imgact_elf.c revision 306786
1/*-
2 * Copyright (c) 2000 David O'Brien
3 * Copyright (c) 1995-1996 S��ren Schmidt
4 * Copyright (c) 1996 Peter Wemm
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer
12 *    in this position and unchanged.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote products
17 *    derived from this software without specific prior written permission
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: stable/10/sys/kern/imgact_elf.c 306786 2016-10-06 21:17:18Z jhb $");
33
34#include "opt_capsicum.h"
35#include "opt_compat.h"
36#include "opt_core.h"
37
38#include <sys/param.h>
39#include <sys/capsicum.h>
40#include <sys/exec.h>
41#include <sys/fcntl.h>
42#include <sys/imgact.h>
43#include <sys/imgact_elf.h>
44#include <sys/jail.h>
45#include <sys/kernel.h>
46#include <sys/lock.h>
47#include <sys/malloc.h>
48#include <sys/mount.h>
49#include <sys/mman.h>
50#include <sys/namei.h>
51#include <sys/pioctl.h>
52#include <sys/proc.h>
53#include <sys/procfs.h>
54#include <sys/racct.h>
55#include <sys/resourcevar.h>
56#include <sys/rwlock.h>
57#include <sys/sbuf.h>
58#include <sys/sf_buf.h>
59#include <sys/smp.h>
60#include <sys/systm.h>
61#include <sys/signalvar.h>
62#include <sys/stat.h>
63#include <sys/sx.h>
64#include <sys/syscall.h>
65#include <sys/sysctl.h>
66#include <sys/sysent.h>
67#include <sys/vnode.h>
68#include <sys/syslog.h>
69#include <sys/eventhandler.h>
70#include <sys/user.h>
71
72#include <net/zlib.h>
73
74#include <vm/vm.h>
75#include <vm/vm_kern.h>
76#include <vm/vm_param.h>
77#include <vm/pmap.h>
78#include <vm/vm_map.h>
79#include <vm/vm_object.h>
80#include <vm/vm_extern.h>
81
82#include <machine/elf.h>
83#include <machine/md_var.h>
84
85#define ELF_NOTE_ROUNDSIZE	4
86#define OLD_EI_BRAND	8
87
88static int __elfN(check_header)(const Elf_Ehdr *hdr);
89static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
90    const char *interp, int interp_name_len, int32_t *osrel);
91static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
92    u_long *entry, size_t pagesize);
93static int __elfN(load_section)(struct image_params *imgp, vm_offset_t offset,
94    caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot,
95    size_t pagesize);
96static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
97static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note,
98    int32_t *osrel);
99static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
100static boolean_t __elfN(check_note)(struct image_params *imgp,
101    Elf_Brandnote *checknote, int32_t *osrel);
102static vm_prot_t __elfN(trans_prot)(Elf_Word);
103static Elf_Word __elfN(untrans_prot)(vm_prot_t);
104
105SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0,
106    "");
107
108#ifdef COMPRESS_USER_CORES
109static int compress_core(gzFile, char *, char *, unsigned int,
110    struct thread * td);
111#endif
112#define CORE_BUF_SIZE	(16 * 1024)
113
114int __elfN(fallback_brand) = -1;
115SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
116    fallback_brand, CTLFLAG_RW, &__elfN(fallback_brand), 0,
117    __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
118TUNABLE_INT("kern.elf" __XSTRING(__ELF_WORD_SIZE) ".fallback_brand",
119    &__elfN(fallback_brand));
120
121static int elf_legacy_coredump = 0;
122SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
123    &elf_legacy_coredump, 0, "");
124
125int __elfN(nxstack) =
126#if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */
127	1;
128#else
129	0;
130#endif
131SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
132    nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
133    __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
134
135#if __ELF_WORD_SIZE == 32
136#if defined(__amd64__) || defined(__ia64__)
137int i386_read_exec = 0;
138SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
139    "enable execution from readable segments");
140#endif
141#endif
142
143static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
144
145#define	trunc_page_ps(va, ps)	((va) & ~(ps - 1))
146#define	round_page_ps(va, ps)	(((va) + (ps - 1)) & ~(ps - 1))
147#define	aligned(a, t)	(trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a))
148
149static const char FREEBSD_ABI_VENDOR[] = "FreeBSD";
150
151Elf_Brandnote __elfN(freebsd_brandnote) = {
152	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
153	.hdr.n_descsz	= sizeof(int32_t),
154	.hdr.n_type	= 1,
155	.vendor		= FREEBSD_ABI_VENDOR,
156	.flags		= BN_TRANSLATE_OSREL,
157	.trans_osrel	= __elfN(freebsd_trans_osrel)
158};
159
160static boolean_t
161__elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
162{
163	uintptr_t p;
164
165	p = (uintptr_t)(note + 1);
166	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
167	*osrel = *(const int32_t *)(p);
168
169	return (TRUE);
170}
171
172static const char GNU_ABI_VENDOR[] = "GNU";
173static int GNU_KFREEBSD_ABI_DESC = 3;
174
175Elf_Brandnote __elfN(kfreebsd_brandnote) = {
176	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
177	.hdr.n_descsz	= 16,	/* XXX at least 16 */
178	.hdr.n_type	= 1,
179	.vendor		= GNU_ABI_VENDOR,
180	.flags		= BN_TRANSLATE_OSREL,
181	.trans_osrel	= kfreebsd_trans_osrel
182};
183
184static boolean_t
185kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
186{
187	const Elf32_Word *desc;
188	uintptr_t p;
189
190	p = (uintptr_t)(note + 1);
191	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
192
193	desc = (const Elf32_Word *)p;
194	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
195		return (FALSE);
196
197	/*
198	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
199	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
200	 */
201	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
202
203	return (TRUE);
204}
205
206int
207__elfN(insert_brand_entry)(Elf_Brandinfo *entry)
208{
209	int i;
210
211	for (i = 0; i < MAX_BRANDS; i++) {
212		if (elf_brand_list[i] == NULL) {
213			elf_brand_list[i] = entry;
214			break;
215		}
216	}
217	if (i == MAX_BRANDS) {
218		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
219			__func__, entry);
220		return (-1);
221	}
222	return (0);
223}
224
225int
226__elfN(remove_brand_entry)(Elf_Brandinfo *entry)
227{
228	int i;
229
230	for (i = 0; i < MAX_BRANDS; i++) {
231		if (elf_brand_list[i] == entry) {
232			elf_brand_list[i] = NULL;
233			break;
234		}
235	}
236	if (i == MAX_BRANDS)
237		return (-1);
238	return (0);
239}
240
241int
242__elfN(brand_inuse)(Elf_Brandinfo *entry)
243{
244	struct proc *p;
245	int rval = FALSE;
246
247	sx_slock(&allproc_lock);
248	FOREACH_PROC_IN_SYSTEM(p) {
249		if (p->p_sysent == entry->sysvec) {
250			rval = TRUE;
251			break;
252		}
253	}
254	sx_sunlock(&allproc_lock);
255
256	return (rval);
257}
258
259static Elf_Brandinfo *
260__elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
261    int interp_name_len, int32_t *osrel)
262{
263	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
264	Elf_Brandinfo *bi, *bi_m;
265	boolean_t ret;
266	int i;
267
268	/*
269	 * We support four types of branding -- (1) the ELF EI_OSABI field
270	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
271	 * branding w/in the ELF header, (3) path of the `interp_path'
272	 * field, and (4) the ".note.ABI-tag" ELF section.
273	 */
274
275	/* Look for an ".note.ABI-tag" ELF section */
276	bi_m = NULL;
277	for (i = 0; i < MAX_BRANDS; i++) {
278		bi = elf_brand_list[i];
279		if (bi == NULL)
280			continue;
281		if (hdr->e_machine == bi->machine && (bi->flags &
282		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
283			ret = __elfN(check_note)(imgp, bi->brand_note, osrel);
284			/*
285			 * If note checker claimed the binary, but the
286			 * interpreter path in the image does not
287			 * match default one for the brand, try to
288			 * search for other brands with the same
289			 * interpreter.  Either there is better brand
290			 * with the right interpreter, or, failing
291			 * this, we return first brand which accepted
292			 * our note and, optionally, header.
293			 */
294			if (ret && bi_m == NULL && (strlen(bi->interp_path) +
295			    1 != interp_name_len || strncmp(interp,
296			    bi->interp_path, interp_name_len) != 0)) {
297				bi_m = bi;
298				ret = 0;
299			}
300			if (ret)
301				return (bi);
302		}
303	}
304	if (bi_m != NULL)
305		return (bi_m);
306
307	/* If the executable has a brand, search for it in the brand list. */
308	for (i = 0; i < MAX_BRANDS; i++) {
309		bi = elf_brand_list[i];
310		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
311			continue;
312		if (hdr->e_machine == bi->machine &&
313		    (hdr->e_ident[EI_OSABI] == bi->brand ||
314		    strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
315		    bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0))
316			return (bi);
317	}
318
319	/* Lacking a known brand, search for a recognized interpreter. */
320	if (interp != NULL) {
321		for (i = 0; i < MAX_BRANDS; i++) {
322			bi = elf_brand_list[i];
323			if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
324				continue;
325			if (hdr->e_machine == bi->machine &&
326			    /* ELF image p_filesz includes terminating zero */
327			    strlen(bi->interp_path) + 1 == interp_name_len &&
328			    strncmp(interp, bi->interp_path, interp_name_len)
329			    == 0)
330				return (bi);
331		}
332	}
333
334	/* Lacking a recognized interpreter, try the default brand */
335	for (i = 0; i < MAX_BRANDS; i++) {
336		bi = elf_brand_list[i];
337		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
338			continue;
339		if (hdr->e_machine == bi->machine &&
340		    __elfN(fallback_brand) == bi->brand)
341			return (bi);
342	}
343	return (NULL);
344}
345
346static int
347__elfN(check_header)(const Elf_Ehdr *hdr)
348{
349	Elf_Brandinfo *bi;
350	int i;
351
352	if (!IS_ELF(*hdr) ||
353	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
354	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
355	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
356	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
357	    hdr->e_version != ELF_TARG_VER)
358		return (ENOEXEC);
359
360	/*
361	 * Make sure we have at least one brand for this machine.
