g_eli_integrity.c revision 160569
1159307Spjd/*-
2159307Spjd * Copyright (c) 2005-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3159307Spjd * All rights reserved.
4159307Spjd *
5159307Spjd * Redistribution and use in source and binary forms, with or without
6159307Spjd * modification, are permitted provided that the following conditions
7159307Spjd * are met:
8159307Spjd * 1. Redistributions of source code must retain the above copyright
9159307Spjd *    notice, this list of conditions and the following disclaimer.
10159307Spjd * 2. Redistributions in binary form must reproduce the above copyright
11159307Spjd *    notice, this list of conditions and the following disclaimer in the
12159307Spjd *    documentation and/or other materials provided with the distribution.
13159307Spjd *
14159307Spjd * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15159307Spjd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16159307Spjd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17159307Spjd * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18159307Spjd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19159307Spjd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20159307Spjd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21159307Spjd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22159307Spjd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23159307Spjd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24159307Spjd * SUCH DAMAGE.
25159307Spjd */
26159307Spjd
27159307Spjd#include <sys/cdefs.h>
28159307Spjd__FBSDID("$FreeBSD: head/sys/geom/eli/g_eli_integrity.c 160569 2006-07-22 10:05:55Z pjd $");
29159307Spjd
30159307Spjd#include <sys/param.h>
31159307Spjd#include <sys/systm.h>
32159307Spjd#include <sys/kernel.h>
33159307Spjd#include <sys/linker.h>
34159307Spjd#include <sys/module.h>
35159307Spjd#include <sys/lock.h>
36159307Spjd#include <sys/mutex.h>
37159307Spjd#include <sys/bio.h>
38159307Spjd#include <sys/sysctl.h>
39159307Spjd#include <sys/malloc.h>
40159307Spjd#include <sys/kthread.h>
41159307Spjd#include <sys/proc.h>
42159307Spjd#include <sys/sched.h>
43159307Spjd#include <sys/smp.h>
44159307Spjd#include <sys/uio.h>
45159307Spjd#include <sys/vnode.h>
46159307Spjd
47159307Spjd#include <vm/uma.h>
48159307Spjd
49159307Spjd#include <geom/geom.h>
50159307Spjd#include <geom/eli/g_eli.h>
51159307Spjd#include <geom/eli/pkcs5v2.h>
52159307Spjd
53159307Spjd/*
54159307Spjd * The data layout description when integrity verification is configured.
55159307Spjd *
56159307Spjd * One of the most important assumption here is that authenticated data and its
57159307Spjd * HMAC has to be stored in the same place (namely in the same sector) to make
58159307Spjd * it work reliable.
59159307Spjd * The problem is that file systems work only with sectors that are multiple of
60159307Spjd * 512 bytes and a power of two number.
61159307Spjd * My idea to implement it is as follows.
62159307Spjd * Let's store HMAC in sector. This is a must. This leaves us 480 bytes for
63159307Spjd * data. We can't use that directly (ie. we can't create provider with 480 bytes
64159307Spjd * sector size). We need another sector from where we take only 32 bytes of data
65159307Spjd * and we store HMAC of this data as well. This takes two sectors from the
66159307Spjd * original provider at the input and leaves us one sector of authenticated data
67159307Spjd * at the output. Not very efficient, but you got the idea.
68159307Spjd * Now, let's assume, we want to create provider with 4096 bytes sector.
69159307Spjd * To output 4096 bytes of authenticated data we need 8x480 plus 1x256, so we
70159307Spjd * need nine 512-bytes sectors at the input to get one 4096-bytes sector at the
71159307Spjd * output. That's better. With 4096 bytes sector we can use 89% of size of the
72159307Spjd * original provider. I find it as an acceptable cost.
73159307Spjd * The reliability comes from the fact, that every HMAC stored inside the sector
74159307Spjd * is calculated only for the data in the same sector, so its impossible to
75159307Spjd * write new data and leave old HMAC or vice versa.
