kern_event.c revision 297977
1/*-
2 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3 * Copyright 2004 John-Mark Gurney <jmg@FreeBSD.org>
4 * Copyright (c) 2009 Apple, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/10/sys/kern/kern_event.c 297977 2016-04-14 17:14:11Z vangyzen $");
31
32#include "opt_ktrace.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/capsicum.h>
37#include <sys/kernel.h>
38#include <sys/lock.h>
39#include <sys/mutex.h>
40#include <sys/rwlock.h>
41#include <sys/proc.h>
42#include <sys/malloc.h>
43#include <sys/unistd.h>
44#include <sys/file.h>
45#include <sys/filedesc.h>
46#include <sys/filio.h>
47#include <sys/fcntl.h>
48#include <sys/kthread.h>
49#include <sys/selinfo.h>
50#include <sys/stdatomic.h>
51#include <sys/queue.h>
52#include <sys/event.h>
53#include <sys/eventvar.h>
54#include <sys/poll.h>
55#include <sys/protosw.h>
56#include <sys/sigio.h>
57#include <sys/signalvar.h>
58#include <sys/socket.h>
59#include <sys/socketvar.h>
60#include <sys/stat.h>
61#include <sys/sysctl.h>
62#include <sys/sysproto.h>
63#include <sys/syscallsubr.h>
64#include <sys/taskqueue.h>
65#include <sys/uio.h>
66#ifdef KTRACE
67#include <sys/ktrace.h>
68#endif
69
70#include <vm/uma.h>
71
72static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
73
74/*
75 * This lock is used if multiple kq locks are required.  This possibly
76 * should be made into a per proc lock.
77 */
78static struct mtx	kq_global;
79MTX_SYSINIT(kq_global, &kq_global, "kqueue order", MTX_DEF);
80#define KQ_GLOBAL_LOCK(lck, haslck)	do {	\
81	if (!haslck)				\
82		mtx_lock(lck);			\
83	haslck = 1;				\
84} while (0)
85#define KQ_GLOBAL_UNLOCK(lck, haslck)	do {	\
86	if (haslck)				\
87		mtx_unlock(lck);			\
88	haslck = 0;				\
89} while (0)
90
91TASKQUEUE_DEFINE_THREAD(kqueue);
92
93static int	kevent_copyout(void *arg, struct kevent *kevp, int count);
94static int	kevent_copyin(void *arg, struct kevent *kevp, int count);
95static int	kqueue_register(struct kqueue *kq, struct kevent *kev,
96		    struct thread *td, int waitok);
97static int	kqueue_acquire(struct file *fp, struct kqueue **kqp);
98static void	kqueue_release(struct kqueue *kq, int locked);
99static int	kqueue_expand(struct kqueue *kq, struct filterops *fops,
100		    uintptr_t ident, int waitok);
101static void	kqueue_task(void *arg, int pending);
102static int	kqueue_scan(struct kqueue *kq, int maxevents,
103		    struct kevent_copyops *k_ops,
104		    const struct timespec *timeout,
105		    struct kevent *keva, struct thread *td);
106static void 	kqueue_wakeup(struct kqueue *kq);
107static struct filterops *kqueue_fo_find(int filt);
108static void	kqueue_fo_release(int filt);
109
110static fo_rdwr_t	kqueue_read;
111static fo_rdwr_t	kqueue_write;
112static fo_truncate_t	kqueue_truncate;
113static fo_ioctl_t	kqueue_ioctl;
114static fo_poll_t	kqueue_poll;
115static fo_kqfilter_t	kqueue_kqfilter;
116static fo_stat_t	kqueue_stat;
117static fo_close_t	kqueue_close;
118
119static struct fileops kqueueops = {
120	.fo_read = kqueue_read,
121	.fo_write = kqueue_write,
122	.fo_truncate = kqueue_truncate,
123	.fo_ioctl = kqueue_ioctl,
124	.fo_poll = kqueue_poll,
125	.fo_kqfilter = kqueue_kqfilter,
126	.fo_stat = kqueue_stat,
127	.fo_close = kqueue_close,
128	.fo_chmod = invfo_chmod,
129	.fo_chown = invfo_chown,
130	.fo_sendfile = invfo_sendfile,
131};
132
133static int 	knote_attach(struct knote *kn, struct kqueue *kq);
134static void 	knote_drop(struct knote *kn, struct thread *td);
135static void 	knote_enqueue(struct knote *kn);
136static void 	knote_dequeue(struct knote *kn);
137static void 	knote_init(void);
138static struct 	knote *knote_alloc(int waitok);
139static void 	knote_free(struct knote *kn);
140
141static void	filt_kqdetach(struct knote *kn);
142static int	filt_kqueue(struct knote *kn, long hint);
143static int	filt_procattach(struct knote *kn);
144static void	filt_procdetach(struct knote *kn);
145static int	filt_proc(struct knote *kn, long hint);
146static int	filt_fileattach(struct knote *kn);
147static void	filt_timerexpire(void *knx);
148static int	filt_timerattach(struct knote *kn);
149static void	filt_timerdetach(struct knote *kn);
150static int	filt_timer(struct knote *kn, long hint);
151static int	filt_userattach(struct knote *kn);
152static void	filt_userdetach(struct knote *kn);
153static int	filt_user(struct knote *kn, long hint);
154static void	filt_usertouch(struct knote *kn, struct kevent *kev,
155		    u_long type);
156
157static struct filterops file_filtops = {
158	.f_isfd = 1,
159	.f_attach = filt_fileattach,
160};
161static struct filterops kqread_filtops = {
162	.f_isfd = 1,
163	.f_detach = filt_kqdetach,
164	.f_event = filt_kqueue,
165};
166/* XXX - move to kern_proc.c?  */
167static struct filterops proc_filtops = {
168	.f_isfd = 0,
169	.f_attach = filt_procattach,
170	.f_detach = filt_procdetach,
171	.f_event = filt_proc,
172};
173static struct filterops timer_filtops = {
174	.f_isfd = 0,
175	.f_attach = filt_timerattach,
176	.f_detach = filt_timerdetach,
177	.f_event = filt_timer,
178};
179static struct filterops user_filtops = {
180	.f_attach = filt_userattach,
181	.f_detach = filt_userdetach,
182	.f_event = filt_user,
183	.f_touch = filt_usertouch,
184};
185
186static uma_zone_t	knote_zone;
187static atomic_uint	kq_ncallouts = ATOMIC_VAR_INIT(0);
188static unsigned int 	kq_calloutmax = 4 * 1024;
189SYSCTL_UINT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
190    &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
191
192/* XXX - ensure not KN_INFLUX?? */
193#define KNOTE_ACTIVATE(kn, islock) do { 				\
194	if ((islock))							\
195		mtx_assert(&(kn)->kn_kq->kq_lock, MA_OWNED);		\
196	else								\
197		KQ_LOCK((kn)->kn_kq);					\
198	(kn)->kn_status |= KN_ACTIVE;					\
199	if (((kn)->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
200		knote_enqueue((kn));					\
201	if (!(islock))							\
202		KQ_UNLOCK((kn)->kn_kq);					\
203} while(0)
204#define KQ_LOCK(kq) do {						\
205	mtx_lock(&(kq)->kq_lock);					\
206} while (0)
207#define KQ_FLUX_WAKEUP(kq) do {						\
208	if (((kq)->kq_state & KQ_FLUXWAIT) == KQ_FLUXWAIT) {		\
209		(kq)->kq_state &= ~KQ_FLUXWAIT;				\
210		wakeup((kq));						\
211	}								\
212} while (0)
213#define KQ_UNLOCK_FLUX(kq) do {						\
214	KQ_FLUX_WAKEUP(kq);						\
215	mtx_unlock(&(kq)->kq_lock);					\
216} while (0)
217#define KQ_UNLOCK(kq) do {						\
218	mtx_unlock(&(kq)->kq_lock);					\
219} while (0)
220#define KQ_OWNED(kq) do {						\
221	mtx_assert(&(kq)->kq_lock, MA_OWNED);				\
222} while (0)
223#define KQ_NOTOWNED(kq) do {						\
224	mtx_assert(&(kq)->kq_lock, MA_NOTOWNED);			\
225} while (0)
226#define KN_LIST_LOCK(kn) do {						\
227	if (kn->kn_knlist != NULL)					\
228		kn->kn_knlist->kl_lock(kn->kn_knlist->kl_lockarg);	\
229} while (0)
230#define KN_LIST_UNLOCK(kn) do {						\
231	if (kn->kn_knlist != NULL) 					\
232		kn->kn_knlist->kl_unlock(kn->kn_knlist->kl_lockarg);	\
233} while (0)
234#define	KNL_ASSERT_LOCK(knl, islocked) do {				\
235	if (islocked)							\
236		KNL_ASSERT_LOCKED(knl);				\
237	else								\
238		KNL_ASSERT_UNLOCKED(knl);				\
239} while (0)
240#ifdef INVARIANTS
241#define	KNL_ASSERT_LOCKED(knl) do {					\
242	knl->kl_assert_locked((knl)->kl_lockarg);			\
243} while (0)
244#define	KNL_ASSERT_UNLOCKED(knl) do {					\
245	knl->kl_assert_unlocked((knl)->kl_lockarg);			\
246} while (0)
247#else /* !INVARIANTS */
248#define	KNL_ASSERT_LOCKED(knl) do {} while(0)
249#define	KNL_ASSERT_UNLOCKED(knl) do {} while (0)
250#endif /* INVARIANTS */
251
252#define	KN_HASHSIZE		64		/* XXX should be tunable */
253#define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
254
255static int
256filt_nullattach(struct knote *kn)
257{
258
259	return (ENXIO);
260};
261
262struct filterops null_filtops = {
263	.f_isfd = 0,
264	.f_attach = filt_nullattach,
265};
266
267/* XXX - make SYSINIT to add these, and move into respective modules. */
268extern struct filterops sig_filtops;
269extern struct filterops fs_filtops;
270
271/*
272 * Table for for all system-defined filters.