362	 */
363
364	for (i = 0; i < MAX_BRANDS; i++) {
365		bi = elf_brand_list[i];
366		if (bi != NULL && bi->machine == hdr->e_machine)
367			break;
368	}
369	if (i == MAX_BRANDS)
370		return (ENOEXEC);
371
372	return (0);
373}
374
375static int
376__elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
377    vm_offset_t start, vm_offset_t end, vm_prot_t prot)
378{
379	struct sf_buf *sf;
380	int error;
381	vm_offset_t off;
382
383	/*
384	 * Create the page if it doesn't exist yet. Ignore errors.
385	 */
386	vm_map_lock(map);
387	vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end),
388	    VM_PROT_ALL, VM_PROT_ALL, 0);
389	vm_map_unlock(map);
390
391	/*
392	 * Find the page from the underlying object.
393	 */
394	if (object) {
395		sf = vm_imgact_map_page(object, offset);
396		if (sf == NULL)
397			return (KERN_FAILURE);
398		off = offset - trunc_page(offset);
399		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
400		    end - start);
401		vm_imgact_unmap_page(sf);
402		if (error) {
403			return (KERN_FAILURE);
404		}
405	}
406
407	return (KERN_SUCCESS);
408}
409
410static int
411__elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
412    vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow)
413{
414	struct sf_buf *sf;
415	vm_offset_t off;
416	vm_size_t sz;
417	int error, rv;
418
419	if (start != trunc_page(start)) {
420		rv = __elfN(map_partial)(map, object, offset, start,
421		    round_page(start), prot);
422		if (rv)
423			return (rv);
424		offset += round_page(start) - start;
425		start = round_page(start);
426	}
427	if (end != round_page(end)) {
428		rv = __elfN(map_partial)(map, object, offset +
429		    trunc_page(end) - start, trunc_page(end), end, prot);
430		if (rv)
431			return (rv);
432		end = trunc_page(end);
433	}
434	if (end > start) {
435		if (offset & PAGE_MASK) {
436			/*
437			 * The mapping is not page aligned. This means we have
438			 * to copy the data. Sigh.
439			 */
440			rv = vm_map_find(map, NULL, 0, &start, end - start, 0,
441			    VMFS_NO_SPACE, prot | VM_PROT_WRITE, VM_PROT_ALL,
442			    0);
443			if (rv)
444				return (rv);
445			if (object == NULL)
446				return (KERN_SUCCESS);
447			for (; start < end; start += sz) {
448				sf = vm_imgact_map_page(object, offset);
449				if (sf == NULL)
450					return (KERN_FAILURE);
451				off = offset - trunc_page(offset);
452				sz = end - start;
453				if (sz > PAGE_SIZE - off)
454					sz = PAGE_SIZE - off;
455				error = copyout((caddr_t)sf_buf_kva(sf) + off,
456				    (caddr_t)start, sz);
457				vm_imgact_unmap_page(sf);
458				if (error) {
459					return (KERN_FAILURE);
460				}
461				offset += sz;
462			}
463			rv = KERN_SUCCESS;
464		} else {
465			vm_object_reference(object);
466			vm_map_lock(map);
467			rv = vm_map_insert(map, object, offset, start, end,
468			    prot, VM_PROT_ALL, cow);
469			vm_map_unlock(map);
470			if (rv != KERN_SUCCESS)
471				vm_object_deallocate(object);
472		}
473		return (rv);
474	} else {
475		return (KERN_SUCCESS);
476	}
477}
478
479static int
480__elfN(load_section)(struct image_params *imgp, vm_offset_t offset,
481    caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot,
482    size_t pagesize)
483{
484	struct sf_buf *sf;
485	size_t map_len;
486	vm_map_t map;
487	vm_object_t object;
488	vm_offset_t map_addr;
489	int error, rv, cow;
490	size_t copy_len;
491	vm_offset_t file_addr;
492
493	/*
494	 * It's necessary to fail if the filsz + offset taken from the
495	 * header is greater than the actual file pager object's size.
496	 * If we were to allow this, then the vm_map_find() below would
497	 * walk right off the end of the file object and into the ether.
498	 *
499	 * While I'm here, might as well check for something else that
500	 * is invalid: filsz cannot be greater than memsz.
501	 */
502	if ((off_t)filsz + offset > imgp->attr->va_size || filsz > memsz) {
503		uprintf("elf_load_section: truncated ELF file\n");
504		return (ENOEXEC);
505	}
506
507	object = imgp->object;
508	map = &imgp->proc->p_vmspace->vm_map;
509	map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize);
510	file_addr = trunc_page_ps(offset, pagesize);
511
512	/*
513	 * We have two choices.  We can either clear the data in the last page
514	 * of an oversized mapping, or we can start the anon mapping a page
515	 * early and copy the initialized data into that first page.  We
516	 * choose the second..
517	 */
518	if (memsz > filsz)
519		map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr;
520	else
521		map_len = round_page_ps(offset + filsz, pagesize) - file_addr;
522
523	if (map_len != 0) {
524		/* cow flags: don't dump readonly sections in core */
525		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
526		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
527
528		rv = __elfN(map_insert)(map,
529				      object,
530				      file_addr,	/* file offset */
531				      map_addr,		/* virtual start */
532				      map_addr + map_len,/* virtual end */
533				      prot,
534				      cow);
535		if (rv != KERN_SUCCESS)
536			return (EINVAL);
537
538		/* we can stop now if we've covered it all */
539		if (memsz == filsz) {
540			return (0);
541		}
542	}
543
544
545	/*
546	 * We have to get the remaining bit of the file into the first part
547	 * of the oversized map segment.  This is normally because the .data
548	 * segment in the file is extended to provide bss.  It's a neat idea
549	 * to try and save a page, but it's a pain in the behind to implement.
550	 */
551	copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize);
552	map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize);
553	map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) -
554	    map_addr;
555
556	/* This had damn well better be true! */
557	if (map_len != 0) {
558		rv = __elfN(map_insert)(map, NULL, 0, map_addr, map_addr +
559		    map_len, VM_PROT_ALL, 0);
560		if (rv != KERN_SUCCESS) {
561			return (EINVAL);
562		}
563	}
564
565	if (copy_len != 0) {
566		vm_offset_t off;
567
568		sf = vm_imgact_map_page(object, offset + filsz);
569		if (sf == NULL)
570			return (EIO);
571
572		/* send the page fragment to user space */
573		off = trunc_page_ps(offset + filsz, pagesize) -
574		    trunc_page(offset + filsz);
575		error = copyout((caddr_t)sf_buf_kva(sf) + off,
576		    (caddr_t)map_addr, copy_len);
577		vm_imgact_unmap_page(sf);
578		if (error) {
579			return (error);
580		}
581	}
582
583	/*
584	 * set it to the specified protection.
585	 * XXX had better undo the damage from pasting over the cracks here!
586	 */
587	vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
588	    map_len), prot, FALSE);
589
590	return (0);
591}
592
593/*
594 * Load the file "file" into memory.  It may be either a shared object
595 * or an executable.
596 *
597 * The "addr" reference parameter is in/out.  On entry, it specifies
598 * the address where a shared object should be loaded.  If the file is
599 * an executable, this value is ignored.  On exit, "addr" specifies
600 * where the file was actually loaded.
601 *
602 * The "entry" reference parameter is out only.  On exit, it specifies
603 * the entry point for the loaded file.
604 */
605static int
606__elfN(load_file)(struct proc *p, const char *file, u_long *addr,
607	u_long *entry, size_t pagesize)
608{
609	struct {
610		struct nameidata nd;
611		struct vattr attr;
612		struct image_params image_params;
613	} *tempdata;
614	const Elf_Ehdr *hdr = NULL;
615	const Elf_Phdr *phdr = NULL;
616	struct nameidata *nd;
617	struct vattr *attr;
618	struct image_params *imgp;
619	vm_prot_t prot;
620	u_long rbase;
621	u_long base_addr = 0;
622	int error, i, numsegs;
623
624#ifdef CAPABILITY_MODE
625	/*
626	 * XXXJA: This check can go away once we are sufficiently confident
627	 * that the checks in namei() are correct.