76159307Spjd *
77159307Spjd * And here is the picture:
78159307Spjd *
79159307Spjd * da0: +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
80159307Spjd *      |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |256b |
81159307Spjd *      |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data |
82159307Spjd *      +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
83159307Spjd *      |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |288 bytes |
84159307Spjd *      +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ |224 unused|
85159307Spjd *                                                                                                      +----------+
86159307Spjd * da0.eli: +----+----+----+----+----+----+----+----+----+
87159307Spjd *          |480b|480b|480b|480b|480b|480b|480b|480b|256b|
88159307Spjd *          +----+----+----+----+----+----+----+----+----+
89159307Spjd *          |                 4096 bytes                 |
90159307Spjd *          +--------------------------------------------+
91159307Spjd *
92159307Spjd * PS. You can use any sector size with geli(8). My example is using 4kB,
93159307Spjd *     because it's most efficient. For 8kB sectors you need 2 extra sectors,
94159307Spjd *     so the cost is the same as for 4kB sectors.
95159307Spjd */
96159307Spjd
97159307Spjd/*
98159307Spjd * Code paths:
99159307Spjd * BIO_READ:
100159307Spjd *	g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> g_eli_auth_read_done -> g_io_deliver
101159307Spjd * BIO_WRITE:
102159307Spjd *	g_eli_start -> g_eli_auth_run -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
103159307Spjd */
104159307Spjd
105159307SpjdMALLOC_DECLARE(M_ELI);
106159307Spjd
107159307Spjd/*
108159307Spjd * Here we generate key for HMAC. Every sector has its own HMAC key, so it is
109159307Spjd * not possible to copy sectors.
110159307Spjd * We cannot depend on fact, that every sector has its own IV, because different
111159307Spjd * IV doesn't change HMAC, when we use encrypt-then-authenticate method.
112159307Spjd */
113159307Spjdstatic void
114159307Spjdg_eli_auth_keygen(struct g_eli_softc *sc, off_t offset, u_char *key)
115159307Spjd{
116159307Spjd	SHA256_CTX ctx;
117159307Spjd
118159307Spjd	/* Copy precalculated SHA256 context. */
119159307Spjd	bcopy(&sc->sc_akeyctx, &ctx, sizeof(ctx));
120159307Spjd	SHA256_Update(&ctx, (uint8_t *)&offset, sizeof(offset));
121159307Spjd	SHA256_Final(key, &ctx);
122159307Spjd}
123159307Spjd
124159307Spjd/*
125159307Spjd * The function is called after we read and decrypt data.
126159307Spjd *
127159307Spjd * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> G_ELI_AUTH_READ_DONE -> g_io_deliver
128159307Spjd */
129159307Spjdstatic int
130159307Spjdg_eli_auth_read_done(struct cryptop *crp)
131159307Spjd{
132159307Spjd	struct bio *bp;
133159307Spjd
134159307Spjd	if (crp->crp_etype == EAGAIN) {
135159307Spjd		if (g_eli_crypto_rerun(crp) == 0)
136159307Spjd			return (0);
137159307Spjd	}
138159307Spjd	bp = (struct bio *)crp->crp_opaque;
139159307Spjd	bp->bio_inbed++;
140159307Spjd	if (crp->crp_etype == 0) {
141159307Spjd		bp->bio_completed += crp->crp_olen;
142159307Spjd		G_ELI_DEBUG(3, "Crypto READ request done (%d/%d) (add=%jd completed=%jd).",
143159307Spjd		    bp->bio_inbed, bp->bio_children, (intmax_t)crp->crp_olen, (intmax_t)bp->bio_completed);
144159307Spjd	} else {
145159307Spjd		G_ELI_DEBUG(1, "Crypto READ request failed (%d/%d) error=%d.",
146159307Spjd		    bp->bio_inbed, bp->bio_children, crp->crp_etype);
147159307Spjd		if (bp->bio_error == 0)
148159307Spjd			bp->bio_error = crp->crp_etype;
149159307Spjd	}
150159307Spjd	/*
151159307Spjd	 * Do we have all sectors already?
152159307Spjd	 */
153159307Spjd	if (bp->bio_inbed < bp->bio_children)
154159307Spjd		return (0);
155159307Spjd	if (bp->bio_error == 0) {
156159307Spjd		struct g_eli_softc *sc;
157159307Spjd		u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
158159307Spjd		u_char *srcdata, *dstdata, *auth;
159159307Spjd		off_t coroff, corsize;
160159307Spjd
161159307Spjd		/*
162159307Spjd		 * Verify data integrity based on calculated and read HMACs.
