kern_sig.c revision 342704
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/10/sys/kern/kern_sig.c 342704 2019-01-02 19:11:49Z jhb $");
39
40#include "opt_compat.h"
41#include "opt_kdtrace.h"
42#include "opt_ktrace.h"
43#include "opt_core.h"
44#include "opt_procdesc.h"
45
46#include <sys/param.h>
47#include <sys/ctype.h>
48#include <sys/systm.h>
49#include <sys/signalvar.h>
50#include <sys/vnode.h>
51#include <sys/acct.h>
52#include <sys/bus.h>
53#include <sys/capsicum.h>
54#include <sys/condvar.h>
55#include <sys/event.h>
56#include <sys/fcntl.h>
57#include <sys/imgact.h>
58#include <sys/kernel.h>
59#include <sys/ktr.h>
60#include <sys/ktrace.h>
61#include <sys/lock.h>
62#include <sys/malloc.h>
63#include <sys/mutex.h>
64#include <sys/refcount.h>
65#include <sys/namei.h>
66#include <sys/proc.h>
67#include <sys/procdesc.h>
68#include <sys/posix4.h>
69#include <sys/pioctl.h>
70#include <sys/racct.h>
71#include <sys/resourcevar.h>
72#include <sys/sdt.h>
73#include <sys/sbuf.h>
74#include <sys/sleepqueue.h>
75#include <sys/smp.h>
76#include <sys/stat.h>
77#include <sys/sx.h>
78#include <sys/syscallsubr.h>
79#include <sys/sysctl.h>
80#include <sys/sysent.h>
81#include <sys/syslog.h>
82#include <sys/sysproto.h>
83#include <sys/timers.h>
84#include <sys/unistd.h>
85#include <sys/wait.h>
86#include <vm/vm.h>
87#include <vm/vm_extern.h>
88#include <vm/uma.h>
89
90#include <sys/jail.h>
91
92#include <machine/cpu.h>
93
94#include <security/audit/audit.h>
95
96#define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
97
98SDT_PROVIDER_DECLARE(proc);
99SDT_PROBE_DEFINE3(proc, , , signal__send,
100    "struct thread *", "struct proc *", "int");
101SDT_PROBE_DEFINE2(proc, , , signal__clear,
102    "int", "ksiginfo_t *");
103SDT_PROBE_DEFINE3(proc, , , signal__discard,
104    "struct thread *", "struct proc *", "int");
105
106static int	coredump(struct thread *);
107static int	killpg1(struct thread *td, int sig, int pgid, int all,
108		    ksiginfo_t *ksi);
109static int	issignal(struct thread *td);
110static int	sigprop(int sig);
111static void	tdsigwakeup(struct thread *, int, sig_t, int);
112static void	sig_suspend_threads(struct thread *, struct proc *, int);
113static int	filt_sigattach(struct knote *kn);
114static void	filt_sigdetach(struct knote *kn);
115static int	filt_signal(struct knote *kn, long hint);
116static struct thread *sigtd(struct proc *p, int sig, int prop);
117static void	sigqueue_start(void);
118
119static uma_zone_t	ksiginfo_zone = NULL;
120struct filterops sig_filtops = {
121	.f_isfd = 0,
122	.f_attach = filt_sigattach,
123	.f_detach = filt_sigdetach,
124	.f_event = filt_signal,
125};
126
127static int	kern_logsigexit = 1;
128SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
129    &kern_logsigexit, 0,
130    "Log processes quitting on abnormal signals to syslog(3)");
131
132static int	kern_forcesigexit = 1;
133SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
134    &kern_forcesigexit, 0, "Force trap signal to be handled");
135
136static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
137    "POSIX real time signal");
138
139static int	max_pending_per_proc = 128;
140SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
141    &max_pending_per_proc, 0, "Max pending signals per proc");
142
143static int	preallocate_siginfo = 1024;
144TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
145SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
146    &preallocate_siginfo, 0, "Preallocated signal memory size");
147
148static int	signal_overflow = 0;
149SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
150    &signal_overflow, 0, "Number of signals overflew");
151
152static int	signal_alloc_fail = 0;
153SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
154    &signal_alloc_fail, 0, "signals failed to be allocated");
155
156SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
157
158/*
159 * Policy -- Can ucred cr1 send SIGIO to process cr2?
160 * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
161 * in the right situations.
162 */
163#define CANSIGIO(cr1, cr2) \
164	((cr1)->cr_uid == 0 || \
165	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
166	    (cr1)->cr_uid == (cr2)->cr_ruid || \
167	    (cr1)->cr_ruid == (cr2)->cr_uid || \
168	    (cr1)->cr_uid == (cr2)->cr_uid)
169
170static int	sugid_coredump;
171TUNABLE_INT("kern.sugid_coredump", &sugid_coredump);
172SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
173    &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
174
175static int	capmode_coredump;
176TUNABLE_INT("kern.capmode_coredump", &capmode_coredump);
177SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RW,
178    &capmode_coredump, 0, "Allow processes in capability mode to dump core");
179
180static int	do_coredump = 1;
181SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
182	&do_coredump, 0, "Enable/Disable coredumps");
183
184static int	set_core_nodump_flag = 0;
185SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
186	0, "Enable setting the NODUMP flag on coredump files");
187
188static int	coredump_devctl = 0;
189SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
190	0, "Generate a devctl notification when processes coredump");
191
192/*
193 * Signal properties and actions.
194 * The array below categorizes the signals and their default actions
195 * according to the following properties:
196 */
197#define	SA_KILL		0x01		/* terminates process by default */
198#define	SA_CORE		0x02		/* ditto and coredumps */
199#define	SA_STOP		0x04		/* suspend process */
200#define	SA_TTYSTOP	0x08		/* ditto, from tty */
201#define	SA_IGNORE	0x10		/* ignore by default */
202#define	SA_CONT		0x20		/* continue if suspended */
203#define	SA_CANTMASK	0x40		/* non-maskable, catchable */
204
205static int sigproptbl[NSIG] = {
206	SA_KILL,			/* SIGHUP */
207	SA_KILL,			/* SIGINT */
208	SA_KILL|SA_CORE,		/* SIGQUIT */
209	SA_KILL|SA_CORE,		/* SIGILL */
210	SA_KILL|SA_CORE,		/* SIGTRAP */
211	SA_KILL|SA_CORE,		/* SIGABRT */
212	SA_KILL|SA_CORE,		/* SIGEMT */
213	SA_KILL|SA_CORE,		/* SIGFPE */
214	SA_KILL,			/* SIGKILL */
215	SA_KILL|SA_CORE,		/* SIGBUS */
216	SA_KILL|SA_CORE,		/* SIGSEGV */
217	SA_KILL|SA_CORE,		/* SIGSYS */
218	SA_KILL,			/* SIGPIPE */
219	SA_KILL,			/* SIGALRM */
220	SA_KILL,			/* SIGTERM */
221	SA_IGNORE,			/* SIGURG */
222	SA_STOP,			/* SIGSTOP */
223	SA_STOP|SA_TTYSTOP,		/* SIGTSTP */
224	SA_IGNORE|SA_CONT,		/* SIGCONT */
225	SA_IGNORE,			/* SIGCHLD */
226	SA_STOP|SA_TTYSTOP,		/* SIGTTIN */
227	SA_STOP|SA_TTYSTOP,		/* SIGTTOU */
228	SA_IGNORE,			/* SIGIO */
229	SA_KILL,			/* SIGXCPU */
230	SA_KILL,			/* SIGXFSZ */
231	SA_KILL,			/* SIGVTALRM */
232	SA_KILL,			/* SIGPROF */
233	SA_IGNORE,			/* SIGWINCH  */
234	SA_IGNORE,			/* SIGINFO */
235	SA_KILL,			/* SIGUSR1 */
236	SA_KILL,			/* SIGUSR2 */
237};
238
239static void reschedule_signals(struct proc *p, sigset_t block, int flags);
240
241static void
242sigqueue_start(void)
243{
244	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
245		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
246	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
247	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
248	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
249	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
250}
251
252ksiginfo_t *
253ksiginfo_alloc(int wait)
254{
255	int flags;
256
257	flags = M_ZERO;
258	if (! wait)
259		flags |= M_NOWAIT;
260	if (ksiginfo_zone != NULL)
261		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
262	return (NULL);
263}
264
265void
266ksiginfo_free(ksiginfo_t *ksi)
267{
268	uma_zfree(ksiginfo_zone, ksi);
269}
270
271static __inline int
272ksiginfo_tryfree(ksiginfo_t *ksi)
273{
274	if (!(ksi->ksi_flags & KSI_EXT)) {
275		uma_zfree(ksiginfo_zone, ksi);
276		return (1);
277	}
278	return (0);
279}
280
281void
282sigqueue_init(sigqueue_t *list, struct proc *p)
283{
284	SIGEMPTYSET(list->sq_signals);
285	SIGEMPTYSET(list->sq_kill);
286	SIGEMPTYSET(list->sq_ptrace);
287	TAILQ_INIT(&list->sq_list);
288	list->sq_proc = p;
289	list->sq_flags = SQ_INIT;
290}
291
292/*
293 * Get a signal's ksiginfo.
294 * Return:
295 *	0	-	signal not found
296 *	others	-	signal number
297 */
298static int
299sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
300{
301	struct proc *p = sq->sq_proc;
302	struct ksiginfo *ksi, *next;
303	int count = 0;
304
305	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
306
307	if (!SIGISMEMBER(sq->sq_signals, signo))
308		return (0);
309
310	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
311		count++;
312		SIGDELSET(sq->sq_ptrace, signo);
313		si->ksi_flags |= KSI_PTRACE;
314	}
315	if (SIGISMEMBER(sq->sq_kill, signo)) {
316		count++;
317		if (count == 1)
318			SIGDELSET(sq->sq_kill, signo);
319	}
320
321	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
322		if (ksi->ksi_signo == signo) {
323			if (count == 0) {
324				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
325				ksi->ksi_sigq = NULL;
326				ksiginfo_copy(ksi, si);
327				if (ksiginfo_tryfree(ksi) && p != NULL)
328					p->p_pendingcnt--;
329			}
330			if (++count > 1)
331				break;
332		}
333	}
334
335	if (count <= 1)
336		SIGDELSET(sq->sq_signals, signo);
337	si->ksi_signo = signo;
338	return (signo);
339}
340
341void
342sigqueue_take(ksiginfo_t *ksi)
343{
344	struct ksiginfo *kp;
345	struct proc	*p;
346	sigqueue_t	*sq;
347
348	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
349		return;
350
351	p = sq->sq_proc;
352	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
353	ksi->ksi_sigq = NULL;
354	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
355		p->p_pendingcnt--;
356
357	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
358	     kp = TAILQ_NEXT(kp, ksi_link)) {
359		if (kp->ksi_signo == ksi->ksi_signo)
360			break;
361	}
362	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
363	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
364		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
365}
366
367static int
368sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
369{
370	struct proc *p = sq->sq_proc;
371	struct ksiginfo *ksi;
372	int ret = 0;
373
374	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
375
376	/*
377	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
378	 * for these signals.
379	 */
380	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
381		SIGADDSET(sq->sq_kill, signo);
382		goto out_set_bit;
383	}
384
385	/* directly insert the ksi, don't copy it */
386	if (si->ksi_flags & KSI_INS) {
387		if (si->ksi_flags & KSI_HEAD)
388			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
389		else
390			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
391		si->ksi_sigq = sq;
392		goto out_set_bit;
393	}
394
395	if (__predict_false(ksiginfo_zone == NULL)) {
396		SIGADDSET(sq->sq_kill, signo);
397		goto out_set_bit;
398	}
399
400	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
401		signal_overflow++;
402		ret = EAGAIN;
403	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
404		signal_alloc_fail++;
405		ret = EAGAIN;
406	} else {
407		if (p != NULL)
408			p->p_pendingcnt++;
409		ksiginfo_copy(si, ksi);
410		ksi->ksi_signo = signo;
411		if (si->ksi_flags & KSI_HEAD)
412			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
413		else
414			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
415		ksi->ksi_sigq = sq;
416	}
417
418	if (ret != 0) {
419		if ((si->ksi_flags & KSI_PTRACE) != 0) {
420			SIGADDSET(sq->sq_ptrace, signo);
421			ret = 0;
422			goto out_set_bit;
423		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
424		    (si->ksi_flags & KSI_SIGQ) == 0) {
425			SIGADDSET(sq->sq_kill, signo);
426			ret = 0;
427			goto out_set_bit;
428		}
429		return (ret);
430	}
431
432out_set_bit:
433	SIGADDSET(sq->sq_signals, signo);
434	return (ret);
435}
436
437void
438sigqueue_flush(sigqueue_t *sq)
439{
440	struct proc *p = sq->sq_proc;
441	ksiginfo_t *ksi;
442
443	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
444
445	if (p != NULL)
446		PROC_LOCK_ASSERT(p, MA_OWNED);
447
448	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
449		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
450		ksi->ksi_sigq = NULL;
451		if (ksiginfo_tryfree(ksi) && p != NULL)
452			p->p_pendingcnt--;
453	}
454
455	SIGEMPTYSET(sq->sq_signals);
456	SIGEMPTYSET(sq->sq_kill);
457	SIGEMPTYSET(sq->sq_ptrace);
458}
459
460static void
461sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
462{
463	sigset_t tmp;
464	struct proc *p1, *p2;
465	ksiginfo_t *ksi, *next;
466
467	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
468	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
469	p1 = src->sq_proc;
470	p2 = dst->sq_proc;
471	/* Move siginfo to target list */
472	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
473		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
474			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
475			if (p1 != NULL)
476				p1->p_pendingcnt--;
477			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
478			ksi->ksi_sigq = dst;
479			if (p2 != NULL)
480				p2->p_pendingcnt++;
481		}
482	}
483
484	/* Move pending bits to target list */
485	tmp = src->sq_kill;
486	SIGSETAND(tmp, *set);
487	SIGSETOR(dst->sq_kill, tmp);
488	SIGSETNAND(src->sq_kill, tmp);
489
490	tmp = src->sq_ptrace;
491	SIGSETAND(tmp, *set);
492	SIGSETOR(dst->sq_ptrace, tmp);
493	SIGSETNAND(src->sq_ptrace, tmp);
494
495	tmp = src->sq_signals;
496	SIGSETAND(tmp, *set);
497	SIGSETOR(dst->sq_signals, tmp);
498	SIGSETNAND(src->sq_signals, tmp);
499}
500
501#if 0
502static void
503sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
504{
505	sigset_t set;
506
507	SIGEMPTYSET(set);
508	SIGADDSET(set, signo);
509	sigqueue_move_set(src, dst, &set);
510}
511#endif
512
513static void
514sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
515{
516	struct proc *p = sq->sq_proc;
517	ksiginfo_t *ksi, *next;
518
519	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
520
521	/* Remove siginfo queue */
522	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
523		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
524			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
525			ksi->ksi_sigq = NULL;
526			if (ksiginfo_tryfree(ksi) && p != NULL)
527				p->p_pendingcnt--;
528		}
529	}
530	SIGSETNAND(sq->sq_kill, *set);
531	SIGSETNAND(sq->sq_ptrace, *set);
532	SIGSETNAND(sq->sq_signals, *set);
533}
534
535void
536sigqueue_delete(sigqueue_t *sq, int signo)
537{
538	sigset_t set;
539
540	SIGEMPTYSET(set);
541	SIGADDSET(set, signo);
542	sigqueue_delete_set(sq, &set);
543}
544
545/* Remove a set of signals for a process */
546static void
547sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
548{
549	sigqueue_t worklist;
550	struct thread *td0;
551
552	PROC_LOCK_ASSERT(p, MA_OWNED);
553
554	sigqueue_init(&worklist, NULL);
555	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
556
557	FOREACH_THREAD_IN_PROC(p, td0)
558		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
559
560	sigqueue_flush(&worklist);
561}
562
563void
564sigqueue_delete_proc(struct proc *p, int signo)
565{
566	sigset_t set;
567
568	SIGEMPTYSET(set);
569	SIGADDSET(set, signo);
570	sigqueue_delete_set_proc(p, &set);
571}
572
573static void
574sigqueue_delete_stopmask_proc(struct proc *p)
575{
576	sigset_t set;
577
578	SIGEMPTYSET(set);
579	SIGADDSET(set, SIGSTOP);
580	SIGADDSET(set, SIGTSTP);
581	SIGADDSET(set, SIGTTIN);
582	SIGADDSET(set, SIGTTOU);
583	sigqueue_delete_set_proc(p, &set);
584}
585
586/*
587 * Determine signal that should be delivered to thread td, the current
588 * thread, 0 if none.  If there is a pending stop signal with default
589 * action, the process stops in issignal().
