sym_hipd.c revision 275982
1/*-
2 *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3 *  PCI-SCSI controllers.
4 *
5 *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6 *
7 *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8 *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9 *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10 *
11 *
12 *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13 *  Copyright (C) 1998-1999  Gerard Roudier
14 *
15 *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16 *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17 *
18 *  The original ncr driver has been written for 386bsd and FreeBSD by
19 *          Wolfgang Stanglmeier        <wolf@cologne.de>
20 *          Stefan Esser                <se@mi.Uni-Koeln.de>
21 *  Copyright (C) 1994  Wolfgang Stanglmeier
22 *
23 *  The initialisation code, and part of the code that addresses
24 *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25 *  written by Justin T. Gibbs.
26 *
27 *  Other major contributions:
28 *
29 *  NVRAM detection and reading.
30 *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31 *
32 *-----------------------------------------------------------------------------
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 *    notice, this list of conditions and the following disclaimer in the
41 *    documentation and/or other materials provided with the distribution.
42 * 3. The name of the author may not be used to endorse or promote products
43 *    derived from this software without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58#include <sys/cdefs.h>
59__FBSDID("$FreeBSD: stable/10/sys/dev/sym/sym_hipd.c 275982 2014-12-21 03:06:11Z smh $");
60
61#define SYM_DRIVER_NAME	"sym-1.6.5-20000902"
62
63/* #define SYM_DEBUG_GENERIC_SUPPORT */
64
65#include <sys/param.h>
66
67/*
68 *  Driver configuration options.
69 */
70#include "opt_sym.h"
71#include <dev/sym/sym_conf.h>
72
73#include <sys/systm.h>
74#include <sys/malloc.h>
75#include <sys/endian.h>
76#include <sys/kernel.h>
77#include <sys/lock.h>
78#include <sys/mutex.h>
79#include <sys/module.h>
80#include <sys/bus.h>
81
82#include <sys/proc.h>
83
84#include <dev/pci/pcireg.h>
85#include <dev/pci/pcivar.h>
86
87#include <machine/bus.h>
88#include <machine/resource.h>
89#include <machine/atomic.h>
90
91#ifdef __sparc64__
92#include <dev/ofw/openfirm.h>
93#include <machine/ofw_machdep.h>
94#endif
95
96#include <sys/rman.h>
97
98#include <cam/cam.h>
99#include <cam/cam_ccb.h>
100#include <cam/cam_sim.h>
101#include <cam/cam_xpt_sim.h>
102#include <cam/cam_debug.h>
103
104#include <cam/scsi/scsi_all.h>
105#include <cam/scsi/scsi_message.h>
106
107/* Short and quite clear integer types */
108typedef int8_t    s8;
109typedef int16_t   s16;
110typedef	int32_t   s32;
111typedef u_int8_t  u8;
112typedef u_int16_t u16;
113typedef	u_int32_t u32;
114
115/*
116 *  Driver definitions.
117 */
118#include <dev/sym/sym_defs.h>
119#include <dev/sym/sym_fw.h>
120
121/*
122 *  IA32 architecture does not reorder STORES and prevents
123 *  LOADS from passing STORES. It is called `program order'
124 *  by Intel and allows device drivers to deal with memory
125 *  ordering by only ensuring that the code is not reordered
126 *  by the compiler when ordering is required.
127 *  Other architectures implement a weaker ordering that
128 *  requires memory barriers (and also IO barriers when they
129 *  make sense) to be used.
130 */
131#if	defined	__i386__ || defined __amd64__
132#define MEMORY_BARRIER()	do { ; } while(0)
133#elif	defined	__powerpc__
134#define MEMORY_BARRIER()	__asm__ volatile("eieio; sync" : : : "memory")
135#elif	defined	__ia64__
136#define MEMORY_BARRIER()	__asm__ volatile("mf.a; mf" : : : "memory")
137#elif	defined	__sparc64__
138#define MEMORY_BARRIER()	__asm__ volatile("membar #Sync" : : : "memory")
139#elif	defined	__arm__
140#define MEMORY_BARRIER()	dmb()
141#else
142#error	"Not supported platform"
143#endif
144
145/*
146 *  A la VMS/CAM-3 queue management.
147 */
148typedef struct sym_quehead {
149	struct sym_quehead *flink;	/* Forward  pointer */
150	struct sym_quehead *blink;	/* Backward pointer */
151} SYM_QUEHEAD;
152
153#define sym_que_init(ptr) do { \
154	(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
155} while (0)
156
157static __inline void __sym_que_add(struct sym_quehead * new,
158	struct sym_quehead * blink,
159	struct sym_quehead * flink)
160{
161	flink->blink	= new;
162	new->flink	= flink;
163	new->blink	= blink;
164	blink->flink	= new;
165}
166
167static __inline void __sym_que_del(struct sym_quehead * blink,
168	struct sym_quehead * flink)
169{
170	flink->blink = blink;
171	blink->flink = flink;
172}
173
174static __inline int sym_que_empty(struct sym_quehead *head)
175{
176	return head->flink == head;
177}
178
179static __inline void sym_que_splice(struct sym_quehead *list,
180	struct sym_quehead *head)
181{
182	struct sym_quehead *first = list->flink;
183
184	if (first != list) {
185		struct sym_quehead *last = list->blink;
186		struct sym_quehead *at   = head->flink;
187
188		first->blink = head;
189		head->flink  = first;
190
191		last->flink = at;
192		at->blink   = last;
193	}
194}
195
196#define sym_que_entry(ptr, type, member) \
197	((type *)((char *)(ptr)-(size_t)(&((type *)0)->member)))
198
199#define sym_insque(new, pos)		__sym_que_add(new, pos, (pos)->flink)
200
201#define sym_remque(el)			__sym_que_del((el)->blink, (el)->flink)
202
203#define sym_insque_head(new, head)	__sym_que_add(new, head, (head)->flink)
204
205static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
206{
207	struct sym_quehead *elem = head->flink;
208
209	if (elem != head)
210		__sym_que_del(head, elem->flink);
211	else
212		elem = NULL;
213	return elem;
214}
215
216#define sym_insque_tail(new, head)	__sym_que_add(new, (head)->blink, head)
217
218/*
219 *  This one may be useful.
220 */
221#define FOR_EACH_QUEUED_ELEMENT(head, qp) \
222	for (qp = (head)->flink; qp != (head); qp = qp->flink)
223/*
224 *  FreeBSD does not offer our kind of queue in the CAM CCB.
225 *  So, we have to cast.
226 */
227#define sym_qptr(p)	((struct sym_quehead *) (p))
228
229/*
230 *  Simple bitmap operations.
231 */
232#define sym_set_bit(p, n)	(((u32 *)(p))[(n)>>5] |=  (1<<((n)&0x1f)))
233#define sym_clr_bit(p, n)	(((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
234#define sym_is_bit(p, n)	(((u32 *)(p))[(n)>>5] &   (1<<((n)&0x1f)))
235
236/*
237 *  Number of tasks per device we want to handle.
238 */
239#if	SYM_CONF_MAX_TAG_ORDER > 8
240#error	"more than 256 tags per logical unit not allowed."
241#endif
242#define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
243
244/*
245 *  Donnot use more tasks that we can handle.
246 */
247#ifndef	SYM_CONF_MAX_TAG
248#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
249#endif
250#if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
251#undef	SYM_CONF_MAX_TAG
252#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
253#endif
254
255/*
256 *    This one means 'NO TAG for this job'
257 */
258#define NO_TAG	(256)
259
260/*
261 *  Number of SCSI targets.
262 */
263#if	SYM_CONF_MAX_TARGET > 16
264#error	"more than 16 targets not allowed."
265#endif
266
267/*
268 *  Number of logical units per target.
269 */
270#if	SYM_CONF_MAX_LUN > 64
271#error	"more than 64 logical units per target not allowed."
272#endif
273
274/*
275 *    Asynchronous pre-scaler (ns). Shall be 40 for
276 *    the SCSI timings to be compliant.
277 */
278#define	SYM_CONF_MIN_ASYNC (40)
279
280/*
281 *  Number of entries in the START and DONE queues.
282 *
283 *  We limit to 1 PAGE in order to succeed allocation of
284 *  these queues. Each entry is 8 bytes long (2 DWORDS).
285 */
286#ifdef	SYM_CONF_MAX_START
287#define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
288#else
289#define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
290#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
291#endif
292
293#if	SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
294#undef	SYM_CONF_MAX_QUEUE
295#define	SYM_CONF_MAX_QUEUE   PAGE_SIZE/8
296#undef	SYM_CONF_MAX_START
297#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
298#endif
299
300/*
301 *  For this one, we want a short name :-)
302 */
303#define MAX_QUEUE	SYM_CONF_MAX_QUEUE
304
305/*
306 *  Active debugging tags and verbosity.
307 */
308#define DEBUG_ALLOC	(0x0001)
309#define DEBUG_PHASE	(0x0002)
310#define DEBUG_POLL	(0x0004)
311#define DEBUG_QUEUE	(0x0008)
312#define DEBUG_RESULT	(0x0010)
313#define DEBUG_SCATTER	(0x0020)
314#define DEBUG_SCRIPT	(0x0040)
315#define DEBUG_TINY	(0x0080)
316#define DEBUG_TIMING	(0x0100)
317#define DEBUG_NEGO	(0x0200)
318#define DEBUG_TAGS	(0x0400)
319#define DEBUG_POINTER	(0x0800)
320
321#if 0
322static int sym_debug = 0;
323	#define DEBUG_FLAGS sym_debug
324#else
325/*	#define DEBUG_FLAGS (0x0631) */
326	#define DEBUG_FLAGS (0x0000)
327
328#endif
329#define sym_verbose	(np->verbose)
330
331/*
332 *  Insert a delay in micro-seconds and milli-seconds.
333 */
334static void UDELAY(int us) { DELAY(us); }
335static void MDELAY(int ms) { while (ms--) UDELAY(1000); }
336
337/*
338 *  Simple power of two buddy-like allocator.
339 *
340 *  This simple code is not intended to be fast, but to
341 *  provide power of 2 aligned memory allocations.
342 *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
343 *  this allocator allows simple and fast address calculations
344 *  from the SCRIPTS code. In addition, cache line alignment
345 *  is guaranteed for power of 2 cache line size.
346 *
347 *  This allocator has been developed for the Linux sym53c8xx
348 *  driver, since this O/S does not provide naturally aligned
349 *  allocations.
350 *  It has the advantage of allowing the driver to use private
351 *  pages of memory that will be useful if we ever need to deal
352 *  with IO MMUs for PCI.
353 */
354#define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
355#define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
356#if 0
357#define MEMO_FREE_UNUSED	/* Free unused pages immediately */
358#endif
359#define MEMO_WARN	1
360#define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
361#define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
362#define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
363
364#define get_pages()		malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
365#define free_pages(p)		free((p), M_DEVBUF)
366
367typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
368
369typedef struct m_link {		/* Link between free memory chunks */
370	struct m_link *next;
371} m_link_s;
372
373typedef struct m_vtob {		/* Virtual to Bus address translation */
374	struct m_vtob	*next;
375	bus_dmamap_t	dmamap;	/* Map for this chunk */
376	m_addr_t	vaddr;	/* Virtual address */
377	m_addr_t	baddr;	/* Bus physical address */
378} m_vtob_s;
379/* Hash this stuff a bit to speed up translations */
380#define VTOB_HASH_SHIFT		5
381#define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
382#define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
383#define VTOB_HASH_CODE(m)	\
384	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
385
386typedef struct m_pool {		/* Memory pool of a given kind */
387	bus_dma_tag_t	 dev_dmat;	/* Identifies the pool */
388	bus_dma_tag_t	 dmat;		/* Tag for our fixed allocations */
389	m_addr_t (*getp)(struct m_pool *);
390#ifdef	MEMO_FREE_UNUSED
391	void (*freep)(struct m_pool *, m_addr_t);
392#endif
393#define M_GETP()		mp->getp(mp)
394#define M_FREEP(p)		mp->freep(mp, p)
395	int nump;
396	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
397	struct m_pool *next;
398	struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
399} m_pool_s;
400
401static void *___sym_malloc(m_pool_s *mp, int size)
402{
403	int i = 0;
404	int s = (1 << MEMO_SHIFT);
405	int j;
406	m_addr_t a;
407	m_link_s *h = mp->h;
408
409	if (size > MEMO_CLUSTER_SIZE)
410		return NULL;
411
412	while (size > s) {
413		s <<= 1;
414		++i;
415	}
416
417	j = i;
418	while (!h[j].next) {
419		if (s == MEMO_CLUSTER_SIZE) {
420			h[j].next = (m_link_s *) M_GETP();
421			if (h[j].next)
422				h[j].next->next = NULL;
423			break;
424		}
425		++j;
426		s <<= 1;
427	}
428	a = (m_addr_t) h[j].next;
429	if (a) {
430		h[j].next = h[j].next->next;
431		while (j > i) {
432			j -= 1;
433			s >>= 1;
434			h[j].next = (m_link_s *) (a+s);
435			h[j].next->next = NULL;
436		}
437	}
438#ifdef DEBUG
439	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
440#endif
441	return (void *) a;
442}
443
444static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
445{
446	int i = 0;
447	int s = (1 << MEMO_SHIFT);
448	m_link_s *q;
449	m_addr_t a, b;
450	m_link_s *h = mp->h;
451
452#ifdef DEBUG
453	printf("___sym_mfree(%p, %d)\n", ptr, size);
454#endif
455
456	if (size > MEMO_CLUSTER_SIZE)
457		return;
458
459	while (size > s) {
460		s <<= 1;
461		++i;
462	}
463
464	a = (m_addr_t) ptr;
465
466	while (1) {
467#ifdef MEMO_FREE_UNUSED
468		if (s == MEMO_CLUSTER_SIZE) {
469			M_FREEP(a);
470			break;
471		}
472#endif
473		b = a ^ s;
474		q = &h[i];
475		while (q->next && q->next != (m_link_s *) b) {
476			q = q->next;
477		}
478		if (!q->next) {
479			((m_link_s *) a)->next = h[i].next;
480			h[i].next = (m_link_s *) a;
481			break;
482		}
483		q->next = q->next->next;
484		a = a & b;
485		s <<= 1;
486		++i;
487	}
488}
489
490static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
491{
492	void *p;
493
494	p = ___sym_malloc(mp, size);
495
496	if (DEBUG_FLAGS & DEBUG_ALLOC)
497		printf ("new %-10s[%4d] @%p.\n", name, size, p);
498
499	if (p)
500		bzero(p, size);
501	else if (uflags & MEMO_WARN)
502		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
503
504	return p;
505}
506
507#define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, MEMO_WARN)
508
509static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
510{
511	if (DEBUG_FLAGS & DEBUG_ALLOC)
512		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
513
514	___sym_mfree(mp, ptr, size);
515
516}
517
518/*
519 * Default memory pool we donnot need to involve in DMA.
520 */
521/*
522 * With the `bus dma abstraction', we use a separate pool for
523 * memory we donnot need to involve in DMA.
524 */
525static m_addr_t ___mp0_getp(m_pool_s *mp)
526{
527	m_addr_t m = (m_addr_t) get_pages();
528	if (m)
529		++mp->nump;
530	return m;
531}
532
533#ifdef	MEMO_FREE_UNUSED
534static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
535{
536	free_pages(m);
537	--mp->nump;
538}
539#endif
540
541#ifdef	MEMO_FREE_UNUSED
542static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
543#else
544static m_pool_s mp0 = {0, 0, ___mp0_getp};
545#endif
546
547/*
548 * Actual memory allocation routine for non-DMAed memory.
549 */
550static void *sym_calloc(int size, char *name)
551{
552	void *m;
553	/* Lock */
554	m = __sym_calloc(&mp0, size, name);
555	/* Unlock */
556	return m;
557}
558
559/*
560 * Actual memory allocation routine for non-DMAed memory.
561 */
562static void sym_mfree(void *ptr, int size, char *name)
563{
564	/* Lock */
565	__sym_mfree(&mp0, ptr, size, name);
566	/* Unlock */
567}
568
569/*
570 * DMAable pools.
571 */
572/*
573 * With `bus dma abstraction', we use a separate pool per parent
574 * BUS handle. A reverse table (hashed) is maintained for virtual
575 * to BUS address translation.
576 */
577static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg __unused,
578    int error)
579{
580	bus_addr_t *baddr;
581
582	KASSERT(nseg == 1, ("%s: too many DMA segments (%d)", __func__, nseg));
583
584	baddr = (bus_addr_t *)arg;
585	if (error)
586		*baddr = 0;
587	else
588		*baddr = segs->ds_addr;
589}
590
591static m_addr_t ___dma_getp(m_pool_s *mp)
592{
593	m_vtob_s *vbp;
594	void *vaddr = NULL;
595	bus_addr_t baddr = 0;
596
597	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
598	if (!vbp)
599		goto out_err;
600
601	if (bus_dmamem_alloc(mp->dmat, &vaddr,
602			BUS_DMA_COHERENT | BUS_DMA_WAITOK, &vbp->dmamap))
603		goto out_err;
604	bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
605			MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, BUS_DMA_NOWAIT);
606	if (baddr) {
607		int hc = VTOB_HASH_CODE(vaddr);
608		vbp->vaddr = (m_addr_t) vaddr;
609		vbp->baddr = (m_addr_t) baddr;
610		vbp->next = mp->vtob[hc];
611		mp->vtob[hc] = vbp;
612		++mp->nump;
613		return (m_addr_t) vaddr;
614	}
615out_err:
616	if (baddr)
617		bus_dmamap_unload(mp->dmat, vbp->dmamap);
618	if (vaddr)
619		bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
620	if (vbp) {
621		if (vbp->dmamap)
622			bus_dmamap_destroy(mp->dmat, vbp->dmamap);
623		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
624	}
625	return 0;
626}
627
628#ifdef	MEMO_FREE_UNUSED
629static void ___dma_freep(m_pool_s *mp, m_addr_t m)
630{
631	m_vtob_s **vbpp, *vbp;
632	int hc = VTOB_HASH_CODE(m);
633
634	vbpp = &mp->vtob[hc];
635	while (*vbpp && (*vbpp)->vaddr != m)
636		vbpp = &(*vbpp)->next;
637	if (*vbpp) {
638		vbp = *vbpp;
639		*vbpp = (*vbpp)->next;
640		bus_dmamap_unload(mp->dmat, vbp->dmamap);
641		bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
642		bus_dmamap_destroy(mp->dmat, vbp->dmamap);
643		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
644		--mp->nump;
645	}
646}
647#endif
648
649static __inline m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
650{
651	m_pool_s *mp;
652	for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
653	return mp;
654}
655
656static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
657{
658	m_pool_s *mp = NULL;
659
660	mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
661	if (mp) {
662		mp->dev_dmat = dev_dmat;
663		if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
664			       BUS_SPACE_MAXADDR_32BIT,
665			       BUS_SPACE_MAXADDR,
666			       NULL, NULL, MEMO_CLUSTER_SIZE, 1,
667			       MEMO_CLUSTER_SIZE, 0,
668			       NULL, NULL, &mp->dmat)) {
669			mp->getp = ___dma_getp;
670#ifdef	MEMO_FREE_UNUSED
671			mp->freep = ___dma_freep;
672#endif
673			mp->next = mp0.next;
674			mp0.next = mp;
675			return mp;
676		}
677	}
678	if (mp)
679		__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
680	return NULL;
681}
682
683#ifdef	MEMO_FREE_UNUSED
684static void ___del_dma_pool(m_pool_s *p)
685{
686	struct m_pool **pp = &mp0.next;
687
688	while (*pp && *pp != p)
689		pp = &(*pp)->next;
690	if (*pp) {
691		*pp = (*pp)->next;
692		bus_dma_tag_destroy(p->dmat);
693		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
694	}
695}
696#endif
697
698static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
699{
700	struct m_pool *mp;
701	void *m = NULL;
702
703	/* Lock */
704	mp = ___get_dma_pool(dev_dmat);
705	if (!mp)
706		mp = ___cre_dma_pool(dev_dmat);
707	if (mp)
708		m = __sym_calloc(mp, size, name);
709#ifdef	MEMO_FREE_UNUSED
710	if (mp && !mp->nump)
711		___del_dma_pool(mp);
712#endif
713	/* Unlock */
714
715	return m;
716}
717
718static void
719__sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
720{
721	struct m_pool *mp;
722
723	/* Lock */
724	mp = ___get_dma_pool(dev_dmat);
725	if (mp)
726		__sym_mfree(mp, m, size, name);
727#ifdef	MEMO_FREE_UNUSED
728	if (mp && !mp->nump)
729		___del_dma_pool(mp);
730#endif
731	/* Unlock */
732}
733
734static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
735{
736	m_pool_s *mp;
737	int hc = VTOB_HASH_CODE(m);
738	m_vtob_s *vp = NULL;
739	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
740
741	/* Lock */
742	mp = ___get_dma_pool(dev_dmat);
743	if (mp) {
744		vp = mp->vtob[hc];
745		while (vp && (m_addr_t) vp->vaddr != a)
746			vp = vp->next;
747	}
748	/* Unlock */
749	if (!vp)
750		panic("sym: VTOBUS FAILED!\n");
751	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
752}
753
754/*
755 * Verbs for DMAable memory handling.
756 * The _uvptv_ macro avoids a nasty warning about pointer to volatile
757 * being discarded.
758 */
759#define _uvptv_(p) ((void *)((vm_offset_t)(p)))
760#define _sym_calloc_dma(np, s, n)	__sym_calloc_dma(np->bus_dmat, s, n)
761#define _sym_mfree_dma(np, p, s, n)	\
762				__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
763#define sym_calloc_dma(s, n)		_sym_calloc_dma(np, s, n)
764#define sym_mfree_dma(p, s, n)		_sym_mfree_dma(np, p, s, n)
765#define _vtobus(np, p)			__vtobus(np->bus_dmat, _uvptv_(p))
766#define vtobus(p)			_vtobus(np, p)
767
768/*
769 *  Print a buffer in hexadecimal format.
770 */
771static void sym_printb_hex (u_char *p, int n)
772{
773	while (n-- > 0)
774		printf (" %x", *p++);
775}
776
777/*
778 *  Same with a label at beginning and .\n at end.
779 */
780static void sym_printl_hex (char *label, u_char *p, int n)
781{
782	printf ("%s", label);
783	sym_printb_hex (p, n);
784	printf (".\n");
785}
786
787/*
788 *  Return a string for SCSI BUS mode.
789 */
790static const char *sym_scsi_bus_mode(int mode)
791{
792	switch(mode) {
793	case SMODE_HVD:	return "HVD";
794	case SMODE_SE:	return "SE";
795	case SMODE_LVD: return "LVD";
796	}
797	return "??";
798}
799
800/*
801 *  Some poor and bogus sync table that refers to Tekram NVRAM layout.
802 */
803#ifdef SYM_CONF_NVRAM_SUPPORT
804static const u_char Tekram_sync[16] =
805	{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
806#endif
807
808/*
809 *  Union of supported NVRAM formats.
810 */
811struct sym_nvram {
812	int type;
813#define	SYM_SYMBIOS_NVRAM	(1)
814#define	SYM_TEKRAM_NVRAM	(2)
815#ifdef	SYM_CONF_NVRAM_SUPPORT
816	union {
817		Symbios_nvram Symbios;
818		Tekram_nvram Tekram;
819	} data;
820#endif
821};
822
823/*
824 *  This one is hopefully useless, but actually useful. :-)
825 */
826#ifndef assert
827#define	assert(expression) { \
828	if (!(expression)) { \
829		(void)panic( \
830			"assertion \"%s\" failed: file \"%s\", line %d\n", \
831			#expression, \
832			__FILE__, __LINE__); \
833	} \
834}
835#endif
836
837/*
838 *  Some provision for a possible big endian mode supported by
839 *  Symbios chips (never seen, by the way).
840 *  For now, this stuff does not deserve any comments. :)
841 */
842#define sym_offb(o)	(o)
843#define sym_offw(o)	(o)
844
845/*
846 *  Some provision for support for BIG ENDIAN CPU.
847 */
848#define cpu_to_scr(dw)	htole32(dw)
849#define scr_to_cpu(dw)	le32toh(dw)
850
851/*
852 *  Access to the chip IO registers and on-chip RAM.
853 *  We use the `bus space' interface under FreeBSD-4 and
854 *  later kernel versions.
855 */
856#if defined(SYM_CONF_IOMAPPED)
857
858#define INB_OFF(o)	bus_read_1(np->io_res, (o))
859#define INW_OFF(o)	bus_read_2(np->io_res, (o))
860#define INL_OFF(o)	bus_read_4(np->io_res, (o))
861
862#define OUTB_OFF(o, v)	bus_write_1(np->io_res, (o), (v))
863#define OUTW_OFF(o, v)	bus_write_2(np->io_res, (o), (v))
864#define OUTL_OFF(o, v)	bus_write_4(np->io_res, (o), (v))
865
866#else	/* Memory mapped IO */
867
868#define INB_OFF(o)	bus_read_1(np->mmio_res, (o))
869#define INW_OFF(o)	bus_read_2(np->mmio_res, (o))
870#define INL_OFF(o)	bus_read_4(np->mmio_res, (o))
871
872#define OUTB_OFF(o, v)	bus_write_1(np->mmio_res, (o), (v))
873#define OUTW_OFF(o, v)	bus_write_2(np->mmio_res, (o), (v))
874#define OUTL_OFF(o, v)	bus_write_4(np->mmio_res, (o), (v))
875
876#endif	/* SYM_CONF_IOMAPPED */
877
878#define OUTRAM_OFF(o, a, l)	\
879	bus_write_region_1(np->ram_res, (o), (a), (l))
880
881/*
882 *  Common definitions for both bus space and legacy IO methods.
883 */
884#define INB(r)		INB_OFF(offsetof(struct sym_reg,r))
885#define INW(r)		INW_OFF(offsetof(struct sym_reg,r))
886#define INL(r)		INL_OFF(offsetof(struct sym_reg,r))
887
888#define OUTB(r, v)	OUTB_OFF(offsetof(struct sym_reg,r), (v))
889#define OUTW(r, v)	OUTW_OFF(offsetof(struct sym_reg,r), (v))
890#define OUTL(r, v)	OUTL_OFF(offsetof(struct sym_reg,r), (v))
891
892#define OUTONB(r, m)	OUTB(r, INB(r) | (m))
893#define OUTOFFB(r, m)	OUTB(r, INB(r) & ~(m))
894#define OUTONW(r, m)	OUTW(r, INW(r) | (m))
895#define OUTOFFW(r, m)	OUTW(r, INW(r) & ~(m))
896#define OUTONL(r, m)	OUTL(r, INL(r) | (m))
897#define OUTOFFL(r, m)	OUTL(r, INL(r) & ~(m))
898
899/*
900 *  We normally want the chip to have a consistent view
901 *  of driver internal data structures when we restart it.