163159307Spjd		 */
164159307Spjd		sc = bp->bio_to->geom->softc;
165159307Spjd		/* Sectorsize of decrypted provider eg. 4096. */
166159307Spjd		decr_secsize = bp->bio_to->sectorsize;
167159307Spjd		/* The real sectorsize of encrypted provider, eg. 512. */
168159307Spjd		encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
169159307Spjd		/* Number of data bytes in one encrypted sector, eg. 480. */
170159307Spjd		data_secsize = sc->sc_data_per_sector;
171159307Spjd		/* Number of sectors from decrypted provider, eg. 2. */
172159307Spjd		nsec = bp->bio_length / decr_secsize;
173159307Spjd		/* Number of sectors from encrypted provider, eg. 18. */
174159307Spjd		nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
175159307Spjd		/* Last sector number in every big sector, eg. 9. */
176159307Spjd		lsec = sc->sc_bytes_per_sector / encr_secsize;
177159307Spjd
178159307Spjd		srcdata = bp->bio_driver2;
179159307Spjd		dstdata = bp->bio_data;
180159307Spjd		auth = srcdata + encr_secsize * nsec;
181159307Spjd		coroff = -1;
182159307Spjd		corsize = 0;
183159307Spjd
184159307Spjd		for (i = 1; i <= nsec; i++) {
185159307Spjd			data_secsize = sc->sc_data_per_sector;
186159307Spjd			if ((i % lsec) == 0)
187159307Spjd				data_secsize = decr_secsize % data_secsize;
188159307Spjd			if (bcmp(srcdata, auth, sc->sc_alen) != 0) {
189159307Spjd				/*
190159307Spjd				 * Curruption detected, remember the offset if
191159307Spjd				 * this is the first corrupted sector and
192159307Spjd				 * increase size.
193159307Spjd				 */
194159307Spjd				if (bp->bio_error == 0)
195159307Spjd					bp->bio_error = -1;
196159307Spjd				if (coroff == -1) {
197159307Spjd					coroff = bp->bio_offset +
198159307Spjd					    (dstdata - (u_char *)bp->bio_data);
199159307Spjd				}
200159307Spjd				corsize += data_secsize;
201159307Spjd			} else {
202159307Spjd				/*
203159307Spjd				 * No curruption, good.
204159307Spjd				 * Report previous corruption if there was one.
205159307Spjd				 */
206159307Spjd				if (coroff != -1) {
207159307Spjd					G_ELI_DEBUG(0, "%s: %jd bytes "
208159307Spjd					    "corrupted at offset %jd.",
209159307Spjd					    sc->sc_name, (intmax_t)corsize,
210159307Spjd					    (intmax_t)coroff);
211159307Spjd					coroff = -1;
212159307Spjd					corsize = 0;
213159307Spjd				}
214159307Spjd				bcopy(srcdata + sc->sc_alen, dstdata,
215159307Spjd				    data_secsize);
216159307Spjd			}
217159307Spjd			srcdata += encr_secsize;
218159307Spjd			dstdata += data_secsize;
219159307Spjd			auth += sc->sc_alen;
220159307Spjd		}
221159307Spjd		/* Report previous corruption if there was one. */
222159307Spjd		if (coroff != -1) {
223159307Spjd			G_ELI_DEBUG(0, "%s: %jd bytes corrupted at offset %jd.",
224159307Spjd			    sc->sc_name, (intmax_t)corsize, (intmax_t)coroff);
225159307Spjd		}
226159307Spjd	}
227159307Spjd	free(bp->bio_driver2, M_ELI);
228159307Spjd	bp->bio_driver2 = NULL;
229159307Spjd	if (bp->bio_error != 0) {
230159307Spjd		if (bp->bio_error == -1)
231159307Spjd			bp->bio_error = EINVAL;
232159307Spjd		else {
233159307Spjd			G_ELI_LOGREQ(0, bp,
234159307Spjd			    "Crypto READ request failed (error=%d).",
235159307Spjd			    bp->bio_error);
236159307Spjd		}
237159307Spjd		bp->bio_completed = 0;
238159307Spjd	}
239159307Spjd	/*
240159307Spjd	 * Read is finished, send it up.
