kern_proc.c revision 260817
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/kern/kern_proc.c 260817 2014-01-17 10:58:59Z avg $");
34
35#include "opt_compat.h"
36#include "opt_ddb.h"
37#include "opt_kdtrace.h"
38#include "opt_ktrace.h"
39#include "opt_kstack_pages.h"
40#include "opt_stack.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/elf.h>
45#include <sys/exec.h>
46#include <sys/kernel.h>
47#include <sys/limits.h>
48#include <sys/lock.h>
49#include <sys/loginclass.h>
50#include <sys/malloc.h>
51#include <sys/mman.h>
52#include <sys/mount.h>
53#include <sys/mutex.h>
54#include <sys/proc.h>
55#include <sys/ptrace.h>
56#include <sys/refcount.h>
57#include <sys/resourcevar.h>
58#include <sys/rwlock.h>
59#include <sys/sbuf.h>
60#include <sys/sysent.h>
61#include <sys/sched.h>
62#include <sys/smp.h>
63#include <sys/stack.h>
64#include <sys/stat.h>
65#include <sys/sysctl.h>
66#include <sys/filedesc.h>
67#include <sys/tty.h>
68#include <sys/signalvar.h>
69#include <sys/sdt.h>
70#include <sys/sx.h>
71#include <sys/user.h>
72#include <sys/jail.h>
73#include <sys/vnode.h>
74#include <sys/eventhandler.h>
75
76#ifdef DDB
77#include <ddb/ddb.h>
78#endif
79
80#include <vm/vm.h>
81#include <vm/vm_param.h>
82#include <vm/vm_extern.h>
83#include <vm/pmap.h>
84#include <vm/vm_map.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/uma.h>
88
89#ifdef COMPAT_FREEBSD32
90#include <compat/freebsd32/freebsd32.h>
91#include <compat/freebsd32/freebsd32_util.h>
92#endif
93
94SDT_PROVIDER_DEFINE(proc);
95SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, "struct proc *", "int",
96    "void *", "int");
97SDT_PROBE_DEFINE4(proc, kernel, ctor, return, "struct proc *", "int",
98    "void *", "int");
99SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, "struct proc *", "int",
100    "void *", "struct thread *");
101SDT_PROBE_DEFINE3(proc, kernel, dtor, return, "struct proc *", "int",
102    "void *");
103SDT_PROBE_DEFINE3(proc, kernel, init, entry, "struct proc *", "int",
104    "int");
105SDT_PROBE_DEFINE3(proc, kernel, init, return, "struct proc *", "int",
106    "int");
107
108MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
109MALLOC_DEFINE(M_SESSION, "session", "session header");
110static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
111MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
112
113static void doenterpgrp(struct proc *, struct pgrp *);
114static void orphanpg(struct pgrp *pg);
115static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
116static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
117static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
118    int preferthread);
119static void pgadjustjobc(struct pgrp *pgrp, int entering);
120static void pgdelete(struct pgrp *);
121static int proc_ctor(void *mem, int size, void *arg, int flags);
122static void proc_dtor(void *mem, int size, void *arg);
123static int proc_init(void *mem, int size, int flags);
124static void proc_fini(void *mem, int size);
125static void pargs_free(struct pargs *pa);
126static struct proc *zpfind_locked(pid_t pid);
127
128/*
129 * Other process lists
130 */
131struct pidhashhead *pidhashtbl;
132u_long pidhash;
133struct pgrphashhead *pgrphashtbl;
134u_long pgrphash;
135struct proclist allproc;
136struct proclist zombproc;
137struct sx allproc_lock;
138struct sx proctree_lock;
139struct mtx ppeers_lock;
140uma_zone_t proc_zone;
141
142int kstack_pages = KSTACK_PAGES;
143SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
144    "Kernel stack size in pages");
145
146CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
147#ifdef COMPAT_FREEBSD32
148CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
149#endif
150
151/*
152 * Initialize global process hashing structures.
153 */
154void
155procinit()
156{
157
158	sx_init(&allproc_lock, "allproc");
159	sx_init(&proctree_lock, "proctree");
160	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
161	LIST_INIT(&allproc);
162	LIST_INIT(&zombproc);
163	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
164	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
165	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
166	    proc_ctor, proc_dtor, proc_init, proc_fini,
167	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
168	uihashinit();
169}
170
171/*
172 * Prepare a proc for use.
173 */
174static int
175proc_ctor(void *mem, int size, void *arg, int flags)
176{
177	struct proc *p;
178
179	p = (struct proc *)mem;
180	SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
181	EVENTHANDLER_INVOKE(process_ctor, p);
182	SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
183	return (0);
184}
185
186/*
187 * Reclaim a proc after use.
188 */
189static void
190proc_dtor(void *mem, int size, void *arg)
191{
192	struct proc *p;
193	struct thread *td;
194
195	/* INVARIANTS checks go here */
196	p = (struct proc *)mem;
197	td = FIRST_THREAD_IN_PROC(p);
198	SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
199	if (td != NULL) {
200#ifdef INVARIANTS
201		KASSERT((p->p_numthreads == 1),
202		    ("bad number of threads in exiting process"));
203		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
204#endif
205		/* Free all OSD associated to this thread. */
206		osd_thread_exit(td);
207	}
208	EVENTHANDLER_INVOKE(process_dtor, p);
209	if (p->p_ksi != NULL)
210		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
211	SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
212}
213
214/*
215 * Initialize type-stable parts of a proc (when newly created).
216 */
217static int
218proc_init(void *mem, int size, int flags)
219{
220	struct proc *p;
221
222	p = (struct proc *)mem;
223	SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
224	p->p_sched = (struct p_sched *)&p[1];
225	bzero(&p->p_mtx, sizeof(struct mtx));
226	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
227	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
228	cv_init(&p->p_pwait, "ppwait");
229	cv_init(&p->p_dbgwait, "dbgwait");
230	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
231	EVENTHANDLER_INVOKE(process_init, p);
232	p->p_stats = pstats_alloc();
233	SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
234	return (0);
235}
236
237/*
238 * UMA should ensure that this function is never called.
239 * Freeing a proc structure would violate type stability.
240 */
241static void
242proc_fini(void *mem, int size)
243{
244#ifdef notnow
245	struct proc *p;
246
247	p = (struct proc *)mem;
248	EVENTHANDLER_INVOKE(process_fini, p);
249	pstats_free(p->p_stats);
250	thread_free(FIRST_THREAD_IN_PROC(p));
251	mtx_destroy(&p->p_mtx);
252	if (p->p_ksi != NULL)
253		ksiginfo_free(p->p_ksi);
254#else
255	panic("proc reclaimed");
256#endif
257}
258
259/*
260 * Is p an inferior of the current process?
261 */
262int
263inferior(p)
264	register struct proc *p;
265{
266
267	sx_assert(&proctree_lock, SX_LOCKED);
268	for (; p != curproc; p = p->p_pptr)
269		if (p->p_pid == 0)
270			return (0);
271	return (1);
272}
273
274struct proc *
275pfind_locked(pid_t pid)
276{
277	struct proc *p;
278
279	sx_assert(&allproc_lock, SX_LOCKED);
280	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
281		if (p->p_pid == pid) {
282			PROC_LOCK(p);
283			if (p->p_state == PRS_NEW) {
284				PROC_UNLOCK(p);
285				p = NULL;
286			}
287			break;
288		}
289	}
290	return (p);
291}
292
293/*
294 * Locate a process by number; return only "live" processes -- i.e., neither
295 * zombies nor newly born but incompletely initialized processes.  By not
296 * returning processes in the PRS_NEW state, we allow callers to avoid
297 * testing for that condition to avoid dereferencing p_ucred, et al.
298 */
299struct proc *
300pfind(pid_t pid)
301{
302	struct proc *p;
303
304	sx_slock(&allproc_lock);
305	p = pfind_locked(pid);
306	sx_sunlock(&allproc_lock);
307	return (p);
308}
309
310static struct proc *
311pfind_tid_locked(pid_t tid)
312{
313	struct proc *p;
314	struct thread *td;
315
316	sx_assert(&allproc_lock, SX_LOCKED);
317	FOREACH_PROC_IN_SYSTEM(p) {
318		PROC_LOCK(p);
319		if (p->p_state == PRS_NEW) {
320			PROC_UNLOCK(p);
321			continue;
322		}
323		FOREACH_THREAD_IN_PROC(p, td) {
324			if (td->td_tid == tid)
325				goto found;
326		}
327		PROC_UNLOCK(p);
328	}
329found:
330	return (p);
331}
332
333/*
334 * Locate a process group by number.
335 * The caller must hold proctree_lock.
336 */
337struct pgrp *
338pgfind(pgid)
339	register pid_t pgid;
340{
341	register struct pgrp *pgrp;
342
343	sx_assert(&proctree_lock, SX_LOCKED);
344
345	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
346		if (pgrp->pg_id == pgid) {
347			PGRP_LOCK(pgrp);
348			return (pgrp);
349		}
350	}
351	return (NULL);
352}
353
354/*
355 * Locate process and do additional manipulations, depending on flags.
356 */
357int
358pget(pid_t pid, int flags, struct proc **pp)
359{
360	struct proc *p;
361	int error;
362
363	sx_slock(&allproc_lock);
364	if (pid <= PID_MAX) {
365		p = pfind_locked(pid);
366		if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
367			p = zpfind_locked(pid);
368	} else if ((flags & PGET_NOTID) == 0) {
369		p = pfind_tid_locked(pid);
370	} else {
371		p = NULL;
372	}
373	sx_sunlock(&allproc_lock);
374	if (p == NULL)
375		return (ESRCH);
376	if ((flags & PGET_CANSEE) != 0) {
377		error = p_cansee(curthread, p);
378		if (error != 0)
379			goto errout;
380	}
381	if ((flags & PGET_CANDEBUG) != 0) {
382		error = p_candebug(curthread, p);
383		if (error != 0)
384			goto errout;
385	}
386	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
387		error = EPERM;
388		goto errout;
389	}
390	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
391		error = ESRCH;
392		goto errout;
393	}
394	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
395		/*
396		 * XXXRW: Not clear ESRCH is the right error during proc
397		 * execve().