628	 */
629	if (IN_CAPABILITY_MODE(curthread))
630		return (ECAPMODE);
631#endif
632
633	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
634	nd = &tempdata->nd;
635	attr = &tempdata->attr;
636	imgp = &tempdata->image_params;
637
638	/*
639	 * Initialize part of the common data
640	 */
641	imgp->proc = p;
642	imgp->attr = attr;
643	imgp->firstpage = NULL;
644	imgp->image_header = NULL;
645	imgp->object = NULL;
646	imgp->execlabel = NULL;
647
648	NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread);
649	if ((error = namei(nd)) != 0) {
650		nd->ni_vp = NULL;
651		goto fail;
652	}
653	NDFREE(nd, NDF_ONLY_PNBUF);
654	imgp->vp = nd->ni_vp;
655
656	/*
657	 * Check permissions, modes, uid, etc on the file, and "open" it.
658	 */
659	error = exec_check_permissions(imgp);
660	if (error)
661		goto fail;
662
663	error = exec_map_first_page(imgp);
664	if (error)
665		goto fail;
666
667	/*
668	 * Also make certain that the interpreter stays the same, so set
669	 * its VV_TEXT flag, too.
670	 */
671	VOP_SET_TEXT(nd->ni_vp);
672
673	imgp->object = nd->ni_vp->v_object;
674
675	hdr = (const Elf_Ehdr *)imgp->image_header;
676	if ((error = __elfN(check_header)(hdr)) != 0)
677		goto fail;
678	if (hdr->e_type == ET_DYN)
679		rbase = *addr;
680	else if (hdr->e_type == ET_EXEC)
681		rbase = 0;
682	else {
683		error = ENOEXEC;
684		goto fail;
685	}
686
687	/* Only support headers that fit within first page for now      */
688	if ((hdr->e_phoff > PAGE_SIZE) ||
689	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
690		error = ENOEXEC;
691		goto fail;
692	}
693
694	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
695	if (!aligned(phdr, Elf_Addr)) {
696		error = ENOEXEC;
697		goto fail;
698	}
699
700	for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) {
701		if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) {
702			/* Loadable segment */
703			prot = __elfN(trans_prot)(phdr[i].p_flags);
704			error = __elfN(load_section)(imgp, phdr[i].p_offset,
705			    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
706			    phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize);
707			if (error != 0)
708				goto fail;
709			/*
710			 * Establish the base address if this is the
711			 * first segment.
712			 */
713			if (numsegs == 0)
714  				base_addr = trunc_page(phdr[i].p_vaddr +
715				    rbase);
716			numsegs++;
717		}
718	}
719	*addr = base_addr;
720	*entry = (unsigned long)hdr->e_entry + rbase;
721
722fail:
723	if (imgp->firstpage)
724		exec_unmap_first_page(imgp);
725
726	if (nd->ni_vp)
727		vput(nd->ni_vp);
728
729	free(tempdata, M_TEMP);
730
731	return (error);
732}
733
734static int
735__CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
736{
737	struct thread *td;
738	const Elf_Ehdr *hdr;
739	const Elf_Phdr *phdr;
740	Elf_Auxargs *elf_auxargs;
741	struct vmspace *vmspace;
742	const char *err_str, *newinterp;
743	char *interp, *interp_buf, *path;
744	Elf_Brandinfo *brand_info;
745	struct sysentvec *sv;
746	vm_prot_t prot;
747	u_long text_size, data_size, total_size, text_addr, data_addr;
748	u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr;
749	int32_t osrel;
750	int error, i, n, interp_name_len, have_interp;
751
752	hdr = (const Elf_Ehdr *)imgp->image_header;
753
754	/*
755	 * Do we have a valid ELF header ?
756	 *
757	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
758	 * if particular brand doesn't support it.
759	 */
760	if (__elfN(check_header)(hdr) != 0 ||
761	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
762		return (-1);
763
764	/*
765	 * From here on down, we return an errno, not -1, as we've
766	 * detected an ELF file.
767	 */
768
769	if ((hdr->e_phoff > PAGE_SIZE) ||
770	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
771		/* Only support headers in first page for now */
772		uprintf("Program headers not in the first page\n");
773		return (ENOEXEC);
774	}
775	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
776	if (!aligned(phdr, Elf_Addr)) {
777		uprintf("Unaligned program headers\n");
778		return (ENOEXEC);
779	}
780
781	n = error = 0;
782	baddr = 0;
783	osrel = 0;
784	text_size = data_size = total_size = text_addr = data_addr = 0;
785	entry = proghdr = 0;
786	interp_name_len = 0;
787	err_str = newinterp = NULL;
788	interp = interp_buf = NULL;
789	td = curthread;
790
791	for (i = 0; i < hdr->e_phnum; i++) {
792		switch (phdr[i].p_type) {
793		case PT_LOAD:
794			if (n == 0)
795				baddr = phdr[i].p_vaddr;
796			n++;
797			break;
798		case PT_INTERP:
799			/* Path to interpreter */
800			if (phdr[i].p_filesz > MAXPATHLEN) {
801				uprintf("Invalid PT_INTERP\n");
802				error = ENOEXEC;
803				goto ret;
804			}
805			if (interp != NULL) {
806				uprintf("Multiple PT_INTERP headers\n");
807				error = ENOEXEC;
808				goto ret;
809			}
810			interp_name_len = phdr[i].p_filesz;
811			if (phdr[i].p_offset > PAGE_SIZE ||
812			    interp_name_len > PAGE_SIZE - phdr[i].p_offset) {
813				VOP_UNLOCK(imgp->vp, 0);
814				interp_buf = malloc(interp_name_len + 1, M_TEMP,
815				    M_WAITOK);
816				vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
817				error = vn_rdwr(UIO_READ, imgp->vp, interp_buf,
818				    interp_name_len, phdr[i].p_offset,
819				    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
820				    NOCRED, NULL, td);
821				if (error != 0) {
822					uprintf("i/o error PT_INTERP\n");
823					goto ret;
824				}
825				interp_buf[interp_name_len] = '\0';
826				interp = interp_buf;
827			} else {
828				interp = __DECONST(char *, imgp->image_header) +
829				    phdr[i].p_offset;
830			}
831			break;
832		case PT_GNU_STACK:
833			if (__elfN(nxstack))
834				imgp->stack_prot =
835				    __elfN(trans_prot)(phdr[i].p_flags);
836			imgp->stack_sz = phdr[i].p_memsz;
837			break;
838		}
839	}
840
841	brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len,
842	    &osrel);
843	if (brand_info == NULL) {
844		uprintf("ELF binary type \"%u\" not known.\n",
845		    hdr->e_ident[EI_OSABI]);
846		error = ENOEXEC;
847		goto ret;
848	}
849	if (hdr->e_type == ET_DYN) {
850		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
851			uprintf("Cannot execute shared object\n");
852			error = ENOEXEC;
853			goto ret;
854		}
855		/*
856		 * Honour the base load address from the dso if it is
857		 * non-zero for some reason.
858		 */
859		if (baddr == 0)
860			et_dyn_addr = ET_DYN_LOAD_ADDR;
861		else
862			et_dyn_addr = 0;
863	} else
864		et_dyn_addr = 0;
865	sv = brand_info->sysvec;
866	if (interp != NULL && brand_info->interp_newpath != NULL)
867		newinterp = brand_info->interp_newpath;
868
869	/*
870	 * Avoid a possible deadlock if the current address space is destroyed
871	 * and that address space maps the locked vnode.  In the common case,
872	 * the locked vnode's v_usecount is decremented but remains greater
873	 * than zero.  Consequently, the vnode lock is not needed by vrele().
874	 * However, in cases where the vnode lock is external, such as nullfs,
875	 * v_usecount may become zero.
876	 *
877	 * The VV_TEXT flag prevents modifications to the executable while
878	 * the vnode is unlocked.
879	 */
880	VOP_UNLOCK(imgp->vp, 0);
881
882	error = exec_new_vmspace(imgp, sv);
883	imgp->proc->p_sysent = sv;
884
885	vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
886	if (error != 0)
887		goto ret;
888
889	for (i = 0; i < hdr->e_phnum; i++) {
890		switch (phdr[i].p_type) {
891		case PT_LOAD:	/* Loadable segment */
892			if (phdr[i].p_memsz == 0)
893				break;
894			prot = __elfN(trans_prot)(phdr[i].p_flags);
895			error = __elfN(load_section)(imgp, phdr[i].p_offset,
896			    (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr,
897			    phdr[i].p_memsz, phdr[i].p_filesz, prot,
898			    sv->sv_pagesize);
899			if (error != 0)
900				goto ret;
901
902			/*
903			 * If this segment contains the program headers,
904			 * remember their virtual address for the AT_PHDR
905			 * aux entry. Static binaries don't usually include
906			 * a PT_PHDR entry.
907			 */
908			if (phdr[i].p_offset == 0 &&
909			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
910				<= phdr[i].p_filesz)
911				proghdr = phdr[i].p_vaddr + hdr->e_phoff +
912				    et_dyn_addr;
913
914			seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
915			seg_size = round_page(phdr[i].p_memsz +
916			    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
917
918			/*
919			 * Make the largest executable segment the official
920			 * text segment and all others data.
921			 *
922			 * Note that obreak() assumes that data_addr +
923			 * data_size == end of data load area, and the ELF
924			 * file format expects segments to be sorted by
925			 * address.  If multiple data segments exist, the
926			 * last one will be used.
