kern_fork.c revision 289780
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/10/sys/kern/kern_fork.c 289780 2015-10-23 01:27:44Z jhb $");
39
40#include "opt_kdtrace.h"
41#include "opt_ktrace.h"
42#include "opt_kstack_pages.h"
43#include "opt_procdesc.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/sysproto.h>
48#include <sys/eventhandler.h>
49#include <sys/fcntl.h>
50#include <sys/filedesc.h>
51#include <sys/jail.h>
52#include <sys/kernel.h>
53#include <sys/kthread.h>
54#include <sys/sysctl.h>
55#include <sys/lock.h>
56#include <sys/malloc.h>
57#include <sys/mutex.h>
58#include <sys/priv.h>
59#include <sys/proc.h>
60#include <sys/procdesc.h>
61#include <sys/pioctl.h>
62#include <sys/ptrace.h>
63#include <sys/racct.h>
64#include <sys/resourcevar.h>
65#include <sys/sched.h>
66#include <sys/syscall.h>
67#include <sys/vmmeter.h>
68#include <sys/vnode.h>
69#include <sys/acct.h>
70#include <sys/ktr.h>
71#include <sys/ktrace.h>
72#include <sys/unistd.h>
73#include <sys/sdt.h>
74#include <sys/sx.h>
75#include <sys/sysent.h>
76#include <sys/signalvar.h>
77
78#include <security/audit/audit.h>
79#include <security/mac/mac_framework.h>
80
81#include <vm/vm.h>
82#include <vm/pmap.h>
83#include <vm/vm_map.h>
84#include <vm/vm_extern.h>
85#include <vm/uma.h>
86
87#ifdef KDTRACE_HOOKS
88#include <sys/dtrace_bsd.h>
89dtrace_fork_func_t	dtrace_fasttrap_fork;
90#endif
91
92SDT_PROVIDER_DECLARE(proc);
93SDT_PROBE_DEFINE3(proc, kernel, , create, "struct proc *",
94    "struct proc *", "int");
95
96#ifndef _SYS_SYSPROTO_H_
97struct fork_args {
98	int     dummy;
99};
100#endif
101
102/* ARGSUSED */
103int
104sys_fork(struct thread *td, struct fork_args *uap)
105{
106	int error;
107	struct proc *p2;
108
109	error = fork1(td, RFFDG | RFPROC, 0, &p2, NULL, 0);
110	if (error == 0) {
111		td->td_retval[0] = p2->p_pid;
112		td->td_retval[1] = 0;
113	}
114	return (error);
115}
116
117/* ARGUSED */
118int
119sys_pdfork(td, uap)
120	struct thread *td;
121	struct pdfork_args *uap;
122{
123#ifdef PROCDESC
124	int error, fd;
125	struct proc *p2;
126
127	/*
128	 * It is necessary to return fd by reference because 0 is a valid file
129	 * descriptor number, and the child needs to be able to distinguish
130	 * itself from the parent using the return value.
131	 */
132	error = fork1(td, RFFDG | RFPROC | RFPROCDESC, 0, &p2,
133	    &fd, uap->flags);
134	if (error == 0) {
135		td->td_retval[0] = p2->p_pid;
136		td->td_retval[1] = 0;
137		error = copyout(&fd, uap->fdp, sizeof(fd));
138	}
139	return (error);
140#else
141	return (ENOSYS);
142#endif
143}
144
145/* ARGSUSED */
146int
147sys_vfork(struct thread *td, struct vfork_args *uap)
148{
149	int error, flags;
150	struct proc *p2;
151
152	flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
153	error = fork1(td, flags, 0, &p2, NULL, 0);
154	if (error == 0) {
155		td->td_retval[0] = p2->p_pid;
156		td->td_retval[1] = 0;
157	}
158	return (error);
159}
160
161int
162sys_rfork(struct thread *td, struct rfork_args *uap)
163{
164	struct proc *p2;
165	int error;
166
167	/* Don't allow kernel-only flags. */
168	if ((uap->flags & RFKERNELONLY) != 0)
169		return (EINVAL);
170
171	AUDIT_ARG_FFLAGS(uap->flags);
172	error = fork1(td, uap->flags, 0, &p2, NULL, 0);
173	if (error == 0) {
174		td->td_retval[0] = p2 ? p2->p_pid : 0;
175		td->td_retval[1] = 0;
176	}
177	return (error);
178}
179
180int	nprocs = 1;		/* process 0 */
181int	lastpid = 0;
182SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
183    "Last used PID");
184
185/*
186 * Random component to lastpid generation.  We mix in a random factor to make
187 * it a little harder to predict.  We sanity check the modulus value to avoid
188 * doing it in critical paths.  Don't let it be too small or we pointlessly
189 * waste randomness entropy, and don't let it be impossibly large.  Using a
190 * modulus that is too big causes a LOT more process table scans and slows
191 * down fork processing as the pidchecked caching is defeated.
