imgact_elf.c revision 318192
1/*-
2 * Copyright (c) 2000 David O'Brien
3 * Copyright (c) 1995-1996 S��ren Schmidt
4 * Copyright (c) 1996 Peter Wemm
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer
12 *    in this position and unchanged.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote products
17 *    derived from this software without specific prior written permission
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: stable/10/sys/kern/imgact_elf.c 318192 2017-05-11 17:26:34Z jhb $");
33
34#include "opt_capsicum.h"
35#include "opt_compat.h"
36#include "opt_core.h"
37
38#include <sys/param.h>
39#include <sys/capsicum.h>
40#include <sys/exec.h>
41#include <sys/fcntl.h>
42#include <sys/imgact.h>
43#include <sys/imgact_elf.h>
44#include <sys/jail.h>
45#include <sys/kernel.h>
46#include <sys/lock.h>
47#include <sys/malloc.h>
48#include <sys/mount.h>
49#include <sys/mman.h>
50#include <sys/namei.h>
51#include <sys/pioctl.h>
52#include <sys/proc.h>
53#include <sys/procfs.h>
54#include <sys/racct.h>
55#include <sys/resourcevar.h>
56#include <sys/rwlock.h>
57#include <sys/sbuf.h>
58#include <sys/sf_buf.h>
59#include <sys/smp.h>
60#include <sys/systm.h>
61#include <sys/signalvar.h>
62#include <sys/stat.h>
63#include <sys/sx.h>
64#include <sys/syscall.h>
65#include <sys/sysctl.h>
66#include <sys/sysent.h>
67#include <sys/vnode.h>
68#include <sys/syslog.h>
69#include <sys/eventhandler.h>
70#include <sys/user.h>
71
72#include <net/zlib.h>
73
74#include <vm/vm.h>
75#include <vm/vm_kern.h>
76#include <vm/vm_param.h>
77#include <vm/pmap.h>
78#include <vm/vm_map.h>
79#include <vm/vm_object.h>
80#include <vm/vm_extern.h>
81
82#include <machine/elf.h>
83#include <machine/md_var.h>
84
85#define ELF_NOTE_ROUNDSIZE	4
86#define OLD_EI_BRAND	8
87
88static int __elfN(check_header)(const Elf_Ehdr *hdr);
89static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
90    const char *interp, int interp_name_len, int32_t *osrel);
91static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
92    u_long *entry, size_t pagesize);
93static int __elfN(load_section)(struct image_params *imgp, vm_offset_t offset,
94    caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot,
95    size_t pagesize);
96static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
97static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note,
98    int32_t *osrel);
99static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
100static boolean_t __elfN(check_note)(struct image_params *imgp,
101    Elf_Brandnote *checknote, int32_t *osrel);
102static vm_prot_t __elfN(trans_prot)(Elf_Word);
103static Elf_Word __elfN(untrans_prot)(vm_prot_t);
104
105SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0,
106    "");
107
108#ifdef COMPRESS_USER_CORES
109static int compress_core(gzFile, char *, char *, unsigned int,
110    struct thread * td);
111#endif
112#define CORE_BUF_SIZE	(16 * 1024)
113
114int __elfN(fallback_brand) = -1;
115SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
116    fallback_brand, CTLFLAG_RW, &__elfN(fallback_brand), 0,
117    __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
118TUNABLE_INT("kern.elf" __XSTRING(__ELF_WORD_SIZE) ".fallback_brand",
119    &__elfN(fallback_brand));
120
121static int elf_legacy_coredump = 0;
122SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
123    &elf_legacy_coredump, 0, "");
124
125int __elfN(nxstack) =
126#if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */
127	1;
128#else
129	0;
130#endif
131SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
132    nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
133    __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
134
135#if __ELF_WORD_SIZE == 32
136#if defined(__amd64__) || defined(__ia64__)
137int i386_read_exec = 0;
138SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
139    "enable execution from readable segments");
140#endif
141#endif
142
143static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
144
145#define	trunc_page_ps(va, ps)	((va) & ~(ps - 1))
146#define	round_page_ps(va, ps)	(((va) + (ps - 1)) & ~(ps - 1))
147#define	aligned(a, t)	(trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a))
148
149static const char FREEBSD_ABI_VENDOR[] = "FreeBSD";
150
151Elf_Brandnote __elfN(freebsd_brandnote) = {
152	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
153	.hdr.n_descsz	= sizeof(int32_t),
154	.hdr.n_type	= 1,
155	.vendor		= FREEBSD_ABI_VENDOR,
156	.flags		= BN_TRANSLATE_OSREL,
157	.trans_osrel	= __elfN(freebsd_trans_osrel)
158};
159
160static boolean_t
161__elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
162{
163	uintptr_t p;
164
165	p = (uintptr_t)(note + 1);
166	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
167	*osrel = *(const int32_t *)(p);
168
169	return (TRUE);
170}
171
172static const char GNU_ABI_VENDOR[] = "GNU";
173static int GNU_KFREEBSD_ABI_DESC = 3;
174
175Elf_Brandnote __elfN(kfreebsd_brandnote) = {
176	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
177	.hdr.n_descsz	= 16,	/* XXX at least 16 */
178	.hdr.n_type	= 1,
179	.vendor		= GNU_ABI_VENDOR,
180	.flags		= BN_TRANSLATE_OSREL,
181	.trans_osrel	= kfreebsd_trans_osrel
182};
183
184static boolean_t
185kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
186{
187	const Elf32_Word *desc;
188	uintptr_t p;
189
190	p = (uintptr_t)(note + 1);
191	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
192
193	desc = (const Elf32_Word *)p;
194	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
195		return (FALSE);
196
197	/*
198	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
199	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
200	 */
201	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
202
203	return (TRUE);
204}
205
206int
207__elfN(insert_brand_entry)(Elf_Brandinfo *entry)
208{
209	int i;
210
211	for (i = 0; i < MAX_BRANDS; i++) {
212		if (elf_brand_list[i] == NULL) {
213			elf_brand_list[i] = entry;
214			break;
215		}
216	}
217	if (i == MAX_BRANDS) {
218		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
219			__func__, entry);
220		return (-1);
221	}
222	return (0);
223}
224
225int
226__elfN(remove_brand_entry)(Elf_Brandinfo *entry)
227{
228	int i;
229
230	for (i = 0; i < MAX_BRANDS; i++) {
231		if (elf_brand_list[i] == entry) {
232			elf_brand_list[i] = NULL;
233			break;
234		}
235	}
236	if (i == MAX_BRANDS)
237		return (-1);
238	return (0);
239}
240
241int
242__elfN(brand_inuse)(Elf_Brandinfo *entry)
243{
244	struct proc *p;
245	int rval = FALSE;
246
247	sx_slock(&allproc_lock);
248	FOREACH_PROC_IN_SYSTEM(p) {
249		if (p->p_sysent == entry->sysvec) {
250			rval = TRUE;
251			break;
252		}
253	}
254	sx_sunlock(&allproc_lock);
255
256	return (rval);
257}
258
259static Elf_Brandinfo *
260__elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
261    int interp_name_len, int32_t *osrel)
262{
263	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
264	Elf_Brandinfo *bi, *bi_m;
265	boolean_t ret;
266	int i;
267
268	/*
269	 * We support four types of branding -- (1) the ELF EI_OSABI field
270	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
271	 * branding w/in the ELF header, (3) path of the `interp_path'
272	 * field, and (4) the ".note.ABI-tag" ELF section.
273	 */
274
275	/* Look for an ".note.ABI-tag" ELF section */
276	bi_m = NULL;
277	for (i = 0; i < MAX_BRANDS; i++) {
278		bi = elf_brand_list[i];
279		if (bi == NULL)
280			continue;
281		if (hdr->e_machine == bi->machine && (bi->flags &
282		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
283			ret = __elfN(check_note)(imgp, bi->brand_note, osrel);
284			/*
285			 * If note checker claimed the binary, but the
286			 * interpreter path in the image does not
287			 * match default one for the brand, try to
288			 * search for other brands with the same
289			 * interpreter.  Either there is better brand
290			 * with the right interpreter, or, failing
291			 * this, we return first brand which accepted
292			 * our note and, optionally, header.
293			 */
294			if (ret && bi_m == NULL && (strlen(bi->interp_path) +
295			    1 != interp_name_len || strncmp(interp,
296			    bi->interp_path, interp_name_len) != 0)) {
297				bi_m = bi;
298				ret = 0;
299			}
300			if (ret)
301				return (bi);
302		}
303	}
304	if (bi_m != NULL)
305		return (bi_m);
306
307	/* If the executable has a brand, search for it in the brand list. */
308	for (i = 0; i < MAX_BRANDS; i++) {
309		bi = elf_brand_list[i];
310		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
311			continue;
312		if (hdr->e_machine == bi->machine &&
313		    (hdr->e_ident[EI_OSABI] == bi->brand ||
314		    strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
315		    bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0))
316			return (bi);
317	}
318
319	/* Lacking a known brand, search for a recognized interpreter. */
320	if (interp != NULL) {
321		for (i = 0; i < MAX_BRANDS; i++) {
322			bi = elf_brand_list[i];
323			if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
324				continue;
325			if (hdr->e_machine == bi->machine &&
326			    /* ELF image p_filesz includes terminating zero */
327			    strlen(bi->interp_path) + 1 == interp_name_len &&
328			    strncmp(interp, bi->interp_path, interp_name_len)
329			    == 0)
330				return (bi);
331		}
332	}
333
334	/* Lacking a recognized interpreter, try the default brand */
335	for (i = 0; i < MAX_BRANDS; i++) {
336		bi = elf_brand_list[i];
337		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
338			continue;
339		if (hdr->e_machine == bi->machine &&
340		    __elfN(fallback_brand) == bi->brand)
341			return (bi);
342	}
343	return (NULL);
344}
345
346static int
347__elfN(check_header)(const Elf_Ehdr *hdr)
348{
349	Elf_Brandinfo *bi;
350	int i;
351
352	if (!IS_ELF(*hdr) ||
353	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
354	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
355	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
356	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
357	    hdr->e_version != ELF_TARG_VER)
358		return (ENOEXEC);
359
360	/*
361	 * Make sure we have at least one brand for this machine.