927			 */
928
929			if (phdr[i].p_flags & PF_X && text_size < seg_size) {
930				text_size = seg_size;
931				text_addr = seg_addr;
932			} else {
933				data_size = seg_size;
934				data_addr = seg_addr;
935			}
936			total_size += seg_size;
937			break;
938		case PT_PHDR: 	/* Program header table info */
939			proghdr = phdr[i].p_vaddr + et_dyn_addr;
940			break;
941		default:
942			break;
943		}
944	}
945
946	if (data_addr == 0 && data_size == 0) {
947		data_addr = text_addr;
948		data_size = text_size;
949	}
950
951	entry = (u_long)hdr->e_entry + et_dyn_addr;
952
953	/*
954	 * Check limits.  It should be safe to check the
955	 * limits after loading the segments since we do
956	 * not actually fault in all the segments pages.
957	 */
958	PROC_LOCK(imgp->proc);
959	if (data_size > lim_cur(imgp->proc, RLIMIT_DATA))
960		err_str = "Data segment size exceeds process limit";
961	else if (text_size > maxtsiz)
962		err_str = "Text segment size exceeds system limit";
963	else if (total_size > lim_cur(imgp->proc, RLIMIT_VMEM))
964		err_str = "Total segment size exceeds process limit";
965	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
966		err_str = "Data segment size exceeds resource limit";
967	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
968		err_str = "Total segment size exceeds resource limit";
969	if (err_str != NULL) {
970		PROC_UNLOCK(imgp->proc);
971		uprintf("%s\n", err_str);
972		error = ENOMEM;
973		goto ret;
974	}
975
976	vmspace = imgp->proc->p_vmspace;
977	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
978	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
979	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
980	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
981
982	/*
983	 * We load the dynamic linker where a userland call
984	 * to mmap(0, ...) would put it.  The rationale behind this
985	 * calculation is that it leaves room for the heap to grow to
986	 * its maximum allowed size.
987	 */
988	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(imgp->proc,
989	    RLIMIT_DATA));
990	PROC_UNLOCK(imgp->proc);
991
992	imgp->entry_addr = entry;
993
994	if (interp != NULL) {
995		have_interp = FALSE;
996		VOP_UNLOCK(imgp->vp, 0);
997		if (brand_info->emul_path != NULL &&
998		    brand_info->emul_path[0] != '\0') {
999			path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1000			snprintf(path, MAXPATHLEN, "%s%s",
1001			    brand_info->emul_path, interp);
1002			error = __elfN(load_file)(imgp->proc, path, &addr,
1003			    &imgp->entry_addr, sv->sv_pagesize);
1004			free(path, M_TEMP);
1005			if (error == 0)
1006				have_interp = TRUE;
1007		}
1008		if (!have_interp && newinterp != NULL &&
1009		    (brand_info->interp_path == NULL ||
1010		    strcmp(interp, brand_info->interp_path) == 0)) {
1011			error = __elfN(load_file)(imgp->proc, newinterp, &addr,
1012			    &imgp->entry_addr, sv->sv_pagesize);
1013			if (error == 0)
1014				have_interp = TRUE;
1015		}
1016		if (!have_interp) {
1017			error = __elfN(load_file)(imgp->proc, interp, &addr,
1018			    &imgp->entry_addr, sv->sv_pagesize);
1019		}
1020		vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
1021		if (error != 0) {
1022			uprintf("ELF interpreter %s not found, error %d\n",
1023			    interp, error);
1024			goto ret;
1025		}
1026	} else
1027		addr = et_dyn_addr;
1028
1029	/*
1030	 * Construct auxargs table (used by the fixup routine)
1031	 */
1032	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1033	elf_auxargs->execfd = -1;
1034	elf_auxargs->phdr = proghdr;
1035	elf_auxargs->phent = hdr->e_phentsize;
1036	elf_auxargs->phnum = hdr->e_phnum;
1037	elf_auxargs->pagesz = PAGE_SIZE;
1038	elf_auxargs->base = addr;
1039	elf_auxargs->flags = 0;
1040	elf_auxargs->entry = entry;
1041
1042	imgp->auxargs = elf_auxargs;
1043	imgp->interpreted = 0;
1044	imgp->reloc_base = addr;
1045	imgp->proc->p_osrel = osrel;
1046
1047 ret:
1048	free(interp_buf, M_TEMP);
1049	return (error);
1050}
1051
1052#define	suword __CONCAT(suword, __ELF_WORD_SIZE)
1053
1054int
1055__elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp)
1056{
1057	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1058	Elf_Addr *base;
1059	Elf_Addr *pos;
1060
1061	base = (Elf_Addr *)*stack_base;
1062	pos = base + (imgp->args->argc + imgp->args->envc + 2);
1063
1064	if (args->execfd != -1)
1065		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1066	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1067	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1068	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1069	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1070	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1071	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1072	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1073	if (imgp->execpathp != 0)
1074		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
1075	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1076	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1077	if (imgp->canary != 0) {
1078		AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary);
1079		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1080	}
1081	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1082	if (imgp->pagesizes != 0) {
1083		AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes);
1084		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1085	}
1086	if (imgp->sysent->sv_timekeep_base != 0) {
1087		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1088		    imgp->sysent->sv_timekeep_base);
1089	}
1090	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1091	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1092	    imgp->sysent->sv_stackprot);
1093	AUXARGS_ENTRY(pos, AT_NULL, 0);
1094
1095	free(imgp->auxargs, M_TEMP);
1096	imgp->auxargs = NULL;
1097
1098	base--;
1099	suword(base, (long)imgp->args->argc);
1100	*stack_base = (register_t *)base;
1101	return (0);
1102}
1103
1104/*
1105 * Code for generating ELF core dumps.
1106 */
1107
1108typedef void (*segment_callback)(vm_map_entry_t, void *);
1109
1110/* Closure for cb_put_phdr(). */
1111struct phdr_closure {
1112	Elf_Phdr *phdr;		/* Program header to fill in */
1113	Elf_Off offset;		/* Offset of segment in core file */
1114};
1115
1116/* Closure for cb_size_segment(). */
1117struct sseg_closure {
1118	int count;		/* Count of writable segments. */
1119	size_t size;		/* Total size of all writable segments. */
1120};
1121
1122typedef void (*outfunc_t)(void *, struct sbuf *, size_t *);
1123
1124struct note_info {
1125	int		type;		/* Note type. */
1126	outfunc_t 	outfunc; 	/* Output function. */
1127	void		*outarg;	/* Argument for the output function. */
1128	size_t		outsize;	/* Output size. */
1129	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1130};
1131
1132TAILQ_HEAD(note_info_list, note_info);
1133
1134static void cb_put_phdr(vm_map_entry_t, void *);
1135static void cb_size_segment(vm_map_entry_t, void *);
1136static void each_writable_segment(struct thread *, segment_callback, void *);
1137static int __elfN(corehdr)(struct thread *, struct vnode *, struct ucred *,
1138    int, void *, size_t, struct note_info_list *, size_t, gzFile);
1139static void __elfN(prepare_notes)(struct thread *, struct note_info_list *,
1140    size_t *);
1141static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t);
1142static void __elfN(putnote)(struct note_info *, struct sbuf *);
1143static size_t register_note(struct note_info_list *, int, outfunc_t, void *);
1144static int sbuf_drain_core_output(void *, const char *, int);
1145static int sbuf_drain_count(void *arg, const char *data, int len);
1146
1147static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *);
1148static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1149static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *);
1150static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1151static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *);
1152static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1153static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1154static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1155static void note_procstat_files(void *, struct sbuf *, size_t *);
1156static void note_procstat_groups(void *, struct sbuf *, size_t *);
1157static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1158static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1159static void note_procstat_umask(void *, struct sbuf *, size_t *);
1160static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1161
1162#ifdef COMPRESS_USER_CORES
1163extern int compress_user_cores;
1164extern int compress_user_cores_gzlevel;
1165#endif
1166
1167static int
1168core_output(struct vnode *vp, void *base, size_t len, off_t offset,
1169    struct ucred *active_cred, struct ucred *file_cred,
1170    struct thread *td, char *core_buf, gzFile gzfile) {
1171
1172	int error;
1173	if (gzfile) {
1174#ifdef COMPRESS_USER_CORES
1175		error = compress_core(gzfile, base, core_buf, len, td);
1176#else
1177		panic("shouldn't be here");
1178#endif
1179	} else {
1180		error = vn_rdwr_inchunks(UIO_WRITE, vp, base, len, offset,
1181		    UIO_USERSPACE, IO_UNIT | IO_DIRECT, active_cred, file_cred,
1182		    NULL, td);
1183	}
1184	return (error);
1185}
1186
1187/* Coredump output parameters for sbuf drain routine. */
1188struct sbuf_drain_core_params {
1189	off_t		offset;
1190	struct ucred	*active_cred;
1191	struct ucred	*file_cred;
1192	struct thread	*td;
1193	struct vnode	*vp;
1194#ifdef COMPRESS_USER_CORES
1195	gzFile		gzfile;
1196#endif
1197};
1198
1199/*
1200 * Drain into a core file.
1201 */
1202static int
1203sbuf_drain_core_output(void *arg, const char *data, int len)
1204{
1205	struct sbuf_drain_core_params *p;
1206	int error, locked;
1207
1208	p = (struct sbuf_drain_core_params *)arg;
1209
1210	/*
1211	 * Some kern_proc out routines that print to this sbuf may
1212	 * call us with the process lock held. Draining with the
1213	 * non-sleepable lock held is unsafe. The lock is needed for
1214	 * those routines when dumping a live process. In our case we
1215	 * can safely release the lock before draining and acquire
1216	 * again after.