192 */
193static int randompid = 0;
194
195static int
196sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
197{
198	int error, pid;
199
200	error = sysctl_wire_old_buffer(req, sizeof(int));
201	if (error != 0)
202		return(error);
203	sx_xlock(&allproc_lock);
204	pid = randompid;
205	error = sysctl_handle_int(oidp, &pid, 0, req);
206	if (error == 0 && req->newptr != NULL) {
207		if (pid < 0 || pid > pid_max - 100)	/* out of range */
208			pid = pid_max - 100;
209		else if (pid < 2)			/* NOP */
210			pid = 0;
211		else if (pid < 100)			/* Make it reasonable */
212			pid = 100;
213		randompid = pid;
214	}
215	sx_xunlock(&allproc_lock);
216	return (error);
217}
218
219SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
220    0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
221
222static int
223fork_findpid(int flags)
224{
225	struct proc *p;
226	int trypid;
227	static int pidchecked = 0;
228
229	/*
230	 * Requires allproc_lock in order to iterate over the list
231	 * of processes, and proctree_lock to access p_pgrp.
232	 */
233	sx_assert(&allproc_lock, SX_LOCKED);
234	sx_assert(&proctree_lock, SX_LOCKED);
235
236	/*
237	 * Find an unused process ID.  We remember a range of unused IDs
238	 * ready to use (from lastpid+1 through pidchecked-1).
239	 *
240	 * If RFHIGHPID is set (used during system boot), do not allocate
241	 * low-numbered pids.
242	 */
243	trypid = lastpid + 1;
244	if (flags & RFHIGHPID) {
245		if (trypid < 10)
246			trypid = 10;
247	} else {
248		if (randompid)
249			trypid += arc4random() % randompid;
250	}
251retry:
252	/*
253	 * If the process ID prototype has wrapped around,
254	 * restart somewhat above 0, as the low-numbered procs
255	 * tend to include daemons that don't exit.
256	 */
257	if (trypid >= pid_max) {
258		trypid = trypid % pid_max;
259		if (trypid < 100)
260			trypid += 100;
261		pidchecked = 0;
262	}
263	if (trypid >= pidchecked) {
264		int doingzomb = 0;
265
266		pidchecked = PID_MAX;
267		/*
268		 * Scan the active and zombie procs to check whether this pid
269		 * is in use.  Remember the lowest pid that's greater
270		 * than trypid, so we can avoid checking for a while.
271		 *
272		 * Avoid reuse of the process group id, session id or
273		 * the reaper subtree id.  Note that for process group
274		 * and sessions, the amount of reserved pids is
275		 * limited by process limit.  For the subtree ids, the
276		 * id is kept reserved only while there is a
277		 * non-reaped process in the subtree, so amount of
278		 * reserved pids is limited by process limit times
279		 * two.
280		 */
281		p = LIST_FIRST(&allproc);
282again:
283		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
284			while (p->p_pid == trypid ||
285			    p->p_reapsubtree == trypid ||
286			    (p->p_pgrp != NULL &&
287			    (p->p_pgrp->pg_id == trypid ||
288			    (p->p_session != NULL &&
289			    p->p_session->s_sid == trypid)))) {
290				trypid++;
291				if (trypid >= pidchecked)
292					goto retry;
293			}
294			if (p->p_pid > trypid && pidchecked > p->p_pid)
295				pidchecked = p->p_pid;
296			if (p->p_pgrp != NULL) {
297				if (p->p_pgrp->pg_id > trypid &&
298				    pidchecked > p->p_pgrp->pg_id)
299					pidchecked = p->p_pgrp->pg_id;
300				if (p->p_session != NULL &&
301				    p->p_session->s_sid > trypid &&
302				    pidchecked > p->p_session->s_sid)
303					pidchecked = p->p_session->s_sid;
304			}
305		}
306		if (!doingzomb) {
307			doingzomb = 1;
308			p = LIST_FIRST(&zombproc);
309			goto again;
310		}
311	}
312
313	/*
314	 * RFHIGHPID does not mess with the lastpid counter during boot.