902 *  Thus these macros.
903 */
904#define OUTL_DSP(v)				\
905	do {					\
906		MEMORY_BARRIER();		\
907		OUTL (nc_dsp, (v));		\
908	} while (0)
909
910#define OUTONB_STD()				\
911	do {					\
912		MEMORY_BARRIER();		\
913		OUTONB (nc_dcntl, (STD|NOCOM));	\
914	} while (0)
915
916/*
917 *  Command control block states.
918 */
919#define HS_IDLE		(0)
920#define HS_BUSY		(1)
921#define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
922#define HS_DISCONNECT	(3)	/* Disconnected by target */
923#define HS_WAIT		(4)	/* waiting for resource	  */
924
925#define HS_DONEMASK	(0x80)
926#define HS_COMPLETE	(4|HS_DONEMASK)
927#define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
928#define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
929#define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
930
931/*
932 *  Software Interrupt Codes
933 */
934#define	SIR_BAD_SCSI_STATUS	(1)
935#define	SIR_SEL_ATN_NO_MSG_OUT	(2)
936#define	SIR_MSG_RECEIVED	(3)
937#define	SIR_MSG_WEIRD		(4)
938#define	SIR_NEGO_FAILED		(5)
939#define	SIR_NEGO_PROTO		(6)
940#define	SIR_SCRIPT_STOPPED	(7)
941#define	SIR_REJECT_TO_SEND	(8)
942#define	SIR_SWIDE_OVERRUN	(9)
943#define	SIR_SODL_UNDERRUN	(10)
944#define	SIR_RESEL_NO_MSG_IN	(11)
945#define	SIR_RESEL_NO_IDENTIFY	(12)
946#define	SIR_RESEL_BAD_LUN	(13)
947#define	SIR_TARGET_SELECTED	(14)
948#define	SIR_RESEL_BAD_I_T_L	(15)
949#define	SIR_RESEL_BAD_I_T_L_Q	(16)
950#define	SIR_ABORT_SENT		(17)
951#define	SIR_RESEL_ABORTED	(18)
952#define	SIR_MSG_OUT_DONE	(19)
953#define	SIR_COMPLETE_ERROR	(20)
954#define	SIR_DATA_OVERRUN	(21)
955#define	SIR_BAD_PHASE		(22)
956#define	SIR_MAX			(22)
957
958/*
959 *  Extended error bit codes.
960 *  xerr_status field of struct sym_ccb.
961 */
962#define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
963#define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
964#define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
965#define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
966#define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
967
968/*
969 *  Negotiation status.
970 *  nego_status field of struct sym_ccb.
971 */
972#define NS_SYNC		(1)
973#define NS_WIDE		(2)
974#define NS_PPR		(3)
975
976/*
977 *  A CCB hashed table is used to retrieve CCB address
978 *  from DSA value.
979 */
980#define CCB_HASH_SHIFT		8
981#define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
982#define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
983#define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
984
985/*
986 *  Device flags.
987 */
988#define SYM_DISC_ENABLED	(1)
989#define SYM_TAGS_ENABLED	(1<<1)
990#define SYM_SCAN_BOOT_DISABLED	(1<<2)
991#define SYM_SCAN_LUNS_DISABLED	(1<<3)
992
993/*
994 *  Host adapter miscellaneous flags.
995 */
996#define SYM_AVOID_BUS_RESET	(1)
997#define SYM_SCAN_TARGETS_HILO	(1<<1)
998
999/*
1000 *  Device quirks.
1001 *  Some devices, for example the CHEETAH 2 LVD, disconnects without
1002 *  saving the DATA POINTER then reselects and terminates the IO.
1003 *  On reselection, the automatic RESTORE DATA POINTER makes the
1004 *  CURRENT DATA POINTER not point at the end of the IO.
1005 *  This behaviour just breaks our calculation of the residual.
1006 *  For now, we just force an AUTO SAVE on disconnection and will
1007 *  fix that in a further driver version.
1008 */
1009#define SYM_QUIRK_AUTOSAVE 1
1010
1011/*
1012 *  Misc.
1013 */
1014#define	SYM_LOCK()		mtx_lock(&np->mtx)
1015#define	SYM_LOCK_ASSERT(_what)	mtx_assert(&np->mtx, (_what))
1016#define	SYM_LOCK_DESTROY()	mtx_destroy(&np->mtx)
1017#define	SYM_LOCK_INIT()		mtx_init(&np->mtx, "sym_lock", NULL, MTX_DEF)
1018#define	SYM_LOCK_INITIALIZED()	mtx_initialized(&np->mtx)
1019#define	SYM_UNLOCK()		mtx_unlock(&np->mtx)
1020
1021#define SYM_SNOOP_TIMEOUT (10000000)
1022#define SYM_PCI_IO	PCIR_BAR(0)
1023#define SYM_PCI_MMIO	PCIR_BAR(1)
1024#define SYM_PCI_RAM	PCIR_BAR(2)
1025#define SYM_PCI_RAM64	PCIR_BAR(3)
1026
1027/*
1028 *  Back-pointer from the CAM CCB to our data structures.
1029 */
1030#define sym_hcb_ptr	spriv_ptr0
1031/* #define sym_ccb_ptr	spriv_ptr1 */
1032
1033/*
1034 *  We mostly have to deal with pointers.
1035 *  Thus these typedef's.
1036 */
1037typedef struct sym_tcb *tcb_p;
1038typedef struct sym_lcb *lcb_p;
1039typedef struct sym_ccb *ccb_p;
1040typedef struct sym_hcb *hcb_p;
1041
1042/*
1043 *  Gather negotiable parameters value
1044 */
1045struct sym_trans {
1046	u8 scsi_version;
1047	u8 spi_version;
1048	u8 period;
1049	u8 offset;
1050	u8 width;
1051	u8 options;	/* PPR options */
1052};
1053
1054struct sym_tinfo {
1055	struct sym_trans current;
1056	struct sym_trans goal;
1057	struct sym_trans user;
1058};
1059
1060#define BUS_8_BIT	MSG_EXT_WDTR_BUS_8_BIT
1061#define BUS_16_BIT	MSG_EXT_WDTR_BUS_16_BIT
1062
1063/*
1064 *  Global TCB HEADER.
1065 *
1066 *  Due to lack of indirect addressing on earlier NCR chips,
1067 *  this substructure is copied from the TCB to a global
1068 *  address after selection.
1069 *  For SYMBIOS chips that support LOAD/STORE this copy is
1070 *  not needed and thus not performed.
1071 */
1072struct sym_tcbh {
1073	/*
1074	 *  Scripts bus addresses of LUN table accessed from scripts.
1075	 *  LUN #0 is a special case, since multi-lun devices are rare,
1076	 *  and we we want to speed-up the general case and not waste
1077	 *  resources.
1078	 */
1079	u32	luntbl_sa;	/* bus address of this table	*/
1080	u32	lun0_sa;	/* bus address of LCB #0	*/
1081	/*
1082	 *  Actual SYNC/WIDE IO registers value for this target.
1083	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
1084	 *  so have alignment constraints.
1085	 */
1086/*0*/	u_char	uval;		/* -> SCNTL4 register		*/
1087/*1*/	u_char	sval;		/* -> SXFER  io register	*/
1088/*2*/	u_char	filler1;
1089/*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
1090};
1091
1092/*
1093 *  Target Control Block
1094 */
1095struct sym_tcb {
1096	/*
1097	 *  TCB header.
1098	 *  Assumed at offset 0.
1099	 */
1100/*0*/	struct sym_tcbh head;
1101
1102	/*
1103	 *  LUN table used by the SCRIPTS processor.
1104	 *  An array of bus addresses is used on reselection.
1105	 */
1106	u32	*luntbl;	/* LCBs bus address table	*/
1107
1108	/*
1109	 *  LUN table used by the C code.
1110	 */
1111	lcb_p	lun0p;		/* LCB of LUN #0 (usual case)	*/
1112#if SYM_CONF_MAX_LUN > 1
1113	lcb_p	*lunmp;		/* Other LCBs [1..MAX_LUN]	*/
1114#endif
1115
1116	/*
1117	 *  Bitmap that tells about LUNs that succeeded at least
1118	 *  1 IO and therefore assumed to be a real device.
1119	 *  Avoid useless allocation of the LCB structure.
1120	 */
1121	u32	lun_map[(SYM_CONF_MAX_LUN+31)/32];
1122
1123	/*
1124	 *  Bitmap that tells about LUNs that haven't yet an LCB
1125	 *  allocated (not discovered or LCB allocation failed).
1126	 */
1127	u32	busy0_map[(SYM_CONF_MAX_LUN+31)/32];
1128
1129	/*
1130	 *  Transfer capabilities (SIP)
1131	 */
1132	struct sym_tinfo tinfo;
1133
1134	/*
1135	 * Keep track of the CCB used for the negotiation in order
1136	 * to ensure that only 1 negotiation is queued at a time.
1137	 */
1138	ccb_p   nego_cp;	/* CCB used for the nego		*/
1139
1140	/*
1141	 *  Set when we want to reset the device.
1142	 */
1143	u_char	to_reset;
1144
1145	/*
1146	 *  Other user settable limits and options.
1147	 *  These limits are read from the NVRAM if present.
1148	 */
1149	u_char	usrflags;
1150	u_short	usrtags;
1151};
1152
1153/*
1154 *  Assert some alignments required by the chip.
1155 */
1156CTASSERT(((offsetof(struct sym_reg, nc_sxfer) ^
1157    offsetof(struct sym_tcb, head.sval)) &3) == 0);
1158CTASSERT(((offsetof(struct sym_reg, nc_scntl3) ^
1159    offsetof(struct sym_tcb, head.wval)) &3) == 0);
1160
1161/*
1162 *  Global LCB HEADER.
1163 *
1164 *  Due to lack of indirect addressing on earlier NCR chips,
1165 *  this substructure is copied from the LCB to a global
1166 *  address after selection.
1167 *  For SYMBIOS chips that support LOAD/STORE this copy is
1168 *  not needed and thus not performed.
1169 */
1170struct sym_lcbh {
1171	/*
1172	 *  SCRIPTS address jumped by SCRIPTS on reselection.
1173	 *  For not probed logical units, this address points to
1174	 *  SCRIPTS that deal with bad LU handling (must be at
1175	 *  offset zero of the LCB for that reason).
1176	 */
1177/*0*/	u32	resel_sa;
1178
1179	/*
1180	 *  Task (bus address of a CCB) read from SCRIPTS that points
1181	 *  to the unique ITL nexus allowed to be disconnected.
1182	 */
1183	u32	itl_task_sa;
1184
1185	/*
1186	 *  Task table bus address (read from SCRIPTS).
1187	 */
1188	u32	itlq_tbl_sa;
1189};
1190
1191/*
1192 *  Logical Unit Control Block
1193 */
1194struct sym_lcb {
1195	/*
1196	 *  TCB header.
1197	 *  Assumed at offset 0.
1198	 */
1199/*0*/	struct sym_lcbh head;
1200
1201	/*
1202	 *  Task table read from SCRIPTS that contains pointers to
1203	 *  ITLQ nexuses. The bus address read from SCRIPTS is
1204	 *  inside the header.
1205	 */
1206	u32	*itlq_tbl;	/* Kernel virtual address	*/
1207
1208	/*
1209	 *  Busy CCBs management.
1210	 */
1211	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
1212	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
1213
1214	/*
1215	 *  Circular tag allocation buffer.
1216	 */
1217	u_short	ia_tag;		/* Tag allocation index		*/
1218	u_short	if_tag;		/* Tag release index		*/
1219	u_char	*cb_tags;	/* Circular tags buffer		*/
1220
1221	/*
1222	 *  Set when we want to clear all tasks.
1223	 */
1224	u_char to_clear;
1225
1226	/*
1227	 *  Capabilities.
1228	 */
1229	u_char	user_flags;
1230	u_char	current_flags;
1231};
1232
1233/*
1234 *  Action from SCRIPTS on a task.
1235 *  Is part of the CCB, but is also used separately to plug
1236 *  error handling action to perform from SCRIPTS.
1237 */
1238struct sym_actscr {
1239	u32	start;		/* Jumped by SCRIPTS after selection	*/
1240	u32	restart;	/* Jumped by SCRIPTS on relection	*/
1241};
1242
1243/*
1244 *  Phase mismatch context.
1245 *
1246 *  It is part of the CCB and is used as parameters for the
1247 *  DATA pointer. We need two contexts to handle correctly the
1248 *  SAVED DATA POINTER.
1249 */
1250struct sym_pmc {
1251	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
1252	u32	ret;		/* SCRIPT return address	*/
1253};
1254
1255/*
1256 *  LUN control block lookup.
1257 *  We use a direct pointer for LUN #0, and a table of
1258 *  pointers which is only allocated for devices that support
1259 *  LUN(s) > 0.
1260 */
1261#if SYM_CONF_MAX_LUN <= 1
1262#define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : 0
1263#else
1264#define sym_lp(tp, lun) \
1265	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
1266#endif
1267
1268/*
1269 *  Status are used by the host and the script processor.
1270 *
1271 *  The last four bytes (status[4]) are copied to the
1272 *  scratchb register (declared as scr0..scr3) just after the
1273 *  select/reselect, and copied back just after disconnecting.
1274 *  Inside the script the XX_REG are used.
1275 */
1276
1277/*
1278 *  Last four bytes (script)
1279 */
1280#define  QU_REG	scr0
1281#define  HS_REG	scr1
1282#define  HS_PRT	nc_scr1
1283#define  SS_REG	scr2
1284#define  SS_PRT	nc_scr2
1285#define  HF_REG	scr3
1286#define  HF_PRT	nc_scr3
1287
1288/*
1289 *  Last four bytes (host)
1290 */
1291#define  actualquirks  phys.head.status[0]
1292#define  host_status   phys.head.status[1]
1293#define  ssss_status   phys.head.status[2]
1294#define  host_flags    phys.head.status[3]
1295
1296/*
1297 *  Host flags
1298 */
1299#define HF_IN_PM0	1u
1300#define HF_IN_PM1	(1u<<1)
1301#define HF_ACT_PM	(1u<<2)
1302#define HF_DP_SAVED	(1u<<3)
1303#define HF_SENSE	(1u<<4)
1304#define HF_EXT_ERR	(1u<<5)
1305#define HF_DATA_IN	(1u<<6)
1306#ifdef SYM_CONF_IARB_SUPPORT
1307#define HF_HINT_IARB	(1u<<7)
1308#endif
1309
1310/*
1311 *  Global CCB HEADER.
1312 *
1313 *  Due to lack of indirect addressing on earlier NCR chips,
1314 *  this substructure is copied from the ccb to a global
1315 *  address after selection (or reselection) and copied back
1316 *  before disconnect.
1317 *  For SYMBIOS chips that support LOAD/STORE this copy is
1318 *  not needed and thus not performed.
1319 */
1320struct sym_ccbh {
1321	/*
1322	 *  Start and restart SCRIPTS addresses (must be at 0).
1323	 */
1324/*0*/	struct sym_actscr go;
1325
1326	/*
1327	 *  SCRIPTS jump address that deal with data pointers.
1328	 *  'savep' points to the position in the script responsible
1329	 *  for the actual transfer of data.
1330	 *  It's written on reception of a SAVE_DATA_POINTER message.
1331	 */
1332	u32	savep;		/* Jump address to saved data pointer	*/
1333	u32	lastp;		/* SCRIPTS address at end of data	*/
1334	u32	goalp;		/* Not accessed for now from SCRIPTS	*/
1335
1336	/*
1337	 *  Status fields.
1338	 */
1339	u8	status[4];
1340};
1341
1342/*
1343 *  Data Structure Block
1344 *
1345 *  During execution of a ccb by the script processor, the
1346 *  DSA (data structure address) register points to this
1347 *  substructure of the ccb.
1348 */
1349struct sym_dsb {
1350	/*
1351	 *  CCB header.
1352	 *  Also assumed at offset 0 of the sym_ccb structure.
1353	 */
1354/*0*/	struct sym_ccbh head;
1355
1356	/*
1357	 *  Phase mismatch contexts.
1358	 *  We need two to handle correctly the SAVED DATA POINTER.
1359	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
1360	 *  for address calculation from SCRIPTS.
1361	 */
1362	struct sym_pmc pm0;
1363	struct sym_pmc pm1;
1364
1365	/*
1366	 *  Table data for Script
1367	 */
1368	struct sym_tblsel  select;
1369	struct sym_tblmove smsg;
1370	struct sym_tblmove smsg_ext;
1371	struct sym_tblmove cmd;
1372	struct sym_tblmove sense;
1373	struct sym_tblmove wresid;
1374	struct sym_tblmove data [SYM_CONF_MAX_SG];
1375};
1376
1377/*
1378 *  Our Command Control Block
1379 */
1380struct sym_ccb {
1381	/*
1382	 *  This is the data structure which is pointed by the DSA
1383	 *  register when it is executed by the script processor.
1384	 *  It must be the first entry.
1385	 */
1386	struct sym_dsb phys;
1387
1388	/*
1389	 *  Pointer to CAM ccb and related stuff.
1390	 */
1391	struct callout ch;	/* callout handle		*/
1392	union ccb *cam_ccb;	/* CAM scsiio ccb		*/
1393	u8	cdb_buf[16];	/* Copy of CDB			*/
1394	u8	*sns_bbuf;	/* Bounce buffer for sense data	*/
1395#define SYM_SNS_BBUF_LEN	sizeof(struct scsi_sense_data)
1396	int	data_len;	/* Total data length		*/
1397	int	segments;	/* Number of SG segments	*/
1398
1399	/*
1400	 *  Miscellaneous status'.
1401	 */
1402	u_char	nego_status;	/* Negotiation status		*/
1403	u_char	xerr_status;	/* Extended error flags		*/
1404	u32	extra_bytes;	/* Extraneous bytes transferred	*/
1405
1406	/*
1407	 *  Message areas.
1408	 *  We prepare a message to be sent after selection.
1409	 *  We may use a second one if the command is rescheduled
1410	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
1411	 *  Contents are IDENTIFY and SIMPLE_TAG.
1412	 *  While negotiating sync or wide transfer,
1413	 *  a SDTR or WDTR message is appended.
1414	 */
1415	u_char	scsi_smsg [12];
1416	u_char	scsi_smsg2[12];
1417
1418	/*
1419	 *  Auto request sense related fields.
1420	 */
1421	u_char	sensecmd[6];	/* Request Sense command	*/
1422	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
1423	u_char	sv_xerr_status;	/* Saved extended status	*/
1424	int	sv_resid;	/* Saved residual		*/
1425
1426	/*
1427	 *  Map for the DMA of user data.
1428	 */
1429	void		*arg;	/* Argument for some callback	*/
1430	bus_dmamap_t	dmamap;	/* DMA map for user data	*/
1431	u_char		dmamapped;
1432#define SYM_DMA_NONE	0
1433#define SYM_DMA_READ	1
1434#define SYM_DMA_WRITE	2
1435	/*
1436	 *  Other fields.
1437	 */
1438	u32	ccb_ba;		/* BUS address of this CCB	*/
1439	u_short	tag;		/* Tag for this transfer	*/
1440				/*  NO_TAG means no tag		*/
1441	u_char	target;
1442	u_char	lun;
1443	ccb_p	link_ccbh;	/* Host adapter CCB hash chain	*/
1444	SYM_QUEHEAD
1445		link_ccbq;	/* Link to free/busy CCB queue	*/
1446	u32	startp;		/* Initial data pointer		*/
1447	int	ext_sg;		/* Extreme data pointer, used	*/
1448	int	ext_ofs;	/*  to calculate the residual.	*/
1449	u_char	to_abort;	/* Want this IO to be aborted	*/
1450};
1451
1452#define CCB_BA(cp,lbl)	(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1453
1454/*
1455 *  Host Control Block
1456 */
1457struct sym_hcb {
1458	struct mtx	mtx;
1459
1460	/*
1461	 *  Global headers.
1462	 *  Due to poorness of addressing capabilities, earlier
1463	 *  chips (810, 815, 825) copy part of the data structures
1464	 *  (CCB, TCB and LCB) in fixed areas.
1465	 */
1466#ifdef	SYM_CONF_GENERIC_SUPPORT
1467	struct sym_ccbh	ccb_head;
1468	struct sym_tcbh	tcb_head;
1469	struct sym_lcbh	lcb_head;
1470#endif
1471	/*
1472	 *  Idle task and invalid task actions and
1473	 *  their bus addresses.
1474	 */
1475	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
1476	vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
1477
1478	/*
1479	 *  Dummy lun table to protect us against target
1480	 *  returning bad lun number on reselection.
1481	 */
1482	u32	*badluntbl;	/* Table physical address	*/
1483	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
1484
1485	/*
1486	 *  Bus address of this host control block.
1487	 */
1488	u32	hcb_ba;
1489
1490	/*
1491	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
1492	 *  The START_RAM64 script loads the MMRS and MMWS from this
1493	 *  field.
1494	 */
1495	u32	scr_ram_seg;
1496
1497	/*
1498	 *  Chip and controller indentification.
1499	 */
1500	device_t device;
1501
1502	/*
1503	 *  Initial value of some IO register bits.
1504	 *  These values are assumed to have been set by BIOS, and may
1505	 *  be used to probe adapter implementation differences.
1506	 */
1507	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
1508		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
1509		sv_stest1;
1510
1511	/*
1512	 *  Actual initial value of IO register bits used by the
1513	 *  driver. They are loaded at initialisation according to
1514	 *  features that are to be enabled/disabled.
1515	 */
1516	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
1517		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
1518
1519	/*
1520	 *  Target data.
1521	 */
1522#ifdef __amd64__
1523	struct sym_tcb	*target;
1524#else
1525	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
1526#endif
1527
1528	/*
1529	 *  Target control block bus address array used by the SCRIPT
1530	 *  on reselection.
1531	 */
1532	u32		*targtbl;
1533	u32		targtbl_ba;
1534
1535	/*
1536	 *  CAM SIM information for this instance.
1537	 */
1538	struct		cam_sim  *sim;
1539	struct		cam_path *path;
1540
1541	/*
1542	 *  Allocated hardware resources.
1543	 */
1544	struct resource	*irq_res;
1545	struct resource	*io_res;
1546	struct resource	*mmio_res;
1547	struct resource	*ram_res;
1548	int		ram_id;
1549	void *intr;
1550
1551	/*
1552	 *  Bus stuff.
1553	 *
1554	 *  My understanding of PCI is that all agents must share the
1555	 *  same addressing range and model.
1556	 *  But some hardware architecture guys provide complex and
1557	 *  brain-deaded stuff that makes shit.
1558	 *  This driver only support PCI compliant implementations and
1559	 *  deals with part of the BUS stuff complexity only to fit O/S
1560	 *  requirements.
1561	 */
1562
1563	/*
1564	 *  DMA stuff.
1565	 */
1566	bus_dma_tag_t	bus_dmat;	/* DMA tag from parent BUS	*/
1567	bus_dma_tag_t	data_dmat;	/* DMA tag for user data	*/
1568	/*
1569	 *  BUS addresses of the chip
1570	 */
1571	vm_offset_t	mmio_ba;	/* MMIO BUS address		*/
1572	int		mmio_ws;	/* MMIO Window size		*/
1573
1574	vm_offset_t	ram_ba;		/* RAM BUS address		*/
1575	int		ram_ws;		/* RAM window size		*/
1576
1577	/*
1578	 *  SCRIPTS virtual and physical bus addresses.
1579	 *  'script'  is loaded in the on-chip RAM if present.
1580	 *  'scripth' stays in main memory for all chips except the
1581	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
1582	 */
1583	u_char		*scripta0;	/* Copies of script and scripth	*/
1584	u_char		*scriptb0;	/* Copies of script and scripth	*/
1585	vm_offset_t	scripta_ba;	/* Actual script and scripth	*/
1586	vm_offset_t	scriptb_ba;	/*  bus addresses.		*/
1587	vm_offset_t	scriptb0_ba;
1588	u_short		scripta_sz;	/* Actual size of script A	*/
1589	u_short		scriptb_sz;	/* Actual size of script B	*/
1590
1591	/*
1592	 *  Bus addresses, setup and patch methods for
1593	 *  the selected firmware.
1594	 */
1595	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
1596	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
1597	void		(*fw_setup)(hcb_p np, const struct sym_fw *fw);
1598	void		(*fw_patch)(hcb_p np);
1599	const char	*fw_name;
1600
1601	/*
1602	 *  General controller parameters and configuration.
1603	 */
1604	u_short	device_id;	/* PCI device id		*/
1605	u_char	revision_id;	/* PCI device revision id	*/
1606	u_int	features;	/* Chip features map		*/
1607	u_char	myaddr;		/* SCSI id of the adapter	*/
1608	u_char	maxburst;	/* log base 2 of dwords burst	*/
1609	u_char	maxwide;	/* Maximum transfer width	*/
1610	u_char	minsync;	/* Min sync period factor (ST)	*/
1611	u_char	maxsync;	/* Max sync period factor (ST)	*/
1612	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
1613	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
1614	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
1615	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
1616	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
1617	u_char	clock_divn;	/* Number of clock divisors	*/
1618	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
1619	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
1620	/*
1621	 *  Start queue management.
1622	 *  It is filled up by the host processor and accessed by the
1623	 *  SCRIPTS processor in order to start SCSI commands.
1624	 */
1625	volatile		/* Prevent code optimizations	*/
1626	u32	*squeue;	/* Start queue virtual address	*/
1627	u32	squeue_ba;	/* Start queue BUS address	*/
1628	u_short	squeueput;	/* Next free slot of the queue	*/
1629	u_short	actccbs;	/* Number of allocated CCBs	*/
1630
1631	/*
1632	 *  Command completion queue.
1633	 *  It is the same size as the start queue to avoid overflow.
1634	 */
1635	u_short	dqueueget;	/* Next position to scan	*/
1636	volatile		/* Prevent code optimizations	*/
1637	u32	*dqueue;	/* Completion (done) queue	*/
1638	u32	dqueue_ba;	/* Done queue BUS address	*/
1639
1640	/*
1641	 *  Miscellaneous buffers accessed by the scripts-processor.
1642	 *  They shall be DWORD aligned, because they may be read or
1643	 *  written with a script command.
1644	 */
1645	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1646	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1647	u32		lastmsg;	/* Last SCSI message sent	*/
1648	u_char		scratch;	/* Scratch for SCSI receive	*/
1649
1650	/*
1651	 *  Miscellaneous configuration and status parameters.