362	 */
363
364	for (i = 0; i < MAX_BRANDS; i++) {
365		bi = elf_brand_list[i];
366		if (bi != NULL && bi->machine == hdr->e_machine)
367			break;
368	}
369	if (i == MAX_BRANDS)
370		return (ENOEXEC);
371
372	return (0);
373}
374
375static int
376__elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
377    vm_offset_t start, vm_offset_t end, vm_prot_t prot)
378{
379	struct sf_buf *sf;
380	int error;
381	vm_offset_t off;
382
383	/*
384	 * Create the page if it doesn't exist yet. Ignore errors.
385	 */
386	vm_map_lock(map);
387	vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end),
388	    VM_PROT_ALL, VM_PROT_ALL, 0);
389	vm_map_unlock(map);
390
391	/*
392	 * Find the page from the underlying object.
393	 */
394	if (object) {
395		sf = vm_imgact_map_page(object, offset);
396		if (sf == NULL)
397			return (KERN_FAILURE);
398		off = offset - trunc_page(offset);
399		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
400		    end - start);
401		vm_imgact_unmap_page(sf);
402		if (error != 0)
403			return (KERN_FAILURE);
404	}
405
406	return (KERN_SUCCESS);
407}
408
409static int
410__elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
411    vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow)
412{
413	struct sf_buf *sf;
414	vm_offset_t off;
415	vm_size_t sz;
416	int error, rv;
417
418	if (start != trunc_page(start)) {
419		rv = __elfN(map_partial)(map, object, offset, start,
420		    round_page(start), prot);
421		if (rv)
422			return (rv);
423		offset += round_page(start) - start;
424		start = round_page(start);
425	}
426	if (end != round_page(end)) {
427		rv = __elfN(map_partial)(map, object, offset +
428		    trunc_page(end) - start, trunc_page(end), end, prot);
429		if (rv)
430			return (rv);
431		end = trunc_page(end);
432	}
433	if (end > start) {
434		if (offset & PAGE_MASK) {
435			/*
436			 * The mapping is not page aligned. This means we have
437			 * to copy the data. Sigh.
438			 */
439			rv = vm_map_find(map, NULL, 0, &start, end - start, 0,
440			    VMFS_NO_SPACE, prot | VM_PROT_WRITE, VM_PROT_ALL,
441			    0);
442			if (rv != KERN_SUCCESS)
443				return (rv);
444			if (object == NULL)
445				return (KERN_SUCCESS);
446			for (; start < end; start += sz) {
447				sf = vm_imgact_map_page(object, offset);
448				if (sf == NULL)
449					return (KERN_FAILURE);
450				off = offset - trunc_page(offset);
451				sz = end - start;
452				if (sz > PAGE_SIZE - off)
453					sz = PAGE_SIZE - off;
454				error = copyout((caddr_t)sf_buf_kva(sf) + off,
455				    (caddr_t)start, sz);
456				vm_imgact_unmap_page(sf);
457				if (error != 0)
458					return (KERN_FAILURE);
459				offset += sz;
460			}
461			rv = KERN_SUCCESS;
462		} else {
463			vm_object_reference(object);
464			vm_map_lock(map);
465			rv = vm_map_insert(map, object, offset, start, end,
466			    prot, VM_PROT_ALL, cow);
467			vm_map_unlock(map);
468			if (rv != KERN_SUCCESS)
469				vm_object_deallocate(object);
470		}
471		return (rv);
472	} else {
473		return (KERN_SUCCESS);
474	}
475}
476
477static int
478__elfN(load_section)(struct image_params *imgp, vm_offset_t offset,
479    caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot,
480    size_t pagesize)
481{
482	struct sf_buf *sf;
483	size_t map_len;
484	vm_map_t map;
485	vm_object_t object;
486	vm_offset_t map_addr;
487	int error, rv, cow;
488	size_t copy_len;
489	vm_offset_t file_addr;
490
491	/*
492	 * It's necessary to fail if the filsz + offset taken from the
493	 * header is greater than the actual file pager object's size.
494	 * If we were to allow this, then the vm_map_find() below would
495	 * walk right off the end of the file object and into the ether.
496	 *
497	 * While I'm here, might as well check for something else that
498	 * is invalid: filsz cannot be greater than memsz.
499	 */
500	if ((off_t)filsz + offset > imgp->attr->va_size || filsz > memsz) {
501		uprintf("elf_load_section: truncated ELF file\n");
502		return (ENOEXEC);
503	}
504
505	object = imgp->object;
506	map = &imgp->proc->p_vmspace->vm_map;
507	map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize);
508	file_addr = trunc_page_ps(offset, pagesize);
509
510	/*
511	 * We have two choices.  We can either clear the data in the last page
512	 * of an oversized mapping, or we can start the anon mapping a page
513	 * early and copy the initialized data into that first page.  We
514	 * choose the second..
515	 */
516	if (memsz > filsz)
517		map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr;
518	else
519		map_len = round_page_ps(offset + filsz, pagesize) - file_addr;
520
521	if (map_len != 0) {
522		/* cow flags: don't dump readonly sections in core */
523		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
524		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
525
526		rv = __elfN(map_insert)(map,
527				      object,
528				      file_addr,	/* file offset */
529				      map_addr,		/* virtual start */
530				      map_addr + map_len,/* virtual end */
531				      prot,
532				      cow);
533		if (rv != KERN_SUCCESS)
534			return (EINVAL);
535
536		/* we can stop now if we've covered it all */
537		if (memsz == filsz) {
538			return (0);
539		}
540	}
541
542
543	/*
544	 * We have to get the remaining bit of the file into the first part
545	 * of the oversized map segment.  This is normally because the .data
546	 * segment in the file is extended to provide bss.  It's a neat idea
547	 * to try and save a page, but it's a pain in the behind to implement.
548	 */
549	copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize);
550	map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize);
551	map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) -
552	    map_addr;
553
554	/* This had damn well better be true! */
555	if (map_len != 0) {
556		rv = __elfN(map_insert)(map, NULL, 0, map_addr, map_addr +
557		    map_len, VM_PROT_ALL, 0);
558		if (rv != KERN_SUCCESS) {
559			return (EINVAL);
560		}
561	}
562
563	if (copy_len != 0) {
564		vm_offset_t off;
565
566		sf = vm_imgact_map_page(object, offset + filsz);
567		if (sf == NULL)
568			return (EIO);
569
570		/* send the page fragment to user space */
571		off = trunc_page_ps(offset + filsz, pagesize) -
572		    trunc_page(offset + filsz);
573		error = copyout((caddr_t)sf_buf_kva(sf) + off,
574		    (caddr_t)map_addr, copy_len);
575		vm_imgact_unmap_page(sf);
576		if (error) {
577			return (error);
578		}
579	}
580
581	/*
582	 * set it to the specified protection.
583	 * XXX had better undo the damage from pasting over the cracks here!
584	 */
585	vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
586	    map_len), prot, FALSE);
587
588	return (0);
589}
590
591/*
592 * Load the file "file" into memory.  It may be either a shared object
593 * or an executable.
594 *
595 * The "addr" reference parameter is in/out.  On entry, it specifies
596 * the address where a shared object should be loaded.  If the file is
597 * an executable, this value is ignored.  On exit, "addr" specifies
598 * where the file was actually loaded.
599 *
600 * The "entry" reference parameter is out only.  On exit, it specifies
601 * the entry point for the loaded file.
602 */
603static int
604__elfN(load_file)(struct proc *p, const char *file, u_long *addr,
605	u_long *entry, size_t pagesize)
606{
607	struct {
608		struct nameidata nd;
609		struct vattr attr;
610		struct image_params image_params;
611	} *tempdata;
612	const Elf_Ehdr *hdr = NULL;
613	const Elf_Phdr *phdr = NULL;
614	struct nameidata *nd;
615	struct vattr *attr;
616	struct image_params *imgp;
617	vm_prot_t prot;
618	u_long rbase;
619	u_long base_addr = 0;
620	int error, i, numsegs;
621
622#ifdef CAPABILITY_MODE
623	/*
624	 * XXXJA: This check can go away once we are sufficiently confident
625	 * that the checks in namei() are correct.
626	 */
627	if (IN_CAPABILITY_MODE(curthread))
628		return (ECAPMODE);
629#endif
630
631	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
632	nd = &tempdata->nd;
633	attr = &tempdata->attr;
634	imgp = &tempdata->image_params;
635
636	/*
637	 * Initialize part of the common data
638	 */
639	imgp->proc = p;
640	imgp->attr = attr;
641	imgp->firstpage = NULL;
642	imgp->image_header = NULL;
643	imgp->object = NULL;
644	imgp->execlabel = NULL;
645
646	NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread);
647	if ((error = namei(nd)) != 0) {
648		nd->ni_vp = NULL;
649		goto fail;
650	}
651	NDFREE(nd, NDF_ONLY_PNBUF);
652	imgp->vp = nd->ni_vp;
653
654	/*
655	 * Check permissions, modes, uid, etc on the file, and "open" it.
