (cc->cc_exec_entity[direct].cc_waiting) {
988			/*
989			 * Someone has called callout_drain to kill this
990			 * callout.  Don't reschedule.
991			 */
992			CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
993			    cancelled ? "cancelled" : "failed to cancel",
994			    c, c->c_func, c->c_arg);
995			CC_UNLOCK(cc);
996			return (cancelled);
997		}
998	}
999	if (c->c_flags & CALLOUT_PENDING) {
1000		if ((c->c_flags & CALLOUT_PROCESSED) == 0) {
1001			if (cc->cc_exec_next_dir == c)
1002				cc->cc_exec_next_dir = LIST_NEXT(c, c_links.le);
1003			LIST_REMOVE(c, c_links.le);
1004		} else
1005			TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1006		cancelled = 1;
1007		c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1008	}
1009
1010#ifdef SMP
1011	/*
1012	 * If the callout must migrate try to perform it immediately.
1013	 * If the callout is currently running, just defer the migration
1014	 * to a more appropriate moment.
1015	 */
1016	if (c->c_cpu != cpu) {
1017		if (cc->cc_exec_entity[direct].cc_curr == c) {
1018			cc->cc_exec_entity[direct].ce_migration_cpu = cpu;
1019			cc->cc_exec_entity[direct].ce_migration_time
1020			    = to_sbt;
1021			cc->cc_exec_entity[direct].ce_migration_prec
1022			    = precision;
1023			cc->cc_exec_entity[direct].ce_migration_func = ftn;
1024			cc->cc_exec_entity[direct].ce_migration_arg = arg;
1025			c->c_flags |= CALLOUT_DFRMIGRATION;
1026			CTR6(KTR_CALLOUT,
1027		    "migration of %p func %p arg %p in %d.%08x to %u deferred",
1028			    c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1029			    (u_int)(to_sbt & 0xffffffff), cpu);
1030			CC_UNLOCK(cc);
1031			return (cancelled);
1032		}
1033		cc = callout_cpu_switch(c, cc, cpu);
1034	}
1035#endif
1036
1037	callout_cc_add(c, cc, to_sbt, precision, ftn, arg, cpu, flags);
1038	CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
1039	    cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1040	    (u_int)(to_sbt & 0xffffffff));
1041	CC_UNLOCK(cc);
1042
1043	return (cancelled);
1044}
1045
1046/*
1047 * Common idioms that can be optimized in the future.
1048 */
1049int
1050callout_schedule_on(struct callout *c, int to_ticks, int cpu)
1051{
1052	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
1053}
1054
1055int
1056callout_schedule(struct callout *c, int to_ticks)
1057{
1058	return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
1059}
1060
1061int
1062_callout_stop_safe(c, safe)
1063	struct	callout *c;
1064	int	safe;
1065{
1066	struct callout_cpu *cc, *old_cc;
1067	struct lock_class *class;
1068	int direct, sq_locked, use_lock;
1069
1070	/*
1071	 * Some old subsystems don't hold Giant while running a callout_stop(),
1072	 * so just discard this check for the moment.
1073	 */
1074	if (!safe && c->c_lock != NULL) {
1075		if (c->c_lock == &Giant.lock_object)
1076			use_lock = mtx_owned(&Giant);
1077		else {
1078			use_lock = 1;
1079			class = LOCK_CLASS(c->c_lock);
1080			class->lc_assert(c->c_lock, LA_XLOCKED);
1081		}
1082	} else
1083		use_lock = 0;
1084	direct = (c->c_flags & CALLOUT_DIRECT) != 0;
1085	sq_locked = 0;
1086	old_cc = NULL;
1087again:
1088	cc = callout_lock(c);
1089
1090	/*
1091	 * If the callout was migrating while the callout cpu lock was
1092	 * dropped,  just drop the sleepqueue lock and check the states
1093	 * again.
1094	 */
1095	if (sq_locked != 0 && cc != old_cc) {
1096#ifdef SMP
1097		CC_UNLOCK(cc);
1098		sleepq_release(&old_cc->cc_exec_entity[direct].cc_waiting);
1099		sq_locked = 0;
1100		old_cc = NULL;
1101		goto again;
1102#else
1103		panic("migration should not happen");
1104#endif
1105	}
1106
1107	/*
1108	 * If the callout isn't pending, it's not on the queue, so
1109	 * don't attempt to remove it from the queue.  We can try to
1110	 * stop it by other means however.
