kern_clock.c revision 260817
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/10/sys/kern/kern_clock.c 260817 2014-01-17 10:58:59Z avg $");
39
40#include "opt_kdb.h"
41#include "opt_device_polling.h"
42#include "opt_hwpmc_hooks.h"
43#include "opt_kdtrace.h"
44#include "opt_ntp.h"
45#include "opt_watchdog.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/callout.h>
50#include <sys/kdb.h>
51#include <sys/kernel.h>
52#include <sys/kthread.h>
53#include <sys/ktr.h>
54#include <sys/lock.h>
55#include <sys/mutex.h>
56#include <sys/proc.h>
57#include <sys/resource.h>
58#include <sys/resourcevar.h>
59#include <sys/sched.h>
60#include <sys/sdt.h>
61#include <sys/signalvar.h>
62#include <sys/sleepqueue.h>
63#include <sys/smp.h>
64#include <vm/vm.h>
65#include <vm/pmap.h>
66#include <vm/vm_map.h>
67#include <sys/sysctl.h>
68#include <sys/bus.h>
69#include <sys/interrupt.h>
70#include <sys/limits.h>
71#include <sys/timetc.h>
72
73#ifdef GPROF
74#include <sys/gmon.h>
75#endif
76
77#ifdef HWPMC_HOOKS
78#include <sys/pmckern.h>
79PMC_SOFT_DEFINE( , , clock, hard);
80PMC_SOFT_DEFINE( , , clock, stat);
81PMC_SOFT_DEFINE_EX( , , clock, prof, \
82    cpu_startprofclock, cpu_stopprofclock);
83#endif
84
85#ifdef DEVICE_POLLING
86extern void hardclock_device_poll(void);
87#endif /* DEVICE_POLLING */
88
89static void initclocks(void *dummy);
90SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
91
92/* Spin-lock protecting profiling statistics. */
93static struct mtx time_lock;
94
95SDT_PROVIDER_DECLARE(sched);
96SDT_PROBE_DEFINE2(sched, , , tick, "struct thread *", "struct proc *");
97
98static int
99sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
100{
101	int error;
102	long cp_time[CPUSTATES];
103#ifdef SCTL_MASK32
104	int i;
105	unsigned int cp_time32[CPUSTATES];
106#endif
107
108	read_cpu_time(cp_time);
109#ifdef SCTL_MASK32
110	if (req->flags & SCTL_MASK32) {
111		if (!req->oldptr)
112			return SYSCTL_OUT(req, 0, sizeof(cp_time32));
113		for (i = 0; i < CPUSTATES; i++)
114			cp_time32[i] = (unsigned int)cp_time[i];
115		error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
116	} else
117#endif
118	{
119		if (!req->oldptr)
120			return SYSCTL_OUT(req, 0, sizeof(cp_time));
121		error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
122	}
123	return error;
124}
125
126SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
127    0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
128
129static long empty[CPUSTATES];
130
131static int
132sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
133{
134	struct pcpu *pcpu;
135	int error;
136	int c;
137	long *cp_time;
138#ifdef SCTL_MASK32
139	unsigned int cp_time32[CPUSTATES];
140	int i;
141#endif
142
143	if (!req->oldptr) {
144#ifdef SCTL_MASK32
145		if (req->flags & SCTL_MASK32)
146			return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
147		else
148#endif
149			return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
150	}
151	for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
152		if (!CPU_ABSENT(c)) {
153			pcpu = pcpu_find(c);
154			cp_time = pcpu->pc_cp_time;
155		} else {
156			cp_time = empty;
157		}
158#ifdef SCTL_MASK32
159		if (req->flags & SCTL_MASK32) {
160			for (i = 0; i < CPUSTATES; i++)
161				cp_time32[i] = (unsigned int)cp_time[i];
162			error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
163		} else
164#endif
165			error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
166	}
167	return error;
168}
169
170SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
171    0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");
172
173#ifdef DEADLKRES
174static const char *blessed[] = {
175	"getblk",
176	"so_snd_sx",
177	"so_rcv_sx",
178	NULL
179};
180static int slptime_threshold = 1800;
181static int blktime_threshold = 900;
182static int sleepfreq = 3;
183
184static void
185deadlkres(void)
186{
187	struct proc *p;
188	struct thread *td;
189	void *wchan;
190	int blkticks, i, slpticks, slptype, tryl, tticks;
191
192	tryl = 0;
193	for (;;) {
194		blkticks = blktime_threshold * hz;
195		slpticks = slptime_threshold * hz;
196
197		/*
198		 * Avoid to sleep on the sx_lock in order to avoid a possible
199		 * priority inversion problem leading to starvation.