656	 */
657	error = exec_check_permissions(imgp);
658	if (error)
659		goto fail;
660
661	error = exec_map_first_page(imgp);
662	if (error)
663		goto fail;
664
665	/*
666	 * Also make certain that the interpreter stays the same, so set
667	 * its VV_TEXT flag, too.
668	 */
669	VOP_SET_TEXT(nd->ni_vp);
670
671	imgp->object = nd->ni_vp->v_object;
672
673	hdr = (const Elf_Ehdr *)imgp->image_header;
674	if ((error = __elfN(check_header)(hdr)) != 0)
675		goto fail;
676	if (hdr->e_type == ET_DYN)
677		rbase = *addr;
678	else if (hdr->e_type == ET_EXEC)
679		rbase = 0;
680	else {
681		error = ENOEXEC;
682		goto fail;
683	}
684
685	/* Only support headers that fit within first page for now      */
686	if ((hdr->e_phoff > PAGE_SIZE) ||
687	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
688		error = ENOEXEC;
689		goto fail;
690	}
691
692	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
693	if (!aligned(phdr, Elf_Addr)) {
694		error = ENOEXEC;
695		goto fail;
696	}
697
698	for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) {
699		if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) {
700			/* Loadable segment */
701			prot = __elfN(trans_prot)(phdr[i].p_flags);
702			error = __elfN(load_section)(imgp, phdr[i].p_offset,
703			    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
704			    phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize);
705			if (error != 0)
706				goto fail;
707			/*
708			 * Establish the base address if this is the
709			 * first segment.
710			 */
711			if (numsegs == 0)
712  				base_addr = trunc_page(phdr[i].p_vaddr +
713				    rbase);
714			numsegs++;
715		}
716	}
717	*addr = base_addr;
718	*entry = (unsigned long)hdr->e_entry + rbase;
719
720fail:
721	if (imgp->firstpage)
722		exec_unmap_first_page(imgp);
723
724	if (nd->ni_vp)
725		vput(nd->ni_vp);
726
727	free(tempdata, M_TEMP);
728
729	return (error);
730}
731
732static int
733__CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
734{
735	struct thread *td;
736	const Elf_Ehdr *hdr;
737	const Elf_Phdr *phdr;
738	Elf_Auxargs *elf_auxargs;
739	struct vmspace *vmspace;
740	const char *err_str, *newinterp;
741	char *interp, *interp_buf, *path;
742	Elf_Brandinfo *brand_info;
743	struct sysentvec *sv;
744	vm_prot_t prot;
745	u_long text_size, data_size, total_size, text_addr, data_addr;
746	u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr;
747	int32_t osrel;
748	int error, i, n, interp_name_len, have_interp;
749
750	hdr = (const Elf_Ehdr *)imgp->image_header;
751
752	/*
753	 * Do we have a valid ELF header ?
754	 *
755	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
756	 * if particular brand doesn't support it.
757	 */
758	if (__elfN(check_header)(hdr) != 0 ||
759	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
760		return (-1);
761
762	/*
763	 * From here on down, we return an errno, not -1, as we've
764	 * detected an ELF file.
765	 */
766
767	if ((hdr->e_phoff > PAGE_SIZE) ||
768	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
769		/* Only support headers in first page for now */
770		uprintf("Program headers not in the first page\n");
771		return (ENOEXEC);
772	}
773	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
774	if (!aligned(phdr, Elf_Addr)) {
775		uprintf("Unaligned program headers\n");
776		return (ENOEXEC);
777	}
778
779	n = error = 0;
780	baddr = 0;
781	osrel = 0;
782	text_size = data_size = total_size = text_addr = data_addr = 0;
783	entry = proghdr = 0;
784	interp_name_len = 0;
785	err_str = newinterp = NULL;
786	interp = interp_buf = NULL;
787	td = curthread;
788
789	for (i = 0; i < hdr->e_phnum; i++) {
790		switch (phdr[i].p_type) {
791		case PT_LOAD:
792			if (n == 0)
793				baddr = phdr[i].p_vaddr;
794			n++;
795			break;
796		case PT_INTERP:
797			/* Path to interpreter */
798			if (phdr[i].p_filesz > MAXPATHLEN) {
799				uprintf("Invalid PT_INTERP\n");
800				error = ENOEXEC;
801				goto ret;
802			}
803			if (interp != NULL) {
804				uprintf("Multiple PT_INTERP headers\n");
805				error = ENOEXEC;
806				goto ret;
807			}
808			interp_name_len = phdr[i].p_filesz;
809			if (phdr[i].p_offset > PAGE_SIZE ||
810			    interp_name_len > PAGE_SIZE - phdr[i].p_offset) {
811				VOP_UNLOCK(imgp->vp, 0);
812				interp_buf = malloc(interp_name_len + 1, M_TEMP,
813				    M_WAITOK);
814				vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
815				error = vn_rdwr(UIO_READ, imgp->vp, interp_buf,
816				    interp_name_len, phdr[i].p_offset,
817				    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
818				    NOCRED, NULL, td);
819				if (error != 0) {
820					uprintf("i/o error PT_INTERP\n");
821					goto ret;
822				}
823				interp_buf[interp_name_len] = '\0';
824				interp = interp_buf;
825			} else {
826				interp = __DECONST(char *, imgp->image_header) +
827				    phdr[i].p_offset;
828			}
829			break;
830		case PT_GNU_STACK:
831			if (__elfN(nxstack))
832				imgp->stack_prot =
833				    __elfN(trans_prot)(phdr[i].p_flags);
834			imgp->stack_sz = phdr[i].p_memsz;
835			break;
836		}
837	}
838
839	brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len,
840	    &osrel);
841	if (brand_info == NULL) {
842		uprintf("ELF binary type \"%u\" not known.\n",
843		    hdr->e_ident[EI_OSABI]);
844		error = ENOEXEC;
845		goto ret;
846	}
847	if (hdr->e_type == ET_DYN) {
848		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
849			uprintf("Cannot execute shared object\n");
850			error = ENOEXEC;
851			goto ret;
852		}
853		/*
854		 * Honour the base load address from the dso if it is
855		 * non-zero for some reason.
856		 */
857		if (baddr == 0)
858			et_dyn_addr = ET_DYN_LOAD_ADDR;
859		else
860			et_dyn_addr = 0;
861	} else
862		et_dyn_addr = 0;
863	sv = brand_info->sysvec;
864	if (interp != NULL && brand_info->interp_newpath != NULL)
865		newinterp = brand_info->interp_newpath;
866
867	/*
868	 * Avoid a possible deadlock if the current address space is destroyed
869	 * and that address space maps the locked vnode.  In the common case,
870	 * the locked vnode's v_usecount is decremented but remains greater
871	 * than zero.  Consequently, the vnode lock is not needed by vrele().
872	 * However, in cases where the vnode lock is external, such as nullfs,
873	 * v_usecount may become zero.
874	 *
875	 * The VV_TEXT flag prevents modifications to the executable while
876	 * the vnode is unlocked.
877	 */
878	VOP_UNLOCK(imgp->vp, 0);
879
880	error = exec_new_vmspace(imgp, sv);
881	imgp->proc->p_sysent = sv;
882
883	vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
884	if (error != 0)
885		goto ret;
886
887	for (i = 0; i < hdr->e_phnum; i++) {
888		switch (phdr[i].p_type) {
889		case PT_LOAD:	/* Loadable segment */
890			if (phdr[i].p_memsz == 0)
891				break;
892			prot = __elfN(trans_prot)(phdr[i].p_flags);
893			error = __elfN(load_section)(imgp, phdr[i].p_offset,
894			    (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr,
895			    phdr[i].p_memsz, phdr[i].p_filesz, prot,
896			    sv->sv_pagesize);
897			if (error != 0)
898				goto ret;
899
900			/*
901			 * If this segment contains the program headers,
902			 * remember their virtual address for the AT_PHDR
903			 * aux entry. Static binaries don't usually include
904			 * a PT_PHDR entry.
905			 */
906			if (phdr[i].p_offset == 0 &&
907			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
908				<= phdr[i].p_filesz)
909				proghdr = phdr[i].p_vaddr + hdr->e_phoff +
910				    et_dyn_addr;
911
912			seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
913			seg_size = round_page(phdr[i].p_memsz +
914			    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
915
916			/*
917			 * Make the largest executable segment the official
918			 * text segment and all others data.
919			 *
920			 * Note that obreak() assumes that data_addr +
921			 * data_size == end of data load area, and the ELF
922			 * file format expects segments to be sorted by
923			 * address.  If multiple data segments exist, the
924			 * last one will be used.
925			 */
926
927			if (phdr[i].p_flags & PF_X && text_size < seg_size) {
928				text_size = seg_size;
929				text_addr = seg_addr;
930			} else {
931				data_size = seg_size;
932				data_addr = seg_addr;
933			}
934			total_size += seg_size;
935			break;
936		case PT_PHDR: 	/* Program header table info */
937			proghdr = phdr[i].p_vaddr + et_dyn_addr;
938			break;
939		default:
940			break;
941		}
942	}
943
944	if (data_addr == 0 && data_size == 0) {
945		data_addr = text_addr;
946		data_size = text_size;
947	}
948
949	entry = (u_long)hdr->e_entry + et_dyn_addr;
950
951	/*
952	 * Check limits.  It should be safe to check the
953	 * limits after loading the segments since we do
954	 * not actually fault in all the segments pages.