1652	 */
1653	u_char		usrflags;	/* Miscellaneous user flags	*/
1654	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1655	u_char		verbose;	/* Verbosity for this controller*/
1656	u32		cache;		/* Used for cache test at init.	*/
1657
1658	/*
1659	 *  CCB lists and queue.
1660	 */
1661	ccb_p ccbh[CCB_HASH_SIZE];	/* CCB hashed by DSA value	*/
1662	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
1663	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
1664
1665	/*
1666	 *  During error handling and/or recovery,
1667	 *  active CCBs that are to be completed with
1668	 *  error or requeued are moved from the busy_ccbq
1669	 *  to the comp_ccbq prior to completion.
1670	 */
1671	SYM_QUEHEAD	comp_ccbq;
1672
1673	/*
1674	 *  CAM CCB pending queue.
1675	 */
1676	SYM_QUEHEAD	cam_ccbq;
1677
1678	/*
1679	 *  IMMEDIATE ARBITRATION (IARB) control.
1680	 *
1681	 *  We keep track in 'last_cp' of the last CCB that has been
1682	 *  queued to the SCRIPTS processor and clear 'last_cp' when
1683	 *  this CCB completes. If last_cp is not zero at the moment
1684	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1685	 *  used by the SCRIPTS as a hint for setting IARB.
1686	 *  We donnot set more than 'iarb_max' consecutive hints for
1687	 *  IARB in order to leave devices a chance to reselect.
1688	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1689	 */
1690#ifdef SYM_CONF_IARB_SUPPORT
1691	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1692	u_short		iarb_count;	/* Actual # of these hints	*/
1693	ccb_p		last_cp;
1694#endif
1695
1696	/*
1697	 *  Command abort handling.
1698	 *  We need to synchronize tightly with the SCRIPTS
1699	 *  processor in order to handle things correctly.
1700	 */
1701	u_char		abrt_msg[4];	/* Message to send buffer	*/
1702	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1703	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1704	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1705};
1706
1707#define HCB_BA(np, lbl)	    (np->hcb_ba      + offsetof(struct sym_hcb, lbl))
1708
1709/*
1710 *  Return the name of the controller.
1711 */
1712static __inline const char *sym_name(hcb_p np)
1713{
1714	return device_get_nameunit(np->device);
1715}
1716
1717/*--------------------------------------------------------------------------*/
1718/*------------------------------ FIRMWARES ---------------------------------*/
1719/*--------------------------------------------------------------------------*/
1720
1721/*
1722 *  This stuff will be moved to a separate source file when
1723 *  the driver will be broken into several source modules.
1724 */
1725
1726/*
1727 *  Macros used for all firmwares.
1728 */
1729#define	SYM_GEN_A(s, label)	((short) offsetof(s, label)),
1730#define	SYM_GEN_B(s, label)	((short) offsetof(s, label)),
1731#define	PADDR_A(label)		SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
1732#define	PADDR_B(label)		SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
1733
1734#ifdef	SYM_CONF_GENERIC_SUPPORT
1735/*
1736 *  Allocate firmware #1 script area.
1737 */
1738#define	SYM_FWA_SCR		sym_fw1a_scr
1739#define	SYM_FWB_SCR		sym_fw1b_scr
1740#include <dev/sym/sym_fw1.h>
1741static const struct sym_fwa_ofs sym_fw1a_ofs = {
1742	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1743};
1744static const struct sym_fwb_ofs sym_fw1b_ofs = {
1745	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1746};
1747#undef	SYM_FWA_SCR
1748#undef	SYM_FWB_SCR
1749#endif	/* SYM_CONF_GENERIC_SUPPORT */
1750
1751/*
1752 *  Allocate firmware #2 script area.
1753 */
1754#define	SYM_FWA_SCR		sym_fw2a_scr
1755#define	SYM_FWB_SCR		sym_fw2b_scr
1756#include <dev/sym/sym_fw2.h>
1757static const struct sym_fwa_ofs sym_fw2a_ofs = {
1758	SYM_GEN_FW_A(struct SYM_FWA_SCR)
1759};
1760static const struct sym_fwb_ofs sym_fw2b_ofs = {
1761	SYM_GEN_FW_B(struct SYM_FWB_SCR)
1762	SYM_GEN_B(struct SYM_FWB_SCR, start64)
1763	SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
1764};
1765#undef	SYM_FWA_SCR
1766#undef	SYM_FWB_SCR
1767
1768#undef	SYM_GEN_A
1769#undef	SYM_GEN_B
1770#undef	PADDR_A
1771#undef	PADDR_B
1772
1773#ifdef	SYM_CONF_GENERIC_SUPPORT
1774/*
1775 *  Patch routine for firmware #1.
1776 */
1777static void
1778sym_fw1_patch(hcb_p np)
1779{
1780	struct sym_fw1a_scr *scripta0;
1781	struct sym_fw1b_scr *scriptb0;
1782
1783	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1784	scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
1785
1786	/*
1787	 *  Remove LED support if not needed.
1788	 */
1789	if (!(np->features & FE_LED0)) {
1790		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1791		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1792		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1793	}
1794
1795#ifdef SYM_CONF_IARB_SUPPORT
1796	/*
1797	 *    If user does not want to use IMMEDIATE ARBITRATION
1798	 *    when we are reselected while attempting to arbitrate,
1799	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1800	 */
1801	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1802		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1803#endif
1804	/*
1805	 *  Patch some data in SCRIPTS.
1806	 *  - start and done queue initial bus address.
1807	 *  - target bus address table bus address.
1808	 */
1809	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1810	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1811	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1812}
1813#endif	/* SYM_CONF_GENERIC_SUPPORT */
1814
1815/*
1816 *  Patch routine for firmware #2.
1817 */
1818static void
1819sym_fw2_patch(hcb_p np)
1820{
1821	struct sym_fw2a_scr *scripta0;
1822	struct sym_fw2b_scr *scriptb0;
1823
1824	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1825	scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
1826
1827	/*
1828	 *  Remove LED support if not needed.
1829	 */
1830	if (!(np->features & FE_LED0)) {
1831		scripta0->idle[0]	= cpu_to_scr(SCR_NO_OP);
1832		scripta0->reselected[0]	= cpu_to_scr(SCR_NO_OP);
1833		scripta0->start[0]	= cpu_to_scr(SCR_NO_OP);
1834	}
1835
1836#ifdef SYM_CONF_IARB_SUPPORT
1837	/*
1838	 *    If user does not want to use IMMEDIATE ARBITRATION
1839	 *    when we are reselected while attempting to arbitrate,
1840	 *    patch the SCRIPTS accordingly with a SCRIPT NO_OP.
1841	 */
1842	if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
1843		scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
1844#endif
1845	/*
1846	 *  Patch some variable in SCRIPTS.
1847	 *  - start and done queue initial bus address.
1848	 *  - target bus address table bus address.
1849	 */
1850	scriptb0->startpos[0]	= cpu_to_scr(np->squeue_ba);
1851	scriptb0->done_pos[0]	= cpu_to_scr(np->dqueue_ba);
1852	scriptb0->targtbl[0]	= cpu_to_scr(np->targtbl_ba);
1853
1854	/*
1855	 *  Remove the load of SCNTL4 on reselection if not a C10.
1856	 */
1857	if (!(np->features & FE_C10)) {
1858		scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
1859		scripta0->resel_scntl4[1] = cpu_to_scr(0);
1860	}
1861
1862	/*
1863	 *  Remove a couple of work-arounds specific to C1010 if
1864	 *  they are not desirable. See `sym_fw2.h' for more details.
1865	 */
1866	if (!(np->device_id == PCI_ID_LSI53C1010_2 &&
1867	      np->revision_id < 0x1 &&
1868	      np->pciclk_khz < 60000)) {
1869		scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
1870		scripta0->datao_phase[1] = cpu_to_scr(0);
1871	}
1872	if (!(np->device_id == PCI_ID_LSI53C1010 &&
1873	      /* np->revision_id < 0xff */ 1)) {
1874		scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
1875		scripta0->sel_done[1] = cpu_to_scr(0);
1876	}
1877
1878	/*
1879	 *  Patch some other variables in SCRIPTS.
1880	 *  These ones are loaded by the SCRIPTS processor.
1881	 */
1882	scriptb0->pm0_data_addr[0] =
1883		cpu_to_scr(np->scripta_ba +
1884			   offsetof(struct sym_fw2a_scr, pm0_data));
1885	scriptb0->pm1_data_addr[0] =
1886		cpu_to_scr(np->scripta_ba +
1887			   offsetof(struct sym_fw2a_scr, pm1_data));
1888}
1889
1890/*
1891 *  Fill the data area in scripts.
1892 *  To be done for all firmwares.
1893 */
1894static void
1895sym_fw_fill_data (u32 *in, u32 *out)
1896{
1897	int	i;
1898
1899	for (i = 0; i < SYM_CONF_MAX_SG; i++) {
1900		*in++  = SCR_CHMOV_TBL ^ SCR_DATA_IN;
1901		*in++  = offsetof (struct sym_dsb, data[i]);
1902		*out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
1903		*out++ = offsetof (struct sym_dsb, data[i]);
1904	}
1905}
1906
1907/*
1908 *  Setup useful script bus addresses.
1909 *  To be done for all firmwares.
1910 */
1911static void
1912sym_fw_setup_bus_addresses(hcb_p np, const struct sym_fw *fw)
1913{
1914	u32 *pa;
1915	const u_short *po;
1916	int i;
1917
1918	/*
1919	 *  Build the bus address table for script A
1920	 *  from the script A offset table.
1921	 */
1922	po = (const u_short *) fw->a_ofs;
1923	pa = (u32 *) &np->fwa_bas;
1924	for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
1925		pa[i] = np->scripta_ba + po[i];
1926
1927	/*
1928	 *  Same for script B.
1929	 */
1930	po = (const u_short *) fw->b_ofs;
1931	pa = (u32 *) &np->fwb_bas;
1932	for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
1933		pa[i] = np->scriptb_ba + po[i];
1934}
1935
1936#ifdef	SYM_CONF_GENERIC_SUPPORT
1937/*
1938 *  Setup routine for firmware #1.
1939 */
1940static void
1941sym_fw1_setup(hcb_p np, const struct sym_fw *fw)
1942{
1943	struct sym_fw1a_scr *scripta0;
1944
1945	scripta0 = (struct sym_fw1a_scr *) np->scripta0;
1946
1947	/*
1948	 *  Fill variable parts in scripts.
1949	 */
1950	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1951
1952	/*
1953	 *  Setup bus addresses used from the C code..
1954	 */
1955	sym_fw_setup_bus_addresses(np, fw);
1956}
1957#endif	/* SYM_CONF_GENERIC_SUPPORT */
1958
1959/*
1960 *  Setup routine for firmware #2.
1961 */
1962static void
1963sym_fw2_setup(hcb_p np, const struct sym_fw *fw)
1964{
1965	struct sym_fw2a_scr *scripta0;
1966
1967	scripta0 = (struct sym_fw2a_scr *) np->scripta0;
1968
1969	/*
1970	 *  Fill variable parts in scripts.
1971	 */
1972	sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
1973
1974	/*
1975	 *  Setup bus addresses used from the C code..
1976	 */
1977	sym_fw_setup_bus_addresses(np, fw);
1978}
1979
1980/*
1981 *  Allocate firmware descriptors.
1982 */
1983#ifdef	SYM_CONF_GENERIC_SUPPORT
1984static const struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
1985#endif	/* SYM_CONF_GENERIC_SUPPORT */
1986static const struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
1987
1988/*
1989 *  Find the most appropriate firmware for a chip.
1990 */
1991static const struct sym_fw *
1992sym_find_firmware(const struct sym_pci_chip *chip)
1993{
1994	if (chip->features & FE_LDSTR)
1995		return &sym_fw2;
1996#ifdef	SYM_CONF_GENERIC_SUPPORT
1997	else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
1998		return &sym_fw1;
1999#endif
2000	else
2001		return NULL;
2002}
2003
2004/*
2005 *  Bind a script to physical addresses.
2006 */
2007static void sym_fw_bind_script (hcb_p np, u32 *start, int len)
2008{
2009	u32 opcode, new, old, tmp1, tmp2;
2010	u32 *end, *cur;
2011	int relocs;
2012
2013	cur = start;
2014	end = start + len/4;
2015
2016	while (cur < end) {
2017
2018		opcode = *cur;
2019
2020		/*
2021		 *  If we forget to change the length
2022		 *  in scripts, a field will be
2023		 *  padded with 0. This is an illegal
2024		 *  command.
2025		 */
2026		if (opcode == 0) {
2027			printf ("%s: ERROR0 IN SCRIPT at %d.\n",
2028				sym_name(np), (int) (cur-start));
2029			MDELAY (10000);
2030			++cur;
2031			continue;
2032		};
2033
2034		/*
2035		 *  We use the bogus value 0xf00ff00f ;-)
2036		 *  to reserve data area in SCRIPTS.
2037		 */
2038		if (opcode == SCR_DATA_ZERO) {
2039			*cur++ = 0;
2040			continue;
2041		}
2042
2043		if (DEBUG_FLAGS & DEBUG_SCRIPT)
2044			printf ("%d:  <%x>\n", (int) (cur-start),
2045				(unsigned)opcode);
2046
2047		/*
2048		 *  We don't have to decode ALL commands
2049		 */
2050		switch (opcode >> 28) {
2051		case 0xf:
2052			/*
2053			 *  LOAD / STORE DSA relative, don't relocate.
2054			 */
2055			relocs = 0;
2056			break;
2057		case 0xe:
2058			/*
2059			 *  LOAD / STORE absolute.
2060			 */
2061			relocs = 1;
2062			break;
2063		case 0xc:
2064			/*
2065			 *  COPY has TWO arguments.
2066			 */
2067			relocs = 2;
2068			tmp1 = cur[1];
2069			tmp2 = cur[2];
2070			if ((tmp1 ^ tmp2) & 3) {
2071				printf ("%s: ERROR1 IN SCRIPT at %d.\n",
2072					sym_name(np), (int) (cur-start));
2073				MDELAY (10000);
2074			}
2075			/*
2076			 *  If PREFETCH feature not enabled, remove
2077			 *  the NO FLUSH bit if present.
2078			 */
2079			if ((opcode & SCR_NO_FLUSH) &&
2080			    !(np->features & FE_PFEN)) {
2081				opcode = (opcode & ~SCR_NO_FLUSH);
2082			}
2083			break;
2084		case 0x0:
2085			/*
2086			 *  MOVE/CHMOV (absolute address)
2087			 */
2088			if (!(np->features & FE_WIDE))
2089				opcode = (opcode | OPC_MOVE);
2090			relocs = 1;
2091			break;
2092		case 0x1:
2093			/*
2094			 *  MOVE/CHMOV (table indirect)
2095			 */
2096			if (!(np->features & FE_WIDE))
2097				opcode = (opcode | OPC_MOVE);
2098			relocs = 0;
2099			break;
2100		case 0x8:
2101			/*
2102			 *  JUMP / CALL
2103			 *  dont't relocate if relative :-)
2104			 */
2105			if (opcode & 0x00800000)
2106				relocs = 0;
2107			else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
2108				relocs = 2;
2109			else
2110				relocs = 1;
2111			break;
2112		case 0x4:
2113		case 0x5:
2114		case 0x6:
2115		case 0x7:
2116			relocs = 1;
2117			break;
2118		default:
2119			relocs = 0;
2120			break;
2121		};
2122
2123		/*
2124		 *  Scriptify:) the opcode.
2125		 */
2126		*cur++ = cpu_to_scr(opcode);
2127
2128		/*
2129		 *  If no relocation, assume 1 argument
2130		 *  and just scriptize:) it.
2131		 */
2132		if (!relocs) {
2133			*cur = cpu_to_scr(*cur);
2134			++cur;
2135			continue;
2136		}
2137
2138		/*
2139		 *  Otherwise performs all needed relocations.
2140		 */
2141		while (relocs--) {
2142			old = *cur;
2143
2144			switch (old & RELOC_MASK) {
2145			case RELOC_REGISTER:
2146				new = (old & ~RELOC_MASK) + np->mmio_ba;
2147				break;
2148			case RELOC_LABEL_A:
2149				new = (old & ~RELOC_MASK) + np->scripta_ba;
2150				break;
2151			case RELOC_LABEL_B:
2152				new = (old & ~RELOC_MASK) + np->scriptb_ba;
2153				break;
2154			case RELOC_SOFTC:
2155				new = (old & ~RELOC_MASK) + np->hcb_ba;
2156				break;
2157			case 0:
2158				/*
2159				 *  Don't relocate a 0 address.
2160				 *  They are mostly used for patched or
2161				 *  script self-modified areas.
2162				 */
2163				if (old == 0) {
2164					new = old;
2165					break;
2166				}
2167				/* fall through */
2168			default:
2169				new = 0;
2170				panic("sym_fw_bind_script: "
2171				      "weird relocation %x\n", old);
2172				break;
2173			}
2174
2175			*cur++ = cpu_to_scr(new);
2176		}
2177	};
2178}
2179
2180/*---------------------------------------------------------------------------*/
2181/*--------------------------- END OF FIRMWARES  -----------------------------*/
2182/*---------------------------------------------------------------------------*/
2183
2184/*
2185 *  Function prototypes.
2186 */
2187static void sym_save_initial_setting (hcb_p np);
2188static int  sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
2189static int  sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
2190static void sym_put_start_queue (hcb_p np, ccb_p cp);
2191static void sym_chip_reset (hcb_p np);
2192static void sym_soft_reset (hcb_p np);
2193static void sym_start_reset (hcb_p np);
2194static int  sym_reset_scsi_bus (hcb_p np, int enab_int);
2195static int  sym_wakeup_done (hcb_p np);
2196static void sym_flush_busy_queue (hcb_p np, int cam_status);
2197static void sym_flush_comp_queue (hcb_p np, int cam_status);
2198static void sym_init (hcb_p np, int reason);
2199static int  sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
2200		        u_char *fakp);
2201static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
2202			 u_char div, u_char fak);
2203static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
2204static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2205			 u_char per, u_char wide, u_char div, u_char fak);
2206static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
2207			 u_char per, u_char wide, u_char div, u_char fak);
2208static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
2209static void sym_intr (void *arg);
2210static void sym_poll (struct cam_sim *sim);
2211static void sym_recover_scsi_int (hcb_p np, u_char hsts);
2212static void sym_int_sto (hcb_p np);
2213static void sym_int_udc (hcb_p np);
2214static void sym_int_sbmc (hcb_p np);
2215static void sym_int_par (hcb_p np, u_short sist);
2216static void sym_int_ma (hcb_p np);
2217static int  sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
2218				    int task);
2219static void sym_sir_bad_scsi_status (hcb_p np, ccb_p cp);
2220static int  sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
2221static void sym_sir_task_recovery (hcb_p np, int num);
2222static int  sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
2223static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs);
2224static int  sym_compute_residual (hcb_p np, ccb_p cp);
2225static int  sym_show_msg (u_char * msg);
2226static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
2227static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
2228static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
2229static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
2230static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
2231static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
2232static void sym_int_sir (hcb_p np);
2233static void sym_free_ccb (hcb_p np, ccb_p cp);
2234static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
2235static ccb_p sym_alloc_ccb (hcb_p np);
2236static ccb_p sym_ccb_from_dsa (hcb_p np, u32 dsa);
2237static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
2238static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
2239static int  sym_snooptest (hcb_p np);
2240static void sym_selectclock(hcb_p np, u_char scntl3);
2241static void sym_getclock (hcb_p np, int mult);
2242static int  sym_getpciclock (hcb_p np);
2243static void sym_complete_ok (hcb_p np, ccb_p cp);
2244static void sym_complete_error (hcb_p np, ccb_p cp);
2245static void sym_callout (void *arg);
2246static int  sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
2247static void sym_reset_dev (hcb_p np, union ccb *ccb);
2248static void sym_action (struct cam_sim *sim, union ccb *ccb);
2249static int  sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
2250static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
2251				      ccb_p cp);
2252static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
2253					bus_dma_segment_t *psegs, int nsegs);
2254static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
2255				    bus_dma_segment_t *psegs, int nsegs);
2256static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
2257static void sym_update_trans(hcb_p np, struct sym_trans *tip,
2258			      struct ccb_trans_settings *cts);
2259static void sym_update_dflags(hcb_p np, u_char *flags,
2260			      struct ccb_trans_settings *cts);
2261
2262static const struct sym_pci_chip *sym_find_pci_chip (device_t dev);
2263static int  sym_pci_probe (device_t dev);
2264static int  sym_pci_attach (device_t dev);
2265
2266static void sym_pci_free (hcb_p np);
2267static int  sym_cam_attach (hcb_p np);
2268static void sym_cam_free (hcb_p np);
2269
2270static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
2271static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
2272static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
2273
2274/*
2275 *  Print something which allows to retrieve the controller type,
2276 *  unit, target, lun concerned by a kernel message.
2277 */
2278static void PRINT_TARGET (hcb_p np, int target)
2279{
2280	printf ("%s:%d:", sym_name(np), target);
2281}
2282
2283static void PRINT_LUN(hcb_p np, int target, int lun)
2284{
2285	printf ("%s:%d:%d:", sym_name(np), target, lun);
2286}
2287
2288static void PRINT_ADDR (ccb_p cp)
2289{
2290	if (cp && cp->cam_ccb)
2291		xpt_print_path(cp->cam_ccb->ccb_h.path);
2292}
2293
2294/*
2295 *  Take into account this ccb in the freeze count.
2296 */
2297static void sym_freeze_cam_ccb(union ccb *ccb)
2298{
2299	if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
2300		if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
2301			ccb->ccb_h.status |= CAM_DEV_QFRZN;
2302			xpt_freeze_devq(ccb->ccb_h.path, 1);
2303		}
2304	}
2305}
2306
2307/*
2308 *  Set the status field of a CAM CCB.
2309 */
2310static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
2311{
2312	ccb->ccb_h.status &= ~CAM_STATUS_MASK;
2313	ccb->ccb_h.status |= status;
2314}
2315
2316/*
2317 *  Get the status field of a CAM CCB.
2318 */
2319static __inline int sym_get_cam_status(union ccb *ccb)
2320{
2321	return ccb->ccb_h.status & CAM_STATUS_MASK;
2322}
2323
2324/*
2325 *  Enqueue a CAM CCB.
2326 */
2327static void sym_enqueue_cam_ccb(ccb_p cp)
2328{
2329	hcb_p np;
2330	union ccb *ccb;
2331
2332	ccb = cp->cam_ccb;
2333	np = (hcb_p) cp->arg;
2334
2335	assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
2336	ccb->ccb_h.status = CAM_REQ_INPROG;
2337
2338	callout_reset_sbt(&cp->ch, SBT_1MS * ccb->ccb_h.timeout, 0, sym_callout,
2339	    (caddr_t)ccb, 0);
2340	ccb->ccb_h.status |= CAM_SIM_QUEUED;
2341	ccb->ccb_h.sym_hcb_ptr = np;
2342
2343	sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
2344}
2345
2346/*
2347 *  Complete a pending CAM CCB.
2348 */
2349
2350static void sym_xpt_done(hcb_p np, union ccb *ccb, ccb_p cp)
2351{
2352
2353	SYM_LOCK_ASSERT(MA_OWNED);
2354
2355	if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
2356		callout_stop(&cp->ch);
2357		sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
2358		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
2359		ccb->ccb_h.sym_hcb_ptr = NULL;
2360	}
2361	xpt_done(ccb);
2362}
2363
2364static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
2365{
2366
2367	SYM_LOCK_ASSERT(MA_OWNED);
2368
2369	sym_set_cam_status(ccb, cam_status);
2370	xpt_done(ccb);
2371}
2372
2373/*
2374 *  SYMBIOS chip clock divisor table.
2375 *
2376 *  Divisors are multiplied by 10,000,000 in order to make
2377 *  calculations more simple.
2378 */
2379#define _5M 5000000
2380static const u32 div_10M[] =
2381	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
2382
2383/*
2384 *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
2385 *  128 transfers. All chips support at least 16 transfers
2386 *  bursts. The 825A, 875 and 895 chips support bursts of up
2387 *  to 128 transfers and the 895A and 896 support bursts of up
2388 *  to 64 transfers. All other chips support up to 16
2389 *  transfers bursts.
2390 *
2391 *  For PCI 32 bit data transfers each transfer is a DWORD.
2392 *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
2393 *
2394 *  We use log base 2 (burst length) as internal code, with
2395 *  value 0 meaning "burst disabled".
2396 */
2397
2398/*
2399 *  Burst length from burst code.
2400 */
2401#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
2402
2403/*
2404 *  Burst code from io register bits.
2405 */
2406#define burst_code(dmode, ctest4, ctest5) \
2407	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
2408
2409/*
2410 *  Set initial io register bits from burst code.
2411 */
2412static __inline void sym_init_burst(hcb_p np, u_char bc)
2413{
2414	np->rv_ctest4	&= ~0x80;
2415	np->rv_dmode	&= ~(0x3 << 6);
2416	np->rv_ctest5	&= ~0x4;
2417
2418	if (!bc) {
2419		np->rv_ctest4	|= 0x80;
2420	}
2421	else {
2422		--bc;
2423		np->rv_dmode	|= ((bc & 0x3) << 6);
2424		np->rv_ctest5	|= (bc & 0x4);
2425	}
2426}
2427
2428/*
2429 * Print out the list of targets that have some flag disabled by user.
2430 */
2431static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
2432{
2433	int cnt;
2434	int i;
2435
2436	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2437		if (i == np->myaddr)
2438			continue;
2439		if (np->target[i].usrflags & mask) {
2440			if (!cnt++)
2441				printf("%s: %s disabled for targets",
2442					sym_name(np), msg);
2443			printf(" %d", i);
2444		}
2445	}
2446	if (cnt)
2447		printf(".\n");
2448}
2449
2450/*
2451 *  Save initial settings of some IO registers.
2452 *  Assumed to have been set by BIOS.
2453 *  We cannot reset the chip prior to reading the
2454 *  IO registers, since informations will be lost.
