kern_synch.c revision 271769
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/10/sys/kern/kern_synch.c 271769 2014-09-18 14:38:18Z dumbbell $");
39
40#include "opt_kdtrace.h"
41#include "opt_ktrace.h"
42#include "opt_sched.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/condvar.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/sched.h>
55#include <sys/sdt.h>
56#include <sys/signalvar.h>
57#include <sys/sleepqueue.h>
58#include <sys/smp.h>
59#include <sys/sx.h>
60#include <sys/sysctl.h>
61#include <sys/sysproto.h>
62#include <sys/vmmeter.h>
63#ifdef KTRACE
64#include <sys/uio.h>
65#include <sys/ktrace.h>
66#endif
67
68#include <machine/cpu.h>
69
70#ifdef XEN
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <vm/pmap.h>
74#endif
75
76#define	KTDSTATE(td)							\
77	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
78	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
79	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
80	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
81	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
82
83static void synch_setup(void *dummy);
84SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
85    NULL);
86
87int	hogticks;
88static uint8_t pause_wchan[MAXCPU];
89
90static struct callout loadav_callout;
91
92struct loadavg averunnable =
93	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
94/*
95 * Constants for averages over 1, 5, and 15 minutes
96 * when sampling at 5 second intervals.
97 */
98static fixpt_t cexp[3] = {
99	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
100	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
101	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
102};
103
104/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
105static int      fscale __unused = FSCALE;
106SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
107
108static void	loadav(void *arg);
109
110SDT_PROVIDER_DECLARE(sched);
111SDT_PROBE_DEFINE(sched, , , preempt);
112
113/*
114 * These probes reference Solaris features that are not implemented in FreeBSD.
115 * Create the probes anyway for compatibility with existing D scripts; they'll
116 * just never fire.
117 */
118SDT_PROBE_DEFINE(sched, , , cpucaps__sleep);
119SDT_PROBE_DEFINE(sched, , , cpucaps__wakeup);
120SDT_PROBE_DEFINE(sched, , , schedctl__nopreempt);
121SDT_PROBE_DEFINE(sched, , , schedctl__preempt);
122SDT_PROBE_DEFINE(sched, , , schedctl__yield);
123
124static void
125sleepinit(void *unused)
126{
127
128	hogticks = (hz / 10) * 2;	/* Default only. */
129	init_sleepqueues();
130}
131
132/*
133 * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
134 * it is available.
135 */
136SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, 0);
137
138/*
139 * General sleep call.  Suspends the current thread until a wakeup is
140 * performed on the specified identifier.  The thread will then be made
141 * runnable with the specified priority.  Sleeps at most sbt units of time
142 * (0 means no timeout).  If pri includes the PCATCH flag, let signals
143 * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
144 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
145 * signal becomes pending, ERESTART is returned if the current system
146 * call should be restarted if possible, and EINTR is returned if the system
147 * call should be interrupted by the signal (return EINTR).
148 *
149 * The lock argument is unlocked before the caller is suspended, and
150 * re-locked before _sleep() returns.  If priority includes the PDROP
151 * flag the lock is not re-locked before returning.
152 */
153int
154_sleep(void *ident, struct lock_object *lock, int priority,
155    const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
156{
157	struct thread *td;
158	struct proc *p;
159	struct lock_class *class;
160	uintptr_t lock_state;
161	int catch, pri, rval, sleepq_flags;
162	WITNESS_SAVE_DECL(lock_witness);
163
164	td = curthread;
165	p = td->td_proc;
166#ifdef KTRACE
167	if (KTRPOINT(td, KTR_CSW))
168		ktrcsw(1, 0, wmesg);
169#endif
170	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
171	    "Sleeping on \"%s\"", wmesg);
172	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
173	    ("sleeping without a lock"));
174	KASSERT(p != NULL, ("msleep1"));
175	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
176	if (priority & PDROP)
177		KASSERT(lock != NULL && lock != &Giant.lock_object,
178		    ("PDROP requires a non-Giant lock"));
179	if (lock != NULL)
180		class = LOCK_CLASS(lock);
181	else
182		class = NULL;
183
184	if (cold || SCHEDULER_STOPPED()) {
185		/*
186		 * During autoconfiguration, just return;
187		 * don't run any other threads or panic below,
188		 * in case this is the idle thread and already asleep.