955	 */
956	PROC_LOCK(imgp->proc);
957	if (data_size > lim_cur(imgp->proc, RLIMIT_DATA))
958		err_str = "Data segment size exceeds process limit";
959	else if (text_size > maxtsiz)
960		err_str = "Text segment size exceeds system limit";
961	else if (total_size > lim_cur(imgp->proc, RLIMIT_VMEM))
962		err_str = "Total segment size exceeds process limit";
963	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
964		err_str = "Data segment size exceeds resource limit";
965	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
966		err_str = "Total segment size exceeds resource limit";
967	if (err_str != NULL) {
968		PROC_UNLOCK(imgp->proc);
969		uprintf("%s\n", err_str);
970		error = ENOMEM;
971		goto ret;
972	}
973
974	vmspace = imgp->proc->p_vmspace;
975	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
976	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
977	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
978	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
979
980	/*
981	 * We load the dynamic linker where a userland call
982	 * to mmap(0, ...) would put it.  The rationale behind this
983	 * calculation is that it leaves room for the heap to grow to
984	 * its maximum allowed size.
985	 */
986	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(imgp->proc,
987	    RLIMIT_DATA));
988	PROC_UNLOCK(imgp->proc);
989
990	imgp->entry_addr = entry;
991
992	if (interp != NULL) {
993		have_interp = FALSE;
994		VOP_UNLOCK(imgp->vp, 0);
995		if (brand_info->emul_path != NULL &&
996		    brand_info->emul_path[0] != '\0') {
997			path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
998			snprintf(path, MAXPATHLEN, "%s%s",
999			    brand_info->emul_path, interp);
1000			error = __elfN(load_file)(imgp->proc, path, &addr,
1001			    &imgp->entry_addr, sv->sv_pagesize);
1002			free(path, M_TEMP);
1003			if (error == 0)
1004				have_interp = TRUE;
1005		}
1006		if (!have_interp && newinterp != NULL &&
1007		    (brand_info->interp_path == NULL ||
1008		    strcmp(interp, brand_info->interp_path) == 0)) {
1009			error = __elfN(load_file)(imgp->proc, newinterp, &addr,
1010			    &imgp->entry_addr, sv->sv_pagesize);
1011			if (error == 0)
1012				have_interp = TRUE;
1013		}
1014		if (!have_interp) {
1015			error = __elfN(load_file)(imgp->proc, interp, &addr,
1016			    &imgp->entry_addr, sv->sv_pagesize);
1017		}
1018		vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
1019		if (error != 0) {
1020			uprintf("ELF interpreter %s not found, error %d\n",
1021			    interp, error);
1022			goto ret;
1023		}
1024	} else
1025		addr = et_dyn_addr;
1026
1027	/*
1028	 * Construct auxargs table (used by the fixup routine)
1029	 */
1030	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1031	elf_auxargs->execfd = -1;
1032	elf_auxargs->phdr = proghdr;
1033	elf_auxargs->phent = hdr->e_phentsize;
1034	elf_auxargs->phnum = hdr->e_phnum;
1035	elf_auxargs->pagesz = PAGE_SIZE;
1036	elf_auxargs->base = addr;
1037	elf_auxargs->flags = 0;
1038	elf_auxargs->entry = entry;
1039
1040	imgp->auxargs = elf_auxargs;
1041	imgp->interpreted = 0;
1042	imgp->reloc_base = addr;
1043	imgp->proc->p_osrel = osrel;
1044	imgp->proc->p_elf_machine = hdr->e_machine;
1045	imgp->proc->p_elf_flags = hdr->e_flags;
1046
1047 ret:
1048	free(interp_buf, M_TEMP);
1049	return (error);
1050}
1051
1052#define	suword __CONCAT(suword, __ELF_WORD_SIZE)
1053
1054int
1055__elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp)
1056{
1057	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1058	Elf_Addr *base;
1059	Elf_Addr *pos;
1060
1061	base = (Elf_Addr *)*stack_base;
1062	pos = base + (imgp->args->argc + imgp->args->envc + 2);
1063
1064	if (args->execfd != -1)
1065		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1066	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1067	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1068	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1069	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1070	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1071	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1072	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1073	if (imgp->execpathp != 0)
1074		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
1075	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1076	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1077	if (imgp->canary != 0) {
1078		AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary);
1079		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1080	}
1081	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1082	if (imgp->pagesizes != 0) {
1083		AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes);
1084		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1085	}
1086	if (imgp->sysent->sv_timekeep_base != 0) {
1087		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1088		    imgp->sysent->sv_timekeep_base);
1089	}
1090	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1091	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1092	    imgp->sysent->sv_stackprot);
1093	AUXARGS_ENTRY(pos, AT_NULL, 0);
1094
1095	free(imgp->auxargs, M_TEMP);
1096	imgp->auxargs = NULL;
1097
1098	base--;
1099	suword(base, (long)imgp->args->argc);
1100	*stack_base = (register_t *)base;
1101	return (0);
1102}
1103
1104/*
1105 * Code for generating ELF core dumps.
1106 */
1107
1108typedef void (*segment_callback)(vm_map_entry_t, void *);
1109
1110/* Closure for cb_put_phdr(). */
1111struct phdr_closure {
1112	Elf_Phdr *phdr;		/* Program header to fill in */
1113	Elf_Off offset;		/* Offset of segment in core file */
1114};
1115
1116/* Closure for cb_size_segment(). */
1117struct sseg_closure {
1118	int count;		/* Count of writable segments. */
1119	size_t size;		/* Total size of all writable segments. */
1120};
1121
1122typedef void (*outfunc_t)(void *, struct sbuf *, size_t *);
1123
1124struct note_info {
1125	int		type;		/* Note type. */
1126	outfunc_t 	outfunc; 	/* Output function. */
1127	void		*outarg;	/* Argument for the output function. */
1128	size_t		outsize;	/* Output size. */
1129	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1130};
1131
1132TAILQ_HEAD(note_info_list, note_info);
1133
1134static void cb_put_phdr(vm_map_entry_t, void *);
1135static void cb_size_segment(vm_map_entry_t, void *);
1136static void each_writable_segment(struct thread *, segment_callback, void *);
1137static int __elfN(corehdr)(struct thread *, struct vnode *, struct ucred *,
1138    int, void *, size_t, struct note_info_list *, size_t, gzFile);
1139static void __elfN(prepare_notes)(struct thread *, struct note_info_list *,
1140    size_t *);
1141static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t);
1142static void __elfN(putnote)(struct note_info *, struct sbuf *);
1143static size_t register_note(struct note_info_list *, int, outfunc_t, void *);
1144static int sbuf_drain_core_output(void *, const char *, int);
1145static int sbuf_drain_count(void *arg, const char *data, int len);
1146
1147static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *);
1148static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1149static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *);
1150static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1151static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *);
1152static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1153static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1154static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1155static void note_procstat_files(void *, struct sbuf *, size_t *);
1156static void note_procstat_groups(void *, struct sbuf *, size_t *);
1157static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1158static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1159static void note_procstat_umask(void *, struct sbuf *, size_t *);
1160static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1161
1162#ifdef COMPRESS_USER_CORES
1163extern int compress_user_cores;
1164extern int compress_user_cores_gzlevel;
1165#endif
1166
1167static int
1168core_output(struct vnode *vp, void *base, size_t len, off_t offset,
1169    struct ucred *active_cred, struct ucred *file_cred,
1170    struct thread *td, char *core_buf, gzFile gzfile) {
1171
1172	int error;
1173	if (gzfile) {
1174#ifdef COMPRESS_USER_CORES
1175		error = compress_core(gzfile, base, core_buf, len, td);
1176#else
1177		panic("shouldn't be here");
1178#endif
1179	} else {
1180		/*
1181		 * EFAULT is a non-fatal error that we can get, for example,
1182		 * if the segment is backed by a file but extends beyond its
1183		 * end.
1184		 */
1185		error = vn_rdwr_inchunks(UIO_WRITE, vp, base, len, offset,
1186		    UIO_USERSPACE, IO_UNIT | IO_DIRECT, active_cred, file_cred,
1187		    NULL, td);
1188		if (error == EFAULT) {
1189			log(LOG_WARNING, "Failed to fully fault in a core file "
1190			    "segment at VA %p with size 0x%zx to be written at "
1191			    "offset 0x%jx for process %s\n", base, len, offset,
1192			    curproc->p_comm);
1193
1194			/*
1195			 * Write a "real" zero byte at the end of the target
1196			 * region in the case this is the last segment.
1197			 * The intermediate space will be implicitly
1198			 * zero-filled.
1199			 */
1200			error = vn_rdwr_inchunks(UIO_WRITE, vp,
1201			    __DECONST(void *, zero_region), 1, offset + len - 1,
1202			    UIO_SYSSPACE, IO_UNIT | IO_DIRECT, active_cred,
1203			    file_cred, NULL, td);
1204		}
1205	}
1206	return (error);
1207}
1208
1209/* Coredump output parameters for sbuf drain routine. */
1210struct sbuf_drain_core_params {
1211	off_t		offset;
1212	struct ucred	*active_cred;
1213	struct ucred	*file_cred;
1214	struct thread	*td;
1215	struct vnode	*vp;
1216#ifdef COMPRESS_USER_CORES
1217	gzFile		gzfile;
1218#endif
1219};
1220
1221/*
1222 * Drain into a core file.