2455 *  Since the SCRIPTS processor may be running, this
2456 *  is not safe on paper, but it seems to work quite
2457 *  well. :)
2458 */
2459static void sym_save_initial_setting (hcb_p np)
2460{
2461	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
2462	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
2463	np->sv_dmode	= INB(nc_dmode)  & 0xce;
2464	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
2465	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
2466	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
2467	np->sv_gpcntl	= INB(nc_gpcntl);
2468	np->sv_stest1	= INB(nc_stest1);
2469	np->sv_stest2	= INB(nc_stest2) & 0x20;
2470	np->sv_stest4	= INB(nc_stest4);
2471	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
2472		np->sv_scntl4	= INB(nc_scntl4);
2473		np->sv_ctest5	= INB(nc_ctest5) & 0x04;
2474	}
2475	else
2476		np->sv_ctest5	= INB(nc_ctest5) & 0x24;
2477}
2478
2479/*
2480 *  Prepare io register values used by sym_init() according
2481 *  to selected and supported features.
2482 */
2483static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
2484{
2485	u_char	burst_max;
2486	u32	period;
2487	int i;
2488
2489	/*
2490	 *  Wide ?
2491	 */
2492	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
2493
2494	/*
2495	 *  Get the frequency of the chip's clock.
2496	 */
2497	if	(np->features & FE_QUAD)
2498		np->multiplier	= 4;
2499	else if	(np->features & FE_DBLR)
2500		np->multiplier	= 2;
2501	else
2502		np->multiplier	= 1;
2503
2504	np->clock_khz	= (np->features & FE_CLK80)? 80000 : 40000;
2505	np->clock_khz	*= np->multiplier;
2506
2507	if (np->clock_khz != 40000)
2508		sym_getclock(np, np->multiplier);
2509
2510	/*
2511	 * Divisor to be used for async (timer pre-scaler).
2512	 */
2513	i = np->clock_divn - 1;
2514	while (--i >= 0) {
2515		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
2516			++i;
2517			break;
2518		}
2519	}
2520	np->rv_scntl3 = i+1;
2521
2522	/*
2523	 * The C1010 uses hardwired divisors for async.
2524	 * So, we just throw away, the async. divisor.:-)
2525	 */
2526	if (np->features & FE_C10)
2527		np->rv_scntl3 = 0;
2528
2529	/*
2530	 * Minimum synchronous period factor supported by the chip.
2531	 * Btw, 'period' is in tenths of nanoseconds.
2532	 */
2533	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
2534	if	(period <= 250)		np->minsync = 10;
2535	else if	(period <= 303)		np->minsync = 11;
2536	else if	(period <= 500)		np->minsync = 12;
2537	else				np->minsync = (period + 40 - 1) / 40;
2538
2539	/*
2540	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
2541	 */
2542	if	(np->minsync < 25 &&
2543		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
2544		np->minsync = 25;
2545	else if	(np->minsync < 12 &&
2546		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
2547		np->minsync = 12;
2548
2549	/*
2550	 * Maximum synchronous period factor supported by the chip.
2551	 */
2552	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
2553	np->maxsync = period > 2540 ? 254 : period / 10;
2554
2555	/*
2556	 * If chip is a C1010, guess the sync limits in DT mode.
2557	 */
2558	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
2559		if (np->clock_khz == 160000) {
2560			np->minsync_dt = 9;
2561			np->maxsync_dt = 50;
2562			np->maxoffs_dt = 62;
2563		}
2564	}
2565
2566	/*
2567	 *  64 bit addressing  (895A/896/1010) ?
2568	 */
2569	if (np->features & FE_DAC)
2570#ifdef __LP64__
2571		np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
2572#else
2573		np->rv_ccntl1	|= (DDAC);
2574#endif
2575
2576	/*
2577	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
2578  	 */
2579	if (np->features & FE_NOPM)
2580		np->rv_ccntl0	|= (ENPMJ);
2581
2582 	/*
2583	 *  C1010 Errata.
2584	 *  In dual channel mode, contention occurs if internal cycles
2585	 *  are used. Disable internal cycles.
2586	 */
2587	if (np->device_id == PCI_ID_LSI53C1010 &&
2588	    np->revision_id < 0x2)
2589		np->rv_ccntl0	|=  DILS;
2590
2591	/*
2592	 *  Select burst length (dwords)
2593	 */
2594	burst_max	= SYM_SETUP_BURST_ORDER;
2595	if (burst_max == 255)
2596		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
2597				       np->sv_ctest5);
2598	if (burst_max > 7)
2599		burst_max = 7;
2600	if (burst_max > np->maxburst)
2601		burst_max = np->maxburst;
2602
2603	/*
2604	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
2605	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
2606	 *  based transactions on LOAD/STORE instructions. So we have
2607	 *  to prevent these chips from using such PCI transactions in
2608	 *  this driver. The generic ncr driver that does not use
2609	 *  LOAD/STORE instructions does not need this work-around.
2610	 */
2611	if ((np->device_id == PCI_ID_SYM53C810 &&
2612	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
2613	    (np->device_id == PCI_ID_SYM53C860 &&
2614	     np->revision_id <= 0x1))
2615		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
2616
2617	/*
2618	 *  Select all supported special features.
2619	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
2620	 *  does not help, but burst op fetch (BOF) does.
2621	 *  Disabling PFEN makes sure BOF will be used.
2622	 */
2623	if (np->features & FE_ERL)
2624		np->rv_dmode	|= ERL;		/* Enable Read Line */
2625	if (np->features & FE_BOF)
2626		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
2627	if (np->features & FE_ERMP)
2628		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
2629#if 1
2630	if ((np->features & FE_PFEN) && !np->ram_ba)
2631#else
2632	if (np->features & FE_PFEN)
2633#endif
2634		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
2635	if (np->features & FE_CLSE)
2636		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
2637	if (np->features & FE_WRIE)
2638		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
2639	if (np->features & FE_DFS)
2640		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
2641
2642	/*
2643	 *  Select some other
2644	 */
2645	if (SYM_SETUP_PCI_PARITY)
2646		np->rv_ctest4	|= MPEE; /* Master parity checking */
2647	if (SYM_SETUP_SCSI_PARITY)
2648		np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
2649
2650	/*
2651	 *  Get parity checking, host ID and verbose mode from NVRAM
2652	 */
2653	np->myaddr = 255;
2654	sym_nvram_setup_host (np, nvram);
2655#ifdef __sparc64__
2656	np->myaddr = OF_getscsinitid(np->device);
2657#endif
2658
2659	/*
2660	 *  Get SCSI addr of host adapter (set by bios?).
2661	 */
2662	if (np->myaddr == 255) {
2663		np->myaddr = INB(nc_scid) & 0x07;
2664		if (!np->myaddr)
2665			np->myaddr = SYM_SETUP_HOST_ID;
2666	}
2667
2668	/*
2669	 *  Prepare initial io register bits for burst length
2670	 */
2671	sym_init_burst(np, burst_max);
2672
2673	/*
2674	 *  Set SCSI BUS mode.
2675	 *  - LVD capable chips (895/895A/896/1010) report the
2676	 *    current BUS mode through the STEST4 IO register.
2677	 *  - For previous generation chips (825/825A/875),
2678	 *    user has to tell us how to check against HVD,
2679	 *    since a 100% safe algorithm is not possible.
2680	 */
2681	np->scsi_mode = SMODE_SE;
2682	if (np->features & (FE_ULTRA2|FE_ULTRA3))
2683		np->scsi_mode = (np->sv_stest4 & SMODE);
2684	else if	(np->features & FE_DIFF) {
2685		if (SYM_SETUP_SCSI_DIFF == 1) {
2686			if (np->sv_scntl3) {
2687				if (np->sv_stest2 & 0x20)
2688					np->scsi_mode = SMODE_HVD;
2689			}
2690			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
2691				if (!(INB(nc_gpreg) & 0x08))
2692					np->scsi_mode = SMODE_HVD;
2693			}
2694		}
2695		else if	(SYM_SETUP_SCSI_DIFF == 2)
2696			np->scsi_mode = SMODE_HVD;
2697	}
2698	if (np->scsi_mode == SMODE_HVD)
2699		np->rv_stest2 |= 0x20;
2700
2701	/*
2702	 *  Set LED support from SCRIPTS.
2703	 *  Ignore this feature for boards known to use a
2704	 *  specific GPIO wiring and for the 895A, 896
2705	 *  and 1010 that drive the LED directly.
2706	 */
2707	if ((SYM_SETUP_SCSI_LED ||
2708	     (nvram->type == SYM_SYMBIOS_NVRAM ||
2709	      (nvram->type == SYM_TEKRAM_NVRAM &&
2710	       np->device_id == PCI_ID_SYM53C895))) &&
2711	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
2712		np->features |= FE_LED0;
2713
2714	/*
2715	 *  Set irq mode.
2716	 */
2717	switch(SYM_SETUP_IRQ_MODE & 3) {
2718	case 2:
2719		np->rv_dcntl	|= IRQM;
2720		break;
2721	case 1:
2722		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
2723		break;
2724	default:
2725		break;
2726	}
2727
2728	/*
2729	 *  Configure targets according to driver setup.
2730	 *  If NVRAM present get targets setup from NVRAM.
2731	 */
2732	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
2733		tcb_p tp = &np->target[i];
2734
2735		tp->tinfo.user.scsi_version = tp->tinfo.current.scsi_version= 2;
2736		tp->tinfo.user.spi_version  = tp->tinfo.current.spi_version = 2;
2737		tp->tinfo.user.period = np->minsync;
2738		if (np->features & FE_ULTRA3)
2739			tp->tinfo.user.period = np->minsync_dt;
2740		tp->tinfo.user.offset = np->maxoffs;
2741		tp->tinfo.user.width  = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
2742		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
2743		tp->usrtags = SYM_SETUP_MAX_TAG;
2744
2745		sym_nvram_setup_target (np, i, nvram);
2746
2747		/*
2748		 *  For now, guess PPR/DT support from the period
2749		 *  and BUS width.
2750		 */
2751		if (np->features & FE_ULTRA3) {
2752			if (tp->tinfo.user.period <= 9	&&
2753			    tp->tinfo.user.width == BUS_16_BIT) {
2754				tp->tinfo.user.options |= PPR_OPT_DT;
2755				tp->tinfo.user.offset   = np->maxoffs_dt;
2756				tp->tinfo.user.spi_version = 3;
2757			}
2758		}
2759
2760		if (!tp->usrtags)
2761			tp->usrflags &= ~SYM_TAGS_ENABLED;
2762	}
2763
2764	/*
2765	 *  Let user know about the settings.
2766	 */
2767	i = nvram->type;
2768	printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
2769		i  == SYM_SYMBIOS_NVRAM ? "Symbios" :
2770		(i == SYM_TEKRAM_NVRAM  ? "Tekram" : "No"),
2771		np->myaddr,
2772		(np->features & FE_ULTRA3) ? 80 :
2773		(np->features & FE_ULTRA2) ? 40 :
2774		(np->features & FE_ULTRA)  ? 20 : 10,
2775		sym_scsi_bus_mode(np->scsi_mode),
2776		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
2777	/*
2778	 *  Tell him more on demand.
2779	 */
2780	if (sym_verbose) {
2781		printf("%s: %s IRQ line driver%s\n",
2782			sym_name(np),
2783			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
2784			np->ram_ba ? ", using on-chip SRAM" : "");
2785		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
2786		if (np->features & FE_NOPM)
2787			printf("%s: handling phase mismatch from SCRIPTS.\n",
2788			       sym_name(np));
2789	}
2790	/*
2791	 *  And still more.
2792	 */
2793	if (sym_verbose > 1) {
2794		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2795			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2796			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
2797			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
2798
2799		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
2800			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
2801			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
2802			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
2803	}
2804	/*
2805	 *  Let user be aware of targets that have some disable flags set.
2806	 */
2807	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
2808	if (sym_verbose)
2809		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
2810				       "SCAN FOR LUNS");
2811
2812	return 0;
2813}
2814
2815/*
2816 *  Prepare the next negotiation message if needed.
2817 *
2818 *  Fill in the part of message buffer that contains the
2819 *  negotiation and the nego_status field of the CCB.
2820 *  Returns the size of the message in bytes.
2821 */
2822static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
2823{
2824	tcb_p tp = &np->target[cp->target];
2825	int msglen = 0;
2826
2827	/*
2828	 *  Early C1010 chips need a work-around for DT
2829	 *  data transfer to work.
2830	 */
2831	if (!(np->features & FE_U3EN))
2832		tp->tinfo.goal.options = 0;
2833	/*
2834	 *  negotiate using PPR ?
2835	 */
2836	if (tp->tinfo.goal.options & PPR_OPT_MASK)
2837		nego = NS_PPR;
2838	/*
2839	 *  negotiate wide transfers ?
2840	 */
2841	else if (tp->tinfo.current.width != tp->tinfo.goal.width)
2842		nego = NS_WIDE;
2843	/*
2844	 *  negotiate synchronous transfers?
2845	 */
2846	else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
2847		 tp->tinfo.current.offset != tp->tinfo.goal.offset)
2848		nego = NS_SYNC;
2849
2850	switch (nego) {
2851	case NS_SYNC:
2852		msgptr[msglen++] = M_EXTENDED;
2853		msgptr[msglen++] = 3;
2854		msgptr[msglen++] = M_X_SYNC_REQ;
2855		msgptr[msglen++] = tp->tinfo.goal.period;
2856		msgptr[msglen++] = tp->tinfo.goal.offset;
2857		break;
2858	case NS_WIDE:
2859		msgptr[msglen++] = M_EXTENDED;
2860		msgptr[msglen++] = 2;
2861		msgptr[msglen++] = M_X_WIDE_REQ;
2862		msgptr[msglen++] = tp->tinfo.goal.width;
2863		break;
2864	case NS_PPR:
2865		msgptr[msglen++] = M_EXTENDED;
2866		msgptr[msglen++] = 6;
2867		msgptr[msglen++] = M_X_PPR_REQ;
2868		msgptr[msglen++] = tp->tinfo.goal.period;
2869		msgptr[msglen++] = 0;
2870		msgptr[msglen++] = tp->tinfo.goal.offset;
2871		msgptr[msglen++] = tp->tinfo.goal.width;
2872		msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
2873		break;
2874	};
2875
2876	cp->nego_status = nego;
2877
2878	if (nego) {
2879		tp->nego_cp = cp; /* Keep track a nego will be performed */
2880		if (DEBUG_FLAGS & DEBUG_NEGO) {
2881			sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
2882					  nego == NS_WIDE ? "wide msgout" :
2883					  "ppr msgout", msgptr);
2884		};
2885	};
2886
2887	return msglen;
2888}
2889
2890/*
2891 *  Insert a job into the start queue.
2892 */
2893static void sym_put_start_queue(hcb_p np, ccb_p cp)
2894{
2895	u_short	qidx;
2896
2897#ifdef SYM_CONF_IARB_SUPPORT
2898	/*
2899	 *  If the previously queued CCB is not yet done,
2900	 *  set the IARB hint. The SCRIPTS will go with IARB
2901	 *  for this job when starting the previous one.
2902	 *  We leave devices a chance to win arbitration by
2903	 *  not using more than 'iarb_max' consecutive
2904	 *  immediate arbitrations.
2905	 */
2906	if (np->last_cp && np->iarb_count < np->iarb_max) {
2907		np->last_cp->host_flags |= HF_HINT_IARB;
2908		++np->iarb_count;
2909	}
2910	else
2911		np->iarb_count = 0;
2912	np->last_cp = cp;
2913#endif
2914
2915	/*
2916	 *  Insert first the idle task and then our job.
2917	 *  The MB should ensure proper ordering.
2918	 */
2919	qidx = np->squeueput + 2;
2920	if (qidx >= MAX_QUEUE*2) qidx = 0;
2921
2922	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
2923	MEMORY_BARRIER();
2924	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
2925
2926	np->squeueput = qidx;
2927
2928	if (DEBUG_FLAGS & DEBUG_QUEUE)
2929		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
2930
2931	/*
2932	 *  Script processor may be waiting for reselect.
2933	 *  Wake it up.
2934	 */
2935	MEMORY_BARRIER();
2936	OUTB (nc_istat, SIGP|np->istat_sem);
2937}
2938
2939/*
2940 *  Soft reset the chip.
2941 *
2942 *  Raising SRST when the chip is running may cause
2943 *  problems on dual function chips (see below).
2944 *  On the other hand, LVD devices need some delay
2945 *  to settle and report actual BUS mode in STEST4.
2946 */
2947static void sym_chip_reset (hcb_p np)
2948{
2949	OUTB (nc_istat, SRST);
2950	UDELAY (10);
2951	OUTB (nc_istat, 0);
2952	UDELAY(2000);	/* For BUS MODE to settle */
2953}
2954
2955/*
2956 *  Soft reset the chip.
2957 *
2958 *  Some 896 and 876 chip revisions may hang-up if we set
2959 *  the SRST (soft reset) bit at the wrong time when SCRIPTS
2960 *  are running.
2961 *  So, we need to abort the current operation prior to
2962 *  soft resetting the chip.
2963 */
2964static void sym_soft_reset (hcb_p np)
2965{
2966	u_char istat;
2967	int i;
2968
2969	OUTB (nc_istat, CABRT);
2970	for (i = 1000000 ; i ; --i) {
2971		istat = INB (nc_istat);
2972		if (istat & SIP) {
2973			INW (nc_sist);
2974			continue;
2975		}
2976		if (istat & DIP) {
2977			OUTB (nc_istat, 0);
2978			INB (nc_dstat);
2979			break;
2980		}
2981	}
2982	if (!i)
2983		printf("%s: unable to abort current chip operation.\n",
2984			sym_name(np));
2985	sym_chip_reset (np);
2986}
2987
2988/*
2989 *  Start reset process.
2990 *
2991 *  The interrupt handler will reinitialize the chip.
2992 */
2993static void sym_start_reset(hcb_p np)
2994{
2995	(void) sym_reset_scsi_bus(np, 1);
2996}
2997
2998static int sym_reset_scsi_bus(hcb_p np, int enab_int)
2999{
3000	u32 term;
3001	int retv = 0;
3002
3003	sym_soft_reset(np);	/* Soft reset the chip */
3004	if (enab_int)
3005		OUTW (nc_sien, RST);
3006	/*
3007	 *  Enable Tolerant, reset IRQD if present and
3008	 *  properly set IRQ mode, prior to resetting the bus.
3009	 */
3010	OUTB (nc_stest3, TE);
3011	OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
3012	OUTB (nc_scntl1, CRST);
3013	UDELAY (200);
3014
3015	if (!SYM_SETUP_SCSI_BUS_CHECK)
3016		goto out;
3017	/*
3018	 *  Check for no terminators or SCSI bus shorts to ground.
3019	 *  Read SCSI data bus, data parity bits and control signals.
3020	 *  We are expecting RESET to be TRUE and other signals to be
3021	 *  FALSE.
3022	 */
3023	term =	INB(nc_sstat0);
3024	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
3025	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
3026		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
3027		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
3028		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
3029
3030	if (!(np->features & FE_WIDE))
3031		term &= 0x3ffff;
3032
3033	if (term != (2<<7)) {
3034		printf("%s: suspicious SCSI data while resetting the BUS.\n",
3035			sym_name(np));
3036		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
3037			"0x%lx, expecting 0x%lx\n",
3038			sym_name(np),
3039			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
3040			(u_long)term, (u_long)(2<<7));
3041		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
3042			retv = 1;
3043	}
3044out:
3045	OUTB (nc_scntl1, 0);
3046	/* MDELAY(100); */
3047	return retv;
3048}
3049
3050/*
3051 *  The chip may have completed jobs. Look at the DONE QUEUE.
3052 *
3053 *  On architectures that may reorder LOAD/STORE operations,
3054 *  a memory barrier may be needed after the reading of the
3055 *  so-called `flag' and prior to dealing with the data.
3056 */
3057static int sym_wakeup_done (hcb_p np)
3058{
3059	ccb_p cp;
3060	int i, n;
3061	u32 dsa;
3062
3063	SYM_LOCK_ASSERT(MA_OWNED);
3064
3065	n = 0;
3066	i = np->dqueueget;
3067	while (1) {
3068		dsa = scr_to_cpu(np->dqueue[i]);
3069		if (!dsa)
3070			break;
3071		np->dqueue[i] = 0;
3072		if ((i = i+2) >= MAX_QUEUE*2)
3073			i = 0;
3074
3075		cp = sym_ccb_from_dsa(np, dsa);
3076		if (cp) {
3077			MEMORY_BARRIER();
3078			sym_complete_ok (np, cp);
3079			++n;
3080		}
3081		else
3082			printf ("%s: bad DSA (%x) in done queue.\n",
3083				sym_name(np), (u_int) dsa);
3084	}
3085	np->dqueueget = i;
3086
3087	return n;
3088}
3089
3090/*
3091 *  Complete all active CCBs with error.
3092 *  Used on CHIP/SCSI RESET.
3093 */
3094static void sym_flush_busy_queue (hcb_p np, int cam_status)
3095{
3096	/*
3097	 *  Move all active CCBs to the COMP queue
3098	 *  and flush this queue.
3099	 */
3100	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
3101	sym_que_init(&np->busy_ccbq);
3102	sym_flush_comp_queue(np, cam_status);
3103}
3104
3105/*
3106 *  Start chip.
3107 *
3108 *  'reason' means:
3109 *     0: initialisation.
3110 *     1: SCSI BUS RESET delivered or received.
3111 *     2: SCSI BUS MODE changed.
3112 */
3113static void sym_init (hcb_p np, int reason)
3114{
3115 	int	i;
3116	u32	phys;
3117
3118	SYM_LOCK_ASSERT(MA_OWNED);
3119
3120 	/*
3121	 *  Reset chip if asked, otherwise just clear fifos.
3122 	 */
3123	if (reason == 1)
3124		sym_soft_reset(np);
3125	else {
3126		OUTB (nc_stest3, TE|CSF);
3127		OUTONB (nc_ctest3, CLF);
3128	}
3129
3130	/*
3131	 *  Clear Start Queue
3132	 */
3133	phys = np->squeue_ba;
3134	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3135		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
3136		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
3137	}
3138	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3139
3140	/*
3141	 *  Start at first entry.
3142	 */
3143	np->squeueput = 0;
3144
3145	/*
3146	 *  Clear Done Queue
3147	 */
3148	phys = np->dqueue_ba;
3149	for (i = 0; i < MAX_QUEUE*2; i += 2) {
3150		np->dqueue[i]   = 0;
3151		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
3152	}
3153	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
3154
3155	/*
3156	 *  Start at first entry.
3157	 */
3158	np->dqueueget = 0;
3159
3160	/*
3161	 *  Install patches in scripts.
3162	 *  This also let point to first position the start
3163	 *  and done queue pointers used from SCRIPTS.
3164	 */
3165	np->fw_patch(np);
3166
3167	/*
3168	 *  Wakeup all pending jobs.
3169	 */
3170	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
3171
3172	/*
3173	 *  Init chip.
3174	 */
3175	OUTB (nc_istat,  0x00   );	/*  Remove Reset, abort */
3176	UDELAY (2000);	/* The 895 needs time for the bus mode to settle */
3177
3178	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
3179					/*  full arb., ena parity, par->ATN  */
3180	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
3181
3182	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
3183
3184	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
3185	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
3186	OUTB (nc_istat , SIGP	);		/*  Signal Process */
3187	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
3188	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
3189
3190	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
3191	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
3192	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
3193
3194	/* Extended Sreq/Sack filtering not supported on the C10 */
3195	if (np->features & FE_C10)
3196		OUTB (nc_stest2, np->rv_stest2);
3197	else
3198		OUTB (nc_stest2, EXT|np->rv_stest2);
3199
3200	OUTB (nc_stest3, TE);			/* TolerANT enable */
3201	OUTB (nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
3202
3203	/*
3204	 *  For now, disable AIP generation on C1010-66.
3205	 */
3206	if (np->device_id == PCI_ID_LSI53C1010_2)
3207		OUTB (nc_aipcntl1, DISAIP);
3208
3209	/*
3210	 *  C10101 Errata.
3211	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
3212	 *  STEST1 register to disable SGE. We probably should do
3213	 *  that from SCRIPTS for each selection/reselection, but
3214	 *  I just don't want. :)
3215	 */
3216	if (np->device_id == PCI_ID_LSI53C1010 &&
3217	    /* np->revision_id < 0xff */ 1)
3218		OUTB (nc_stest1, INB(nc_stest1) | 0x30);
3219
3220	/*
3221	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
3222	 *  Disable overlapped arbitration for some dual function devices,
3223	 *  regardless revision id (kind of post-chip-design feature. ;-))
3224	 */
3225	if (np->device_id == PCI_ID_SYM53C875)
3226		OUTB (nc_ctest0, (1<<5));
3227	else if (np->device_id == PCI_ID_SYM53C896)
3228		np->rv_ccntl0 |= DPR;
3229
3230	/*
3231	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
3232	 *  and/or hardware phase mismatch, since only such chips
3233	 *  seem to support those IO registers.
3234	 */
3235	if (np->features & (FE_DAC|FE_NOPM)) {
3236		OUTB (nc_ccntl0, np->rv_ccntl0);
3237		OUTB (nc_ccntl1, np->rv_ccntl1);
3238	}
3239
3240	/*
3241	 *  If phase mismatch handled by scripts (895A/896/1010),
3242	 *  set PM jump addresses.
3243	 */
3244	if (np->features & FE_NOPM) {
3245		OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
3246		OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
3247	}
3248
3249	/*
3250	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
3251	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
3252	 */
3253	if (np->features & FE_LED0)
3254		OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
3255	else if (np->features & FE_LEDC)
3256		OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
3257
3258	/*
3259	 *      enable ints
3260	 */
3261	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
3262	OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
3263
3264	/*
3265	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
3266	 *  Try to eat the spurious SBMC interrupt that may occur when
3267	 *  we reset the chip but not the SCSI BUS (at initialization).
3268	 */
3269	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
3270		OUTONW (nc_sien, SBMC);
3271		if (reason == 0) {
3272			MDELAY(100);
3273			INW (nc_sist);
3274		}
3275		np->scsi_mode = INB (nc_stest4) & SMODE;
3276	}
3277
3278	/*
3279	 *  Fill in target structure.
3280	 *  Reinitialize usrsync.
3281	 *  Reinitialize usrwide.
3282	 *  Prepare sync negotiation according to actual SCSI bus mode.
3283	 */
3284	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
3285		tcb_p tp = &np->target[i];
3286
3287		tp->to_reset  = 0;
3288		tp->head.sval = 0;
3289		tp->head.wval = np->rv_scntl3;
3290		tp->head.uval = 0;
3291
3292		tp->tinfo.current.period = 0;
3293		tp->tinfo.current.offset = 0;
3294		tp->tinfo.current.width  = BUS_8_BIT;
3295		tp->tinfo.current.options = 0;
3296	}
3297
3298	/*
3299	 *  Download SCSI SCRIPTS to on-chip RAM if present,
3300	 *  and start script processor.