189		 * XXX: this used to do "s = splhigh(); splx(safepri);
190		 * splx(s);" to give interrupts a chance, but there is
191		 * no way to give interrupts a chance now.
192		 */
193		if (lock != NULL && priority & PDROP)
194			class->lc_unlock(lock);
195		return (0);
196	}
197	catch = priority & PCATCH;
198	pri = priority & PRIMASK;
199
200	/*
201	 * If we are already on a sleep queue, then remove us from that
202	 * sleep queue first.  We have to do this to handle recursive
203	 * sleeps.
204	 */
205	if (TD_ON_SLEEPQ(td))
206		sleepq_remove(td, td->td_wchan);
207
208	if ((uint8_t *)ident >= &pause_wchan[0] &&
209	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
210		sleepq_flags = SLEEPQ_PAUSE;
211	else
212		sleepq_flags = SLEEPQ_SLEEP;
213	if (catch)
214		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
215
216	sleepq_lock(ident);
217	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
218	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
219
220	if (lock == &Giant.lock_object)
221		mtx_assert(&Giant, MA_OWNED);
222	DROP_GIANT();
223	if (lock != NULL && lock != &Giant.lock_object &&
224	    !(class->lc_flags & LC_SLEEPABLE)) {
225		WITNESS_SAVE(lock, lock_witness);
226		lock_state = class->lc_unlock(lock);
227	} else
228		/* GCC needs to follow the Yellow Brick Road */
229		lock_state = -1;
230
231	/*
232	 * We put ourselves on the sleep queue and start our timeout
233	 * before calling thread_suspend_check, as we could stop there,
234	 * and a wakeup or a SIGCONT (or both) could occur while we were
235	 * stopped without resuming us.  Thus, we must be ready for sleep
236	 * when cursig() is called.  If the wakeup happens while we're
237	 * stopped, then td will no longer be on a sleep queue upon
238	 * return from cursig().
239	 */
240	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
241	if (sbt != 0)
242		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
243	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
244		sleepq_release(ident);
245		WITNESS_SAVE(lock, lock_witness);
246		lock_state = class->lc_unlock(lock);
247		sleepq_lock(ident);
248	}
249	if (sbt != 0 && catch)
250		rval = sleepq_timedwait_sig(ident, pri);
251	else if (sbt != 0)
252		rval = sleepq_timedwait(ident, pri);
253	else if (catch)
254		rval = sleepq_wait_sig(ident, pri);
255	else {
256		sleepq_wait(ident, pri);
257		rval = 0;
258	}
259#ifdef KTRACE
260	if (KTRPOINT(td, KTR_CSW))
261		ktrcsw(0, 0, wmesg);
262#endif
263	PICKUP_GIANT();
264	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
265		class->lc_lock(lock, lock_state);
266		WITNESS_RESTORE(lock, lock_witness);
267	}
268	return (rval);
269}
270
271int
272msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
273    sbintime_t sbt, sbintime_t pr, int flags)
274{
275	struct thread *td;
276	struct proc *p;
277	int rval;
278	WITNESS_SAVE_DECL(mtx);
279
280	td = curthread;
281	p = td->td_proc;
282	KASSERT(mtx != NULL, ("sleeping without a mutex"));
283	KASSERT(p != NULL, ("msleep1"));
284	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
285
286	if (cold || SCHEDULER_STOPPED()) {
287		/*
288		 * During autoconfiguration, just return;
289		 * don't run any other threads or panic below,
290		 * in case this is the idle thread and already asleep.
291		 * XXX: this used to do "s = splhigh(); splx(safepri);
292		 * splx(s);" to give interrupts a chance, but there is
293		 * no way to give interrupts a chance now.
294		 */
295		return (0);
296	}
297
298	sleepq_lock(ident);
299	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
300	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
301
302	DROP_GIANT();
303	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
304	WITNESS_SAVE(&mtx->lock_object, mtx);
305	mtx_unlock_spin(mtx);
306
307	/*
308	 * We put ourselves on the sleep queue and start our timeout.
309	 */
310	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
311	if (sbt != 0)
312		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
313
314	/*
315	 * Can't call ktrace with any spin locks held so it can lock the
316	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
317	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
318	 * we handle those requests.  This is safe since we have placed our
319	 * thread on the sleep queue already.