1111	 */
1112	if (!(c->c_flags & CALLOUT_PENDING)) {
1113		c->c_flags &= ~CALLOUT_ACTIVE;
1114
1115		/*
1116		 * If it wasn't on the queue and it isn't the current
1117		 * callout, then we can't stop it, so just bail.
1118		 */
1119		if (cc->cc_exec_entity[direct].cc_curr != c) {
1120			CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1121			    c, c->c_func, c->c_arg);
1122			CC_UNLOCK(cc);
1123			if (sq_locked)
1124				sleepq_release(
1125				    &cc->cc_exec_entity[direct].cc_waiting);
1126			return (0);
1127		}
1128
1129		if (safe) {
1130			/*
1131			 * The current callout is running (or just
1132			 * about to run) and blocking is allowed, so
1133			 * just wait for the current invocation to
1134			 * finish.
1135			 */
1136			while (cc->cc_exec_entity[direct].cc_curr == c) {
1137				/*
1138				 * Use direct calls to sleepqueue interface
1139				 * instead of cv/msleep in order to avoid
1140				 * a LOR between cc_lock and sleepqueue
1141				 * chain spinlocks.  This piece of code
1142				 * emulates a msleep_spin() call actually.
1143				 *
1144				 * If we already have the sleepqueue chain
1145				 * locked, then we can safely block.  If we
1146				 * don't already have it locked, however,
1147				 * we have to drop the cc_lock to lock
1148				 * it.  This opens several races, so we
1149				 * restart at the beginning once we have
1150				 * both locks.  If nothing has changed, then
1151				 * we will end up back here with sq_locked
1152				 * set.
1153				 */
1154				if (!sq_locked) {
1155					CC_UNLOCK(cc);
1156					sleepq_lock(
1157					&cc->cc_exec_entity[direct].cc_waiting);
1158					sq_locked = 1;
1159					old_cc = cc;
1160					goto again;
1161				}
1162
1163				/*
1164				 * Migration could be cancelled here, but
1165				 * as long as it is still not sure when it
1166				 * will be packed up, just let softclock()
1167				 * take care of it.
1168				 */
1169				cc->cc_exec_entity[direct].cc_waiting = true;
1170				DROP_GIANT();
1171				CC_UNLOCK(cc);
1172				sleepq_add(
1173				    &cc->cc_exec_entity[direct].cc_waiting,
1174				    &cc->cc_lock.lock_object, "codrain",
1175				    SLEEPQ_SLEEP, 0);
1176				sleepq_wait(
1177				    &cc->cc_exec_entity[direct].cc_waiting,
1178					     0);
1179				sq_locked = 0;
1180				old_cc = NULL;
1181
1182				/* Reacquire locks previously released. */
1183				PICKUP_GIANT();
1184				CC_LOCK(cc);
1185			}
1186		} else if (use_lock &&
1187			    !cc->cc_exec_entity[direct].cc_cancel) {
1188			/*
1189			 * The current callout is waiting for its
1190			 * lock which we hold.  Cancel the callout
1191			 * and return.  After our caller drops the
1192			 * lock, the callout will be skipped in
1193			 * softclock().