1223 */
1224static int
1225sbuf_drain_core_output(void *arg, const char *data, int len)
1226{
1227	struct sbuf_drain_core_params *p;
1228	int error, locked;
1229
1230	p = (struct sbuf_drain_core_params *)arg;
1231
1232	/*
1233	 * Some kern_proc out routines that print to this sbuf may
1234	 * call us with the process lock held. Draining with the
1235	 * non-sleepable lock held is unsafe. The lock is needed for
1236	 * those routines when dumping a live process. In our case we
1237	 * can safely release the lock before draining and acquire
1238	 * again after.
1239	 */
1240	locked = PROC_LOCKED(p->td->td_proc);
1241	if (locked)
1242		PROC_UNLOCK(p->td->td_proc);
1243#ifdef COMPRESS_USER_CORES
1244	if (p->gzfile != Z_NULL)
1245		error = compress_core(p->gzfile, NULL, __DECONST(char *, data),
1246		    len, p->td);
1247	else
1248#endif
1249		error = vn_rdwr_inchunks(UIO_WRITE, p->vp,
1250		    __DECONST(void *, data), len, p->offset, UIO_SYSSPACE,
1251		    IO_UNIT | IO_DIRECT, p->active_cred, p->file_cred, NULL,
1252		    p->td);
1253	if (locked)
1254		PROC_LOCK(p->td->td_proc);
1255	if (error != 0)
1256		return (-error);
1257	p->offset += len;
1258	return (len);
1259}
1260
1261/*
1262 * Drain into a counter.
1263 */
1264static int
1265sbuf_drain_count(void *arg, const char *data __unused, int len)
1266{
1267	size_t *sizep;
1268
1269	sizep = (size_t *)arg;
1270	*sizep += len;
1271	return (len);
1272}
1273
1274int
1275__elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1276{
1277	struct ucred *cred = td->td_ucred;
1278	int error = 0;
1279	struct sseg_closure seginfo;
1280	struct note_info_list notelst;
1281	struct note_info *ninfo;
1282	void *hdr;
1283	size_t hdrsize, notesz, coresize;
1284
1285	gzFile gzfile = Z_NULL;
1286	char *core_buf = NULL;
1287#ifdef COMPRESS_USER_CORES
1288	char gzopen_flags[8];
1289	char *p;
1290	int doing_compress = flags & IMGACT_CORE_COMPRESS;
1291#endif
1292
1293	hdr = NULL;
1294	TAILQ_INIT(&notelst);
1295
1296#ifdef COMPRESS_USER_CORES
1297        if (doing_compress) {
1298                p = gzopen_flags;
1299                *p++ = 'w';
1300                if (compress_user_cores_gzlevel >= 0 &&
1301                    compress_user_cores_gzlevel <= 9)
1302                        *p++ = '0' + compress_user_cores_gzlevel;
1303                *p = 0;
1304                gzfile = gz_open("", gzopen_flags, vp);
1305                if (gzfile == Z_NULL) {
1306                        error = EFAULT;
1307                        goto done;
1308                }
1309                core_buf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1310                if (!core_buf) {
1311                        error = ENOMEM;
1312                        goto done;
1313                }
1314        }
1315#endif
1316
1317	/* Size the program segments. */
1318	seginfo.count = 0;
1319	seginfo.size = 0;
1320	each_writable_segment(td, cb_size_segment, &seginfo);
1321
1322	/*
1323	 * Collect info about the core file header area.
1324	 */
1325	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1326	__elfN(prepare_notes)(td, &notelst, &notesz);
1327	coresize = round_page(hdrsize + notesz) + seginfo.size;
1328
1329#ifdef RACCT
1330	if (racct_enable) {
1331		PROC_LOCK(td->td_proc);
1332		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1333		PROC_UNLOCK(td->td_proc);
1334		if (error != 0) {
1335			error = EFAULT;
1336			goto done;
1337		}
1338	}
1339#endif
1340	if (coresize >= limit) {
1341		error = EFAULT;
1342		goto done;
1343	}
1344
1345	/*
1346	 * Allocate memory for building the header, fill it up,
1347	 * and write it out following the notes.
1348	 */
1349	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1350	error = __elfN(corehdr)(td, vp, cred, seginfo.count, hdr, hdrsize,
1351	    &notelst, notesz, gzfile);
1352
1353	/* Write the contents of all of the writable segments. */
1354	if (error == 0) {
1355		Elf_Phdr *php;
1356		off_t offset;
1357		int i;
1358
1359		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1360		offset = round_page(hdrsize + notesz);
1361		for (i = 0; i < seginfo.count; i++) {
1362			error = core_output(vp, (caddr_t)(uintptr_t)php->p_vaddr,
1363			    php->p_filesz, offset, cred, NOCRED, curthread, core_buf, gzfile);
1364			if (error != 0)
1365				break;
1366			offset += php->p_filesz;
1367			php++;
1368		}
1369	}
1370	if (error) {
1371		log(LOG_WARNING,
1372		    "Failed to write core file for process %s (error %d)\n",
1373		    curproc->p_comm, error);
1374	}
1375
1376done:
1377#ifdef COMPRESS_USER_CORES
1378	if (core_buf)
1379		free(core_buf, M_TEMP);
1380	if (gzfile)
1381		gzclose(gzfile);
1382#endif
1383	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1384		TAILQ_REMOVE(&notelst, ninfo, link);
1385		free(ninfo, M_TEMP);
1386	}
1387	if (hdr != NULL)
1388		free(hdr, M_TEMP);
1389
1390	return (error);
1391}
1392
1393/*
1394 * A callback for each_writable_segment() to write out the segment's
1395 * program header entry.
1396 */
1397static void
1398cb_put_phdr(entry, closure)
1399	vm_map_entry_t entry;
1400	void *closure;
1401{
1402	struct phdr_closure *phc = (struct phdr_closure *)closure;
1403	Elf_Phdr *phdr = phc->phdr;
1404
1405	phc->offset = round_page(phc->offset);
1406
1407	phdr->p_type = PT_LOAD;
1408	phdr->p_offset = phc->offset;
1409	phdr->p_vaddr = entry->start;
1410	phdr->p_paddr = 0;
1411	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1412	phdr->p_align = PAGE_SIZE;
1413	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1414
1415	phc->offset += phdr->p_filesz;
1416	phc->phdr++;
1417}
1418
1419/*
1420 * A callback for each_writable_segment() to gather information about
1421 * the number of segments and their total size.
1422 */
1423static void
1424cb_size_segment(entry, closure)
1425	vm_map_entry_t entry;
1426	void *closure;
1427{
1428	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1429
1430	ssc->count++;
1431	ssc->size += entry->end - entry->start;
1432}
1433
1434/*
1435 * For each writable segment in the process's memory map, call the given
1436 * function with a pointer to the map entry and some arbitrary
1437 * caller-supplied data.
1438 */
1439static void
1440each_writable_segment(td, func, closure)
1441	struct thread *td;
1442	segment_callback func;
1443	void *closure;
1444{
1445	struct proc *p = td->td_proc;
1446	vm_map_t map = &p->p_vmspace->vm_map;
1447	vm_map_entry_t entry;
1448	vm_object_t backing_object, object;
1449	boolean_t ignore_entry;
1450
1451	vm_map_lock_read(map);
1452	for (entry = map->header.next; entry != &map->header;
1453	    entry = entry->next) {
1454		/*
1455		 * Don't dump inaccessible mappings, deal with legacy
1456		 * coredump mode.
1457		 *
1458		 * Note that read-only segments related to the elf binary
1459		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1460		 * need to arbitrarily ignore such segments.
1461		 */
1462		if (elf_legacy_coredump) {
1463			if ((entry->protection & VM_PROT_RW) != VM_PROT_RW)
1464				continue;
1465		} else {
1466			if ((entry->protection & VM_PROT_ALL) == 0)
1467				continue;
1468		}
1469
1470		/*
1471		 * Dont include memory segment in the coredump if
1472		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1473		 * madvise(2).  Do not dump submaps (i.e. parts of the
1474		 * kernel map).
1475		 */
1476		if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP))
1477			continue;
1478
1479		if ((object = entry->object.vm_object) == NULL)
1480			continue;
1481
1482		/* Ignore memory-mapped devices and such things. */
1483		VM_OBJECT_RLOCK(object);
1484		while ((backing_object = object->backing_object) != NULL) {
1485			VM_OBJECT_RLOCK(backing_object);
1486			VM_OBJECT_RUNLOCK(object);
1487			object = backing_object;
1488		}
1489		ignore_entry = object->type != OBJT_DEFAULT &&
1490		    object->type != OBJT_SWAP && object->type != OBJT_VNODE &&
1491		    object->type != OBJT_PHYS;
1492		VM_OBJECT_RUNLOCK(object);
1493		if (ignore_entry)
1494			continue;
1495
1496		(*func)(entry, closure);
1497	}
1498	vm_map_unlock_read(map);
1499}
1500
1501/*
1502 * Write the core file header to the file, including padding up to
1503 * the page boundary.