398		 */
399		error = ESRCH;
400		goto errout;
401	}
402	if ((flags & PGET_HOLD) != 0) {
403		_PHOLD(p);
404		PROC_UNLOCK(p);
405	}
406	*pp = p;
407	return (0);
408errout:
409	PROC_UNLOCK(p);
410	return (error);
411}
412
413/*
414 * Create a new process group.
415 * pgid must be equal to the pid of p.
416 * Begin a new session if required.
417 */
418int
419enterpgrp(p, pgid, pgrp, sess)
420	register struct proc *p;
421	pid_t pgid;
422	struct pgrp *pgrp;
423	struct session *sess;
424{
425
426	sx_assert(&proctree_lock, SX_XLOCKED);
427
428	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
429	KASSERT(p->p_pid == pgid,
430	    ("enterpgrp: new pgrp and pid != pgid"));
431	KASSERT(pgfind(pgid) == NULL,
432	    ("enterpgrp: pgrp with pgid exists"));
433	KASSERT(!SESS_LEADER(p),
434	    ("enterpgrp: session leader attempted setpgrp"));
435
436	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
437
438	if (sess != NULL) {
439		/*
440		 * new session
441		 */
442		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
443		PROC_LOCK(p);
444		p->p_flag &= ~P_CONTROLT;
445		PROC_UNLOCK(p);
446		PGRP_LOCK(pgrp);
447		sess->s_leader = p;
448		sess->s_sid = p->p_pid;
449		refcount_init(&sess->s_count, 1);
450		sess->s_ttyvp = NULL;
451		sess->s_ttydp = NULL;
452		sess->s_ttyp = NULL;
453		bcopy(p->p_session->s_login, sess->s_login,
454			    sizeof(sess->s_login));
455		pgrp->pg_session = sess;
456		KASSERT(p == curproc,
457		    ("enterpgrp: mksession and p != curproc"));
458	} else {
459		pgrp->pg_session = p->p_session;
460		sess_hold(pgrp->pg_session);
461		PGRP_LOCK(pgrp);
462	}
463	pgrp->pg_id = pgid;
464	LIST_INIT(&pgrp->pg_members);
465
466	/*
467	 * As we have an exclusive lock of proctree_lock,
468	 * this should not deadlock.
469	 */
470	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
471	pgrp->pg_jobc = 0;
472	SLIST_INIT(&pgrp->pg_sigiolst);
473	PGRP_UNLOCK(pgrp);
474
475	doenterpgrp(p, pgrp);
476
477	return (0);
478}
479
480/*
481 * Move p to an existing process group
482 */
483int
484enterthispgrp(p, pgrp)
485	register struct proc *p;
486	struct pgrp *pgrp;
487{
488
489	sx_assert(&proctree_lock, SX_XLOCKED);
490	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
491	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
492	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
493	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
494	KASSERT(pgrp->pg_session == p->p_session,
495		("%s: pgrp's session %p, p->p_session %p.\n",
496		__func__,
497		pgrp->pg_session,
498		p->p_session));
499	KASSERT(pgrp != p->p_pgrp,
500		("%s: p belongs to pgrp.", __func__));
501
502	doenterpgrp(p, pgrp);
503
504	return (0);
505}
506
507/*
508 * Move p to a process group
509 */
510static void
511doenterpgrp(p, pgrp)
512	struct proc *p;
513	struct pgrp *pgrp;
514{
515	struct pgrp *savepgrp;
516
517	sx_assert(&proctree_lock, SX_XLOCKED);
518	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
519	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
520	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
521	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
522
523	savepgrp = p->p_pgrp;
524
525	/*
526	 * Adjust eligibility of affected pgrps to participate in job control.
527	 * Increment eligibility counts before decrementing, otherwise we
528	 * could reach 0 spuriously during the first call.
529	 */
530	fixjobc(p, pgrp, 1);
531	fixjobc(p, p->p_pgrp, 0);
532
533	PGRP_LOCK(pgrp);
534	PGRP_LOCK(savepgrp);
535	PROC_LOCK(p);
536	LIST_REMOVE(p, p_pglist);
537	p->p_pgrp = pgrp;
538	PROC_UNLOCK(p);
539	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
540	PGRP_UNLOCK(savepgrp);
541	PGRP_UNLOCK(pgrp);
542	if (LIST_EMPTY(&savepgrp->pg_members))
543		pgdelete(savepgrp);
544}
545
546/*
547 * remove process from process group
548 */
549int
550leavepgrp(p)
551	register struct proc *p;
552{
553	struct pgrp *savepgrp;
554
555	sx_assert(&proctree_lock, SX_XLOCKED);
556	savepgrp = p->p_pgrp;
557	PGRP_LOCK(savepgrp);
558	PROC_LOCK(p);
559	LIST_REMOVE(p, p_pglist);
560	p->p_pgrp = NULL;
561	PROC_UNLOCK(p);
562	PGRP_UNLOCK(savepgrp);
563	if (LIST_EMPTY(&savepgrp->pg_members))
564		pgdelete(savepgrp);
565	return (0);
566}
567
568/*
569 * delete a process group
570 */
571static void
572pgdelete(pgrp)
573	register struct pgrp *pgrp;
574{
575	struct session *savesess;
576	struct tty *tp;
577
578	sx_assert(&proctree_lock, SX_XLOCKED);
579	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
580	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
581
582	/*
583	 * Reset any sigio structures pointing to us as a result of
584	 * F_SETOWN with our pgid.
585	 */
586	funsetownlst(&pgrp->pg_sigiolst);
587
588	PGRP_LOCK(pgrp);
589	tp = pgrp->pg_session->s_ttyp;
590	LIST_REMOVE(pgrp, pg_hash);
591	savesess = pgrp->pg_session;
592	PGRP_UNLOCK(pgrp);
593
594	/* Remove the reference to the pgrp before deallocating it. */
595	if (tp != NULL) {
596		tty_lock(tp);
597		tty_rel_pgrp(tp, pgrp);
598	}
599
600	mtx_destroy(&pgrp->pg_mtx);
601	free(pgrp, M_PGRP);
602	sess_release(savesess);
603}
604
605static void
606pgadjustjobc(pgrp, entering)
607	struct pgrp *pgrp;
608	int entering;
609{
610
611	PGRP_LOCK(pgrp);
612	if (entering)
613		pgrp->pg_jobc++;
614	else {
615		--pgrp->pg_jobc;
616		if (pgrp->pg_jobc == 0)
617			orphanpg(pgrp);
618	}
619	PGRP_UNLOCK(pgrp);
620}
621
622/*
623 * Adjust pgrp jobc counters when specified process changes process group.
624 * We count the number of processes in each process group that "qualify"
625 * the group for terminal job control (those with a parent in a different
626 * process group of the same session).  If that count reaches zero, the
627 * process group becomes orphaned.  Check both the specified process'
628 * process group and that of its children.
629 * entering == 0 => p is leaving specified group.
630 * entering == 1 => p is entering specified group.
631 */
632void
633fixjobc(p, pgrp, entering)
634	register struct proc *p;
635	register struct pgrp *pgrp;
636	int entering;
637{
638	register struct pgrp *hispgrp;
639	register struct session *mysession;
640
641	sx_assert(&proctree_lock, SX_LOCKED);
642	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
643	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
644	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
645
646	/*
647	 * Check p's parent to see whether p qualifies its own process
648	 * group; if so, adjust count for p's process group.
649	 */
650	mysession = pgrp->pg_session;
651	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
652	    hispgrp->pg_session == mysession)
653		pgadjustjobc(pgrp, entering);
654
655	/*
656	 * Check this process' children to see whether they qualify
657	 * their process groups; if so, adjust counts for children's
658	 * process groups.
659	 */
660	LIST_FOREACH(p, &p->p_children, p_sibling) {
661		hispgrp = p->p_pgrp;
662		if (hispgrp == pgrp ||
663		    hispgrp->pg_session != mysession)
664			continue;
665		PROC_LOCK(p);
666		if (p->p_state == PRS_ZOMBIE) {
667			PROC_UNLOCK(p);
668			continue;
669		}
670		PROC_UNLOCK(p);
671		pgadjustjobc(hispgrp, entering);
672	}
673}
674
675/*
676 * A process group has become orphaned;
677 * if there are any stopped processes in the group,
678 * hang-up all process in that group.
679 */
680static void
681orphanpg(pg)
682	struct pgrp *pg;
683{
684	register struct proc *p;
685
686	PGRP_LOCK_ASSERT(pg, MA_OWNED);
687
688	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
689		PROC_LOCK(p);
690		if (P_SHOULDSTOP(p)) {
691			PROC_UNLOCK(p);
692			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
693				PROC_LOCK(p);
694				kern_psignal(p, SIGHUP);
695				kern_psignal(p, SIGCONT);
696				PROC_UNLOCK(p);
697			}
698			return;
699		}
700		PROC_UNLOCK(p);
701	}
702}
703
704void
705sess_hold(struct session *s)
706{
707
708	refcount_acquire(&s->s_count);
709}
710
711void
712sess_release(struct session *s)
713{
714
715	if (refcount_release(&s->s_count)) {
716		if (s->s_ttyp != NULL) {
717			tty_lock(s->s_ttyp);
718			tty_rel_sess(s->s_ttyp, s);
719		}
720		mtx_destroy(&s->s_mtx);
721		free(s, M_SESSION);
722	}
723}
724
725#ifdef DDB
726
727DB_SHOW_COMMAND(pgrpdump, pgrpdump)
728{
729	register struct pgrp *pgrp;
730	register struct proc *p;
731	register int i;
732
733	for (i = 0; i <= pgrphash; i++) {
734		if (!LIST_EMPTY(&pgrphashtbl[i])) {
735			printf("\tindx %d\n", i);
736			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
737				printf(
738			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
739				    (void *)pgrp, (long)pgrp->pg_id,
740				    (void *)pgrp->pg_session,
741				    pgrp->pg_session->s_count,
742				    (void *)LIST_FIRST(&pgrp->pg_members));
743				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
744					printf("\t\tpid %ld addr %p pgrp %p\n",
745					    (long)p->p_pid, (void *)p,
746					    (void *)p->p_pgrp);
747				}
748			}
749		}
750	}
751}
752#endif /* DDB */
753
754/*
755 * Calculate the kinfo_proc members which contain process-wide
756 * informations.
757 * Must be called with the target process locked.