1217	 */
1218	locked = PROC_LOCKED(p->td->td_proc);
1219	if (locked)
1220		PROC_UNLOCK(p->td->td_proc);
1221#ifdef COMPRESS_USER_CORES
1222	if (p->gzfile != Z_NULL)
1223		error = compress_core(p->gzfile, NULL, __DECONST(char *, data),
1224		    len, p->td);
1225	else
1226#endif
1227		error = vn_rdwr_inchunks(UIO_WRITE, p->vp,
1228		    __DECONST(void *, data), len, p->offset, UIO_SYSSPACE,
1229		    IO_UNIT | IO_DIRECT, p->active_cred, p->file_cred, NULL,
1230		    p->td);
1231	if (locked)
1232		PROC_LOCK(p->td->td_proc);
1233	if (error != 0)
1234		return (-error);
1235	p->offset += len;
1236	return (len);
1237}
1238
1239/*
1240 * Drain into a counter.
1241 */
1242static int
1243sbuf_drain_count(void *arg, const char *data __unused, int len)
1244{
1245	size_t *sizep;
1246
1247	sizep = (size_t *)arg;
1248	*sizep += len;
1249	return (len);
1250}
1251
1252int
1253__elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1254{
1255	struct ucred *cred = td->td_ucred;
1256	int error = 0;
1257	struct sseg_closure seginfo;
1258	struct note_info_list notelst;
1259	struct note_info *ninfo;
1260	void *hdr;
1261	size_t hdrsize, notesz, coresize;
1262
1263	gzFile gzfile = Z_NULL;
1264	char *core_buf = NULL;
1265#ifdef COMPRESS_USER_CORES
1266	char gzopen_flags[8];
1267	char *p;
1268	int doing_compress = flags & IMGACT_CORE_COMPRESS;
1269#endif
1270
1271	hdr = NULL;
1272	TAILQ_INIT(&notelst);
1273
1274#ifdef COMPRESS_USER_CORES
1275        if (doing_compress) {
1276                p = gzopen_flags;
1277                *p++ = 'w';
1278                if (compress_user_cores_gzlevel >= 0 &&
1279                    compress_user_cores_gzlevel <= 9)
1280                        *p++ = '0' + compress_user_cores_gzlevel;
1281                *p = 0;
1282                gzfile = gz_open("", gzopen_flags, vp);
1283                if (gzfile == Z_NULL) {
1284                        error = EFAULT;
1285                        goto done;
1286                }
1287                core_buf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1288                if (!core_buf) {
1289                        error = ENOMEM;
1290                        goto done;
1291                }
1292        }
1293#endif
1294
1295	/* Size the program segments. */
1296	seginfo.count = 0;
1297	seginfo.size = 0;
1298	each_writable_segment(td, cb_size_segment, &seginfo);
1299
1300	/*
1301	 * Collect info about the core file header area.
1302	 */
1303	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1304	__elfN(prepare_notes)(td, &notelst, &notesz);
1305	coresize = round_page(hdrsize + notesz) + seginfo.size;
1306
1307#ifdef RACCT
1308	if (racct_enable) {
1309		PROC_LOCK(td->td_proc);
1310		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1311		PROC_UNLOCK(td->td_proc);
1312		if (error != 0) {
1313			error = EFAULT;
1314			goto done;
1315		}
1316	}
1317#endif
1318	if (coresize >= limit) {
1319		error = EFAULT;
1320		goto done;
1321	}
1322
1323	/*
1324	 * Allocate memory for building the header, fill it up,
1325	 * and write it out following the notes.
1326	 */
1327	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1328	error = __elfN(corehdr)(td, vp, cred, seginfo.count, hdr, hdrsize,
1329	    &notelst, notesz, gzfile);
1330
1331	/* Write the contents of all of the writable segments. */
1332	if (error == 0) {
1333		Elf_Phdr *php;
1334		off_t offset;
1335		int i;
1336
1337		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1338		offset = round_page(hdrsize + notesz);
1339		for (i = 0; i < seginfo.count; i++) {
1340			error = core_output(vp, (caddr_t)(uintptr_t)php->p_vaddr,
1341			    php->p_filesz, offset, cred, NOCRED, curthread, core_buf, gzfile);
1342			if (error != 0)
1343				break;
1344			offset += php->p_filesz;
1345			php++;
1346		}
1347	}
1348	if (error) {
1349		log(LOG_WARNING,
1350		    "Failed to write core file for process %s (error %d)\n",
1351		    curproc->p_comm, error);
1352	}
1353
1354done:
1355#ifdef COMPRESS_USER_CORES
1356	if (core_buf)
1357		free(core_buf, M_TEMP);
1358	if (gzfile)
1359		gzclose(gzfile);
1360#endif
1361	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1362		TAILQ_REMOVE(&notelst, ninfo, link);
1363		free(ninfo, M_TEMP);
1364	}
1365	if (hdr != NULL)
1366		free(hdr, M_TEMP);
1367
1368	return (error);
1369}
1370
1371/*
1372 * A callback for each_writable_segment() to write out the segment's
1373 * program header entry.
1374 */
1375static void
1376cb_put_phdr(entry, closure)
1377	vm_map_entry_t entry;
1378	void *closure;
1379{
1380	struct phdr_closure *phc = (struct phdr_closure *)closure;
1381	Elf_Phdr *phdr = phc->phdr;
1382
1383	phc->offset = round_page(phc->offset);
1384
1385	phdr->p_type = PT_LOAD;
1386	phdr->p_offset = phc->offset;
1387	phdr->p_vaddr = entry->start;
1388	phdr->p_paddr = 0;
1389	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1390	phdr->p_align = PAGE_SIZE;
1391	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1392
1393	phc->offset += phdr->p_filesz;
1394	phc->phdr++;
1395}
1396
1397/*
1398 * A callback for each_writable_segment() to gather information about
1399 * the number of segments and their total size.
1400 */
1401static void
1402cb_size_segment(entry, closure)
1403	vm_map_entry_t entry;
1404	void *closure;
1405{
1406	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1407
1408	ssc->count++;
1409	ssc->size += entry->end - entry->start;
1410}
1411
1412/*
1413 * For each writable segment in the process's memory map, call the given
1414 * function with a pointer to the map entry and some arbitrary
1415 * caller-supplied data.
1416 */
1417static void
1418each_writable_segment(td, func, closure)
1419	struct thread *td;
1420	segment_callback func;
1421	void *closure;
1422{
1423	struct proc *p = td->td_proc;
1424	vm_map_t map = &p->p_vmspace->vm_map;
1425	vm_map_entry_t entry;
1426	vm_object_t backing_object, object;
1427	boolean_t ignore_entry;
1428
1429	vm_map_lock_read(map);
1430	for (entry = map->header.next; entry != &map->header;
1431	    entry = entry->next) {
1432		/*
1433		 * Don't dump inaccessible mappings, deal with legacy
1434		 * coredump mode.
1435		 *
1436		 * Note that read-only segments related to the elf binary
1437		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1438		 * need to arbitrarily ignore such segments.
1439		 */
1440		if (elf_legacy_coredump) {
1441			if ((entry->protection & VM_PROT_RW) != VM_PROT_RW)
1442				continue;
1443		} else {
1444			if ((entry->protection & VM_PROT_ALL) == 0)
1445				continue;
1446		}
1447
1448		/*
1449		 * Dont include memory segment in the coredump if
1450		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1451		 * madvise(2).  Do not dump submaps (i.e. parts of the
1452		 * kernel map).
1453		 */
1454		if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP))
1455			continue;
1456
1457		if ((object = entry->object.vm_object) == NULL)
1458			continue;
1459
1460		/* Ignore memory-mapped devices and such things. */
1461		VM_OBJECT_RLOCK(object);
1462		while ((backing_object = object->backing_object) != NULL) {
1463			VM_OBJECT_RLOCK(backing_object);
1464			VM_OBJECT_RUNLOCK(object);
1465			object = backing_object;
1466		}
1467		ignore_entry = object->type != OBJT_DEFAULT &&
1468		    object->type != OBJT_SWAP && object->type != OBJT_VNODE &&
1469		    object->type != OBJT_PHYS;
1470		VM_OBJECT_RUNLOCK(object);
1471		if (ignore_entry)
1472			continue;
1473
1474		(*func)(entry, closure);
1475	}
1476	vm_map_unlock_read(map);
1477}
1478
1479/*
1480 * Write the core file header to the file, including padding up to
1481 * the page boundary.
1482 */
1483static int
1484__elfN(corehdr)(struct thread *td, struct vnode *vp, struct ucred *cred,
1485    int numsegs, void *hdr, size_t hdrsize, struct note_info_list *notelst,
1486    size_t notesz, gzFile gzfile)
1487{
1488	struct sbuf_drain_core_params params;
1489	struct note_info *ninfo;
1490	struct sbuf *sb;
1491	int error;
1492
1493	/* Fill in the header. */
1494	bzero(hdr, hdrsize);
1495	__elfN(puthdr)(td, hdr, hdrsize, numsegs, notesz);
1496
1497	params.offset = 0;
1498	params.active_cred = cred;
1499	params.file_cred = NOCRED;
1500	params.td = td;
1501	params.vp = vp;
1502#ifdef COMPRESS_USER_CORES
1503	params.gzfile = gzfile;
1504#endif
1505	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1506	sbuf_set_drain(sb, sbuf_drain_core_output, &params);
1507	sbuf_start_section(sb, NULL);
1508	sbuf_bcat(sb, hdr, hdrsize);
1509	TAILQ_FOREACH(ninfo, notelst, link)
1510	    __elfN(putnote)(ninfo, sb);
1511	/* Align up to a page boundary for the program segments. */
1512	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1513	error = sbuf_finish(sb);
1514	sbuf_delete(sb);
1515
1516	return (error);
1517}
1518
1519static void
1520__elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1521    size_t *sizep)
1522{
1523	struct proc *p;
1524	struct thread *thr;
1525	size_t size;
1526
1527	p = td->td_proc;
1528	size = 0;
1529
1530	size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p);
1531
1532	/*
1533	 * To have the debugger select the right thread (LWP) as the initial
1534	 * thread, we dump the state of the thread passed to us in td first.