315	 */
316	if (flags & RFHIGHPID)
317		pidchecked = 0;
318	else
319		lastpid = trypid;
320
321	return (trypid);
322}
323
324static int
325fork_norfproc(struct thread *td, int flags)
326{
327	int error;
328	struct proc *p1;
329
330	KASSERT((flags & RFPROC) == 0,
331	    ("fork_norfproc called with RFPROC set"));
332	p1 = td->td_proc;
333
334	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
335	    (flags & (RFCFDG | RFFDG))) {
336		PROC_LOCK(p1);
337		if (thread_single(p1, SINGLE_BOUNDARY)) {
338			PROC_UNLOCK(p1);
339			return (ERESTART);
340		}
341		PROC_UNLOCK(p1);
342	}
343
344	error = vm_forkproc(td, NULL, NULL, NULL, flags);
345	if (error)
346		goto fail;
347
348	/*
349	 * Close all file descriptors.
350	 */
351	if (flags & RFCFDG) {
352		struct filedesc *fdtmp;
353		fdtmp = fdinit(td->td_proc->p_fd);
354		fdescfree(td);
355		p1->p_fd = fdtmp;
356	}
357
358	/*
359	 * Unshare file descriptors (from parent).
360	 */
361	if (flags & RFFDG)
362		fdunshare(td);
363
364fail:
365	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
366	    (flags & (RFCFDG | RFFDG))) {
367		PROC_LOCK(p1);
368		thread_single_end(p1, SINGLE_BOUNDARY);
369		PROC_UNLOCK(p1);
370	}
371	return (error);
372}
373
374static void
375do_fork(struct thread *td, int flags, struct proc *p2, struct thread *td2,
376    struct vmspace *vm2, int pdflags)
377{
378	struct proc *p1, *pptr;
379	int p2_held, trypid;
380	struct filedesc *fd;
381	struct filedesc_to_leader *fdtol;
382	struct sigacts *newsigacts;
383
384	sx_assert(&proctree_lock, SX_SLOCKED);
385	sx_assert(&allproc_lock, SX_XLOCKED);
386
387	p2_held = 0;
388	p1 = td->td_proc;
389
390	trypid = fork_findpid(flags);
391
392	sx_sunlock(&proctree_lock);
393
394	p2->p_state = PRS_NEW;		/* protect against others */
395	p2->p_pid = trypid;
396	AUDIT_ARG_PID(p2->p_pid);
397	LIST_INSERT_HEAD(&allproc, p2, p_list);
398	allproc_gen++;
399	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
400	tidhash_add(td2);
401	PROC_LOCK(p2);
402	PROC_LOCK(p1);
403
404	sx_xunlock(&allproc_lock);
405
406	bcopy(&p1->p_startcopy, &p2->p_startcopy,
407	    __rangeof(struct proc, p_startcopy, p_endcopy));
408	pargs_hold(p2->p_args);
409	PROC_UNLOCK(p1);
410
411	bzero(&p2->p_startzero,
412	    __rangeof(struct proc, p_startzero, p_endzero));
413	p2->p_treeflag = 0;
414
415	p2->p_ucred = crhold(td->td_ucred);
416
417	/* Tell the prison that we exist. */
418	prison_proc_hold(p2->p_ucred->cr_prison);
419
420	PROC_UNLOCK(p2);
421
422	/*
423	 * Malloc things while we don't hold any locks.
424	 */
425	if (flags & RFSIGSHARE)
426		newsigacts = NULL;
427	else
428		newsigacts = sigacts_alloc();
429
430	/*
431	 * Copy filedesc.
432	 */
433	if (flags & RFCFDG) {
434		fd = fdinit(p1->p_fd);
435		fdtol = NULL;
436	} else if (flags & RFFDG) {
437		fd = fdcopy(p1->p_fd);
438		fdtol = NULL;
439	} else {
440		fd = fdshare(p1->p_fd);
441		if (p1->p_fdtol == NULL)
442			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
443			    p1->p_leader);
444		if ((flags & RFTHREAD) != 0) {
445			/*
446			 * Shared file descriptor table, and shared
447			 * process leaders.
