mp_machdep.c revision 265606
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: stable/10/sys/i386/i386/mp_machdep.c 265606 2014-05-07 20:28:27Z scottl $");
28
29#include "opt_apic.h"
30#include "opt_cpu.h"
31#include "opt_kstack_pages.h"
32#include "opt_pmap.h"
33#include "opt_sched.h"
34#include "opt_smp.h"
35
36#if !defined(lint)
37#if !defined(SMP)
38#error How did you get here?
39#endif
40
41#ifndef DEV_APIC
42#error The apic device is required for SMP, add "device apic" to your config file.
43#endif
44#if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
45#error SMP not supported with CPU_DISABLE_CMPXCHG
46#endif
47#endif /* not lint */
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/bus.h>
52#include <sys/cons.h>	/* cngetc() */
53#include <sys/cpuset.h>
54#ifdef GPROF
55#include <sys/gmon.h>
56#endif
57#include <sys/kernel.h>
58#include <sys/ktr.h>
59#include <sys/lock.h>
60#include <sys/malloc.h>
61#include <sys/memrange.h>
62#include <sys/mutex.h>
63#include <sys/pcpu.h>
64#include <sys/proc.h>
65#include <sys/sched.h>
66#include <sys/smp.h>
67#include <sys/sysctl.h>
68
69#include <vm/vm.h>
70#include <vm/vm_param.h>
71#include <vm/pmap.h>
72#include <vm/vm_kern.h>
73#include <vm/vm_extern.h>
74
75#include <x86/apicreg.h>
76#include <machine/clock.h>
77#include <machine/cputypes.h>
78#include <x86/mca.h>
79#include <machine/md_var.h>
80#include <machine/pcb.h>
81#include <machine/psl.h>
82#include <machine/smp.h>
83#include <machine/specialreg.h>
84#include <machine/cpu.h>
85
86#define WARMBOOT_TARGET		0
87#define WARMBOOT_OFF		(KERNBASE + 0x0467)
88#define WARMBOOT_SEG		(KERNBASE + 0x0469)
89
90#define CMOS_REG		(0x70)
91#define CMOS_DATA		(0x71)
92#define BIOS_RESET		(0x0f)
93#define BIOS_WARM		(0x0a)
94
95/*
96 * this code MUST be enabled here and in mpboot.s.
97 * it follows the very early stages of AP boot by placing values in CMOS ram.
98 * it NORMALLY will never be needed and thus the primitive method for enabling.
99 *
100#define CHECK_POINTS
101 */
102
103#if defined(CHECK_POINTS) && !defined(PC98)
104#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
105#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
106
107#define CHECK_INIT(D);				\
108	CHECK_WRITE(0x34, (D));			\
109	CHECK_WRITE(0x35, (D));			\
110	CHECK_WRITE(0x36, (D));			\
111	CHECK_WRITE(0x37, (D));			\
112	CHECK_WRITE(0x38, (D));			\
113	CHECK_WRITE(0x39, (D));
114
115#define CHECK_PRINT(S);				\
116	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
117	   (S),					\
118	   CHECK_READ(0x34),			\
119	   CHECK_READ(0x35),			\
120	   CHECK_READ(0x36),			\
121	   CHECK_READ(0x37),			\
122	   CHECK_READ(0x38),			\
123	   CHECK_READ(0x39));
124
125#else				/* CHECK_POINTS */
126
127#define CHECK_INIT(D)
128#define CHECK_PRINT(S)
129#define CHECK_WRITE(A, D)
130
131#endif				/* CHECK_POINTS */
132
133/* lock region used by kernel profiling */
134int	mcount_lock;
135
136int	mp_naps;		/* # of Applications processors */
137int	boot_cpu_id = -1;	/* designated BSP */
138
139extern	struct pcpu __pcpu[];
140
141/* AP uses this during bootstrap.  Do not staticize.  */
142char *bootSTK;
143static int bootAP;
144
145/* Free these after use */
146void *bootstacks[MAXCPU];
147static void *dpcpu;
148
149struct pcb stoppcbs[MAXCPU];
150struct pcb **susppcbs = NULL;
151
152/* Variables needed for SMP tlb shootdown. */
153vm_offset_t smp_tlb_addr1;
154vm_offset_t smp_tlb_addr2;
155volatile int smp_tlb_wait;
156
157#ifdef COUNT_IPIS
158/* Interrupt counts. */
159static u_long *ipi_preempt_counts[MAXCPU];
160static u_long *ipi_ast_counts[MAXCPU];
161u_long *ipi_invltlb_counts[MAXCPU];
162u_long *ipi_invlrng_counts[MAXCPU];
163u_long *ipi_invlpg_counts[MAXCPU];
164u_long *ipi_invlcache_counts[MAXCPU];
165u_long *ipi_rendezvous_counts[MAXCPU];
166u_long *ipi_lazypmap_counts[MAXCPU];
167static u_long *ipi_hardclock_counts[MAXCPU];
168#endif
169
170/* Default cpu_ops implementation. */
171struct cpu_ops cpu_ops = {
172	.ipi_vectored = lapic_ipi_vectored
173};
174
175/*
176 * Local data and functions.
177 */
178
179static volatile cpuset_t ipi_nmi_pending;
180
181/* used to hold the AP's until we are ready to release them */
182static struct mtx ap_boot_mtx;
183
184/* Set to 1 once we're ready to let the APs out of the pen. */
185static volatile int aps_ready = 0;
186
187/*
188 * Store data from cpu_add() until later in the boot when we actually setup
189 * the APs.