273 */
274static struct mtx	filterops_lock;
275MTX_SYSINIT(kqueue_filterops, &filterops_lock, "protect sysfilt_ops",
276	MTX_DEF);
277static struct {
278	struct filterops *for_fop;
279	int for_refcnt;
280} sysfilt_ops[EVFILT_SYSCOUNT] = {
281	{ &file_filtops },			/* EVFILT_READ */
282	{ &file_filtops },			/* EVFILT_WRITE */
283	{ &null_filtops },			/* EVFILT_AIO */
284	{ &file_filtops },			/* EVFILT_VNODE */
285	{ &proc_filtops },			/* EVFILT_PROC */
286	{ &sig_filtops },			/* EVFILT_SIGNAL */
287	{ &timer_filtops },			/* EVFILT_TIMER */
288	{ &null_filtops },			/* former EVFILT_NETDEV */
289	{ &fs_filtops },			/* EVFILT_FS */
290	{ &null_filtops },			/* EVFILT_LIO */
291	{ &user_filtops },			/* EVFILT_USER */
292};
293
294/*
295 * Simple redirection for all cdevsw style objects to call their fo_kqfilter
296 * method.
297 */
298static int
299filt_fileattach(struct knote *kn)
300{
301
302	return (fo_kqfilter(kn->kn_fp, kn));
303}
304
305/*ARGSUSED*/
306static int
307kqueue_kqfilter(struct file *fp, struct knote *kn)
308{
309	struct kqueue *kq = kn->kn_fp->f_data;
310
311	if (kn->kn_filter != EVFILT_READ)
312		return (EINVAL);
313
314	kn->kn_status |= KN_KQUEUE;
315	kn->kn_fop = &kqread_filtops;
316	knlist_add(&kq->kq_sel.si_note, kn, 0);
317
318	return (0);
319}
320
321static void
322filt_kqdetach(struct knote *kn)
323{
324	struct kqueue *kq = kn->kn_fp->f_data;
325
326	knlist_remove(&kq->kq_sel.si_note, kn, 0);
327}
328
329/*ARGSUSED*/
330static int
331filt_kqueue(struct knote *kn, long hint)
332{
333	struct kqueue *kq = kn->kn_fp->f_data;
334
335	kn->kn_data = kq->kq_count;
336	return (kn->kn_data > 0);
337}
338
339/* XXX - move to kern_proc.c?  */
340static int
341filt_procattach(struct knote *kn)
342{
343	struct proc *p;
344	int immediate;
345	int error;
346
347	immediate = 0;
348	p = pfind(kn->kn_id);
349	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
350		p = zpfind(kn->kn_id);
351		immediate = 1;
352	} else if (p != NULL && (p->p_flag & P_WEXIT)) {
353		immediate = 1;
354	}
355
356	if (p == NULL)
357		return (ESRCH);
358	if ((error = p_cansee(curthread, p))) {
359		PROC_UNLOCK(p);
360		return (error);
361	}
362
363	kn->kn_ptr.p_proc = p;
364	kn->kn_flags |= EV_CLEAR;		/* automatically set */
365
366	/*
367	 * Internal flag indicating registration done by kernel for the
368	 * purposes of getting a NOTE_CHILD notification.
369	 */
370	if (kn->kn_flags & EV_FLAG2) {
371		kn->kn_flags &= ~EV_FLAG2;
372		kn->kn_data = kn->kn_sdata;		/* ppid */
373		kn->kn_fflags = NOTE_CHILD;
374                kn->kn_sfflags &= ~NOTE_EXIT;
375		immediate = 1; /* Force immediate activation of child note. */
376	}
377	/*
378	 * Internal flag indicating registration done by kernel (for other than
379	 * NOTE_CHILD).
380	 */
381	if (kn->kn_flags & EV_FLAG1) {
382		kn->kn_flags &= ~EV_FLAG1;
383	}
384
385	if (immediate == 0)
386		knlist_add(&p->p_klist, kn, 1);
387
388	/*
389	 * Immediately activate any child notes or, in the case of a zombie
390	 * target process, exit notes.  The latter is necessary to handle the
391	 * case where the target process, e.g. a child, dies before the kevent
392	 * is registered.
393	 */
394	if (immediate && filt_proc(kn, NOTE_EXIT))
395		KNOTE_ACTIVATE(kn, 0);
396
397	PROC_UNLOCK(p);
398
399	return (0);
400}
401
402/*
403 * The knote may be attached to a different process, which may exit,
404 * leaving nothing for the knote to be attached to.  So when the process
405 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
406 * it will be deleted when read out.  However, as part of the knote deletion,
407 * this routine is called, so a check is needed to avoid actually performing
408 * a detach, because the original process does not exist any more.
409 */
410/* XXX - move to kern_proc.c?  */
411static void
412filt_procdetach(struct knote *kn)
413{
414	struct proc *p;
415
416	p = kn->kn_ptr.p_proc;
417	knlist_remove(&p->p_klist, kn, 0);
418	kn->kn_ptr.p_proc = NULL;
419}
420
421/* XXX - move to kern_proc.c?  */
422static int
423filt_proc(struct knote *kn, long hint)
424{
425	struct proc *p = kn->kn_ptr.p_proc;
426	u_int event;
427
428	/*
429	 * mask off extra data
430	 */
431	event = (u_int)hint & NOTE_PCTRLMASK;
432
433	/*
434	 * if the user is interested in this event, record it.
435	 */
436	if (kn->kn_sfflags & event)
437		kn->kn_fflags |= event;
438
439	/*
440	 * process is gone, so flag the event as finished.
441	 */
442	if (event == NOTE_EXIT) {
443		if (!(kn->kn_status & KN_DETACHED))
444			knlist_remove_inevent(&p->p_klist, kn);
445		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
446		kn->kn_ptr.p_proc = NULL;
447		if (kn->kn_fflags & NOTE_EXIT)
448			kn->kn_data = p->p_xstat;
449		if (kn->kn_fflags == 0)
450			kn->kn_flags |= EV_DROP;
451		return (1);
452	}
453
454	return (kn->kn_fflags != 0);
455}
456
457/*
458 * Called when the process forked. It mostly does the same as the
459 * knote(), activating all knotes registered to be activated when the
460 * process forked. Additionally, for each knote attached to the
461 * parent, check whether user wants to track the new process. If so
462 * attach a new knote to it, and immediately report an event with the
463 * child's pid.
464 */
465void
466knote_fork(struct knlist *list, int pid)
467{
468	struct kqueue *kq;
469	struct knote *kn;
470	struct kevent kev;
471	int error;
472
473	if (list == NULL)
474		return;
475	list->kl_lock(list->kl_lockarg);
476
477	SLIST_FOREACH(kn, &list->kl_list, kn_selnext) {
478		if ((kn->kn_status & KN_INFLUX) == KN_INFLUX)
479			continue;
480		kq = kn->kn_kq;
481		KQ_LOCK(kq);
482		if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
483			KQ_UNLOCK(kq);
484			continue;
485		}
486
487		/*
488		 * The same as knote(), activate the event.
489		 */
490		if ((kn->kn_sfflags & NOTE_TRACK) == 0) {
491			kn->kn_status |= KN_HASKQLOCK;
492			if (kn->kn_fop->f_event(kn, NOTE_FORK))
493				KNOTE_ACTIVATE(kn, 1);
494			kn->kn_status &= ~KN_HASKQLOCK;
495			KQ_UNLOCK(kq);
496			continue;
497		}
498
499		/*
500		 * The NOTE_TRACK case. In addition to the activation
501		 * of the event, we need to register new events to
502		 * track the child. Drop the locks in preparation for
503		 * the call to kqueue_register().
504		 */
505		kn->kn_status |= KN_INFLUX;
506		KQ_UNLOCK(kq);
507		list->kl_unlock(list->kl_lockarg);
508
509		/*
510		 * Activate existing knote and register tracking knotes with
511		 * new process.
512		 *
513		 * First register a knote to get just the child notice. This
514		 * must be a separate note from a potential NOTE_EXIT
515		 * notification since both NOTE_CHILD and NOTE_EXIT are defined
516		 * to use the data field (in conflicting ways).
517		 */
518		kev.ident = pid;
519		kev.filter = kn->kn_filter;
520		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_ONESHOT | EV_FLAG2;
521		kev.fflags = kn->kn_sfflags;
522		kev.data = kn->kn_id;		/* parent */
523		kev.udata = kn->kn_kevent.udata;/* preserve udata */
524		error = kqueue_register(kq, &kev, NULL, 0);
525		if (error)
526			kn->kn_fflags |= NOTE_TRACKERR;
527
528		/*
529		 * Then register another knote to track other potential events
530		 * from the new process.
531		 */
532		kev.ident = pid;
533		kev.filter = kn->kn_filter;
534		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
535		kev.fflags = kn->kn_sfflags;
536		kev.data = kn->kn_id;		/* parent */
537		kev.udata = kn->kn_kevent.udata;/* preserve udata */
538		error = kqueue_register(kq, &kev, NULL, 0);
539		if (error)
540			kn->kn_fflags |= NOTE_TRACKERR;
541		if (kn->kn_fop->f_event(kn, NOTE_FORK))
542			KNOTE_ACTIVATE(kn, 0);
543		KQ_LOCK(kq);
544		kn->kn_status &= ~KN_INFLUX;
545		KQ_UNLOCK_FLUX(kq);
546		list->kl_lock(list->kl_lockarg);
547	}
548	list->kl_unlock(list->kl_lockarg);
549}
550
551/*
552 * XXX: EVFILT_TIMER should perhaps live in kern_time.c beside the
553 * interval timer support code.