448			 */
449			fdtol = p1->p_fdtol;
450			FILEDESC_XLOCK(p1->p_fd);
451			fdtol->fdl_refcount++;
452			FILEDESC_XUNLOCK(p1->p_fd);
453		} else {
454			/*
455			 * Shared file descriptor table, and different
456			 * process leaders.
457			 */
458			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
459			    p1->p_fd, p2);
460		}
461	}
462	/*
463	 * Make a proc table entry for the new process.
464	 * Start by zeroing the section of proc that is zero-initialized,
465	 * then copy the section that is copied directly from the parent.
466	 */
467
468	PROC_LOCK(p2);
469	PROC_LOCK(p1);
470
471	bzero(&td2->td_startzero,
472	    __rangeof(struct thread, td_startzero, td_endzero));
473	td2->td_su = NULL;
474
475	bcopy(&td->td_startcopy, &td2->td_startcopy,
476	    __rangeof(struct thread, td_startcopy, td_endcopy));
477
478	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
479	td2->td_sigstk = td->td_sigstk;
480	td2->td_flags = TDF_INMEM;
481	td2->td_lend_user_pri = PRI_MAX;
482	td2->td_dbg_sc_code = td->td_dbg_sc_code;
483	td2->td_dbg_sc_narg = td->td_dbg_sc_narg;
484
485#ifdef VIMAGE
486	td2->td_vnet = NULL;
487	td2->td_vnet_lpush = NULL;
488#endif
489
490	/*
491	 * Allow the scheduler to initialize the child.
492	 */
493	thread_lock(td);
494	sched_fork(td, td2);
495	thread_unlock(td);
496
497	/*
498	 * Duplicate sub-structures as needed.
499	 * Increase reference counts on shared objects.
500	 */
501	p2->p_flag = P_INMEM;
502	p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC);
503	p2->p_swtick = ticks;
504	if (p1->p_flag & P_PROFIL)
505		startprofclock(p2);
506	td2->td_ucred = crhold(p2->p_ucred);
507
508	if (flags & RFSIGSHARE) {
509		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
510	} else {
511		sigacts_copy(newsigacts, p1->p_sigacts);
512		p2->p_sigacts = newsigacts;
513	}
514
515	if (flags & RFTSIGZMB)
516	        p2->p_sigparent = RFTSIGNUM(flags);
517	else if (flags & RFLINUXTHPN)
518	        p2->p_sigparent = SIGUSR1;
519	else
520	        p2->p_sigparent = SIGCHLD;
521
522	p2->p_textvp = p1->p_textvp;
523	p2->p_fd = fd;
524	p2->p_fdtol = fdtol;
525
526	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
527		p2->p_flag |= P_PROTECTED;
528		p2->p_flag2 |= P2_INHERIT_PROTECTED;
529	}
530
531	/*
532	 * p_limit is copy-on-write.  Bump its refcount.
533	 */
534	lim_fork(p1, p2);
535
536	pstats_fork(p1->p_stats, p2->p_stats);
537
538	PROC_UNLOCK(p1);
539	PROC_UNLOCK(p2);
540
541	/* Bump references to the text vnode (for procfs). */
542	if (p2->p_textvp)
543		vref(p2->p_textvp);
544
545	/*
546	 * Set up linkage for kernel based threading.
547	 */
548	if ((flags & RFTHREAD) != 0) {
549		mtx_lock(&ppeers_lock);
550		p2->p_peers = p1->p_peers;
551		p1->p_peers = p2;
552		p2->p_leader = p1->p_leader;
553		mtx_unlock(&ppeers_lock);
554		PROC_LOCK(p1->p_leader);
555		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
556			PROC_UNLOCK(p1->p_leader);
557			/*
558			 * The task leader is exiting, so process p1 is
559			 * going to be killed shortly.  Since p1 obviously
560			 * isn't dead yet, we know that the leader is either
561			 * sending SIGKILL's to all the processes in this
562			 * task or is sleeping waiting for all the peers to
563			 * exit.  We let p1 complete the fork, but we need
564			 * to go ahead and kill the new process p2 since
565			 * the task leader may not get a chance to send
566			 * SIGKILL to it.  We leave it on the list so that
567			 * the task leader will wait for this new process
568			 * to commit suicide.