241159307Spjd	 */
242159307Spjd	g_io_deliver(bp, bp->bio_error);
243159307Spjd	return (0);
244159307Spjd}
245159307Spjd
246159307Spjd/*
247159307Spjd * The function is called after data encryption.
248159307Spjd *
249159307Spjd * g_eli_start -> g_eli_auth_run -> G_ELI_AUTH_WRITE_DONE -> g_io_request -> g_eli_write_done -> g_io_deliver
250159307Spjd */
251159307Spjdstatic int
252159307Spjdg_eli_auth_write_done(struct cryptop *crp)
253159307Spjd{
254159307Spjd	struct g_eli_softc *sc;
255159307Spjd	struct g_consumer *cp;
256159307Spjd	struct bio *bp, *cbp, *cbp2;
257159307Spjd	u_int nsec;
258159307Spjd
259159307Spjd	if (crp->crp_etype == EAGAIN) {
260159307Spjd		if (g_eli_crypto_rerun(crp) == 0)
261159307Spjd			return (0);
262159307Spjd	}
263159307Spjd	bp = (struct bio *)crp->crp_opaque;
264159307Spjd	bp->bio_inbed++;
265159307Spjd	if (crp->crp_etype == 0) {
266159307Spjd		G_ELI_DEBUG(3, "Crypto WRITE request done (%d/%d).",
267159307Spjd		    bp->bio_inbed, bp->bio_children);
268159307Spjd	} else {
269159307Spjd		G_ELI_DEBUG(1, "Crypto WRITE request failed (%d/%d) error=%d.",
270159307Spjd		    bp->bio_inbed, bp->bio_children, crp->crp_etype);
271159307Spjd		if (bp->bio_error == 0)
272159307Spjd			bp->bio_error = crp->crp_etype;
273159307Spjd	}
274159307Spjd	/*
275159307Spjd	 * All sectors are already encrypted?
276159307Spjd	 */
277159307Spjd	if (bp->bio_inbed < bp->bio_children)
278159307Spjd		return (0);
279159307Spjd	if (bp->bio_error != 0) {
280159307Spjd		G_ELI_LOGREQ(0, bp, "Crypto WRITE request failed (error=%d).",
281159307Spjd		    bp->bio_error);
282159307Spjd		free(bp->bio_driver2, M_ELI);
283159307Spjd		bp->bio_driver2 = NULL;
284159307Spjd		cbp = bp->bio_driver1;
285159307Spjd		bp->bio_driver1 = NULL;
286159307Spjd		g_destroy_bio(cbp);
287159307Spjd		g_io_deliver(bp, bp->bio_error);
288159307Spjd		return (0);
289159307Spjd	}
290159307Spjd	sc = bp->bio_to->geom->softc;
291159307Spjd	cp = LIST_FIRST(&sc->sc_geom->consumer);
292159307Spjd	cbp = bp->bio_driver1;
293159307Spjd	bp->bio_driver1 = NULL;
294159307Spjd	cbp->bio_to = cp->provider;
295159307Spjd	cbp->bio_done = g_eli_write_done;
296159307Spjd
297159307Spjd	/* Number of sectors from decrypted provider, eg. 1. */
298159307Spjd	nsec = bp->bio_length / bp->bio_to->sectorsize;
299159307Spjd	/* Number of sectors from encrypted provider, eg. 9. */
300159307Spjd	nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
301159307Spjd
302159307Spjd	cbp->bio_length = cp->provider->sectorsize * nsec;
303159307Spjd	cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
304159307Spjd	cbp->bio_data = bp->bio_driver2;
305159307Spjd
306159307Spjd	/*
307159307Spjd	 * We write more than what is requested, so we have to be ready to write
308159307Spjd	 * more than MAXPHYS.