190 */
191struct cpu_info {
192	int	cpu_present:1;
193	int	cpu_bsp:1;
194	int	cpu_disabled:1;
195	int	cpu_hyperthread:1;
196} static cpu_info[MAX_APIC_ID + 1];
197int cpu_apic_ids[MAXCPU];
198int apic_cpuids[MAX_APIC_ID + 1];
199
200/* Holds pending bitmap based IPIs per CPU */
201volatile u_int cpu_ipi_pending[MAXCPU];
202
203static u_int boot_address;
204static int cpu_logical;			/* logical cpus per core */
205static int cpu_cores;			/* cores per package */
206
207static void	assign_cpu_ids(void);
208static void	install_ap_tramp(void);
209static void	set_interrupt_apic_ids(void);
210static int	start_all_aps(void);
211static int	start_ap(int apic_id);
212static void	release_aps(void *dummy);
213
214static u_int	hyperthreading_cpus;	/* logical cpus sharing L1 cache */
215static int	hyperthreading_allowed = 1;
216
217static void
218mem_range_AP_init(void)
219{
220	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
221		mem_range_softc.mr_op->initAP(&mem_range_softc);
222}
223
224static void
225topo_probe_amd(void)
226{
227	int core_id_bits;
228	int id;
229
230	/* AMD processors do not support HTT. */
231	cpu_logical = 1;
232
233	if ((amd_feature2 & AMDID2_CMP) == 0) {
234		cpu_cores = 1;
235		return;
236	}
237
238	core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
239	    AMDID_COREID_SIZE_SHIFT;
240	if (core_id_bits == 0) {
241		cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
242		return;
243	}
244
245	/* Fam 10h and newer should get here. */
246	for (id = 0; id <= MAX_APIC_ID; id++) {
247		/* Check logical CPU availability. */
248		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
249			continue;
250		/* Check if logical CPU has the same package ID. */
251		if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
252			continue;
253		cpu_cores++;
254	}
255}
256
257/*
258 * Round up to the next power of two, if necessary, and then
259 * take log2.
260 * Returns -1 if argument is zero.
261 */
262static __inline int
263mask_width(u_int x)
264{
265
266	return (fls(x << (1 - powerof2(x))) - 1);
267}
268
269static void
270topo_probe_0x4(void)
271{
272	u_int p[4];
273	int pkg_id_bits;
274	int core_id_bits;
275	int max_cores;
276	int max_logical;
277	int id;
278
279	/* Both zero and one here mean one logical processor per package. */
280	max_logical = (cpu_feature & CPUID_HTT) != 0 ?
281	    (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
282	if (max_logical <= 1)
283		return;
284
285	/*
286	 * Because of uniformity assumption we examine only
287	 * those logical processors that belong to the same
288	 * package as BSP.  Further, we count number of
289	 * logical processors that belong to the same core
290	 * as BSP thus deducing number of threads per core.
291	 */
292	if (cpu_high >= 0x4) {
293		cpuid_count(0x04, 0, p);
294		max_cores = ((p[0] >> 26) & 0x3f) + 1;
295	} else
296		max_cores = 1;
297	core_id_bits = mask_width(max_logical/max_cores);
298	if (core_id_bits < 0)
299		return;
300	pkg_id_bits = core_id_bits + mask_width(max_cores);
301
302	for (id = 0; id <= MAX_APIC_ID; id++) {
303		/* Check logical CPU availability. */
304		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
305			continue;
306		/* Check if logical CPU has the same package ID. */
307		if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
308			continue;
309		cpu_cores++;
310		/* Check if logical CPU has the same package and core IDs. */
311		if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
312			cpu_logical++;
313	}
314
315	KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
316	    ("topo_probe_0x4 couldn't find BSP"));
317
318	cpu_cores /= cpu_logical;
319	hyperthreading_cpus = cpu_logical;
320}
321
322static void
323topo_probe_0xb(void)
324{
325	u_int p[4];
326	int bits;
327	int cnt;
328	int i;
329	int logical;
330	int type;
331	int x;
332
333	/* We only support three levels for now. */
334	for (i = 0; i < 3; i++) {
335		cpuid_count(0x0b, i, p);
336
337		/* Fall back if CPU leaf 11 doesn't really exist. */
338		if (i == 0 && p[1] == 0) {
339			topo_probe_0x4();
340			return;
341		}
342
343		bits = p[0] & 0x1f;
344		logical = p[1] &= 0xffff;
345		type = (p[2] >> 8) & 0xff;
346		if (type == 0 || logical == 0)
347			break;
348		/*
349		 * Because of uniformity assumption we examine only
350		 * those logical processors that belong to the same
351		 * package as BSP.
352		 */
353		for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
354			if (!cpu_info[x].cpu_present ||
355			    cpu_info[x].cpu_disabled)
356				continue;
357			if (x >> bits == boot_cpu_id >> bits)
358				cnt++;
359		}
360		if (type == CPUID_TYPE_SMT)
361			cpu_logical = cnt;
362		else if (type == CPUID_TYPE_CORE)
363			cpu_cores = cnt;
364	}
365	if (cpu_logical == 0)
366		cpu_logical = 1;
367	cpu_cores /= cpu_logical;
368}
369
370/*
371 * Both topology discovery code and code that consumes topology
372 * information assume top-down uniformity of the topology.
373 * That is, all physical packages must be identical and each
374 * core in a package must have the same number of threads.
375 * Topology information is queried only on BSP, on which this
376 * code runs and for which it can query CPUID information.
377 * Then topology is extrapolated on all packages using the
378 * uniformity assumption.
379 */
380static void
381topo_probe(void)
382{
383	static int cpu_topo_probed = 0;
384
385	if (cpu_topo_probed)
386		return;
387
388	CPU_ZERO(&logical_cpus_mask);
389	if (mp_ncpus <= 1)
390		cpu_cores = cpu_logical = 1;
391	else if (cpu_vendor_id == CPU_VENDOR_AMD)
392		topo_probe_amd();
393	else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
394		/*
395		 * See Intel(R) 64 Architecture Processor
396		 * Topology Enumeration article for details.
397		 *
398		 * Note that 0x1 <= cpu_high < 4 case should be
399		 * compatible with topo_probe_0x4() logic when
400		 * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
401		 * or it should trigger the fallback otherwise.
402		 */
403		if (cpu_high >= 0xb)
404			topo_probe_0xb();
405		else if (cpu_high >= 0x1)
406			topo_probe_0x4();
407	}
408
409	/*
410	 * Fallback: assume each logical CPU is in separate
411	 * physical package.  That is, no multi-core, no SMT.