569			 */
570			PROC_LOCK(p2);
571			kern_psignal(p2, SIGKILL);
572			PROC_UNLOCK(p2);
573		} else
574			PROC_UNLOCK(p1->p_leader);
575	} else {
576		p2->p_peers = NULL;
577		p2->p_leader = p2;
578	}
579
580	sx_xlock(&proctree_lock);
581	PGRP_LOCK(p1->p_pgrp);
582	PROC_LOCK(p2);
583	PROC_LOCK(p1);
584
585	/*
586	 * Preserve some more flags in subprocess.  P_PROFIL has already
587	 * been preserved.
588	 */
589	p2->p_flag |= p1->p_flag & P_SUGID;
590	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
591	SESS_LOCK(p1->p_session);
592	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
593		p2->p_flag |= P_CONTROLT;
594	SESS_UNLOCK(p1->p_session);
595	if (flags & RFPPWAIT)
596		p2->p_flag |= P_PPWAIT;
597
598	p2->p_pgrp = p1->p_pgrp;
599	LIST_INSERT_AFTER(p1, p2, p_pglist);
600	PGRP_UNLOCK(p1->p_pgrp);
601	LIST_INIT(&p2->p_children);
602	LIST_INIT(&p2->p_orphans);
603
604	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
605
606	/*
607	 * If PF_FORK is set, the child process inherits the
608	 * procfs ioctl flags from its parent.
609	 */
610	if (p1->p_pfsflags & PF_FORK) {
611		p2->p_stops = p1->p_stops;
612		p2->p_pfsflags = p1->p_pfsflags;
613	}
614
615	/*
616	 * This begins the section where we must prevent the parent
617	 * from being swapped.
618	 */
619	_PHOLD(p1);
620	PROC_UNLOCK(p1);
621
622	/*
623	 * Attach the new process to its parent.
624	 *
625	 * If RFNOWAIT is set, the newly created process becomes a child
626	 * of init.  This effectively disassociates the child from the
627	 * parent.
628	 */
629	if ((flags & RFNOWAIT) != 0) {
630		pptr = p1->p_reaper;
631		p2->p_reaper = pptr;
632	} else {
633		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
634		    p1 : p1->p_reaper;
635		pptr = p1;
636	}
637	p2->p_pptr = pptr;
638	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
639	LIST_INIT(&p2->p_reaplist);
640	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
641	if (p2->p_reaper == p1)
642		p2->p_reapsubtree = p2->p_pid;
643	else
644		p2->p_reapsubtree = p1->p_reapsubtree;
645	sx_xunlock(&proctree_lock);
646
647	/* Inform accounting that we have forked. */
648	p2->p_acflag = AFORK;
649	PROC_UNLOCK(p2);
650
651#ifdef KTRACE
652	ktrprocfork(p1, p2);
653#endif
654
655	/*
656	 * Finish creating the child process.  It will return via a different
657	 * execution path later.  (ie: directly into user mode)
658	 */
659	vm_forkproc(td, p2, td2, vm2, flags);
660
661	if (flags == (RFFDG | RFPROC)) {
662		PCPU_INC(cnt.v_forks);
663		PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
664		    p2->p_vmspace->vm_ssize);
665	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
666		PCPU_INC(cnt.v_vforks);
667		PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
668		    p2->p_vmspace->vm_ssize);
669	} else if (p1 == &proc0) {
670		PCPU_INC(cnt.v_kthreads);
671		PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
672		    p2->p_vmspace->vm_ssize);
673	} else {
674		PCPU_INC(cnt.v_rforks);
675		PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
676		    p2->p_vmspace->vm_ssize);
677	}
678
679#ifdef PROCDESC
680	/*
681	 * Associate the process descriptor with the process before anything
682	 * can happen that might cause that process to need the descriptor.
683	 * However, don't do this until after fork(2) can no longer fail.
684	 */
685	if (flags & RFPROCDESC)
686		procdesc_new(p2, pdflags);
687#endif
688
689	/*
690	 * Both processes are set up, now check if any loadable modules want
691	 * to adjust anything.
692	 */
693	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
694
695	/*
696	 * Set the child start time and mark the process as being complete.
697	 */
698	PROC_LOCK(p2);
699	PROC_LOCK(p1);
700	microuptime(&p2->p_stats->p_start);
701	PROC_SLOCK(p2);
702	p2->p_state = PRS_NORMAL;
703	PROC_SUNLOCK(p2);
704
705#ifdef KDTRACE_HOOKS
706	/*
707	 * Tell the DTrace fasttrap provider about the new process so that any
708	 * tracepoints inherited from the parent can be removed. We have to do
709	 * this only after p_state is PRS_NORMAL since the fasttrap module will
710	 * use pfind() later on.