758 */
759static void
760fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
761{
762	struct thread *td;
763
764	PROC_LOCK_ASSERT(p, MA_OWNED);
765
766	kp->ki_estcpu = 0;
767	kp->ki_pctcpu = 0;
768	FOREACH_THREAD_IN_PROC(p, td) {
769		thread_lock(td);
770		kp->ki_pctcpu += sched_pctcpu(td);
771		kp->ki_estcpu += td->td_estcpu;
772		thread_unlock(td);
773	}
774}
775
776/*
777 * Clear kinfo_proc and fill in any information that is common
778 * to all threads in the process.
779 * Must be called with the target process locked.
780 */
781static void
782fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
783{
784	struct thread *td0;
785	struct tty *tp;
786	struct session *sp;
787	struct ucred *cred;
788	struct sigacts *ps;
789
790	PROC_LOCK_ASSERT(p, MA_OWNED);
791	bzero(kp, sizeof(*kp));
792
793	kp->ki_structsize = sizeof(*kp);
794	kp->ki_paddr = p;
795	kp->ki_addr =/* p->p_addr; */0; /* XXX */
796	kp->ki_args = p->p_args;
797	kp->ki_textvp = p->p_textvp;
798#ifdef KTRACE
799	kp->ki_tracep = p->p_tracevp;
800	kp->ki_traceflag = p->p_traceflag;
801#endif
802	kp->ki_fd = p->p_fd;
803	kp->ki_vmspace = p->p_vmspace;
804	kp->ki_flag = p->p_flag;
805	kp->ki_flag2 = p->p_flag2;
806	cred = p->p_ucred;
807	if (cred) {
808		kp->ki_uid = cred->cr_uid;
809		kp->ki_ruid = cred->cr_ruid;
810		kp->ki_svuid = cred->cr_svuid;
811		kp->ki_cr_flags = 0;
812		if (cred->cr_flags & CRED_FLAG_CAPMODE)
813			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
814		/* XXX bde doesn't like KI_NGROUPS */
815		if (cred->cr_ngroups > KI_NGROUPS) {
816			kp->ki_ngroups = KI_NGROUPS;
817			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
818		} else
819			kp->ki_ngroups = cred->cr_ngroups;
820		bcopy(cred->cr_groups, kp->ki_groups,
821		    kp->ki_ngroups * sizeof(gid_t));
822		kp->ki_rgid = cred->cr_rgid;
823		kp->ki_svgid = cred->cr_svgid;
824		/* If jailed(cred), emulate the old P_JAILED flag. */
825		if (jailed(cred)) {
826			kp->ki_flag |= P_JAILED;
827			/* If inside the jail, use 0 as a jail ID. */
828			if (cred->cr_prison != curthread->td_ucred->cr_prison)
829				kp->ki_jid = cred->cr_prison->pr_id;
830		}
831		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
832		    sizeof(kp->ki_loginclass));
833	}
834	ps = p->p_sigacts;
835	if (ps) {
836		mtx_lock(&ps->ps_mtx);
837		kp->ki_sigignore = ps->ps_sigignore;
838		kp->ki_sigcatch = ps->ps_sigcatch;
839		mtx_unlock(&ps->ps_mtx);
840	}
841	if (p->p_state != PRS_NEW &&
842	    p->p_state != PRS_ZOMBIE &&
843	    p->p_vmspace != NULL) {
844		struct vmspace *vm = p->p_vmspace;
845
846		kp->ki_size = vm->vm_map.size;
847		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
848		FOREACH_THREAD_IN_PROC(p, td0) {
849			if (!TD_IS_SWAPPED(td0))
850				kp->ki_rssize += td0->td_kstack_pages;
851		}
852		kp->ki_swrss = vm->vm_swrss;
853		kp->ki_tsize = vm->vm_tsize;
854		kp->ki_dsize = vm->vm_dsize;
855		kp->ki_ssize = vm->vm_ssize;
856	} else if (p->p_state == PRS_ZOMBIE)
857		kp->ki_stat = SZOMB;
858	if (kp->ki_flag & P_INMEM)
859		kp->ki_sflag = PS_INMEM;
860	else
861		kp->ki_sflag = 0;
862	/* Calculate legacy swtime as seconds since 'swtick'. */
863	kp->ki_swtime = (ticks - p->p_swtick) / hz;
864	kp->ki_pid = p->p_pid;
865	kp->ki_nice = p->p_nice;
866	kp->ki_fibnum = p->p_fibnum;
867	kp->ki_start = p->p_stats->p_start;
868	timevaladd(&kp->ki_start, &boottime);
869	PROC_SLOCK(p);
870	rufetch(p, &kp->ki_rusage);
871	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
872	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
873	PROC_SUNLOCK(p);
874	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
875	/* Some callers want child times in a single value. */
876	kp->ki_childtime = kp->ki_childstime;
877	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
878
879	FOREACH_THREAD_IN_PROC(p, td0)
880		kp->ki_cow += td0->td_cow;
881
882	tp = NULL;
883	if (p->p_pgrp) {
884		kp->ki_pgid = p->p_pgrp->pg_id;
885		kp->ki_jobc = p->p_pgrp->pg_jobc;
886		sp = p->p_pgrp->pg_session;
887
888		if (sp != NULL) {
889			kp->ki_sid = sp->s_sid;
890			SESS_LOCK(sp);
891			strlcpy(kp->ki_login, sp->s_login,
892			    sizeof(kp->ki_login));
893			if (sp->s_ttyvp)
894				kp->ki_kiflag |= KI_CTTY;
895			if (SESS_LEADER(p))
896				kp->ki_kiflag |= KI_SLEADER;
897			/* XXX proctree_lock */
898			tp = sp->s_ttyp;
899			SESS_UNLOCK(sp);
900		}
901	}
902	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
903		kp->ki_tdev = tty_udev(tp);
904		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
905		if (tp->t_session)
906			kp->ki_tsid = tp->t_session->s_sid;
907	} else
908		kp->ki_tdev = NODEV;
909	if (p->p_comm[0] != '\0')
910		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
911	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
912	    p->p_sysent->sv_name[0] != '\0')
913		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
914	kp->ki_siglist = p->p_siglist;
915	kp->ki_xstat = p->p_xstat;
916	kp->ki_acflag = p->p_acflag;
917	kp->ki_lock = p->p_lock;
918	if (p->p_pptr)
919		kp->ki_ppid = p->p_pptr->p_pid;
920}
921
922/*
923 * Fill in information that is thread specific.  Must be called with
924 * target process locked.  If 'preferthread' is set, overwrite certain
925 * process-related fields that are maintained for both threads and
926 * processes.
927 */
928static void
929fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
930{
931	struct proc *p;
932
933	p = td->td_proc;
934	kp->ki_tdaddr = td;
935	PROC_LOCK_ASSERT(p, MA_OWNED);
936
937	if (preferthread)
938		PROC_SLOCK(p);
939	thread_lock(td);
940	if (td->td_wmesg != NULL)
941		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
942	else
943		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
944	strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
945	if (TD_ON_LOCK(td)) {
946		kp->ki_kiflag |= KI_LOCKBLOCK;
947		strlcpy(kp->ki_lockname, td->td_lockname,
948		    sizeof(kp->ki_lockname));
949	} else {
950		kp->ki_kiflag &= ~KI_LOCKBLOCK;
951		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
952	}
953
954	if (p->p_state == PRS_NORMAL) { /* approximate. */
955		if (TD_ON_RUNQ(td) ||
956		    TD_CAN_RUN(td) ||
957		    TD_IS_RUNNING(td)) {
958			kp->ki_stat = SRUN;
959		} else if (P_SHOULDSTOP(p)) {
960			kp->ki_stat = SSTOP;
961		} else if (TD_IS_SLEEPING(td)) {
962			kp->ki_stat = SSLEEP;
963		} else if (TD_ON_LOCK(td)) {
964			kp->ki_stat = SLOCK;
965		} else {
966			kp->ki_stat = SWAIT;
967		}
968	} else if (p->p_state == PRS_ZOMBIE) {
969		kp->ki_stat = SZOMB;
970	} else {
971		kp->ki_stat = SIDL;
972	}
973
974	/* Things in the thread */
975	kp->ki_wchan = td->td_wchan;
976	kp->ki_pri.pri_level = td->td_priority;
977	kp->ki_pri.pri_native = td->td_base_pri;
978	kp->ki_lastcpu = td->td_lastcpu;
979	kp->ki_oncpu = td->td_oncpu;
980	kp->ki_tdflags = td->td_flags;
981	kp->ki_tid = td->td_tid;
982	kp->ki_numthreads = p->p_numthreads;
983	kp->ki_pcb = td->td_pcb;
984	kp->ki_kstack = (void *)td->td_kstack;
985	kp->ki_slptime = (ticks - td->td_slptick) / hz;
986	kp->ki_pri.pri_class = td->td_pri_class;
987	kp->ki_pri.pri_user = td->td_user_pri;
988
989	if (preferthread) {
990		rufetchtd(td, &kp->ki_rusage);
991		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
992		kp->ki_pctcpu = sched_pctcpu(td);
993		kp->ki_estcpu = td->td_estcpu;
994		kp->ki_cow = td->td_cow;
995	}
996
997	/* We can't get this anymore but ps etc never used it anyway. */
998	kp->ki_rqindex = 0;
999
1000	if (preferthread)
1001		kp->ki_siglist = td->td_siglist;
1002	kp->ki_sigmask = td->td_sigmask;
1003	thread_unlock(td);
1004	if (preferthread)
1005		PROC_SUNLOCK(p);
1006}
1007
1008/*
1009 * Fill in a kinfo_proc structure for the specified process.
1010 * Must be called with the target process locked.