412	 */
413	if (cpu_cores == 0 || cpu_logical == 0)
414		cpu_cores = cpu_logical = 1;
415	cpu_topo_probed = 1;
416}
417
418struct cpu_group *
419cpu_topo(void)
420{
421	int cg_flags;
422
423	/*
424	 * Determine whether any threading flags are
425	 * necessry.
426	 */
427	topo_probe();
428	if (cpu_logical > 1 && hyperthreading_cpus)
429		cg_flags = CG_FLAG_HTT;
430	else if (cpu_logical > 1)
431		cg_flags = CG_FLAG_SMT;
432	else
433		cg_flags = 0;
434	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
435		printf("WARNING: Non-uniform processors.\n");
436		printf("WARNING: Using suboptimal topology.\n");
437		return (smp_topo_none());
438	}
439	/*
440	 * No multi-core or hyper-threaded.
441	 */
442	if (cpu_logical * cpu_cores == 1)
443		return (smp_topo_none());
444	/*
445	 * Only HTT no multi-core.
446	 */
447	if (cpu_logical > 1 && cpu_cores == 1)
448		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
449	/*
450	 * Only multi-core no HTT.
451	 */
452	if (cpu_cores > 1 && cpu_logical == 1)
453		return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
454	/*
455	 * Both HTT and multi-core.
456	 */
457	return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
458	    CG_SHARE_L1, cpu_logical, cg_flags));
459}
460
461
462/*
463 * Calculate usable address in base memory for AP trampoline code.
464 */
465u_int
466mp_bootaddress(u_int basemem)
467{
468
469	boot_address = trunc_page(basemem);	/* round down to 4k boundary */
470	if ((basemem - boot_address) < bootMP_size)
471		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
472
473	return boot_address;
474}
475
476void
477cpu_add(u_int apic_id, char boot_cpu)
478{
479
480	if (apic_id > MAX_APIC_ID) {
481		panic("SMP: APIC ID %d too high", apic_id);
482		return;
483	}
484	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
485	    apic_id));
486	cpu_info[apic_id].cpu_present = 1;
487	if (boot_cpu) {
488		KASSERT(boot_cpu_id == -1,
489		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
490		    boot_cpu_id));
491		boot_cpu_id = apic_id;
492		cpu_info[apic_id].cpu_bsp = 1;
493	}
494	if (mp_ncpus < MAXCPU) {
495		mp_ncpus++;
496		mp_maxid = mp_ncpus - 1;
497	}
498	if (bootverbose)
499		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
500		    "AP");
501}
502
503void
504cpu_mp_setmaxid(void)
505{
506
507	/*
508	 * mp_maxid should be already set by calls to cpu_add().
509	 * Just sanity check its value here.
510	 */
511	if (mp_ncpus == 0)
512		KASSERT(mp_maxid == 0,
513		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
514	else if (mp_ncpus == 1)
515		mp_maxid = 0;
516	else
517		KASSERT(mp_maxid >= mp_ncpus - 1,
518		    ("%s: counters out of sync: max %d, count %d", __func__,
519			mp_maxid, mp_ncpus));
520}
521
522int
523cpu_mp_probe(void)
524{
525
526	/*
527	 * Always record BSP in CPU map so that the mbuf init code works
528	 * correctly.
529	 */
530	CPU_SETOF(0, &all_cpus);
531	if (mp_ncpus == 0) {
532		/*
533		 * No CPUs were found, so this must be a UP system.  Setup
534		 * the variables to represent a system with a single CPU
535		 * with an id of 0.
536		 */
537		mp_ncpus = 1;
538		return (0);
539	}
540
541	/* At least one CPU was found. */
542	if (mp_ncpus == 1) {
543		/*
544		 * One CPU was found, so this must be a UP system with
545		 * an I/O APIC.
546		 */
547		mp_maxid = 0;
548		return (0);
549	}
550
551	/* At least two CPUs were found. */
552	return (1);
553}
554
555/*
556 * Initialize the IPI handlers and start up the AP's.
557 */
558void
559cpu_mp_start(void)
560{
561	int i;
562
563	/* Initialize the logical ID to APIC ID table. */
564	for (i = 0; i < MAXCPU; i++) {
565		cpu_apic_ids[i] = -1;
566		cpu_ipi_pending[i] = 0;
567	}
568
569	/* Install an inter-CPU IPI for TLB invalidation */
570	setidt(IPI_INVLTLB, IDTVEC(invltlb),
571	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
572	setidt(IPI_INVLPG, IDTVEC(invlpg),
573	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
574	setidt(IPI_INVLRNG, IDTVEC(invlrng),
575	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
576
577	/* Install an inter-CPU IPI for cache invalidation. */
578	setidt(IPI_INVLCACHE, IDTVEC(invlcache),
579	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
580
581	/* Install an inter-CPU IPI for lazy pmap release */
582	setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
583	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
584
585	/* Install an inter-CPU IPI for all-CPU rendezvous */
586	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
587	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
588
589	/* Install generic inter-CPU IPI handler */
590	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
591	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
592
593	/* Install an inter-CPU IPI for CPU stop/restart */
594	setidt(IPI_STOP, IDTVEC(cpustop),
595	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
596
597	/* Install an inter-CPU IPI for CPU suspend/resume */
598	setidt(IPI_SUSPEND, IDTVEC(cpususpend),
599	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
600
601	/* Set boot_cpu_id if needed. */
602	if (boot_cpu_id == -1) {
603		boot_cpu_id = PCPU_GET(apic_id);
604		cpu_info[boot_cpu_id].cpu_bsp = 1;
605	} else
606		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
607		    ("BSP's APIC ID doesn't match boot_cpu_id"));
608
609	/* Probe logical/physical core configuration. */
610	topo_probe();
611
612	assign_cpu_ids();
613
614	/* Start each Application Processor */
615	start_all_aps();
616
617	set_interrupt_apic_ids();
618}
619
620
621/*
622 * Print various information about the SMP system hardware and setup.