309159307Spjd	 */
310159307Spjd	cbp2 = NULL;
311159307Spjd	if (cbp->bio_length > MAXPHYS) {
312159307Spjd		cbp2 = g_duplicate_bio(bp);
313159307Spjd		cbp2->bio_length = cbp->bio_length - MAXPHYS;
314159307Spjd		cbp2->bio_data = cbp->bio_data + MAXPHYS;
315159307Spjd		cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
316159307Spjd		cbp2->bio_to = cp->provider;
317159307Spjd		cbp2->bio_done = g_eli_write_done;
318159307Spjd		cbp->bio_length = MAXPHYS;
319159307Spjd	}
320159307Spjd	/*
321159307Spjd	 * Send encrypted data to the provider.
322159307Spjd	 */
323159307Spjd	G_ELI_LOGREQ(2, cbp, "Sending request.");
324159307Spjd	bp->bio_inbed = 0;
325159307Spjd	bp->bio_children = (cbp2 != NULL ? 2 : 1);
326159307Spjd	g_io_request(cbp, cp);
327159307Spjd	if (cbp2 != NULL) {
328159307Spjd		G_ELI_LOGREQ(2, cbp2, "Sending request.");
329159307Spjd		g_io_request(cbp2, cp);
330159307Spjd	}
331159307Spjd	return (0);
332159307Spjd}
333159307Spjd
334159307Spjdvoid
335159307Spjdg_eli_auth_read(struct g_eli_softc *sc, struct bio *bp)
336159307Spjd{
337159307Spjd	struct g_consumer *cp;
338159307Spjd	struct bio *cbp, *cbp2;
339159307Spjd	size_t size;
340159307Spjd	off_t nsec;
341159307Spjd
342159307Spjd	bp->bio_pflags = 0;
343159307Spjd
344159307Spjd	cp = LIST_FIRST(&sc->sc_geom->consumer);
345159307Spjd	cbp = bp->bio_driver1;
346159307Spjd	bp->bio_driver1 = NULL;
347159307Spjd	cbp->bio_to = cp->provider;
348159307Spjd	cbp->bio_done = g_eli_read_done;
349159307Spjd
350159307Spjd	/* Number of sectors from decrypted provider, eg. 1. */
351159307Spjd	nsec = bp->bio_length / bp->bio_to->sectorsize;
352159307Spjd	/* Number of sectors from encrypted provider, eg. 9. */
353159307Spjd	nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;
354159307Spjd
355159307Spjd	cbp->bio_length = cp->provider->sectorsize * nsec;
356159307Spjd	size = cbp->bio_length;
357159307Spjd	size += sc->sc_alen * nsec;
358159307Spjd	size += sizeof(struct cryptop) * nsec;
359159307Spjd	size += sizeof(struct cryptodesc) * nsec * 2;
360159307Spjd	size += G_ELI_AUTH_SECKEYLEN * nsec;
361159307Spjd	size += sizeof(struct uio) * nsec;
362159307Spjd	size += sizeof(struct iovec) * nsec;
363159307Spjd	cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
364159307Spjd	bp->bio_driver2 = malloc(size, M_ELI, M_WAITOK);
365159307Spjd	cbp->bio_data = bp->bio_driver2;
366159307Spjd
367159307Spjd	/*
368159307Spjd	 * We read more than what is requested, so we have to be ready to read
369159307Spjd	 * more than MAXPHYS.
370159307Spjd	 */
371159307Spjd	cbp2 = NULL;
372159307Spjd	if (cbp->bio_length > MAXPHYS) {
373159307Spjd		cbp2 = g_duplicate_bio(bp);
374159307Spjd		cbp2->bio_length = cbp->bio_length - MAXPHYS;
375159307Spjd		cbp2->bio_data = cbp->bio_data + MAXPHYS;
376159307Spjd		cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
377159307Spjd		cbp2->bio_to = cp->provider;
378159307Spjd		cbp2->bio_done = g_eli_read_done;
379159307Spjd		cbp->bio_length = MAXPHYS;
380159307Spjd	}
381159307Spjd	/*
382159307Spjd	 * Read encrypted data from provider.