1011 */
1012void
1013fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1014{
1015
1016	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1017
1018	fill_kinfo_proc_only(p, kp);
1019	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1020	fill_kinfo_aggregate(p, kp);
1021}
1022
1023struct pstats *
1024pstats_alloc(void)
1025{
1026
1027	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1028}
1029
1030/*
1031 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1032 */
1033void
1034pstats_fork(struct pstats *src, struct pstats *dst)
1035{
1036
1037	bzero(&dst->pstat_startzero,
1038	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1039	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1040	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1041}
1042
1043void
1044pstats_free(struct pstats *ps)
1045{
1046
1047	free(ps, M_SUBPROC);
1048}
1049
1050static struct proc *
1051zpfind_locked(pid_t pid)
1052{
1053	struct proc *p;
1054
1055	sx_assert(&allproc_lock, SX_LOCKED);
1056	LIST_FOREACH(p, &zombproc, p_list) {
1057		if (p->p_pid == pid) {
1058			PROC_LOCK(p);
1059			break;
1060		}
1061	}
1062	return (p);
1063}
1064
1065/*
1066 * Locate a zombie process by number
1067 */
1068struct proc *
1069zpfind(pid_t pid)
1070{
1071	struct proc *p;
1072
1073	sx_slock(&allproc_lock);
1074	p = zpfind_locked(pid);
1075	sx_sunlock(&allproc_lock);
1076	return (p);
1077}
1078
1079#ifdef COMPAT_FREEBSD32
1080
1081/*
1082 * This function is typically used to copy out the kernel address, so
1083 * it can be replaced by assignment of zero.
1084 */
1085static inline uint32_t
1086ptr32_trim(void *ptr)
1087{
1088	uintptr_t uptr;
1089
1090	uptr = (uintptr_t)ptr;
1091	return ((uptr > UINT_MAX) ? 0 : uptr);
1092}
1093
1094#define PTRTRIM_CP(src,dst,fld) \
1095	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1096
1097static void
1098freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1099{
1100	int i;
1101
1102	bzero(ki32, sizeof(struct kinfo_proc32));
1103	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1104	CP(*ki, *ki32, ki_layout);
1105	PTRTRIM_CP(*ki, *ki32, ki_args);
1106	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1107	PTRTRIM_CP(*ki, *ki32, ki_addr);
1108	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1109	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1110	PTRTRIM_CP(*ki, *ki32, ki_fd);
1111	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1112	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1113	CP(*ki, *ki32, ki_pid);
1114	CP(*ki, *ki32, ki_ppid);
1115	CP(*ki, *ki32, ki_pgid);
1116	CP(*ki, *ki32, ki_tpgid);
1117	CP(*ki, *ki32, ki_sid);
1118	CP(*ki, *ki32, ki_tsid);
1119	CP(*ki, *ki32, ki_jobc);
1120	CP(*ki, *ki32, ki_tdev);
1121	CP(*ki, *ki32, ki_siglist);
1122	CP(*ki, *ki32, ki_sigmask);
1123	CP(*ki, *ki32, ki_sigignore);
1124	CP(*ki, *ki32, ki_sigcatch);
1125	CP(*ki, *ki32, ki_uid);
1126	CP(*ki, *ki32, ki_ruid);
1127	CP(*ki, *ki32, ki_svuid);
1128	CP(*ki, *ki32, ki_rgid);
1129	CP(*ki, *ki32, ki_svgid);
1130	CP(*ki, *ki32, ki_ngroups);
1131	for (i = 0; i < KI_NGROUPS; i++)
1132		CP(*ki, *ki32, ki_groups[i]);
1133	CP(*ki, *ki32, ki_size);
1134	CP(*ki, *ki32, ki_rssize);
1135	CP(*ki, *ki32, ki_swrss);
1136	CP(*ki, *ki32, ki_tsize);
1137	CP(*ki, *ki32, ki_dsize);
1138	CP(*ki, *ki32, ki_ssize);
1139	CP(*ki, *ki32, ki_xstat);
1140	CP(*ki, *ki32, ki_acflag);
1141	CP(*ki, *ki32, ki_pctcpu);
1142	CP(*ki, *ki32, ki_estcpu);
1143	CP(*ki, *ki32, ki_slptime);
1144	CP(*ki, *ki32, ki_swtime);
1145	CP(*ki, *ki32, ki_cow);
1146	CP(*ki, *ki32, ki_runtime);
1147	TV_CP(*ki, *ki32, ki_start);
1148	TV_CP(*ki, *ki32, ki_childtime);
1149	CP(*ki, *ki32, ki_flag);
1150	CP(*ki, *ki32, ki_kiflag);
1151	CP(*ki, *ki32, ki_traceflag);
1152	CP(*ki, *ki32, ki_stat);
1153	CP(*ki, *ki32, ki_nice);
1154	CP(*ki, *ki32, ki_lock);
1155	CP(*ki, *ki32, ki_rqindex);
1156	CP(*ki, *ki32, ki_oncpu);
1157	CP(*ki, *ki32, ki_lastcpu);
1158	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1159	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1160	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1161	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1162	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1163	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1164	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1165	CP(*ki, *ki32, ki_flag2);
1166	CP(*ki, *ki32, ki_fibnum);
1167	CP(*ki, *ki32, ki_cr_flags);
1168	CP(*ki, *ki32, ki_jid);
1169	CP(*ki, *ki32, ki_numthreads);
1170	CP(*ki, *ki32, ki_tid);
1171	CP(*ki, *ki32, ki_pri);
1172	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1173	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1174	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1175	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1176	PTRTRIM_CP(*ki, *ki32, ki_udata);
1177	CP(*ki, *ki32, ki_sflag);
1178	CP(*ki, *ki32, ki_tdflags);
1179}
1180#endif
1181
1182int
1183kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1184{
1185	struct thread *td;
1186	struct kinfo_proc ki;
1187#ifdef COMPAT_FREEBSD32
1188	struct kinfo_proc32 ki32;
1189#endif
1190	int error;
1191
1192	PROC_LOCK_ASSERT(p, MA_OWNED);
1193	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1194
1195	error = 0;
1196	fill_kinfo_proc(p, &ki);
1197	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1198#ifdef COMPAT_FREEBSD32
1199		if ((flags & KERN_PROC_MASK32) != 0) {
1200			freebsd32_kinfo_proc_out(&ki, &ki32);
1201			error = sbuf_bcat(sb, &ki32, sizeof(ki32));
1202		} else
1203#endif
1204			error = sbuf_bcat(sb, &ki, sizeof(ki));
1205	} else {
1206		FOREACH_THREAD_IN_PROC(p, td) {
1207			fill_kinfo_thread(td, &ki, 1);
1208#ifdef COMPAT_FREEBSD32
1209			if ((flags & KERN_PROC_MASK32) != 0) {
1210				freebsd32_kinfo_proc_out(&ki, &ki32);
1211				error = sbuf_bcat(sb, &ki32, sizeof(ki32));
1212			} else
1213#endif
1214				error = sbuf_bcat(sb, &ki, sizeof(ki));
1215			if (error)
1216				break;
1217		}
1218	}
1219	PROC_UNLOCK(p);
1220	return (error);
1221}
1222
1223static int
1224sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
1225    int doingzomb)
1226{
1227	struct sbuf sb;
1228	struct kinfo_proc ki;
1229	struct proc *np;
1230	int error, error2;
1231	pid_t pid;
1232
1233	pid = p->p_pid;
1234	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1235	error = kern_proc_out(p, &sb, flags);
1236	error2 = sbuf_finish(&sb);
1237	sbuf_delete(&sb);
1238	if (error != 0)
1239		return (error);
1240	else if (error2 != 0)
1241		return (error2);
1242	if (doingzomb)
1243		np = zpfind(pid);
1244	else {
1245		if (pid == 0)
1246			return (0);
1247		np = pfind(pid);
1248	}
1249	if (np == NULL)
1250		return (ESRCH);
1251	if (np != p) {
1252		PROC_UNLOCK(np);
1253		return (ESRCH);
1254	}
1255	PROC_UNLOCK(np);
1256	return (0);
1257}
1258
1259static int
1260sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1261{
1262	int *name = (int *)arg1;
1263	u_int namelen = arg2;
1264	struct proc *p;
1265	int flags, doingzomb, oid_number;
1266	int error = 0;
1267
1268	oid_number = oidp->oid_number;
1269	if (oid_number != KERN_PROC_ALL &&
1270	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1271		flags = KERN_PROC_NOTHREADS;
1272	else {
1273		flags = 0;
1274		oid_number &= ~KERN_PROC_INC_THREAD;
1275	}
1276#ifdef COMPAT_FREEBSD32
1277	if (req->flags & SCTL_MASK32)
1278		flags |= KERN_PROC_MASK32;
1279#endif
1280	if (oid_number == KERN_PROC_PID) {
1281		if (namelen != 1)
1282			return (EINVAL);
1283		error = sysctl_wire_old_buffer(req, 0);
1284		if (error)
1285			return (error);
1286		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1287		if (error != 0)
1288			return (error);
1289		error = sysctl_out_proc(p, req, flags, 0);
1290		return (error);
1291	}
1292
1293	switch (oid_number) {
1294	case KERN_PROC_ALL:
1295		if (namelen != 0)
1296			return (EINVAL);
1297		break;
1298	case KERN_PROC_PROC:
1299		if (namelen != 0 && namelen != 1)
1300			return (EINVAL);
1301		break;
1302	default:
1303		if (namelen != 1)
1304			return (EINVAL);
1305		break;
1306	}
1307
1308	if (!req->oldptr) {
1309		/* overestimate by 5 procs */
1310		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1311		if (error)
1312			return (error);
1313	}
1314	error = sysctl_wire_old_buffer(req, 0);
1315	if (error != 0)
1316		return (error);
1317	sx_slock(&allproc_lock);
1318	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1319		if (!doingzomb)
1320			p = LIST_FIRST(&allproc);
1321		else
1322			p = LIST_FIRST(&zombproc);
1323		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1324			/*
1325			 * Skip embryonic processes.
1326			 */
1327			PROC_LOCK(p);
1328			if (p->p_state == PRS_NEW) {
1329				PROC_UNLOCK(p);
1330				continue;
1331			}
1332			KASSERT(p->p_ucred != NULL,
1333			    ("process credential is NULL for non-NEW proc"));
1334			/*
1335			 * Show a user only appropriate processes.
1336			 */
1337			if (p_cansee(curthread, p)) {
1338				PROC_UNLOCK(p);
1339				continue;
1340			}
1341			/*
1342			 * TODO - make more efficient (see notes below).
1343			 * do by session.