554 */
555
556#define NOTE_TIMER_PRECMASK	(NOTE_SECONDS|NOTE_MSECONDS|NOTE_USECONDS| \
557				NOTE_NSECONDS)
558
559static __inline sbintime_t
560timer2sbintime(intptr_t data, int flags)
561{
562	sbintime_t modifier;
563
564	switch (flags & NOTE_TIMER_PRECMASK) {
565	case NOTE_SECONDS:
566		modifier = SBT_1S;
567		break;
568	case NOTE_MSECONDS: /* FALLTHROUGH */
569	case 0:
570		modifier = SBT_1MS;
571		break;
572	case NOTE_USECONDS:
573		modifier = SBT_1US;
574		break;
575	case NOTE_NSECONDS:
576		modifier = SBT_1NS;
577		break;
578	default:
579		return (-1);
580	}
581
582#ifdef __LP64__
583	if (data > SBT_MAX / modifier)
584		return (SBT_MAX);
585#endif
586	return (modifier * data);
587}
588
589static void
590filt_timerexpire(void *knx)
591{
592	struct callout *calloutp;
593	struct knote *kn;
594
595	kn = knx;
596	kn->kn_data++;
597	KNOTE_ACTIVATE(kn, 0);	/* XXX - handle locking */
598
599	if ((kn->kn_flags & EV_ONESHOT) != EV_ONESHOT) {
600		calloutp = (struct callout *)kn->kn_hook;
601		*kn->kn_ptr.p_nexttime += timer2sbintime(kn->kn_sdata,
602		    kn->kn_sfflags);
603		callout_reset_sbt_on(calloutp, *kn->kn_ptr.p_nexttime, 0,
604		    filt_timerexpire, kn, PCPU_GET(cpuid), C_ABSOLUTE);
605	}
606}
607
608/*
609 * data contains amount of time to sleep
610 */
611static int
612filt_timerattach(struct knote *kn)
613{
614	struct callout *calloutp;
615	sbintime_t to;
616	unsigned int ncallouts;
617
618	if ((intptr_t)kn->kn_sdata < 0)
619		return (EINVAL);
620	if ((intptr_t)kn->kn_sdata == 0 && (kn->kn_flags & EV_ONESHOT) == 0)
621		kn->kn_sdata = 1;
622	/* Only precision unit are supported in flags so far */
623	if (kn->kn_sfflags & ~NOTE_TIMER_PRECMASK)
624		return (EINVAL);
625
626	to = timer2sbintime(kn->kn_sdata, kn->kn_sfflags);
627	if (to < 0)
628		return (EINVAL);
629
630	ncallouts = atomic_load_explicit(&kq_ncallouts, memory_order_relaxed);
631	do {
632		if (ncallouts >= kq_calloutmax)
633			return (ENOMEM);
634	} while (!atomic_compare_exchange_weak_explicit(&kq_ncallouts,
635	    &ncallouts, ncallouts + 1, memory_order_relaxed,
636	    memory_order_relaxed));
637
638	kn->kn_flags |= EV_CLEAR;		/* automatically set */
639	kn->kn_status &= ~KN_DETACHED;		/* knlist_add clears it */
640	kn->kn_ptr.p_nexttime = malloc(sizeof(sbintime_t), M_KQUEUE, M_WAITOK);
641	calloutp = malloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
642	callout_init(calloutp, CALLOUT_MPSAFE);
643	kn->kn_hook = calloutp;
644	*kn->kn_ptr.p_nexttime = to + sbinuptime();
645	callout_reset_sbt_on(calloutp, *kn->kn_ptr.p_nexttime, 0,
646	    filt_timerexpire, kn, PCPU_GET(cpuid), C_ABSOLUTE);
647
648	return (0);
649}
650
651static void
652filt_timerdetach(struct knote *kn)
653{
654	struct callout *calloutp;
655	unsigned int old;
656
657	calloutp = (struct callout *)kn->kn_hook;
658	callout_drain(calloutp);
659	free(calloutp, M_KQUEUE);
660	free(kn->kn_ptr.p_nexttime, M_KQUEUE);
661	old = atomic_fetch_sub_explicit(&kq_ncallouts, 1, memory_order_relaxed);
662	KASSERT(old > 0, ("Number of callouts cannot become negative"));
663	kn->kn_status |= KN_DETACHED;	/* knlist_remove sets it */
664}
665
666static int
667filt_timer(struct knote *kn, long hint)
668{
669
670	return (kn->kn_data != 0);
671}
672
673static int
674filt_userattach(struct knote *kn)
675{
676
677	/*
678	 * EVFILT_USER knotes are not attached to anything in the kernel.
679	 */
680	kn->kn_hook = NULL;
681	if (kn->kn_fflags & NOTE_TRIGGER)
682		kn->kn_hookid = 1;
683	else
684		kn->kn_hookid = 0;
685	return (0);
686}
687
688static void
689filt_userdetach(__unused struct knote *kn)
690{
691
692	/*
693	 * EVFILT_USER knotes are not attached to anything in the kernel.
694	 */
695}
696
697static int
698filt_user(struct knote *kn, __unused long hint)
699{
700
701	return (kn->kn_hookid);
702}
703
704static void
705filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
706{
707	u_int ffctrl;
708
709	switch (type) {
710	case EVENT_REGISTER:
711		if (kev->fflags & NOTE_TRIGGER)
712			kn->kn_hookid = 1;
713
714		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
715		kev->fflags &= NOTE_FFLAGSMASK;
716		switch (ffctrl) {
717		case NOTE_FFNOP:
718			break;
719
720		case NOTE_FFAND:
721			kn->kn_sfflags &= kev->fflags;
722			break;
723
724		case NOTE_FFOR:
725			kn->kn_sfflags |= kev->fflags;
726			break;
727
728		case NOTE_FFCOPY:
729			kn->kn_sfflags = kev->fflags;
730			break;
731
732		default:
733			/* XXX Return error? */
734			break;
735		}
736		kn->kn_sdata = kev->data;
737		if (kev->flags & EV_CLEAR) {
738			kn->kn_hookid = 0;
739			kn->kn_data = 0;
740			kn->kn_fflags = 0;
741		}
742		break;
743
744        case EVENT_PROCESS:
745		*kev = kn->kn_kevent;
746		kev->fflags = kn->kn_sfflags;
747		kev->data = kn->kn_sdata;
748		if (kn->kn_flags & EV_CLEAR) {
749			kn->kn_hookid = 0;
750			kn->kn_data = 0;
751			kn->kn_fflags = 0;
752		}
753		break;
754
755	default:
756		panic("filt_usertouch() - invalid type (%ld)", type);
757		break;
758	}
759}
760
761int
762sys_kqueue(struct thread *td, struct kqueue_args *uap)
763{
764
765	return (kern_kqueue(td, 0));
766}
767
768int
769kern_kqueue(struct thread *td, int flags)
770{
771	struct filedesc *fdp;
772	struct kqueue *kq;
773	struct file *fp;
774	int fd, error;
775
776	fdp = td->td_proc->p_fd;
777	error = falloc(td, &fp, &fd, flags);
778	if (error)
779		goto done2;
780
781	/* An extra reference on `fp' has been held for us by falloc(). */
782	kq = malloc(sizeof *kq, M_KQUEUE, M_WAITOK | M_ZERO);
783	mtx_init(&kq->kq_lock, "kqueue", NULL, MTX_DEF|MTX_DUPOK);
784	TAILQ_INIT(&kq->kq_head);
785	kq->kq_fdp = fdp;
786	knlist_init_mtx(&kq->kq_sel.si_note, &kq->kq_lock);
787	TASK_INIT(&kq->kq_task, 0, kqueue_task, kq);
788
789	FILEDESC_XLOCK(fdp);
790	TAILQ_INSERT_HEAD(&fdp->fd_kqlist, kq, kq_list);
791	FILEDESC_XUNLOCK(fdp);
792
793	finit(fp, FREAD | FWRITE, DTYPE_KQUEUE, kq, &kqueueops);
794	fdrop(fp, td);
795
796	td->td_retval[0] = fd;
797done2:
798	return (error);
799}
800
801#ifndef _SYS_SYSPROTO_H_
802struct kevent_args {
803	int	fd;
804	const struct kevent *changelist;
805	int	nchanges;
806	struct	kevent *eventlist;
807	int	nevents;
808	const struct timespec *timeout;
809};
810#endif
811int
812sys_kevent(struct thread *td, struct kevent_args *uap)
813{
814	struct timespec ts, *tsp;
815	struct kevent_copyops k_ops = { uap,
816					kevent_copyout,
817					kevent_copyin};
818	int error;
819#ifdef KTRACE
820	struct uio ktruio;
821	struct iovec ktriov;
822	struct uio *ktruioin = NULL;
823	struct uio *ktruioout = NULL;
824#endif
825
826	if (uap->timeout != NULL) {
827		error = copyin(uap->timeout, &ts, sizeof(ts));
828		if (error)
829			return (error);
830		tsp = &ts;
831	} else
832		tsp = NULL;
833
834#ifdef KTRACE
835	if (KTRPOINT(td, KTR_GENIO)) {
836		ktriov.iov_base = uap->changelist;
837		ktriov.iov_len = uap->nchanges * sizeof(struct kevent);
838		ktruio = (struct uio){ .uio_iov = &ktriov, .uio_iovcnt = 1,
839		    .uio_segflg = UIO_USERSPACE, .uio_rw = UIO_READ,
840		    .uio_td = td };
841		ktruioin = cloneuio(&ktruio);
842		ktriov.iov_base = uap->eventlist;
843		ktriov.iov_len = uap->nevents * sizeof(struct kevent);
844		ktruioout = cloneuio(&ktruio);
845	}
846#endif
847
848	error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
849	    &k_ops, tsp);
850
851#ifdef KTRACE
852	if (ktruioin != NULL) {
853		ktruioin->uio_resid = uap->nchanges * sizeof(struct kevent);
854		ktrgenio(uap->fd, UIO_WRITE, ktruioin, 0);
855		ktruioout->uio_resid = td->td_retval[0] * sizeof(struct kevent);
856		ktrgenio(uap->fd, UIO_READ, ktruioout, error);
857	}
858#endif
859
860	return (error);
861}
862
863/*
864 * Copy 'count' items into the destination list pointed to by uap->eventlist.
865 */
866static int
867kevent_copyout(void *arg, struct kevent *kevp, int count)
868{
869	struct kevent_args *uap;
870	int error;
871
872	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
873	uap = (struct kevent_args *)arg;
874
875	error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
876	if (error == 0)
877		uap->eventlist += count;
878	return (error);
879}
880
881/*
882 * Copy 'count' items from the list pointed to by uap->changelist.