200		 * If the lock can't be held after 100 tries, panic.
201		 */
202		if (!sx_try_slock(&allproc_lock)) {
203			if (tryl > 100)
204		panic("%s: possible deadlock detected on allproc_lock\n",
205				    __func__);
206			tryl++;
207			pause("allproc", sleepfreq * hz);
208			continue;
209		}
210		tryl = 0;
211		FOREACH_PROC_IN_SYSTEM(p) {
212			PROC_LOCK(p);
213			if (p->p_state == PRS_NEW) {
214				PROC_UNLOCK(p);
215				continue;
216			}
217			FOREACH_THREAD_IN_PROC(p, td) {
218
219				thread_lock(td);
220				if (TD_ON_LOCK(td)) {
221
222					/*
223					 * The thread should be blocked on a
224					 * turnstile, simply check if the
225					 * turnstile channel is in good state.
226					 */
227					MPASS(td->td_blocked != NULL);
228
229					tticks = ticks - td->td_blktick;
230					thread_unlock(td);
231					if (tticks > blkticks) {
232
233						/*
234						 * Accordingly with provided
235						 * thresholds, this thread is
236						 * stuck for too long on a
237						 * turnstile.
238						 */
239						PROC_UNLOCK(p);
240						sx_sunlock(&allproc_lock);
241	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
242						    __func__, td, tticks);
243					}
244				} else if (TD_IS_SLEEPING(td) &&
245				    TD_ON_SLEEPQ(td)) {
246
247					/*
248					 * Check if the thread is sleeping on a
249					 * lock, otherwise skip the check.
250					 * Drop the thread lock in order to
251					 * avoid a LOR with the sleepqueue
252					 * spinlock.
253					 */
254					wchan = td->td_wchan;
255					tticks = ticks - td->td_slptick;
256					thread_unlock(td);
257					slptype = sleepq_type(wchan);
258					if ((slptype == SLEEPQ_SX ||
259					    slptype == SLEEPQ_LK) &&
260					    tticks > slpticks) {
261
262						/*
263						 * Accordingly with provided
264						 * thresholds, this thread is
265						 * stuck for too long on a
266						 * sleepqueue.
267						 * However, being on a
268						 * sleepqueue, we might still
269						 * check for the blessed
270						 * list.
271						 */
272						tryl = 0;
273						for (i = 0; blessed[i] != NULL;
274						    i++) {
275							if (!strcmp(blessed[i],
276							    td->td_wmesg)) {
277								tryl = 1;
278								break;
279							}
280						}
281						if (tryl != 0) {
282							tryl = 0;
283							continue;
284						}
285						PROC_UNLOCK(p);
286						sx_sunlock(&allproc_lock);
287	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
288						    __func__, td, tticks);
289					}
290				} else
291					thread_unlock(td);
292			}
293			PROC_UNLOCK(p);
294		}
295		sx_sunlock(&allproc_lock);
296
297		/* Sleep for sleepfreq seconds. */
298		pause("-", sleepfreq * hz);
299	}
300}
301
302static struct kthread_desc deadlkres_kd = {
303	"deadlkres",
304	deadlkres,
305	(struct thread **)NULL
306};
307
308SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);
309
310static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0,
311    "Deadlock resolver");
312SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW,
313    &slptime_threshold, 0,
314    "Number of seconds within is valid to sleep on a sleepqueue");
315SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW,
316    &blktime_threshold, 0,
317    "Number of seconds within is valid to block on a turnstile");
318SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0,
319    "Number of seconds between any deadlock resolver thread run");
320#endif	/* DEADLKRES */
321
322void
323read_cpu_time(long *cp_time)
324{
325	struct pcpu *pc;
326	int i, j;
327
328	/* Sum up global cp_time[]. */
329	bzero(cp_time, sizeof(long) * CPUSTATES);
330	CPU_FOREACH(i) {
331		pc = pcpu_find(i);
332		for (j = 0; j < CPUSTATES; j++)
333			cp_time[j] += pc->pc_cp_time[j];
334	}
335}
336
337#ifdef SW_WATCHDOG
338#include <sys/watchdog.h>
339
340static int watchdog_ticks;
341static int watchdog_enabled;
342static void watchdog_fire(void);
343static void watchdog_config(void *, u_int, int *);
344#endif /* SW_WATCHDOG */
345
346/*
347 * Clock handling routines.