3301	 */
3302	if (np->ram_ba) {
3303		if (sym_verbose > 1)
3304			printf ("%s: Downloading SCSI SCRIPTS.\n",
3305				sym_name(np));
3306		if (np->ram_ws == 8192) {
3307			OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
3308			OUTL (nc_mmws, np->scr_ram_seg);
3309			OUTL (nc_mmrs, np->scr_ram_seg);
3310			OUTL (nc_sfs,  np->scr_ram_seg);
3311			phys = SCRIPTB_BA (np, start64);
3312		}
3313		else
3314			phys = SCRIPTA_BA (np, init);
3315		OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
3316	}
3317	else
3318		phys = SCRIPTA_BA (np, init);
3319
3320	np->istat_sem = 0;
3321
3322	OUTL (nc_dsa, np->hcb_ba);
3323	OUTL_DSP (phys);
3324
3325	/*
3326	 *  Notify the XPT about the RESET condition.
3327	 */
3328	if (reason != 0)
3329		xpt_async(AC_BUS_RESET, np->path, NULL);
3330}
3331
3332/*
3333 *  Get clock factor and sync divisor for a given
3334 *  synchronous factor period.
3335 */
3336static int
3337sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
3338{
3339	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
3340	int	div = np->clock_divn;	/* Number of divisors supported	*/
3341	u32	fak;			/* Sync factor in sxfer		*/
3342	u32	per;			/* Period in tenths of ns	*/
3343	u32	kpc;			/* (per * clk)			*/
3344	int	ret;
3345
3346	/*
3347	 *  Compute the synchronous period in tenths of nano-seconds
3348	 */
3349	if (dt && sfac <= 9)	per = 125;
3350	else if	(sfac <= 10)	per = 250;
3351	else if	(sfac == 11)	per = 303;
3352	else if	(sfac == 12)	per = 500;
3353	else			per = 40 * sfac;
3354	ret = per;
3355
3356	kpc = per * clk;
3357	if (dt)
3358		kpc <<= 1;
3359
3360	/*
3361	 *  For earliest C10 revision 0, we cannot use extra
3362	 *  clocks for the setting of the SCSI clocking.
3363	 *  Note that this limits the lowest sync data transfer
3364	 *  to 5 Mega-transfers per second and may result in
3365	 *  using higher clock divisors.
3366	 */
3367#if 1
3368	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
3369		/*
3370		 *  Look for the lowest clock divisor that allows an
3371		 *  output speed not faster than the period.
3372		 */
3373		while (div > 0) {
3374			--div;
3375			if (kpc > (div_10M[div] << 2)) {
3376				++div;
3377				break;
3378			}
3379		}
3380		fak = 0;			/* No extra clocks */
3381		if (div == np->clock_divn) {	/* Are we too fast ? */
3382			ret = -1;
3383		}
3384		*divp = div;
3385		*fakp = fak;
3386		return ret;
3387	}
3388#endif
3389
3390	/*
3391	 *  Look for the greatest clock divisor that allows an
3392	 *  input speed faster than the period.
3393	 */
3394	while (div-- > 0)
3395		if (kpc >= (div_10M[div] << 2)) break;
3396
3397	/*
3398	 *  Calculate the lowest clock factor that allows an output
3399	 *  speed not faster than the period, and the max output speed.
3400	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
3401	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
3402	 */
3403	if (dt) {
3404		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
3405		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
3406	}
3407	else {
3408		fak = (kpc - 1) / div_10M[div] + 1 - 4;
3409		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
3410	}
3411
3412	/*
3413	 *  Check against our hardware limits, or bugs :).
3414	 */
3415	if (fak > 2)	{fak = 2; ret = -1;}
3416
3417	/*
3418	 *  Compute and return sync parameters.
3419	 */
3420	*divp = div;
3421	*fakp = fak;
3422
3423	return ret;
3424}
3425
3426/*
3427 *  Tell the SCSI layer about the new transfer parameters.
3428 */
3429static void
3430sym_xpt_async_transfer_neg(hcb_p np, int target, u_int spi_valid)
3431{
3432	struct ccb_trans_settings cts;
3433	struct cam_path *path;
3434	int sts;
3435	tcb_p tp = &np->target[target];
3436
3437	sts = xpt_create_path(&path, NULL, cam_sim_path(np->sim), target,
3438	                      CAM_LUN_WILDCARD);
3439	if (sts != CAM_REQ_CMP)
3440		return;
3441
3442	bzero(&cts, sizeof(cts));
3443
3444#define	cts__scsi (cts.proto_specific.scsi)
3445#define	cts__spi  (cts.xport_specific.spi)
3446
3447	cts.type      = CTS_TYPE_CURRENT_SETTINGS;
3448	cts.protocol  = PROTO_SCSI;
3449	cts.transport = XPORT_SPI;
3450	cts.protocol_version  = tp->tinfo.current.scsi_version;
3451	cts.transport_version = tp->tinfo.current.spi_version;
3452
3453	cts__spi.valid = spi_valid;
3454	if (spi_valid & CTS_SPI_VALID_SYNC_RATE)
3455		cts__spi.sync_period = tp->tinfo.current.period;
3456	if (spi_valid & CTS_SPI_VALID_SYNC_OFFSET)
3457		cts__spi.sync_offset = tp->tinfo.current.offset;
3458	if (spi_valid & CTS_SPI_VALID_BUS_WIDTH)
3459		cts__spi.bus_width   = tp->tinfo.current.width;
3460	if (spi_valid & CTS_SPI_VALID_PPR_OPTIONS)
3461		cts__spi.ppr_options = tp->tinfo.current.options;
3462#undef cts__spi
3463#undef cts__scsi
3464	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
3465	xpt_async(AC_TRANSFER_NEG, path, &cts);
3466	xpt_free_path(path);
3467}
3468
3469#define SYM_SPI_VALID_WDTR		\
3470	CTS_SPI_VALID_BUS_WIDTH |	\
3471	CTS_SPI_VALID_SYNC_RATE |	\
3472	CTS_SPI_VALID_SYNC_OFFSET
3473#define SYM_SPI_VALID_SDTR		\
3474	CTS_SPI_VALID_SYNC_RATE |	\
3475	CTS_SPI_VALID_SYNC_OFFSET
3476#define SYM_SPI_VALID_PPR		\
3477	CTS_SPI_VALID_PPR_OPTIONS |	\
3478	CTS_SPI_VALID_BUS_WIDTH |	\
3479	CTS_SPI_VALID_SYNC_RATE |	\
3480	CTS_SPI_VALID_SYNC_OFFSET
3481
3482/*
3483 *  We received a WDTR.
3484 *  Let everything be aware of the changes.
3485 */
3486static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
3487{
3488	tcb_p tp = &np->target[cp->target];
3489
3490	sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
3491
3492	/*
3493	 *  Tell the SCSI layer about the new transfer parameters.
3494	 */
3495	tp->tinfo.goal.width = tp->tinfo.current.width = wide;
3496	tp->tinfo.current.offset = 0;
3497	tp->tinfo.current.period = 0;
3498	tp->tinfo.current.options = 0;
3499
3500	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_WDTR);
3501}
3502
3503/*
3504 *  We received a SDTR.
3505 *  Let everything be aware of the changes.
3506 */
3507static void
3508sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
3509{
3510	tcb_p tp = &np->target[cp->target];
3511	u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
3512
3513	sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
3514
3515	/*
3516	 *  Tell the SCSI layer about the new transfer parameters.
3517	 */
3518	tp->tinfo.goal.period	= tp->tinfo.current.period  = per;
3519	tp->tinfo.goal.offset	= tp->tinfo.current.offset  = ofs;
3520	tp->tinfo.goal.options	= tp->tinfo.current.options = 0;
3521
3522	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_SDTR);
3523}
3524
3525/*
3526 *  We received a PPR.
3527 *  Let everything be aware of the changes.
3528 */
3529static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3530			 u_char per, u_char wide, u_char div, u_char fak)
3531{
3532	tcb_p tp = &np->target[cp->target];
3533
3534	sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
3535
3536	/*
3537	 *  Tell the SCSI layer about the new transfer parameters.
3538	 */
3539	tp->tinfo.goal.width	= tp->tinfo.current.width  = wide;
3540	tp->tinfo.goal.period	= tp->tinfo.current.period = per;
3541	tp->tinfo.goal.offset	= tp->tinfo.current.offset = ofs;
3542	tp->tinfo.goal.options	= tp->tinfo.current.options = dt;
3543
3544	sym_xpt_async_transfer_neg(np, cp->target, SYM_SPI_VALID_PPR);
3545}
3546
3547/*
3548 *  Switch trans mode for current job and it's target.
3549 */
3550static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
3551			 u_char per, u_char wide, u_char div, u_char fak)
3552{
3553	SYM_QUEHEAD *qp;
3554	union	ccb *ccb;
3555	tcb_p tp;
3556	u_char target = INB (nc_sdid) & 0x0f;
3557	u_char sval, wval, uval;
3558
3559	assert (cp);
3560	if (!cp) return;
3561	ccb = cp->cam_ccb;
3562	assert (ccb);
3563	if (!ccb) return;
3564	assert (target == (cp->target & 0xf));
3565	tp = &np->target[target];
3566
3567	sval = tp->head.sval;
3568	wval = tp->head.wval;
3569	uval = tp->head.uval;
3570
3571#if 0
3572	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
3573		sval, wval, uval, np->rv_scntl3);
3574#endif
3575	/*
3576	 *  Set the offset.
3577	 */
3578	if (!(np->features & FE_C10))
3579		sval = (sval & ~0x1f) | ofs;
3580	else
3581		sval = (sval & ~0x3f) | ofs;
3582
3583	/*
3584	 *  Set the sync divisor and extra clock factor.
3585	 */
3586	if (ofs != 0) {
3587		wval = (wval & ~0x70) | ((div+1) << 4);
3588		if (!(np->features & FE_C10))
3589			sval = (sval & ~0xe0) | (fak << 5);
3590		else {
3591			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
3592			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
3593			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
3594		}
3595	}
3596
3597	/*
3598	 *  Set the bus width.
3599	 */
3600	wval = wval & ~EWS;
3601	if (wide != 0)
3602		wval |= EWS;
3603
3604	/*
3605	 *  Set misc. ultra enable bits.
3606	 */
3607	if (np->features & FE_C10) {
3608		uval = uval & ~(U3EN|AIPCKEN);
3609		if (dt)	{
3610			assert(np->features & FE_U3EN);
3611			uval |= U3EN;
3612		}
3613	}
3614	else {
3615		wval = wval & ~ULTRA;
3616		if (per <= 12)	wval |= ULTRA;
3617	}
3618
3619	/*
3620	 *   Stop there if sync parameters are unchanged.
3621	 */
3622	if (tp->head.sval == sval &&
3623	    tp->head.wval == wval &&
3624	    tp->head.uval == uval)
3625		return;
3626	tp->head.sval = sval;
3627	tp->head.wval = wval;
3628	tp->head.uval = uval;
3629
3630	/*
3631	 *  Disable extended Sreq/Sack filtering if per < 50.
3632	 *  Not supported on the C1010.
3633	 */
3634	if (per < 50 && !(np->features & FE_C10))
3635		OUTOFFB (nc_stest2, EXT);
3636
3637	/*
3638	 *  set actual value and sync_status
3639	 */
3640	OUTB (nc_sxfer,  tp->head.sval);
3641	OUTB (nc_scntl3, tp->head.wval);
3642
3643	if (np->features & FE_C10) {
3644		OUTB (nc_scntl4, tp->head.uval);
3645	}
3646
3647	/*
3648	 *  patch ALL busy ccbs of this target.
3649	 */
3650	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3651		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3652		if (cp->target != target)
3653			continue;
3654		cp->phys.select.sel_scntl3 = tp->head.wval;
3655		cp->phys.select.sel_sxfer  = tp->head.sval;
3656		if (np->features & FE_C10) {
3657			cp->phys.select.sel_scntl4 = tp->head.uval;
3658		}
3659	}
3660}
3661
3662/*
3663 *  log message for real hard errors
3664 *
3665 *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
3666 *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
3667 *
3668 *  exception register:
3669 *  	ds:	dstat
3670 *  	si:	sist
3671 *
3672 *  SCSI bus lines:
3673 *  	so:	control lines as driven by chip.
3674 *  	si:	control lines as seen by chip.
3675 *  	sd:	scsi data lines as seen by chip.
3676 *
3677 *  wide/fastmode:
3678 *  	sxfer:	(see the manual)
3679 *  	scntl3:	(see the manual)
3680 *
3681 *  current script command:
3682 *  	dsp:	script address (relative to start of script).
3683 *  	dbc:	first word of script command.
3684 *
3685 *  First 24 register of the chip:
3686 *  	r0..rf
3687 */
3688static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
3689{
3690	u32	dsp;
3691	int	script_ofs;
3692	int	script_size;
3693	char	*script_name;
3694	u_char	*script_base;
3695	int	i;
3696
3697	dsp	= INL (nc_dsp);
3698
3699	if	(dsp > np->scripta_ba &&
3700		 dsp <= np->scripta_ba + np->scripta_sz) {
3701		script_ofs	= dsp - np->scripta_ba;
3702		script_size	= np->scripta_sz;
3703		script_base	= (u_char *) np->scripta0;
3704		script_name	= "scripta";
3705	}
3706	else if (np->scriptb_ba < dsp &&
3707		 dsp <= np->scriptb_ba + np->scriptb_sz) {
3708		script_ofs	= dsp - np->scriptb_ba;
3709		script_size	= np->scriptb_sz;
3710		script_base	= (u_char *) np->scriptb0;
3711		script_name	= "scriptb";
3712	} else {
3713		script_ofs	= dsp;
3714		script_size	= 0;
3715		script_base	= 0;
3716		script_name	= "mem";
3717	}
3718
3719	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
3720		sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
3721		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
3722		(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
3723		(unsigned)INB (nc_scntl3), script_name, script_ofs,
3724		(unsigned)INL (nc_dbc));
3725
3726	if (((script_ofs & 3) == 0) &&
3727	    (unsigned)script_ofs < script_size) {
3728		printf ("%s: script cmd = %08x\n", sym_name(np),
3729			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
3730	}
3731
3732        printf ("%s: regdump:", sym_name(np));
3733        for (i=0; i<24;i++)
3734            printf (" %02x", (unsigned)INB_OFF(i));
3735        printf (".\n");
3736
3737	/*
3738	 *  PCI BUS error, read the PCI ststus register.
3739	 */
3740	if (dstat & (MDPE|BF)) {
3741		u_short pci_sts;
3742		pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
3743		if (pci_sts & 0xf900) {
3744			pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
3745			printf("%s: PCI STATUS = 0x%04x\n",
3746				sym_name(np), pci_sts & 0xf900);
3747		}
3748	}
3749}
3750
3751/*
3752 *  chip interrupt handler
3753 *
3754 *  In normal situations, interrupt conditions occur one at
3755 *  a time. But when something bad happens on the SCSI BUS,
3756 *  the chip may raise several interrupt flags before
3757 *  stopping and interrupting the CPU. The additionnal
3758 *  interrupt flags are stacked in some extra registers
3759 *  after the SIP and/or DIP flag has been raised in the
3760 *  ISTAT. After the CPU has read the interrupt condition
3761 *  flag from SIST or DSTAT, the chip unstacks the other
3762 *  interrupt flags and sets the corresponding bits in
3763 *  SIST or DSTAT. Since the chip starts stacking once the
3764 *  SIP or DIP flag is set, there is a small window of time
3765 *  where the stacking does not occur.
3766 *
3767 *  Typically, multiple interrupt conditions may happen in
3768 *  the following situations:
3769 *
3770 *  - SCSI parity error + Phase mismatch  (PAR|MA)
3771 *    When a parity error is detected in input phase
3772 *    and the device switches to msg-in phase inside a
3773 *    block MOV.
3774 *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
3775 *    When a stupid device does not want to handle the
3776 *    recovery of an SCSI parity error.
3777 *  - Some combinations of STO, PAR, UDC, ...
3778 *    When using non compliant SCSI stuff, when user is
3779 *    doing non compliant hot tampering on the BUS, when
3780 *    something really bad happens to a device, etc ...
3781 *
3782 *  The heuristic suggested by SYMBIOS to handle
3783 *  multiple interrupts is to try unstacking all
3784 *  interrupts conditions and to handle them on some
3785 *  priority based on error severity.
3786 *  This will work when the unstacking has been
3787 *  successful, but we cannot be 100 % sure of that,
3788 *  since the CPU may have been faster to unstack than
3789 *  the chip is able to stack. Hmmm ... But it seems that
3790 *  such a situation is very unlikely to happen.
3791 *
3792 *  If this happen, for example STO caught by the CPU
3793 *  then UDC happenning before the CPU have restarted
3794 *  the SCRIPTS, the driver may wrongly complete the
3795 *  same command on UDC, since the SCRIPTS didn't restart
3796 *  and the DSA still points to the same command.
3797 *  We avoid this situation by setting the DSA to an
3798 *  invalid value when the CCB is completed and before
3799 *  restarting the SCRIPTS.
3800 *
3801 *  Another issue is that we need some section of our
3802 *  recovery procedures to be somehow uninterruptible but
3803 *  the SCRIPTS processor does not provides such a
3804 *  feature. For this reason, we handle recovery preferently
3805 *  from the C code and check against some SCRIPTS critical
3806 *  sections from the C code.
3807 *
3808 *  Hopefully, the interrupt handling of the driver is now
3809 *  able to resist to weird BUS error conditions, but donnot
3810 *  ask me for any guarantee that it will never fail. :-)
3811 *  Use at your own decision and risk.
3812 */
3813static void sym_intr1 (hcb_p np)
3814{
3815	u_char	istat, istatc;
3816	u_char	dstat;
3817	u_short	sist;
3818
3819	SYM_LOCK_ASSERT(MA_OWNED);
3820
3821	/*
3822	 *  interrupt on the fly ?
3823	 *
3824	 *  A `dummy read' is needed to ensure that the
3825	 *  clear of the INTF flag reaches the device
3826	 *  before the scanning of the DONE queue.
3827	 */
3828	istat = INB (nc_istat);
3829	if (istat & INTF) {
3830		OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
3831		istat = INB (nc_istat);		/* DUMMY READ */
3832		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
3833		(void)sym_wakeup_done (np);
3834	};
3835
3836	if (!(istat & (SIP|DIP)))
3837		return;
3838
3839#if 0	/* We should never get this one */
3840	if (istat & CABRT)
3841		OUTB (nc_istat, CABRT);
3842#endif
3843
3844	/*
3845	 *  PAR and MA interrupts may occur at the same time,
3846	 *  and we need to know of both in order to handle
3847	 *  this situation properly. We try to unstack SCSI
3848	 *  interrupts for that reason. BTW, I dislike a LOT
3849	 *  such a loop inside the interrupt routine.
3850	 *  Even if DMA interrupt stacking is very unlikely to
3851	 *  happen, we also try unstacking these ones, since
3852	 *  this has no performance impact.
3853	 */
3854	sist	= 0;
3855	dstat	= 0;
3856	istatc	= istat;
3857	do {
3858		if (istatc & SIP)
3859			sist  |= INW (nc_sist);
3860		if (istatc & DIP)
3861			dstat |= INB (nc_dstat);
3862		istatc = INB (nc_istat);
3863		istat |= istatc;
3864	} while (istatc & (SIP|DIP));
3865
3866	if (DEBUG_FLAGS & DEBUG_TINY)
3867		printf ("<%d|%x:%x|%x:%x>",
3868			(int)INB(nc_scr0),
3869			dstat,sist,
3870			(unsigned)INL(nc_dsp),
3871			(unsigned)INL(nc_dbc));
3872	/*
3873	 *  On paper, a memory barrier may be needed here.
3874	 *  And since we are paranoid ... :)
3875	 */
3876	MEMORY_BARRIER();
3877
3878	/*
3879	 *  First, interrupts we want to service cleanly.
3880	 *
3881	 *  Phase mismatch (MA) is the most frequent interrupt
3882	 *  for chip earlier than the 896 and so we have to service
3883	 *  it as quickly as possible.
3884	 *  A SCSI parity error (PAR) may be combined with a phase
3885	 *  mismatch condition (MA).
3886	 *  Programmed interrupts (SIR) are used to call the C code
3887	 *  from SCRIPTS.
3888	 *  The single step interrupt (SSI) is not used in this
3889	 *  driver.
3890	 */
3891	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
3892	    !(dstat & (MDPE|BF|ABRT|IID))) {
3893		if	(sist & PAR)	sym_int_par (np, sist);
3894		else if (sist & MA)	sym_int_ma (np);
3895		else if (dstat & SIR)	sym_int_sir (np);
3896		else if (dstat & SSI)	OUTONB_STD ();
3897		else			goto unknown_int;
3898		return;
3899	};
3900
3901	/*
3902	 *  Now, interrupts that donnot happen in normal
3903	 *  situations and that we may need to recover from.
3904	 *
3905	 *  On SCSI RESET (RST), we reset everything.
3906	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
3907	 *  active CCBs with RESET status, prepare all devices
3908	 *  for negotiating again and restart the SCRIPTS.
3909	 *  On STO and UDC, we complete the CCB with the corres-
3910	 *  ponding status and restart the SCRIPTS.
3911	 */
3912	if (sist & RST) {
3913		xpt_print_path(np->path);
3914		printf("SCSI BUS reset detected.\n");
3915		sym_init (np, 1);
3916		return;
3917	};
3918
3919	OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
3920	OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
3921
3922	if (!(sist  & (GEN|HTH|SGE)) &&
3923	    !(dstat & (MDPE|BF|ABRT|IID))) {
3924		if	(sist & SBMC)	sym_int_sbmc (np);
3925		else if (sist & STO)	sym_int_sto (np);
3926		else if (sist & UDC)	sym_int_udc (np);
3927		else			goto unknown_int;
3928		return;
3929	};
3930
3931	/*
3932	 *  Now, interrupts we are not able to recover cleanly.
3933	 *
3934	 *  Log message for hard errors.
3935	 *  Reset everything.
3936	 */
3937
3938	sym_log_hard_error(np, sist, dstat);
3939
3940	if ((sist & (GEN|HTH|SGE)) ||
3941		(dstat & (MDPE|BF|ABRT|IID))) {
3942		sym_start_reset(np);
3943		return;
3944	};
3945
3946unknown_int:
3947	/*
3948	 *  We just miss the cause of the interrupt. :(
3949	 *  Print a message. The timeout will do the real work.
3950	 */
3951	printf(	"%s: unknown interrupt(s) ignored, "
3952		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
3953		sym_name(np), istat, dstat, sist);
3954}
3955
3956static void sym_intr(void *arg)
3957{
3958	hcb_p np = arg;
3959
3960	SYM_LOCK();
3961
3962	if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
3963	sym_intr1((hcb_p) arg);
3964	if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
3965
3966	SYM_UNLOCK();
3967}
3968
3969static void sym_poll(struct cam_sim *sim)
3970{
3971	sym_intr1(cam_sim_softc(sim));
3972}
3973
3974/*
3975 *  generic recovery from scsi interrupt
3976 *
3977 *  The doc says that when the chip gets an SCSI interrupt,
3978 *  it tries to stop in an orderly fashion, by completing
3979 *  an instruction fetch that had started or by flushing
3980 *  the DMA fifo for a write to memory that was executing.
3981 *  Such a fashion is not enough to know if the instruction
3982 *  that was just before the current DSP value has been
3983 *  executed or not.
3984 *
3985 *  There are some small SCRIPTS sections that deal with
3986 *  the start queue and the done queue that may break any
3987 *  assomption from the C code if we are interrupted
3988 *  inside, so we reset if this happens. Btw, since these
3989 *  SCRIPTS sections are executed while the SCRIPTS hasn't
3990 *  started SCSI operations, it is very unlikely to happen.
3991 *
3992 *  All the driver data structures are supposed to be
3993 *  allocated from the same 4 GB memory window, so there
3994 *  is a 1 to 1 relationship between DSA and driver data
3995 *  structures. Since we are careful :) to invalidate the
3996 *  DSA when we complete a command or when the SCRIPTS
3997 *  pushes a DSA into a queue, we can trust it when it
3998 *  points to a CCB.
3999 */
4000static void sym_recover_scsi_int (hcb_p np, u_char hsts)
4001{
4002	u32	dsp	= INL (nc_dsp);
4003	u32	dsa	= INL (nc_dsa);
4004	ccb_p cp	= sym_ccb_from_dsa(np, dsa);
4005
4006	/*
4007	 *  If we haven't been interrupted inside the SCRIPTS
4008	 *  critical pathes, we can safely restart the SCRIPTS
4009	 *  and trust the DSA value if it matches a CCB.
4010	 */
4011	if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
4012	       dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
4013	    (!(dsp > SCRIPTA_BA (np, ungetjob) &&
4014	       dsp < SCRIPTA_BA (np, reselect) + 1)) &&
4015	    (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
4016	       dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
4017	    (!(dsp > SCRIPTA_BA (np, done) &&
4018	       dsp < SCRIPTA_BA (np, done_end) + 1))) {
4019		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
4020		OUTB (nc_stest3, TE|CSF);		/* clear scsi fifo */
4021		/*
4022		 *  If we have a CCB, let the SCRIPTS call us back for
4023		 *  the handling of the error with SCRATCHA filled with
4024		 *  STARTPOS. This way, we will be able to freeze the
4025		 *  device queue and requeue awaiting IOs.
4026		 */
4027		if (cp) {
4028			cp->host_status = hsts;
4029			OUTL_DSP (SCRIPTA_BA (np, complete_error));
4030		}
4031		/*
4032		 *  Otherwise just restart the SCRIPTS.
4033		 */
4034		else {
4035			OUTL (nc_dsa, 0xffffff);
4036			OUTL_DSP (SCRIPTA_BA (np, start));
4037		}
4038	}
4039	else
4040		goto reset_all;
4041
4042	return;
4043
4044reset_all:
4045	sym_start_reset(np);
4046}
4047
4048/*
4049 *  chip exception handler for selection timeout
4050 */
4051static void sym_int_sto (hcb_p np)
4052{
4053	u32 dsp	= INL (nc_dsp);
4054
4055	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
4056
4057	if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
4058		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
4059	else
4060		sym_start_reset(np);
4061}
4062
4063/*
4064 *  chip exception handler for unexpected disconnect
4065 */
4066static void sym_int_udc (hcb_p np)
4067{
4068	printf ("%s: unexpected disconnect\n", sym_name(np));
4069	sym_recover_scsi_int(np, HS_UNEXPECTED);
4070}
4071
4072/*
4073 *  chip exception handler for SCSI bus mode change
4074 *
4075 *  spi2-r12 11.2.3 says a transceiver mode change must
4076 *  generate a reset event and a device that detects a reset
4077 *  event shall initiate a hard reset. It says also that a
4078 *  device that detects a mode change shall set data transfer
4079 *  mode to eight bit asynchronous, etc...