1504 */
1505static int
1506__elfN(corehdr)(struct thread *td, struct vnode *vp, struct ucred *cred,
1507    int numsegs, void *hdr, size_t hdrsize, struct note_info_list *notelst,
1508    size_t notesz, gzFile gzfile)
1509{
1510	struct sbuf_drain_core_params params;
1511	struct note_info *ninfo;
1512	struct sbuf *sb;
1513	int error;
1514
1515	/* Fill in the header. */
1516	bzero(hdr, hdrsize);
1517	__elfN(puthdr)(td, hdr, hdrsize, numsegs, notesz);
1518
1519	params.offset = 0;
1520	params.active_cred = cred;
1521	params.file_cred = NOCRED;
1522	params.td = td;
1523	params.vp = vp;
1524#ifdef COMPRESS_USER_CORES
1525	params.gzfile = gzfile;
1526#endif
1527	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1528	sbuf_set_drain(sb, sbuf_drain_core_output, &params);
1529	sbuf_start_section(sb, NULL);
1530	sbuf_bcat(sb, hdr, hdrsize);
1531	TAILQ_FOREACH(ninfo, notelst, link)
1532	    __elfN(putnote)(ninfo, sb);
1533	/* Align up to a page boundary for the program segments. */
1534	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1535	error = sbuf_finish(sb);
1536	sbuf_delete(sb);
1537
1538	return (error);
1539}
1540
1541static void
1542__elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1543    size_t *sizep)
1544{
1545	struct proc *p;
1546	struct thread *thr;
1547	size_t size;
1548
1549	p = td->td_proc;
1550	size = 0;
1551
1552	size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p);
1553
1554	/*
1555	 * To have the debugger select the right thread (LWP) as the initial
1556	 * thread, we dump the state of the thread passed to us in td first.
1557	 * This is the thread that causes the core dump and thus likely to
1558	 * be the right thread one wants to have selected in the debugger.
1559	 */
1560	thr = td;
1561	while (thr != NULL) {
1562		size += register_note(list, NT_PRSTATUS,
1563		    __elfN(note_prstatus), thr);
1564		size += register_note(list, NT_FPREGSET,
1565		    __elfN(note_fpregset), thr);
1566		size += register_note(list, NT_THRMISC,
1567		    __elfN(note_thrmisc), thr);
1568		size += register_note(list, -1,
1569		    __elfN(note_threadmd), thr);
1570
1571		thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) :
1572		    TAILQ_NEXT(thr, td_plist);
1573		if (thr == td)
1574			thr = TAILQ_NEXT(thr, td_plist);
1575	}
1576
1577	size += register_note(list, NT_PROCSTAT_PROC,
1578	    __elfN(note_procstat_proc), p);
1579	size += register_note(list, NT_PROCSTAT_FILES,
1580	    note_procstat_files, p);
1581	size += register_note(list, NT_PROCSTAT_VMMAP,
1582	    note_procstat_vmmap, p);
1583	size += register_note(list, NT_PROCSTAT_GROUPS,
1584	    note_procstat_groups, p);
1585	size += register_note(list, NT_PROCSTAT_UMASK,
1586	    note_procstat_umask, p);
1587	size += register_note(list, NT_PROCSTAT_RLIMIT,
1588	    note_procstat_rlimit, p);
1589	size += register_note(list, NT_PROCSTAT_OSREL,
1590	    note_procstat_osrel, p);
1591	size += register_note(list, NT_PROCSTAT_PSSTRINGS,
1592	    __elfN(note_procstat_psstrings), p);
1593	size += register_note(list, NT_PROCSTAT_AUXV,
1594	    __elfN(note_procstat_auxv), p);
1595
1596	*sizep = size;
1597}
1598
1599static void
1600__elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1601    size_t notesz)
1602{
1603	Elf_Ehdr *ehdr;
1604	Elf_Phdr *phdr;
1605	struct phdr_closure phc;
1606
1607	ehdr = (Elf_Ehdr *)hdr;
1608	phdr = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr));
1609
1610	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1611	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1612	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1613	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1614	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1615	ehdr->e_ident[EI_DATA] = ELF_DATA;
1616	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1617	ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
1618	ehdr->e_ident[EI_ABIVERSION] = 0;
1619	ehdr->e_ident[EI_PAD] = 0;
1620	ehdr->e_type = ET_CORE;
1621	ehdr->e_machine = td->td_proc->p_elf_machine;
1622	ehdr->e_version = EV_CURRENT;
1623	ehdr->e_entry = 0;
1624	ehdr->e_phoff = sizeof(Elf_Ehdr);
1625	ehdr->e_flags = td->td_proc->p_elf_flags;
1626	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1627	ehdr->e_phentsize = sizeof(Elf_Phdr);
1628	ehdr->e_phnum = numsegs + 1;
1629	ehdr->e_shentsize = sizeof(Elf_Shdr);
1630	ehdr->e_shnum = 0;
1631	ehdr->e_shstrndx = SHN_UNDEF;
1632
1633	/*
1634	 * Fill in the program header entries.
1635	 */
1636
1637	/* The note segement. */
1638	phdr->p_type = PT_NOTE;
1639	phdr->p_offset = hdrsize;
1640	phdr->p_vaddr = 0;
1641	phdr->p_paddr = 0;
1642	phdr->p_filesz = notesz;
1643	phdr->p_memsz = 0;
1644	phdr->p_flags = PF_R;
1645	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1646	phdr++;
1647
1648	/* All the writable segments from the program. */
1649	phc.phdr = phdr;
1650	phc.offset = round_page(hdrsize + notesz);
1651	each_writable_segment(td, cb_put_phdr, &phc);
1652}
1653
1654static size_t
1655register_note(struct note_info_list *list, int type, outfunc_t out, void *arg)
1656{
1657	struct note_info *ninfo;
1658	size_t size, notesize;
1659
1660	size = 0;
1661	out(arg, NULL, &size);
1662	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1663	ninfo->type = type;
1664	ninfo->outfunc = out;
1665	ninfo->outarg = arg;
1666	ninfo->outsize = size;
1667	TAILQ_INSERT_TAIL(list, ninfo, link);
1668
1669	if (type == -1)
1670		return (size);
1671
1672	notesize = sizeof(Elf_Note) +		/* note header */
1673	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1674						/* note name */
1675	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1676
1677	return (notesize);
1678}
1679
1680static size_t
1681append_note_data(const void *src, void *dst, size_t len)
1682{
1683	size_t padded_len;
1684
1685	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
1686	if (dst != NULL) {
1687		bcopy(src, dst, len);
1688		bzero((char *)dst + len, padded_len - len);
1689	}
1690	return (padded_len);
1691}
1692
1693size_t
1694__elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
1695{
1696	Elf_Note *note;
1697	char *buf;
1698	size_t notesize;
1699
1700	buf = dst;
1701	if (buf != NULL) {
1702		note = (Elf_Note *)buf;
1703		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
1704		note->n_descsz = size;
1705		note->n_type = type;
1706		buf += sizeof(*note);
1707		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
1708		    sizeof(FREEBSD_ABI_VENDOR));
1709		append_note_data(src, buf, size);
1710		if (descp != NULL)
1711			*descp = buf;
1712	}
1713
1714	notesize = sizeof(Elf_Note) +		/* note header */
1715	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1716						/* note name */
1717	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1718
1719	return (notesize);
1720}
1721
1722static void
1723__elfN(putnote)(struct note_info *ninfo, struct sbuf *sb)
1724{
1725	Elf_Note note;
1726	ssize_t old_len, sect_len;
1727	size_t new_len, descsz, i;
1728
1729	if (ninfo->type == -1) {
1730		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
1731		return;
1732	}
1733
1734	note.n_namesz = sizeof(FREEBSD_ABI_VENDOR);
1735	note.n_descsz = ninfo->outsize;
1736	note.n_type = ninfo->type;
1737
1738	sbuf_bcat(sb, &note, sizeof(note));
1739	sbuf_start_section(sb, &old_len);
1740	sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR));
1741	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
1742	if (note.n_descsz == 0)
1743		return;
1744	sbuf_start_section(sb, &old_len);
1745	ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
1746	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
1747	if (sect_len < 0)
1748		return;
1749
1750	new_len = (size_t)sect_len;
1751	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
1752	if (new_len < descsz) {
1753		/*
1754		 * It is expected that individual note emitters will correctly
1755		 * predict their expected output size and fill up to that size
1756		 * themselves, padding in a format-specific way if needed.
1757		 * However, in case they don't, just do it here with zeros.
1758		 */
1759		for (i = 0; i < descsz - new_len; i++)
1760			sbuf_putc(sb, 0);
1761	} else if (new_len > descsz) {
1762		/*
1763		 * We can't always truncate sb -- we may have drained some
1764		 * of it already.
1765		 */
1766		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
1767		    "read it (%zu > %zu).  Since it is longer than "
1768		    "expected, this coredump's notes are corrupt.  THIS "
1769		    "IS A BUG in the note_procstat routine for type %u.\n",
1770		    __func__, (unsigned)note.n_type, new_len, descsz,
1771		    (unsigned)note.n_type));
1772	}
1773}
1774
1775/*
1776 * Miscellaneous note out functions.