623 */
624void
625cpu_mp_announce(void)
626{
627	const char *hyperthread;
628	int i;
629
630	printf("FreeBSD/SMP: %d package(s) x %d core(s)",
631	    mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
632	if (hyperthreading_cpus > 1)
633	    printf(" x %d HTT threads", cpu_logical);
634	else if (cpu_logical > 1)
635	    printf(" x %d SMT threads", cpu_logical);
636	printf("\n");
637
638	/* List active CPUs first. */
639	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
640	for (i = 1; i < mp_ncpus; i++) {
641		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
642			hyperthread = "/HT";
643		else
644			hyperthread = "";
645		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
646		    cpu_apic_ids[i]);
647	}
648
649	/* List disabled CPUs last. */
650	for (i = 0; i <= MAX_APIC_ID; i++) {
651		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
652			continue;
653		if (cpu_info[i].cpu_hyperthread)
654			hyperthread = "/HT";
655		else
656			hyperthread = "";
657		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
658		    i);
659	}
660}
661
662/*
663 * AP CPU's call this to initialize themselves.
664 */
665void
666init_secondary(void)
667{
668	struct pcpu *pc;
669	vm_offset_t addr;
670	int	gsel_tss;
671	int	x, myid;
672	u_int	cpuid, cr0;
673
674	/* bootAP is set in start_ap() to our ID. */
675	myid = bootAP;
676
677	/* Get per-cpu data */
678	pc = &__pcpu[myid];
679
680	/* prime data page for it to use */
681	pcpu_init(pc, myid, sizeof(struct pcpu));
682	dpcpu_init(dpcpu, myid);
683	pc->pc_apic_id = cpu_apic_ids[myid];
684	pc->pc_prvspace = pc;
685	pc->pc_curthread = 0;
686
687	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
688	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
689
690	for (x = 0; x < NGDT; x++) {
691		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
692	}
693
694	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
695	r_gdt.rd_base = (int) &gdt[myid * NGDT];
696	lgdt(&r_gdt);			/* does magic intra-segment return */
697
698	lidt(&r_idt);
699
700	lldt(_default_ldt);
701	PCPU_SET(currentldt, _default_ldt);
702
703	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
704	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
705	PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
706	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
707	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
708	PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
709	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
710	ltr(gsel_tss);
711
712	PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
713
714	/*
715	 * Set to a known state:
716	 * Set by mpboot.s: CR0_PG, CR0_PE
717	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
718	 */
719	cr0 = rcr0();
720	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
721	load_cr0(cr0);
722	CHECK_WRITE(0x38, 5);
723
724	/* Disable local APIC just to be sure. */
725	lapic_disable();
726
727	/* signal our startup to the BSP. */
728	mp_naps++;
729	CHECK_WRITE(0x39, 6);
730
731	/* Spin until the BSP releases the AP's. */
732	while (!aps_ready)
733		ia32_pause();
734
735	/* BSP may have changed PTD while we were waiting */
736	invltlb();
737	for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
738		invlpg(addr);
739
740#if defined(I586_CPU) && !defined(NO_F00F_HACK)
741	lidt(&r_idt);
742#endif
743
744	/* Initialize the PAT MSR if present. */
745	pmap_init_pat();
746
747	/* set up CPU registers and state */
748	cpu_setregs();
749
750	/* set up FPU state on the AP */
751	npxinit();
752
753	/* set up SSE registers */
754	enable_sse();
755
756	if (cpu_ops.cpu_init)
757		cpu_ops.cpu_init();
758
759#ifdef PAE
760	/* Enable the PTE no-execute bit. */
761	if ((amd_feature & AMDID_NX) != 0) {
762		uint64_t msr;
763
764		msr = rdmsr(MSR_EFER) | EFER_NXE;
765		wrmsr(MSR_EFER, msr);
766	}
767#endif
768
769	/* A quick check from sanity claus */
770	cpuid = PCPU_GET(cpuid);
771	if (PCPU_GET(apic_id) != lapic_id()) {
772		printf("SMP: cpuid = %d\n", cpuid);
773		printf("SMP: actual apic_id = %d\n", lapic_id());
774		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
775		panic("cpuid mismatch! boom!!");
776	}
777
778	/* Initialize curthread. */
779	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
780	PCPU_SET(curthread, PCPU_GET(idlethread));
781
782	mca_init();
783
784	mtx_lock_spin(&ap_boot_mtx);
785
786	/* Init local apic for irq's */
787	lapic_setup(1);
788
789	/* Set memory range attributes for this CPU to match the BSP */
790	mem_range_AP_init();
791
792	smp_cpus++;
793
794	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
795	printf("SMP: AP CPU #%d Launched!\n", cpuid);
796
797	/* Determine if we are a logical CPU. */
798	/* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
799	if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
800		CPU_SET(cpuid, &logical_cpus_mask);
801
802	if (bootverbose)
803		lapic_dump("AP");
804
805	if (smp_cpus == mp_ncpus) {
806		/* enable IPI's, tlb shootdown, freezes etc */
807		atomic_store_rel_int(&smp_started, 1);
808	}
809
810	mtx_unlock_spin(&ap_boot_mtx);
811
812	/* Wait until all the AP's are up. */
813	while (smp_started == 0)
814		ia32_pause();
815
816	/* Start per-CPU event timers. */
817	cpu_initclocks_ap();
818
819	/* Enter the scheduler. */
820	sched_throw(NULL);
821
822	panic("scheduler returned us to %s", __func__);
823	/* NOTREACHED */
824}
825
826/*******************************************************************
827 * local functions and data
828 */
829
830/*
831 * We tell the I/O APIC code about all the CPUs we want to receive
832 * interrupts.  If we don't want certain CPUs to receive IRQs we
833 * can simply not tell the I/O APIC code about them in this function.
834 * We also do not tell it about the BSP since it tells itself about
835 * the BSP internally to work with UP kernels and on UP machines.
836 */
837static void
838set_interrupt_apic_ids(void)
839{
840	u_int i, apic_id;
841
842	for (i = 0; i < MAXCPU; i++) {
843		apic_id = cpu_apic_ids[i];
844		if (apic_id == -1)
845			continue;
846		if (cpu_info[apic_id].cpu_bsp)
847			continue;
848		if (cpu_info[apic_id].cpu_disabled)
849			continue;
850
851		/* Don't let hyperthreads service interrupts. */
852		if (hyperthreading_cpus > 1 &&
853		    apic_id % hyperthreading_cpus != 0)
854			continue;
855
856		intr_add_cpu(i);
857	}
858}
859
860/*
861 * Assign logical CPU IDs to local APICs.