1194			 */
1195			cc->cc_exec_entity[direct].cc_cancel = true;
1196			CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1197			    c, c->c_func, c->c_arg);
1198			KASSERT(!cc_cce_migrating(cc, direct),
1199			    ("callout wrongly scheduled for migration"));
1200			CC_UNLOCK(cc);
1201			KASSERT(!sq_locked, ("sleepqueue chain locked"));
1202			return (1);
1203		} else if ((c->c_flags & CALLOUT_DFRMIGRATION) != 0) {
1204			c->c_flags &= ~CALLOUT_DFRMIGRATION;
1205			CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1206			    c, c->c_func, c->c_arg);
1207			CC_UNLOCK(cc);
1208			return (1);
1209		}
1210		CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1211		    c, c->c_func, c->c_arg);
1212		CC_UNLOCK(cc);
1213		KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1214		return (0);
1215	}
1216	if (sq_locked)
1217		sleepq_release(&cc->cc_exec_entity[direct].cc_waiting);
1218
1219	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1220
1221	CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1222	    c, c->c_func, c->c_arg);
1223	if ((c->c_flags & CALLOUT_PROCESSED) == 0) {
1224		if (cc->cc_exec_next_dir == c)
1225			cc->cc_exec_next_dir = LIST_NEXT(c, c_links.le);
1226		LIST_REMOVE(c, c_links.le);
1227	} else
1228		TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1229	callout_cc_del(c, cc);
1230
1231	CC_UNLOCK(cc);
1232	return (1);
1233}
1234
1235void
1236callout_init(c, mpsafe)
1237	struct	callout *c;
1238	int mpsafe;
1239{
1240	bzero(c, sizeof *c);
1241	if (mpsafe) {
1242		c->c_lock = NULL;
1243		c->c_flags = CALLOUT_RETURNUNLOCKED;
1244	} else {
1245		c->c_lock = &Giant.lock_object;
1246		c->c_flags = 0;
1247	}
1248	c->c_cpu = timeout_cpu;
1249}
1250
1251void
1252_callout_init_lock(c, lock, flags)
1253	struct	callout *c;
1254	struct	lock_object *lock;
1255	int flags;
1256{
1257	bzero(c, sizeof *c);
1258	c->c_lock = lock;
1259	KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1260	    ("callout_init_lock: bad flags %d", flags));
1261	KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1262	    ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1263	KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
1264	    (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
1265	    __func__));
1266	c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1267	c->c_cpu = timeout_cpu;
1268}
1269
1270#ifdef APM_FIXUP_CALLTODO
1271/*
1272 * Adjust the kernel calltodo timeout list.  This routine is used after
1273 * an APM resume to recalculate the calltodo timer list values with the
1274 * number of hz's we have been sleeping.  The next hardclock() will detect
1275 * that there are fired timers and run softclock() to execute them.
1276 *
1277 * Please note, I have not done an exhaustive analysis of what code this
1278 * might break.  I am motivated to have my select()'s and alarm()'s that
1279 * have expired during suspend firing upon resume so that the applications
1280 * which set the timer can do the maintanence the timer was for as close
1281 * as possible to the originally intended time.  Testing this code for a
1282 * week showed that resuming from a suspend resulted in 22 to 25 timers
1283 * firing, which seemed independant on whether the suspend was 2 hours or
1284 * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
1285 */
1286void
1287adjust_timeout_calltodo(time_change)
1288    struct timeval *time_change;
1289{
1290	register struct callout *p;
1291	unsigned long delta_ticks;
1292
1293	/*
1294	 * How many ticks were we asleep?
1295	 * (stolen from tvtohz()).
1296	 */
1297
1298	/* Don't do anything */
1299	if (time_change->tv_sec < 0)
1300		return;
1301	else if (time_change->tv_sec <= LONG_MAX / 1000000)
1302		delta_ticks = (time_change->tv_sec * 1000000 +
1303			       time_change->tv_usec + (tick - 1)) / tick + 1;
1304	else if (time_change->tv_sec <= LONG_MAX / hz)
1305		delta_ticks = time_change->tv_sec * hz +
1306			      (time_change->tv_usec + (tick - 1)) / tick + 1;
1307	else
1308		delta_ticks = LONG_MAX;
1309
1310	if (delta_ticks > INT_MAX)
1311		delta_ticks = INT_MAX;
1312
1313	/*
1314	 * Now rip through the timer calltodo list looking for timers
1315	 * to expire.
1316	 */
1317
1318	/* don't collide with softclock() */
1319	CC_LOCK(cc);
1320	for (p = calltodo.c_next; p != NULL; p = p->c_next) {
1321		p->c_time -= delta_ticks;
1322
1323		/* Break if the timer had more time on it than delta_ticks */
1324		if (p->c_time > 0)
1325			break;
1326
1327		/* take back the ticks the timer didn't use (p->c_time <= 0) */
1328		delta_ticks = -p->c_time;
1329	}
1330	CC_UNLOCK(cc);
1331
1332	return;
1333}
1334#endif /* APM_FIXUP_CALLTODO */
1335
1336static int
1337flssbt(sbintime_t sbt)
1338{
1339
1340	sbt += (uint64_t)sbt >> 1;
1341	if (sizeof(long) >= sizeof(sbintime_t))
1342		return (flsl(sbt));
1343	if (sbt >= SBT_1S)
1344		return (flsl(((uint64_t)sbt) >> 32) + 32);
1345	return (flsl(sbt));
1346}
1347
1348/*
1349 * Dump immediate statistic snapshot of the scheduled callouts.