4080 *  So, just reinitializing all except chip should be enough.
4081 */
4082static void sym_int_sbmc (hcb_p np)
4083{
4084	u_char scsi_mode = INB (nc_stest4) & SMODE;
4085
4086	/*
4087	 *  Notify user.
4088	 */
4089	xpt_print_path(np->path);
4090	printf("SCSI BUS mode change from %s to %s.\n",
4091		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
4092
4093	/*
4094	 *  Should suspend command processing for a few seconds and
4095	 *  reinitialize all except the chip.
4096	 */
4097	sym_init (np, 2);
4098}
4099
4100/*
4101 *  chip exception handler for SCSI parity error.
4102 *
4103 *  When the chip detects a SCSI parity error and is
4104 *  currently executing a (CH)MOV instruction, it does
4105 *  not interrupt immediately, but tries to finish the
4106 *  transfer of the current scatter entry before
4107 *  interrupting. The following situations may occur:
4108 *
4109 *  - The complete scatter entry has been transferred
4110 *    without the device having changed phase.
4111 *    The chip will then interrupt with the DSP pointing
4112 *    to the instruction that follows the MOV.
4113 *
4114 *  - A phase mismatch occurs before the MOV finished
4115 *    and phase errors are to be handled by the C code.
4116 *    The chip will then interrupt with both PAR and MA
4117 *    conditions set.
4118 *
4119 *  - A phase mismatch occurs before the MOV finished and
4120 *    phase errors are to be handled by SCRIPTS.
4121 *    The chip will load the DSP with the phase mismatch
4122 *    JUMP address and interrupt the host processor.
4123 */
4124static void sym_int_par (hcb_p np, u_short sist)
4125{
4126	u_char	hsts	= INB (HS_PRT);
4127	u32	dsp	= INL (nc_dsp);
4128	u32	dbc	= INL (nc_dbc);
4129	u32	dsa	= INL (nc_dsa);
4130	u_char	sbcl	= INB (nc_sbcl);
4131	u_char	cmd	= dbc >> 24;
4132	int phase	= cmd & 7;
4133	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
4134
4135	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
4136		sym_name(np), hsts, dbc, sbcl);
4137
4138	/*
4139	 *  Check that the chip is connected to the SCSI BUS.
4140	 */
4141	if (!(INB (nc_scntl1) & ISCON)) {
4142		sym_recover_scsi_int(np, HS_UNEXPECTED);
4143		return;
4144	}
4145
4146	/*
4147	 *  If the nexus is not clearly identified, reset the bus.
4148	 *  We will try to do better later.
4149	 */
4150	if (!cp)
4151		goto reset_all;
4152
4153	/*
4154	 *  Check instruction was a MOV, direction was INPUT and
4155	 *  ATN is asserted.
4156	 */
4157	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
4158		goto reset_all;
4159
4160	/*
4161	 *  Keep track of the parity error.
4162	 */
4163	OUTONB (HF_PRT, HF_EXT_ERR);
4164	cp->xerr_status |= XE_PARITY_ERR;
4165
4166	/*
4167	 *  Prepare the message to send to the device.
4168	 */
4169	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
4170
4171	/*
4172	 *  If the old phase was DATA IN phase, we have to deal with
4173	 *  the 3 situations described above.
4174	 *  For other input phases (MSG IN and STATUS), the device
4175	 *  must resend the whole thing that failed parity checking
4176	 *  or signal error. So, jumping to dispatcher should be OK.
4177	 */
4178	if (phase == 1 || phase == 5) {
4179		/* Phase mismatch handled by SCRIPTS */
4180		if (dsp == SCRIPTB_BA (np, pm_handle))
4181			OUTL_DSP (dsp);
4182		/* Phase mismatch handled by the C code */
4183		else if (sist & MA)
4184			sym_int_ma (np);
4185		/* No phase mismatch occurred */
4186		else {
4187			OUTL (nc_temp, dsp);
4188			OUTL_DSP (SCRIPTA_BA (np, dispatch));
4189		}
4190	}
4191	else
4192		OUTL_DSP (SCRIPTA_BA (np, clrack));
4193	return;
4194
4195reset_all:
4196	sym_start_reset(np);
4197}
4198
4199/*
4200 *  chip exception handler for phase errors.
4201 *
4202 *  We have to construct a new transfer descriptor,
4203 *  to transfer the rest of the current block.
4204 */
4205static void sym_int_ma (hcb_p np)
4206{
4207	u32	dbc;
4208	u32	rest;
4209	u32	dsp;
4210	u32	dsa;
4211	u32	nxtdsp;
4212	u32	*vdsp;
4213	u32	oadr, olen;
4214	u32	*tblp;
4215        u32	newcmd;
4216	u_int	delta;
4217	u_char	cmd;
4218	u_char	hflags, hflags0;
4219	struct	sym_pmc *pm;
4220	ccb_p	cp;
4221
4222	dsp	= INL (nc_dsp);
4223	dbc	= INL (nc_dbc);
4224	dsa	= INL (nc_dsa);
4225
4226	cmd	= dbc >> 24;
4227	rest	= dbc & 0xffffff;
4228	delta	= 0;
4229
4230	/*
4231	 *  locate matching cp if any.
4232	 */
4233	cp = sym_ccb_from_dsa(np, dsa);
4234
4235	/*
4236	 *  Donnot take into account dma fifo and various buffers in
4237	 *  INPUT phase since the chip flushes everything before
4238	 *  raising the MA interrupt for interrupted INPUT phases.
4239	 *  For DATA IN phase, we will check for the SWIDE later.
4240	 */
4241	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
4242		u_char ss0, ss2;
4243
4244		if (np->features & FE_DFBC)
4245			delta = INW (nc_dfbc);
4246		else {
4247			u32 dfifo;
4248
4249			/*
4250			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
4251			 */
4252			dfifo = INL(nc_dfifo);
4253
4254			/*
4255			 *  Calculate remaining bytes in DMA fifo.
4256			 *  (CTEST5 = dfifo >> 16)
4257			 */
4258			if (dfifo & (DFS << 16))
4259				delta = ((((dfifo >> 8) & 0x300) |
4260				          (dfifo & 0xff)) - rest) & 0x3ff;
4261			else
4262				delta = ((dfifo & 0xff) - rest) & 0x7f;
4263		}
4264
4265		/*
4266		 *  The data in the dma fifo has not been transferred to
4267		 *  the target -> add the amount to the rest
4268		 *  and clear the data.
4269		 *  Check the sstat2 register in case of wide transfer.
4270		 */
4271		rest += delta;
4272		ss0  = INB (nc_sstat0);
4273		if (ss0 & OLF) rest++;
4274		if (!(np->features & FE_C10))
4275			if (ss0 & ORF) rest++;
4276		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
4277			ss2 = INB (nc_sstat2);
4278			if (ss2 & OLF1) rest++;
4279			if (!(np->features & FE_C10))
4280				if (ss2 & ORF1) rest++;
4281		};
4282
4283		/*
4284		 *  Clear fifos.
4285		 */
4286		OUTB (nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
4287		OUTB (nc_stest3, TE|CSF);		/* scsi fifo */
4288	}
4289
4290	/*
4291	 *  log the information
4292	 */
4293	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
4294		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
4295			(unsigned) rest, (unsigned) delta);
4296
4297	/*
4298	 *  try to find the interrupted script command,
4299	 *  and the address at which to continue.
4300	 */
4301	vdsp	= 0;
4302	nxtdsp	= 0;
4303	if	(dsp >  np->scripta_ba &&
4304		 dsp <= np->scripta_ba + np->scripta_sz) {
4305		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
4306		nxtdsp = dsp;
4307	}
4308	else if	(dsp >  np->scriptb_ba &&
4309		 dsp <= np->scriptb_ba + np->scriptb_sz) {
4310		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
4311		nxtdsp = dsp;
4312	}
4313
4314	/*
4315	 *  log the information
4316	 */
4317	if (DEBUG_FLAGS & DEBUG_PHASE) {
4318		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
4319			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
4320	};
4321
4322	if (!vdsp) {
4323		printf ("%s: interrupted SCRIPT address not found.\n",
4324			sym_name (np));
4325		goto reset_all;
4326	}
4327
4328	if (!cp) {
4329		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
4330			sym_name (np));
4331		goto reset_all;
4332	}
4333
4334	/*
4335	 *  get old startaddress and old length.
4336	 */
4337	oadr = scr_to_cpu(vdsp[1]);
4338
4339	if (cmd & 0x10) {	/* Table indirect */
4340		tblp = (u32 *) ((char*) &cp->phys + oadr);
4341		olen = scr_to_cpu(tblp[0]);
4342		oadr = scr_to_cpu(tblp[1]);
4343	} else {
4344		tblp = (u32 *) 0;
4345		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
4346	};
4347
4348	if (DEBUG_FLAGS & DEBUG_PHASE) {
4349		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
4350			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
4351			tblp,
4352			(unsigned) olen,
4353			(unsigned) oadr);
4354	};
4355
4356	/*
4357	 *  check cmd against assumed interrupted script command.
4358	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
4359	 *  the phase.
4360	 */
4361	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
4362		PRINT_ADDR(cp);
4363		printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
4364			(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
4365
4366		goto reset_all;
4367	};
4368
4369	/*
4370	 *  if old phase not dataphase, leave here.
4371	 */
4372	if (cmd & 2) {
4373		PRINT_ADDR(cp);
4374		printf ("phase change %x-%x %d@%08x resid=%d.\n",
4375			cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
4376			(unsigned)oadr, (unsigned)rest);
4377		goto unexpected_phase;
4378	};
4379
4380	/*
4381	 *  Choose the correct PM save area.
4382	 *
4383	 *  Look at the PM_SAVE SCRIPT if you want to understand
4384	 *  this stuff. The equivalent code is implemented in
4385	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
4386	 *  handle PM from the SCRIPTS processor.
4387	 */
4388	hflags0 = INB (HF_PRT);
4389	hflags = hflags0;
4390
4391	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
4392		if (hflags & HF_IN_PM0)
4393			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
4394		else if	(hflags & HF_IN_PM1)
4395			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
4396
4397		if (hflags & HF_DP_SAVED)
4398			hflags ^= HF_ACT_PM;
4399	}
4400
4401	if (!(hflags & HF_ACT_PM)) {
4402		pm = &cp->phys.pm0;
4403		newcmd = SCRIPTA_BA (np, pm0_data);
4404	}
4405	else {
4406		pm = &cp->phys.pm1;
4407		newcmd = SCRIPTA_BA (np, pm1_data);
4408	}
4409
4410	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
4411	if (hflags != hflags0)
4412		OUTB (HF_PRT, hflags);
4413
4414	/*
4415	 *  fillin the phase mismatch context
4416	 */
4417	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
4418	pm->sg.size = cpu_to_scr(rest);
4419	pm->ret     = cpu_to_scr(nxtdsp);
4420
4421	/*
4422	 *  If we have a SWIDE,
4423	 *  - prepare the address to write the SWIDE from SCRIPTS,
4424	 *  - compute the SCRIPTS address to restart from,
4425	 *  - move current data pointer context by one byte.
4426	 */
4427	nxtdsp = SCRIPTA_BA (np, dispatch);
4428	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
4429	    (INB (nc_scntl2) & WSR)) {
4430		u32 tmp;
4431
4432		/*
4433		 *  Set up the table indirect for the MOVE
4434		 *  of the residual byte and adjust the data
4435		 *  pointer context.
4436		 */
4437		tmp = scr_to_cpu(pm->sg.addr);
4438		cp->phys.wresid.addr = cpu_to_scr(tmp);
4439		pm->sg.addr = cpu_to_scr(tmp + 1);
4440		tmp = scr_to_cpu(pm->sg.size);
4441		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
4442		pm->sg.size = cpu_to_scr(tmp - 1);
4443
4444		/*
4445		 *  If only the residual byte is to be moved,
4446		 *  no PM context is needed.
4447		 */
4448		if ((tmp&0xffffff) == 1)
4449			newcmd = pm->ret;
4450
4451		/*
4452		 *  Prepare the address of SCRIPTS that will
4453		 *  move the residual byte to memory.
4454		 */
4455		nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
4456	}
4457
4458	if (DEBUG_FLAGS & DEBUG_PHASE) {
4459		PRINT_ADDR(cp);
4460		printf ("PM %x %x %x / %x %x %x.\n",
4461			hflags0, hflags, newcmd,
4462			(unsigned)scr_to_cpu(pm->sg.addr),
4463			(unsigned)scr_to_cpu(pm->sg.size),
4464			(unsigned)scr_to_cpu(pm->ret));
4465	}
4466
4467	/*
4468	 *  Restart the SCRIPTS processor.
4469	 */
4470	OUTL (nc_temp, newcmd);
4471	OUTL_DSP (nxtdsp);
4472	return;
4473
4474	/*
4475	 *  Unexpected phase changes that occurs when the current phase
4476	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
4477	 *  Such event may only happen when the SCRIPTS is using a
4478	 *  multibyte SCSI MOVE.
4479	 *
4480	 *  Phase change		Some possible cause
4481	 *
4482	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
4483	 *  COMMAND  --> STATUS	Bad command or refused by target.
4484	 *  MSG OUT  --> MSG IN     Message rejected by target.
4485	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
4486	 *  			negotiation messages.
4487	 *
4488	 *  The code below does not care of the new phase and so
4489	 *  trusts the target. Why to annoy it ?
4490	 *  If the interrupted phase is COMMAND phase, we restart at
4491	 *  dispatcher.
4492	 *  If a target does not get all the messages after selection,
4493	 *  the code assumes blindly that the target discards extended
4494	 *  messages and clears the negotiation status.
4495	 *  If the target does not want all our response to negotiation,
4496	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
4497	 *  bloat for such a should_not_happen situation).
4498	 *  In all other situation, we reset the BUS.
4499	 *  Are these assumptions reasonnable ? (Wait and see ...)
4500	 */
4501unexpected_phase:
4502	dsp -= 8;
4503	nxtdsp = 0;
4504
4505	switch (cmd & 7) {
4506	case 2:	/* COMMAND phase */
4507		nxtdsp = SCRIPTA_BA (np, dispatch);
4508		break;
4509#if 0
4510	case 3:	/* STATUS  phase */
4511		nxtdsp = SCRIPTA_BA (np, dispatch);
4512		break;
4513#endif
4514	case 6:	/* MSG OUT phase */
4515		/*
4516		 *  If the device may want to use untagged when we want
4517		 *  tagged, we prepare an IDENTIFY without disc. granted,
4518		 *  since we will not be able to handle reselect.
4519		 *  Otherwise, we just don't care.
4520		 */
4521		if	(dsp == SCRIPTA_BA (np, send_ident)) {
4522			if (cp->tag != NO_TAG && olen - rest <= 3) {
4523				cp->host_status = HS_BUSY;
4524				np->msgout[0] = M_IDENTIFY | cp->lun;
4525				nxtdsp = SCRIPTB_BA (np, ident_break_atn);
4526			}
4527			else
4528				nxtdsp = SCRIPTB_BA (np, ident_break);
4529		}
4530		else if	(dsp == SCRIPTB_BA (np, send_wdtr) ||
4531			 dsp == SCRIPTB_BA (np, send_sdtr) ||
4532			 dsp == SCRIPTB_BA (np, send_ppr)) {
4533			nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
4534		}
4535		break;
4536#if 0
4537	case 7:	/* MSG IN  phase */
4538		nxtdsp = SCRIPTA_BA (np, clrack);
4539		break;
4540#endif
4541	}
4542
4543	if (nxtdsp) {
4544		OUTL_DSP (nxtdsp);
4545		return;
4546	}
4547
4548reset_all:
4549	sym_start_reset(np);
4550}
4551
4552/*
4553 *  Dequeue from the START queue all CCBs that match
4554 *  a given target/lun/task condition (-1 means all),
4555 *  and move them from the BUSY queue to the COMP queue
4556 *  with CAM_REQUEUE_REQ status condition.
4557 *  This function is used during error handling/recovery.
4558 *  It is called with SCRIPTS not running.
4559 */
4560static int
4561sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
4562{
4563	int j;
4564	ccb_p cp;
4565
4566	/*
4567	 *  Make sure the starting index is within range.
4568	 */
4569	assert((i >= 0) && (i < 2*MAX_QUEUE));
4570
4571	/*
4572	 *  Walk until end of START queue and dequeue every job
4573	 *  that matches the target/lun/task condition.
4574	 */
4575	j = i;
4576	while (i != np->squeueput) {
4577		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
4578		assert(cp);
4579#ifdef SYM_CONF_IARB_SUPPORT
4580		/* Forget hints for IARB, they may be no longer relevant */
4581		cp->host_flags &= ~HF_HINT_IARB;
4582#endif
4583		if ((target == -1 || cp->target == target) &&
4584		    (lun    == -1 || cp->lun    == lun)    &&
4585		    (task   == -1 || cp->tag    == task)) {
4586			sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
4587			sym_remque(&cp->link_ccbq);
4588			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4589		}
4590		else {
4591			if (i != j)
4592				np->squeue[j] = np->squeue[i];
4593			if ((j += 2) >= MAX_QUEUE*2) j = 0;
4594		}
4595		if ((i += 2) >= MAX_QUEUE*2) i = 0;
4596	}
4597	if (i != j)		/* Copy back the idle task if needed */
4598		np->squeue[j] = np->squeue[i];
4599	np->squeueput = j;	/* Update our current start queue pointer */
4600
4601	return (i - j) / 2;
4602}
4603
4604/*
4605 *  Complete all CCBs queued to the COMP queue.
4606 *
4607 *  These CCBs are assumed:
4608 *  - Not to be referenced either by devices or
4609 *    SCRIPTS-related queues and datas.
4610 *  - To have to be completed with an error condition
4611 *    or requeued.
4612 *
4613 *  The device queue freeze count is incremented
4614 *  for each CCB that does not prevent this.
4615 *  This function is called when all CCBs involved
4616 *  in error handling/recovery have been reaped.
4617 */
4618static void
4619sym_flush_comp_queue(hcb_p np, int cam_status)
4620{
4621	SYM_QUEHEAD *qp;
4622	ccb_p cp;
4623
4624	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
4625		union ccb *ccb;
4626		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4627		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4628		/* Leave quiet CCBs waiting for resources */
4629		if (cp->host_status == HS_WAIT)
4630			continue;
4631		ccb = cp->cam_ccb;
4632		if (cam_status)
4633			sym_set_cam_status(ccb, cam_status);
4634		sym_freeze_cam_ccb(ccb);
4635		sym_xpt_done(np, ccb, cp);
4636		sym_free_ccb(np, cp);
4637	}
4638}
4639
4640/*
4641 *  chip handler for bad SCSI status condition
4642 *
4643 *  In case of bad SCSI status, we unqueue all the tasks
4644 *  currently queued to the controller but not yet started
4645 *  and then restart the SCRIPTS processor immediately.
4646 *
4647 *  QUEUE FULL and BUSY conditions are handled the same way.
4648 *  Basically all the not yet started tasks are requeued in
4649 *  device queue and the queue is frozen until a completion.
4650 *
4651 *  For CHECK CONDITION and COMMAND TERMINATED status, we use
4652 *  the CCB of the failed command to prepare a REQUEST SENSE
4653 *  SCSI command and queue it to the controller queue.
4654 *
4655 *  SCRATCHA is assumed to have been loaded with STARTPOS
4656 *  before the SCRIPTS called the C code.
4657 */
4658static void sym_sir_bad_scsi_status(hcb_p np, ccb_p cp)
4659{
4660	tcb_p tp	= &np->target[cp->target];
4661	u32		startp;
4662	u_char		s_status = cp->ssss_status;
4663	u_char		h_flags  = cp->host_flags;
4664	int		msglen;
4665	int		nego;
4666	int		i;
4667
4668	SYM_LOCK_ASSERT(MA_OWNED);
4669
4670	/*
4671	 *  Compute the index of the next job to start from SCRIPTS.
4672	 */
4673	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
4674
4675	/*
4676	 *  The last CCB queued used for IARB hint may be
4677	 *  no longer relevant. Forget it.
4678	 */
4679#ifdef SYM_CONF_IARB_SUPPORT
4680	if (np->last_cp)
4681		np->last_cp = NULL;
4682#endif
4683
4684	/*
4685	 *  Now deal with the SCSI status.
4686	 */
4687	switch(s_status) {
4688	case S_BUSY:
4689	case S_QUEUE_FULL:
4690		if (sym_verbose >= 2) {
4691			PRINT_ADDR(cp);
4692			printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
4693		}
4694	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
4695		sym_complete_error (np, cp);
4696		break;
4697	case S_TERMINATED:
4698	case S_CHECK_COND:
4699		/*
4700		 *  If we get an SCSI error when requesting sense, give up.
4701		 */
4702		if (h_flags & HF_SENSE) {
4703			sym_complete_error (np, cp);
4704			break;
4705		}
4706
4707		/*
4708		 *  Dequeue all queued CCBs for that device not yet started,
4709		 *  and restart the SCRIPTS processor immediately.
4710		 */
4711		(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
4712		OUTL_DSP (SCRIPTA_BA (np, start));
4713
4714 		/*
4715		 *  Save some info of the actual IO.
4716		 *  Compute the data residual.
4717		 */
4718		cp->sv_scsi_status = cp->ssss_status;
4719		cp->sv_xerr_status = cp->xerr_status;
4720		cp->sv_resid = sym_compute_residual(np, cp);
4721
4722		/*
4723		 *  Prepare all needed data structures for
4724		 *  requesting sense data.
4725		 */
4726
4727		/*
4728		 *  identify message
4729		 */
4730		cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
4731		msglen = 1;
4732
4733		/*
4734		 *  If we are currently using anything different from
4735		 *  async. 8 bit data transfers with that target,
4736		 *  start a negotiation, since the device may want
4737		 *  to report us a UNIT ATTENTION condition due to
4738		 *  a cause we currently ignore, and we donnot want
4739		 *  to be stuck with WIDE and/or SYNC data transfer.
4740		 *
4741		 *  cp->nego_status is filled by sym_prepare_nego().
4742		 */
4743		cp->nego_status = 0;
4744		nego = 0;
4745		if	(tp->tinfo.current.options & PPR_OPT_MASK)
4746			nego = NS_PPR;
4747		else if	(tp->tinfo.current.width != BUS_8_BIT)
4748			nego = NS_WIDE;
4749		else if (tp->tinfo.current.offset != 0)
4750			nego = NS_SYNC;
4751		if (nego)
4752			msglen +=
4753			sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
4754		/*
4755		 *  Message table indirect structure.
4756		 */
4757		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg2));
4758		cp->phys.smsg.size	= cpu_to_scr(msglen);
4759
4760		/*
4761		 *  sense command
4762		 */
4763		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA (cp, sensecmd));
4764		cp->phys.cmd.size	= cpu_to_scr(6);
4765
4766		/*
4767		 *  patch requested size into sense command
4768		 */
4769		cp->sensecmd[0]		= 0x03;
4770		cp->sensecmd[1]		= cp->lun << 5;
4771		if (tp->tinfo.current.scsi_version > 2 || cp->lun > 7)
4772			cp->sensecmd[1]	= 0;
4773		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
4774		cp->data_len		= SYM_SNS_BBUF_LEN;
4775
4776		/*
4777		 *  sense data
4778		 */
4779		bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
4780		cp->phys.sense.addr	= cpu_to_scr(vtobus(cp->sns_bbuf));
4781		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
4782
4783		/*
4784		 *  requeue the command.
4785		 */
4786		startp = SCRIPTB_BA (np, sdata_in);
4787
4788		cp->phys.head.savep	= cpu_to_scr(startp);
4789		cp->phys.head.goalp	= cpu_to_scr(startp + 16);
4790		cp->phys.head.lastp	= cpu_to_scr(startp);
4791		cp->startp	= cpu_to_scr(startp);
4792
4793		cp->actualquirks = SYM_QUIRK_AUTOSAVE;
4794		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4795		cp->ssss_status = S_ILLEGAL;
4796		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
4797		cp->xerr_status = 0;
4798		cp->extra_bytes = 0;
4799
4800		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
4801
4802		/*
4803		 *  Requeue the command.
4804		 */
4805		sym_put_start_queue(np, cp);
4806
4807		/*
4808		 *  Give back to upper layer everything we have dequeued.
4809		 */
4810		sym_flush_comp_queue(np, 0);
4811		break;
4812	}
4813}
4814
4815/*
4816 *  After a device has accepted some management message
4817 *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
4818 *  a device signals a UNIT ATTENTION condition, some
4819 *  tasks are thrown away by the device. We are required
4820 *  to reflect that on our tasks list since the device
4821 *  will never complete these tasks.
4822 *
4823 *  This function move from the BUSY queue to the COMP
4824 *  queue all disconnected CCBs for a given target that
4825 *  match the following criteria:
4826 *  - lun=-1  means any logical UNIT otherwise a given one.
4827 *  - task=-1 means any task, otherwise a given one.
4828 */
4829static int
4830sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
4831{
4832	SYM_QUEHEAD qtmp, *qp;
4833	int i = 0;
4834	ccb_p cp;
4835
4836	/*
4837	 *  Move the entire BUSY queue to our temporary queue.
4838	 */
4839	sym_que_init(&qtmp);
4840	sym_que_splice(&np->busy_ccbq, &qtmp);
4841	sym_que_init(&np->busy_ccbq);
4842
4843	/*
4844	 *  Put all CCBs that matches our criteria into
4845	 *  the COMP queue and put back other ones into
4846	 *  the BUSY queue.
4847	 */
4848	while ((qp = sym_remque_head(&qtmp)) != NULL) {
4849		union ccb *ccb;
4850		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4851		ccb = cp->cam_ccb;
4852		if (cp->host_status != HS_DISCONNECT ||
4853		    cp->target != target	     ||
4854		    (lun  != -1 && cp->lun != lun)   ||
4855		    (task != -1 &&
4856			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
4857			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4858			continue;
4859		}
4860		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
4861
4862		/* Preserve the software timeout condition */
4863		if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
4864			sym_set_cam_status(ccb, cam_status);
4865		++i;
4866#if 0
4867printf("XXXX TASK @%p CLEARED\n", cp);
4868#endif
4869	}
4870	return i;
4871}
4872
4873/*
4874 *  chip handler for TASKS recovery
4875 *
4876 *  We cannot safely abort a command, while the SCRIPTS
4877 *  processor is running, since we just would be in race
4878 *  with it.