1535	 * This is the thread that causes the core dump and thus likely to
1536	 * be the right thread one wants to have selected in the debugger.
1537	 */
1538	thr = td;
1539	while (thr != NULL) {
1540		size += register_note(list, NT_PRSTATUS,
1541		    __elfN(note_prstatus), thr);
1542		size += register_note(list, NT_FPREGSET,
1543		    __elfN(note_fpregset), thr);
1544		size += register_note(list, NT_THRMISC,
1545		    __elfN(note_thrmisc), thr);
1546		size += register_note(list, -1,
1547		    __elfN(note_threadmd), thr);
1548
1549		thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) :
1550		    TAILQ_NEXT(thr, td_plist);
1551		if (thr == td)
1552			thr = TAILQ_NEXT(thr, td_plist);
1553	}
1554
1555	size += register_note(list, NT_PROCSTAT_PROC,
1556	    __elfN(note_procstat_proc), p);
1557	size += register_note(list, NT_PROCSTAT_FILES,
1558	    note_procstat_files, p);
1559	size += register_note(list, NT_PROCSTAT_VMMAP,
1560	    note_procstat_vmmap, p);
1561	size += register_note(list, NT_PROCSTAT_GROUPS,
1562	    note_procstat_groups, p);
1563	size += register_note(list, NT_PROCSTAT_UMASK,
1564	    note_procstat_umask, p);
1565	size += register_note(list, NT_PROCSTAT_RLIMIT,
1566	    note_procstat_rlimit, p);
1567	size += register_note(list, NT_PROCSTAT_OSREL,
1568	    note_procstat_osrel, p);
1569	size += register_note(list, NT_PROCSTAT_PSSTRINGS,
1570	    __elfN(note_procstat_psstrings), p);
1571	size += register_note(list, NT_PROCSTAT_AUXV,
1572	    __elfN(note_procstat_auxv), p);
1573
1574	*sizep = size;
1575}
1576
1577static void
1578__elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1579    size_t notesz)
1580{
1581	Elf_Ehdr *ehdr;
1582	Elf_Phdr *phdr;
1583	struct phdr_closure phc;
1584
1585	ehdr = (Elf_Ehdr *)hdr;
1586	phdr = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr));
1587
1588	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1589	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1590	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1591	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1592	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1593	ehdr->e_ident[EI_DATA] = ELF_DATA;
1594	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1595	ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
1596	ehdr->e_ident[EI_ABIVERSION] = 0;
1597	ehdr->e_ident[EI_PAD] = 0;
1598	ehdr->e_type = ET_CORE;
1599#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1600	ehdr->e_machine = ELF_ARCH32;
1601#else
1602	ehdr->e_machine = ELF_ARCH;
1603#endif
1604	ehdr->e_version = EV_CURRENT;
1605	ehdr->e_entry = 0;
1606	ehdr->e_phoff = sizeof(Elf_Ehdr);
1607	ehdr->e_flags = 0;
1608	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1609	ehdr->e_phentsize = sizeof(Elf_Phdr);
1610	ehdr->e_phnum = numsegs + 1;
1611	ehdr->e_shentsize = sizeof(Elf_Shdr);
1612	ehdr->e_shnum = 0;
1613	ehdr->e_shstrndx = SHN_UNDEF;
1614
1615	/*
1616	 * Fill in the program header entries.
1617	 */
1618
1619	/* The note segement. */
1620	phdr->p_type = PT_NOTE;
1621	phdr->p_offset = hdrsize;
1622	phdr->p_vaddr = 0;
1623	phdr->p_paddr = 0;
1624	phdr->p_filesz = notesz;
1625	phdr->p_memsz = 0;
1626	phdr->p_flags = PF_R;
1627	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1628	phdr++;
1629
1630	/* All the writable segments from the program. */
1631	phc.phdr = phdr;
1632	phc.offset = round_page(hdrsize + notesz);
1633	each_writable_segment(td, cb_put_phdr, &phc);
1634}
1635
1636static size_t
1637register_note(struct note_info_list *list, int type, outfunc_t out, void *arg)
1638{
1639	struct note_info *ninfo;
1640	size_t size, notesize;
1641
1642	size = 0;
1643	out(arg, NULL, &size);
1644	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1645	ninfo->type = type;
1646	ninfo->outfunc = out;
1647	ninfo->outarg = arg;
1648	ninfo->outsize = size;
1649	TAILQ_INSERT_TAIL(list, ninfo, link);
1650
1651	if (type == -1)
1652		return (size);
1653
1654	notesize = sizeof(Elf_Note) +		/* note header */
1655	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1656						/* note name */
1657	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1658
1659	return (notesize);
1660}
1661
1662static size_t
1663append_note_data(const void *src, void *dst, size_t len)
1664{
1665	size_t padded_len;
1666
1667	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
1668	if (dst != NULL) {
1669		bcopy(src, dst, len);
1670		bzero((char *)dst + len, padded_len - len);
1671	}
1672	return (padded_len);
1673}
1674
1675size_t
1676__elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
1677{
1678	Elf_Note *note;
1679	char *buf;
1680	size_t notesize;
1681
1682	buf = dst;
1683	if (buf != NULL) {
1684		note = (Elf_Note *)buf;
1685		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
1686		note->n_descsz = size;
1687		note->n_type = type;
1688		buf += sizeof(*note);
1689		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
1690		    sizeof(FREEBSD_ABI_VENDOR));
1691		append_note_data(src, buf, size);
1692		if (descp != NULL)
1693			*descp = buf;
1694	}
1695
1696	notesize = sizeof(Elf_Note) +		/* note header */
1697	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1698						/* note name */
1699	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1700
1701	return (notesize);
1702}
1703
1704static void
1705__elfN(putnote)(struct note_info *ninfo, struct sbuf *sb)
1706{
1707	Elf_Note note;
1708	ssize_t old_len, sect_len;
1709	size_t new_len, descsz, i;
1710
1711	if (ninfo->type == -1) {
1712		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
1713		return;
1714	}
1715
1716	note.n_namesz = sizeof(FREEBSD_ABI_VENDOR);
1717	note.n_descsz = ninfo->outsize;
1718	note.n_type = ninfo->type;
1719
1720	sbuf_bcat(sb, &note, sizeof(note));
1721	sbuf_start_section(sb, &old_len);
1722	sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR));
1723	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
1724	if (note.n_descsz == 0)
1725		return;
1726	sbuf_start_section(sb, &old_len);
1727	ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
1728	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
1729	if (sect_len < 0)
1730		return;
1731
1732	new_len = (size_t)sect_len;
1733	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
1734	if (new_len < descsz) {
1735		/*
1736		 * It is expected that individual note emitters will correctly
1737		 * predict their expected output size and fill up to that size
1738		 * themselves, padding in a format-specific way if needed.
1739		 * However, in case they don't, just do it here with zeros.
1740		 */
1741		for (i = 0; i < descsz - new_len; i++)
1742			sbuf_putc(sb, 0);
1743	} else if (new_len > descsz) {
1744		/*
1745		 * We can't always truncate sb -- we may have drained some
1746		 * of it already.
1747		 */
1748		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
1749		    "read it (%zu > %zu).  Since it is longer than "
1750		    "expected, this coredump's notes are corrupt.  THIS "
1751		    "IS A BUG in the note_procstat routine for type %u.\n",
1752		    __func__, (unsigned)note.n_type, new_len, descsz,
1753		    (unsigned)note.n_type));
1754	}
1755}
1756
1757/*
1758 * Miscellaneous note out functions.