348 *
349 * This code is written to operate with two timers that run independently of
350 * each other.
351 *
352 * The main timer, running hz times per second, is used to trigger interval
353 * timers, timeouts and rescheduling as needed.
354 *
355 * The second timer handles kernel and user profiling,
356 * and does resource use estimation.  If the second timer is programmable,
357 * it is randomized to avoid aliasing between the two clocks.  For example,
358 * the randomization prevents an adversary from always giving up the cpu
359 * just before its quantum expires.  Otherwise, it would never accumulate
360 * cpu ticks.  The mean frequency of the second timer is stathz.
361 *
362 * If no second timer exists, stathz will be zero; in this case we drive
363 * profiling and statistics off the main clock.  This WILL NOT be accurate;
364 * do not do it unless absolutely necessary.
365 *
366 * The statistics clock may (or may not) be run at a higher rate while
367 * profiling.  This profile clock runs at profhz.  We require that profhz
368 * be an integral multiple of stathz.
369 *
370 * If the statistics clock is running fast, it must be divided by the ratio
371 * profhz/stathz for statistics.  (For profiling, every tick counts.)
372 *
373 * Time-of-day is maintained using a "timecounter", which may or may
374 * not be related to the hardware generating the above mentioned
375 * interrupts.
376 */
377
378int	stathz;
379int	profhz;
380int	profprocs;
381volatile int	ticks;
382int	psratio;
383
384static DPCPU_DEFINE(int, pcputicks);	/* Per-CPU version of ticks. */
385static int global_hardclock_run = 0;
386
387/*
388 * Initialize clock frequencies and start both clocks running.
389 */
390/* ARGSUSED*/
391static void
392initclocks(dummy)
393	void *dummy;
394{
395	register int i;
396
397	/*
398	 * Set divisors to 1 (normal case) and let the machine-specific
399	 * code do its bit.
400	 */
401	mtx_init(&time_lock, "time lock", NULL, MTX_DEF);
402	cpu_initclocks();
403
404	/*
405	 * Compute profhz/stathz, and fix profhz if needed.
406	 */
407	i = stathz ? stathz : hz;
408	if (profhz == 0)
409		profhz = i;
410	psratio = profhz / i;
411#ifdef SW_WATCHDOG
412	EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
413#endif
414}
415
416/*
417 * Each time the real-time timer fires, this function is called on all CPUs.
418 * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only
419 * the other CPUs in the system need to call this function.
420 */
421void
422hardclock_cpu(int usermode)
423{
424	struct pstats *pstats;
425	struct thread *td = curthread;
426	struct proc *p = td->td_proc;
427	int flags;
428
429	/*
430	 * Run current process's virtual and profile time, as needed.
431	 */
432	pstats = p->p_stats;
433	flags = 0;
434	if (usermode &&
435	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
436		PROC_SLOCK(p);
437		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
438			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
439		PROC_SUNLOCK(p);
440	}
441	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
442		PROC_SLOCK(p);
443		if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
444			flags |= TDF_PROFPEND | TDF_ASTPENDING;
445		PROC_SUNLOCK(p);
446	}
447	thread_lock(td);
448	sched_tick(1);
449	td->td_flags |= flags;
450	thread_unlock(td);
451
452#ifdef HWPMC_HOOKS
453	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
454		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
455	if (td->td_intr_frame != NULL)
456		PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
457#endif
458	callout_process(sbinuptime());
459}
460
461/*
462 * The real-time timer, interrupting hz times per second.
463 */
464void
465hardclock(int usermode, uintfptr_t pc)
466{
467
468	atomic_add_int(&ticks, 1);
469	hardclock_cpu(usermode);
470	tc_ticktock(1);
471	cpu_tick_calibration();
472	/*
473	 * If no separate statistics clock is available, run it from here.