1344			 */
1345			switch (oid_number) {
1346
1347			case KERN_PROC_GID:
1348				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1349					PROC_UNLOCK(p);
1350					continue;
1351				}
1352				break;
1353
1354			case KERN_PROC_PGRP:
1355				/* could do this by traversing pgrp */
1356				if (p->p_pgrp == NULL ||
1357				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1358					PROC_UNLOCK(p);
1359					continue;
1360				}
1361				break;
1362
1363			case KERN_PROC_RGID:
1364				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1365					PROC_UNLOCK(p);
1366					continue;
1367				}
1368				break;
1369
1370			case KERN_PROC_SESSION:
1371				if (p->p_session == NULL ||
1372				    p->p_session->s_sid != (pid_t)name[0]) {
1373					PROC_UNLOCK(p);
1374					continue;
1375				}
1376				break;
1377
1378			case KERN_PROC_TTY:
1379				if ((p->p_flag & P_CONTROLT) == 0 ||
1380				    p->p_session == NULL) {
1381					PROC_UNLOCK(p);
1382					continue;
1383				}
1384				/* XXX proctree_lock */
1385				SESS_LOCK(p->p_session);
1386				if (p->p_session->s_ttyp == NULL ||
1387				    tty_udev(p->p_session->s_ttyp) !=
1388				    (dev_t)name[0]) {
1389					SESS_UNLOCK(p->p_session);
1390					PROC_UNLOCK(p);
1391					continue;
1392				}
1393				SESS_UNLOCK(p->p_session);
1394				break;
1395
1396			case KERN_PROC_UID:
1397				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1398					PROC_UNLOCK(p);
1399					continue;
1400				}
1401				break;
1402
1403			case KERN_PROC_RUID:
1404				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1405					PROC_UNLOCK(p);
1406					continue;
1407				}
1408				break;
1409
1410			case KERN_PROC_PROC:
1411				break;
1412
1413			default:
1414				break;
1415
1416			}
1417
1418			error = sysctl_out_proc(p, req, flags, doingzomb);
1419			if (error) {
1420				sx_sunlock(&allproc_lock);
1421				return (error);
1422			}
1423		}
1424	}
1425	sx_sunlock(&allproc_lock);
1426	return (0);
1427}
1428
1429struct pargs *
1430pargs_alloc(int len)
1431{
1432	struct pargs *pa;
1433
1434	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1435		M_WAITOK);
1436	refcount_init(&pa->ar_ref, 1);
1437	pa->ar_length = len;
1438	return (pa);
1439}
1440
1441static void
1442pargs_free(struct pargs *pa)
1443{
1444
1445	free(pa, M_PARGS);
1446}
1447
1448void
1449pargs_hold(struct pargs *pa)
1450{
1451
1452	if (pa == NULL)
1453		return;
1454	refcount_acquire(&pa->ar_ref);
1455}
1456
1457void
1458pargs_drop(struct pargs *pa)
1459{
1460
1461	if (pa == NULL)
1462		return;
1463	if (refcount_release(&pa->ar_ref))
1464		pargs_free(pa);
1465}
1466
1467static int
1468proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
1469    size_t len)
1470{
1471	struct iovec iov;
1472	struct uio uio;
1473
1474	iov.iov_base = (caddr_t)buf;
1475	iov.iov_len = len;
1476	uio.uio_iov = &iov;
1477	uio.uio_iovcnt = 1;
1478	uio.uio_offset = offset;
1479	uio.uio_resid = (ssize_t)len;
1480	uio.uio_segflg = UIO_SYSSPACE;
1481	uio.uio_rw = UIO_READ;
1482	uio.uio_td = td;
1483
1484	return (proc_rwmem(p, &uio));
1485}
1486
1487static int
1488proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1489    size_t len)
1490{
1491	size_t i;
1492	int error;
1493
1494	error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
1495	/*
1496	 * Reading the chunk may validly return EFAULT if the string is shorter
1497	 * than the chunk and is aligned at the end of the page, assuming the
1498	 * next page is not mapped.  So if EFAULT is returned do a fallback to
1499	 * one byte read loop.
1500	 */
1501	if (error == EFAULT) {
1502		for (i = 0; i < len; i++, buf++, sptr++) {
1503			error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
1504			if (error != 0)
1505				return (error);
1506			if (*buf == '\0')
1507				break;
1508		}
1509		error = 0;
1510	}
1511	return (error);
1512}
1513
1514#define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1515
1516enum proc_vector_type {
1517	PROC_ARG,
1518	PROC_ENV,
1519	PROC_AUX,
1520};
1521
1522#ifdef COMPAT_FREEBSD32
1523static int
1524get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1525    size_t *vsizep, enum proc_vector_type type)
1526{
1527	struct freebsd32_ps_strings pss;
1528	Elf32_Auxinfo aux;
1529	vm_offset_t vptr, ptr;
1530	uint32_t *proc_vector32;
1531	char **proc_vector;
1532	size_t vsize, size;
1533	int i, error;
1534
1535	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1536	    &pss, sizeof(pss));
1537	if (error != 0)
1538		return (error);
1539	switch (type) {
1540	case PROC_ARG:
1541		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1542		vsize = pss.ps_nargvstr;
1543		if (vsize > ARG_MAX)
1544			return (ENOEXEC);
1545		size = vsize * sizeof(int32_t);
1546		break;
1547	case PROC_ENV:
1548		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1549		vsize = pss.ps_nenvstr;
1550		if (vsize > ARG_MAX)
1551			return (ENOEXEC);
1552		size = vsize * sizeof(int32_t);
1553		break;
1554	case PROC_AUX:
1555		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1556		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1557		if (vptr % 4 != 0)
1558			return (ENOEXEC);
1559		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1560			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1561			if (error != 0)
1562				return (error);
1563			if (aux.a_type == AT_NULL)
1564				break;
1565			ptr += sizeof(aux);
1566		}
1567		if (aux.a_type != AT_NULL)
1568			return (ENOEXEC);
1569		vsize = i + 1;
1570		size = vsize * sizeof(aux);
1571		break;
1572	default:
1573		KASSERT(0, ("Wrong proc vector type: %d", type));
1574		return (EINVAL);
1575	}
1576	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1577	error = proc_read_mem(td, p, vptr, proc_vector32, size);
1578	if (error != 0)
1579		goto done;
1580	if (type == PROC_AUX) {
1581		*proc_vectorp = (char **)proc_vector32;
1582		*vsizep = vsize;
1583		return (0);
1584	}
1585	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1586	for (i = 0; i < (int)vsize; i++)
1587		proc_vector[i] = PTRIN(proc_vector32[i]);
1588	*proc_vectorp = proc_vector;
1589	*vsizep = vsize;
1590done:
1591	free(proc_vector32, M_TEMP);
1592	return (error);
1593}
1594#endif
1595
1596static int
1597get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1598    size_t *vsizep, enum proc_vector_type type)
1599{
1600	struct ps_strings pss;
1601	Elf_Auxinfo aux;
1602	vm_offset_t vptr, ptr;
1603	char **proc_vector;
1604	size_t vsize, size;
1605	int error, i;
1606
1607#ifdef COMPAT_FREEBSD32
1608	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1609		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1610#endif
1611	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1612	    &pss, sizeof(pss));
1613	if (error != 0)
1614		return (error);
1615	switch (type) {
1616	case PROC_ARG:
1617		vptr = (vm_offset_t)pss.ps_argvstr;
1618		vsize = pss.ps_nargvstr;
1619		if (vsize > ARG_MAX)
1620			return (ENOEXEC);
1621		size = vsize * sizeof(char *);
1622		break;
1623	case PROC_ENV:
1624		vptr = (vm_offset_t)pss.ps_envstr;
1625		vsize = pss.ps_nenvstr;
1626		if (vsize > ARG_MAX)
1627			return (ENOEXEC);
1628		size = vsize * sizeof(char *);
1629		break;
1630	case PROC_AUX:
1631		/*
1632		 * The aux array is just above env array on the stack. Check
1633		 * that the address is naturally aligned.
1634		 */
1635		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1636		    * sizeof(char *);
1637#if __ELF_WORD_SIZE == 64
1638		if (vptr % sizeof(uint64_t) != 0)
1639#else
1640		if (vptr % sizeof(uint32_t) != 0)
1641#endif
1642			return (ENOEXEC);
1643		/*
1644		 * We count the array size reading the aux vectors from the
1645		 * stack until AT_NULL vector is returned.  So (to keep the code
1646		 * simple) we read the process stack twice: the first time here
1647		 * to find the size and the second time when copying the vectors
1648		 * to the allocated proc_vector.
1649		 */
1650		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1651			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1652			if (error != 0)
1653				return (error);
1654			if (aux.a_type == AT_NULL)
1655				break;
1656			ptr += sizeof(aux);
1657		}
1658		/*
1659		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1660		 * not reached AT_NULL, it is most likely we are reading wrong
1661		 * data: either the process doesn't have auxv array or data has
1662		 * been modified. Return the error in this case.
1663		 */
1664		if (aux.a_type != AT_NULL)
1665			return (ENOEXEC);
1666		vsize = i + 1;
1667		size = vsize * sizeof(aux);
1668		break;
1669	default:
1670		KASSERT(0, ("Wrong proc vector type: %d", type));
1671		return (EINVAL); /* In case we are built without INVARIANTS. */
1672	}
1673	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1674	if (proc_vector == NULL)
1675		return (ENOMEM);
1676	error = proc_read_mem(td, p, vptr, proc_vector, size);
1677	if (error != 0) {
1678		free(proc_vector, M_TEMP);
1679		return (error);
1680	}
1681	*proc_vectorp = proc_vector;
1682	*vsizep = vsize;
1683
1684	return (0);
1685}
1686
1687#define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1688
1689static int
1690get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1691    enum proc_vector_type type)
1692{
1693	size_t done, len, nchr, vsize;
1694	int error, i;
1695	char **proc_vector, *sptr;
1696	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1697
1698	PROC_ASSERT_HELD(p);
1699
1700	/*
1701	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1702	 */
1703	nchr = 2 * (PATH_MAX + ARG_MAX);
1704
1705	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1706	if (error != 0)
1707		return (error);
1708	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1709		/*
1710		 * The program may have scribbled into its argv array, e.g. to
1711		 * remove some arguments.  If that has happened, break out
1712		 * before trying to read from NULL.