1759 */
1760
1761#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1762#include <compat/freebsd32/freebsd32.h>
1763
1764typedef struct prstatus32 elf_prstatus_t;
1765typedef struct prpsinfo32 elf_prpsinfo_t;
1766typedef struct fpreg32 elf_prfpregset_t;
1767typedef struct fpreg32 elf_fpregset_t;
1768typedef struct reg32 elf_gregset_t;
1769typedef struct thrmisc32 elf_thrmisc_t;
1770#define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
1771typedef struct kinfo_proc32 elf_kinfo_proc_t;
1772typedef uint32_t elf_ps_strings_t;
1773#else
1774typedef prstatus_t elf_prstatus_t;
1775typedef prpsinfo_t elf_prpsinfo_t;
1776typedef prfpregset_t elf_prfpregset_t;
1777typedef prfpregset_t elf_fpregset_t;
1778typedef gregset_t elf_gregset_t;
1779typedef thrmisc_t elf_thrmisc_t;
1780#define ELF_KERN_PROC_MASK	0
1781typedef struct kinfo_proc elf_kinfo_proc_t;
1782typedef vm_offset_t elf_ps_strings_t;
1783#endif
1784
1785static void
1786__elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
1787{
1788	struct sbuf sbarg;
1789	size_t len;
1790	char *cp, *end;
1791	struct proc *p;
1792	elf_prpsinfo_t *psinfo;
1793	int error;
1794
1795	p = (struct proc *)arg;
1796	if (sb != NULL) {
1797		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
1798		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
1799		psinfo->pr_version = PRPSINFO_VERSION;
1800		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
1801		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
1802		PROC_LOCK(p);
1803		if (p->p_args != NULL) {
1804			len = sizeof(psinfo->pr_psargs) - 1;
1805			if (len > p->p_args->ar_length)
1806				len = p->p_args->ar_length;
1807			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
1808			PROC_UNLOCK(p);
1809			error = 0;
1810		} else {
1811			_PHOLD(p);
1812			PROC_UNLOCK(p);
1813			sbuf_new(&sbarg, psinfo->pr_psargs,
1814			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
1815			error = proc_getargv(curthread, p, &sbarg);
1816			PRELE(p);
1817			if (sbuf_finish(&sbarg) == 0)
1818				len = sbuf_len(&sbarg) - 1;
1819			else
1820				len = sizeof(psinfo->pr_psargs) - 1;
1821			sbuf_delete(&sbarg);
1822		}
1823		if (error || len == 0)
1824			strlcpy(psinfo->pr_psargs, p->p_comm,
1825			    sizeof(psinfo->pr_psargs));
1826		else {
1827			KASSERT(len < sizeof(psinfo->pr_psargs),
1828			    ("len is too long: %zu vs %zu", len,
1829			    sizeof(psinfo->pr_psargs)));
1830			cp = psinfo->pr_psargs;
1831			end = cp + len - 1;
1832			for (;;) {
1833				cp = memchr(cp, '\0', end - cp);
1834				if (cp == NULL)
1835					break;
1836				*cp = ' ';
1837			}
1838		}
1839		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
1840		free(psinfo, M_TEMP);
1841	}
1842	*sizep = sizeof(*psinfo);
1843}
1844
1845static void
1846__elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep)
1847{
1848	struct thread *td;
1849	elf_prstatus_t *status;
1850
1851	td = (struct thread *)arg;
1852	if (sb != NULL) {
1853		KASSERT(*sizep == sizeof(*status), ("invalid size"));
1854		status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK);
1855		status->pr_version = PRSTATUS_VERSION;
1856		status->pr_statussz = sizeof(elf_prstatus_t);
1857		status->pr_gregsetsz = sizeof(elf_gregset_t);
1858		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
1859		status->pr_osreldate = osreldate;
1860		status->pr_cursig = td->td_proc->p_sig;
1861		status->pr_pid = td->td_tid;
1862#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1863		fill_regs32(td, &status->pr_reg);
1864#else
1865		fill_regs(td, &status->pr_reg);
1866#endif
1867		sbuf_bcat(sb, status, sizeof(*status));
1868		free(status, M_TEMP);
1869	}
1870	*sizep = sizeof(*status);
1871}
1872
1873static void
1874__elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep)
1875{
1876	struct thread *td;
1877	elf_prfpregset_t *fpregset;
1878
1879	td = (struct thread *)arg;
1880	if (sb != NULL) {
1881		KASSERT(*sizep == sizeof(*fpregset), ("invalid size"));
1882		fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK);
1883#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1884		fill_fpregs32(td, fpregset);
1885#else
1886		fill_fpregs(td, fpregset);
1887#endif
1888		sbuf_bcat(sb, fpregset, sizeof(*fpregset));
1889		free(fpregset, M_TEMP);
1890	}
1891	*sizep = sizeof(*fpregset);
1892}
1893
1894static void
1895__elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep)
1896{
1897	struct thread *td;
1898	elf_thrmisc_t thrmisc;
1899
1900	td = (struct thread *)arg;
1901	if (sb != NULL) {
1902		KASSERT(*sizep == sizeof(thrmisc), ("invalid size"));
1903		bzero(&thrmisc._pad, sizeof(thrmisc._pad));
1904		strcpy(thrmisc.pr_tname, td->td_name);
1905		sbuf_bcat(sb, &thrmisc, sizeof(thrmisc));
1906	}
1907	*sizep = sizeof(thrmisc);
1908}
1909
1910/*
1911 * Allow for MD specific notes, as well as any MD
1912 * specific preparations for writing MI notes.
1913 */
1914static void
1915__elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
1916{
1917	struct thread *td;
1918	void *buf;
1919	size_t size;
1920
1921	td = (struct thread *)arg;
1922	size = *sizep;
1923	if (size != 0 && sb != NULL)
1924		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
1925	else
1926		buf = NULL;
1927	size = 0;
1928	__elfN(dump_thread)(td, buf, &size);
1929	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
1930	if (size != 0 && sb != NULL)
1931		sbuf_bcat(sb, buf, size);
1932	free(buf, M_TEMP);
1933	*sizep = size;
1934}
1935
1936#ifdef KINFO_PROC_SIZE
1937CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
1938#endif
1939
1940static void
1941__elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
1942{
1943	struct proc *p;
1944	size_t size;
1945	int structsize;
1946
1947	p = (struct proc *)arg;
1948	size = sizeof(structsize) + p->p_numthreads *
1949	    sizeof(elf_kinfo_proc_t);
1950
1951	if (sb != NULL) {
1952		KASSERT(*sizep == size, ("invalid size"));
1953		structsize = sizeof(elf_kinfo_proc_t);
1954		sbuf_bcat(sb, &structsize, sizeof(structsize));
1955		PROC_LOCK(p);
1956		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
1957	}
1958	*sizep = size;
1959}
1960
1961#ifdef KINFO_FILE_SIZE
1962CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
1963#endif
1964
1965static void
1966note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
1967{
1968	struct proc *p;
1969	size_t size, sect_sz, i;
1970	ssize_t start_len, sect_len;
1971	int structsize, filedesc_flags;
1972
1973	if (coredump_pack_fileinfo)
1974		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
1975	else
1976		filedesc_flags = 0;
1977
1978	p = (struct proc *)arg;
1979	structsize = sizeof(struct kinfo_file);
1980	if (sb == NULL) {
1981		size = 0;
1982		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
1983		sbuf_set_drain(sb, sbuf_drain_count, &size);
1984		sbuf_bcat(sb, &structsize, sizeof(structsize));
1985		PROC_LOCK(p);
1986		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
1987		sbuf_finish(sb);
1988		sbuf_delete(sb);
1989		*sizep = size;
1990	} else {
1991		sbuf_start_section(sb, &start_len);
1992
1993		sbuf_bcat(sb, &structsize, sizeof(structsize));
1994		PROC_LOCK(p);
1995		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
1996		    filedesc_flags);
1997
1998		sect_len = sbuf_end_section(sb, start_len, 0, 0);
1999		if (sect_len < 0)
2000			return;
2001		sect_sz = sect_len;
2002
2003		KASSERT(sect_sz <= *sizep,
2004		    ("kern_proc_filedesc_out did not respect maxlen; "
2005		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2006		     sect_sz - sizeof(structsize)));
2007
2008		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2009			sbuf_putc(sb, 0);
2010	}
2011}
2012
2013#ifdef KINFO_VMENTRY_SIZE
2014CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2015#endif
2016
2017static void
2018note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2019{
2020	struct proc *p;
2021	size_t size;
2022	int structsize, vmmap_flags;
2023
2024	if (coredump_pack_vmmapinfo)
2025		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2026	else
2027		vmmap_flags = 0;
2028
2029	p = (struct proc *)arg;
2030	structsize = sizeof(struct kinfo_vmentry);
2031	if (sb == NULL) {
2032		size = 0;
2033		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2034		sbuf_set_drain(sb, sbuf_drain_count, &size);
2035		sbuf_bcat(sb, &structsize, sizeof(structsize));
2036		PROC_LOCK(p);
2037		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2038		sbuf_finish(sb);
2039		sbuf_delete(sb);
2040		*sizep = size;
2041	} else {
2042		sbuf_bcat(sb, &structsize, sizeof(structsize));
2043		PROC_LOCK(p);
2044		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2045		    vmmap_flags);
2046	}
2047}
2048
2049static void
2050note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2051{
2052	struct proc *p;
2053	size_t size;
2054	int structsize;
2055
2056	p = (struct proc *)arg;
2057	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2058	if (sb != NULL) {
2059		KASSERT(*sizep == size, ("invalid size"));
2060		structsize = sizeof(gid_t);
2061		sbuf_bcat(sb, &structsize, sizeof(structsize));
2062		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2063		    sizeof(gid_t));
2064	}
2065	*sizep = size;
2066}
2067
2068static void
2069note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2070{