590 */
591int
592cursig(struct thread *td)
593{
594	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
595	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
596	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
597	return (SIGPENDING(td) ? issignal(td) : 0);
598}
599
600/*
601 * Arrange for ast() to handle unmasked pending signals on return to user
602 * mode.  This must be called whenever a signal is added to td_sigqueue or
603 * unmasked in td_sigmask.
604 */
605void
606signotify(struct thread *td)
607{
608	struct proc *p;
609
610	p = td->td_proc;
611
612	PROC_LOCK_ASSERT(p, MA_OWNED);
613
614	if (SIGPENDING(td)) {
615		thread_lock(td);
616		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
617		thread_unlock(td);
618	}
619}
620
621int
622sigonstack(size_t sp)
623{
624	struct thread *td = curthread;
625
626	return ((td->td_pflags & TDP_ALTSTACK) ?
627#if defined(COMPAT_43)
628	    ((td->td_sigstk.ss_size == 0) ?
629		(td->td_sigstk.ss_flags & SS_ONSTACK) :
630		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
631#else
632	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
633#endif
634	    : 0);
635}
636
637static __inline int
638sigprop(int sig)
639{
640
641	if (sig > 0 && sig < NSIG)
642		return (sigproptbl[_SIG_IDX(sig)]);
643	return (0);
644}
645
646int
647sig_ffs(sigset_t *set)
648{
649	int i;
650
651	for (i = 0; i < _SIG_WORDS; i++)
652		if (set->__bits[i])
653			return (ffs(set->__bits[i]) + (i * 32));
654	return (0);
655}
656
657static bool
658sigact_flag_test(struct sigaction *act, int flag)
659{
660
661	/*
662	 * SA_SIGINFO is reset when signal disposition is set to
663	 * ignore or default.  Other flags are kept according to user
664	 * settings.
665	 */
666	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
667	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
668	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
669}
670
671/*
672 * kern_sigaction
673 * sigaction
674 * freebsd4_sigaction
675 * osigaction
676 */
677int
678kern_sigaction(td, sig, act, oact, flags)
679	struct thread *td;
680	register int sig;
681	struct sigaction *act, *oact;
682	int flags;
683{
684	struct sigacts *ps;
685	struct proc *p = td->td_proc;
686
687	if (!_SIG_VALID(sig))
688		return (EINVAL);
689	if (act != NULL && act->sa_handler != SIG_DFL &&
690	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
691	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
692	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
693		return (EINVAL);
694
695	PROC_LOCK(p);
696	ps = p->p_sigacts;
697	mtx_lock(&ps->ps_mtx);
698	if (oact) {
699		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
700		oact->sa_flags = 0;
701		if (SIGISMEMBER(ps->ps_sigonstack, sig))
702			oact->sa_flags |= SA_ONSTACK;
703		if (!SIGISMEMBER(ps->ps_sigintr, sig))
704			oact->sa_flags |= SA_RESTART;
705		if (SIGISMEMBER(ps->ps_sigreset, sig))
706			oact->sa_flags |= SA_RESETHAND;
707		if (SIGISMEMBER(ps->ps_signodefer, sig))
708			oact->sa_flags |= SA_NODEFER;
709		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
710			oact->sa_flags |= SA_SIGINFO;
711			oact->sa_sigaction =
712			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
713		} else
714			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
715		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
716			oact->sa_flags |= SA_NOCLDSTOP;
717		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
718			oact->sa_flags |= SA_NOCLDWAIT;
719	}
720	if (act) {
721		if ((sig == SIGKILL || sig == SIGSTOP) &&
722		    act->sa_handler != SIG_DFL) {
723			mtx_unlock(&ps->ps_mtx);
724			PROC_UNLOCK(p);
725			return (EINVAL);
726		}
727
728		/*
729		 * Change setting atomically.
730		 */
731
732		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
733		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
734		if (sigact_flag_test(act, SA_SIGINFO)) {
735			ps->ps_sigact[_SIG_IDX(sig)] =
736			    (__sighandler_t *)act->sa_sigaction;
737			SIGADDSET(ps->ps_siginfo, sig);
738		} else {
739			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
740			SIGDELSET(ps->ps_siginfo, sig);
741		}
742		if (!sigact_flag_test(act, SA_RESTART))
743			SIGADDSET(ps->ps_sigintr, sig);
744		else
745			SIGDELSET(ps->ps_sigintr, sig);
746		if (sigact_flag_test(act, SA_ONSTACK))
747			SIGADDSET(ps->ps_sigonstack, sig);
748		else
749			SIGDELSET(ps->ps_sigonstack, sig);
750		if (sigact_flag_test(act, SA_RESETHAND))
751			SIGADDSET(ps->ps_sigreset, sig);
752		else
753			SIGDELSET(ps->ps_sigreset, sig);
754		if (sigact_flag_test(act, SA_NODEFER))
755			SIGADDSET(ps->ps_signodefer, sig);
756		else
757			SIGDELSET(ps->ps_signodefer, sig);
758		if (sig == SIGCHLD) {
759			if (act->sa_flags & SA_NOCLDSTOP)
760				ps->ps_flag |= PS_NOCLDSTOP;
761			else
762				ps->ps_flag &= ~PS_NOCLDSTOP;
763			if (act->sa_flags & SA_NOCLDWAIT) {
764				/*
765				 * Paranoia: since SA_NOCLDWAIT is implemented
766				 * by reparenting the dying child to PID 1 (and
767				 * trust it to reap the zombie), PID 1 itself
768				 * is forbidden to set SA_NOCLDWAIT.
769				 */
770				if (p->p_pid == 1)
771					ps->ps_flag &= ~PS_NOCLDWAIT;
772				else
773					ps->ps_flag |= PS_NOCLDWAIT;
774			} else
775				ps->ps_flag &= ~PS_NOCLDWAIT;
776			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
777				ps->ps_flag |= PS_CLDSIGIGN;
778			else
779				ps->ps_flag &= ~PS_CLDSIGIGN;
780		}
781		/*
782		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
783		 * and for signals set to SIG_DFL where the default is to
784		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
785		 * have to restart the process.
786		 */
787		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
788		    (sigprop(sig) & SA_IGNORE &&
789		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
790			/* never to be seen again */
791			sigqueue_delete_proc(p, sig);
792			if (sig != SIGCONT)
793				/* easier in psignal */
794				SIGADDSET(ps->ps_sigignore, sig);
795			SIGDELSET(ps->ps_sigcatch, sig);
796		} else {
797			SIGDELSET(ps->ps_sigignore, sig);
798			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
799				SIGDELSET(ps->ps_sigcatch, sig);
800			else
801				SIGADDSET(ps->ps_sigcatch, sig);
802		}
803#ifdef COMPAT_FREEBSD4
804		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
805		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
806		    (flags & KSA_FREEBSD4) == 0)
807			SIGDELSET(ps->ps_freebsd4, sig);
808		else
809			SIGADDSET(ps->ps_freebsd4, sig);
810#endif
811#ifdef COMPAT_43
812		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
813		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
814		    (flags & KSA_OSIGSET) == 0)
815			SIGDELSET(ps->ps_osigset, sig);
816		else
817			SIGADDSET(ps->ps_osigset, sig);
818#endif
819	}
820	mtx_unlock(&ps->ps_mtx);
821	PROC_UNLOCK(p);
822	return (0);
823}
824
825#ifndef _SYS_SYSPROTO_H_
826struct sigaction_args {
827	int	sig;
828	struct	sigaction *act;
829	struct	sigaction *oact;
830};
831#endif
832int
833sys_sigaction(td, uap)
834	struct thread *td;
835	register struct sigaction_args *uap;
836{
837	struct sigaction act, oact;
838	register struct sigaction *actp, *oactp;
839	int error;
840
841	actp = (uap->act != NULL) ? &act : NULL;
842	oactp = (uap->oact != NULL) ? &oact : NULL;
843	if (actp) {
844		error = copyin(uap->act, actp, sizeof(act));
845		if (error)
846			return (error);
847	}
848	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
849	if (oactp && !error)
850		error = copyout(oactp, uap->oact, sizeof(oact));
851	return (error);
852}
853
854#ifdef COMPAT_FREEBSD4
855#ifndef _SYS_SYSPROTO_H_
856struct freebsd4_sigaction_args {
857	int	sig;
858	struct	sigaction *act;
859	struct	sigaction *oact;
860};
861#endif
862int
863freebsd4_sigaction(td, uap)
864	struct thread *td;
865	register struct freebsd4_sigaction_args *uap;
866{
867	struct sigaction act, oact;
868	register struct sigaction *actp, *oactp;
869	int error;
870
871
872	actp = (uap->act != NULL) ? &act : NULL;
873	oactp = (uap->oact != NULL) ? &oact : NULL;
874	if (actp) {
875		error = copyin(uap->act, actp, sizeof(act));
876		if (error)
877			return (error);
878	}
879	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
880	if (oactp && !error)
881		error = copyout(oactp, uap->oact, sizeof(oact));
882	return (error);
883}
884#endif	/* COMAPT_FREEBSD4 */
885
886#ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
887#ifndef _SYS_SYSPROTO_H_
888struct osigaction_args {
889	int	signum;
890	struct	osigaction *nsa;
891	struct	osigaction *osa;
892};
893#endif
894int
895osigaction(td, uap)
896	struct thread *td;
897	register struct osigaction_args *uap;
898{
899	struct osigaction sa;
900	struct sigaction nsa, osa;
901	register struct sigaction *nsap, *osap;
902	int error;
903
904	if (uap->signum <= 0 || uap->signum >= ONSIG)
905		return (EINVAL);
906
907	nsap = (uap->nsa != NULL) ? &nsa : NULL;
908	osap = (uap->osa != NULL) ? &osa : NULL;
909
910	if (nsap) {
911		error = copyin(uap->nsa, &sa, sizeof(sa));
912		if (error)
913			return (error);
914		nsap->sa_handler = sa.sa_handler;
915		nsap->sa_flags = sa.sa_flags;
916		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
917	}
918	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
919	if (osap && !error) {
920		sa.sa_handler = osap->sa_handler;
921		sa.sa_flags = osap->sa_flags;
922		SIG2OSIG(osap->sa_mask, sa.sa_mask);
923		error = copyout(&sa, uap->osa, sizeof(sa));
924	}
925	return (error);
926}
927
928#if !defined(__i386__)
929/* Avoid replicating the same stub everywhere */
930int
931osigreturn(td, uap)
932	struct thread *td;
933	struct osigreturn_args *uap;
934{
935
936	return (nosys(td, (struct nosys_args *)uap));
937}
938#endif
939#endif /* COMPAT_43 */
940
941/*
942 * Initialize signal state for process 0;
943 * set to ignore signals that are ignored by default.
944 */
945void
946siginit(p)
947	struct proc *p;
948{
949	register int i;
950	struct sigacts *ps;
951
952	PROC_LOCK(p);
953	ps = p->p_sigacts;
954	mtx_lock(&ps->ps_mtx);
955	for (i = 1; i <= NSIG; i++) {
956		if (sigprop(i) & SA_IGNORE && i != SIGCONT) {
957			SIGADDSET(ps->ps_sigignore, i);
958		}
959	}
960	mtx_unlock(&ps->ps_mtx);
961	PROC_UNLOCK(p);
962}
963
964/*
965 * Reset specified signal to the default disposition.