1713		 */
1714		if (proc_vector[i] == NULL)
1715			break;
1716		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1717			error = proc_read_string(td, p, sptr, pss_string,
1718			    sizeof(pss_string));
1719			if (error != 0)
1720				goto done;
1721			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1722			if (done + len >= nchr)
1723				len = nchr - done - 1;
1724			sbuf_bcat(sb, pss_string, len);
1725			if (len != GET_PS_STRINGS_CHUNK_SZ)
1726				break;
1727			done += GET_PS_STRINGS_CHUNK_SZ;
1728		}
1729		sbuf_bcat(sb, "", 1);
1730		done += len + 1;
1731	}
1732done:
1733	free(proc_vector, M_TEMP);
1734	return (error);
1735}
1736
1737int
1738proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1739{
1740
1741	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1742}
1743
1744int
1745proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1746{
1747
1748	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1749}
1750
1751int
1752proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1753{
1754	size_t vsize, size;
1755	char **auxv;
1756	int error;
1757
1758	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1759	if (error == 0) {
1760#ifdef COMPAT_FREEBSD32
1761		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1762			size = vsize * sizeof(Elf32_Auxinfo);
1763		else
1764#endif
1765			size = vsize * sizeof(Elf_Auxinfo);
1766		error = sbuf_bcat(sb, auxv, size);
1767		free(auxv, M_TEMP);
1768	}
1769	return (error);
1770}
1771
1772/*
1773 * This sysctl allows a process to retrieve the argument list or process
1774 * title for another process without groping around in the address space
1775 * of the other process.  It also allow a process to set its own "process
1776 * title to a string of its own choice.
1777 */
1778static int
1779sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1780{
1781	int *name = (int *)arg1;
1782	u_int namelen = arg2;
1783	struct pargs *newpa, *pa;
1784	struct proc *p;
1785	struct sbuf sb;
1786	int flags, error = 0, error2;
1787
1788	if (namelen != 1)
1789		return (EINVAL);
1790
1791	flags = PGET_CANSEE;
1792	if (req->newptr != NULL)
1793		flags |= PGET_ISCURRENT;
1794	error = pget((pid_t)name[0], flags, &p);
1795	if (error)
1796		return (error);
1797
1798	pa = p->p_args;
1799	if (pa != NULL) {
1800		pargs_hold(pa);
1801		PROC_UNLOCK(p);
1802		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1803		pargs_drop(pa);
1804	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1805		_PHOLD(p);
1806		PROC_UNLOCK(p);
1807		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1808		error = proc_getargv(curthread, p, &sb);
1809		error2 = sbuf_finish(&sb);
1810		PRELE(p);
1811		sbuf_delete(&sb);
1812		if (error == 0 && error2 != 0)
1813			error = error2;
1814	} else {
1815		PROC_UNLOCK(p);
1816	}
1817	if (error != 0 || req->newptr == NULL)
1818		return (error);
1819
1820	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1821		return (ENOMEM);
1822	newpa = pargs_alloc(req->newlen);
1823	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1824	if (error != 0) {
1825		pargs_free(newpa);
1826		return (error);
1827	}
1828	PROC_LOCK(p);
1829	pa = p->p_args;
1830	p->p_args = newpa;
1831	PROC_UNLOCK(p);
1832	pargs_drop(pa);
1833	return (0);
1834}
1835
1836/*
1837 * This sysctl allows a process to retrieve environment of another process.
1838 */
1839static int
1840sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1841{
1842	int *name = (int *)arg1;
1843	u_int namelen = arg2;
1844	struct proc *p;
1845	struct sbuf sb;
1846	int error, error2;
1847
1848	if (namelen != 1)
1849		return (EINVAL);
1850
1851	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1852	if (error != 0)
1853		return (error);
1854	if ((p->p_flag & P_SYSTEM) != 0) {
1855		PRELE(p);
1856		return (0);
1857	}
1858
1859	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1860	error = proc_getenvv(curthread, p, &sb);
1861	error2 = sbuf_finish(&sb);
1862	PRELE(p);
1863	sbuf_delete(&sb);
1864	return (error != 0 ? error : error2);
1865}
1866
1867/*
1868 * This sysctl allows a process to retrieve ELF auxiliary vector of
1869 * another process.
1870 */
1871static int
1872sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1873{
1874	int *name = (int *)arg1;
1875	u_int namelen = arg2;
1876	struct proc *p;
1877	struct sbuf sb;
1878	int error, error2;
1879
1880	if (namelen != 1)
1881		return (EINVAL);
1882
1883	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1884	if (error != 0)
1885		return (error);
1886	if ((p->p_flag & P_SYSTEM) != 0) {
1887		PRELE(p);
1888		return (0);
1889	}
1890	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1891	error = proc_getauxv(curthread, p, &sb);
1892	error2 = sbuf_finish(&sb);
1893	PRELE(p);
1894	sbuf_delete(&sb);
1895	return (error != 0 ? error : error2);
1896}
1897
1898/*
1899 * This sysctl allows a process to retrieve the path of the executable for
1900 * itself or another process.
1901 */
1902static int
1903sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1904{
1905	pid_t *pidp = (pid_t *)arg1;
1906	unsigned int arglen = arg2;
1907	struct proc *p;
1908	struct vnode *vp;
1909	char *retbuf, *freebuf;
1910	int error;
1911
1912	if (arglen != 1)
1913		return (EINVAL);
1914	if (*pidp == -1) {	/* -1 means this process */
1915		p = req->td->td_proc;
1916	} else {
1917		error = pget(*pidp, PGET_CANSEE, &p);
1918		if (error != 0)
1919			return (error);
1920	}
1921
1922	vp = p->p_textvp;
1923	if (vp == NULL) {
1924		if (*pidp != -1)
1925			PROC_UNLOCK(p);
1926		return (0);
1927	}
1928	vref(vp);
1929	if (*pidp != -1)
1930		PROC_UNLOCK(p);
1931	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1932	vrele(vp);
1933	if (error)
1934		return (error);
1935	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1936	free(freebuf, M_TEMP);
1937	return (error);
1938}
1939
1940static int
1941sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1942{
1943	struct proc *p;
1944	char *sv_name;
1945	int *name;
1946	int namelen;
1947	int error;
1948
1949	namelen = arg2;
1950	if (namelen != 1)
1951		return (EINVAL);
1952
1953	name = (int *)arg1;
1954	error = pget((pid_t)name[0], PGET_CANSEE, &p);
1955	if (error != 0)
1956		return (error);
1957	sv_name = p->p_sysent->sv_name;
1958	PROC_UNLOCK(p);
1959	return (sysctl_handle_string(oidp, sv_name, 0, req));
1960}
1961
1962#ifdef KINFO_OVMENTRY_SIZE
1963CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1964#endif
1965
1966#ifdef COMPAT_FREEBSD7
1967static int
1968sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1969{
1970	vm_map_entry_t entry, tmp_entry;
1971	unsigned int last_timestamp;
1972	char *fullpath, *freepath;
1973	struct kinfo_ovmentry *kve;
1974	struct vattr va;
1975	struct ucred *cred;
1976	int error, *name;
1977	struct vnode *vp;
1978	struct proc *p;
1979	vm_map_t map;
1980	struct vmspace *vm;
1981
1982	name = (int *)arg1;
1983	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1984	if (error != 0)
1985		return (error);
1986	vm = vmspace_acquire_ref(p);
1987	if (vm == NULL) {
1988		PRELE(p);
1989		return (ESRCH);
1990	}
1991	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1992
1993	map = &vm->vm_map;
1994	vm_map_lock_read(map);
1995	for (entry = map->header.next; entry != &map->header;
1996	    entry = entry->next) {
1997		vm_object_t obj, tobj, lobj;
1998		vm_offset_t addr;
1999
2000		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2001			continue;
2002
2003		bzero(kve, sizeof(*kve));
2004		kve->kve_structsize = sizeof(*kve);
2005
2006		kve->kve_private_resident = 0;
2007		obj = entry->object.vm_object;
2008		if (obj != NULL) {
2009			VM_OBJECT_RLOCK(obj);
2010			if (obj->shadow_count == 1)
2011				kve->kve_private_resident =
2012				    obj->resident_page_count;
2013		}
2014		kve->kve_resident = 0;
2015		addr = entry->start;
2016		while (addr < entry->end) {
2017			if (pmap_extract(map->pmap, addr))
2018				kve->kve_resident++;
2019			addr += PAGE_SIZE;
2020		}
2021
2022		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2023			if (tobj != obj)
2024				VM_OBJECT_RLOCK(tobj);
2025			if (lobj != obj)
2026				VM_OBJECT_RUNLOCK(lobj);
2027			lobj = tobj;
2028		}
2029
2030		kve->kve_start = (void*)entry->start;
2031		kve->kve_end = (void*)entry->end;
2032		kve->kve_offset = (off_t)entry->offset;
2033
2034		if (entry->protection & VM_PROT_READ)
2035			kve->kve_protection |= KVME_PROT_READ;
2036		if (entry->protection & VM_PROT_WRITE)
2037			kve->kve_protection |= KVME_PROT_WRITE;
2038		if (entry->protection & VM_PROT_EXECUTE)
2039			kve->kve_protection |= KVME_PROT_EXEC;
2040
2041		if (entry->eflags & MAP_ENTRY_COW)
2042			kve->kve_flags |= KVME_FLAG_COW;
2043		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2044			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2045		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2046			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2047
2048		last_timestamp = map->timestamp;
2049		vm_map_unlock_read(map);
2050
2051		kve->kve_fileid = 0;
2052		kve->kve_fsid = 0;
2053		freepath = NULL;
2054		fullpath = "";
2055		if (lobj) {
2056			vp = NULL;
2057			switch (lobj->type) {
2058			case OBJT_DEFAULT:
2059				kve->kve_type = KVME_TYPE_DEFAULT;
2060				break;
2061			case OBJT_VNODE:
2062				kve->kve_type = KVME_TYPE_VNODE;
2063				vp = lobj->handle;
2064				vref(vp);
2065				break;
2066			case OBJT_SWAP:
2067				kve->kve_type = KVME_TYPE_SWAP;
2068				break;
2069			case OBJT_DEVICE:
2070				kve->kve_type = KVME_TYPE_DEVICE;
2071				break;
2072			case OBJT_PHYS:
2073				kve->kve_type = KVME_TYPE_PHYS;
2074				break;
2075			case OBJT_DEAD:
2076				kve->kve_type = KVME_TYPE_DEAD;
2077				break;
2078			case OBJT_SG:
2079				kve->kve_type = KVME_TYPE_SG;
2080				break;
2081			default:
2082				kve->kve_type = KVME_TYPE_UNKNOWN;
2083				break;
2084			}
2085			if (lobj != obj)
2086				VM_OBJECT_RUNLOCK(lobj);
2087
2088			kve->kve_ref_count = obj->ref_count;
2089			kve->kve_shadow_count = obj->shadow_count;
2090			VM_OBJECT_RUNLOCK(obj);
2091			if (vp != NULL) {
2092				vn_fullpath(curthread, vp, &fullpath,
2093				    &freepath);
2094				cred = curthread->td_ucred;
2095				vn_lock(vp, LK_SHARED | LK_RETRY);
2096				if (VOP_GETATTR(vp, &va, cred) == 0) {
2097					kve->kve_fileid = va.va_fileid;
2098					kve->kve_fsid = va.va_fsid;
2099				}
2100				vput(vp);
2101			}
2102		} else {
2103			kve->kve_type = KVME_TYPE_NONE;
2104			kve->kve_ref_count = 0;
2105			kve->kve_shadow_count = 0;
2106		}
2107
2108		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2109		if (freepath != NULL)
2110			free(freepath, M_TEMP);
2111
2112		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2113		vm_map_lock_read(map);
2114		if (error)
2115			break;
2116		if (last_timestamp != map->timestamp) {
2117			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2118			entry = tmp_entry;
2119		}
2120	}
2121	vm_map_unlock_read(map);
2122	vmspace_free(vm);
2123	PRELE(p);
2124	free(kve, M_TEMP);
2125	return (error);
2126}
2127#endif	/* COMPAT_FREEBSD7 */
2128
2129#ifdef KINFO_VMENTRY_SIZE
2130CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2131#endif
2132
2133/*
2134 * Must be called with the process locked and will return unlocked.