2071	struct proc *p;
2072	size_t size;
2073	int structsize;
2074
2075	p = (struct proc *)arg;
2076	size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask);
2077	if (sb != NULL) {
2078		KASSERT(*sizep == size, ("invalid size"));
2079		structsize = sizeof(p->p_fd->fd_cmask);
2080		sbuf_bcat(sb, &structsize, sizeof(structsize));
2081		sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask));
2082	}
2083	*sizep = size;
2084}
2085
2086static void
2087note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2088{
2089	struct proc *p;
2090	struct rlimit rlim[RLIM_NLIMITS];
2091	size_t size;
2092	int structsize, i;
2093
2094	p = (struct proc *)arg;
2095	size = sizeof(structsize) + sizeof(rlim);
2096	if (sb != NULL) {
2097		KASSERT(*sizep == size, ("invalid size"));
2098		structsize = sizeof(rlim);
2099		sbuf_bcat(sb, &structsize, sizeof(structsize));
2100		PROC_LOCK(p);
2101		for (i = 0; i < RLIM_NLIMITS; i++)
2102			lim_rlimit(p, i, &rlim[i]);
2103		PROC_UNLOCK(p);
2104		sbuf_bcat(sb, rlim, sizeof(rlim));
2105	}
2106	*sizep = size;
2107}
2108
2109static void
2110note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2111{
2112	struct proc *p;
2113	size_t size;
2114	int structsize;
2115
2116	p = (struct proc *)arg;
2117	size = sizeof(structsize) + sizeof(p->p_osrel);
2118	if (sb != NULL) {
2119		KASSERT(*sizep == size, ("invalid size"));
2120		structsize = sizeof(p->p_osrel);
2121		sbuf_bcat(sb, &structsize, sizeof(structsize));
2122		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2123	}
2124	*sizep = size;
2125}
2126
2127static void
2128__elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2129{
2130	struct proc *p;
2131	elf_ps_strings_t ps_strings;
2132	size_t size;
2133	int structsize;
2134
2135	p = (struct proc *)arg;
2136	size = sizeof(structsize) + sizeof(ps_strings);
2137	if (sb != NULL) {
2138		KASSERT(*sizep == size, ("invalid size"));
2139		structsize = sizeof(ps_strings);
2140#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2141		ps_strings = PTROUT(p->p_sysent->sv_psstrings);
2142#else
2143		ps_strings = p->p_sysent->sv_psstrings;
2144#endif
2145		sbuf_bcat(sb, &structsize, sizeof(structsize));
2146		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2147	}
2148	*sizep = size;
2149}
2150
2151static void
2152__elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2153{
2154	struct proc *p;
2155	size_t size;
2156	int structsize;
2157
2158	p = (struct proc *)arg;
2159	if (sb == NULL) {
2160		size = 0;
2161		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2162		sbuf_set_drain(sb, sbuf_drain_count, &size);
2163		sbuf_bcat(sb, &structsize, sizeof(structsize));
2164		PHOLD(p);
2165		proc_getauxv(curthread, p, sb);
2166		PRELE(p);
2167		sbuf_finish(sb);
2168		sbuf_delete(sb);
2169		*sizep = size;
2170	} else {
2171		structsize = sizeof(Elf_Auxinfo);
2172		sbuf_bcat(sb, &structsize, sizeof(structsize));
2173		PHOLD(p);
2174		proc_getauxv(curthread, p, sb);
2175		PRELE(p);
2176	}
2177}
2178
2179static boolean_t
2180__elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote,
2181    int32_t *osrel, const Elf_Phdr *pnote)
2182{
2183	const Elf_Note *note, *note0, *note_end;
2184	const char *note_name;
2185	char *buf;
2186	int i, error;
2187	boolean_t res;
2188
2189	/* We need some limit, might as well use PAGE_SIZE. */
2190	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2191		return (FALSE);
2192	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2193	if (pnote->p_offset > PAGE_SIZE ||
2194	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2195		VOP_UNLOCK(imgp->vp, 0);
2196		buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2197		vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
2198		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2199		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2200		    curthread->td_ucred, NOCRED, NULL, curthread);
2201		if (error != 0) {
2202			uprintf("i/o error PT_NOTE\n");
2203			res = FALSE;
2204			goto ret;
2205		}
2206		note = note0 = (const Elf_Note *)buf;
2207		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2208	} else {
2209		note = note0 = (const Elf_Note *)(imgp->image_header +
2210		    pnote->p_offset);
2211		note_end = (const Elf_Note *)(imgp->image_header +
2212		    pnote->p_offset + pnote->p_filesz);
2213		buf = NULL;
2214	}
2215	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2216		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2217		    (const char *)note < sizeof(Elf_Note)) {
2218			res = FALSE;
2219			goto ret;
2220		}
2221		if (note->n_namesz != checknote->hdr.n_namesz ||
2222		    note->n_descsz != checknote->hdr.n_descsz ||
2223		    note->n_type != checknote->hdr.n_type)
2224			goto nextnote;
2225		note_name = (const char *)(note + 1);
2226		if (note_name + checknote->hdr.n_namesz >=
2227		    (const char *)note_end || strncmp(checknote->vendor,
2228		    note_name, checknote->hdr.n_namesz) != 0)
2229			goto nextnote;
2230
2231		/*
2232		 * Fetch the osreldate for binary
2233		 * from the ELF OSABI-note if necessary.
2234		 */
2235		if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 &&
2236		    checknote->trans_osrel != NULL) {
2237			res = checknote->trans_osrel(note, osrel);
2238			goto ret;
2239		}
2240		res = TRUE;
2241		goto ret;
2242nextnote:
2243		note = (const Elf_Note *)((const char *)(note + 1) +
2244		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2245		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2246	}
2247	res = FALSE;
2248ret:
2249	free(buf, M_TEMP);
2250	return (res);
2251}
2252
2253/*
2254 * Try to find the appropriate ABI-note section for checknote,
2255 * fetch the osreldate for binary from the ELF OSABI-note. Only the
2256 * first page of the image is searched, the same as for headers.
2257 */
2258static boolean_t
2259__elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote,
2260    int32_t *osrel)
2261{
2262	const Elf_Phdr *phdr;
2263	const Elf_Ehdr *hdr;
2264	int i;
2265
2266	hdr = (const Elf_Ehdr *)imgp->image_header;
2267	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2268
2269	for (i = 0; i < hdr->e_phnum; i++) {
2270		if (phdr[i].p_type == PT_NOTE &&
2271		    __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i]))
2272			return (TRUE);
2273	}
2274	return (FALSE);
2275
2276}
2277
2278/*
2279 * Tell kern_execve.c about it, with a little help from the linker.
2280 */
2281static struct execsw __elfN(execsw) = {
2282	__CONCAT(exec_, __elfN(imgact)),
2283	__XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2284};
2285EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2286
2287#ifdef COMPRESS_USER_CORES
2288/*
2289 * Compress and write out a core segment for a user process.
2290 *
2291 * 'inbuf' is the starting address of a VM segment in the process' address
2292 * space that is to be compressed and written out to the core file.  'dest_buf'
2293 * is a buffer in the kernel's address space.  The segment is copied from
2294 * 'inbuf' to 'dest_buf' first before being processed by the compression
2295 * routine gzwrite().  This copying is necessary because the content of the VM
2296 * segment may change between the compression pass and the crc-computation pass
2297 * in gzwrite().  This is because realtime threads may preempt the UNIX kernel.
2298 *
2299 * If inbuf is NULL it is assumed that data is already copied to 'dest_buf'.
2300 */
2301static int
2302compress_core (gzFile file, char *inbuf, char *dest_buf, unsigned int len,
2303    struct thread *td)
2304{
2305	int len_compressed;
2306	int error = 0;
2307	unsigned int chunk_len;
2308
2309	while (len) {
2310		if (inbuf != NULL) {
2311			chunk_len = (len > CORE_BUF_SIZE) ? CORE_BUF_SIZE : len;
2312			copyin(inbuf, dest_buf, chunk_len);
2313			inbuf += chunk_len;
2314		} else {
2315			chunk_len = len;
2316		}
2317		len_compressed = gzwrite(file, dest_buf, chunk_len);
2318
2319		EVENTHANDLER_INVOKE(app_coredump_progress, td, len_compressed);
2320
2321		if ((unsigned int)len_compressed != chunk_len) {
2322			log(LOG_WARNING,
2323			    "compress_core: length mismatch (0x%x returned, "
2324			    "0x%x expected)\n", len_compressed, chunk_len);
2325			EVENTHANDLER_INVOKE(app_coredump_error, td,
2326			    "compress_core: length mismatch %x -> %x",
2327			    chunk_len, len_compressed);
2328			error = EFAULT;
2329			break;
2330		}
2331		len -= chunk_len;
2332		maybe_yield();
2333	}
2334
2335	return (error);
2336}
2337#endif /* COMPRESS_USER_CORES */
2338
2339static vm_prot_t
2340__elfN(trans_prot)(Elf_Word flags)
2341{
2342	vm_prot_t prot;
2343
2344	prot = 0;
2345	if (flags & PF_X)
2346		prot |= VM_PROT_EXECUTE;
2347	if (flags & PF_W)
2348		prot |= VM_PROT_WRITE;
2349	if (flags & PF_R)
2350		prot |= VM_PROT_READ;
2351#if __ELF_WORD_SIZE == 32
2352#if defined(__amd64__) || defined(__ia64__)
2353	if (i386_read_exec && (flags & PF_R))
2354		prot |= VM_PROT_EXECUTE;
2355#endif
2356#endif
2357	return (prot);
2358}
2359
2360static Elf_Word
2361__elfN(untrans_prot)(vm_prot_t prot)
2362{
2363	Elf_Word flags;
2364
2365	flags = 0;
2366	if (prot & VM_PROT_EXECUTE)
2367		flags |= PF_X;
2368	if (prot & VM_PROT_READ)
2369		flags |= PF_R;
2370	if (prot & VM_PROT_WRITE)
2371		flags |= PF_W;
2372	return (flags);
2373}
2374