966 */
967static void
968sigdflt(struct sigacts *ps, int sig)
969{
970
971	mtx_assert(&ps->ps_mtx, MA_OWNED);
972	SIGDELSET(ps->ps_sigcatch, sig);
973	if ((sigprop(sig) & SA_IGNORE) != 0 && sig != SIGCONT)
974		SIGADDSET(ps->ps_sigignore, sig);
975	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
976	SIGDELSET(ps->ps_siginfo, sig);
977}
978
979/*
980 * Reset signals for an exec of the specified process.
981 */
982void
983execsigs(struct proc *p)
984{
985	struct sigacts *ps;
986	int sig;
987	struct thread *td;
988
989	/*
990	 * Reset caught signals.  Held signals remain held
991	 * through td_sigmask (unless they were caught,
992	 * and are now ignored by default).
993	 */
994	PROC_LOCK_ASSERT(p, MA_OWNED);
995	ps = p->p_sigacts;
996	mtx_lock(&ps->ps_mtx);
997	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
998		sig = sig_ffs(&ps->ps_sigcatch);
999		sigdflt(ps, sig);
1000		if ((sigprop(sig) & SA_IGNORE) != 0)
1001			sigqueue_delete_proc(p, sig);
1002	}
1003	/*
1004	 * Reset stack state to the user stack.
1005	 * Clear set of signals caught on the signal stack.
1006	 */
1007	td = curthread;
1008	MPASS(td->td_proc == p);
1009	td->td_sigstk.ss_flags = SS_DISABLE;
1010	td->td_sigstk.ss_size = 0;
1011	td->td_sigstk.ss_sp = 0;
1012	td->td_pflags &= ~TDP_ALTSTACK;
1013	/*
1014	 * Reset no zombies if child dies flag as Solaris does.
1015	 */
1016	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1017	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1018		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1019	mtx_unlock(&ps->ps_mtx);
1020}
1021
1022/*
1023 * kern_sigprocmask()
1024 *
1025 *	Manipulate signal mask.
1026 */
1027int
1028kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1029    int flags)
1030{
1031	sigset_t new_block, oset1;
1032	struct proc *p;
1033	int error;
1034
1035	p = td->td_proc;
1036	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1037		PROC_LOCK_ASSERT(p, MA_OWNED);
1038	else
1039		PROC_LOCK(p);
1040	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1041	    ? MA_OWNED : MA_NOTOWNED);
1042	if (oset != NULL)
1043		*oset = td->td_sigmask;
1044
1045	error = 0;
1046	if (set != NULL) {
1047		switch (how) {
1048		case SIG_BLOCK:
1049			SIG_CANTMASK(*set);
1050			oset1 = td->td_sigmask;
1051			SIGSETOR(td->td_sigmask, *set);
1052			new_block = td->td_sigmask;
1053			SIGSETNAND(new_block, oset1);
1054			break;
1055		case SIG_UNBLOCK:
1056			SIGSETNAND(td->td_sigmask, *set);
1057			signotify(td);
1058			goto out;
1059		case SIG_SETMASK:
1060			SIG_CANTMASK(*set);
1061			oset1 = td->td_sigmask;
1062			if (flags & SIGPROCMASK_OLD)
1063				SIGSETLO(td->td_sigmask, *set);
1064			else
1065				td->td_sigmask = *set;
1066			new_block = td->td_sigmask;
1067			SIGSETNAND(new_block, oset1);
1068			signotify(td);
1069			break;
1070		default:
1071			error = EINVAL;
1072			goto out;
1073		}
1074
1075		/*
1076		 * The new_block set contains signals that were not previously
1077		 * blocked, but are blocked now.
1078		 *
1079		 * In case we block any signal that was not previously blocked
1080		 * for td, and process has the signal pending, try to schedule
1081		 * signal delivery to some thread that does not block the
1082		 * signal, possibly waking it up.
1083		 */
1084		if (p->p_numthreads != 1)
1085			reschedule_signals(p, new_block, flags);
1086	}
1087
1088out:
1089	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1090		PROC_UNLOCK(p);
1091	return (error);
1092}
1093
1094#ifndef _SYS_SYSPROTO_H_
1095struct sigprocmask_args {
1096	int	how;
1097	const sigset_t *set;
1098	sigset_t *oset;
1099};
1100#endif
1101int
1102sys_sigprocmask(td, uap)
1103	register struct thread *td;
1104	struct sigprocmask_args *uap;
1105{
1106	sigset_t set, oset;
1107	sigset_t *setp, *osetp;
1108	int error;
1109
1110	setp = (uap->set != NULL) ? &set : NULL;
1111	osetp = (uap->oset != NULL) ? &oset : NULL;
1112	if (setp) {
1113		error = copyin(uap->set, setp, sizeof(set));
1114		if (error)
1115			return (error);
1116	}
1117	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1118	if (osetp && !error) {
1119		error = copyout(osetp, uap->oset, sizeof(oset));
1120	}
1121	return (error);
1122}
1123
1124#ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1125#ifndef _SYS_SYSPROTO_H_
1126struct osigprocmask_args {
1127	int	how;
1128	osigset_t mask;
1129};
1130#endif
1131int
1132osigprocmask(td, uap)
1133	register struct thread *td;
1134	struct osigprocmask_args *uap;
1135{
1136	sigset_t set, oset;
1137	int error;
1138
1139	OSIG2SIG(uap->mask, set);
1140	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1141	SIG2OSIG(oset, td->td_retval[0]);
1142	return (error);
1143}
1144#endif /* COMPAT_43 */
1145
1146int
1147sys_sigwait(struct thread *td, struct sigwait_args *uap)
1148{
1149	ksiginfo_t ksi;
1150	sigset_t set;
1151	int error;
1152
1153	error = copyin(uap->set, &set, sizeof(set));
1154	if (error) {
1155		td->td_retval[0] = error;
1156		return (0);
1157	}
1158
1159	error = kern_sigtimedwait(td, set, &ksi, NULL);
1160	if (error) {
1161		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1162			error = ERESTART;
1163		if (error == ERESTART)
1164			return (error);
1165		td->td_retval[0] = error;
1166		return (0);
1167	}
1168
1169	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1170	td->td_retval[0] = error;
1171	return (0);
1172}
1173
1174int
1175sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1176{
1177	struct timespec ts;
1178	struct timespec *timeout;
1179	sigset_t set;
1180	ksiginfo_t ksi;
1181	int error;
1182
1183	if (uap->timeout) {
1184		error = copyin(uap->timeout, &ts, sizeof(ts));
1185		if (error)
1186			return (error);
1187
1188		timeout = &ts;
1189	} else
1190		timeout = NULL;
1191
1192	error = copyin(uap->set, &set, sizeof(set));
1193	if (error)
1194		return (error);
1195
1196	error = kern_sigtimedwait(td, set, &ksi, timeout);
1197	if (error)
1198		return (error);
1199
1200	if (uap->info)
1201		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1202
1203	if (error == 0)
1204		td->td_retval[0] = ksi.ksi_signo;
1205	return (error);
1206}
1207
1208int
1209sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1210{
1211	ksiginfo_t ksi;
1212	sigset_t set;
1213	int error;
1214
1215	error = copyin(uap->set, &set, sizeof(set));
1216	if (error)
1217		return (error);
1218
1219	error = kern_sigtimedwait(td, set, &ksi, NULL);
1220	if (error)
1221		return (error);
1222
1223	if (uap->info)
1224		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1225
1226	if (error == 0)
1227		td->td_retval[0] = ksi.ksi_signo;
1228	return (error);
1229}
1230
1231int
1232kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1233	struct timespec *timeout)
1234{
1235	struct sigacts *ps;
1236	sigset_t saved_mask, new_block;
1237	struct proc *p;
1238	int error, sig, timo, timevalid = 0;
1239	struct timespec rts, ets, ts;
1240	struct timeval tv;
1241
1242	p = td->td_proc;
1243	error = 0;
1244	ets.tv_sec = 0;
1245	ets.tv_nsec = 0;
1246
1247	if (timeout != NULL) {
1248		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1249			timevalid = 1;
1250			getnanouptime(&rts);
1251			ets = rts;
1252			timespecadd(&ets, timeout);
1253		}
1254	}
1255	ksiginfo_init(ksi);
1256	/* Some signals can not be waited for. */
1257	SIG_CANTMASK(waitset);
1258	ps = p->p_sigacts;
1259	PROC_LOCK(p);
1260	saved_mask = td->td_sigmask;
1261	SIGSETNAND(td->td_sigmask, waitset);
1262	for (;;) {
1263		mtx_lock(&ps->ps_mtx);
1264		sig = cursig(td);
1265		mtx_unlock(&ps->ps_mtx);
1266		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1267			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1268			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1269				error = 0;
1270				break;
1271			}
1272		}
1273
1274		if (error != 0)
1275			break;
1276
1277		/*
1278		 * POSIX says this must be checked after looking for pending
1279		 * signals.
1280		 */
1281		if (timeout != NULL) {
1282			if (!timevalid) {
1283				error = EINVAL;
1284				break;
1285			}
1286			getnanouptime(&rts);
1287			if (timespeccmp(&rts, &ets, >=)) {
1288				error = EAGAIN;
1289				break;
1290			}
1291			ts = ets;
1292			timespecsub(&ts, &rts);
1293			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1294			timo = tvtohz(&tv);
1295		} else {
1296			timo = 0;
1297		}
1298
1299		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1300
1301		if (timeout != NULL) {
1302			if (error == ERESTART) {
1303				/* Timeout can not be restarted. */
1304				error = EINTR;
1305			} else if (error == EAGAIN) {
1306				/* We will calculate timeout by ourself. */
1307				error = 0;
1308			}
1309		}
1310	}
1311
1312	new_block = saved_mask;
1313	SIGSETNAND(new_block, td->td_sigmask);
1314	td->td_sigmask = saved_mask;
1315	/*
1316	 * Fewer signals can be delivered to us, reschedule signal
1317	 * notification.
1318	 */
1319	if (p->p_numthreads != 1)
1320		reschedule_signals(p, new_block, 0);
1321
1322	if (error == 0) {
1323		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1324
1325		if (ksi->ksi_code == SI_TIMER)
1326			itimer_accept(p, ksi->ksi_timerid, ksi);
1327
1328#ifdef KTRACE
1329		if (KTRPOINT(td, KTR_PSIG)) {
1330			sig_t action;
1331
1332			mtx_lock(&ps->ps_mtx);
1333			action = ps->ps_sigact[_SIG_IDX(sig)];
1334			mtx_unlock(&ps->ps_mtx);
1335			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1336		}
1337#endif
1338		if (sig == SIGKILL)
1339			sigexit(td, sig);
1340	}
1341	PROC_UNLOCK(p);
1342	return (error);
1343}
1344
1345#ifndef _SYS_SYSPROTO_H_
1346struct sigpending_args {
1347	sigset_t	*set;
1348};
1349#endif
1350int
1351sys_sigpending(td, uap)
1352	struct thread *td;
1353	struct sigpending_args *uap;
1354{
1355	struct proc *p = td->td_proc;
1356	sigset_t pending;
1357
1358	PROC_LOCK(p);
1359	pending = p->p_sigqueue.sq_signals;
1360	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1361	PROC_UNLOCK(p);
1362	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1363}
1364
1365#ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1366#ifndef _SYS_SYSPROTO_H_
1367struct osigpending_args {
1368	int	dummy;
1369};
1370#endif
1371int
1372osigpending(td, uap)
1373	struct thread *td;
1374	struct osigpending_args *uap;
1375{
1376	struct proc *p = td->td_proc;
1377	sigset_t pending;
1378
1379	PROC_LOCK(p);
1380	pending = p->p_sigqueue.sq_signals;
1381	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1382	PROC_UNLOCK(p);
1383	SIG2OSIG(pending, td->td_retval[0]);
1384	return (0);
1385}
1386#endif /* COMPAT_43 */
1387
1388#if defined(COMPAT_43)
1389/*
1390 * Generalized interface signal handler, 4.3-compatible.
1391 */
1392#ifndef _SYS_SYSPROTO_H_
1393struct osigvec_args {
1394	int	signum;
1395	struct	sigvec *nsv;
1396	struct	sigvec *osv;
1397};
1398#endif
1399/* ARGSUSED */
1400int
1401osigvec(td, uap)
1402	struct thread *td;
1403	register struct osigvec_args *uap;
1404{
1405	struct sigvec vec;
1406	struct sigaction nsa, osa;
1407	register struct sigaction *nsap, *osap;
1408	int error;
1409
1410	if (uap->signum <= 0 || uap->signum >= ONSIG)
1411		return (EINVAL);
1412	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1413	osap = (uap->osv != NULL) ? &osa : NULL;
1414	if (nsap) {
1415		error = copyin(uap->nsv, &vec, sizeof(vec));
1416		if (error)
1417			return (error);
1418		nsap->sa_handler = vec.sv_handler;
1419		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1420		nsap->sa_flags = vec.sv_flags;
1421		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1422	}
1423	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1424	if (osap && !error) {
1425		vec.sv_handler = osap->sa_handler;
1426		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1427		vec.sv_flags = osap->sa_flags;
1428		vec.sv_flags &= ~SA_NOCLDWAIT;
1429		vec.sv_flags ^= SA_RESTART;
1430		error = copyout(&vec, uap->osv, sizeof(vec));
1431	}
1432	return (error);
1433}
1434
1435#ifndef _SYS_SYSPROTO_H_
1436struct osigblock_args {
1437	int	mask;
1438};
1439#endif
1440int
1441osigblock(td, uap)
1442	register struct thread *td;
1443	struct osigblock_args *uap;
1444{
1445	sigset_t set, oset;
1446
1447	OSIG2SIG(uap->mask, set);
1448	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1449	SIG2OSIG(oset, td->td_retval[0]);
1450	return (0);
1451}
1452
1453#ifndef _SYS_SYSPROTO_H_
1454struct osigsetmask_args {
1455	int	mask;
1456};
1457#endif
1458int
1459osigsetmask(td, uap)
1460	struct thread *td;
1461	struct osigsetmask_args *uap;
1462{
1463	sigset_t set, oset;
1464
1465	OSIG2SIG(uap->mask, set);
1466	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1467	SIG2OSIG(oset, td->td_retval[0]);
1468	return (0);
1469}
1470#endif /* COMPAT_43 */
1471
1472/*
1473 * Suspend calling thread until signal, providing mask to be set in the
1474 * meantime.