2135 */
2136int
2137kern_proc_vmmap_out(struct proc *p, struct sbuf *sb)
2138{
2139	vm_map_entry_t entry, tmp_entry;
2140	unsigned int last_timestamp;
2141	char *fullpath, *freepath;
2142	struct kinfo_vmentry *kve;
2143	struct vattr va;
2144	struct ucred *cred;
2145	int error;
2146	struct vnode *vp;
2147	struct vmspace *vm;
2148	vm_map_t map;
2149
2150	PROC_LOCK_ASSERT(p, MA_OWNED);
2151
2152	_PHOLD(p);
2153	PROC_UNLOCK(p);
2154	vm = vmspace_acquire_ref(p);
2155	if (vm == NULL) {
2156		PRELE(p);
2157		return (ESRCH);
2158	}
2159	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2160
2161	error = 0;
2162	map = &vm->vm_map;
2163	vm_map_lock_read(map);
2164	for (entry = map->header.next; entry != &map->header;
2165	    entry = entry->next) {
2166		vm_object_t obj, tobj, lobj;
2167		vm_offset_t addr;
2168		vm_paddr_t locked_pa;
2169		int mincoreinfo;
2170
2171		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2172			continue;
2173
2174		bzero(kve, sizeof(*kve));
2175
2176		kve->kve_private_resident = 0;
2177		obj = entry->object.vm_object;
2178		if (obj != NULL) {
2179			VM_OBJECT_RLOCK(obj);
2180			if (obj->shadow_count == 1)
2181				kve->kve_private_resident =
2182				    obj->resident_page_count;
2183		}
2184		kve->kve_resident = 0;
2185		addr = entry->start;
2186		while (addr < entry->end) {
2187			locked_pa = 0;
2188			mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa);
2189			if (locked_pa != 0)
2190				vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa));
2191			if (mincoreinfo & MINCORE_INCORE)
2192				kve->kve_resident++;
2193			if (mincoreinfo & MINCORE_SUPER)
2194				kve->kve_flags |= KVME_FLAG_SUPER;
2195			addr += PAGE_SIZE;
2196		}
2197
2198		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2199			if (tobj != obj)
2200				VM_OBJECT_RLOCK(tobj);
2201			if (lobj != obj)
2202				VM_OBJECT_RUNLOCK(lobj);
2203			lobj = tobj;
2204		}
2205
2206		kve->kve_start = entry->start;
2207		kve->kve_end = entry->end;
2208		kve->kve_offset = entry->offset;
2209
2210		if (entry->protection & VM_PROT_READ)
2211			kve->kve_protection |= KVME_PROT_READ;
2212		if (entry->protection & VM_PROT_WRITE)
2213			kve->kve_protection |= KVME_PROT_WRITE;
2214		if (entry->protection & VM_PROT_EXECUTE)
2215			kve->kve_protection |= KVME_PROT_EXEC;
2216
2217		if (entry->eflags & MAP_ENTRY_COW)
2218			kve->kve_flags |= KVME_FLAG_COW;
2219		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2220			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2221		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2222			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2223		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2224			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2225		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2226			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2227
2228		last_timestamp = map->timestamp;
2229		vm_map_unlock_read(map);
2230
2231		freepath = NULL;
2232		fullpath = "";
2233		if (lobj) {
2234			vp = NULL;
2235			switch (lobj->type) {
2236			case OBJT_DEFAULT:
2237				kve->kve_type = KVME_TYPE_DEFAULT;
2238				break;
2239			case OBJT_VNODE:
2240				kve->kve_type = KVME_TYPE_VNODE;
2241				vp = lobj->handle;
2242				vref(vp);
2243				break;
2244			case OBJT_SWAP:
2245				kve->kve_type = KVME_TYPE_SWAP;
2246				break;
2247			case OBJT_DEVICE:
2248				kve->kve_type = KVME_TYPE_DEVICE;
2249				break;
2250			case OBJT_PHYS:
2251				kve->kve_type = KVME_TYPE_PHYS;
2252				break;
2253			case OBJT_DEAD:
2254				kve->kve_type = KVME_TYPE_DEAD;
2255				break;
2256			case OBJT_SG:
2257				kve->kve_type = KVME_TYPE_SG;
2258				break;
2259			default:
2260				kve->kve_type = KVME_TYPE_UNKNOWN;
2261				break;
2262			}
2263			if (lobj != obj)
2264				VM_OBJECT_RUNLOCK(lobj);
2265
2266			kve->kve_ref_count = obj->ref_count;
2267			kve->kve_shadow_count = obj->shadow_count;
2268			VM_OBJECT_RUNLOCK(obj);
2269			if (vp != NULL) {
2270				vn_fullpath(curthread, vp, &fullpath,
2271				    &freepath);
2272				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2273				cred = curthread->td_ucred;
2274				vn_lock(vp, LK_SHARED | LK_RETRY);
2275				if (VOP_GETATTR(vp, &va, cred) == 0) {
2276					kve->kve_vn_fileid = va.va_fileid;
2277					kve->kve_vn_fsid = va.va_fsid;
2278					kve->kve_vn_mode =
2279					    MAKEIMODE(va.va_type, va.va_mode);
2280					kve->kve_vn_size = va.va_size;
2281					kve->kve_vn_rdev = va.va_rdev;
2282					kve->kve_status = KF_ATTR_VALID;
2283				}
2284				vput(vp);
2285			}
2286		} else {
2287			kve->kve_type = KVME_TYPE_NONE;
2288			kve->kve_ref_count = 0;
2289			kve->kve_shadow_count = 0;
2290		}
2291
2292		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2293		if (freepath != NULL)
2294			free(freepath, M_TEMP);
2295
2296		/* Pack record size down */
2297		kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
2298		    strlen(kve->kve_path) + 1;
2299		kve->kve_structsize = roundup(kve->kve_structsize,
2300		    sizeof(uint64_t));
2301		error = sbuf_bcat(sb, kve, kve->kve_structsize);
2302		vm_map_lock_read(map);
2303		if (error)
2304			break;
2305		if (last_timestamp != map->timestamp) {
2306			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2307			entry = tmp_entry;
2308		}
2309	}
2310	vm_map_unlock_read(map);
2311	vmspace_free(vm);
2312	PRELE(p);
2313	free(kve, M_TEMP);
2314	return (error);
2315}
2316
2317static int
2318sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2319{
2320	struct proc *p;
2321	struct sbuf sb;
2322	int error, error2, *name;
2323
2324	name = (int *)arg1;
2325	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2326	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2327	if (error != 0) {
2328		sbuf_delete(&sb);
2329		return (error);
2330	}
2331	error = kern_proc_vmmap_out(p, &sb);
2332	error2 = sbuf_finish(&sb);
2333	sbuf_delete(&sb);
2334	return (error != 0 ? error : error2);
2335}
2336
2337#if defined(STACK) || defined(DDB)
2338static int
2339sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2340{
2341	struct kinfo_kstack *kkstp;
2342	int error, i, *name, numthreads;
2343	lwpid_t *lwpidarray;
2344	struct thread *td;
2345	struct stack *st;
2346	struct sbuf sb;
2347	struct proc *p;
2348
2349	name = (int *)arg1;
2350	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2351	if (error != 0)
2352		return (error);
2353
2354	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2355	st = stack_create();
2356
2357	lwpidarray = NULL;
2358	numthreads = 0;
2359	PROC_LOCK(p);
2360repeat:
2361	if (numthreads < p->p_numthreads) {
2362		if (lwpidarray != NULL) {
2363			free(lwpidarray, M_TEMP);
2364			lwpidarray = NULL;
2365		}
2366		numthreads = p->p_numthreads;
2367		PROC_UNLOCK(p);
2368		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2369		    M_WAITOK | M_ZERO);
2370		PROC_LOCK(p);
2371		goto repeat;
2372	}
2373	i = 0;
2374
2375	/*
2376	 * XXXRW: During the below loop, execve(2) and countless other sorts
2377	 * of changes could have taken place.  Should we check to see if the
2378	 * vmspace has been replaced, or the like, in order to prevent
2379	 * giving a snapshot that spans, say, execve(2), with some threads
2380	 * before and some after?  Among other things, the credentials could
2381	 * have changed, in which case the right to extract debug info might
2382	 * no longer be assured.