320	 */
321#ifdef KTRACE
322	if (KTRPOINT(td, KTR_CSW)) {
323		sleepq_release(ident);
324		ktrcsw(1, 0, wmesg);
325		sleepq_lock(ident);
326	}
327#endif
328#ifdef WITNESS
329	sleepq_release(ident);
330	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
331	    wmesg);
332	sleepq_lock(ident);
333#endif
334	if (sbt != 0)
335		rval = sleepq_timedwait(ident, 0);
336	else {
337		sleepq_wait(ident, 0);
338		rval = 0;
339	}
340#ifdef KTRACE
341	if (KTRPOINT(td, KTR_CSW))
342		ktrcsw(0, 0, wmesg);
343#endif
344	PICKUP_GIANT();
345	mtx_lock_spin(mtx);
346	WITNESS_RESTORE(&mtx->lock_object, mtx);
347	return (rval);
348}
349
350/*
351 * pause() delays the calling thread by the given number of system ticks.
352 * During cold bootup, pause() uses the DELAY() function instead of
353 * the tsleep() function to do the waiting. The "timo" argument must be
354 * greater than or equal to zero. A "timo" value of zero is equivalent
355 * to a "timo" value of one.
356 */
357int
358pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
359{
360	KASSERT(sbt >= 0, ("pause: timeout must be >= 0"));
361
362	/* silently convert invalid timeouts */
363	if (sbt == 0)
364		sbt = tick_sbt;
365
366	if (cold || kdb_active) {
367		/*
368		 * We delay one second at a time to avoid overflowing the
369		 * system specific DELAY() function(s):
370		 */
371		while (sbt >= SBT_1S) {
372			DELAY(1000000);
373			sbt -= SBT_1S;
374		}
375		/* Do the delay remainder, if any */
376		sbt = (sbt + SBT_1US - 1) / SBT_1US;
377		if (sbt > 0)
378			DELAY(sbt);
379		return (0);
380	}
381	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
382}
383
384/*
385 * Make all threads sleeping on the specified identifier runnable.
386 */
387void
388wakeup(void *ident)
389{
390	int wakeup_swapper;
391
392	sleepq_lock(ident);
393	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
394	sleepq_release(ident);
395	if (wakeup_swapper) {
396		KASSERT(ident != &proc0,
397		    ("wakeup and wakeup_swapper and proc0"));
398		kick_proc0();
399	}
400}
401
402/*
403 * Make a thread sleeping on the specified identifier runnable.
404 * May wake more than one thread if a target thread is currently
405 * swapped out.
406 */
407void
408wakeup_one(void *ident)
409{
410	int wakeup_swapper;
411
412	sleepq_lock(ident);
413	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
414	sleepq_release(ident);
415	if (wakeup_swapper)
416		kick_proc0();
417}
418
419static void
420kdb_switch(void)
421{
422	thread_unlock(curthread);
423	kdb_backtrace();
424	kdb_reenter();
425	panic("%s: did not reenter debugger", __func__);
426}
427
428/*
429 * The machine independent parts of context switching.
430 */
431void
432mi_switch(int flags, struct thread *newtd)
433{
434	uint64_t runtime, new_switchtime;
435	struct thread *td;
436	struct proc *p;
437
438	td = curthread;			/* XXX */
439	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
440	p = td->td_proc;		/* XXX */
441	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
442#ifdef INVARIANTS
443	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
444		mtx_assert(&Giant, MA_NOTOWNED);
445#endif
446	KASSERT(td->td_critnest == 1 || panicstr,
447	    ("mi_switch: switch in a critical section"));
448	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
449	    ("mi_switch: switch must be voluntary or involuntary"));
450	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
451
452	/*
453	 * Don't perform context switches from the debugger.
454	 */
455	if (kdb_active)
456		kdb_switch();
457	if (SCHEDULER_STOPPED())
458		return;
459	if (flags & SW_VOL) {
460		td->td_ru.ru_nvcsw++;
461		td->td_swvoltick = ticks;
462	} else
463		td->td_ru.ru_nivcsw++;
464#ifdef SCHED_STATS
465	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
466#endif
467	/*
468	 * Compute the amount of time during which the current
469	 * thread was running, and add that to its total so far.