1475 */
1476#ifndef _SYS_SYSPROTO_H_
1477struct sigsuspend_args {
1478	const sigset_t *sigmask;
1479};
1480#endif
1481/* ARGSUSED */
1482int
1483sys_sigsuspend(td, uap)
1484	struct thread *td;
1485	struct sigsuspend_args *uap;
1486{
1487	sigset_t mask;
1488	int error;
1489
1490	error = copyin(uap->sigmask, &mask, sizeof(mask));
1491	if (error)
1492		return (error);
1493	return (kern_sigsuspend(td, mask));
1494}
1495
1496int
1497kern_sigsuspend(struct thread *td, sigset_t mask)
1498{
1499	struct proc *p = td->td_proc;
1500	int has_sig, sig;
1501
1502	/*
1503	 * When returning from sigsuspend, we want
1504	 * the old mask to be restored after the
1505	 * signal handler has finished.  Thus, we
1506	 * save it here and mark the sigacts structure
1507	 * to indicate this.
1508	 */
1509	PROC_LOCK(p);
1510	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1511	    SIGPROCMASK_PROC_LOCKED);
1512	td->td_pflags |= TDP_OLDMASK;
1513
1514	/*
1515	 * Process signals now. Otherwise, we can get spurious wakeup
1516	 * due to signal entered process queue, but delivered to other
1517	 * thread. But sigsuspend should return only on signal
1518	 * delivery.
1519	 */
1520	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1521	for (has_sig = 0; !has_sig;) {
1522		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1523			0) == 0)
1524			/* void */;
1525		thread_suspend_check(0);
1526		mtx_lock(&p->p_sigacts->ps_mtx);
1527		while ((sig = cursig(td)) != 0)
1528			has_sig += postsig(sig);
1529		mtx_unlock(&p->p_sigacts->ps_mtx);
1530	}
1531	PROC_UNLOCK(p);
1532	td->td_errno = EINTR;
1533	td->td_pflags |= TDP_NERRNO;
1534	return (EJUSTRETURN);
1535}
1536
1537#ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1538/*
1539 * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1540 * convention: libc stub passes mask, not pointer, to save a copyin.
1541 */
1542#ifndef _SYS_SYSPROTO_H_
1543struct osigsuspend_args {
1544	osigset_t mask;
1545};
1546#endif
1547/* ARGSUSED */
1548int
1549osigsuspend(td, uap)
1550	struct thread *td;
1551	struct osigsuspend_args *uap;
1552{
1553	sigset_t mask;
1554
1555	OSIG2SIG(uap->mask, mask);
1556	return (kern_sigsuspend(td, mask));
1557}
1558#endif /* COMPAT_43 */
1559
1560#if defined(COMPAT_43)
1561#ifndef _SYS_SYSPROTO_H_
1562struct osigstack_args {
1563	struct	sigstack *nss;
1564	struct	sigstack *oss;
1565};
1566#endif
1567/* ARGSUSED */
1568int
1569osigstack(td, uap)
1570	struct thread *td;
1571	register struct osigstack_args *uap;
1572{
1573	struct sigstack nss, oss;
1574	int error = 0;
1575
1576	if (uap->nss != NULL) {
1577		error = copyin(uap->nss, &nss, sizeof(nss));
1578		if (error)
1579			return (error);
1580	}
1581	oss.ss_sp = td->td_sigstk.ss_sp;
1582	oss.ss_onstack = sigonstack(cpu_getstack(td));
1583	if (uap->nss != NULL) {
1584		td->td_sigstk.ss_sp = nss.ss_sp;
1585		td->td_sigstk.ss_size = 0;
1586		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1587		td->td_pflags |= TDP_ALTSTACK;
1588	}
1589	if (uap->oss != NULL)
1590		error = copyout(&oss, uap->oss, sizeof(oss));
1591
1592	return (error);
1593}
1594#endif /* COMPAT_43 */
1595
1596#ifndef _SYS_SYSPROTO_H_
1597struct sigaltstack_args {
1598	stack_t	*ss;
1599	stack_t	*oss;
1600};
1601#endif
1602/* ARGSUSED */
1603int
1604sys_sigaltstack(td, uap)
1605	struct thread *td;
1606	register struct sigaltstack_args *uap;
1607{
1608	stack_t ss, oss;
1609	int error;
1610
1611	if (uap->ss != NULL) {
1612		error = copyin(uap->ss, &ss, sizeof(ss));
1613		if (error)
1614			return (error);
1615	}
1616	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1617	    (uap->oss != NULL) ? &oss : NULL);
1618	if (error)
1619		return (error);
1620	if (uap->oss != NULL)
1621		error = copyout(&oss, uap->oss, sizeof(stack_t));
1622	return (error);
1623}
1624
1625int
1626kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1627{
1628	struct proc *p = td->td_proc;
1629	int oonstack;
1630
1631	oonstack = sigonstack(cpu_getstack(td));
1632
1633	if (oss != NULL) {
1634		*oss = td->td_sigstk;
1635		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1636		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1637	}
1638
1639	if (ss != NULL) {
1640		if (oonstack)
1641			return (EPERM);
1642		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1643			return (EINVAL);
1644		if (!(ss->ss_flags & SS_DISABLE)) {
1645			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1646				return (ENOMEM);
1647
1648			td->td_sigstk = *ss;
1649			td->td_pflags |= TDP_ALTSTACK;
1650		} else {
1651			td->td_pflags &= ~TDP_ALTSTACK;
1652		}
1653	}
1654	return (0);
1655}
1656
1657/*
1658 * Common code for kill process group/broadcast kill.
1659 * cp is calling process.
1660 */
1661static int
1662killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1663{
1664	struct proc *p;
1665	struct pgrp *pgrp;
1666	int err;
1667	int ret;
1668
1669	ret = ESRCH;
1670	if (all) {
1671		/*
1672		 * broadcast
1673		 */
1674		sx_slock(&allproc_lock);
1675		FOREACH_PROC_IN_SYSTEM(p) {
1676			PROC_LOCK(p);
1677			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1678			    p == td->td_proc || p->p_state == PRS_NEW) {
1679				PROC_UNLOCK(p);
1680				continue;
1681			}
1682			err = p_cansignal(td, p, sig);
1683			if (err == 0) {
1684				if (sig)
1685					pksignal(p, sig, ksi);
1686				ret = err;
1687			}
1688			else if (ret == ESRCH)
1689				ret = err;
1690			PROC_UNLOCK(p);
1691		}
1692		sx_sunlock(&allproc_lock);
1693	} else {
1694		sx_slock(&proctree_lock);
1695		if (pgid == 0) {
1696			/*
1697			 * zero pgid means send to my process group.
1698			 */
1699			pgrp = td->td_proc->p_pgrp;
1700			PGRP_LOCK(pgrp);
1701		} else {
1702			pgrp = pgfind(pgid);
1703			if (pgrp == NULL) {
1704				sx_sunlock(&proctree_lock);
1705				return (ESRCH);
1706			}
1707		}
1708		sx_sunlock(&proctree_lock);
1709		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1710			PROC_LOCK(p);
1711			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1712			    p->p_state == PRS_NEW) {
1713				PROC_UNLOCK(p);
1714				continue;
1715			}
1716			err = p_cansignal(td, p, sig);
1717			if (err == 0) {
1718				if (sig)
1719					pksignal(p, sig, ksi);
1720				ret = err;
1721			}
1722			else if (ret == ESRCH)
1723				ret = err;
1724			PROC_UNLOCK(p);
1725		}
1726		PGRP_UNLOCK(pgrp);
1727	}
1728	return (ret);
1729}
1730
1731#ifndef _SYS_SYSPROTO_H_
1732struct kill_args {
1733	int	pid;
1734	int	signum;
1735};
1736#endif
1737/* ARGSUSED */
1738int
1739sys_kill(struct thread *td, struct kill_args *uap)
1740{
1741	ksiginfo_t ksi;
1742	struct proc *p;
1743	int error;
1744
1745	/*
1746	 * A process in capability mode can send signals only to himself.
1747	 * The main rationale behind this is that abort(3) is implemented as
1748	 * kill(getpid(), SIGABRT).
1749	 */
1750	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1751		return (ECAPMODE);
1752
1753	AUDIT_ARG_SIGNUM(uap->signum);
1754	AUDIT_ARG_PID(uap->pid);
1755	if ((u_int)uap->signum > _SIG_MAXSIG)
1756		return (EINVAL);
1757
1758	ksiginfo_init(&ksi);
1759	ksi.ksi_signo = uap->signum;
1760	ksi.ksi_code = SI_USER;
1761	ksi.ksi_pid = td->td_proc->p_pid;
1762	ksi.ksi_uid = td->td_ucred->cr_ruid;
1763
1764	if (uap->pid > 0) {
1765		/* kill single process */
1766		if ((p = pfind(uap->pid)) == NULL) {
1767			if ((p = zpfind(uap->pid)) == NULL)
1768				return (ESRCH);
1769		}
1770		AUDIT_ARG_PROCESS(p);
1771		error = p_cansignal(td, p, uap->signum);
1772		if (error == 0 && uap->signum)
1773			pksignal(p, uap->signum, &ksi);
1774		PROC_UNLOCK(p);
1775		return (error);
1776	}
1777	switch (uap->pid) {
1778	case -1:		/* broadcast signal */
1779		return (killpg1(td, uap->signum, 0, 1, &ksi));
1780	case 0:			/* signal own process group */
1781		return (killpg1(td, uap->signum, 0, 0, &ksi));
1782	default:		/* negative explicit process group */
1783		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1784	}
1785	/* NOTREACHED */
1786}
1787
1788int
1789sys_pdkill(td, uap)
1790	struct thread *td;
1791	struct pdkill_args *uap;
1792{
1793#ifdef PROCDESC
1794	struct proc *p;
1795	cap_rights_t rights;
1796	int error;
1797
1798	AUDIT_ARG_SIGNUM(uap->signum);
1799	AUDIT_ARG_FD(uap->fd);
1800	if ((u_int)uap->signum > _SIG_MAXSIG)
1801		return (EINVAL);
1802
1803	error = procdesc_find(td, uap->fd,
1804	    cap_rights_init(&rights, CAP_PDKILL), &p);
1805	if (error)
1806		return (error);
1807	AUDIT_ARG_PROCESS(p);
1808	error = p_cansignal(td, p, uap->signum);
1809	if (error == 0 && uap->signum)
1810		kern_psignal(p, uap->signum);
1811	PROC_UNLOCK(p);
1812	return (error);
1813#else
1814	return (ENOSYS);
1815#endif
1816}
1817
1818#if defined(COMPAT_43)
1819#ifndef _SYS_SYSPROTO_H_
1820struct okillpg_args {
1821	int	pgid;
1822	int	signum;
1823};
1824#endif
1825/* ARGSUSED */
1826int
1827okillpg(struct thread *td, struct okillpg_args *uap)
1828{
1829	ksiginfo_t ksi;
1830
1831	AUDIT_ARG_SIGNUM(uap->signum);
1832	AUDIT_ARG_PID(uap->pgid);
1833	if ((u_int)uap->signum > _SIG_MAXSIG)
1834		return (EINVAL);
1835
1836	ksiginfo_init(&ksi);
1837	ksi.ksi_signo = uap->signum;
1838	ksi.ksi_code = SI_USER;
1839	ksi.ksi_pid = td->td_proc->p_pid;
1840	ksi.ksi_uid = td->td_ucred->cr_ruid;
1841	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1842}
1843#endif /* COMPAT_43 */
1844
1845#ifndef _SYS_SYSPROTO_H_
1846struct sigqueue_args {
1847	pid_t pid;
1848	int signum;
1849	/* union sigval */ void *value;
1850};
1851#endif
1852int
1853sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1854{
1855	union sigval sv;
1856
1857	sv.sival_ptr = uap->value;
1858
1859	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1860}
1861
1862int
1863kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1864{
1865	ksiginfo_t ksi;
1866	struct proc *p;
1867	int error;
1868
1869	if ((u_int)signum > _SIG_MAXSIG)
1870		return (EINVAL);
1871
1872	/*
1873	 * Specification says sigqueue can only send signal to
1874	 * single process.
1875	 */
1876	if (pid <= 0)
1877		return (EINVAL);
1878
1879	if ((p = pfind(pid)) == NULL) {
1880		if ((p = zpfind(pid)) == NULL)
1881			return (ESRCH);
1882	}
1883	error = p_cansignal(td, p, signum);
1884	if (error == 0 && signum != 0) {
1885		ksiginfo_init(&ksi);
1886		ksi.ksi_flags = KSI_SIGQ;
1887		ksi.ksi_signo = signum;
1888		ksi.ksi_code = SI_QUEUE;
1889		ksi.ksi_pid = td->td_proc->p_pid;
1890		ksi.ksi_uid = td->td_ucred->cr_ruid;
1891		ksi.ksi_value = *value;
1892		error = pksignal(p, ksi.ksi_signo, &ksi);
1893	}
1894	PROC_UNLOCK(p);
1895	return (error);
1896}
1897
1898/*
1899 * Send a signal to a process group.
1900 */
1901void
1902gsignal(int pgid, int sig, ksiginfo_t *ksi)
1903{
1904	struct pgrp *pgrp;
1905
1906	if (pgid != 0) {
1907		sx_slock(&proctree_lock);
1908		pgrp = pgfind(pgid);
1909		sx_sunlock(&proctree_lock);
1910		if (pgrp != NULL) {
1911			pgsignal(pgrp, sig, 0, ksi);
1912			PGRP_UNLOCK(pgrp);
1913		}
1914	}
1915}
1916
1917/*
1918 * Send a signal to a process group.  If checktty is 1,
1919 * limit to members which have a controlling terminal.