383159307Spjd	 */
384159307Spjd	G_ELI_LOGREQ(2, cbp, "Sending request.");
385159307Spjd	g_io_request(cbp, cp);
386159307Spjd	if (cbp2 != NULL) {
387159307Spjd		G_ELI_LOGREQ(2, cbp2, "Sending request.");
388159307Spjd		g_io_request(cbp2, cp);
389159307Spjd	}
390159307Spjd}
391159307Spjd
392159307Spjd/*
393159307Spjd * This is the main function responsible for cryptography (ie. communication
394159307Spjd * with crypto(9) subsystem).
395159307Spjd */
396159307Spjdvoid
397159307Spjdg_eli_auth_run(struct g_eli_worker *wr, struct bio *bp)
398159307Spjd{
399159307Spjd	struct g_eli_softc *sc;
400159307Spjd	struct cryptop *crp;
401159307Spjd	struct cryptodesc *crde, *crda;
402159307Spjd	struct uio *uio;
403159307Spjd	struct iovec *iov;
404159307Spjd	u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
405159307Spjd	off_t dstoff;
406159307Spjd	int err, error;
407159307Spjd	u_char *p, *data, *auth, *authkey, *plaindata;
408159307Spjd
409159307Spjd	G_ELI_LOGREQ(3, bp, "%s", __func__);
410159307Spjd
411159307Spjd	bp->bio_pflags = wr->w_number;
412159307Spjd	sc = wr->w_softc;
413159307Spjd	/* Sectorsize of decrypted provider eg. 4096. */
414159307Spjd	decr_secsize = bp->bio_to->sectorsize;
415159307Spjd	/* The real sectorsize of encrypted provider, eg. 512. */
416159307Spjd	encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
417159307Spjd	/* Number of data bytes in one encrypted sector, eg. 480. */
418159307Spjd	data_secsize = sc->sc_data_per_sector;
419159307Spjd	/* Number of sectors from decrypted provider, eg. 2. */
420159307Spjd	nsec = bp->bio_length / decr_secsize;
421159307Spjd	/* Number of sectors from encrypted provider, eg. 18. */
422159307Spjd	nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
423159307Spjd	/* Last sector number in every big sector, eg. 9. */
424159307Spjd	lsec = sc->sc_bytes_per_sector / encr_secsize;
425159307Spjd	/* Destination offset, used for IV generation. */
426159307Spjd	dstoff = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
427159307Spjd
428159343Spjd	auth = NULL;	/* Silence compiler warning. */
429159307Spjd	plaindata = bp->bio_data;
430159307Spjd	if (bp->bio_cmd == BIO_READ) {
431159307Spjd		data = bp->bio_driver2;
432159307Spjd		auth = data + encr_secsize * nsec;
433159307Spjd		p = auth + sc->sc_alen * nsec;
434159307Spjd	} else {
435159307Spjd		size_t size;
436159307Spjd
437159307Spjd		size = encr_secsize * nsec;
438159307Spjd		size += sizeof(*crp) * nsec;
439159307Spjd		size += sizeof(*crde) * nsec;
440159307Spjd		size += sizeof(*crda) * nsec;
441159307Spjd		size += G_ELI_AUTH_SECKEYLEN * nsec;
442159307Spjd		size += sizeof(*uio) * nsec;
443159307Spjd		size += sizeof(*iov) * nsec;
444159307Spjd		data = malloc(size, M_ELI, M_WAITOK);
445159307Spjd		bp->bio_driver2 = data;
446159307Spjd		p = data + encr_secsize * nsec;
447159307Spjd	}
448159307Spjd	bp->bio_inbed = 0;
449159307Spjd	bp->bio_children = nsec;
450159307Spjd
451159307Spjd	error = 0;
452159307Spjd	for (i = 1; i <= nsec; i++, dstoff += encr_secsize) {
453159307Spjd		crp = (struct cryptop *)p;	p += sizeof(*crp);
454159307Spjd		crde = (struct cryptodesc *)p;	p += sizeof(*crde);