862 */
863static void
864assign_cpu_ids(void)
865{
866	u_int i;
867
868	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
869	    &hyperthreading_allowed);
870
871	/* Check for explicitly disabled CPUs. */
872	for (i = 0; i <= MAX_APIC_ID; i++) {
873		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
874			continue;
875
876		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
877			cpu_info[i].cpu_hyperthread = 1;
878
879			/*
880			 * Don't use HT CPU if it has been disabled by a
881			 * tunable.
882			 */
883			if (hyperthreading_allowed == 0) {
884				cpu_info[i].cpu_disabled = 1;
885				continue;
886			}
887		}
888
889		/* Don't use this CPU if it has been disabled by a tunable. */
890		if (resource_disabled("lapic", i)) {
891			cpu_info[i].cpu_disabled = 1;
892			continue;
893		}
894	}
895
896	if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
897		hyperthreading_cpus = 0;
898		cpu_logical = 1;
899	}
900
901	/*
902	 * Assign CPU IDs to local APIC IDs and disable any CPUs
903	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
904	 *
905	 * To minimize confusion for userland, we attempt to number
906	 * CPUs such that all threads and cores in a package are
907	 * grouped together.  For now we assume that the BSP is always
908	 * the first thread in a package and just start adding APs
909	 * starting with the BSP's APIC ID.
910	 */
911	mp_ncpus = 1;
912	cpu_apic_ids[0] = boot_cpu_id;
913	apic_cpuids[boot_cpu_id] = 0;
914	for (i = boot_cpu_id + 1; i != boot_cpu_id;
915	     i == MAX_APIC_ID ? i = 0 : i++) {
916		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
917		    cpu_info[i].cpu_disabled)
918			continue;
919
920		if (mp_ncpus < MAXCPU) {
921			cpu_apic_ids[mp_ncpus] = i;
922			apic_cpuids[i] = mp_ncpus;
923			mp_ncpus++;
924		} else
925			cpu_info[i].cpu_disabled = 1;
926	}
927	KASSERT(mp_maxid >= mp_ncpus - 1,
928	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
929	    mp_ncpus));
930}
931
932/*
933 * start each AP in our list
934 */
935/* Lowest 1MB is already mapped: don't touch*/
936#define TMPMAP_START 1
937static int
938start_all_aps(void)
939{
940#ifndef PC98
941	u_char mpbiosreason;
942#endif
943	u_int32_t mpbioswarmvec;
944	int apic_id, cpu, i;
945
946	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
947
948	/* install the AP 1st level boot code */
949	install_ap_tramp();
950
951	/* save the current value of the warm-start vector */
952	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
953#ifndef PC98
954	outb(CMOS_REG, BIOS_RESET);
955	mpbiosreason = inb(CMOS_DATA);
956#endif
957
958	/* set up temporary P==V mapping for AP boot */
959	/* XXX this is a hack, we should boot the AP on its own stack/PTD */
960	for (i = TMPMAP_START; i < NKPT; i++)
961		PTD[i] = PTD[KPTDI + i];
962	invltlb();
963
964	/* start each AP */
965	for (cpu = 1; cpu < mp_ncpus; cpu++) {
966		apic_id = cpu_apic_ids[cpu];
967
968		/* allocate and set up a boot stack data page */
969		bootstacks[cpu] =
970		    (char *)kmem_malloc(kernel_arena, KSTACK_PAGES * PAGE_SIZE,
971		    M_WAITOK | M_ZERO);
972		dpcpu = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
973		    M_WAITOK | M_ZERO);
974		/* setup a vector to our boot code */
975		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
976		*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
977#ifndef PC98
978		outb(CMOS_REG, BIOS_RESET);
979		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
980#endif
981
982		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 4;
983		bootAP = cpu;
984
985		/* attempt to start the Application Processor */
986		CHECK_INIT(99);	/* setup checkpoints */
987		if (!start_ap(apic_id)) {
988			printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
989			CHECK_PRINT("trace");	/* show checkpoints */
990			/* better panic as the AP may be running loose */
991			printf("panic y/n? [y] ");
992			if (cngetc() != 'n')
993				panic("bye-bye");
994		}
995		CHECK_PRINT("trace");		/* show checkpoints */
996
997		CPU_SET(cpu, &all_cpus);	/* record AP in CPU map */
998	}
999
1000	/* restore the warmstart vector */
1001	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
1002
1003#ifndef PC98
1004	outb(CMOS_REG, BIOS_RESET);
1005	outb(CMOS_DATA, mpbiosreason);
1006#endif
1007
1008	/* Undo V==P hack from above */
1009	for (i = TMPMAP_START; i < NKPT; i++)
1010		PTD[i] = 0;
1011	pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
1012
1013	/* number of APs actually started */
1014	return mp_naps;
1015}
1016
1017/*
1018 * load the 1st level AP boot code into base memory.
1019 */
1020
1021/* targets for relocation */
1022extern void bigJump(void);
1023extern void bootCodeSeg(void);
1024extern void bootDataSeg(void);
1025extern void MPentry(void);
1026extern u_int MP_GDT;
1027extern u_int mp_gdtbase;
1028
1029static void
1030install_ap_tramp(void)
1031{
1032	int     x;
1033	int     size = *(int *) ((u_long) & bootMP_size);
1034	vm_offset_t va = boot_address + KERNBASE;
1035	u_char *src = (u_char *) ((u_long) bootMP);
1036	u_char *dst = (u_char *) va;
1037	u_int   boot_base = (u_int) bootMP;
1038	u_int8_t *dst8;
1039	u_int16_t *dst16;
1040	u_int32_t *dst32;
1041
1042	KASSERT (size <= PAGE_SIZE,
1043	    ("'size' do not fit into PAGE_SIZE, as expected."));
1044	pmap_kenter(va, boot_address);
1045	pmap_invalidate_page (kernel_pmap, va);
1046	for (x = 0; x < size; ++x)
1047		*dst++ = *src++;
1048
1049	/*
1050	 * modify addresses in code we just moved to basemem. unfortunately we
1051	 * need fairly detailed info about mpboot.s for this to work.  changes
1052	 * to mpboot.s might require changes here.