1350 */
1351static int
1352sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
1353{
1354	struct callout *tmp;
1355	struct callout_cpu *cc;
1356	struct callout_list *sc;
1357	sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
1358	int ct[64], cpr[64], ccpbk[32];
1359	int error, val, i, count, tcum, pcum, maxc, c, medc;
1360#ifdef SMP
1361	int cpu;
1362#endif
1363
1364	val = 0;
1365	error = sysctl_handle_int(oidp, &val, 0, req);
1366	if (error != 0 || req->newptr == NULL)
1367		return (error);
1368	count = maxc = 0;
1369	st = spr = maxt = maxpr = 0;
1370	bzero(ccpbk, sizeof(ccpbk));
1371	bzero(ct, sizeof(ct));
1372	bzero(cpr, sizeof(cpr));
1373	now = sbinuptime();
1374#ifdef SMP
1375	CPU_FOREACH(cpu) {
1376		cc = CC_CPU(cpu);
1377#else
1378		cc = CC_CPU(timeout_cpu);
1379#endif
1380		CC_LOCK(cc);
1381		for (i = 0; i < callwheelsize; i++) {
1382			sc = &cc->cc_callwheel[i];
1383			c = 0;
1384			LIST_FOREACH(tmp, sc, c_links.le) {
1385				c++;
1386				t = tmp->c_time - now;
1387				if (t < 0)
1388					t = 0;
1389				st += t / SBT_1US;
1390				spr += tmp->c_precision / SBT_1US;
1391				if (t > maxt)
1392					maxt = t;
1393				if (tmp->c_precision > maxpr)
1394					maxpr = tmp->c_precision;
1395				ct[flssbt(t)]++;
1396				cpr[flssbt(tmp->c_precision)]++;
1397			}
1398			if (c > maxc)
1399				maxc = c;
1400			ccpbk[fls(c + c / 2)]++;
1401			count += c;
1402		}
1403		CC_UNLOCK(cc);
1404#ifdef SMP
1405	}
1406#endif
1407
1408	for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
1409		tcum += ct[i];
1410	medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1411	for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
1412		pcum += cpr[i];
1413	medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1414	for (i = 0, c = 0; i < 32 && c < count / 2; i++)
1415		c += ccpbk[i];
1416	medc = (i >= 2) ? (1 << (i - 2)) : 0;
1417
1418	printf("Scheduled callouts statistic snapshot:\n");
1419	printf("  Callouts: %6d  Buckets: %6d*%-3d  Bucket size: 0.%06ds\n",
1420	    count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
1421	printf("  C/Bk: med %5d         avg %6d.%06jd  max %6d\n",
1422	    medc,
1423	    count / callwheelsize / mp_ncpus,
1424	    (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
1425	    maxc);
1426	printf("  Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1427	    medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
1428	    (st / count) / 1000000, (st / count) % 1000000,
1429	    maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
1430	printf("  Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1431	    medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
1432	    (spr / count) / 1000000, (spr / count) % 1000000,
1433	    maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
1434	printf("  Distribution:       \tbuckets\t   time\t   tcum\t"
1435	    "   prec\t   pcum\n");
1436	for (i = 0, tcum = pcum = 0; i < 64; i++) {
1437		if (ct[i] == 0 && cpr[i] == 0)
1438			continue;
1439		t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
1440		tcum += ct[i];
1441		pcum += cpr[i];
1442		printf("  %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
1443		    t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
1444		    i - 1 - (32 - CC_HASH_SHIFT),
1445		    ct[i], tcum, cpr[i], pcum);
1446	}
1447	return (error);
1448}
1449SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
1450    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1451    0, 0, sysctl_kern_callout_stat, "I",
1452    "Dump immediate statistic snapshot of the scheduled callouts");
1453