883 */
884static int
885kevent_copyin(void *arg, struct kevent *kevp, int count)
886{
887	struct kevent_args *uap;
888	int error;
889
890	KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
891	uap = (struct kevent_args *)arg;
892
893	error = copyin(uap->changelist, kevp, count * sizeof *kevp);
894	if (error == 0)
895		uap->changelist += count;
896	return (error);
897}
898
899int
900kern_kevent(struct thread *td, int fd, int nchanges, int nevents,
901    struct kevent_copyops *k_ops, const struct timespec *timeout)
902{
903	cap_rights_t rights;
904	struct file *fp;
905	int error;
906
907	cap_rights_init(&rights);
908	if (nchanges > 0)
909		cap_rights_set(&rights, CAP_KQUEUE_CHANGE);
910	if (nevents > 0)
911		cap_rights_set(&rights, CAP_KQUEUE_EVENT);
912	error = fget(td, fd, &rights, &fp);
913	if (error != 0)
914		return (error);
915
916	error = kern_kevent_fp(td, fp, nchanges, nevents, k_ops, timeout);
917	fdrop(fp, td);
918
919	return (error);
920}
921
922int
923kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents,
924    struct kevent_copyops *k_ops, const struct timespec *timeout)
925{
926	struct kevent keva[KQ_NEVENTS];
927	struct kevent *kevp, *changes;
928	struct kqueue *kq;
929	int i, n, nerrors, error;
930
931	error = kqueue_acquire(fp, &kq);
932	if (error != 0)
933		return (error);
934
935	nerrors = 0;
936
937	while (nchanges > 0) {
938		n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
939		error = k_ops->k_copyin(k_ops->arg, keva, n);
940		if (error)
941			goto done;
942		changes = keva;
943		for (i = 0; i < n; i++) {
944			kevp = &changes[i];
945			if (!kevp->filter)
946				continue;
947			kevp->flags &= ~EV_SYSFLAGS;
948			error = kqueue_register(kq, kevp, td, 1);
949			if (error || (kevp->flags & EV_RECEIPT)) {
950				if (nevents != 0) {
951					kevp->flags = EV_ERROR;
952					kevp->data = error;
953					(void) k_ops->k_copyout(k_ops->arg,
954					    kevp, 1);
955					nevents--;
956					nerrors++;
957				} else {
958					goto done;
959				}
960			}
961		}
962		nchanges -= n;
963	}
964	if (nerrors) {
965		td->td_retval[0] = nerrors;
966		error = 0;
967		goto done;
968	}
969
970	error = kqueue_scan(kq, nevents, k_ops, timeout, keva, td);
971done:
972	kqueue_release(kq, 0);
973	return (error);
974}
975
976int
977kqueue_add_filteropts(int filt, struct filterops *filtops)
978{
979	int error;
980
981	error = 0;
982	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0) {
983		printf(
984"trying to add a filterop that is out of range: %d is beyond %d\n",
985		    ~filt, EVFILT_SYSCOUNT);
986		return EINVAL;
987	}
988	mtx_lock(&filterops_lock);
989	if (sysfilt_ops[~filt].for_fop != &null_filtops &&
990	    sysfilt_ops[~filt].for_fop != NULL)
991		error = EEXIST;
992	else {
993		sysfilt_ops[~filt].for_fop = filtops;
994		sysfilt_ops[~filt].for_refcnt = 0;
995	}
996	mtx_unlock(&filterops_lock);
997
998	return (error);
999}
1000
1001int
1002kqueue_del_filteropts(int filt)
1003{
1004	int error;
1005
1006	error = 0;
1007	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1008		return EINVAL;
1009
1010	mtx_lock(&filterops_lock);
1011	if (sysfilt_ops[~filt].for_fop == &null_filtops ||
1012	    sysfilt_ops[~filt].for_fop == NULL)
1013		error = EINVAL;
1014	else if (sysfilt_ops[~filt].for_refcnt != 0)
1015		error = EBUSY;
1016	else {
1017		sysfilt_ops[~filt].for_fop = &null_filtops;
1018		sysfilt_ops[~filt].for_refcnt = 0;
1019	}
1020	mtx_unlock(&filterops_lock);
1021
1022	return error;
1023}
1024
1025static struct filterops *
1026kqueue_fo_find(int filt)
1027{
1028
1029	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1030		return NULL;
1031
1032	mtx_lock(&filterops_lock);
1033	sysfilt_ops[~filt].for_refcnt++;
1034	if (sysfilt_ops[~filt].for_fop == NULL)
1035		sysfilt_ops[~filt].for_fop = &null_filtops;
1036	mtx_unlock(&filterops_lock);
1037
1038	return sysfilt_ops[~filt].for_fop;
1039}
1040
1041static void
1042kqueue_fo_release(int filt)
1043{
1044
1045	if (filt > 0 || filt + EVFILT_SYSCOUNT < 0)
1046		return;
1047
1048	mtx_lock(&filterops_lock);
1049	KASSERT(sysfilt_ops[~filt].for_refcnt > 0,
1050	    ("filter object refcount not valid on release"));
1051	sysfilt_ops[~filt].for_refcnt--;
1052	mtx_unlock(&filterops_lock);
1053}
1054
1055/*
1056 * A ref to kq (obtained via kqueue_acquire) must be held.  waitok will
1057 * influence if memory allocation should wait.  Make sure it is 0 if you
1058 * hold any mutexes.
1059 */
1060static int
1061kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td, int waitok)
1062{
1063	struct filterops *fops;
1064	struct file *fp;
1065	struct knote *kn, *tkn;
1066	cap_rights_t rights;
1067	int error, filt, event;
1068	int haskqglobal, filedesc_unlock;
1069
1070	fp = NULL;
1071	kn = NULL;
1072	error = 0;
1073	haskqglobal = 0;
1074	filedesc_unlock = 0;
1075
1076	filt = kev->filter;
1077	fops = kqueue_fo_find(filt);
1078	if (fops == NULL)
1079		return EINVAL;
1080
1081	tkn = knote_alloc(waitok);		/* prevent waiting with locks */
1082
1083findkn:
1084	if (fops->f_isfd) {
1085		KASSERT(td != NULL, ("td is NULL"));
1086		error = fget(td, kev->ident,
1087		    cap_rights_init(&rights, CAP_EVENT), &fp);
1088		if (error)
1089			goto done;
1090
1091		if ((kev->flags & EV_ADD) == EV_ADD && kqueue_expand(kq, fops,
1092		    kev->ident, 0) != 0) {
1093			/* try again */
1094			fdrop(fp, td);
1095			fp = NULL;
1096			error = kqueue_expand(kq, fops, kev->ident, waitok);
1097			if (error)
1098				goto done;
1099			goto findkn;
1100		}
1101
1102		if (fp->f_type == DTYPE_KQUEUE) {
1103			/*
1104			 * If we add some intelligence about what we are doing,
1105			 * we should be able to support events on ourselves.
1106			 * We need to know when we are doing this to prevent
1107			 * getting both the knlist lock and the kq lock since
1108			 * they are the same thing.
1109			 */
1110			if (fp->f_data == kq) {
1111				error = EINVAL;
1112				goto done;
1113			}
1114
1115			/*
1116			 * Pre-lock the filedesc before the global
1117			 * lock mutex, see the comment in
1118			 * kqueue_close().
1119			 */
1120			FILEDESC_XLOCK(td->td_proc->p_fd);
1121			filedesc_unlock = 1;
1122			KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1123		}
1124
1125		KQ_LOCK(kq);
1126		if (kev->ident < kq->kq_knlistsize) {
1127			SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link)
1128				if (kev->filter == kn->kn_filter)
1129					break;
1130		}
1131	} else {
1132		if ((kev->flags & EV_ADD) == EV_ADD)
1133			kqueue_expand(kq, fops, kev->ident, waitok);
1134
1135		KQ_LOCK(kq);
1136
1137		/*
1138		 * If possible, find an existing knote to use for this kevent.
1139		 */
1140		if (kev->filter == EVFILT_PROC &&
1141		    (kev->flags & (EV_FLAG1 | EV_FLAG2)) != 0) {
1142			/* This is an internal creation of a process tracking
1143			 * note. Don't attempt to coalesce this with an
1144			 * existing note.
1145			 */
1146			;
1147		} else if (kq->kq_knhashmask != 0) {
1148			struct klist *list;
1149
1150			list = &kq->kq_knhash[
1151			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1152			SLIST_FOREACH(kn, list, kn_link)
1153				if (kev->ident == kn->kn_id &&
1154				    kev->filter == kn->kn_filter)
1155					break;
1156		}
1157	}
1158
1159	/* knote is in the process of changing, wait for it to stabilize. */
1160	if (kn != NULL && (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1161		KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1162		if (filedesc_unlock) {
1163			FILEDESC_XUNLOCK(td->td_proc->p_fd);
1164			filedesc_unlock = 0;
1165		}
1166		kq->kq_state |= KQ_FLUXWAIT;
1167		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqflxwt", 0);
1168		if (fp != NULL) {
1169			fdrop(fp, td);
1170			fp = NULL;
1171		}
1172		goto findkn;
1173	}
1174
1175	/*
1176	 * kn now contains the matching knote, or NULL if no match
1177	 */
1178	if (kn == NULL) {
1179		if (kev->flags & EV_ADD) {
1180			kn = tkn;
1181			tkn = NULL;
1182			if (kn == NULL) {
1183				KQ_UNLOCK(kq);
1184				error = ENOMEM;
1185				goto done;
1186			}
1187			kn->kn_fp = fp;
1188			kn->kn_kq = kq;
1189			kn->kn_fop = fops;
1190			/*
1191			 * apply reference counts to knote structure, and
1192			 * do not release it at the end of this routine.
1193			 */
1194			fops = NULL;
1195			fp = NULL;
1196
1197			kn->kn_sfflags = kev->fflags;
1198			kn->kn_sdata = kev->data;
1199			kev->fflags = 0;
1200			kev->data = 0;
1201			kn->kn_kevent = *kev;
1202			kn->kn_kevent.flags &= ~(EV_ADD | EV_DELETE |
1203			    EV_ENABLE | EV_DISABLE);
1204			kn->kn_status = KN_INFLUX|KN_DETACHED;
1205
1206			error = knote_attach(kn, kq);
1207			KQ_UNLOCK(kq);
1208			if (error != 0) {
1209				tkn = kn;
1210				goto done;
1211			}
1212
1213			if ((error = kn->kn_fop->f_attach(kn)) != 0) {
1214				knote_drop(kn, td);
1215				goto done;
1216			}
1217			KN_LIST_LOCK(kn);
1218			goto done_ev_add;
1219		} else {
1220			/* No matching knote and the EV_ADD flag is not set. */
1221			KQ_UNLOCK(kq);
1222			error = ENOENT;
1223			goto done;
1224		}
1225	}
1226
1227	if (kev->flags & EV_DELETE) {
1228		kn->kn_status |= KN_INFLUX;
1229		KQ_UNLOCK(kq);
1230		if (!(kn->kn_status & KN_DETACHED))
1231			kn->kn_fop->f_detach(kn);
1232		knote_drop(kn, td);
1233		goto done;
1234	}
1235
1236	/*
1237	 * The user may change some filter values after the initial EV_ADD,
1238	 * but doing so will not reset any filter which has already been
1239	 * triggered.