1053	 */
1054
1055	/* boot code is located in KERNEL space */
1056	dst = (u_char *) va;
1057
1058	/* modify the lgdt arg */
1059	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
1060	*dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
1061
1062	/* modify the ljmp target for MPentry() */
1063	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
1064	*dst32 = ((u_int) MPentry - KERNBASE);
1065
1066	/* modify the target for boot code segment */
1067	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
1068	dst8 = (u_int8_t *) (dst16 + 1);
1069	*dst16 = (u_int) boot_address & 0xffff;
1070	*dst8 = ((u_int) boot_address >> 16) & 0xff;
1071
1072	/* modify the target for boot data segment */
1073	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
1074	dst8 = (u_int8_t *) (dst16 + 1);
1075	*dst16 = (u_int) boot_address & 0xffff;
1076	*dst8 = ((u_int) boot_address >> 16) & 0xff;
1077}
1078
1079/*
1080 * This function starts the AP (application processor) identified
1081 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1082 * to accomplish this.  This is necessary because of the nuances
1083 * of the different hardware we might encounter.  It isn't pretty,
1084 * but it seems to work.
1085 */
1086static int
1087start_ap(int apic_id)
1088{
1089	int vector, ms;
1090	int cpus;
1091
1092	/* calculate the vector */
1093	vector = (boot_address >> 12) & 0xff;
1094
1095	/* used as a watchpoint to signal AP startup */
1096	cpus = mp_naps;
1097
1098	ipi_startup(apic_id, vector);
1099
1100	/* Wait up to 5 seconds for it to start. */
1101	for (ms = 0; ms < 5000; ms++) {
1102		if (mp_naps > cpus)
1103			return 1;	/* return SUCCESS */
1104		DELAY(1000);
1105	}
1106	return 0;		/* return FAILURE */
1107}
1108
1109#ifdef COUNT_XINVLTLB_HITS
1110u_int xhits_gbl[MAXCPU];
1111u_int xhits_pg[MAXCPU];
1112u_int xhits_rng[MAXCPU];
1113static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
1114SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
1115    sizeof(xhits_gbl), "IU", "");
1116SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
1117    sizeof(xhits_pg), "IU", "");
1118SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
1119    sizeof(xhits_rng), "IU", "");
1120
1121u_int ipi_global;
1122u_int ipi_page;
1123u_int ipi_range;
1124u_int ipi_range_size;
1125SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
1126SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
1127SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
1128SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
1129    0, "");
1130
1131u_int ipi_masked_global;
1132u_int ipi_masked_page;
1133u_int ipi_masked_range;
1134u_int ipi_masked_range_size;
1135SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
1136    &ipi_masked_global, 0, "");
1137SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
1138    &ipi_masked_page, 0, "");
1139SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
1140    &ipi_masked_range, 0, "");
1141SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
1142    &ipi_masked_range_size, 0, "");
1143#endif /* COUNT_XINVLTLB_HITS */
1144
1145/*
1146 * Init and startup IPI.
1147 */
1148void
1149ipi_startup(int apic_id, int vector)
1150{
1151
1152	/*
1153	 * first we do an INIT IPI: this INIT IPI might be run, resetting
1154	 * and running the target CPU. OR this INIT IPI might be latched (P5
1155	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1156	 * ignored.
1157	 */
1158	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1159	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
1160	lapic_ipi_wait(-1);
1161	DELAY(10000);		/* wait ~10mS */
1162
1163	/*
1164	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1165	 * latched, (P5 bug) this 1st STARTUP would then terminate
1166	 * immediately, and the previously started INIT IPI would continue. OR
1167	 * the previous INIT IPI has already run. and this STARTUP IPI will
1168	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1169	 * will run.
1170	 */
1171	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1172	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1173	    vector, apic_id);
1174	lapic_ipi_wait(-1);
1175	DELAY(200);		/* wait ~200uS */
1176
1177	/*
1178	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1179	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1180	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1181	 * recognized after hardware RESET or INIT IPI.
1182	 */
1183	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1184	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1185	    vector, apic_id);
1186	lapic_ipi_wait(-1);
1187	DELAY(200);		/* wait ~200uS */
1188}
1189
1190/*
1191 * Send an IPI to specified CPU handling the bitmap logic.