711	 */
712	if ((flags & RFMEM) == 0 && dtrace_fasttrap_fork)
713		dtrace_fasttrap_fork(p1, p2);
714#endif
715	if ((p1->p_flag & (P_TRACED | P_FOLLOWFORK)) == (P_TRACED |
716	    P_FOLLOWFORK)) {
717		/*
718		 * Arrange for debugger to receive the fork event.
719		 *
720		 * We can report PL_FLAG_FORKED regardless of
721		 * P_FOLLOWFORK settings, but it does not make a sense
722		 * for runaway child.
723		 */
724		td->td_dbgflags |= TDB_FORK;
725		td->td_dbg_forked = p2->p_pid;
726		td2->td_dbgflags |= TDB_STOPATFORK;
727		_PHOLD(p2);
728		p2_held = 1;
729	}
730	if (flags & RFPPWAIT) {
731		td->td_pflags |= TDP_RFPPWAIT;
732		td->td_rfppwait_p = p2;
733	}
734	PROC_UNLOCK(p2);
735	if ((flags & RFSTOPPED) == 0) {
736		/*
737		 * If RFSTOPPED not requested, make child runnable and
738		 * add to run queue.
739		 */
740		thread_lock(td2);
741		TD_SET_CAN_RUN(td2);
742		sched_add(td2, SRQ_BORING);
743		thread_unlock(td2);
744	}
745
746	/*
747	 * Now can be swapped.
748	 */
749	_PRELE(p1);
750	PROC_UNLOCK(p1);
751
752	/*
753	 * Tell any interested parties about the new process.
754	 */
755	knote_fork(&p1->p_klist, p2->p_pid);
756	SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);
757
758	/*
759	 * Wait until debugger is attached to child.
760	 */
761	PROC_LOCK(p2);
762	while ((td2->td_dbgflags & TDB_STOPATFORK) != 0)
763		cv_wait(&p2->p_dbgwait, &p2->p_mtx);
764	if (p2_held)
765		_PRELE(p2);
766	PROC_UNLOCK(p2);
767}
768
769int
770fork1(struct thread *td, int flags, int pages, struct proc **procp,
771    int *procdescp, int pdflags)
772{
773	struct proc *p1, *newproc;
774	struct thread *td2;
775	struct vmspace *vm2;
776#ifdef PROCDESC
777	struct file *fp_procdesc;
778#endif
779	vm_ooffset_t mem_charged;
780	int error, nprocs_new, ok;
781	static int curfail;
782	static struct timeval lastfail;
783
784	/* Check for the undefined or unimplemented flags. */
785	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
786		return (EINVAL);
787
788	/* Signal value requires RFTSIGZMB. */
789	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
790		return (EINVAL);
791
792	/* Can't copy and clear. */
793	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
794		return (EINVAL);
795
796	/* Check the validity of the signal number. */
797	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
798		return (EINVAL);
799
800#ifdef PROCDESC
801	if ((flags & RFPROCDESC) != 0) {
802		/* Can't not create a process yet get a process descriptor. */
803		if ((flags & RFPROC) == 0)
804			return (EINVAL);
805
806		/* Must provide a place to put a procdesc if creating one. */
807		if (procdescp == NULL)
808			return (EINVAL);
809	}
810#endif
811
812	p1 = td->td_proc;
813
814	/*
815	 * Here we don't create a new process, but we divorce
816	 * certain parts of a process from itself.
817	 */
818	if ((flags & RFPROC) == 0) {
819		*procp = NULL;
820		return (fork_norfproc(td, flags));
821	}
822
823#ifdef PROCDESC
824	fp_procdesc = NULL;
825#endif
826	newproc = NULL;
827	vm2 = NULL;
828
829	/*
830	 * Increment the nprocs resource before allocations occur.
831	 * Although process entries are dynamically created, we still
832	 * keep a global limit on the maximum number we will
833	 * create. There are hard-limits as to the number of processes
834	 * that can run, established by the KVA and memory usage for
835	 * the process data.
836	 *
837	 * Don't allow a nonprivileged user to use the last ten
838	 * processes; don't let root exceed the limit.