1240	 */
1241	kn->kn_status |= KN_INFLUX | KN_SCAN;
1242	KQ_UNLOCK(kq);
1243	KN_LIST_LOCK(kn);
1244	kn->kn_kevent.udata = kev->udata;
1245	if (!fops->f_isfd && fops->f_touch != NULL) {
1246		fops->f_touch(kn, kev, EVENT_REGISTER);
1247	} else {
1248		kn->kn_sfflags = kev->fflags;
1249		kn->kn_sdata = kev->data;
1250	}
1251
1252	/*
1253	 * We can get here with kn->kn_knlist == NULL.  This can happen when
1254	 * the initial attach event decides that the event is "completed"
1255	 * already.  i.e. filt_procattach is called on a zombie process.  It
1256	 * will call filt_proc which will remove it from the list, and NULL
1257	 * kn_knlist.
1258	 */
1259done_ev_add:
1260	event = kn->kn_fop->f_event(kn, 0);
1261	KQ_LOCK(kq);
1262	if (event)
1263		KNOTE_ACTIVATE(kn, 1);
1264	kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
1265	KN_LIST_UNLOCK(kn);
1266
1267	if ((kev->flags & EV_DISABLE) &&
1268	    ((kn->kn_status & KN_DISABLED) == 0)) {
1269		kn->kn_status |= KN_DISABLED;
1270	}
1271
1272	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
1273		kn->kn_status &= ~KN_DISABLED;
1274		if ((kn->kn_status & KN_ACTIVE) &&
1275		    ((kn->kn_status & KN_QUEUED) == 0))
1276			knote_enqueue(kn);
1277	}
1278	KQ_UNLOCK_FLUX(kq);
1279
1280done:
1281	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1282	if (filedesc_unlock)
1283		FILEDESC_XUNLOCK(td->td_proc->p_fd);
1284	if (fp != NULL)
1285		fdrop(fp, td);
1286	if (tkn != NULL)
1287		knote_free(tkn);
1288	if (fops != NULL)
1289		kqueue_fo_release(filt);
1290	return (error);
1291}
1292
1293static int
1294kqueue_acquire(struct file *fp, struct kqueue **kqp)
1295{
1296	int error;
1297	struct kqueue *kq;
1298
1299	error = 0;
1300
1301	kq = fp->f_data;
1302	if (fp->f_type != DTYPE_KQUEUE || kq == NULL)
1303		return (EBADF);
1304	*kqp = kq;
1305	KQ_LOCK(kq);
1306	if ((kq->kq_state & KQ_CLOSING) == KQ_CLOSING) {
1307		KQ_UNLOCK(kq);
1308		return (EBADF);
1309	}
1310	kq->kq_refcnt++;
1311	KQ_UNLOCK(kq);
1312
1313	return error;
1314}
1315
1316static void
1317kqueue_release(struct kqueue *kq, int locked)
1318{
1319	if (locked)
1320		KQ_OWNED(kq);
1321	else
1322		KQ_LOCK(kq);
1323	kq->kq_refcnt--;
1324	if (kq->kq_refcnt == 1)
1325		wakeup(&kq->kq_refcnt);
1326	if (!locked)
1327		KQ_UNLOCK(kq);
1328}
1329
1330static void
1331kqueue_schedtask(struct kqueue *kq)
1332{
1333
1334	KQ_OWNED(kq);
1335	KASSERT(((kq->kq_state & KQ_TASKDRAIN) != KQ_TASKDRAIN),
1336	    ("scheduling kqueue task while draining"));
1337
1338	if ((kq->kq_state & KQ_TASKSCHED) != KQ_TASKSCHED) {
1339		taskqueue_enqueue(taskqueue_kqueue, &kq->kq_task);
1340		kq->kq_state |= KQ_TASKSCHED;
1341	}
1342}
1343
1344/*
1345 * Expand the kq to make sure we have storage for fops/ident pair.
1346 *
1347 * Return 0 on success (or no work necessary), return errno on failure.
1348 *
1349 * Not calling hashinit w/ waitok (proper malloc flag) should be safe.
1350 * If kqueue_register is called from a non-fd context, there usually/should
1351 * be no locks held.
1352 */
1353static int
1354kqueue_expand(struct kqueue *kq, struct filterops *fops, uintptr_t ident,
1355	int waitok)
1356{
1357	struct klist *list, *tmp_knhash, *to_free;
1358	u_long tmp_knhashmask;
1359	int size;
1360	int fd;
1361	int mflag = waitok ? M_WAITOK : M_NOWAIT;
1362
1363	KQ_NOTOWNED(kq);
1364
1365	to_free = NULL;
1366	if (fops->f_isfd) {
1367		fd = ident;
1368		if (kq->kq_knlistsize <= fd) {
1369			size = kq->kq_knlistsize;
1370			while (size <= fd)
1371				size += KQEXTENT;
1372			list = malloc(size * sizeof(*list), M_KQUEUE, mflag);
1373			if (list == NULL)
1374				return ENOMEM;
1375			KQ_LOCK(kq);
1376			if (kq->kq_knlistsize > fd) {
1377				to_free = list;
1378				list = NULL;
1379			} else {
1380				if (kq->kq_knlist != NULL) {
1381					bcopy(kq->kq_knlist, list,
1382					    kq->kq_knlistsize * sizeof(*list));
1383					to_free = kq->kq_knlist;
1384					kq->kq_knlist = NULL;
1385				}
1386				bzero((caddr_t)list +
1387				    kq->kq_knlistsize * sizeof(*list),
1388				    (size - kq->kq_knlistsize) * sizeof(*list));
1389				kq->kq_knlistsize = size;
1390				kq->kq_knlist = list;
1391			}
1392			KQ_UNLOCK(kq);
1393		}
1394	} else {
1395		if (kq->kq_knhashmask == 0) {
1396			tmp_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1397			    &tmp_knhashmask);
1398			if (tmp_knhash == NULL)
1399				return ENOMEM;
1400			KQ_LOCK(kq);
1401			if (kq->kq_knhashmask == 0) {
1402				kq->kq_knhash = tmp_knhash;
1403				kq->kq_knhashmask = tmp_knhashmask;
1404			} else {
1405				to_free = tmp_knhash;
1406			}
1407			KQ_UNLOCK(kq);
1408		}
1409	}
1410	free(to_free, M_KQUEUE);
1411
1412	KQ_NOTOWNED(kq);
1413	return 0;
1414}
1415
1416static void
1417kqueue_task(void *arg, int pending)
1418{
1419	struct kqueue *kq;
1420	int haskqglobal;
1421
1422	haskqglobal = 0;
1423	kq = arg;
1424
1425	KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1426	KQ_LOCK(kq);
1427
1428	KNOTE_LOCKED(&kq->kq_sel.si_note, 0);
1429
1430	kq->kq_state &= ~KQ_TASKSCHED;
1431	if ((kq->kq_state & KQ_TASKDRAIN) == KQ_TASKDRAIN) {
1432		wakeup(&kq->kq_state);
1433	}
1434	KQ_UNLOCK(kq);
1435	KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1436}
1437
1438/*
1439 * Scan, update kn_data (if not ONESHOT), and copyout triggered events.
1440 * We treat KN_MARKER knotes as if they are INFLUX.
1441 */
1442static int
1443kqueue_scan(struct kqueue *kq, int maxevents, struct kevent_copyops *k_ops,
1444    const struct timespec *tsp, struct kevent *keva, struct thread *td)
1445{
1446	struct kevent *kevp;
1447	struct knote *kn, *marker;
1448	sbintime_t asbt, rsbt;
1449	int count, error, haskqglobal, influx, nkev, touch;
1450
1451	count = maxevents;
1452	nkev = 0;
1453	error = 0;
1454	haskqglobal = 0;
1455
1456	if (maxevents == 0)
1457		goto done_nl;
1458
1459	rsbt = 0;
1460	if (tsp != NULL) {
1461		if (tsp->tv_sec < 0 || tsp->tv_nsec < 0 ||
1462		    tsp->tv_nsec >= 1000000000) {
1463			error = EINVAL;
1464			goto done_nl;
1465		}
1466		if (timespecisset(tsp)) {
1467			if (tsp->tv_sec <= INT32_MAX) {
1468				rsbt = tstosbt(*tsp);
1469				if (TIMESEL(&asbt, rsbt))
1470					asbt += tc_tick_sbt;
1471				if (asbt <= INT64_MAX - rsbt)
1472					asbt += rsbt;
1473				else
1474					asbt = 0;
1475				rsbt >>= tc_precexp;
1476			} else
1477				asbt = 0;
1478		} else
1479			asbt = -1;
1480	} else
1481		asbt = 0;
1482	marker = knote_alloc(1);
1483	if (marker == NULL) {
1484		error = ENOMEM;
1485		goto done_nl;
1486	}
1487	marker->kn_status = KN_MARKER;
1488	KQ_LOCK(kq);
1489
1490retry:
1491	kevp = keva;
1492	if (kq->kq_count == 0) {
1493		if (asbt == -1) {
1494			error = EWOULDBLOCK;
1495		} else {
1496			kq->kq_state |= KQ_SLEEP;
1497			error = msleep_sbt(kq, &kq->kq_lock, PSOCK | PCATCH,
1498			    "kqread", asbt, rsbt, C_ABSOLUTE);
1499		}
1500		if (error == 0)
1501			goto retry;
1502		/* don't restart after signals... */
1503		if (error == ERESTART)
1504			error = EINTR;
1505		else if (error == EWOULDBLOCK)
1506			error = 0;
1507		goto done;
1508	}
1509
1510	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1511	influx = 0;
1512	while (count) {
1513		KQ_OWNED(kq);
1514		kn = TAILQ_FIRST(&kq->kq_head);
1515
1516		if ((kn->kn_status == KN_MARKER && kn != marker) ||
1517		    (kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1518			if (influx) {
1519				influx = 0;
1520				KQ_FLUX_WAKEUP(kq);
1521			}
1522			kq->kq_state |= KQ_FLUXWAIT;
1523			error = msleep(kq, &kq->kq_lock, PSOCK,
1524			    "kqflxwt", 0);
1525			continue;
1526		}
1527
1528		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1529		if ((kn->kn_status & KN_DISABLED) == KN_DISABLED) {
1530			kn->kn_status &= ~KN_QUEUED;
1531			kq->kq_count--;
1532			continue;
1533		}
1534		if (kn == marker) {
1535			KQ_FLUX_WAKEUP(kq);
1536			if (count == maxevents)
1537				goto retry;
1538			goto done;
1539		}
1540		KASSERT((kn->kn_status & KN_INFLUX) == 0,
1541		    ("KN_INFLUX set when not suppose to be"));
1542
1543		if ((kn->kn_flags & EV_DROP) == EV_DROP) {
1544			kn->kn_status &= ~KN_QUEUED;
1545			kn->kn_status |= KN_INFLUX;
1546			kq->kq_count--;
1547			KQ_UNLOCK(kq);
1548			/*
1549			 * We don't need to lock the list since we've marked
1550			 * it _INFLUX.