1192 */
1193static void
1194ipi_send_cpu(int cpu, u_int ipi)
1195{
1196	u_int bitmap, old_pending, new_pending;
1197
1198	KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
1199
1200	if (IPI_IS_BITMAPED(ipi)) {
1201		bitmap = 1 << ipi;
1202		ipi = IPI_BITMAP_VECTOR;
1203		do {
1204			old_pending = cpu_ipi_pending[cpu];
1205			new_pending = old_pending | bitmap;
1206		} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
1207		    old_pending, new_pending));
1208		if (old_pending)
1209			return;
1210	}
1211	cpu_ops.ipi_vectored(ipi, cpu_apic_ids[cpu]);
1212}
1213
1214/*
1215 * Flush the TLB on all other CPU's
1216 */
1217static void
1218smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1219{
1220	u_int ncpu;
1221
1222	ncpu = mp_ncpus - 1;	/* does not shootdown self */
1223	if (ncpu < 1)
1224		return;		/* no other cpus */
1225	if (!(read_eflags() & PSL_I))
1226		panic("%s: interrupts disabled", __func__);
1227	mtx_lock_spin(&smp_ipi_mtx);
1228	smp_tlb_addr1 = addr1;
1229	smp_tlb_addr2 = addr2;
1230	atomic_store_rel_int(&smp_tlb_wait, 0);
1231	ipi_all_but_self(vector);
1232	while (smp_tlb_wait < ncpu)
1233		ia32_pause();
1234	mtx_unlock_spin(&smp_ipi_mtx);
1235}
1236
1237static void
1238smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1239{
1240	int cpu, ncpu, othercpus;
1241
1242	othercpus = mp_ncpus - 1;
1243	if (CPU_ISFULLSET(&mask)) {
1244		if (othercpus < 1)
1245			return;
1246	} else {
1247		CPU_CLR(PCPU_GET(cpuid), &mask);
1248		if (CPU_EMPTY(&mask))
1249			return;
1250	}
1251	if (!(read_eflags() & PSL_I))
1252		panic("%s: interrupts disabled", __func__);
1253	mtx_lock_spin(&smp_ipi_mtx);
1254	smp_tlb_addr1 = addr1;
1255	smp_tlb_addr2 = addr2;
1256	atomic_store_rel_int(&smp_tlb_wait, 0);
1257	if (CPU_ISFULLSET(&mask)) {
1258		ncpu = othercpus;
1259		ipi_all_but_self(vector);
1260	} else {
1261		ncpu = 0;
1262		while ((cpu = CPU_FFS(&mask)) != 0) {
1263			cpu--;
1264			CPU_CLR(cpu, &mask);
1265			CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu,
1266			    vector);
1267			ipi_send_cpu(cpu, vector);
1268			ncpu++;
1269		}
1270	}
1271	while (smp_tlb_wait < ncpu)
1272		ia32_pause();
1273	mtx_unlock_spin(&smp_ipi_mtx);
1274}
1275
1276void
1277smp_cache_flush(void)
1278{
1279
1280	if (smp_started)
1281		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
1282}
1283
1284void
1285smp_invltlb(void)
1286{
1287
1288	if (smp_started) {
1289		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
1290#ifdef COUNT_XINVLTLB_HITS
1291		ipi_global++;
1292#endif
1293	}
1294}
1295
1296void
1297smp_invlpg(vm_offset_t addr)
1298{
1299
1300	if (smp_started) {
1301		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
1302#ifdef COUNT_XINVLTLB_HITS
1303		ipi_page++;
1304#endif
1305	}
1306}
1307
1308void
1309smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
1310{
1311
1312	if (smp_started) {
1313		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
1314#ifdef COUNT_XINVLTLB_HITS
1315		ipi_range++;
1316		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1317#endif
1318	}
1319}
1320
1321void
1322smp_masked_invltlb(cpuset_t mask)
1323{
1324
1325	if (smp_started) {
1326		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
1327#ifdef COUNT_XINVLTLB_HITS
1328		ipi_masked_global++;
1329#endif
1330	}
1331}
1332
1333void
1334smp_masked_invlpg(cpuset_t mask, vm_offset_t addr)
1335{
1336
1337	if (smp_started) {
1338		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
1339#ifdef COUNT_XINVLTLB_HITS
1340		ipi_masked_page++;
1341#endif
1342	}
1343}
1344
1345void
1346smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2)
1347{
1348
1349	if (smp_started) {
1350		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
1351#ifdef COUNT_XINVLTLB_HITS
1352		ipi_masked_range++;
1353		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1354#endif
1355	}
1356}
1357
1358void
1359ipi_bitmap_handler(struct trapframe frame)
1360{
1361	struct trapframe *oldframe;
1362	struct thread *td;
1363	int cpu = PCPU_GET(cpuid);
1364	u_int ipi_bitmap;
1365
1366	critical_enter();
1367	td = curthread;
1368	td->td_intr_nesting_level++;
1369	oldframe = td->td_intr_frame;
1370	td->td_intr_frame = &frame;
1371	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1372	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
1373#ifdef COUNT_IPIS
1374		(*ipi_preempt_counts[cpu])++;
1375#endif
1376		sched_preempt(td);
1377	}
1378	if (ipi_bitmap & (1 << IPI_AST)) {
1379#ifdef COUNT_IPIS
1380		(*ipi_ast_counts[cpu])++;
1381#endif
1382		/* Nothing to do for AST */
1383	}
1384	if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
1385#ifdef COUNT_IPIS
1386		(*ipi_hardclock_counts[cpu])++;
1387#endif
1388		hardclockintr();
1389	}
1390	td->td_intr_frame = oldframe;
1391	td->td_intr_nesting_level--;
1392	critical_exit();
1393}
1394
1395/*
1396 * send an IPI to a set of cpus.
1397 */
1398void
1399ipi_selected(cpuset_t cpus, u_int ipi)
1400{
1401	int cpu;
1402
1403	/*
1404	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1405	 * of help in order to understand what is the source.
1406	 * Set the mask of receiving CPUs for this purpose.
1407	 */
1408	if (ipi == IPI_STOP_HARD)
1409		CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
1410
1411	while ((cpu = CPU_FFS(&cpus)) != 0) {
1412		cpu--;
1413		CPU_CLR(cpu, &cpus);
1414		CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1415		ipi_send_cpu(cpu, ipi);
1416	}
1417}
1418
1419/*
1420 * send an IPI to a specific CPU.
1421 */
1422void
1423ipi_cpu(int cpu, u_int ipi)
1424{
1425
1426	/*
1427	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1428	 * of help in order to understand what is the source.
1429	 * Set the mask of receiving CPUs for this purpose.
1430	 */
1431	if (ipi == IPI_STOP_HARD)
1432		CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
1433
1434	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1435	ipi_send_cpu(cpu, ipi);
1436}
1437
1438/*
1439 * send an IPI to all CPUs EXCEPT myself
1440 */
1441void
1442ipi_all_but_self(u_int ipi)
1443{
1444	cpuset_t other_cpus;
1445
1446	other_cpus = all_cpus;
1447	CPU_CLR(PCPU_GET(cpuid), &other_cpus);
1448	if (IPI_IS_BITMAPED(ipi)) {
1449		ipi_selected(other_cpus, ipi);
1450		return;
1451	}
1452
1453	/*
1454	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1455	 * of help in order to understand what is the source.
1456	 * Set the mask of receiving CPUs for this purpose.