1920 */
1921void
1922pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1923{
1924	struct proc *p;
1925
1926	if (pgrp) {
1927		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1928		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1929			PROC_LOCK(p);
1930			if (p->p_state == PRS_NORMAL &&
1931			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1932				pksignal(p, sig, ksi);
1933			PROC_UNLOCK(p);
1934		}
1935	}
1936}
1937
1938
1939/*
1940 * Recalculate the signal mask and reset the signal disposition after
1941 * usermode frame for delivery is formed.  Should be called after
1942 * mach-specific routine, because sysent->sv_sendsig() needs correct
1943 * ps_siginfo and signal mask.
1944 */
1945static void
1946postsig_done(int sig, struct thread *td, struct sigacts *ps)
1947{
1948	sigset_t mask;
1949
1950	mtx_assert(&ps->ps_mtx, MA_OWNED);
1951	td->td_ru.ru_nsignals++;
1952	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1953	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1954		SIGADDSET(mask, sig);
1955	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1956	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1957	if (SIGISMEMBER(ps->ps_sigreset, sig))
1958		sigdflt(ps, sig);
1959}
1960
1961
1962/*
1963 * Send a signal caused by a trap to the current thread.  If it will be
1964 * caught immediately, deliver it with correct code.  Otherwise, post it
1965 * normally.
1966 */
1967void
1968trapsignal(struct thread *td, ksiginfo_t *ksi)
1969{
1970	struct sigacts *ps;
1971	struct proc *p;
1972	int sig;
1973	int code;
1974
1975	p = td->td_proc;
1976	sig = ksi->ksi_signo;
1977	code = ksi->ksi_code;
1978	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1979
1980	PROC_LOCK(p);
1981	ps = p->p_sigacts;
1982	mtx_lock(&ps->ps_mtx);
1983	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1984	    !SIGISMEMBER(td->td_sigmask, sig)) {
1985#ifdef KTRACE
1986		if (KTRPOINT(curthread, KTR_PSIG))
1987			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1988			    &td->td_sigmask, code);
1989#endif
1990		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1991				ksi, &td->td_sigmask);
1992		postsig_done(sig, td, ps);
1993		mtx_unlock(&ps->ps_mtx);
1994	} else {
1995		/*
1996		 * Avoid a possible infinite loop if the thread
1997		 * masking the signal or process is ignoring the
1998		 * signal.
1999		 */
2000		if (kern_forcesigexit &&
2001		    (SIGISMEMBER(td->td_sigmask, sig) ||
2002		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
2003			SIGDELSET(td->td_sigmask, sig);
2004			SIGDELSET(ps->ps_sigcatch, sig);
2005			SIGDELSET(ps->ps_sigignore, sig);
2006			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2007		}
2008		mtx_unlock(&ps->ps_mtx);
2009		p->p_code = code;	/* XXX for core dump/debugger */
2010		p->p_sig = sig;		/* XXX to verify code */
2011		tdsendsignal(p, td, sig, ksi);
2012	}
2013	PROC_UNLOCK(p);
2014}
2015
2016static struct thread *
2017sigtd(struct proc *p, int sig, int prop)
2018{
2019	struct thread *td, *signal_td;
2020
2021	PROC_LOCK_ASSERT(p, MA_OWNED);
2022
2023	/*
2024	 * Check if current thread can handle the signal without
2025	 * switching context to another thread.
2026	 */
2027	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2028		return (curthread);
2029	signal_td = NULL;
2030	FOREACH_THREAD_IN_PROC(p, td) {
2031		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2032			signal_td = td;
2033			break;
2034		}
2035	}
2036	if (signal_td == NULL)
2037		signal_td = FIRST_THREAD_IN_PROC(p);
2038	return (signal_td);
2039}
2040
2041/*
2042 * Send the signal to the process.  If the signal has an action, the action
2043 * is usually performed by the target process rather than the caller; we add
2044 * the signal to the set of pending signals for the process.
2045 *
2046 * Exceptions:
2047 *   o When a stop signal is sent to a sleeping process that takes the
2048 *     default action, the process is stopped without awakening it.
2049 *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2050 *     regardless of the signal action (eg, blocked or ignored).
2051 *
2052 * Other ignored signals are discarded immediately.
2053 *
2054 * NB: This function may be entered from the debugger via the "kill" DDB
2055 * command.  There is little that can be done to mitigate the possibly messy
2056 * side effects of this unwise possibility.
2057 */
2058void
2059kern_psignal(struct proc *p, int sig)
2060{
2061	ksiginfo_t ksi;
2062
2063	ksiginfo_init(&ksi);
2064	ksi.ksi_signo = sig;
2065	ksi.ksi_code = SI_KERNEL;
2066	(void) tdsendsignal(p, NULL, sig, &ksi);
2067}
2068
2069int
2070pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2071{
2072
2073	return (tdsendsignal(p, NULL, sig, ksi));
2074}
2075
2076/* Utility function for finding a thread to send signal event to. */
2077int
2078sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2079{
2080	struct thread *td;
2081
2082	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2083		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2084		if (td == NULL)
2085			return (ESRCH);
2086		*ttd = td;
2087	} else {
2088		*ttd = NULL;
2089		PROC_LOCK(p);
2090	}
2091	return (0);
2092}
2093
2094void
2095tdsignal(struct thread *td, int sig)
2096{
2097	ksiginfo_t ksi;
2098
2099	ksiginfo_init(&ksi);
2100	ksi.ksi_signo = sig;
2101	ksi.ksi_code = SI_KERNEL;
2102	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2103}
2104
2105void
2106tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2107{
2108
2109	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2110}
2111
2112int
2113tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2114{
2115	sig_t action;
2116	sigqueue_t *sigqueue;
2117	int prop;
2118	struct sigacts *ps;
2119	int intrval;
2120	int ret = 0;
2121	int wakeup_swapper;
2122
2123	MPASS(td == NULL || p == td->td_proc);
2124	PROC_LOCK_ASSERT(p, MA_OWNED);
2125
2126	if (!_SIG_VALID(sig))
2127		panic("%s(): invalid signal %d", __func__, sig);
2128
2129	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2130
2131	/*
2132	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2133	 */
2134	if (p->p_state == PRS_ZOMBIE) {
2135		if (ksi && (ksi->ksi_flags & KSI_INS))
2136			ksiginfo_tryfree(ksi);
2137		return (ret);
2138	}
2139
2140	ps = p->p_sigacts;
2141	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2142	prop = sigprop(sig);
2143
2144	if (td == NULL) {
2145		td = sigtd(p, sig, prop);
2146		sigqueue = &p->p_sigqueue;
2147	} else
2148		sigqueue = &td->td_sigqueue;
2149
2150	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2151
2152	/*
2153	 * If the signal is being ignored,
2154	 * then we forget about it immediately.
2155	 * (Note: we don't set SIGCONT in ps_sigignore,
2156	 * and if it is set to SIG_IGN,
2157	 * action will be SIG_DFL here.)
2158	 */
2159	mtx_lock(&ps->ps_mtx);
2160	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2161		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2162
2163		mtx_unlock(&ps->ps_mtx);
2164		if (ksi && (ksi->ksi_flags & KSI_INS))
2165			ksiginfo_tryfree(ksi);
2166		return (ret);
2167	}
2168	if (SIGISMEMBER(td->td_sigmask, sig))
2169		action = SIG_HOLD;
2170	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2171		action = SIG_CATCH;
2172	else
2173		action = SIG_DFL;
2174	if (SIGISMEMBER(ps->ps_sigintr, sig))
2175		intrval = EINTR;
2176	else
2177		intrval = ERESTART;
2178	mtx_unlock(&ps->ps_mtx);
2179
2180	if (prop & SA_CONT)
2181		sigqueue_delete_stopmask_proc(p);
2182	else if (prop & SA_STOP) {
2183		/*
2184		 * If sending a tty stop signal to a member of an orphaned
2185		 * process group, discard the signal here if the action
2186		 * is default; don't stop the process below if sleeping,
2187		 * and don't clear any pending SIGCONT.
2188		 */
2189		if ((prop & SA_TTYSTOP) &&
2190		    (p->p_pgrp->pg_jobc == 0) &&
2191		    (action == SIG_DFL)) {
2192			if (ksi && (ksi->ksi_flags & KSI_INS))
2193				ksiginfo_tryfree(ksi);
2194			return (ret);
2195		}
2196		sigqueue_delete_proc(p, SIGCONT);
2197		if (p->p_flag & P_CONTINUED) {
2198			p->p_flag &= ~P_CONTINUED;
2199			PROC_LOCK(p->p_pptr);
2200			sigqueue_take(p->p_ksi);
2201			PROC_UNLOCK(p->p_pptr);
2202		}
2203	}
2204
2205	ret = sigqueue_add(sigqueue, sig, ksi);
2206	if (ret != 0)
2207		return (ret);
2208	signotify(td);
2209	/*
2210	 * Defer further processing for signals which are held,
2211	 * except that stopped processes must be continued by SIGCONT.
2212	 */
2213	if (action == SIG_HOLD &&
2214	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2215		return (ret);
2216
2217	/* SIGKILL: Remove procfs STOPEVENTs. */
2218	if (sig == SIGKILL) {
2219		/* from procfs_ioctl.c: PIOCBIC */
2220		p->p_stops = 0;
2221		/* from procfs_ioctl.c: PIOCCONT */
2222		p->p_step = 0;
2223		wakeup(&p->p_step);
2224	}
2225	/*
2226	 * Some signals have a process-wide effect and a per-thread
2227	 * component.  Most processing occurs when the process next
2228	 * tries to cross the user boundary, however there are some
2229	 * times when processing needs to be done immediately, such as
2230	 * waking up threads so that they can cross the user boundary.
2231	 * We try to do the per-process part here.
2232	 */
2233	if (P_SHOULDSTOP(p)) {
2234		KASSERT(!(p->p_flag & P_WEXIT),
2235		    ("signal to stopped but exiting process"));
2236		if (sig == SIGKILL) {
2237			/*
2238			 * If traced process is already stopped,
2239			 * then no further action is necessary.
2240			 */
2241			if (p->p_flag & P_TRACED)
2242				goto out;
2243			/*
2244			 * SIGKILL sets process running.
2245			 * It will die elsewhere.
2246			 * All threads must be restarted.
2247			 */
2248			p->p_flag &= ~P_STOPPED_SIG;
2249			goto runfast;
2250		}
2251
2252		if (prop & SA_CONT) {
2253			/*
2254			 * If traced process is already stopped,
2255			 * then no further action is necessary.
2256			 */
2257			if (p->p_flag & P_TRACED)
2258				goto out;
2259			/*
2260			 * If SIGCONT is default (or ignored), we continue the
2261			 * process but don't leave the signal in sigqueue as
2262			 * it has no further action.  If SIGCONT is held, we
2263			 * continue the process and leave the signal in
2264			 * sigqueue.  If the process catches SIGCONT, let it
2265			 * handle the signal itself.  If it isn't waiting on
2266			 * an event, it goes back to run state.
2267			 * Otherwise, process goes back to sleep state.
2268			 */
2269			p->p_flag &= ~P_STOPPED_SIG;
2270			PROC_SLOCK(p);
2271			if (p->p_numthreads == p->p_suspcount) {
2272				PROC_SUNLOCK(p);
2273				p->p_flag |= P_CONTINUED;
2274				p->p_xstat = SIGCONT;
2275				PROC_LOCK(p->p_pptr);
2276				childproc_continued(p);
2277				PROC_UNLOCK(p->p_pptr);
2278				PROC_SLOCK(p);
2279			}
2280			if (action == SIG_DFL) {
2281				thread_unsuspend(p);
2282				PROC_SUNLOCK(p);
2283				sigqueue_delete(sigqueue, sig);
2284				goto out;
2285			}
2286			if (action == SIG_CATCH) {
2287				/*
2288				 * The process wants to catch it so it needs
2289				 * to run at least one thread, but which one?
2290				 */
2291				PROC_SUNLOCK(p);
2292				goto runfast;
2293			}
2294			/*
2295			 * The signal is not ignored or caught.
2296			 */
2297			thread_unsuspend(p);
2298			PROC_SUNLOCK(p);
2299			goto out;
2300		}
2301
2302		if (prop & SA_STOP) {
2303			/*
2304			 * If traced process is already stopped,
2305			 * then no further action is necessary.
2306			 */
2307			if (p->p_flag & P_TRACED)
2308				goto out;
2309			/*
2310			 * Already stopped, don't need to stop again
2311			 * (If we did the shell could get confused).
2312			 * Just make sure the signal STOP bit set.
2313			 */
2314			p->p_flag |= P_STOPPED_SIG;
2315			sigqueue_delete(sigqueue, sig);
2316			goto out;
2317		}
2318
2319		/*
2320		 * All other kinds of signals:
2321		 * If a thread is sleeping interruptibly, simulate a
2322		 * wakeup so that when it is continued it will be made
2323		 * runnable and can look at the signal.  However, don't make
2324		 * the PROCESS runnable, leave it stopped.
2325		 * It may run a bit until it hits a thread_suspend_check().
2326		 */
2327		wakeup_swapper = 0;
2328		PROC_SLOCK(p);
2329		thread_lock(td);
2330		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2331			wakeup_swapper = sleepq_abort(td, intrval);
2332		thread_unlock(td);
2333		PROC_SUNLOCK(p);
2334		if (wakeup_swapper)
2335			kick_proc0();
2336		goto out;
2337		/*
2338		 * Mutexes are short lived. Threads waiting on them will
2339		 * hit thread_suspend_check() soon.
2340		 */
2341	} else if (p->p_state == PRS_NORMAL) {
2342		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2343			tdsigwakeup(td, sig, action, intrval);
2344			goto out;
2345		}
2346
2347		MPASS(action == SIG_DFL);
2348
2349		if (prop & SA_STOP) {
2350			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2351				goto out;
2352			p->p_flag |= P_STOPPED_SIG;
2353			p->p_xstat = sig;
2354			PROC_SLOCK(p);
2355			sig_suspend_threads(td, p, 1);
2356			if (p->p_numthreads == p->p_suspcount) {
2357				/*
2358				 * only thread sending signal to another
2359				 * process can reach here, if thread is sending
2360				 * signal to its process, because thread does
2361				 * not suspend itself here, p_numthreads
2362				 * should never be equal to p_suspcount.