839	 */
840	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
841	if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred,
842	    PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) {
843		sx_xlock(&allproc_lock);
844		if (ppsratecheck(&lastfail, &curfail, 1)) {
845			printf("maxproc limit exceeded by uid %u (pid %d); "
846			    "see tuning(7) and login.conf(5)\n",
847			    td->td_ucred->cr_ruid, p1->p_pid);
848		}
849		sx_xunlock(&allproc_lock);
850		error = EAGAIN;
851		goto fail1;
852	}
853
854#ifdef PROCDESC
855	/*
856	 * If required, create a process descriptor in the parent first; we
857	 * will abandon it if something goes wrong. We don't finit() until
858	 * later.
859	 */
860	if (flags & RFPROCDESC) {
861		error = falloc(td, &fp_procdesc, procdescp, 0);
862		if (error != 0)
863			goto fail1;
864	}
865#endif
866
867	mem_charged = 0;
868	if (pages == 0)
869		pages = KSTACK_PAGES;
870	/* Allocate new proc. */
871	newproc = uma_zalloc(proc_zone, M_WAITOK);
872	td2 = FIRST_THREAD_IN_PROC(newproc);
873	if (td2 == NULL) {
874		td2 = thread_alloc(pages);
875		if (td2 == NULL) {
876			error = ENOMEM;
877			goto fail1;
878		}
879		proc_linkup(newproc, td2);
880	} else {
881		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
882			if (td2->td_kstack != 0)
883				vm_thread_dispose(td2);
884			if (!thread_alloc_stack(td2, pages)) {
885				error = ENOMEM;
886				goto fail1;
887			}
888		}
889	}
890
891	if ((flags & RFMEM) == 0) {
892		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
893		if (vm2 == NULL) {
894			error = ENOMEM;
895			goto fail1;
896		}
897		if (!swap_reserve(mem_charged)) {
898			/*
899			 * The swap reservation failed. The accounting
900			 * from the entries of the copied vm2 will be
901			 * substracted in vmspace_free(), so force the
902			 * reservation there.
903			 */
904			swap_reserve_force(mem_charged);
905			error = ENOMEM;
906			goto fail1;
907		}
908	} else
909		vm2 = NULL;
910
911	/*
912	 * XXX: This is ugly; when we copy resource usage, we need to bump
913	 *      per-cred resource counters.
914	 */
915	newproc->p_ucred = p1->p_ucred;
916
917	/*
918	 * Initialize resource accounting for the child process.
919	 */
920	error = racct_proc_fork(p1, newproc);
921	if (error != 0) {
922		error = EAGAIN;
923		goto fail1;
924	}
925
926#ifdef MAC
927	mac_proc_init(newproc);
928#endif
929	knlist_init_mtx(&newproc->p_klist, &newproc->p_mtx);
930	STAILQ_INIT(&newproc->p_ktr);
931
932	/* We have to lock the process tree while we look for a pid. */
933	sx_slock(&proctree_lock);
934	sx_xlock(&allproc_lock);
935
936	/*
937	 * Increment the count of procs running with this uid. Don't allow
938	 * a nonprivileged user to exceed their current limit.
939	 *
940	 * XXXRW: Can we avoid privilege here if it's not needed?
941	 */
942	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
943	if (error == 0)
944		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
945	else {
946		PROC_LOCK(p1);
947		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
948		    lim_cur(p1, RLIMIT_NPROC));
949		PROC_UNLOCK(p1);
950	}
951	if (ok) {
952		do_fork(td, flags, newproc, td2, vm2, pdflags);
953
954		/*
955		 * Return child proc pointer to parent.
956		 */
957		*procp = newproc;
958#ifdef PROCDESC
959		if (flags & RFPROCDESC) {
960			procdesc_finit(newproc->p_procdesc, fp_procdesc);
961			fdrop(fp_procdesc, td);
962		}
963#endif
964		racct_proc_fork_done(newproc);
965		return (0);
966	}
967
968	error = EAGAIN;
969	sx_sunlock(&proctree_lock);
970	sx_xunlock(&allproc_lock);
971#ifdef MAC
972	mac_proc_destroy(newproc);
973#endif
974	racct_proc_exit(newproc);
975fail1:
976	if (vm2 != NULL)
977		vmspace_free(vm2);
978	uma_zfree(proc_zone, newproc);
979#ifdef PROCDESC
980	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
981		fdclose(td->td_proc->p_fd, fp_procdesc, *procdescp, td);
982		fdrop(fp_procdesc, td);
983	}
984#endif
985	atomic_add_int(&nprocs, -1);
986	pause("fork", hz / 2);
987	return (error);
988}
989
990/*
991 * Handle the return of a child process from fork1().  This function
992 * is called from the MD fork_trampoline() entry point.