470	 */
471	new_switchtime = cpu_ticks();
472	runtime = new_switchtime - PCPU_GET(switchtime);
473	td->td_runtime += runtime;
474	td->td_incruntime += runtime;
475	PCPU_SET(switchtime, new_switchtime);
476	td->td_generation++;	/* bump preempt-detect counter */
477	PCPU_INC(cnt.v_swtch);
478	PCPU_SET(switchticks, ticks);
479	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
480	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
481#if (KTR_COMPILE & KTR_SCHED) != 0
482	if (TD_IS_IDLETHREAD(td))
483		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
484		    "prio:%d", td->td_priority);
485	else
486		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
487		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
488		    "lockname:\"%s\"", td->td_lockname);
489#endif
490	SDT_PROBE0(sched, , , preempt);
491#ifdef XEN
492	PT_UPDATES_FLUSH();
493#endif
494	sched_switch(td, newtd, flags);
495	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
496	    "prio:%d", td->td_priority);
497
498	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
499	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
500
501	/*
502	 * If the last thread was exiting, finish cleaning it up.
503	 */
504	if ((td = PCPU_GET(deadthread))) {
505		PCPU_SET(deadthread, NULL);
506		thread_stash(td);
507	}
508}
509
510/*
511 * Change thread state to be runnable, placing it on the run queue if
512 * it is in memory.  If it is swapped out, return true so our caller
513 * will know to awaken the swapper.
514 */
515int
516setrunnable(struct thread *td)
517{
518
519	THREAD_LOCK_ASSERT(td, MA_OWNED);
520	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
521	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
522	switch (td->td_state) {
523	case TDS_RUNNING:
524	case TDS_RUNQ:
525		return (0);
526	case TDS_INHIBITED:
527		/*
528		 * If we are only inhibited because we are swapped out
529		 * then arange to swap in this process. Otherwise just return.
530		 */
531		if (td->td_inhibitors != TDI_SWAPPED)
532			return (0);
533		/* FALLTHROUGH */
534	case TDS_CAN_RUN:
535		break;
536	default:
537		printf("state is 0x%x", td->td_state);
538		panic("setrunnable(2)");
539	}
540	if ((td->td_flags & TDF_INMEM) == 0) {
541		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
542			td->td_flags |= TDF_SWAPINREQ;
543			return (1);
544		}
545	} else
546		sched_wakeup(td);
547	return (0);
548}
549
550/*
551 * Compute a tenex style load average of a quantity on
552 * 1, 5 and 15 minute intervals.
553 */
554static void
555loadav(void *arg)
556{
557	int i, nrun;
558	struct loadavg *avg;
559
560	nrun = sched_load();
561	avg = &averunnable;
562
563	for (i = 0; i < 3; i++)
564		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
565		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
566
567	/*
568	 * Schedule the next update to occur after 5 seconds, but add a
569	 * random variation to avoid synchronisation with processes that
570	 * run at regular intervals.
571	 */
572	callout_reset_sbt(&loadav_callout,
573	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
574	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
575}
576
577/* ARGSUSED */
578static void
579synch_setup(void *dummy)
580{
581	callout_init(&loadav_callout, CALLOUT_MPSAFE);
582
583	/* Kick off timeout driven events by calling first time. */
584	loadav(NULL);
585}
586
587int
588should_yield(void)
589{
590
591	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
592}
593
594void
595maybe_yield(void)
596{
597
598	if (should_yield())
599		kern_yield(PRI_USER);
600}
601
602void
603kern_yield(int prio)
604{
605	struct thread *td;
606
607	td = curthread;
608	DROP_GIANT();
609	thread_lock(td);
610	if (prio == PRI_USER)
611		prio = td->td_user_pri;
612	if (prio >= 0)
613		sched_prio(td, prio);
614	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
615	thread_unlock(td);
616	PICKUP_GIANT();
617}
618
619/*
620 * General purpose yield system call.
621 */
622int
623sys_yield(struct thread *td, struct yield_args *uap)
624{
625
626	thread_lock(td);
627	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
628		sched_prio(td, PRI_MAX_TIMESHARE);
629	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
630	thread_unlock(td);
631	td->td_retval[0] = 0;
632	return (0);
633}
634