2363				 */
2364				thread_stopped(p);
2365				PROC_SUNLOCK(p);
2366				sigqueue_delete_proc(p, p->p_xstat);
2367			} else
2368				PROC_SUNLOCK(p);
2369			goto out;
2370		}
2371	} else {
2372		/* Not in "NORMAL" state. discard the signal. */
2373		sigqueue_delete(sigqueue, sig);
2374		goto out;
2375	}
2376
2377	/*
2378	 * The process is not stopped so we need to apply the signal to all the
2379	 * running threads.
2380	 */
2381runfast:
2382	tdsigwakeup(td, sig, action, intrval);
2383	PROC_SLOCK(p);
2384	thread_unsuspend(p);
2385	PROC_SUNLOCK(p);
2386out:
2387	/* If we jump here, proc slock should not be owned. */
2388	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2389	return (ret);
2390}
2391
2392/*
2393 * The force of a signal has been directed against a single
2394 * thread.  We need to see what we can do about knocking it
2395 * out of any sleep it may be in etc.
2396 */
2397static void
2398tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2399{
2400	struct proc *p = td->td_proc;
2401	register int prop;
2402	int wakeup_swapper;
2403
2404	wakeup_swapper = 0;
2405	PROC_LOCK_ASSERT(p, MA_OWNED);
2406	prop = sigprop(sig);
2407
2408	PROC_SLOCK(p);
2409	thread_lock(td);
2410	/*
2411	 * Bring the priority of a thread up if we want it to get
2412	 * killed in this lifetime.  Be careful to avoid bumping the
2413	 * priority of the idle thread, since we still allow to signal
2414	 * kernel processes.
2415	 */
2416	if (action == SIG_DFL && (prop & SA_KILL) != 0 &&
2417	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2418		sched_prio(td, PUSER);
2419	if (TD_ON_SLEEPQ(td)) {
2420		/*
2421		 * If thread is sleeping uninterruptibly
2422		 * we can't interrupt the sleep... the signal will
2423		 * be noticed when the process returns through
2424		 * trap() or syscall().
2425		 */
2426		if ((td->td_flags & TDF_SINTR) == 0)
2427			goto out;
2428		/*
2429		 * If SIGCONT is default (or ignored) and process is
2430		 * asleep, we are finished; the process should not
2431		 * be awakened.
2432		 */
2433		if ((prop & SA_CONT) && action == SIG_DFL) {
2434			thread_unlock(td);
2435			PROC_SUNLOCK(p);
2436			sigqueue_delete(&p->p_sigqueue, sig);
2437			/*
2438			 * It may be on either list in this state.
2439			 * Remove from both for now.
2440			 */
2441			sigqueue_delete(&td->td_sigqueue, sig);
2442			return;
2443		}
2444
2445		/*
2446		 * Don't awaken a sleeping thread for SIGSTOP if the
2447		 * STOP signal is deferred.
2448		 */
2449		if ((prop & SA_STOP) && (td->td_flags & TDF_SBDRY))
2450			goto out;
2451
2452		/*
2453		 * Give low priority threads a better chance to run.
2454		 */
2455		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2456			sched_prio(td, PUSER);
2457
2458		wakeup_swapper = sleepq_abort(td, intrval);
2459	} else {
2460		/*
2461		 * Other states do nothing with the signal immediately,
2462		 * other than kicking ourselves if we are running.
2463		 * It will either never be noticed, or noticed very soon.
2464		 */
2465#ifdef SMP
2466		if (TD_IS_RUNNING(td) && td != curthread)
2467			forward_signal(td);
2468#endif
2469	}
2470out:
2471	PROC_SUNLOCK(p);
2472	thread_unlock(td);
2473	if (wakeup_swapper)
2474		kick_proc0();
2475}
2476
2477static void
2478sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2479{
2480	struct thread *td2;
2481
2482	PROC_LOCK_ASSERT(p, MA_OWNED);
2483	PROC_SLOCK_ASSERT(p, MA_OWNED);
2484
2485	FOREACH_THREAD_IN_PROC(p, td2) {
2486		thread_lock(td2);
2487		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2488		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2489		    (td2->td_flags & TDF_SINTR)) {
2490			if (td2->td_flags & TDF_SBDRY) {
2491				/*
2492				 * Once a thread is asleep with
2493				 * TDF_SBDRY set, it should never
2494				 * become suspended due to this check.
2495				 */
2496				KASSERT(!TD_IS_SUSPENDED(td2),
2497				    ("thread with deferred stops suspended"));
2498			} else if (!TD_IS_SUSPENDED(td2)) {
2499				thread_suspend_one(td2);
2500			}
2501		} else if (!TD_IS_SUSPENDED(td2)) {
2502			if (sending || td != td2)
2503				td2->td_flags |= TDF_ASTPENDING;
2504#ifdef SMP
2505			if (TD_IS_RUNNING(td2) && td2 != td)
2506				forward_signal(td2);
2507#endif
2508		}
2509		thread_unlock(td2);
2510	}
2511}
2512
2513/*
2514 * Stop the process for an event deemed interesting to the debugger. If si is
2515 * non-NULL, this is a signal exchange; the new signal requested by the
2516 * debugger will be returned for handling. If si is NULL, this is some other
2517 * type of interesting event. The debugger may request a signal be delivered in
2518 * that case as well, however it will be deferred until it can be handled.
2519 */
2520int
2521ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2522{
2523	struct proc *p = td->td_proc;
2524	struct thread *td2;
2525	ksiginfo_t ksi;
2526	int prop;
2527
2528	PROC_LOCK_ASSERT(p, MA_OWNED);
2529	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2530	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2531	    &p->p_mtx.lock_object, "Stopping for traced signal");
2532
2533	td->td_xsig = sig;
2534
2535	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2536		td->td_dbgflags |= TDB_XSIG;
2537		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2538		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2539		PROC_SLOCK(p);
2540		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2541			if (P_KILLED(p)) {
2542				/*
2543				 * Ensure that, if we've been PT_KILLed, the
2544				 * exit status reflects that. Another thread
2545				 * may also be in ptracestop(), having just
2546				 * received the SIGKILL, but this thread was
2547				 * unsuspended first.
2548				 */
2549				td->td_dbgflags &= ~TDB_XSIG;
2550				td->td_xsig = SIGKILL;
2551				p->p_ptevents = 0;
2552				break;
2553			}
2554			if (p->p_flag & P_SINGLE_EXIT &&
2555			    !(td->td_dbgflags & TDB_EXIT)) {
2556				/*
2557				 * Ignore ptrace stops except for thread exit
2558				 * events when the process exits.
2559				 */
2560				td->td_dbgflags &= ~TDB_XSIG;
2561				PROC_SUNLOCK(p);
2562				return (0);
2563			}
2564
2565			/*
2566			 * Make wait(2) work.  Ensure that right after the
2567			 * attach, the thread which was decided to become the
2568			 * leader of attach gets reported to the waiter.
2569			 * Otherwise, just avoid overwriting another thread's
2570			 * assignment to p_xthread.  If another thread has
2571			 * already set p_xthread, the current thread will get
2572			 * a chance to report itself upon the next iteration.
2573			 */
2574			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2575			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2576			    p->p_xthread == NULL)) {
2577				p->p_xstat = sig;
2578				p->p_xthread = td;
2579				td->td_dbgflags &= ~TDB_FSTP;
2580				p->p_flag2 &= ~P2_PTRACE_FSTP;
2581				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2582				sig_suspend_threads(td, p, 0);
2583			}
2584			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2585				td->td_dbgflags &= ~TDB_STOPATFORK;
2586				cv_broadcast(&p->p_dbgwait);
2587			}
2588stopme:
2589			thread_suspend_switch(td, p);
2590			if (p->p_xthread == td)
2591				p->p_xthread = NULL;
2592			if (!(p->p_flag & P_TRACED))
2593				break;
2594			if (td->td_dbgflags & TDB_SUSPEND) {
2595				if (p->p_flag & P_SINGLE_EXIT)
2596					break;
2597				goto stopme;
2598			}
2599		}
2600		PROC_SUNLOCK(p);
2601	}
2602
2603	if (si != NULL && sig == td->td_xsig) {
2604		/* Parent wants us to take the original signal unchanged. */
2605		si->ksi_flags |= KSI_HEAD;
2606		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2607			si->ksi_signo = 0;
2608	} else if (td->td_xsig != 0) {
2609		/*
2610		 * If parent wants us to take a new signal, then it will leave
2611		 * it in td->td_xsig; otherwise we just look for signals again.
2612		 */
2613		ksiginfo_init(&ksi);
2614		ksi.ksi_signo = td->td_xsig;
2615		ksi.ksi_flags |= KSI_PTRACE;
2616		prop = sigprop(td->td_xsig);
2617		td2 = sigtd(p, td->td_xsig, prop);
2618		tdsendsignal(p, td2, td->td_xsig, &ksi);
2619		if (td != td2)
2620			return (0);
2621	}
2622
2623	return (td->td_xsig);
2624}
2625
2626static void
2627reschedule_signals(struct proc *p, sigset_t block, int flags)
2628{
2629	struct sigacts *ps;
2630	struct thread *td;
2631	int sig;
2632
2633	PROC_LOCK_ASSERT(p, MA_OWNED);
2634	ps = p->p_sigacts;
2635	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2636	    MA_OWNED : MA_NOTOWNED);
2637	if (SIGISEMPTY(p->p_siglist))
2638		return;
2639	SIGSETAND(block, p->p_siglist);
2640	while ((sig = sig_ffs(&block)) != 0) {
2641		SIGDELSET(block, sig);
2642		td = sigtd(p, sig, 0);
2643		signotify(td);
2644		if (!(flags & SIGPROCMASK_PS_LOCKED))
2645			mtx_lock(&ps->ps_mtx);
2646		if (p->p_flag & P_TRACED ||
2647		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2648		    !SIGISMEMBER(td->td_sigmask, sig)))
2649			tdsigwakeup(td, sig, SIG_CATCH,
2650			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2651			     ERESTART));
2652		if (!(flags & SIGPROCMASK_PS_LOCKED))
2653			mtx_unlock(&ps->ps_mtx);
2654	}
2655}
2656
2657void
2658tdsigcleanup(struct thread *td)
2659{
2660	struct proc *p;
2661	sigset_t unblocked;
2662
2663	p = td->td_proc;
2664	PROC_LOCK_ASSERT(p, MA_OWNED);
2665
2666	sigqueue_flush(&td->td_sigqueue);
2667	if (p->p_numthreads == 1)
2668		return;
2669
2670	/*
2671	 * Since we cannot handle signals, notify signal post code
2672	 * about this by filling the sigmask.
2673	 *
2674	 * Also, if needed, wake up thread(s) that do not block the
2675	 * same signals as the exiting thread, since the thread might
2676	 * have been selected for delivery and woken up.
2677	 */
2678	SIGFILLSET(unblocked);
2679	SIGSETNAND(unblocked, td->td_sigmask);
2680	SIGFILLSET(td->td_sigmask);
2681	reschedule_signals(p, unblocked, 0);
2682
2683}
2684
2685/*
2686 * Defer the delivery of SIGSTOP for the current thread.  Returns true
2687 * if stops were deferred and false if they were already deferred.
2688 */
2689int
2690sigdeferstop(void)
2691{
2692	struct thread *td;
2693
2694	td = curthread;
2695	if (td->td_flags & TDF_SBDRY)
2696		return (0);
2697	thread_lock(td);
2698	td->td_flags |= TDF_SBDRY;
2699	thread_unlock(td);
2700	return (1);
2701}
2702
2703/*
2704 * Permit the delivery of SIGSTOP for the current thread.  This does
2705 * not immediately suspend if a stop was posted.  Instead, the thread
2706 * will suspend either via ast() or a subsequent interruptible sleep.
2707 */
2708int
2709sigallowstop(void)
2710{
2711	struct thread *td;
2712	int prev;
2713
2714	td = curthread;
2715	thread_lock(td);
2716	prev = (td->td_flags & TDF_SBDRY) != 0;
2717	td->td_flags &= ~TDF_SBDRY;
2718	thread_unlock(td);
2719	return (prev);
2720}
2721
2722/*
2723 * If the current process has received a signal (should be caught or cause
2724 * termination, should interrupt current syscall), return the signal number.
2725 * Stop signals with default action are processed immediately, then cleared;
2726 * they aren't returned.  This is checked after each entry to the system for
2727 * a syscall or trap (though this can usually be done without calling issignal
2728 * by checking the pending signal masks in cursig.) The normal call
2729 * sequence is
2730 *
2731 *	while (sig = cursig(curthread))
2732 *		postsig(sig);
2733 */
2734static int
2735issignal(struct thread *td)
2736{
2737	struct proc *p;
2738	struct sigacts *ps;
2739	struct sigqueue *queue;
2740	sigset_t sigpending;
2741	int sig, prop;
2742
2743	p = td->td_proc;
2744	ps = p->p_sigacts;
2745	mtx_assert(&ps->ps_mtx, MA_OWNED);
2746	PROC_LOCK_ASSERT(p, MA_OWNED);
2747	for (;;) {
2748		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2749
2750		sigpending = td->td_sigqueue.sq_signals;
2751		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2752		SIGSETNAND(sigpending, td->td_sigmask);
2753
2754		if (p->p_flag & P_PPWAIT || td->td_flags & TDF_SBDRY)
2755			SIG_STOPSIGMASK(sigpending);
2756		if (SIGISEMPTY(sigpending))	/* no signal to send */
2757			return (0);
2758		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2759		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2760		    SIGISMEMBER(sigpending, SIGSTOP)) {
2761			/*
2762			 * If debugger just attached, always consume
2763			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2764			 * execute the debugger attach ritual in
2765			 * order.