474	 *
475	 * XXX: this only works for UP
476	 */
477	if (stathz == 0) {
478		profclock(usermode, pc);
479		statclock(usermode);
480	}
481#ifdef DEVICE_POLLING
482	hardclock_device_poll();	/* this is very short and quick */
483#endif /* DEVICE_POLLING */
484#ifdef SW_WATCHDOG
485	if (watchdog_enabled > 0 && --watchdog_ticks <= 0)
486		watchdog_fire();
487#endif /* SW_WATCHDOG */
488}
489
490void
491hardclock_cnt(int cnt, int usermode)
492{
493	struct pstats *pstats;
494	struct thread *td = curthread;
495	struct proc *p = td->td_proc;
496	int *t = DPCPU_PTR(pcputicks);
497	int flags, global, newticks;
498#ifdef SW_WATCHDOG
499	int i;
500#endif /* SW_WATCHDOG */
501
502	/*
503	 * Update per-CPU and possibly global ticks values.
504	 */
505	*t += cnt;
506	do {
507		global = ticks;
508		newticks = *t - global;
509		if (newticks <= 0) {
510			if (newticks < -1)
511				*t = global - 1;
512			newticks = 0;
513			break;
514		}
515	} while (!atomic_cmpset_int(&ticks, global, *t));
516
517	/*
518	 * Run current process's virtual and profile time, as needed.
519	 */
520	pstats = p->p_stats;
521	flags = 0;
522	if (usermode &&
523	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
524		PROC_SLOCK(p);
525		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL],
526		    tick * cnt) == 0)
527			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
528		PROC_SUNLOCK(p);
529	}
530	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
531		PROC_SLOCK(p);
532		if (itimerdecr(&pstats->p_timer[ITIMER_PROF],
533		    tick * cnt) == 0)
534			flags |= TDF_PROFPEND | TDF_ASTPENDING;
535		PROC_SUNLOCK(p);
536	}
537	thread_lock(td);
538	sched_tick(cnt);
539	td->td_flags |= flags;
540	thread_unlock(td);
541
542#ifdef	HWPMC_HOOKS
543	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
544		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
545	if (td->td_intr_frame != NULL)
546		PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
547#endif
548	/* We are in charge to handle this tick duty. */
549	if (newticks > 0) {
550		/* Dangerous and no need to call these things concurrently. */
551		if (atomic_cmpset_acq_int(&global_hardclock_run, 0, 1)) {
552			tc_ticktock(newticks);
553#ifdef DEVICE_POLLING
554			/* This is very short and quick. */
555			hardclock_device_poll();
556#endif /* DEVICE_POLLING */
557			atomic_store_rel_int(&global_hardclock_run, 0);
558		}
559#ifdef SW_WATCHDOG
560		if (watchdog_enabled > 0) {
561			i = atomic_fetchadd_int(&watchdog_ticks, -newticks);
562			if (i > 0 && i <= newticks)
563				watchdog_fire();
564		}
565#endif /* SW_WATCHDOG */
566	}
567	if (curcpu == CPU_FIRST())
568		cpu_tick_calibration();
569}
570
571void
572hardclock_sync(int cpu)
573{
574	int	*t = DPCPU_ID_PTR(cpu, pcputicks);
575
576	*t = ticks;
577}
578
579/*
580 * Compute number of ticks in the specified amount of time.
581 */
582int
583tvtohz(tv)
584	struct timeval *tv;
585{
586	register unsigned long ticks;
587	register long sec, usec;
588
589	/*
590	 * If the number of usecs in the whole seconds part of the time
591	 * difference fits in a long, then the total number of usecs will
592	 * fit in an unsigned long.  Compute the total and convert it to
593	 * ticks, rounding up and adding 1 to allow for the current tick
594	 * to expire.  Rounding also depends on unsigned long arithmetic
595	 * to avoid overflow.
596	 *
597	 * Otherwise, if the number of ticks in the whole seconds part of
598	 * the time difference fits in a long, then convert the parts to
599	 * ticks separately and add, using similar rounding methods and
600	 * overflow avoidance.  This method would work in the previous
601	 * case but it is slightly slower and assumes that hz is integral.
602	 *
603	 * Otherwise, round the time difference down to the maximum
604	 * representable value.
605	 *
606	 * If ints have 32 bits, then the maximum value for any timeout in
607	 * 10ms ticks is 248 days.