4879 *
4880 *  As long as we have tasks to abort, we keep the SEM
4881 *  bit set in the ISTAT. When this bit is set, the
4882 *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
4883 *  each time it enters the scheduler.
4884 *
4885 *  If we have to reset a target, clear tasks of a unit,
4886 *  or to perform the abort of a disconnected job, we
4887 *  restart the SCRIPTS for selecting the target. Once
4888 *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
4889 *  If it loses arbitration, the SCRIPTS will interrupt again
4890 *  the next time it will enter its scheduler, and so on ...
4891 *
4892 *  On SIR_TARGET_SELECTED, we scan for the more
4893 *  appropriate thing to do:
4894 *
4895 *  - If nothing, we just sent a M_ABORT message to the
4896 *    target to get rid of the useless SCSI bus ownership.
4897 *    According to the specs, no tasks shall be affected.
4898 *  - If the target is to be reset, we send it a M_RESET
4899 *    message.
4900 *  - If a logical UNIT is to be cleared , we send the
4901 *    IDENTIFY(lun) + M_ABORT.
4902 *  - If an untagged task is to be aborted, we send the
4903 *    IDENTIFY(lun) + M_ABORT.
4904 *  - If a tagged task is to be aborted, we send the
4905 *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
4906 *
4907 *  Once our 'kiss of death' :) message has been accepted
4908 *  by the target, the SCRIPTS interrupts again
4909 *  (SIR_ABORT_SENT). On this interrupt, we complete
4910 *  all the CCBs that should have been aborted by the
4911 *  target according to our message.
4912 */
4913static void sym_sir_task_recovery(hcb_p np, int num)
4914{
4915	SYM_QUEHEAD *qp;
4916	ccb_p cp;
4917	tcb_p tp;
4918	int target=-1, lun=-1, task;
4919	int i, k;
4920
4921	switch(num) {
4922	/*
4923	 *  The SCRIPTS processor stopped before starting
4924	 *  the next command in order to allow us to perform
4925	 *  some task recovery.
4926	 */
4927	case SIR_SCRIPT_STOPPED:
4928		/*
4929		 *  Do we have any target to reset or unit to clear ?
4930		 */
4931		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
4932			tp = &np->target[i];
4933			if (tp->to_reset ||
4934			    (tp->lun0p && tp->lun0p->to_clear)) {
4935				target = i;
4936				break;
4937			}
4938			if (!tp->lunmp)
4939				continue;
4940			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
4941				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
4942					target	= i;
4943					break;
4944				}
4945			}
4946			if (target != -1)
4947				break;
4948		}
4949
4950		/*
4951		 *  If not, walk the busy queue for any
4952		 *  disconnected CCB to be aborted.
4953		 */
4954		if (target == -1) {
4955			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4956				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
4957				if (cp->host_status != HS_DISCONNECT)
4958					continue;
4959				if (cp->to_abort) {
4960					target = cp->target;
4961					break;
4962				}
4963			}
4964		}
4965
4966		/*
4967		 *  If some target is to be selected,
4968		 *  prepare and start the selection.
4969		 */
4970		if (target != -1) {
4971			tp = &np->target[target];
4972			np->abrt_sel.sel_id	= target;
4973			np->abrt_sel.sel_scntl3 = tp->head.wval;
4974			np->abrt_sel.sel_sxfer  = tp->head.sval;
4975			OUTL(nc_dsa, np->hcb_ba);
4976			OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
4977			return;
4978		}
4979
4980		/*
4981		 *  Now look for a CCB to abort that haven't started yet.
4982		 *  Btw, the SCRIPTS processor is still stopped, so
4983		 *  we are not in race.
4984		 */
4985		i = 0;
4986		cp = NULL;
4987		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
4988			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4989			if (cp->host_status != HS_BUSY &&
4990			    cp->host_status != HS_NEGOTIATE)
4991				continue;
4992			if (!cp->to_abort)
4993				continue;
4994#ifdef SYM_CONF_IARB_SUPPORT
4995			/*
4996			 *    If we are using IMMEDIATE ARBITRATION, we donnot
4997			 *    want to cancel the last queued CCB, since the
4998			 *    SCRIPTS may have anticipated the selection.
4999			 */
5000			if (cp == np->last_cp) {
5001				cp->to_abort = 0;
5002				continue;
5003			}
5004#endif
5005			i = 1;	/* Means we have found some */
5006			break;
5007		}
5008		if (!i) {
5009			/*
5010			 *  We are done, so we donnot need
5011			 *  to synchronize with the SCRIPTS anylonger.
5012			 *  Remove the SEM flag from the ISTAT.
5013			 */
5014			np->istat_sem = 0;
5015			OUTB (nc_istat, SIGP);
5016			break;
5017		}
5018		/*
5019		 *  Compute index of next position in the start
5020		 *  queue the SCRIPTS intends to start and dequeue
5021		 *  all CCBs for that device that haven't been started.
5022		 */
5023		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5024		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5025
5026		/*
5027		 *  Make sure at least our IO to abort has been dequeued.
5028		 */
5029		assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
5030
5031		/*
5032		 *  Keep track in cam status of the reason of the abort.
5033		 */
5034		if (cp->to_abort == 2)
5035			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5036		else
5037			sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
5038
5039		/*
5040		 *  Complete with error everything that we have dequeued.
5041	 	 */
5042		sym_flush_comp_queue(np, 0);
5043		break;
5044	/*
5045	 *  The SCRIPTS processor has selected a target
5046	 *  we may have some manual recovery to perform for.
5047	 */
5048	case SIR_TARGET_SELECTED:
5049		target = (INB (nc_sdid) & 0xf);
5050		tp = &np->target[target];
5051
5052		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
5053
5054		/*
5055		 *  If the target is to be reset, prepare a
5056		 *  M_RESET message and clear the to_reset flag
5057		 *  since we donnot expect this operation to fail.
5058		 */
5059		if (tp->to_reset) {
5060			np->abrt_msg[0] = M_RESET;
5061			np->abrt_tbl.size = 1;
5062			tp->to_reset = 0;
5063			break;
5064		}
5065
5066		/*
5067		 *  Otherwise, look for some logical unit to be cleared.
5068		 */
5069		if (tp->lun0p && tp->lun0p->to_clear)
5070			lun = 0;
5071		else if (tp->lunmp) {
5072			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
5073				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
5074					lun = k;
5075					break;
5076				}
5077			}
5078		}
5079
5080		/*
5081		 *  If a logical unit is to be cleared, prepare
5082		 *  an IDENTIFY(lun) + ABORT MESSAGE.
5083		 */
5084		if (lun != -1) {
5085			lcb_p lp = sym_lp(tp, lun);
5086			lp->to_clear = 0; /* We donnot expect to fail here */
5087			np->abrt_msg[0] = M_IDENTIFY | lun;
5088			np->abrt_msg[1] = M_ABORT;
5089			np->abrt_tbl.size = 2;
5090			break;
5091		}
5092
5093		/*
5094		 *  Otherwise, look for some disconnected job to
5095		 *  abort for this target.
5096		 */
5097		i = 0;
5098		cp = NULL;
5099		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5100			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5101			if (cp->host_status != HS_DISCONNECT)
5102				continue;
5103			if (cp->target != target)
5104				continue;
5105			if (!cp->to_abort)
5106				continue;
5107			i = 1;	/* Means we have some */
5108			break;
5109		}
5110
5111		/*
5112		 *  If we have none, probably since the device has
5113		 *  completed the command before we won abitration,
5114		 *  send a M_ABORT message without IDENTIFY.
5115		 *  According to the specs, the device must just
5116		 *  disconnect the BUS and not abort any task.
5117		 */
5118		if (!i) {
5119			np->abrt_msg[0] = M_ABORT;
5120			np->abrt_tbl.size = 1;
5121			break;
5122		}
5123
5124		/*
5125		 *  We have some task to abort.
5126		 *  Set the IDENTIFY(lun)
5127		 */
5128		np->abrt_msg[0] = M_IDENTIFY | cp->lun;
5129
5130		/*
5131		 *  If we want to abort an untagged command, we
5132		 *  will send an IDENTIFY + M_ABORT.
5133		 *  Otherwise (tagged command), we will send
5134		 *  an IDENTIFY + task attributes + ABORT TAG.
5135		 */
5136		if (cp->tag == NO_TAG) {
5137			np->abrt_msg[1] = M_ABORT;
5138			np->abrt_tbl.size = 2;
5139		}
5140		else {
5141			np->abrt_msg[1] = cp->scsi_smsg[1];
5142			np->abrt_msg[2] = cp->scsi_smsg[2];
5143			np->abrt_msg[3] = M_ABORT_TAG;
5144			np->abrt_tbl.size = 4;
5145		}
5146		/*
5147		 *  Keep track of software timeout condition, since the
5148		 *  peripheral driver may not count retries on abort
5149		 *  conditions not due to timeout.
5150		 */
5151		if (cp->to_abort == 2)
5152			sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
5153		cp->to_abort = 0; /* We donnot expect to fail here */
5154		break;
5155
5156	/*
5157	 *  The target has accepted our message and switched
5158	 *  to BUS FREE phase as we expected.
5159	 */
5160	case SIR_ABORT_SENT:
5161		target = (INB (nc_sdid) & 0xf);
5162		tp = &np->target[target];
5163
5164		/*
5165		**  If we didn't abort anything, leave here.
5166		*/
5167		if (np->abrt_msg[0] == M_ABORT)
5168			break;
5169
5170		/*
5171		 *  If we sent a M_RESET, then a hardware reset has
5172		 *  been performed by the target.
5173		 *  - Reset everything to async 8 bit
5174		 *  - Tell ourself to negotiate next time :-)
5175		 *  - Prepare to clear all disconnected CCBs for
5176		 *    this target from our task list (lun=task=-1)
5177		 */
5178		lun = -1;
5179		task = -1;
5180		if (np->abrt_msg[0] == M_RESET) {
5181			tp->head.sval = 0;
5182			tp->head.wval = np->rv_scntl3;
5183			tp->head.uval = 0;
5184			tp->tinfo.current.period = 0;
5185			tp->tinfo.current.offset = 0;
5186			tp->tinfo.current.width  = BUS_8_BIT;
5187			tp->tinfo.current.options = 0;
5188		}
5189
5190		/*
5191		 *  Otherwise, check for the LUN and TASK(s)
5192		 *  concerned by the cancelation.
5193		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
5194		 *  or an ABORT message :-)
5195		 */
5196		else {
5197			lun = np->abrt_msg[0] & 0x3f;
5198			if (np->abrt_msg[1] == M_ABORT_TAG)
5199				task = np->abrt_msg[2];
5200		}
5201
5202		/*
5203		 *  Complete all the CCBs the device should have
5204		 *  aborted due to our 'kiss of death' message.
5205		 */
5206		i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5207		(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
5208		(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
5209		sym_flush_comp_queue(np, 0);
5210
5211		/*
5212		 *  If we sent a BDR, make uper layer aware of that.
5213		 */
5214		if (np->abrt_msg[0] == M_RESET)
5215			xpt_async(AC_SENT_BDR, np->path, NULL);
5216		break;
5217	}
5218
5219	/*
5220	 *  Print to the log the message we intend to send.
5221	 */
5222	if (num == SIR_TARGET_SELECTED) {
5223		PRINT_TARGET(np, target);
5224		sym_printl_hex("control msgout:", np->abrt_msg,
5225			      np->abrt_tbl.size);
5226		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
5227	}
5228
5229	/*
5230	 *  Let the SCRIPTS processor continue.
5231	 */
5232	OUTONB_STD ();
5233}
5234
5235/*
5236 *  Gerard's alchemy:) that deals with with the data
5237 *  pointer for both MDP and the residual calculation.
5238 *
5239 *  I didn't want to bloat the code by more than 200
5240 *  lignes for the handling of both MDP and the residual.
5241 *  This has been achieved by using a data pointer
5242 *  representation consisting in an index in the data
5243 *  array (dp_sg) and a negative offset (dp_ofs) that
5244 *  have the following meaning:
5245 *
5246 *  - dp_sg = SYM_CONF_MAX_SG
5247 *    we are at the end of the data script.
5248 *  - dp_sg < SYM_CONF_MAX_SG
5249 *    dp_sg points to the next entry of the scatter array
5250 *    we want to transfer.
5251 *  - dp_ofs < 0
5252 *    dp_ofs represents the residual of bytes of the
5253 *    previous entry scatter entry we will send first.
5254 *  - dp_ofs = 0
5255 *    no residual to send first.
5256 *
5257 *  The function sym_evaluate_dp() accepts an arbitray
5258 *  offset (basically from the MDP message) and returns
5259 *  the corresponding values of dp_sg and dp_ofs.
5260 */
5261static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
5262{
5263	u32	dp_scr;
5264	int	dp_ofs, dp_sg, dp_sgmin;
5265	int	tmp;
5266	struct sym_pmc *pm;
5267
5268	/*
5269	 *  Compute the resulted data pointer in term of a script
5270	 *  address within some DATA script and a signed byte offset.
5271	 */
5272	dp_scr = scr;
5273	dp_ofs = *ofs;
5274	if	(dp_scr == SCRIPTA_BA (np, pm0_data))
5275		pm = &cp->phys.pm0;
5276	else if (dp_scr == SCRIPTA_BA (np, pm1_data))
5277		pm = &cp->phys.pm1;
5278	else
5279		pm = NULL;
5280
5281	if (pm) {
5282		dp_scr  = scr_to_cpu(pm->ret);
5283		dp_ofs -= scr_to_cpu(pm->sg.size);
5284	}
5285
5286	/*
5287	 *  If we are auto-sensing, then we are done.
5288	 */
5289	if (cp->host_flags & HF_SENSE) {
5290		*ofs = dp_ofs;
5291		return 0;
5292	}
5293
5294	/*
5295	 *  Deduce the index of the sg entry.
5296	 *  Keep track of the index of the first valid entry.
5297	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
5298	 *  end of the data.
5299	 */
5300	tmp = scr_to_cpu(cp->phys.head.goalp);
5301	dp_sg = SYM_CONF_MAX_SG;
5302	if (dp_scr != tmp)
5303		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
5304	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5305
5306	/*
5307	 *  Move to the sg entry the data pointer belongs to.
5308	 *
5309	 *  If we are inside the data area, we expect result to be:
5310	 *
5311	 *  Either,
5312	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
5313	 *      the data pointer belongs to (or the end of the data)
5314	 *  Or,
5315	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
5316	 *      the data pointer belongs to + 1.
5317	 */
5318	if (dp_ofs < 0) {
5319		int n;
5320		while (dp_sg > dp_sgmin) {
5321			--dp_sg;
5322			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5323			n = dp_ofs + (tmp & 0xffffff);
5324			if (n > 0) {
5325				++dp_sg;
5326				break;
5327			}
5328			dp_ofs = n;
5329		}
5330	}
5331	else if (dp_ofs > 0) {
5332		while (dp_sg < SYM_CONF_MAX_SG) {
5333			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5334			dp_ofs -= (tmp & 0xffffff);
5335			++dp_sg;
5336			if (dp_ofs <= 0)
5337				break;
5338		}
5339	}
5340
5341	/*
5342	 *  Make sure the data pointer is inside the data area.
5343	 *  If not, return some error.
5344	 */
5345	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
5346		goto out_err;
5347	else if	(dp_sg > SYM_CONF_MAX_SG ||
5348		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
5349		goto out_err;
5350
5351	/*
5352	 *  Save the extreme pointer if needed.
5353	 */
5354	if (dp_sg > cp->ext_sg ||
5355            (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
5356		cp->ext_sg  = dp_sg;
5357		cp->ext_ofs = dp_ofs;
5358	}
5359
5360	/*
5361	 *  Return data.
5362	 */
5363	*ofs = dp_ofs;
5364	return dp_sg;
5365
5366out_err:
5367	return -1;
5368}
5369
5370/*
5371 *  chip handler for MODIFY DATA POINTER MESSAGE
5372 *
5373 *  We also call this function on IGNORE WIDE RESIDUE
5374 *  messages that do not match a SWIDE full condition.
5375 *  Btw, we assume in that situation that such a message
5376 *  is equivalent to a MODIFY DATA POINTER (offset=-1).
5377 */
5378static void sym_modify_dp(hcb_p np, ccb_p cp, int ofs)
5379{
5380	int dp_ofs	= ofs;
5381	u32	dp_scr	= INL (nc_temp);
5382	u32	dp_ret;
5383	u32	tmp;
5384	u_char	hflags;
5385	int	dp_sg;
5386	struct	sym_pmc *pm;
5387
5388	/*
5389	 *  Not supported for auto-sense.
5390	 */
5391	if (cp->host_flags & HF_SENSE)
5392		goto out_reject;
5393
5394	/*
5395	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
5396	 *  to the resulted data pointer.
5397	 */
5398	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
5399	if (dp_sg < 0)
5400		goto out_reject;
5401
5402	/*
5403	 *  And our alchemy:) allows to easily calculate the data
5404	 *  script address we want to return for the next data phase.
5405	 */
5406	dp_ret = cpu_to_scr(cp->phys.head.goalp);
5407	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
5408
5409	/*
5410	 *  If offset / scatter entry is zero we donnot need
5411	 *  a context for the new current data pointer.
5412	 */
5413	if (dp_ofs == 0) {
5414		dp_scr = dp_ret;
5415		goto out_ok;
5416	}
5417
5418	/*
5419	 *  Get a context for the new current data pointer.
5420	 */
5421	hflags = INB (HF_PRT);
5422
5423	if (hflags & HF_DP_SAVED)
5424		hflags ^= HF_ACT_PM;
5425
5426	if (!(hflags & HF_ACT_PM)) {
5427		pm  = &cp->phys.pm0;
5428		dp_scr = SCRIPTA_BA (np, pm0_data);
5429	}
5430	else {
5431		pm = &cp->phys.pm1;
5432		dp_scr = SCRIPTA_BA (np, pm1_data);
5433	}
5434
5435	hflags &= ~(HF_DP_SAVED);
5436
5437	OUTB (HF_PRT, hflags);
5438
5439	/*
5440	 *  Set up the new current data pointer.
5441	 *  ofs < 0 there, and for the next data phase, we
5442	 *  want to transfer part of the data of the sg entry
5443	 *  corresponding to index dp_sg-1 prior to returning
5444	 *  to the main data script.
5445	 */
5446	pm->ret = cpu_to_scr(dp_ret);
5447	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
5448	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
5449	pm->sg.addr = cpu_to_scr(tmp);
5450	pm->sg.size = cpu_to_scr(-dp_ofs);
5451
5452out_ok:
5453	OUTL (nc_temp, dp_scr);
5454	OUTL_DSP (SCRIPTA_BA (np, clrack));
5455	return;
5456
5457out_reject:
5458	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5459}
5460
5461/*
5462 *  chip calculation of the data residual.
5463 *
5464 *  As I used to say, the requirement of data residual
5465 *  in SCSI is broken, useless and cannot be achieved
5466 *  without huge complexity.
5467 *  But most OSes and even the official CAM require it.
5468 *  When stupidity happens to be so widely spread inside
5469 *  a community, it gets hard to convince.
5470 *
5471 *  Anyway, I don't care, since I am not going to use
5472 *  any software that considers this data residual as
5473 *  a relevant information. :)
5474 */
5475static int sym_compute_residual(hcb_p np, ccb_p cp)
5476{
5477	int dp_sg, dp_sgmin, resid = 0;
5478	int dp_ofs = 0;
5479
5480	/*
5481	 *  Check for some data lost or just thrown away.
5482	 *  We are not required to be quite accurate in this
5483	 *  situation. Btw, if we are odd for output and the
5484	 *  device claims some more data, it may well happen
5485	 *  than our residual be zero. :-)
5486	 */
5487	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
5488		if (cp->xerr_status & XE_EXTRA_DATA)
5489			resid -= cp->extra_bytes;
5490		if (cp->xerr_status & XE_SODL_UNRUN)
5491			++resid;
5492		if (cp->xerr_status & XE_SWIDE_OVRUN)
5493			--resid;
5494	}
5495
5496	/*
5497	 *  If all data has been transferred,
5498	 *  there is no residual.
5499	 */
5500	if (cp->phys.head.lastp == cp->phys.head.goalp)
5501		return resid;
5502
5503	/*
5504	 *  If no data transfer occurs, or if the data
5505	 *  pointer is weird, return full residual.
5506	 */
5507	if (cp->startp == cp->phys.head.lastp ||
5508	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
5509			    &dp_ofs) < 0) {
5510		return cp->data_len;
5511	}
5512
5513	/*
5514	 *  If we were auto-sensing, then we are done.
5515	 */
5516	if (cp->host_flags & HF_SENSE) {
5517		return -dp_ofs;
5518	}
5519
5520	/*
5521	 *  We are now full comfortable in the computation
5522	 *  of the data residual (2's complement).
5523	 */
5524	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
5525	resid = -cp->ext_ofs;
5526	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
5527		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
5528		resid += (tmp & 0xffffff);
5529	}
5530
5531	/*
5532	 *  Hopefully, the result is not too wrong.
5533	 */
5534	return resid;
5535}
5536
5537/*
5538 *  Print out the content of a SCSI message.
5539 */
5540static int sym_show_msg (u_char * msg)
5541{
5542	u_char i;
5543	printf ("%x",*msg);
5544	if (*msg==M_EXTENDED) {
5545		for (i=1;i<8;i++) {
5546			if (i-1>msg[1]) break;
5547			printf ("-%x",msg[i]);
5548		};
5549		return (i+1);
5550	} else if ((*msg & 0xf0) == 0x20) {
5551		printf ("-%x",msg[1]);
5552		return (2);
5553	};
5554	return (1);
5555}
5556
5557static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
5558{
5559	PRINT_ADDR(cp);
5560	if (label)
5561		printf ("%s: ", label);
5562
5563	(void) sym_show_msg (msg);
5564	printf (".\n");
5565}
5566
5567/*
5568 *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
5569 *
5570 *  When we try to negotiate, we append the negotiation message
5571 *  to the identify and (maybe) simple tag message.
5572 *  The host status field is set to HS_NEGOTIATE to mark this
5573 *  situation.
5574 *
5575 *  If the target doesn't answer this message immediately
5576 *  (as required by the standard), the SIR_NEGO_FAILED interrupt
5577 *  will be raised eventually.
5578 *  The handler removes the HS_NEGOTIATE status, and sets the
5579 *  negotiated value to the default (async / nowide).
5580 *
5581 *  If we receive a matching answer immediately, we check it
5582 *  for validity, and set the values.
5583 *
5584 *  If we receive a Reject message immediately, we assume the
5585 *  negotiation has failed, and fall back to standard values.
5586 *
5587 *  If we receive a negotiation message while not in HS_NEGOTIATE
5588 *  state, it's a target initiated negotiation. We prepare a
5589 *  (hopefully) valid answer, set our parameters, and send back
5590 *  this answer to the target.
5591 *
5592 *  If the target doesn't fetch the answer (no message out phase),
5593 *  we assume the negotiation has failed, and fall back to default
5594 *  settings (SIR_NEGO_PROTO interrupt).
5595 *
5596 *  When we set the values, we adjust them in all ccbs belonging
5597 *  to this target, in the controller's register, and in the "phys"
5598 *  field of the controller's struct sym_hcb.
5599 */
5600
5601/*
5602 *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
5603 */
5604static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
5605{
5606	u_char	chg, ofs, per, fak, div;
5607	int	req = 1;
5608
5609	/*
5610	 *  Synchronous request message received.
5611	 */
5612	if (DEBUG_FLAGS & DEBUG_NEGO) {
5613		sym_print_msg(cp, "sync msgin", np->msgin);
5614	};
5615
5616	/*
5617	 * request or answer ?
5618	 */
5619	if (INB (HS_PRT) == HS_NEGOTIATE) {
5620		OUTB (HS_PRT, HS_BUSY);
5621		if (cp->nego_status && cp->nego_status != NS_SYNC)
5622			goto reject_it;
5623		req = 0;
5624	}
5625
5626	/*
5627	 *  get requested values.
5628	 */
5629	chg = 0;
5630	per = np->msgin[3];
5631	ofs = np->msgin[4];
5632
5633	/*
5634	 *  check values against our limits.
5635	 */
5636	if (ofs) {
5637		if (ofs > np->maxoffs)
5638			{chg = 1; ofs = np->maxoffs;}
5639		if (req) {
5640			if (ofs > tp->tinfo.user.offset)
5641				{chg = 1; ofs = tp->tinfo.user.offset;}
5642		}
5643	}
5644
5645	if (ofs) {
5646		if (per < np->minsync)
5647			{chg = 1; per = np->minsync;}
5648		if (req) {
5649			if (per < tp->tinfo.user.period)
5650				{chg = 1; per = tp->tinfo.user.period;}
5651		}
5652	}
5653
5654	div = fak = 0;
5655	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
5656		goto reject_it;
5657
5658	if (DEBUG_FLAGS & DEBUG_NEGO) {
5659		PRINT_ADDR(cp);
5660		printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
5661			ofs, per, div, fak, chg);
5662	}
5663
5664	/*
5665	 *  This was an answer message
5666	 */
5667	if (req == 0) {
5668		if (chg) 	/* Answer wasn't acceptable. */
5669			goto reject_it;
5670		sym_setsync (np, cp, ofs, per, div, fak);
5671		OUTL_DSP (SCRIPTA_BA (np, clrack));
5672		return;
5673	}
5674
5675	/*
5676	 *  It was a request. Set value and
5677	 *  prepare an answer message
5678	 */
5679	sym_setsync (np, cp, ofs, per, div, fak);
5680
5681	np->msgout[0] = M_EXTENDED;
5682	np->msgout[1] = 3;
5683	np->msgout[2] = M_X_SYNC_REQ;
5684	np->msgout[3] = per;
5685	np->msgout[4] = ofs;
5686
5687	cp->nego_status = NS_SYNC;
5688
5689	if (DEBUG_FLAGS & DEBUG_NEGO) {
5690		sym_print_msg(cp, "sync msgout", np->msgout);
5691	}
5692
5693	np->msgin [0] = M_NOOP;
5694
5695	OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5696	return;
5697reject_it:
5698	sym_setsync (np, cp, 0, 0, 0, 0);
5699	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5700}
5701
5702/*
5703 *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
5704 */
5705static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
5706{
5707	u_char	chg, ofs, per, fak, dt, div, wide;
5708	int	req = 1;
5709
5710	/*
5711	 * Synchronous request message received.
5712	 */
5713	if (DEBUG_FLAGS & DEBUG_NEGO) {
5714		sym_print_msg(cp, "ppr msgin", np->msgin);
5715	};
5716
5717	/*
5718	 *  get requested values.