2383	 */
2384	FOREACH_THREAD_IN_PROC(p, td) {
2385		KASSERT(i < numthreads,
2386		    ("sysctl_kern_proc_kstack: numthreads"));
2387		lwpidarray[i] = td->td_tid;
2388		i++;
2389	}
2390	numthreads = i;
2391	for (i = 0; i < numthreads; i++) {
2392		td = thread_find(p, lwpidarray[i]);
2393		if (td == NULL) {
2394			continue;
2395		}
2396		bzero(kkstp, sizeof(*kkstp));
2397		(void)sbuf_new(&sb, kkstp->kkst_trace,
2398		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2399		thread_lock(td);
2400		kkstp->kkst_tid = td->td_tid;
2401		if (TD_IS_SWAPPED(td))
2402			kkstp->kkst_state = KKST_STATE_SWAPPED;
2403		else if (TD_IS_RUNNING(td))
2404			kkstp->kkst_state = KKST_STATE_RUNNING;
2405		else {
2406			kkstp->kkst_state = KKST_STATE_STACKOK;
2407			stack_save_td(st, td);
2408		}
2409		thread_unlock(td);
2410		PROC_UNLOCK(p);
2411		stack_sbuf_print(&sb, st);
2412		sbuf_finish(&sb);
2413		sbuf_delete(&sb);
2414		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2415		PROC_LOCK(p);
2416		if (error)
2417			break;
2418	}
2419	_PRELE(p);
2420	PROC_UNLOCK(p);
2421	if (lwpidarray != NULL)
2422		free(lwpidarray, M_TEMP);
2423	stack_destroy(st);
2424	free(kkstp, M_TEMP);
2425	return (error);
2426}
2427#endif
2428
2429/*
2430 * This sysctl allows a process to retrieve the full list of groups from
2431 * itself or another process.
2432 */
2433static int
2434sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2435{
2436	pid_t *pidp = (pid_t *)arg1;
2437	unsigned int arglen = arg2;
2438	struct proc *p;
2439	struct ucred *cred;
2440	int error;
2441
2442	if (arglen != 1)
2443		return (EINVAL);
2444	if (*pidp == -1) {	/* -1 means this process */
2445		p = req->td->td_proc;
2446	} else {
2447		error = pget(*pidp, PGET_CANSEE, &p);
2448		if (error != 0)
2449			return (error);
2450	}
2451
2452	cred = crhold(p->p_ucred);
2453	if (*pidp != -1)
2454		PROC_UNLOCK(p);
2455
2456	error = SYSCTL_OUT(req, cred->cr_groups,
2457	    cred->cr_ngroups * sizeof(gid_t));
2458	crfree(cred);
2459	return (error);
2460}
2461
2462/*
2463 * This sysctl allows a process to retrieve or/and set the resource limit for
2464 * another process.
2465 */
2466static int
2467sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2468{
2469	int *name = (int *)arg1;
2470	u_int namelen = arg2;
2471	struct rlimit rlim;
2472	struct proc *p;
2473	u_int which;
2474	int flags, error;
2475
2476	if (namelen != 2)
2477		return (EINVAL);
2478
2479	which = (u_int)name[1];
2480	if (which >= RLIM_NLIMITS)
2481		return (EINVAL);
2482
2483	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2484		return (EINVAL);
2485
2486	flags = PGET_HOLD | PGET_NOTWEXIT;
2487	if (req->newptr != NULL)
2488		flags |= PGET_CANDEBUG;
2489	else
2490		flags |= PGET_CANSEE;
2491	error = pget((pid_t)name[0], flags, &p);
2492	if (error != 0)
2493		return (error);
2494
2495	/*
2496	 * Retrieve limit.
2497	 */
2498	if (req->oldptr != NULL) {
2499		PROC_LOCK(p);
2500		lim_rlimit(p, which, &rlim);
2501		PROC_UNLOCK(p);
2502	}
2503	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2504	if (error != 0)
2505		goto errout;
2506
2507	/*
2508	 * Set limit.
2509	 */
2510	if (req->newptr != NULL) {
2511		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2512		if (error == 0)
2513			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2514	}
2515
2516errout:
2517	PRELE(p);
2518	return (error);
2519}
2520
2521/*
2522 * This sysctl allows a process to retrieve ps_strings structure location of
2523 * another process.
2524 */
2525static int
2526sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2527{
2528	int *name = (int *)arg1;
2529	u_int namelen = arg2;
2530	struct proc *p;
2531	vm_offset_t ps_strings;
2532	int error;
2533#ifdef COMPAT_FREEBSD32
2534	uint32_t ps_strings32;
2535#endif
2536
2537	if (namelen != 1)
2538		return (EINVAL);
2539
2540	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2541	if (error != 0)
2542		return (error);
2543#ifdef COMPAT_FREEBSD32
2544	if ((req->flags & SCTL_MASK32) != 0) {
2545		/*
2546		 * We return 0 if the 32 bit emulation request is for a 64 bit
2547		 * process.
2548		 */
2549		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2550		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2551		PROC_UNLOCK(p);
2552		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2553		return (error);
2554	}
2555#endif
2556	ps_strings = p->p_sysent->sv_psstrings;
2557	PROC_UNLOCK(p);
2558	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2559	return (error);
2560}
2561
2562/*
2563 * This sysctl allows a process to retrieve umask of another process.
2564 */
2565static int
2566sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2567{
2568	int *name = (int *)arg1;
2569	u_int namelen = arg2;
2570	struct proc *p;
2571	int error;
2572	u_short fd_cmask;
2573
2574	if (namelen != 1)
2575		return (EINVAL);
2576
2577	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2578	if (error != 0)
2579		return (error);
2580
2581	FILEDESC_SLOCK(p->p_fd);
2582	fd_cmask = p->p_fd->fd_cmask;
2583	FILEDESC_SUNLOCK(p->p_fd);
2584	PRELE(p);
2585	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2586	return (error);
2587}
2588
2589/*
2590 * This sysctl allows a process to set and retrieve binary osreldate of
2591 * another process.
2592 */
2593static int
2594sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2595{
2596	int *name = (int *)arg1;
2597	u_int namelen = arg2;
2598	struct proc *p;
2599	int flags, error, osrel;
2600
2601	if (namelen != 1)
2602		return (EINVAL);
2603
2604	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2605		return (EINVAL);
2606
2607	flags = PGET_HOLD | PGET_NOTWEXIT;
2608	if (req->newptr != NULL)
2609		flags |= PGET_CANDEBUG;
2610	else
2611		flags |= PGET_CANSEE;
2612	error = pget((pid_t)name[0], flags, &p);
2613	if (error != 0)
2614		return (error);
2615
2616	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2617	if (error != 0)
2618		goto errout;
2619
2620	if (req->newptr != NULL) {
2621		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2622		if (error != 0)
2623			goto errout;
2624		if (osrel < 0) {
2625			error = EINVAL;
2626			goto errout;
2627		}
2628		p->p_osrel = osrel;
2629	}
2630errout:
2631	PRELE(p);
2632	return (error);
2633}
2634
2635static int
2636sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2637{
2638	int *name = (int *)arg1;
2639	u_int namelen = arg2;
2640	struct proc *p;
2641	struct kinfo_sigtramp kst;
2642	const struct sysentvec *sv;
2643	int error;
2644#ifdef COMPAT_FREEBSD32
2645	struct kinfo_sigtramp32 kst32;
2646#endif
2647
2648	if (namelen != 1)
2649		return (EINVAL);
2650
2651	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2652	if (error != 0)
2653		return (error);
2654	sv = p->p_sysent;
2655#ifdef COMPAT_FREEBSD32
2656	if ((req->flags & SCTL_MASK32) != 0) {
2657		bzero(&kst32, sizeof(kst32));
2658		if (SV_PROC_FLAG(p, SV_ILP32)) {
2659			if (sv->sv_sigcode_base != 0) {
2660				kst32.ksigtramp_start = sv->sv_sigcode_base;
2661				kst32.ksigtramp_end = sv->sv_sigcode_base +
2662				    *sv->sv_szsigcode;
2663			} else {
2664				kst32.ksigtramp_start = sv->sv_psstrings -
2665				    *sv->sv_szsigcode;
2666				kst32.ksigtramp_end = sv->sv_psstrings;
2667			}
2668		}
2669		PROC_UNLOCK(p);
2670		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2671		return (error);
2672	}
2673#endif
2674	bzero(&kst, sizeof(kst));
2675	if (sv->sv_sigcode_base != 0) {
2676		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2677		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2678		    *sv->sv_szsigcode;
2679	} else {
2680		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2681		    *sv->sv_szsigcode;
2682		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2683	}
2684	PROC_UNLOCK(p);
2685	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2686	return (error);
2687}
2688
2689SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2690
2691SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2692	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2693	"Return entire process table");
2694
2695static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2696	sysctl_kern_proc, "Process table");
2697
2698static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2699	sysctl_kern_proc, "Process table");
2700
2701static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2702	sysctl_kern_proc, "Process table");
2703
2704static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2705	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2706
2707static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2708	sysctl_kern_proc, "Process table");
2709
2710static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2711	sysctl_kern_proc, "Process table");
2712
2713static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2714	sysctl_kern_proc, "Process table");
2715
2716static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2717	sysctl_kern_proc, "Process table");
2718
2719static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2720	sysctl_kern_proc, "Return process table, no threads");
2721
2722static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2723	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2724	sysctl_kern_proc_args, "Process argument list");
2725
2726static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2727	sysctl_kern_proc_env, "Process environment");
2728
2729static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2730	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2731
2732static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2733	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2734
2735static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2736	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2737	"Process syscall vector name (ABI type)");
2738
2739static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2740	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2741
2742static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2743	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2744
2745static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2746	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2747
2748static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2749	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2750
2751static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2752	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2753
2754static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2755	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2756
2757static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2758	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2759
2760static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2761	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2762
2763static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2764	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2765	"Return process table, no threads");
2766
2767#ifdef COMPAT_FREEBSD7
2768static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2769	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2770#endif
2771
2772static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2773	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2774
2775#if defined(STACK) || defined(DDB)
2776static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2777	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2778#endif
2779
2780static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2781	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2782
2783static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
2784	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
2785	"Process resource limits");
2786
2787static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
2788	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
2789	"Process ps_strings location");
2790
2791static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
2792	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
2793
2794static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
2795	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
2796	"Process binary osreldate");
2797
2798static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
2799	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
2800	"Process signal trampoline location");
2801