608	 */
609	sec = tv->tv_sec;
610	usec = tv->tv_usec;
611	if (usec < 0) {
612		sec--;
613		usec += 1000000;
614	}
615	if (sec < 0) {
616#ifdef DIAGNOSTIC
617		if (usec > 0) {
618			sec++;
619			usec -= 1000000;
620		}
621		printf("tvotohz: negative time difference %ld sec %ld usec\n",
622		       sec, usec);
623#endif
624		ticks = 1;
625	} else if (sec <= LONG_MAX / 1000000)
626		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
627			/ tick + 1;
628	else if (sec <= LONG_MAX / hz)
629		ticks = sec * hz
630			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
631	else
632		ticks = LONG_MAX;
633	if (ticks > INT_MAX)
634		ticks = INT_MAX;
635	return ((int)ticks);
636}
637
638/*
639 * Start profiling on a process.
640 *
641 * Kernel profiling passes proc0 which never exits and hence
642 * keeps the profile clock running constantly.
643 */
644void
645startprofclock(p)
646	register struct proc *p;
647{
648
649	PROC_LOCK_ASSERT(p, MA_OWNED);
650	if (p->p_flag & P_STOPPROF)
651		return;
652	if ((p->p_flag & P_PROFIL) == 0) {
653		p->p_flag |= P_PROFIL;
654		mtx_lock(&time_lock);
655		if (++profprocs == 1)
656			cpu_startprofclock();
657		mtx_unlock(&time_lock);
658	}
659}
660
661/*
662 * Stop profiling on a process.
663 */
664void
665stopprofclock(p)
666	register struct proc *p;
667{
668
669	PROC_LOCK_ASSERT(p, MA_OWNED);
670	if (p->p_flag & P_PROFIL) {
671		if (p->p_profthreads != 0) {
672			p->p_flag |= P_STOPPROF;
673			while (p->p_profthreads != 0)
674				msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
675				    "stopprof", 0);
676			p->p_flag &= ~P_STOPPROF;
677		}
678		if ((p->p_flag & P_PROFIL) == 0)
679			return;
680		p->p_flag &= ~P_PROFIL;
681		mtx_lock(&time_lock);
682		if (--profprocs == 0)
683			cpu_stopprofclock();
684		mtx_unlock(&time_lock);
685	}
686}
687
688/*
689 * Statistics clock.  Updates rusage information and calls the scheduler
690 * to adjust priorities of the active thread.
691 *
692 * This should be called by all active processors.
693 */
694void
695statclock(int usermode)
696{
697
698	statclock_cnt(1, usermode);
699}
700
701void
702statclock_cnt(int cnt, int usermode)
703{
704	struct rusage *ru;
705	struct vmspace *vm;
706	struct thread *td;
707	struct proc *p;
708	long rss;
709	long *cp_time;
710
711	td = curthread;
712	p = td->td_proc;
713
714	cp_time = (long *)PCPU_PTR(cp_time);
715	if (usermode) {
716		/*
717		 * Charge the time as appropriate.
718		 */
719		td->td_uticks += cnt;
720		if (p->p_nice > NZERO)
721			cp_time[CP_NICE] += cnt;
722		else
723			cp_time[CP_USER] += cnt;
724	} else {
725		/*
726		 * Came from kernel mode, so we were:
727		 * - handling an interrupt,
728		 * - doing syscall or trap work on behalf of the current
729		 *   user process, or
730		 * - spinning in the idle loop.
731		 * Whichever it is, charge the time as appropriate.
732		 * Note that we charge interrupts to the current process,
733		 * regardless of whether they are ``for'' that process,
734		 * so that we know how much of its real time was spent
735		 * in ``non-process'' (i.e., interrupt) work.