2766			 */
2767			sig = SIGSTOP;
2768			td->td_dbgflags |= TDB_FSTP;
2769		} else {
2770			sig = sig_ffs(&sigpending);
2771		}
2772
2773		if (p->p_stops & S_SIG) {
2774			mtx_unlock(&ps->ps_mtx);
2775			stopevent(p, S_SIG, sig);
2776			mtx_lock(&ps->ps_mtx);
2777		}
2778
2779		/*
2780		 * We should see pending but ignored signals
2781		 * only if P_TRACED was on when they were posted.
2782		 */
2783		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2784			sigqueue_delete(&td->td_sigqueue, sig);
2785			sigqueue_delete(&p->p_sigqueue, sig);
2786			continue;
2787		}
2788		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2789			/*
2790			 * If traced, always stop.
2791			 * Remove old signal from queue before the stop.
2792			 * XXX shrug off debugger, it causes siginfo to
2793			 * be thrown away.
2794			 */
2795			queue = &td->td_sigqueue;
2796			td->td_dbgksi.ksi_signo = 0;
2797			if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
2798				queue = &p->p_sigqueue;
2799				sigqueue_get(queue, sig, &td->td_dbgksi);
2800			}
2801
2802			mtx_unlock(&ps->ps_mtx);
2803			sig = ptracestop(td, sig, &td->td_dbgksi);
2804			mtx_lock(&ps->ps_mtx);
2805
2806			td->td_dbgksi.ksi_signo = 0;
2807
2808			/*
2809			 * Keep looking if the debugger discarded the signal
2810			 * or replaced it with a masked signal.
2811			 *
2812			 * If the traced bit got turned off, go back up
2813			 * to the top to rescan signals.  This ensures
2814			 * that p_sig* and p_sigact are consistent.
2815			 */
2816			if (sig == 0 || (p->p_flag & P_TRACED) == 0)
2817				continue;
2818		}
2819
2820		prop = sigprop(sig);
2821
2822		/*
2823		 * Decide whether the signal should be returned.
2824		 * Return the signal's number, or fall through
2825		 * to clear it from the pending mask.
2826		 */
2827		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2828
2829		case (intptr_t)SIG_DFL:
2830			/*
2831			 * Don't take default actions on system processes.
2832			 */
2833			if (p->p_pid <= 1) {
2834#ifdef DIAGNOSTIC
2835				/*
2836				 * Are you sure you want to ignore SIGSEGV
2837				 * in init? XXX
2838				 */
2839				printf("Process (pid %lu) got signal %d\n",
2840					(u_long)p->p_pid, sig);
2841#endif
2842				break;		/* == ignore */
2843			}
2844			/*
2845			 * If there is a pending stop signal to process with
2846			 * default action, stop here, then clear the signal.
2847			 * Traced or exiting processes should ignore stops.
2848			 * Additionally, a member of an orphaned process group
2849			 * should ignore tty stops.
2850			 */
2851			if (prop & SA_STOP) {
2852				if (p->p_flag &
2853				    (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
2854				    (p->p_pgrp->pg_jobc == 0 &&
2855				     prop & SA_TTYSTOP))
2856					break;	/* == ignore */
2857				mtx_unlock(&ps->ps_mtx);
2858				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2859				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2860				sigqueue_delete(&td->td_sigqueue, sig);
2861				sigqueue_delete(&p->p_sigqueue, sig);
2862				p->p_flag |= P_STOPPED_SIG;
2863				p->p_xstat = sig;
2864				PROC_SLOCK(p);
2865				sig_suspend_threads(td, p, 0);
2866				thread_suspend_switch(td, p);
2867				PROC_SUNLOCK(p);
2868				mtx_lock(&ps->ps_mtx);
2869				goto next;
2870			} else if (prop & SA_IGNORE) {
2871				/*
2872				 * Except for SIGCONT, shouldn't get here.
2873				 * Default action is to ignore; drop it.
2874				 */
2875				break;		/* == ignore */
2876			} else
2877				return (sig);
2878			/*NOTREACHED*/
2879
2880		case (intptr_t)SIG_IGN:
2881			/*
2882			 * Masking above should prevent us ever trying
2883			 * to take action on an ignored signal other
2884			 * than SIGCONT, unless process is traced.
2885			 */
2886			if ((prop & SA_CONT) == 0 &&
2887			    (p->p_flag & P_TRACED) == 0)
2888				printf("issignal\n");
2889			break;		/* == ignore */
2890
2891		default:
2892			/*
2893			 * This signal has an action, let
2894			 * postsig() process it.
2895			 */
2896			return (sig);
2897		}
2898		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2899		sigqueue_delete(&p->p_sigqueue, sig);
2900next:;
2901	}
2902	/* NOTREACHED */
2903}
2904
2905void
2906thread_stopped(struct proc *p)
2907{
2908	int n;
2909
2910	PROC_LOCK_ASSERT(p, MA_OWNED);
2911	PROC_SLOCK_ASSERT(p, MA_OWNED);
2912	n = p->p_suspcount;
2913	if (p == curproc)
2914		n++;
2915	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2916		PROC_SUNLOCK(p);
2917		p->p_flag &= ~P_WAITED;
2918		PROC_LOCK(p->p_pptr);
2919		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2920			CLD_TRAPPED : CLD_STOPPED);
2921		PROC_UNLOCK(p->p_pptr);
2922		PROC_SLOCK(p);
2923	}
2924}
2925
2926/*
2927 * Take the action for the specified signal
2928 * from the current set of pending signals.
2929 */
2930int
2931postsig(sig)
2932	register int sig;
2933{
2934	struct thread *td = curthread;
2935	register struct proc *p = td->td_proc;
2936	struct sigacts *ps;
2937	sig_t action;
2938	ksiginfo_t ksi;
2939	sigset_t returnmask;
2940
2941	KASSERT(sig != 0, ("postsig"));
2942
2943	PROC_LOCK_ASSERT(p, MA_OWNED);
2944	ps = p->p_sigacts;
2945	mtx_assert(&ps->ps_mtx, MA_OWNED);
2946	ksiginfo_init(&ksi);
2947	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2948	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2949		return (0);
2950	ksi.ksi_signo = sig;
2951	if (ksi.ksi_code == SI_TIMER)
2952		itimer_accept(p, ksi.ksi_timerid, &ksi);
2953	action = ps->ps_sigact[_SIG_IDX(sig)];
2954#ifdef KTRACE
2955	if (KTRPOINT(td, KTR_PSIG))
2956		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2957		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
2958#endif
2959	if (p->p_stops & S_SIG) {
2960		mtx_unlock(&ps->ps_mtx);
2961		stopevent(p, S_SIG, sig);
2962		mtx_lock(&ps->ps_mtx);
2963	}
2964
2965	if (action == SIG_DFL) {
2966		/*
2967		 * Default action, where the default is to kill
2968		 * the process.  (Other cases were ignored above.)
2969		 */
2970		mtx_unlock(&ps->ps_mtx);
2971		sigexit(td, sig);
2972		/* NOTREACHED */
2973	} else {
2974		/*
2975		 * If we get here, the signal must be caught.
2976		 */
2977		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2978		    ("postsig action"));
2979		/*
2980		 * Set the new mask value and also defer further
2981		 * occurrences of this signal.
2982		 *
2983		 * Special case: user has done a sigsuspend.  Here the
2984		 * current mask is not of interest, but rather the
2985		 * mask from before the sigsuspend is what we want
2986		 * restored after the signal processing is completed.
2987		 */
2988		if (td->td_pflags & TDP_OLDMASK) {
2989			returnmask = td->td_oldsigmask;
2990			td->td_pflags &= ~TDP_OLDMASK;
2991		} else
2992			returnmask = td->td_sigmask;
2993
2994		if (p->p_sig == sig) {
2995			p->p_code = 0;
2996			p->p_sig = 0;
2997		}
2998		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2999		postsig_done(sig, td, ps);
3000	}
3001	return (1);
3002}
3003
3004/*
3005 * Kill the current process for stated reason.
3006 */
3007void
3008killproc(p, why)
3009	struct proc *p;
3010	char *why;
3011{
3012
3013	PROC_LOCK_ASSERT(p, MA_OWNED);
3014	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3015	    p->p_comm);
3016	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
3017	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
3018	p->p_flag |= P_WKILLED;
3019	kern_psignal(p, SIGKILL);
3020}
3021
3022/*
3023 * Force the current process to exit with the specified signal, dumping core
3024 * if appropriate.  We bypass the normal tests for masked and caught signals,
3025 * allowing unrecoverable failures to terminate the process without changing
3026 * signal state.  Mark the accounting record with the signal termination.
3027 * If dumping core, save the signal number for the debugger.  Calls exit and
3028 * does not return.
3029 */
3030void
3031sigexit(td, sig)
3032	struct thread *td;
3033	int sig;
3034{
3035	struct proc *p = td->td_proc;
3036
3037	PROC_LOCK_ASSERT(p, MA_OWNED);
3038	p->p_acflag |= AXSIG;
3039	/*
3040	 * We must be single-threading to generate a core dump.  This
3041	 * ensures that the registers in the core file are up-to-date.
3042	 * Also, the ELF dump handler assumes that the thread list doesn't
3043	 * change out from under it.
3044	 *
3045	 * XXX If another thread attempts to single-thread before us
3046	 *     (e.g. via fork()), we won't get a dump at all.
3047	 */
3048	if ((sigprop(sig) & SA_CORE) && thread_single(p, SINGLE_NO_EXIT) == 0) {
3049		p->p_sig = sig;
3050		/*
3051		 * Log signals which would cause core dumps
3052		 * (Log as LOG_INFO to appease those who don't want
3053		 * these messages.)
3054		 * XXX : Todo, as well as euid, write out ruid too
3055		 * Note that coredump() drops proc lock.
3056		 */
3057		if (coredump(td) == 0)
3058			sig |= WCOREFLAG;
3059		if (kern_logsigexit)
3060			log(LOG_INFO,
3061			    "pid %d (%s), uid %d: exited on signal %d%s\n",
3062			    p->p_pid, p->p_comm,
3063			    td->td_ucred ? td->td_ucred->cr_uid : -1,
3064			    sig &~ WCOREFLAG,
3065			    sig & WCOREFLAG ? " (core dumped)" : "");
3066	} else
3067		PROC_UNLOCK(p);
3068	exit1(td, W_EXITCODE(0, sig));
3069	/* NOTREACHED */
3070}
3071
3072/*
3073 * Send queued SIGCHLD to parent when child process's state
3074 * is changed.
3075 */
3076static void
3077sigparent(struct proc *p, int reason, int status)
3078{
3079	PROC_LOCK_ASSERT(p, MA_OWNED);
3080	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3081
3082	if (p->p_ksi != NULL) {
3083		p->p_ksi->ksi_signo  = SIGCHLD;
3084		p->p_ksi->ksi_code   = reason;
3085		p->p_ksi->ksi_status = status;
3086		p->p_ksi->ksi_pid    = p->p_pid;
3087		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3088		if (KSI_ONQ(p->p_ksi))
3089			return;
3090	}
3091	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3092}
3093
3094static void
3095childproc_jobstate(struct proc *p, int reason, int sig)
3096{
3097	struct sigacts *ps;
3098
3099	PROC_LOCK_ASSERT(p, MA_OWNED);
3100	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3101
3102	/*
3103	 * Wake up parent sleeping in kern_wait(), also send
3104	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3105	 * that parent will awake, because parent may masked
3106	 * the signal.
3107	 */
3108	p->p_pptr->p_flag |= P_STATCHILD;
3109	wakeup(p->p_pptr);
3110
3111	ps = p->p_pptr->p_sigacts;
3112	mtx_lock(&ps->ps_mtx);
3113	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3114		mtx_unlock(&ps->ps_mtx);
3115		sigparent(p, reason, sig);
3116	} else
3117		mtx_unlock(&ps->ps_mtx);
3118}
3119
3120void
3121childproc_stopped(struct proc *p, int reason)
3122{
3123	/* p_xstat is a plain signal number, not a full wait() status here. */
3124	childproc_jobstate(p, reason, p->p_xstat);
3125}
3126
3127void
3128childproc_continued(struct proc *p)
3129{
3130	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3131}
3132
3133void
3134childproc_exited(struct proc *p)
3135{
3136	int reason;
3137	int xstat = p->p_xstat; /* convert to int */
3138	int status;
3139
3140	if (WCOREDUMP(xstat))
3141		reason = CLD_DUMPED, status = WTERMSIG(xstat);
3142	else if (WIFSIGNALED(xstat))
3143		reason = CLD_KILLED, status = WTERMSIG(xstat);
3144	else
3145		reason = CLD_EXITED, status = WEXITSTATUS(xstat);
3146	/*
3147	 * XXX avoid calling wakeup(p->p_pptr), the work is
3148	 * done in exit1().
3149	 */
3150	sigparent(p, reason, status);
3151}
3152
3153/*
3154 * We only have 1 character for the core count in the format
3155 * string, so the range will be 0-9
3156 */
3157#define MAX_NUM_CORES 10
3158static int num_cores = 5;
3159
3160static int
3161sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3162{
3163	int error;
3164	int new_val;
3165
3166	new_val = num_cores;
3167	error = sysctl_handle_int(oidp, &new_val, 0, req);
3168	if (error != 0 || req->newptr == NULL)
3169		return (error);
3170	if (new_val > MAX_NUM_CORES)
3171		new_val = MAX_NUM_CORES;
3172	if (new_val < 0)
3173		new_val = 0;
3174	num_cores = new_val;
3175	return (0);
3176}
3177SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3178	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3179
3180#if defined(COMPRESS_USER_CORES)
3181int compress_user_cores = 1;
3182SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
3183    &compress_user_cores, 0, "Compression of user corefiles");
3184
3185int compress_user_cores_gzlevel = -1; /* default level */
3186SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
3187    &compress_user_cores_gzlevel, -1, "Corefile gzip compression level");
3188
3189#define GZ_SUFFIX	".gz"
3190#define GZ_SUFFIX_LEN	3
3191#endif
3192
3193static char corefilename[MAXPATHLEN] = {"%N.core"};
3194TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3195SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
3196    sizeof(corefilename), "Process corefile name format string");
3197
3198/*
3199 * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3200 * Expand the name described in corefilename, using name, uid, and pid
3201 * and open/create core file.