1551			 */
1552			if (!(kn->kn_status & KN_DETACHED))
1553				kn->kn_fop->f_detach(kn);
1554			knote_drop(kn, td);
1555			KQ_LOCK(kq);
1556			continue;
1557		} else if ((kn->kn_flags & EV_ONESHOT) == EV_ONESHOT) {
1558			kn->kn_status &= ~KN_QUEUED;
1559			kn->kn_status |= KN_INFLUX;
1560			kq->kq_count--;
1561			KQ_UNLOCK(kq);
1562			/*
1563			 * We don't need to lock the list since we've marked
1564			 * it _INFLUX.
1565			 */
1566			*kevp = kn->kn_kevent;
1567			if (!(kn->kn_status & KN_DETACHED))
1568				kn->kn_fop->f_detach(kn);
1569			knote_drop(kn, td);
1570			KQ_LOCK(kq);
1571			kn = NULL;
1572		} else {
1573			kn->kn_status |= KN_INFLUX | KN_SCAN;
1574			KQ_UNLOCK(kq);
1575			if ((kn->kn_status & KN_KQUEUE) == KN_KQUEUE)
1576				KQ_GLOBAL_LOCK(&kq_global, haskqglobal);
1577			KN_LIST_LOCK(kn);
1578			if (kn->kn_fop->f_event(kn, 0) == 0) {
1579				KQ_LOCK(kq);
1580				KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1581				kn->kn_status &=
1582				    ~(KN_QUEUED | KN_ACTIVE | KN_INFLUX |
1583				    KN_SCAN);
1584				kq->kq_count--;
1585				KN_LIST_UNLOCK(kn);
1586				influx = 1;
1587				continue;
1588			}
1589			touch = (!kn->kn_fop->f_isfd &&
1590			    kn->kn_fop->f_touch != NULL);
1591			if (touch)
1592				kn->kn_fop->f_touch(kn, kevp, EVENT_PROCESS);
1593			else
1594				*kevp = kn->kn_kevent;
1595			KQ_LOCK(kq);
1596			KQ_GLOBAL_UNLOCK(&kq_global, haskqglobal);
1597			if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
1598				/*
1599				 * Manually clear knotes who weren't
1600				 * 'touch'ed.
1601				 */
1602				if (touch == 0 && kn->kn_flags & EV_CLEAR) {
1603					kn->kn_data = 0;
1604					kn->kn_fflags = 0;
1605				}
1606				if (kn->kn_flags & EV_DISPATCH)
1607					kn->kn_status |= KN_DISABLED;
1608				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1609				kq->kq_count--;
1610			} else
1611				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1612
1613			kn->kn_status &= ~(KN_INFLUX | KN_SCAN);
1614			KN_LIST_UNLOCK(kn);
1615			influx = 1;
1616		}
1617
1618		/* we are returning a copy to the user */
1619		kevp++;
1620		nkev++;
1621		count--;
1622
1623		if (nkev == KQ_NEVENTS) {
1624			influx = 0;
1625			KQ_UNLOCK_FLUX(kq);
1626			error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1627			nkev = 0;
1628			kevp = keva;
1629			KQ_LOCK(kq);
1630			if (error)
1631				break;
1632		}
1633	}
1634	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1635done:
1636	KQ_OWNED(kq);
1637	KQ_UNLOCK_FLUX(kq);
1638	knote_free(marker);
1639done_nl:
1640	KQ_NOTOWNED(kq);
1641	if (nkev != 0)
1642		error = k_ops->k_copyout(k_ops->arg, keva, nkev);
1643	td->td_retval[0] = maxevents - count;
1644	return (error);
1645}
1646
1647/*
1648 * XXX
1649 * This could be expanded to call kqueue_scan, if desired.
1650 */
1651/*ARGSUSED*/
1652static int
1653kqueue_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
1654	int flags, struct thread *td)
1655{
1656	return (ENXIO);
1657}
1658
1659/*ARGSUSED*/
1660static int
1661kqueue_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1662	 int flags, struct thread *td)
1663{
1664	return (ENXIO);
1665}
1666
1667/*ARGSUSED*/
1668static int
1669kqueue_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1670	struct thread *td)
1671{
1672
1673	return (EINVAL);
1674}
1675
1676/*ARGSUSED*/
1677static int
1678kqueue_ioctl(struct file *fp, u_long cmd, void *data,
1679	struct ucred *active_cred, struct thread *td)
1680{
1681	/*
1682	 * Enabling sigio causes two major problems:
1683	 * 1) infinite recursion:
1684	 * Synopsys: kevent is being used to track signals and have FIOASYNC
1685	 * set.  On receipt of a signal this will cause a kqueue to recurse
1686	 * into itself over and over.  Sending the sigio causes the kqueue
1687	 * to become ready, which in turn posts sigio again, forever.
1688	 * Solution: this can be solved by setting a flag in the kqueue that
1689	 * we have a SIGIO in progress.
1690	 * 2) locking problems:
1691	 * Synopsys: Kqueue is a leaf subsystem, but adding signalling puts
1692	 * us above the proc and pgrp locks.
1693	 * Solution: Post a signal using an async mechanism, being sure to
1694	 * record a generation count in the delivery so that we do not deliver
1695	 * a signal to the wrong process.
1696	 *
1697	 * Note, these two mechanisms are somewhat mutually exclusive!
1698	 */
1699#if 0
1700	struct kqueue *kq;
1701
1702	kq = fp->f_data;
1703	switch (cmd) {
1704	case FIOASYNC:
1705		if (*(int *)data) {
1706			kq->kq_state |= KQ_ASYNC;
1707		} else {
1708			kq->kq_state &= ~KQ_ASYNC;
1709		}
1710		return (0);
1711
1712	case FIOSETOWN:
1713		return (fsetown(*(int *)data, &kq->kq_sigio));
1714
1715	case FIOGETOWN:
1716		*(int *)data = fgetown(&kq->kq_sigio);
1717		return (0);
1718	}
1719#endif
1720
1721	return (ENOTTY);
1722}
1723
1724/*ARGSUSED*/
1725static int
1726kqueue_poll(struct file *fp, int events, struct ucred *active_cred,
1727	struct thread *td)
1728{
1729	struct kqueue *kq;
1730	int revents = 0;
1731	int error;
1732
1733	if ((error = kqueue_acquire(fp, &kq)))
1734		return POLLERR;
1735
1736	KQ_LOCK(kq);
1737	if (events & (POLLIN | POLLRDNORM)) {
1738		if (kq->kq_count) {
1739			revents |= events & (POLLIN | POLLRDNORM);
1740		} else {
1741			selrecord(td, &kq->kq_sel);
1742			if (SEL_WAITING(&kq->kq_sel))
1743				kq->kq_state |= KQ_SEL;
1744		}
1745	}
1746	kqueue_release(kq, 1);
1747	KQ_UNLOCK(kq);
1748	return (revents);
1749}
1750
1751/*ARGSUSED*/
1752static int
1753kqueue_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
1754	struct thread *td)
1755{
1756
1757	bzero((void *)st, sizeof *st);
1758	/*
1759	 * We no longer return kq_count because the unlocked value is useless.
1760	 * If you spent all this time getting the count, why not spend your
1761	 * syscall better by calling kevent?
1762	 *
1763	 * XXX - This is needed for libc_r.
1764	 */
1765	st->st_mode = S_IFIFO;
1766	return (0);
1767}
1768
1769/*ARGSUSED*/
1770static int
1771kqueue_close(struct file *fp, struct thread *td)
1772{
1773	struct kqueue *kq = fp->f_data;
1774	struct filedesc *fdp;
1775	struct knote *kn;
1776	int i;
1777	int error;
1778	int filedesc_unlock;
1779
1780	if ((error = kqueue_acquire(fp, &kq)))
1781		return error;
1782
1783	filedesc_unlock = 0;
1784	KQ_LOCK(kq);
1785
1786	KASSERT((kq->kq_state & KQ_CLOSING) != KQ_CLOSING,
1787	    ("kqueue already closing"));
1788	kq->kq_state |= KQ_CLOSING;
1789	if (kq->kq_refcnt > 1)
1790		msleep(&kq->kq_refcnt, &kq->kq_lock, PSOCK, "kqclose", 0);
1791
1792	KASSERT(kq->kq_refcnt == 1, ("other refs are out there!"));
1793	fdp = kq->kq_fdp;
1794
1795	KASSERT(knlist_empty(&kq->kq_sel.si_note),
1796	    ("kqueue's knlist not empty"));
1797
1798	for (i = 0; i < kq->kq_knlistsize; i++) {
1799		while ((kn = SLIST_FIRST(&kq->kq_knlist[i])) != NULL) {
1800			if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1801				kq->kq_state |= KQ_FLUXWAIT;
1802				msleep(kq, &kq->kq_lock, PSOCK, "kqclo1", 0);
1803				continue;
1804			}
1805			kn->kn_status |= KN_INFLUX;
1806			KQ_UNLOCK(kq);
1807			if (!(kn->kn_status & KN_DETACHED))
1808				kn->kn_fop->f_detach(kn);
1809			knote_drop(kn, td);
1810			KQ_LOCK(kq);
1811		}
1812	}
1813	if (kq->kq_knhashmask != 0) {
1814		for (i = 0; i <= kq->kq_knhashmask; i++) {
1815			while ((kn = SLIST_FIRST(&kq->kq_knhash[i])) != NULL) {
1816				if ((kn->kn_status & KN_INFLUX) == KN_INFLUX) {
1817					kq->kq_state |= KQ_FLUXWAIT;
1818					msleep(kq, &kq->kq_lock, PSOCK,
1819					       "kqclo2", 0);
1820					continue;
1821				}
1822				kn->kn_status |= KN_INFLUX;
1823				KQ_UNLOCK(kq);
1824				if (!(kn->kn_status & KN_DETACHED))
1825					kn->kn_fop->f_detach(kn);
1826				knote_drop(kn, td);
1827				KQ_LOCK(kq);
1828			}
1829		}
1830	}
1831
1832	if ((kq->kq_state & KQ_TASKSCHED) == KQ_TASKSCHED) {
1833		kq->kq_state |= KQ_TASKDRAIN;
1834		msleep(&kq->kq_state, &kq->kq_lock, PSOCK, "kqtqdr", 0);
1835	}
1836
1837	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1838		selwakeuppri(&kq->kq_sel, PSOCK);
1839		if (!SEL_WAITING(&kq->kq_sel))
1840			kq->kq_state &= ~KQ_SEL;
1841	}
1842
1843	KQ_UNLOCK(kq);
1844
1845	/*
1846	 * We could be called due to the knote_drop() doing fdrop(),
1847	 * called from kqueue_register().  In this case the global
1848	 * lock is owned, and filedesc sx is locked before, to not
1849	 * take the sleepable lock after non-sleepable.