736		 */
737		if ((td->td_pflags & TDP_ITHREAD) ||
738		    td->td_intr_nesting_level >= 2) {
739			td->td_iticks += cnt;
740			cp_time[CP_INTR] += cnt;
741		} else {
742			td->td_pticks += cnt;
743			td->td_sticks += cnt;
744			if (!TD_IS_IDLETHREAD(td))
745				cp_time[CP_SYS] += cnt;
746			else
747				cp_time[CP_IDLE] += cnt;
748		}
749	}
750
751	/* Update resource usage integrals and maximums. */
752	MPASS(p->p_vmspace != NULL);
753	vm = p->p_vmspace;
754	ru = &td->td_ru;
755	ru->ru_ixrss += pgtok(vm->vm_tsize) * cnt;
756	ru->ru_idrss += pgtok(vm->vm_dsize) * cnt;
757	ru->ru_isrss += pgtok(vm->vm_ssize) * cnt;
758	rss = pgtok(vmspace_resident_count(vm));
759	if (ru->ru_maxrss < rss)
760		ru->ru_maxrss = rss;
761	KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
762	    "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
763	SDT_PROBE2(sched, , , tick, td, td->td_proc);
764	thread_lock_flags(td, MTX_QUIET);
765	for ( ; cnt > 0; cnt--)
766		sched_clock(td);
767	thread_unlock(td);
768#ifdef HWPMC_HOOKS
769	if (td->td_intr_frame != NULL)
770		PMC_SOFT_CALL_TF( , , clock, stat, td->td_intr_frame);
771#endif
772}
773
774void
775profclock(int usermode, uintfptr_t pc)
776{
777
778	profclock_cnt(1, usermode, pc);
779}
780
781void
782profclock_cnt(int cnt, int usermode, uintfptr_t pc)
783{
784	struct thread *td;
785#ifdef GPROF
786	struct gmonparam *g;
787	uintfptr_t i;
788#endif
789
790	td = curthread;
791	if (usermode) {
792		/*
793		 * Came from user mode; CPU was in user state.
794		 * If this process is being profiled, record the tick.
795		 * if there is no related user location yet, don't
796		 * bother trying to count it.
797		 */
798		if (td->td_proc->p_flag & P_PROFIL)
799			addupc_intr(td, pc, cnt);
800	}
801#ifdef GPROF
802	else {
803		/*
804		 * Kernel statistics are just like addupc_intr, only easier.
805		 */
806		g = &_gmonparam;
807		if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
808			i = PC_TO_I(g, pc);
809			if (i < g->textsize) {
810				KCOUNT(g, i) += cnt;
811			}
812		}
813	}
814#endif
815#ifdef HWPMC_HOOKS
816	if (td->td_intr_frame != NULL)
817		PMC_SOFT_CALL_TF( , , clock, prof, td->td_intr_frame);
818#endif
819}
820
821/*
822 * Return information about system clocks.
823 */
824static int
825sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
826{
827	struct clockinfo clkinfo;
828	/*
829	 * Construct clockinfo structure.
830	 */
831	bzero(&clkinfo, sizeof(clkinfo));
832	clkinfo.hz = hz;
833	clkinfo.tick = tick;
834	clkinfo.profhz = profhz;
835	clkinfo.stathz = stathz ? stathz : hz;
836	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
837}
838
839SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
840	CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
841	0, 0, sysctl_kern_clockrate, "S,clockinfo",
842	"Rate and period of various kernel clocks");
843
844#ifdef SW_WATCHDOG
845
846static void
847watchdog_config(void *unused __unused, u_int cmd, int *error)
848{
849	u_int u;
850
851	u = cmd & WD_INTERVAL;
852	if (u >= WD_TO_1SEC) {
853		watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
854		watchdog_enabled = 1;
855		*error = 0;
856	} else {
857		watchdog_enabled = 0;
858	}
859}
860
861/*
862 * Handle a watchdog timeout by dumping interrupt information and
863 * then either dropping to DDB or panicking.
864 */
865static void
866watchdog_fire(void)
867{
868	int nintr;
869	uint64_t inttotal;
870	u_long *curintr;
871	char *curname;
872
873	curintr = intrcnt;
874	curname = intrnames;
875	inttotal = 0;
876	nintr = sintrcnt / sizeof(u_long);
877
878	printf("interrupt                   total\n");
879	while (--nintr >= 0) {
880		if (*curintr)
881			printf("%-12s %20lu\n", curname, *curintr);
882		curname += strlen(curname) + 1;
883		inttotal += *curintr++;
884	}
885	printf("Total        %20ju\n", (uintmax_t)inttotal);
886
887#if defined(KDB) && !defined(KDB_UNATTENDED)
888	kdb_backtrace();
889	kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
890#else
891	panic("watchdog timeout");
892#endif
893}
894
895#endif /* SW_WATCHDOG */
896