3202 * corefilename is a printf-like string, with three format specifiers:
3203 *	%N	name of process ("name")
3204 *	%P	process id (pid)
3205 *	%U	user id (uid)
3206 * For example, "%N.core" is the default; they can be disabled completely
3207 * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3208 * This is controlled by the sysctl variable kern.corefile (see above).
3209 */
3210static int
3211corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3212    int compress, struct vnode **vpp, char **namep)
3213{
3214	struct nameidata nd;
3215	struct sbuf sb;
3216	const char *format;
3217	char *hostname, *name;
3218	int indexpos, i, error, cmode, flags, oflags;
3219
3220	hostname = NULL;
3221	format = corefilename;
3222	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3223	indexpos = -1;
3224	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3225	for (i = 0; format[i] != '\0'; i++) {
3226		switch (format[i]) {
3227		case '%':	/* Format character */
3228			i++;
3229			switch (format[i]) {
3230			case '%':
3231				sbuf_putc(&sb, '%');
3232				break;
3233			case 'H':	/* hostname */
3234				if (hostname == NULL) {
3235					hostname = malloc(MAXHOSTNAMELEN,
3236					    M_TEMP, M_WAITOK);
3237				}
3238				getcredhostname(td->td_ucred, hostname,
3239				    MAXHOSTNAMELEN);
3240				sbuf_printf(&sb, "%s", hostname);
3241				break;
3242			case 'I':	/* autoincrementing index */
3243				sbuf_printf(&sb, "0");
3244				indexpos = sbuf_len(&sb) - 1;
3245				break;
3246			case 'N':	/* process name */
3247				sbuf_printf(&sb, "%s", comm);
3248				break;
3249			case 'P':	/* process id */
3250				sbuf_printf(&sb, "%u", pid);
3251				break;
3252			case 'U':	/* user id */
3253				sbuf_printf(&sb, "%u", uid);
3254				break;
3255			default:
3256				log(LOG_ERR,
3257				    "Unknown format character %c in "
3258				    "corename `%s'\n", format[i], format);
3259				break;
3260			}
3261			break;
3262		default:
3263			sbuf_putc(&sb, format[i]);
3264			break;
3265		}
3266	}
3267	free(hostname, M_TEMP);
3268#ifdef COMPRESS_USER_CORES
3269	if (compress)
3270		sbuf_printf(&sb, GZ_SUFFIX);
3271#endif
3272	if (sbuf_error(&sb) != 0) {
3273		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3274		    "long\n", (long)pid, comm, (u_long)uid);
3275		sbuf_delete(&sb);
3276		free(name, M_TEMP);
3277		return (ENOMEM);
3278	}
3279	sbuf_finish(&sb);
3280	sbuf_delete(&sb);
3281
3282	cmode = S_IRUSR | S_IWUSR;
3283	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3284	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3285
3286	/*
3287	 * If the core format has a %I in it, then we need to check
3288	 * for existing corefiles before returning a name.
3289	 * To do this we iterate over 0..num_cores to find a
3290	 * non-existing core file name to use.
3291	 */
3292	if (indexpos != -1) {
3293		for (i = 0; i < num_cores; i++) {
3294			flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3295			name[indexpos] = '0' + i;
3296			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3297			error = vn_open_cred(&nd, &flags, cmode, oflags,
3298			    td->td_ucred, NULL);
3299			if (error) {
3300				if (error == EEXIST)
3301					continue;
3302				log(LOG_ERR,
3303				    "pid %d (%s), uid (%u):  Path `%s' failed "
3304				    "on initial open test, error = %d\n",
3305				    pid, comm, uid, name, error);
3306			}
3307			goto out;
3308		}
3309	}
3310
3311	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3312	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3313	error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
3314out:
3315	if (error) {
3316#ifdef AUDIT
3317		audit_proc_coredump(td, name, error);
3318#endif
3319		free(name, M_TEMP);
3320		return (error);
3321	}
3322	NDFREE(&nd, NDF_ONLY_PNBUF);
3323	*vpp = nd.ni_vp;
3324	*namep = name;
3325	return (0);
3326}
3327
3328static int
3329coredump_sanitise_path(const char *path)
3330{
3331	size_t i;
3332
3333	/*
3334	 * Only send a subset of ASCII to devd(8) because it
3335	 * might pass these strings to sh -c.
3336	 */
3337	for (i = 0; path[i]; i++)
3338		if (!(isalpha(path[i]) || isdigit(path[i])) &&
3339		    path[i] != '/' && path[i] != '.' &&
3340		    path[i] != '-')
3341			return (0);
3342
3343	return (1);
3344}
3345
3346/*
3347 * Dump a process' core.  The main routine does some
3348 * policy checking, and creates the name of the coredump;
3349 * then it passes on a vnode and a size limit to the process-specific
3350 * coredump routine if there is one; if there _is not_ one, it returns
3351 * ENOSYS; otherwise it returns the error from the process-specific routine.
3352 */
3353
3354static int
3355coredump(struct thread *td)
3356{
3357	struct proc *p = td->td_proc;
3358	struct ucred *cred = td->td_ucred;
3359	struct vnode *vp;
3360	struct flock lf;
3361	struct vattr vattr;
3362	int error, error1, locked;
3363	struct mount *mp;
3364	char *name;			/* name of corefile */
3365	off_t limit;
3366	int compress;
3367	char *data = NULL;
3368	char *fullpath, *freepath = NULL;
3369	size_t len;
3370	static const char comm_name[] = "comm=";
3371	static const char core_name[] = "core=";
3372
3373#ifdef COMPRESS_USER_CORES
3374	compress = compress_user_cores;
3375#else
3376	compress = 0;
3377#endif
3378	PROC_LOCK_ASSERT(p, MA_OWNED);
3379	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3380	_STOPEVENT(p, S_CORE, 0);
3381
3382	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3383	    (p->p_flag2 & P2_NOTRACE) != 0) {
3384		PROC_UNLOCK(p);
3385		return (EFAULT);
3386	}
3387
3388	/*
3389	 * Note that the bulk of limit checking is done after
3390	 * the corefile is created.  The exception is if the limit
3391	 * for corefiles is 0, in which case we don't bother
3392	 * creating the corefile at all.  This layout means that
3393	 * a corefile is truncated instead of not being created,
3394	 * if it is larger than the limit.
3395	 */
3396	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3397	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3398		PROC_UNLOCK(p);
3399		return (EFBIG);
3400	}
3401	PROC_UNLOCK(p);
3402
3403restart:
3404	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td, compress,
3405	    &vp, &name);
3406	if (error != 0)
3407		return (error);
3408
3409	/* Don't dump to non-regular files or files with links. */
3410	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3411	    vattr.va_nlink != 1) {
3412		VOP_UNLOCK(vp, 0);
3413		error = EFAULT;
3414		goto out;
3415	}
3416
3417	VOP_UNLOCK(vp, 0);
3418	lf.l_whence = SEEK_SET;
3419	lf.l_start = 0;
3420	lf.l_len = 0;
3421	lf.l_type = F_WRLCK;
3422	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3423
3424	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3425		lf.l_type = F_UNLCK;
3426		if (locked)
3427			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3428		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3429			goto out;
3430		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3431			goto out;
3432		free(name, M_TEMP);
3433		goto restart;
3434	}
3435
3436	VATTR_NULL(&vattr);
3437	vattr.va_size = 0;
3438	if (set_core_nodump_flag)
3439		vattr.va_flags = UF_NODUMP;
3440	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3441	VOP_SETATTR(vp, &vattr, cred);
3442	VOP_UNLOCK(vp, 0);
3443	vn_finished_write(mp);
3444	PROC_LOCK(p);
3445	p->p_acflag |= ACORE;
3446	PROC_UNLOCK(p);
3447
3448	if (p->p_sysent->sv_coredump != NULL) {
3449		error = p->p_sysent->sv_coredump(td, vp, limit,
3450		    compress ? IMGACT_CORE_COMPRESS : 0);
3451	} else {
3452		error = ENOSYS;
3453	}
3454
3455	if (locked) {
3456		lf.l_type = F_UNLCK;
3457		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3458	}
3459
3460	/*
3461	 * Notify the userland helper that a process triggered a core dump.
3462	 * This allows the helper to run an automated debugging session.
3463	 */
3464	if (error != 0 || coredump_devctl == 0)
3465		goto out;
3466	len = MAXPATHLEN * 2 + sizeof(comm_name) - 1 +
3467	    sizeof(' ') + sizeof(core_name) - 1;
3468	data = malloc(len, M_TEMP, M_WAITOK);
3469	if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3470		goto out;
3471	if (!coredump_sanitise_path(fullpath))
3472		goto out;
3473	snprintf(data, len, "%s%s ", comm_name, fullpath);
3474	free(freepath, M_TEMP);
3475	freepath = NULL;
3476	if (vn_fullpath_global(td, vp, &fullpath, &freepath) != 0)
3477		goto out;
3478	if (!coredump_sanitise_path(fullpath))
3479		goto out;
3480	strlcat(data, core_name, len);
3481	strlcat(data, fullpath, len);
3482	devctl_notify("kernel", "signal", "coredump", data);
3483out:
3484	error1 = vn_close(vp, FWRITE, cred, td);
3485	if (error == 0)
3486		error = error1;
3487#ifdef AUDIT
3488	audit_proc_coredump(td, name, error);
3489#endif
3490	free(freepath, M_TEMP);
3491	free(data, M_TEMP);
3492	free(name, M_TEMP);
3493	return (error);
3494}
3495
3496/*
3497 * Nonexistent system call-- signal process (may want to handle it).  Flag
3498 * error in case process won't see signal immediately (blocked or ignored).
3499 */
3500#ifndef _SYS_SYSPROTO_H_
3501struct nosys_args {
3502	int	dummy;
3503};
3504#endif
3505/* ARGSUSED */
3506int
3507nosys(td, args)
3508	struct thread *td;
3509	struct nosys_args *args;
3510{
3511	struct proc *p = td->td_proc;
3512
3513	PROC_LOCK(p);
3514	tdsignal(td, SIGSYS);
3515	PROC_UNLOCK(p);
3516	return (ENOSYS);
3517}
3518
3519/*
3520 * Send a SIGIO or SIGURG signal to a process or process group using stored
3521 * credentials rather than those of the current process.
3522 */
3523void
3524pgsigio(sigiop, sig, checkctty)
3525	struct sigio **sigiop;
3526	int sig, checkctty;
3527{
3528	ksiginfo_t ksi;
3529	struct sigio *sigio;
3530
3531	ksiginfo_init(&ksi);
3532	ksi.ksi_signo = sig;
3533	ksi.ksi_code = SI_KERNEL;
3534
3535	SIGIO_LOCK();
3536	sigio = *sigiop;
3537	if (sigio == NULL) {
3538		SIGIO_UNLOCK();
3539		return;
3540	}
3541	if (sigio->sio_pgid > 0) {
3542		PROC_LOCK(sigio->sio_proc);
3543		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3544			kern_psignal(sigio->sio_proc, sig);
3545		PROC_UNLOCK(sigio->sio_proc);
3546	} else if (sigio->sio_pgid < 0) {
3547		struct proc *p;
3548
3549		PGRP_LOCK(sigio->sio_pgrp);
3550		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3551			PROC_LOCK(p);
3552			if (p->p_state == PRS_NORMAL &&
3553			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3554			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3555				kern_psignal(p, sig);
3556			PROC_UNLOCK(p);
3557		}
3558		PGRP_UNLOCK(sigio->sio_pgrp);
3559	}
3560	SIGIO_UNLOCK();
3561}
3562
3563static int
3564filt_sigattach(struct knote *kn)
3565{
3566	struct proc *p = curproc;
3567
3568	kn->kn_ptr.p_proc = p;
3569	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3570
3571	knlist_add(&p->p_klist, kn, 0);
3572
3573	return (0);
3574}
3575
3576static void
3577filt_sigdetach(struct knote *kn)
3578{
3579	struct proc *p = kn->kn_ptr.p_proc;
3580
3581	knlist_remove(&p->p_klist, kn, 0);
3582}
3583
3584/*
3585 * signal knotes are shared with proc knotes, so we apply a mask to
3586 * the hint in order to differentiate them from process hints.  This
3587 * could be avoided by using a signal-specific knote list, but probably
3588 * isn't worth the trouble.
3589 */
3590static int
3591filt_signal(struct knote *kn, long hint)
3592{
3593
3594	if (hint & NOTE_SIGNAL) {
3595		hint &= ~NOTE_SIGNAL;
3596
3597		if (kn->kn_id == hint)
3598			kn->kn_data++;
3599	}
3600	return (kn->kn_data != 0);
3601}
3602
3603struct sigacts *
3604sigacts_alloc(void)
3605{
3606	struct sigacts *ps;
3607
3608	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3609	ps->ps_refcnt = 1;
3610	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3611	return (ps);
3612}
3613
3614void
3615sigacts_free(struct sigacts *ps)
3616{
3617
3618	if (refcount_release(&ps->ps_refcnt) == 0)
3619		return;
3620	mtx_destroy(&ps->ps_mtx);
3621	free(ps, M_SUBPROC);
3622}
3623
3624struct sigacts *
3625sigacts_hold(struct sigacts *ps)
3626{
3627
3628	refcount_acquire(&ps->ps_refcnt);
3629	return (ps);
3630}
3631
3632void
3633sigacts_copy(struct sigacts *dest, struct sigacts *src)
3634{
3635
3636	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3637	mtx_lock(&src->ps_mtx);
3638	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3639	mtx_unlock(&src->ps_mtx);
3640}
3641
3642int
3643sigacts_shared(struct sigacts *ps)
3644{
3645
3646	return (ps->ps_refcnt > 1);
3647}
3648