1850	 */
1851	if (!sx_xlocked(FILEDESC_LOCK(fdp))) {
1852		FILEDESC_XLOCK(fdp);
1853		filedesc_unlock = 1;
1854	} else
1855		filedesc_unlock = 0;
1856	TAILQ_REMOVE(&fdp->fd_kqlist, kq, kq_list);
1857	if (filedesc_unlock)
1858		FILEDESC_XUNLOCK(fdp);
1859
1860	seldrain(&kq->kq_sel);
1861	knlist_destroy(&kq->kq_sel.si_note);
1862	mtx_destroy(&kq->kq_lock);
1863	kq->kq_fdp = NULL;
1864
1865	if (kq->kq_knhash != NULL)
1866		free(kq->kq_knhash, M_KQUEUE);
1867	if (kq->kq_knlist != NULL)
1868		free(kq->kq_knlist, M_KQUEUE);
1869
1870	funsetown(&kq->kq_sigio);
1871	free(kq, M_KQUEUE);
1872	fp->f_data = NULL;
1873
1874	return (0);
1875}
1876
1877static void
1878kqueue_wakeup(struct kqueue *kq)
1879{
1880	KQ_OWNED(kq);
1881
1882	if ((kq->kq_state & KQ_SLEEP) == KQ_SLEEP) {
1883		kq->kq_state &= ~KQ_SLEEP;
1884		wakeup(kq);
1885	}
1886	if ((kq->kq_state & KQ_SEL) == KQ_SEL) {
1887		selwakeuppri(&kq->kq_sel, PSOCK);
1888		if (!SEL_WAITING(&kq->kq_sel))
1889			kq->kq_state &= ~KQ_SEL;
1890	}
1891	if (!knlist_empty(&kq->kq_sel.si_note))
1892		kqueue_schedtask(kq);
1893	if ((kq->kq_state & KQ_ASYNC) == KQ_ASYNC) {
1894		pgsigio(&kq->kq_sigio, SIGIO, 0);
1895	}
1896}
1897
1898/*
1899 * Walk down a list of knotes, activating them if their event has triggered.
1900 *
1901 * There is a possibility to optimize in the case of one kq watching another.
1902 * Instead of scheduling a task to wake it up, you could pass enough state
1903 * down the chain to make up the parent kqueue.  Make this code functional
1904 * first.
1905 */
1906void
1907knote(struct knlist *list, long hint, int lockflags)
1908{
1909	struct kqueue *kq;
1910	struct knote *kn, *tkn;
1911	int error;
1912
1913	if (list == NULL)
1914		return;
1915
1916	KNL_ASSERT_LOCK(list, lockflags & KNF_LISTLOCKED);
1917
1918	if ((lockflags & KNF_LISTLOCKED) == 0)
1919		list->kl_lock(list->kl_lockarg);
1920
1921	/*
1922	 * If we unlock the list lock (and set KN_INFLUX), we can
1923	 * eliminate the kqueue scheduling, but this will introduce
1924	 * four lock/unlock's for each knote to test.  Also, marker
1925	 * would be needed to keep iteration position, since filters
1926	 * or other threads could remove events.
1927	 */
1928	SLIST_FOREACH_SAFE(kn, &list->kl_list, kn_selnext, tkn) {
1929		kq = kn->kn_kq;
1930		KQ_LOCK(kq);
1931		if ((kn->kn_status & (KN_INFLUX | KN_SCAN)) == KN_INFLUX) {
1932			/*
1933			 * Do not process the influx notes, except for
1934			 * the influx coming from the kq unlock in the
1935			 * kqueue_scan().  In the later case, we do
1936			 * not interfere with the scan, since the code
1937			 * fragment in kqueue_scan() locks the knlist,
1938			 * and cannot proceed until we finished.
1939			 */
1940			KQ_UNLOCK(kq);
1941		} else if ((lockflags & KNF_NOKQLOCK) != 0) {
1942			kn->kn_status |= KN_INFLUX;
1943			KQ_UNLOCK(kq);
1944			error = kn->kn_fop->f_event(kn, hint);
1945			KQ_LOCK(kq);
1946			kn->kn_status &= ~KN_INFLUX;
1947			if (error)
1948				KNOTE_ACTIVATE(kn, 1);
1949			KQ_UNLOCK_FLUX(kq);
1950		} else {
1951			kn->kn_status |= KN_HASKQLOCK;
1952			if (kn->kn_fop->f_event(kn, hint))
1953				KNOTE_ACTIVATE(kn, 1);
1954			kn->kn_status &= ~KN_HASKQLOCK;
1955			KQ_UNLOCK(kq);
1956		}
1957	}
1958	if ((lockflags & KNF_LISTLOCKED) == 0)
1959		list->kl_unlock(list->kl_lockarg);
1960}
1961
1962/*
1963 * add a knote to a knlist
1964 */
1965void
1966knlist_add(struct knlist *knl, struct knote *kn, int islocked)
1967{
1968	KNL_ASSERT_LOCK(knl, islocked);
1969	KQ_NOTOWNED(kn->kn_kq);
1970	KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) ==
1971	    (KN_INFLUX|KN_DETACHED), ("knote not KN_INFLUX and KN_DETACHED"));
1972	if (!islocked)
1973		knl->kl_lock(knl->kl_lockarg);
1974	SLIST_INSERT_HEAD(&knl->kl_list, kn, kn_selnext);
1975	if (!islocked)
1976		knl->kl_unlock(knl->kl_lockarg);
1977	KQ_LOCK(kn->kn_kq);
1978	kn->kn_knlist = knl;
1979	kn->kn_status &= ~KN_DETACHED;
1980	KQ_UNLOCK(kn->kn_kq);
1981}
1982
1983static void
1984knlist_remove_kq(struct knlist *knl, struct knote *kn, int knlislocked, int kqislocked)
1985{
1986	KASSERT(!(!!kqislocked && !knlislocked), ("kq locked w/o knl locked"));
1987	KNL_ASSERT_LOCK(knl, knlislocked);
1988	mtx_assert(&kn->kn_kq->kq_lock, kqislocked ? MA_OWNED : MA_NOTOWNED);
1989	if (!kqislocked)
1990		KASSERT((kn->kn_status & (KN_INFLUX|KN_DETACHED)) == KN_INFLUX,
1991    ("knlist_remove called w/o knote being KN_INFLUX or already removed"));
1992	if (!knlislocked)
1993		knl->kl_lock(knl->kl_lockarg);
1994	SLIST_REMOVE(&knl->kl_list, kn, knote, kn_selnext);
1995	kn->kn_knlist = NULL;
1996	if (!knlislocked)
1997		knl->kl_unlock(knl->kl_lockarg);
1998	if (!kqislocked)
1999		KQ_LOCK(kn->kn_kq);
2000	kn->kn_status |= KN_DETACHED;
2001	if (!kqislocked)
2002		KQ_UNLOCK(kn->kn_kq);
2003}
2004
2005/*
2006 * remove knote from the specified knlist
2007 */
2008void
2009knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
2010{
2011
2012	knlist_remove_kq(knl, kn, islocked, 0);
2013}
2014
2015/*
2016 * remove knote from the specified knlist while in f_event handler.
2017 */
2018void
2019knlist_remove_inevent(struct knlist *knl, struct knote *kn)
2020{
2021
2022	knlist_remove_kq(knl, kn, 1,
2023	    (kn->kn_status & KN_HASKQLOCK) == KN_HASKQLOCK);
2024}
2025
2026int
2027knlist_empty(struct knlist *knl)
2028{
2029
2030	KNL_ASSERT_LOCKED(knl);
2031	return SLIST_EMPTY(&knl->kl_list);
2032}
2033
2034static struct mtx	knlist_lock;
2035MTX_SYSINIT(knlist_lock, &knlist_lock, "knlist lock for lockless objects",
2036	MTX_DEF);
2037static void knlist_mtx_lock(void *arg);
2038static void knlist_mtx_unlock(void *arg);
2039
2040static void
2041knlist_mtx_lock(void *arg)
2042{
2043
2044	mtx_lock((struct mtx *)arg);
2045}
2046
2047static void
2048knlist_mtx_unlock(void *arg)
2049{
2050
2051	mtx_unlock((struct mtx *)arg);
2052}
2053
2054static void
2055knlist_mtx_assert_locked(void *arg)
2056{
2057
2058	mtx_assert((struct mtx *)arg, MA_OWNED);
2059}
2060
2061static void
2062knlist_mtx_assert_unlocked(void *arg)
2063{
2064
2065	mtx_assert((struct mtx *)arg, MA_NOTOWNED);
2066}
2067
2068static void
2069knlist_rw_rlock(void *arg)
2070{
2071
2072	rw_rlock((struct rwlock *)arg);
2073}
2074
2075static void
2076knlist_rw_runlock(void *arg)
2077{
2078
2079	rw_runlock((struct rwlock *)arg);
2080}
2081
2082static void
2083knlist_rw_assert_locked(void *arg)
2084{
2085
2086	rw_assert((struct rwlock *)arg, RA_LOCKED);
2087}
2088
2089static void
2090knlist_rw_assert_unlocked(void *arg)
2091{
2092
2093	rw_assert((struct rwlock *)arg, RA_UNLOCKED);
2094}
2095
2096void
2097knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *),
2098    void (*kl_unlock)(void *),
2099    void (*kl_assert_locked)(void *), void (*kl_assert_unlocked)(void *))
2100{
2101
2102	if (lock == NULL)
2103		knl->kl_lockarg = &knlist_lock;
2104	else
2105		knl->kl_lockarg = lock;
2106
2107	if (kl_lock == NULL)
2108		knl->kl_lock = knlist_mtx_lock;
2109	else
2110		knl->kl_lock = kl_lock;
2111	if (kl_unlock == NULL)
2112		knl->kl_unlock = knlist_mtx_unlock;
2113	else
2114		knl->kl_unlock = kl_unlock;
2115	if (kl_assert_locked == NULL)
2116		knl->kl_assert_locked = knlist_mtx_assert_locked;
2117	else
2118		knl->kl_assert_locked = kl_assert_locked;
2119	if (kl_assert_unlocked == NULL)
2120		knl->kl_assert_unlocked = knlist_mtx_assert_unlocked;
2121	else
2122		knl->kl_assert_unlocked = kl_assert_unlocked;
2123
2124	SLIST_INIT(&knl->kl_list);
2125}
2126
2127void
2128knlist_init_mtx(struct knlist *knl, struct mtx *lock)
2129{
2130
2131	knlist_init(knl, lock, NULL, NULL, NULL, NULL);
2132}
2133
2134void
2135knlist_init_rw_reader(struct knlist *knl, struct rwlock *lock)
2136{
2137
2138	knlist_init(knl, lock, knlist_rw_rlock, knlist_rw_runlock,
2139	    knlist_rw_assert_locked, knlist_rw_assert_unlocked);
2140}
2141
2142void
2143knlist_destroy(struct knlist *knl)
2144{
2145
2146#ifdef INVARIANTS
2147	/*
2148	 * if we run across this error, we need to find the offending
2149	 * driver and have it call knlist_clear or knlist_delete.