1457	 */
1458	if (ipi == IPI_STOP_HARD)
1459		CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
1460
1461	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1462	cpu_ops.ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1463}
1464
1465int
1466ipi_nmi_handler()
1467{
1468	u_int cpuid;
1469
1470	/*
1471	 * As long as there is not a simple way to know about a NMI's
1472	 * source, if the bitmask for the current CPU is present in
1473	 * the global pending bitword an IPI_STOP_HARD has been issued
1474	 * and should be handled.
1475	 */
1476	cpuid = PCPU_GET(cpuid);
1477	if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
1478		return (1);
1479
1480	CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
1481	cpustop_handler();
1482	return (0);
1483}
1484
1485/*
1486 * Handle an IPI_STOP by saving our current context and spinning until we
1487 * are resumed.
1488 */
1489void
1490cpustop_handler(void)
1491{
1492	u_int cpu;
1493
1494	cpu = PCPU_GET(cpuid);
1495
1496	savectx(&stoppcbs[cpu]);
1497
1498	/* Indicate that we are stopped */
1499	CPU_SET_ATOMIC(cpu, &stopped_cpus);
1500
1501	/* Wait for restart */
1502	while (!CPU_ISSET(cpu, &started_cpus))
1503	    ia32_pause();
1504
1505	CPU_CLR_ATOMIC(cpu, &started_cpus);
1506	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
1507
1508	if (cpu == 0 && cpustop_restartfunc != NULL) {
1509		cpustop_restartfunc();
1510		cpustop_restartfunc = NULL;
1511	}
1512}
1513
1514/*
1515 * Handle an IPI_SUSPEND by saving our current context and spinning until we
1516 * are resumed.
1517 */
1518void
1519cpususpend_handler(void)
1520{
1521	u_int cpu;
1522
1523	mtx_assert(&smp_ipi_mtx, MA_NOTOWNED);
1524
1525	cpu = PCPU_GET(cpuid);
1526	if (savectx(susppcbs[cpu])) {
1527		wbinvd();
1528		CPU_SET_ATOMIC(cpu, &suspended_cpus);
1529	} else {
1530		pmap_init_pat();
1531		PCPU_SET(switchtime, 0);
1532		PCPU_SET(switchticks, ticks);
1533
1534		/* Indicate that we are resumed */
1535		CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1536	}
1537
1538	/* Wait for resume */
1539	while (!CPU_ISSET(cpu, &started_cpus))
1540		ia32_pause();
1541
1542	if (cpu_ops.cpu_resume)
1543		cpu_ops.cpu_resume();
1544
1545	/* Resume MCA and local APIC */
1546	mca_resume();
1547	lapic_setup(0);
1548
1549	/* Indicate that we are resumed */
1550	CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1551	CPU_CLR_ATOMIC(cpu, &started_cpus);
1552}
1553
1554/*
1555 * Handlers for TLB related IPIs
1556 */
1557void
1558invltlb_handler(void)
1559{
1560	uint64_t cr3;
1561#ifdef COUNT_XINVLTLB_HITS
1562	xhits_gbl[PCPU_GET(cpuid)]++;
1563#endif /* COUNT_XINVLTLB_HITS */
1564#ifdef COUNT_IPIS
1565	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
1566#endif /* COUNT_IPIS */
1567
1568	cr3 = rcr3();
1569	load_cr3(cr3);
1570	atomic_add_int(&smp_tlb_wait, 1);
1571}
1572
1573void
1574invlpg_handler(void)
1575{
1576#ifdef COUNT_XINVLTLB_HITS
1577	xhits_pg[PCPU_GET(cpuid)]++;
1578#endif /* COUNT_XINVLTLB_HITS */
1579#ifdef COUNT_IPIS
1580	(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
1581#endif /* COUNT_IPIS */
1582
1583	invlpg(smp_tlb_addr1);
1584
1585	atomic_add_int(&smp_tlb_wait, 1);
1586}
1587
1588void
1589invlrng_handler(void)
1590{
1591	vm_offset_t addr;
1592#ifdef COUNT_XINVLTLB_HITS
1593	xhits_rng[PCPU_GET(cpuid)]++;
1594#endif /* COUNT_XINVLTLB_HITS */
1595#ifdef COUNT_IPIS
1596	(*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
1597#endif /* COUNT_IPIS */
1598
1599	addr = smp_tlb_addr1;
1600	do {
1601		invlpg(addr);
1602		addr += PAGE_SIZE;
1603	} while (addr < smp_tlb_addr2);
1604
1605	atomic_add_int(&smp_tlb_wait, 1);
1606}
1607
1608void
1609invlcache_handler(void)
1610{
1611#ifdef COUNT_IPIS
1612	(*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
1613#endif /* COUNT_IPIS */
1614
1615	wbinvd();
1616	atomic_add_int(&smp_tlb_wait, 1);
1617}
1618
1619/*
1620 * This is called once the rest of the system is up and running and we're
1621 * ready to let the AP's out of the pen.
1622 */
1623static void
1624release_aps(void *dummy __unused)
1625{
1626
1627	if (mp_ncpus == 1)
1628		return;
1629	atomic_store_rel_int(&aps_ready, 1);
1630	while (smp_started == 0)
1631		ia32_pause();
1632}
1633SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1634
1635#ifdef COUNT_IPIS
1636/*
1637 * Setup interrupt counters for IPI handlers.
1638 */
1639static void
1640mp_ipi_intrcnt(void *dummy)
1641{
1642	char buf[64];
1643	int i;
1644
1645	CPU_FOREACH(i) {
1646		snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
1647		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1648		snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
1649		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1650		snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
1651		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1652		snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
1653		intrcnt_add(buf, &ipi_invlcache_counts[i]);
1654		snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
1655		intrcnt_add(buf, &ipi_preempt_counts[i]);
1656		snprintf(buf, sizeof(buf), "cpu%d:ast", i);
1657		intrcnt_add(buf, &ipi_ast_counts[i]);
1658		snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
1659		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1660		snprintf(buf, sizeof(buf), "cpu%d:lazypmap", i);
1661		intrcnt_add(buf, &ipi_lazypmap_counts[i]);
1662		snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
1663		intrcnt_add(buf, &ipi_hardclock_counts[i]);
1664	}
1665}
1666SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1667#endif
1668