1777 */
1778
1779#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1780#include <compat/freebsd32/freebsd32.h>
1781
1782typedef struct prstatus32 elf_prstatus_t;
1783typedef struct prpsinfo32 elf_prpsinfo_t;
1784typedef struct fpreg32 elf_prfpregset_t;
1785typedef struct fpreg32 elf_fpregset_t;
1786typedef struct reg32 elf_gregset_t;
1787typedef struct thrmisc32 elf_thrmisc_t;
1788#define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
1789typedef struct kinfo_proc32 elf_kinfo_proc_t;
1790typedef uint32_t elf_ps_strings_t;
1791#else
1792typedef prstatus_t elf_prstatus_t;
1793typedef prpsinfo_t elf_prpsinfo_t;
1794typedef prfpregset_t elf_prfpregset_t;
1795typedef prfpregset_t elf_fpregset_t;
1796typedef gregset_t elf_gregset_t;
1797typedef thrmisc_t elf_thrmisc_t;
1798#define ELF_KERN_PROC_MASK	0
1799typedef struct kinfo_proc elf_kinfo_proc_t;
1800typedef vm_offset_t elf_ps_strings_t;
1801#endif
1802
1803static void
1804__elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
1805{
1806	struct sbuf sbarg;
1807	size_t len;
1808	char *cp, *end;
1809	struct proc *p;
1810	elf_prpsinfo_t *psinfo;
1811	int error;
1812
1813	p = (struct proc *)arg;
1814	if (sb != NULL) {
1815		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
1816		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
1817		psinfo->pr_version = PRPSINFO_VERSION;
1818		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
1819		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
1820		PROC_LOCK(p);
1821		if (p->p_args != NULL) {
1822			len = sizeof(psinfo->pr_psargs) - 1;
1823			if (len > p->p_args->ar_length)
1824				len = p->p_args->ar_length;
1825			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
1826			PROC_UNLOCK(p);
1827			error = 0;
1828		} else {
1829			_PHOLD(p);
1830			PROC_UNLOCK(p);
1831			sbuf_new(&sbarg, psinfo->pr_psargs,
1832			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
1833			error = proc_getargv(curthread, p, &sbarg);
1834			PRELE(p);
1835			if (sbuf_finish(&sbarg) == 0)
1836				len = sbuf_len(&sbarg) - 1;
1837			else
1838				len = sizeof(psinfo->pr_psargs) - 1;
1839			sbuf_delete(&sbarg);
1840		}
1841		if (error || len == 0)
1842			strlcpy(psinfo->pr_psargs, p->p_comm,
1843			    sizeof(psinfo->pr_psargs));
1844		else {
1845			KASSERT(len < sizeof(psinfo->pr_psargs),
1846			    ("len is too long: %zu vs %zu", len,
1847			    sizeof(psinfo->pr_psargs)));
1848			cp = psinfo->pr_psargs;
1849			end = cp + len - 1;
1850			for (;;) {
1851				cp = memchr(cp, '\0', end - cp);
1852				if (cp == NULL)
1853					break;
1854				*cp = ' ';
1855			}
1856		}
1857		psinfo->pr_pid = p->p_pid;
1858		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
1859		free(psinfo, M_TEMP);
1860	}
1861	*sizep = sizeof(*psinfo);
1862}
1863
1864static void
1865__elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep)
1866{
1867	struct thread *td;
1868	elf_prstatus_t *status;
1869
1870	td = (struct thread *)arg;
1871	if (sb != NULL) {
1872		KASSERT(*sizep == sizeof(*status), ("invalid size"));
1873		status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK);
1874		status->pr_version = PRSTATUS_VERSION;
1875		status->pr_statussz = sizeof(elf_prstatus_t);
1876		status->pr_gregsetsz = sizeof(elf_gregset_t);
1877		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
1878		status->pr_osreldate = osreldate;
1879		status->pr_cursig = td->td_proc->p_sig;
1880		status->pr_pid = td->td_tid;
1881#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1882		fill_regs32(td, &status->pr_reg);
1883#else
1884		fill_regs(td, &status->pr_reg);
1885#endif
1886		sbuf_bcat(sb, status, sizeof(*status));
1887		free(status, M_TEMP);
1888	}
1889	*sizep = sizeof(*status);
1890}
1891
1892static void
1893__elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep)
1894{
1895	struct thread *td;
1896	elf_prfpregset_t *fpregset;
1897
1898	td = (struct thread *)arg;
1899	if (sb != NULL) {
1900		KASSERT(*sizep == sizeof(*fpregset), ("invalid size"));
1901		fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK);
1902#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1903		fill_fpregs32(td, fpregset);
1904#else
1905		fill_fpregs(td, fpregset);
1906#endif
1907		sbuf_bcat(sb, fpregset, sizeof(*fpregset));
1908		free(fpregset, M_TEMP);
1909	}
1910	*sizep = sizeof(*fpregset);
1911}
1912
1913static void
1914__elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep)
1915{
1916	struct thread *td;
1917	elf_thrmisc_t thrmisc;
1918
1919	td = (struct thread *)arg;
1920	if (sb != NULL) {
1921		KASSERT(*sizep == sizeof(thrmisc), ("invalid size"));
1922		bzero(&thrmisc._pad, sizeof(thrmisc._pad));
1923		strcpy(thrmisc.pr_tname, td->td_name);
1924		sbuf_bcat(sb, &thrmisc, sizeof(thrmisc));
1925	}
1926	*sizep = sizeof(thrmisc);
1927}
1928
1929/*
1930 * Allow for MD specific notes, as well as any MD
1931 * specific preparations for writing MI notes.
1932 */
1933static void
1934__elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
1935{
1936	struct thread *td;
1937	void *buf;
1938	size_t size;
1939
1940	td = (struct thread *)arg;
1941	size = *sizep;
1942	if (size != 0 && sb != NULL)
1943		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
1944	else
1945		buf = NULL;
1946	size = 0;
1947	__elfN(dump_thread)(td, buf, &size);
1948	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
1949	if (size != 0 && sb != NULL)
1950		sbuf_bcat(sb, buf, size);
1951	free(buf, M_TEMP);
1952	*sizep = size;
1953}
1954
1955#ifdef KINFO_PROC_SIZE
1956CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
1957#endif
1958
1959static void
1960__elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
1961{
1962	struct proc *p;
1963	size_t size;
1964	int structsize;
1965
1966	p = (struct proc *)arg;
1967	size = sizeof(structsize) + p->p_numthreads *
1968	    sizeof(elf_kinfo_proc_t);
1969
1970	if (sb != NULL) {
1971		KASSERT(*sizep == size, ("invalid size"));
1972		structsize = sizeof(elf_kinfo_proc_t);
1973		sbuf_bcat(sb, &structsize, sizeof(structsize));
1974		PROC_LOCK(p);
1975		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
1976	}
1977	*sizep = size;
1978}
1979
1980#ifdef KINFO_FILE_SIZE
1981CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
1982#endif
1983
1984static void
1985note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
1986{
1987	struct proc *p;
1988	size_t size, sect_sz, i;
1989	ssize_t start_len, sect_len;
1990	int structsize, filedesc_flags;
1991
1992	if (coredump_pack_fileinfo)
1993		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
1994	else
1995		filedesc_flags = 0;
1996
1997	p = (struct proc *)arg;
1998	structsize = sizeof(struct kinfo_file);
1999	if (sb == NULL) {
2000		size = 0;
2001		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2002		sbuf_set_drain(sb, sbuf_drain_count, &size);
2003		sbuf_bcat(sb, &structsize, sizeof(structsize));
2004		PROC_LOCK(p);
2005		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2006		sbuf_finish(sb);
2007		sbuf_delete(sb);
2008		*sizep = size;
2009	} else {
2010		sbuf_start_section(sb, &start_len);
2011
2012		sbuf_bcat(sb, &structsize, sizeof(structsize));
2013		PROC_LOCK(p);
2014		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2015		    filedesc_flags);
2016
2017		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2018		if (sect_len < 0)
2019			return;
2020		sect_sz = sect_len;
2021
2022		KASSERT(sect_sz <= *sizep,
2023		    ("kern_proc_filedesc_out did not respect maxlen; "
2024		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2025		     sect_sz - sizeof(structsize)));
2026
2027		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2028			sbuf_putc(sb, 0);
2029	}
2030}
2031
2032#ifdef KINFO_VMENTRY_SIZE
2033CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2034#endif
2035
2036static void
2037note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2038{
2039	struct proc *p;
2040	size_t size;
2041	int structsize, vmmap_flags;
2042
2043	if (coredump_pack_vmmapinfo)
2044		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2045	else
2046		vmmap_flags = 0;
2047
2048	p = (struct proc *)arg;
2049	structsize = sizeof(struct kinfo_vmentry);
2050	if (sb == NULL) {
2051		size = 0;
2052		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2053		sbuf_set_drain(sb, sbuf_drain_count, &size);
2054		sbuf_bcat(sb, &structsize, sizeof(structsize));
2055		PROC_LOCK(p);
2056		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2057		sbuf_finish(sb);
2058		sbuf_delete(sb);
2059		*sizep = size;
2060	} else {
2061		sbuf_bcat(sb, &structsize, sizeof(structsize));
2062		PROC_LOCK(p);
2063		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2064		    vmmap_flags);
2065	}
2066}
2067
2068static void
2069note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2070{
2071	struct proc *p;
2072	size_t size;
2073	int structsize;
2074
2075	p = (struct proc *)arg;
2076	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2077	if (sb != NULL) {
2078		KASSERT(*sizep == size, ("invalid size"));
2079		structsize = sizeof(gid_t);
2080		sbuf_bcat(sb, &structsize, sizeof(structsize));
2081		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2082		    sizeof(gid_t));
2083	}
2084	*sizep = size;
2085}
2086
2087static void
2088note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2089{
2090	struct proc *p;
2091	size_t size;
2092	int structsize;
2093
2094	p = (struct proc *)arg;