2150	 */
2151	if (!SLIST_EMPTY(&knl->kl_list))
2152		printf("WARNING: destroying knlist w/ knotes on it!\n");
2153#endif
2154
2155	knl->kl_lockarg = knl->kl_lock = knl->kl_unlock = NULL;
2156	SLIST_INIT(&knl->kl_list);
2157}
2158
2159/*
2160 * Even if we are locked, we may need to drop the lock to allow any influx
2161 * knotes time to "settle".
2162 */
2163void
2164knlist_cleardel(struct knlist *knl, struct thread *td, int islocked, int killkn)
2165{
2166	struct knote *kn, *kn2;
2167	struct kqueue *kq;
2168
2169	if (islocked)
2170		KNL_ASSERT_LOCKED(knl);
2171	else {
2172		KNL_ASSERT_UNLOCKED(knl);
2173again:		/* need to reacquire lock since we have dropped it */
2174		knl->kl_lock(knl->kl_lockarg);
2175	}
2176
2177	SLIST_FOREACH_SAFE(kn, &knl->kl_list, kn_selnext, kn2) {
2178		kq = kn->kn_kq;
2179		KQ_LOCK(kq);
2180		if ((kn->kn_status & KN_INFLUX)) {
2181			KQ_UNLOCK(kq);
2182			continue;
2183		}
2184		knlist_remove_kq(knl, kn, 1, 1);
2185		if (killkn) {
2186			kn->kn_status |= KN_INFLUX | KN_DETACHED;
2187			KQ_UNLOCK(kq);
2188			knote_drop(kn, td);
2189		} else {
2190			/* Make sure cleared knotes disappear soon */
2191			kn->kn_flags |= (EV_EOF | EV_ONESHOT);
2192			KQ_UNLOCK(kq);
2193		}
2194		kq = NULL;
2195	}
2196
2197	if (!SLIST_EMPTY(&knl->kl_list)) {
2198		/* there are still KN_INFLUX remaining */
2199		kn = SLIST_FIRST(&knl->kl_list);
2200		kq = kn->kn_kq;
2201		KQ_LOCK(kq);
2202		KASSERT(kn->kn_status & KN_INFLUX,
2203		    ("knote removed w/o list lock"));
2204		knl->kl_unlock(knl->kl_lockarg);
2205		kq->kq_state |= KQ_FLUXWAIT;
2206		msleep(kq, &kq->kq_lock, PSOCK | PDROP, "kqkclr", 0);
2207		kq = NULL;
2208		goto again;
2209	}
2210
2211	if (islocked)
2212		KNL_ASSERT_LOCKED(knl);
2213	else {
2214		knl->kl_unlock(knl->kl_lockarg);
2215		KNL_ASSERT_UNLOCKED(knl);
2216	}
2217}
2218
2219/*
2220 * Remove all knotes referencing a specified fd must be called with FILEDESC
2221 * lock.  This prevents a race where a new fd comes along and occupies the
2222 * entry and we attach a knote to the fd.
2223 */
2224void
2225knote_fdclose(struct thread *td, int fd)
2226{
2227	struct filedesc *fdp = td->td_proc->p_fd;
2228	struct kqueue *kq;
2229	struct knote *kn;
2230	int influx;
2231
2232	FILEDESC_XLOCK_ASSERT(fdp);
2233
2234	/*
2235	 * We shouldn't have to worry about new kevents appearing on fd
2236	 * since filedesc is locked.
2237	 */
2238	TAILQ_FOREACH(kq, &fdp->fd_kqlist, kq_list) {
2239		KQ_LOCK(kq);
2240
2241again:
2242		influx = 0;
2243		while (kq->kq_knlistsize > fd &&
2244		    (kn = SLIST_FIRST(&kq->kq_knlist[fd])) != NULL) {
2245			if (kn->kn_status & KN_INFLUX) {
2246				/* someone else might be waiting on our knote */
2247				if (influx)
2248					wakeup(kq);
2249				kq->kq_state |= KQ_FLUXWAIT;
2250				msleep(kq, &kq->kq_lock, PSOCK, "kqflxwt", 0);
2251				goto again;
2252			}
2253			kn->kn_status |= KN_INFLUX;
2254			KQ_UNLOCK(kq);
2255			if (!(kn->kn_status & KN_DETACHED))
2256				kn->kn_fop->f_detach(kn);
2257			knote_drop(kn, td);
2258			influx = 1;
2259			KQ_LOCK(kq);
2260		}
2261		KQ_UNLOCK_FLUX(kq);
2262	}
2263}
2264
2265static int
2266knote_attach(struct knote *kn, struct kqueue *kq)
2267{
2268	struct klist *list;
2269
2270	KASSERT(kn->kn_status & KN_INFLUX, ("knote not marked INFLUX"));
2271	KQ_OWNED(kq);
2272
2273	if (kn->kn_fop->f_isfd) {
2274		if (kn->kn_id >= kq->kq_knlistsize)
2275			return ENOMEM;
2276		list = &kq->kq_knlist[kn->kn_id];
2277	} else {
2278		if (kq->kq_knhash == NULL)
2279			return ENOMEM;
2280		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2281	}
2282
2283	SLIST_INSERT_HEAD(list, kn, kn_link);
2284
2285	return 0;
2286}
2287
2288/*
2289 * knote must already have been detached using the f_detach method.
2290 * no lock need to be held, it is assumed that the KN_INFLUX flag is set
2291 * to prevent other removal.
2292 */
2293static void
2294knote_drop(struct knote *kn, struct thread *td)
2295{
2296	struct kqueue *kq;
2297	struct klist *list;
2298
2299	kq = kn->kn_kq;
2300
2301	KQ_NOTOWNED(kq);
2302	KASSERT((kn->kn_status & KN_INFLUX) == KN_INFLUX,
2303	    ("knote_drop called without KN_INFLUX set in kn_status"));
2304
2305	KQ_LOCK(kq);
2306	if (kn->kn_fop->f_isfd)
2307		list = &kq->kq_knlist[kn->kn_id];
2308	else
2309		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
2310
2311	if (!SLIST_EMPTY(list))
2312		SLIST_REMOVE(list, kn, knote, kn_link);
2313	if (kn->kn_status & KN_QUEUED)
2314		knote_dequeue(kn);
2315	KQ_UNLOCK_FLUX(kq);
2316
2317	if (kn->kn_fop->f_isfd) {
2318		fdrop(kn->kn_fp, td);
2319		kn->kn_fp = NULL;
2320	}
2321	kqueue_fo_release(kn->kn_kevent.filter);
2322	kn->kn_fop = NULL;
2323	knote_free(kn);
2324}
2325
2326static void
2327knote_enqueue(struct knote *kn)
2328{
2329	struct kqueue *kq = kn->kn_kq;
2330
2331	KQ_OWNED(kn->kn_kq);
2332	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
2333
2334	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2335	kn->kn_status |= KN_QUEUED;
2336	kq->kq_count++;
2337	kqueue_wakeup(kq);
2338}
2339
2340static void
2341knote_dequeue(struct knote *kn)
2342{
2343	struct kqueue *kq = kn->kn_kq;
2344
2345	KQ_OWNED(kn->kn_kq);
2346	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
2347
2348	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2349	kn->kn_status &= ~KN_QUEUED;
2350	kq->kq_count--;
2351}
2352
2353static void
2354knote_init(void)
2355{
2356
2357	knote_zone = uma_zcreate("KNOTE", sizeof(struct knote), NULL, NULL,
2358	    NULL, NULL, UMA_ALIGN_PTR, 0);
2359}
2360SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL);
2361
2362static struct knote *
2363knote_alloc(int waitok)
2364{
2365	return ((struct knote *)uma_zalloc(knote_zone,
2366	    (waitok ? M_WAITOK : M_NOWAIT)|M_ZERO));
2367}
2368
2369static void
2370knote_free(struct knote *kn)
2371{
2372	if (kn != NULL)
2373		uma_zfree(knote_zone, kn);
2374}
2375
2376/*
2377 * Register the kev w/ the kq specified by fd.
2378 */
2379int
2380kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok)
2381{
2382	struct kqueue *kq;
2383	struct file *fp;
2384	cap_rights_t rights;
2385	int error;
2386
2387	error = fget(td, fd, cap_rights_init(&rights, CAP_KQUEUE_CHANGE), &fp);
2388	if (error != 0)
2389		return (error);
2390	if ((error = kqueue_acquire(fp, &kq)) != 0)
2391		goto noacquire;
2392
2393	error = kqueue_register(kq, kev, td, waitok);
2394
2395	kqueue_release(kq, 0);
2396
2397noacquire:
2398	fdrop(fp, td);
2399
2400	return error;
2401}
2402