455159307Spjd		crda = (struct cryptodesc *)p;	p += sizeof(*crda);
456159307Spjd		authkey = (u_char *)p;		p += G_ELI_AUTH_SECKEYLEN;
457159307Spjd		uio = (struct uio *)p;		p += sizeof(*uio);
458159307Spjd		iov = (struct iovec *)p;	p += sizeof(*iov);
459159307Spjd
460159307Spjd		data_secsize = sc->sc_data_per_sector;
461159307Spjd		if ((i % lsec) == 0)
462159307Spjd			data_secsize = decr_secsize % data_secsize;
463159307Spjd
464159307Spjd		if (bp->bio_cmd == BIO_READ) {
465159307Spjd			/* Remember read HMAC. */
466159307Spjd			bcopy(data, auth, sc->sc_alen);
467159307Spjd			auth += sc->sc_alen;
468159307Spjd			/* TODO: bzero(9) can be commented out later. */
469159307Spjd			bzero(data, sc->sc_alen);
470159307Spjd		} else {
471159307Spjd			bcopy(plaindata, data + sc->sc_alen, data_secsize);
472159307Spjd			plaindata += data_secsize;
473159307Spjd		}
474159307Spjd
475159307Spjd		iov->iov_len = sc->sc_alen + data_secsize;
476159307Spjd		iov->iov_base = data;
477159307Spjd		data += encr_secsize;
478159307Spjd
479159307Spjd		uio->uio_iov = iov;
480159307Spjd		uio->uio_iovcnt = 1;
481159307Spjd		uio->uio_segflg = UIO_SYSSPACE;
482159307Spjd		uio->uio_resid = iov->iov_len;
483159307Spjd
484159307Spjd		crp->crp_sid = wr->w_sid;
485159343Spjd		crp->crp_ilen = uio->uio_resid;
486160569Spjd		crp->crp_olen = data_secsize;
487159307Spjd		crp->crp_opaque = (void *)bp;
488159307Spjd		crp->crp_buf = (void *)uio;
489159307Spjd		crp->crp_flags = CRYPTO_F_IOV | CRYPTO_F_CBIFSYNC | CRYPTO_F_REL;
490159307Spjd		if (g_eli_batch)
491159307Spjd			crp->crp_flags |= CRYPTO_F_BATCH;
492159307Spjd		if (bp->bio_cmd == BIO_WRITE) {
493159307Spjd			crp->crp_callback = g_eli_auth_write_done;
494159307Spjd			crp->crp_desc = crde;
495159307Spjd			crde->crd_next = crda;
496159307Spjd			crda->crd_next = NULL;
497159307Spjd		} else {
498159307Spjd			crp->crp_callback = g_eli_auth_read_done;
499159307Spjd			crp->crp_desc = crda;
500159307Spjd			crda->crd_next = crde;
501159307Spjd			crde->crd_next = NULL;
502159307Spjd		}
503159307Spjd
504159307Spjd		crde->crd_skip = sc->sc_alen;
505159307Spjd		crde->crd_len = data_secsize;
506159307Spjd		crde->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT;
507159307Spjd		if (bp->bio_cmd == BIO_WRITE)
508159307Spjd			crde->crd_flags |= CRD_F_ENCRYPT;
509159307Spjd		crde->crd_alg = sc->sc_ealgo;
510159307Spjd		crde->crd_key = sc->sc_ekey;
511159307Spjd		crde->crd_klen = sc->sc_ekeylen;
512159307Spjd		g_eli_crypto_ivgen(sc, dstoff, crde->crd_iv,
513159307Spjd		    sizeof(crde->crd_iv));
514159307Spjd
515159307Spjd		crda->crd_skip = sc->sc_alen;
516159307Spjd		crda->crd_len = data_secsize;
517159307Spjd		crda->crd_inject = 0;
518159307Spjd		crda->crd_flags = CRD_F_KEY_EXPLICIT;
519159307Spjd		crda->crd_alg = sc->sc_aalgo;
520159307Spjd		g_eli_auth_keygen(sc, dstoff, authkey);
521159307Spjd		crda->crd_key = authkey;
522159307Spjd		crda->crd_klen = G_ELI_AUTH_SECKEYLEN * 8;
523159307Spjd
524159307Spjd		crp->crp_etype = 0;
525159307Spjd		err = crypto_dispatch(crp);
526159307Spjd		if (err != 0 && error == 0)
527159307Spjd			error = err;
528159307Spjd	}
529159307Spjd	if (bp->bio_error == 0)
530159307Spjd		bp->bio_error = error;
531159307Spjd}
532