2095	size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask);
2096	if (sb != NULL) {
2097		KASSERT(*sizep == size, ("invalid size"));
2098		structsize = sizeof(p->p_fd->fd_cmask);
2099		sbuf_bcat(sb, &structsize, sizeof(structsize));
2100		sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask));
2101	}
2102	*sizep = size;
2103}
2104
2105static void
2106note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2107{
2108	struct proc *p;
2109	struct rlimit rlim[RLIM_NLIMITS];
2110	size_t size;
2111	int structsize, i;
2112
2113	p = (struct proc *)arg;
2114	size = sizeof(structsize) + sizeof(rlim);
2115	if (sb != NULL) {
2116		KASSERT(*sizep == size, ("invalid size"));
2117		structsize = sizeof(rlim);
2118		sbuf_bcat(sb, &structsize, sizeof(structsize));
2119		PROC_LOCK(p);
2120		for (i = 0; i < RLIM_NLIMITS; i++)
2121			lim_rlimit(p, i, &rlim[i]);
2122		PROC_UNLOCK(p);
2123		sbuf_bcat(sb, rlim, sizeof(rlim));
2124	}
2125	*sizep = size;
2126}
2127
2128static void
2129note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2130{
2131	struct proc *p;
2132	size_t size;
2133	int structsize;
2134
2135	p = (struct proc *)arg;
2136	size = sizeof(structsize) + sizeof(p->p_osrel);
2137	if (sb != NULL) {
2138		KASSERT(*sizep == size, ("invalid size"));
2139		structsize = sizeof(p->p_osrel);
2140		sbuf_bcat(sb, &structsize, sizeof(structsize));
2141		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2142	}
2143	*sizep = size;
2144}
2145
2146static void
2147__elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2148{
2149	struct proc *p;
2150	elf_ps_strings_t ps_strings;
2151	size_t size;
2152	int structsize;
2153
2154	p = (struct proc *)arg;
2155	size = sizeof(structsize) + sizeof(ps_strings);
2156	if (sb != NULL) {
2157		KASSERT(*sizep == size, ("invalid size"));
2158		structsize = sizeof(ps_strings);
2159#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2160		ps_strings = PTROUT(p->p_sysent->sv_psstrings);
2161#else
2162		ps_strings = p->p_sysent->sv_psstrings;
2163#endif
2164		sbuf_bcat(sb, &structsize, sizeof(structsize));
2165		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2166	}
2167	*sizep = size;
2168}
2169
2170static void
2171__elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2172{
2173	struct proc *p;
2174	size_t size;
2175	int structsize;
2176
2177	p = (struct proc *)arg;
2178	if (sb == NULL) {
2179		size = 0;
2180		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2181		sbuf_set_drain(sb, sbuf_drain_count, &size);
2182		sbuf_bcat(sb, &structsize, sizeof(structsize));
2183		PHOLD(p);
2184		proc_getauxv(curthread, p, sb);
2185		PRELE(p);
2186		sbuf_finish(sb);
2187		sbuf_delete(sb);
2188		*sizep = size;
2189	} else {
2190		structsize = sizeof(Elf_Auxinfo);
2191		sbuf_bcat(sb, &structsize, sizeof(structsize));
2192		PHOLD(p);
2193		proc_getauxv(curthread, p, sb);
2194		PRELE(p);
2195	}
2196}
2197
2198static boolean_t
2199__elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote,
2200    int32_t *osrel, const Elf_Phdr *pnote)
2201{
2202	const Elf_Note *note, *note0, *note_end;
2203	const char *note_name;
2204	char *buf;
2205	int i, error;
2206	boolean_t res;
2207
2208	/* We need some limit, might as well use PAGE_SIZE. */
2209	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2210		return (FALSE);
2211	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2212	if (pnote->p_offset > PAGE_SIZE ||
2213	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2214		VOP_UNLOCK(imgp->vp, 0);
2215		buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2216		vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
2217		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2218		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2219		    curthread->td_ucred, NOCRED, NULL, curthread);
2220		if (error != 0) {
2221			uprintf("i/o error PT_NOTE\n");
2222			res = FALSE;
2223			goto ret;
2224		}
2225		note = note0 = (const Elf_Note *)buf;
2226		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2227	} else {
2228		note = note0 = (const Elf_Note *)(imgp->image_header +
2229		    pnote->p_offset);
2230		note_end = (const Elf_Note *)(imgp->image_header +
2231		    pnote->p_offset + pnote->p_filesz);
2232		buf = NULL;
2233	}
2234	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2235		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2236		    (const char *)note < sizeof(Elf_Note)) {
2237			res = FALSE;
2238			goto ret;
2239		}
2240		if (note->n_namesz != checknote->hdr.n_namesz ||
2241		    note->n_descsz != checknote->hdr.n_descsz ||
2242		    note->n_type != checknote->hdr.n_type)
2243			goto nextnote;
2244		note_name = (const char *)(note + 1);
2245		if (note_name + checknote->hdr.n_namesz >=
2246		    (const char *)note_end || strncmp(checknote->vendor,
2247		    note_name, checknote->hdr.n_namesz) != 0)
2248			goto nextnote;
2249
2250		/*
2251		 * Fetch the osreldate for binary
2252		 * from the ELF OSABI-note if necessary.
2253		 */
2254		if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 &&
2255		    checknote->trans_osrel != NULL) {
2256			res = checknote->trans_osrel(note, osrel);
2257			goto ret;
2258		}
2259		res = TRUE;
2260		goto ret;
2261nextnote:
2262		note = (const Elf_Note *)((const char *)(note + 1) +
2263		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2264		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2265	}
2266	res = FALSE;
2267ret:
2268	free(buf, M_TEMP);
2269	return (res);
2270}
2271
2272/*
2273 * Try to find the appropriate ABI-note section for checknote,
2274 * fetch the osreldate for binary from the ELF OSABI-note. Only the
2275 * first page of the image is searched, the same as for headers.
2276 */
2277static boolean_t
2278__elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote,
2279    int32_t *osrel)
2280{
2281	const Elf_Phdr *phdr;
2282	const Elf_Ehdr *hdr;
2283	int i;
2284
2285	hdr = (const Elf_Ehdr *)imgp->image_header;
2286	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2287
2288	for (i = 0; i < hdr->e_phnum; i++) {
2289		if (phdr[i].p_type == PT_NOTE &&
2290		    __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i]))
2291			return (TRUE);
2292	}
2293	return (FALSE);
2294
2295}
2296
2297/*
2298 * Tell kern_execve.c about it, with a little help from the linker.
2299 */
2300static struct execsw __elfN(execsw) = {
2301	__CONCAT(exec_, __elfN(imgact)),
2302	__XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2303};
2304EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2305
2306#ifdef COMPRESS_USER_CORES
2307/*
2308 * Compress and write out a core segment for a user process.
2309 *
2310 * 'inbuf' is the starting address of a VM segment in the process' address
2311 * space that is to be compressed and written out to the core file.  'dest_buf'
2312 * is a buffer in the kernel's address space.  The segment is copied from
2313 * 'inbuf' to 'dest_buf' first before being processed by the compression
2314 * routine gzwrite().  This copying is necessary because the content of the VM
2315 * segment may change between the compression pass and the crc-computation pass
2316 * in gzwrite().  This is because realtime threads may preempt the UNIX kernel.
2317 *
2318 * If inbuf is NULL it is assumed that data is already copied to 'dest_buf'.
2319 */
2320static int
2321compress_core (gzFile file, char *inbuf, char *dest_buf, unsigned int len,
2322    struct thread *td)
2323{
2324	int len_compressed;
2325	int error = 0;
2326	unsigned int chunk_len;
2327
2328	while (len) {
2329		if (inbuf != NULL) {
2330			chunk_len = (len > CORE_BUF_SIZE) ? CORE_BUF_SIZE : len;
2331
2332			/*
2333			 * We can get EFAULT error here.  In that case zero out
2334			 * the current chunk of the segment.
2335			 */
2336			error = copyin(inbuf, dest_buf, chunk_len);
2337			if (error != 0) {
2338				bzero(dest_buf, chunk_len);
2339				error = 0;
2340			}
2341			inbuf += chunk_len;
2342		} else {
2343			chunk_len = len;
2344		}
2345		len_compressed = gzwrite(file, dest_buf, chunk_len);
2346
2347		EVENTHANDLER_INVOKE(app_coredump_progress, td, len_compressed);
2348
2349		if ((unsigned int)len_compressed != chunk_len) {
2350			log(LOG_WARNING,
2351			    "compress_core: length mismatch (0x%x returned, "
2352			    "0x%x expected)\n", len_compressed, chunk_len);
2353			EVENTHANDLER_INVOKE(app_coredump_error, td,
2354			    "compress_core: length mismatch %x -> %x",
2355			    chunk_len, len_compressed);
2356			error = EFAULT;
2357			break;
2358		}
2359		len -= chunk_len;
2360		maybe_yield();
2361	}
2362
2363	return (error);
2364}
2365#endif /* COMPRESS_USER_CORES */
2366
2367static vm_prot_t
2368__elfN(trans_prot)(Elf_Word flags)
2369{
2370	vm_prot_t prot;
2371
2372	prot = 0;
2373	if (flags & PF_X)
2374		prot |= VM_PROT_EXECUTE;
2375	if (flags & PF_W)
2376		prot |= VM_PROT_WRITE;
2377	if (flags & PF_R)
2378		prot |= VM_PROT_READ;
2379#if __ELF_WORD_SIZE == 32
2380#if defined(__amd64__) || defined(__ia64__)
2381	if (i386_read_exec && (flags & PF_R))
2382		prot |= VM_PROT_EXECUTE;
2383#endif
2384#endif
2385	return (prot);
2386}
2387
2388static Elf_Word
2389__elfN(untrans_prot)(vm_prot_t prot)
2390{
2391	Elf_Word flags;
2392
2393	flags = 0;
2394	if (prot & VM_PROT_EXECUTE)
2395		flags |= PF_X;
2396	if (prot & VM_PROT_READ)
2397		flags |= PF_R;
2398	if (prot & VM_PROT_WRITE)
2399		flags |= PF_W;
2400	return (flags);
2401}
2402