993 */
994void
995fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
996    struct trapframe *frame)
997{
998	struct proc *p;
999	struct thread *td;
1000	struct thread *dtd;
1001
1002	td = curthread;
1003	p = td->td_proc;
1004	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1005
1006	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1007		td, td->td_sched, p->p_pid, td->td_name);
1008
1009	sched_fork_exit(td);
1010	/*
1011	* Processes normally resume in mi_switch() after being
1012	* cpu_switch()'ed to, but when children start up they arrive here
1013	* instead, so we must do much the same things as mi_switch() would.
1014	*/
1015	if ((dtd = PCPU_GET(deadthread))) {
1016		PCPU_SET(deadthread, NULL);
1017		thread_stash(dtd);
1018	}
1019	thread_unlock(td);
1020
1021	/*
1022	 * cpu_set_fork_handler intercepts this function call to
1023	 * have this call a non-return function to stay in kernel mode.
1024	 * initproc has its own fork handler, but it does return.
1025	 */
1026	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1027	callout(arg, frame);
1028
1029	/*
1030	 * Check if a kernel thread misbehaved and returned from its main
1031	 * function.
1032	 */
1033	if (p->p_flag & P_KTHREAD) {
1034		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1035		    td->td_name, p->p_pid);
1036		kproc_exit(0);
1037	}
1038	mtx_assert(&Giant, MA_NOTOWNED);
1039
1040	if (p->p_sysent->sv_schedtail != NULL)
1041		(p->p_sysent->sv_schedtail)(td);
1042}
1043
1044/*
1045 * Simplified back end of syscall(), used when returning from fork()
1046 * directly into user mode.  Giant is not held on entry, and must not
1047 * be held on return.  This function is passed in to fork_exit() as the
1048 * first parameter and is called when returning to a new userland process.
1049 */
1050void
1051fork_return(struct thread *td, struct trapframe *frame)
1052{
1053	struct proc *p, *dbg;
1054
1055	p = td->td_proc;
1056	if (td->td_dbgflags & TDB_STOPATFORK) {
1057		sx_xlock(&proctree_lock);
1058		PROC_LOCK(p);
1059		if ((p->p_pptr->p_flag & (P_TRACED | P_FOLLOWFORK)) ==
1060		    (P_TRACED | P_FOLLOWFORK)) {
1061			/*
1062			 * If debugger still wants auto-attach for the
1063			 * parent's children, do it now.
1064			 */
1065			dbg = p->p_pptr->p_pptr;
1066			p->p_flag |= P_TRACED;
1067			p->p_oppid = p->p_pptr->p_pid;
1068			CTR2(KTR_PTRACE,
1069		    "fork_return: attaching to new child pid %d: oppid %d",
1070			    p->p_pid, p->p_oppid);
1071			proc_reparent(p, dbg);
1072			sx_xunlock(&proctree_lock);
1073			td->td_dbgflags |= TDB_CHILD | TDB_SCX;
1074			ptracestop(td, SIGSTOP);
1075			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1076		} else {
1077			/*
1078			 * ... otherwise clear the request.
1079			 */
1080			sx_xunlock(&proctree_lock);
1081			td->td_dbgflags &= ~TDB_STOPATFORK;
1082			cv_broadcast(&p->p_dbgwait);
1083		}
1084		PROC_UNLOCK(p);
1085	} else if (p->p_flag & P_TRACED) {
1086 		/*
1087		 * This is the start of a new thread in a traced
1088		 * process.  Report a system call exit event.
1089		 */
1090		PROC_LOCK(p);
1091		td->td_dbgflags |= TDB_SCX;
1092		_STOPEVENT(p, S_SCX, td->td_dbg_sc_code);
1093		if ((p->p_stops & S_PT_SCX) != 0)
1094			ptracestop(td, SIGTRAP);
1095		td->td_dbgflags &= ~TDB_SCX;
1096		PROC_UNLOCK(p);
1097	}
1098
1099	userret(td, frame);
1100
1101#ifdef KTRACE
1102	if (KTRPOINT(td, KTR_SYSRET))
1103		ktrsysret(SYS_fork, 0, 0);
1104#endif
1105}
1106