5719	 */
5720	chg  = 0;
5721	per  = np->msgin[3];
5722	ofs  = np->msgin[5];
5723	wide = np->msgin[6];
5724	dt   = np->msgin[7] & PPR_OPT_DT;
5725
5726	/*
5727	 * request or answer ?
5728	 */
5729	if (INB (HS_PRT) == HS_NEGOTIATE) {
5730		OUTB (HS_PRT, HS_BUSY);
5731		if (cp->nego_status && cp->nego_status != NS_PPR)
5732			goto reject_it;
5733		req = 0;
5734	}
5735
5736	/*
5737	 *  check values against our limits.
5738	 */
5739	if (wide > np->maxwide)
5740		{chg = 1; wide = np->maxwide;}
5741	if (!wide || !(np->features & FE_ULTRA3))
5742		dt &= ~PPR_OPT_DT;
5743	if (req) {
5744		if (wide > tp->tinfo.user.width)
5745			{chg = 1; wide = tp->tinfo.user.width;}
5746	}
5747
5748	if (!(np->features & FE_U3EN))	/* Broken U3EN bit not supported */
5749		dt &= ~PPR_OPT_DT;
5750
5751	if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
5752
5753	if (ofs) {
5754		if (dt) {
5755			if (ofs > np->maxoffs_dt)
5756				{chg = 1; ofs = np->maxoffs_dt;}
5757		}
5758		else if (ofs > np->maxoffs)
5759			{chg = 1; ofs = np->maxoffs;}
5760		if (req) {
5761			if (ofs > tp->tinfo.user.offset)
5762				{chg = 1; ofs = tp->tinfo.user.offset;}
5763		}
5764	}
5765
5766	if (ofs) {
5767		if (dt) {
5768			if (per < np->minsync_dt)
5769				{chg = 1; per = np->minsync_dt;}
5770		}
5771		else if (per < np->minsync)
5772			{chg = 1; per = np->minsync;}
5773		if (req) {
5774			if (per < tp->tinfo.user.period)
5775				{chg = 1; per = tp->tinfo.user.period;}
5776		}
5777	}
5778
5779	div = fak = 0;
5780	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
5781		goto reject_it;
5782
5783	if (DEBUG_FLAGS & DEBUG_NEGO) {
5784		PRINT_ADDR(cp);
5785		printf ("ppr: "
5786			"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
5787			dt, ofs, per, wide, div, fak, chg);
5788	}
5789
5790	/*
5791	 *  It was an answer.
5792	 */
5793	if (req == 0) {
5794		if (chg) 	/* Answer wasn't acceptable */
5795			goto reject_it;
5796		sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5797		OUTL_DSP (SCRIPTA_BA (np, clrack));
5798		return;
5799	}
5800
5801	/*
5802	 *  It was a request. Set value and
5803	 *  prepare an answer message
5804	 */
5805	sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
5806
5807	np->msgout[0] = M_EXTENDED;
5808	np->msgout[1] = 6;
5809	np->msgout[2] = M_X_PPR_REQ;
5810	np->msgout[3] = per;
5811	np->msgout[4] = 0;
5812	np->msgout[5] = ofs;
5813	np->msgout[6] = wide;
5814	np->msgout[7] = dt;
5815
5816	cp->nego_status = NS_PPR;
5817
5818	if (DEBUG_FLAGS & DEBUG_NEGO) {
5819		sym_print_msg(cp, "ppr msgout", np->msgout);
5820	}
5821
5822	np->msgin [0] = M_NOOP;
5823
5824	OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
5825	return;
5826reject_it:
5827	sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5828	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5829	/*
5830	 *  If it was a device response that should result in
5831	 *  ST, we may want to try a legacy negotiation later.
5832	 */
5833	if (!req && !dt) {
5834		tp->tinfo.goal.options = 0;
5835		tp->tinfo.goal.width   = wide;
5836		tp->tinfo.goal.period  = per;
5837		tp->tinfo.goal.offset  = ofs;
5838	}
5839}
5840
5841/*
5842 *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
5843 */
5844static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
5845{
5846	u_char	chg, wide;
5847	int	req = 1;
5848
5849	/*
5850	 *  Wide request message received.
5851	 */
5852	if (DEBUG_FLAGS & DEBUG_NEGO) {
5853		sym_print_msg(cp, "wide msgin", np->msgin);
5854	};
5855
5856	/*
5857	 * Is it a request from the device?
5858	 */
5859	if (INB (HS_PRT) == HS_NEGOTIATE) {
5860		OUTB (HS_PRT, HS_BUSY);
5861		if (cp->nego_status && cp->nego_status != NS_WIDE)
5862			goto reject_it;
5863		req = 0;
5864	}
5865
5866	/*
5867	 *  get requested values.
5868	 */
5869	chg  = 0;
5870	wide = np->msgin[3];
5871
5872	/*
5873	 *  check values against driver limits.
5874	 */
5875	if (wide > np->maxwide)
5876		{chg = 1; wide = np->maxwide;}
5877	if (req) {
5878		if (wide > tp->tinfo.user.width)
5879			{chg = 1; wide = tp->tinfo.user.width;}
5880	}
5881
5882	if (DEBUG_FLAGS & DEBUG_NEGO) {
5883		PRINT_ADDR(cp);
5884		printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
5885	}
5886
5887	/*
5888	 * This was an answer message
5889	 */
5890	if (req == 0) {
5891		if (chg)	/*  Answer wasn't acceptable. */
5892			goto reject_it;
5893		sym_setwide (np, cp, wide);
5894
5895		/*
5896		 * Negotiate for SYNC immediately after WIDE response.
5897		 * This allows to negotiate for both WIDE and SYNC on
5898		 * a single SCSI command (Suggested by Justin Gibbs).
5899		 */
5900		if (tp->tinfo.goal.offset) {
5901			np->msgout[0] = M_EXTENDED;
5902			np->msgout[1] = 3;
5903			np->msgout[2] = M_X_SYNC_REQ;
5904			np->msgout[3] = tp->tinfo.goal.period;
5905			np->msgout[4] = tp->tinfo.goal.offset;
5906
5907			if (DEBUG_FLAGS & DEBUG_NEGO) {
5908				sym_print_msg(cp, "sync msgout", np->msgout);
5909			}
5910
5911			cp->nego_status = NS_SYNC;
5912			OUTB (HS_PRT, HS_NEGOTIATE);
5913			OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
5914			return;
5915		}
5916
5917		OUTL_DSP (SCRIPTA_BA (np, clrack));
5918		return;
5919	};
5920
5921	/*
5922	 *  It was a request, set value and
5923	 *  prepare an answer message
5924	 */
5925	sym_setwide (np, cp, wide);
5926
5927	np->msgout[0] = M_EXTENDED;
5928	np->msgout[1] = 2;
5929	np->msgout[2] = M_X_WIDE_REQ;
5930	np->msgout[3] = wide;
5931
5932	np->msgin [0] = M_NOOP;
5933
5934	cp->nego_status = NS_WIDE;
5935
5936	if (DEBUG_FLAGS & DEBUG_NEGO) {
5937		sym_print_msg(cp, "wide msgout", np->msgout);
5938	}
5939
5940	OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
5941	return;
5942reject_it:
5943	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
5944}
5945
5946/*
5947 *  Reset SYNC or WIDE to default settings.
5948 *
5949 *  Called when a negotiation does not succeed either
5950 *  on rejection or on protocol error.
5951 *
5952 *  If it was a PPR that made problems, we may want to
5953 *  try a legacy negotiation later.
5954 */
5955static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
5956{
5957	/*
5958	 *  any error in negotiation:
5959	 *  fall back to default mode.
5960	 */
5961	switch (cp->nego_status) {
5962	case NS_PPR:
5963#if 0
5964		sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
5965#else
5966		tp->tinfo.goal.options = 0;
5967		if (tp->tinfo.goal.period < np->minsync)
5968			tp->tinfo.goal.period = np->minsync;
5969		if (tp->tinfo.goal.offset > np->maxoffs)
5970			tp->tinfo.goal.offset = np->maxoffs;
5971#endif
5972		break;
5973	case NS_SYNC:
5974		sym_setsync (np, cp, 0, 0, 0, 0);
5975		break;
5976	case NS_WIDE:
5977		sym_setwide (np, cp, 0);
5978		break;
5979	};
5980	np->msgin [0] = M_NOOP;
5981	np->msgout[0] = M_NOOP;
5982	cp->nego_status = 0;
5983}
5984
5985/*
5986 *  chip handler for MESSAGE REJECT received in response to
5987 *  a WIDE or SYNCHRONOUS negotiation.
5988 */
5989static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
5990{
5991	sym_nego_default(np, tp, cp);
5992	OUTB (HS_PRT, HS_BUSY);
5993}
5994
5995/*
5996 *  chip exception handler for programmed interrupts.
5997 */
5998static void sym_int_sir (hcb_p np)
5999{
6000	u_char	num	= INB (nc_dsps);
6001	u32	dsa	= INL (nc_dsa);
6002	ccb_p	cp	= sym_ccb_from_dsa(np, dsa);
6003	u_char	target	= INB (nc_sdid) & 0x0f;
6004	tcb_p	tp	= &np->target[target];
6005	int	tmp;
6006
6007	SYM_LOCK_ASSERT(MA_OWNED);
6008
6009	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
6010
6011	switch (num) {
6012	/*
6013	 *  Command has been completed with error condition
6014	 *  or has been auto-sensed.
6015	 */
6016	case SIR_COMPLETE_ERROR:
6017		sym_complete_error(np, cp);
6018		return;
6019	/*
6020	 *  The C code is currently trying to recover from something.
6021	 *  Typically, user want to abort some command.
6022	 */
6023	case SIR_SCRIPT_STOPPED:
6024	case SIR_TARGET_SELECTED:
6025	case SIR_ABORT_SENT:
6026		sym_sir_task_recovery(np, num);
6027		return;
6028	/*
6029	 *  The device didn't go to MSG OUT phase after having
6030	 *  been selected with ATN. We donnot want to handle
6031	 *  that.
6032	 */
6033	case SIR_SEL_ATN_NO_MSG_OUT:
6034		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
6035			sym_name (np), target);
6036		goto out_stuck;
6037	/*
6038	 *  The device didn't switch to MSG IN phase after
6039	 *  having reseleted the initiator.
6040	 */
6041	case SIR_RESEL_NO_MSG_IN:
6042		printf ("%s:%d: No MSG IN phase after reselection.\n",
6043			sym_name (np), target);
6044		goto out_stuck;
6045	/*
6046	 *  After reselection, the device sent a message that wasn't
6047	 *  an IDENTIFY.
6048	 */
6049	case SIR_RESEL_NO_IDENTIFY:
6050		printf ("%s:%d: No IDENTIFY after reselection.\n",
6051			sym_name (np), target);
6052		goto out_stuck;
6053	/*
6054	 *  The device reselected a LUN we donnot know about.
6055	 */
6056	case SIR_RESEL_BAD_LUN:
6057		np->msgout[0] = M_RESET;
6058		goto out;
6059	/*
6060	 *  The device reselected for an untagged nexus and we
6061	 *  haven't any.
6062	 */
6063	case SIR_RESEL_BAD_I_T_L:
6064		np->msgout[0] = M_ABORT;
6065		goto out;
6066	/*
6067	 *  The device reselected for a tagged nexus that we donnot
6068	 *  have.
6069	 */
6070	case SIR_RESEL_BAD_I_T_L_Q:
6071		np->msgout[0] = M_ABORT_TAG;
6072		goto out;
6073	/*
6074	 *  The SCRIPTS let us know that the device has grabbed
6075	 *  our message and will abort the job.
6076	 */
6077	case SIR_RESEL_ABORTED:
6078		np->lastmsg = np->msgout[0];
6079		np->msgout[0] = M_NOOP;
6080		printf ("%s:%d: message %x sent on bad reselection.\n",
6081			sym_name (np), target, np->lastmsg);
6082		goto out;
6083	/*
6084	 *  The SCRIPTS let us know that a message has been
6085	 *  successfully sent to the device.
6086	 */
6087	case SIR_MSG_OUT_DONE:
6088		np->lastmsg = np->msgout[0];
6089		np->msgout[0] = M_NOOP;
6090		/* Should we really care of that */
6091		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
6092			if (cp) {
6093				cp->xerr_status &= ~XE_PARITY_ERR;
6094				if (!cp->xerr_status)
6095					OUTOFFB (HF_PRT, HF_EXT_ERR);
6096			}
6097		}
6098		goto out;
6099	/*
6100	 *  The device didn't send a GOOD SCSI status.
6101	 *  We may have some work to do prior to allow
6102	 *  the SCRIPTS processor to continue.
6103	 */
6104	case SIR_BAD_SCSI_STATUS:
6105		if (!cp)
6106			goto out;
6107		sym_sir_bad_scsi_status(np, cp);
6108		return;
6109	/*
6110	 *  We are asked by the SCRIPTS to prepare a
6111	 *  REJECT message.
6112	 */
6113	case SIR_REJECT_TO_SEND:
6114		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
6115		np->msgout[0] = M_REJECT;
6116		goto out;
6117	/*
6118	 *  We have been ODD at the end of a DATA IN
6119	 *  transfer and the device didn't send a
6120	 *  IGNORE WIDE RESIDUE message.
6121	 *  It is a data overrun condition.
6122	 */
6123	case SIR_SWIDE_OVERRUN:
6124		if (cp) {
6125			OUTONB (HF_PRT, HF_EXT_ERR);
6126			cp->xerr_status |= XE_SWIDE_OVRUN;
6127		}
6128		goto out;
6129	/*
6130	 *  We have been ODD at the end of a DATA OUT
6131	 *  transfer.
6132	 *  It is a data underrun condition.
6133	 */
6134	case SIR_SODL_UNDERRUN:
6135		if (cp) {
6136			OUTONB (HF_PRT, HF_EXT_ERR);
6137			cp->xerr_status |= XE_SODL_UNRUN;
6138		}
6139		goto out;
6140	/*
6141	 *  The device wants us to tranfer more data than
6142	 *  expected or in the wrong direction.
6143	 *  The number of extra bytes is in scratcha.
6144	 *  It is a data overrun condition.
6145	 */
6146	case SIR_DATA_OVERRUN:
6147		if (cp) {
6148			OUTONB (HF_PRT, HF_EXT_ERR);
6149			cp->xerr_status |= XE_EXTRA_DATA;
6150			cp->extra_bytes += INL (nc_scratcha);
6151		}
6152		goto out;
6153	/*
6154	 *  The device switched to an illegal phase (4/5).
6155	 */
6156	case SIR_BAD_PHASE:
6157		if (cp) {
6158			OUTONB (HF_PRT, HF_EXT_ERR);
6159			cp->xerr_status |= XE_BAD_PHASE;
6160		}
6161		goto out;
6162	/*
6163	 *  We received a message.
6164	 */
6165	case SIR_MSG_RECEIVED:
6166		if (!cp)
6167			goto out_stuck;
6168		switch (np->msgin [0]) {
6169		/*
6170		 *  We received an extended message.
6171		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
6172		 *  and reject all other extended messages.
6173		 */
6174		case M_EXTENDED:
6175			switch (np->msgin [2]) {
6176			case M_X_MODIFY_DP:
6177				if (DEBUG_FLAGS & DEBUG_POINTER)
6178					sym_print_msg(cp,"modify DP",np->msgin);
6179				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
6180				      (np->msgin[5]<<8)  + (np->msgin[6]);
6181				sym_modify_dp(np, cp, tmp);
6182				return;
6183			case M_X_SYNC_REQ:
6184				sym_sync_nego(np, tp, cp);
6185				return;
6186			case M_X_PPR_REQ:
6187				sym_ppr_nego(np, tp, cp);
6188				return;
6189			case M_X_WIDE_REQ:
6190				sym_wide_nego(np, tp, cp);
6191				return;
6192			default:
6193				goto out_reject;
6194			}
6195			break;
6196		/*
6197		 *  We received a 1/2 byte message not handled from SCRIPTS.
6198		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
6199		 *  RESIDUE messages that haven't been anticipated by
6200		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
6201		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
6202		 */
6203		case M_IGN_RESIDUE:
6204			if (DEBUG_FLAGS & DEBUG_POINTER)
6205				sym_print_msg(cp,"ign wide residue", np->msgin);
6206			sym_modify_dp(np, cp, -1);
6207			return;
6208		case M_REJECT:
6209			if (INB (HS_PRT) == HS_NEGOTIATE)
6210				sym_nego_rejected(np, tp, cp);
6211			else {
6212				PRINT_ADDR(cp);
6213				printf ("M_REJECT received (%x:%x).\n",
6214					scr_to_cpu(np->lastmsg), np->msgout[0]);
6215			}
6216			goto out_clrack;
6217			break;
6218		default:
6219			goto out_reject;
6220		}
6221		break;
6222	/*
6223	 *  We received an unknown message.
6224	 *  Ignore all MSG IN phases and reject it.
6225	 */
6226	case SIR_MSG_WEIRD:
6227		sym_print_msg(cp, "WEIRD message received", np->msgin);
6228		OUTL_DSP (SCRIPTB_BA (np, msg_weird));
6229		return;
6230	/*
6231	 *  Negotiation failed.
6232	 *  Target does not send us the reply.
6233	 *  Remove the HS_NEGOTIATE status.
6234	 */
6235	case SIR_NEGO_FAILED:
6236		OUTB (HS_PRT, HS_BUSY);
6237	/*
6238	 *  Negotiation failed.
6239	 *  Target does not want answer message.
6240	 */
6241	case SIR_NEGO_PROTO:
6242		sym_nego_default(np, tp, cp);
6243		goto out;
6244	};
6245
6246out:
6247	OUTONB_STD ();
6248	return;
6249out_reject:
6250	OUTL_DSP (SCRIPTB_BA (np, msg_bad));
6251	return;
6252out_clrack:
6253	OUTL_DSP (SCRIPTA_BA (np, clrack));
6254	return;
6255out_stuck:
6256	return;
6257}
6258
6259/*
6260 *  Acquire a control block
6261 */
6262static	ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
6263{
6264	tcb_p tp = &np->target[tn];
6265	lcb_p lp = sym_lp(tp, ln);
6266	u_short tag = NO_TAG;
6267	SYM_QUEHEAD *qp;
6268	ccb_p cp = (ccb_p) NULL;
6269
6270	/*
6271	 *  Look for a free CCB
6272	 */
6273	if (sym_que_empty(&np->free_ccbq))
6274		goto out;
6275	qp = sym_remque_head(&np->free_ccbq);
6276	if (!qp)
6277		goto out;
6278	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6279
6280	/*
6281	 *  If the LCB is not yet available and the LUN
6282	 *  has been probed ok, try to allocate the LCB.
6283	 */
6284	if (!lp && sym_is_bit(tp->lun_map, ln)) {
6285		lp = sym_alloc_lcb(np, tn, ln);
6286		if (!lp)
6287			goto out_free;
6288	}
6289
6290	/*
6291	 *  If the LCB is not available here, then the
6292	 *  logical unit is not yet discovered. For those
6293	 *  ones only accept 1 SCSI IO per logical unit,
6294	 *  since we cannot allow disconnections.
6295	 */
6296	if (!lp) {
6297		if (!sym_is_bit(tp->busy0_map, ln))
6298			sym_set_bit(tp->busy0_map, ln);
6299		else
6300			goto out_free;
6301	} else {
6302		/*
6303		 *  If we have been asked for a tagged command.
6304		 */
6305		if (tag_order) {
6306			/*
6307			 *  Debugging purpose.
6308			 */
6309			assert(lp->busy_itl == 0);
6310			/*
6311			 *  Allocate resources for tags if not yet.
6312			 */
6313			if (!lp->cb_tags) {
6314				sym_alloc_lcb_tags(np, tn, ln);
6315				if (!lp->cb_tags)
6316					goto out_free;
6317			}
6318			/*
6319			 *  Get a tag for this SCSI IO and set up
6320			 *  the CCB bus address for reselection,
6321			 *  and count it for this LUN.
6322			 *  Toggle reselect path to tagged.
6323			 */
6324			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
6325				tag = lp->cb_tags[lp->ia_tag];
6326				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
6327					lp->ia_tag = 0;
6328				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
6329				++lp->busy_itlq;
6330				lp->head.resel_sa =
6331					cpu_to_scr(SCRIPTA_BA (np, resel_tag));
6332			}
6333			else
6334				goto out_free;
6335		}
6336		/*
6337		 *  This command will not be tagged.
6338		 *  If we already have either a tagged or untagged
6339		 *  one, refuse to overlap this untagged one.
6340		 */
6341		else {
6342			/*
6343			 *  Debugging purpose.
6344			 */
6345			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
6346			/*
6347			 *  Count this nexus for this LUN.
6348			 *  Set up the CCB bus address for reselection.
6349			 *  Toggle reselect path to untagged.
6350			 */
6351			if (++lp->busy_itl == 1) {
6352				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
6353				lp->head.resel_sa =
6354				      cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
6355			}
6356			else
6357				goto out_free;
6358		}
6359	}
6360	/*
6361	 *  Put the CCB into the busy queue.
6362	 */
6363	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
6364
6365	/*
6366	 *  Remember all informations needed to free this CCB.
6367	 */
6368	cp->to_abort = 0;
6369	cp->tag	   = tag;
6370	cp->target = tn;
6371	cp->lun    = ln;
6372
6373	if (DEBUG_FLAGS & DEBUG_TAGS) {
6374		PRINT_LUN(np, tn, ln);
6375		printf ("ccb @%p using tag %d.\n", cp, tag);
6376	}
6377
6378out:
6379	return cp;
6380out_free:
6381	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6382	return NULL;
6383}
6384
6385/*
6386 *  Release one control block
6387 */
6388static void sym_free_ccb(hcb_p np, ccb_p cp)
6389{
6390	tcb_p tp = &np->target[cp->target];
6391	lcb_p lp = sym_lp(tp, cp->lun);
6392
6393	if (DEBUG_FLAGS & DEBUG_TAGS) {
6394		PRINT_LUN(np, cp->target, cp->lun);
6395		printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
6396	}
6397
6398	/*
6399	 *  If LCB available,
6400	 */
6401	if (lp) {
6402		/*
6403		 *  If tagged, release the tag, set the relect path
6404		 */
6405		if (cp->tag != NO_TAG) {
6406			/*
6407			 *  Free the tag value.
6408			 */
6409			lp->cb_tags[lp->if_tag] = cp->tag;
6410			if (++lp->if_tag == SYM_CONF_MAX_TASK)
6411				lp->if_tag = 0;
6412			/*
6413			 *  Make the reselect path invalid,
6414			 *  and uncount this CCB.
6415			 */
6416			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
6417			--lp->busy_itlq;
6418		} else {	/* Untagged */
6419			/*
6420			 *  Make the reselect path invalid,
6421			 *  and uncount this CCB.
6422			 */
6423			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6424			--lp->busy_itl;
6425		}
6426		/*
6427		 *  If no JOB active, make the LUN reselect path invalid.
6428		 */
6429		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
6430			lp->head.resel_sa =
6431				cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6432	}
6433	/*
6434	 *  Otherwise, we only accept 1 IO per LUN.
6435	 *  Clear the bit that keeps track of this IO.
6436	 */
6437	else
6438		sym_clr_bit(tp->busy0_map, cp->lun);
6439
6440	/*
6441	 *  We donnot queue more than 1 ccb per target
6442	 *  with negotiation at any time. If this ccb was
6443	 *  used for negotiation, clear this info in the tcb.
6444	 */
6445	if (cp == tp->nego_cp)
6446		tp->nego_cp = NULL;
6447
6448#ifdef SYM_CONF_IARB_SUPPORT
6449	/*
6450	 *  If we just complete the last queued CCB,
6451	 *  clear this info that is no longer relevant.
6452	 */
6453	if (cp == np->last_cp)
6454		np->last_cp = NULL;
6455#endif
6456
6457	/*
6458	 *  Unmap user data from DMA map if needed.
6459	 */
6460	if (cp->dmamapped) {
6461		bus_dmamap_unload(np->data_dmat, cp->dmamap);
6462		cp->dmamapped = 0;
6463	}
6464
6465	/*
6466	 *  Make this CCB available.
6467	 */
6468	cp->cam_ccb = NULL;
6469	cp->host_status = HS_IDLE;
6470	sym_remque(&cp->link_ccbq);
6471	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6472}
6473
6474/*
6475 *  Allocate a CCB from memory and initialize its fixed part.
6476 */
6477static ccb_p sym_alloc_ccb(hcb_p np)
6478{
6479	ccb_p cp = NULL;
6480	int hcode;
6481
6482	SYM_LOCK_ASSERT(MA_NOTOWNED);
6483
6484	/*
6485	 *  Prevent from allocating more CCBs than we can
6486	 *  queue to the controller.
6487	 */
6488	if (np->actccbs >= SYM_CONF_MAX_START)
6489		return NULL;
6490
6491	/*
6492	 *  Allocate memory for this CCB.
6493	 */
6494	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
6495	if (!cp)
6496		return NULL;
6497
6498	/*
6499	 *  Allocate a bounce buffer for sense data.
6500	 */
6501	cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
6502	if (!cp->sns_bbuf)
6503		goto out_free;
6504
6505	/*
6506	 *  Allocate a map for the DMA of user data.
6507	 */
6508	if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
6509		goto out_free;
6510	/*
6511	 *  Count it.
6512	 */
6513	np->actccbs++;
6514
6515	/*
6516	 * Initialize the callout.
6517	 */
6518	callout_init(&cp->ch, 1);
6519
6520	/*
6521	 *  Compute the bus address of this ccb.
6522	 */
6523	cp->ccb_ba = vtobus(cp);
6524
6525	/*
6526	 *  Insert this ccb into the hashed list.
6527	 */
6528	hcode = CCB_HASH_CODE(cp->ccb_ba);
6529	cp->link_ccbh = np->ccbh[hcode];
6530	np->ccbh[hcode] = cp;
6531
6532	/*
6533	 *  Initialize the start and restart actions.
6534	 */
6535	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, idle));
6536	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
6537
6538 	/*
6539	 *  Initilialyze some other fields.
6540	 */
6541	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
6542
6543	/*
6544	 *  Chain into free ccb queue.
6545	 */
6546	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
6547
6548	return cp;
6549out_free:
6550	if (cp->sns_bbuf)
6551		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
6552	sym_mfree_dma(cp, sizeof(*cp), "CCB");
6553	return NULL;
6554}
6555
6556/*
6557 *  Look up a CCB from a DSA value.
6558 */
6559static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
6560{
6561	int hcode;
6562	ccb_p cp;
6563
6564	hcode = CCB_HASH_CODE(dsa);
6565	cp = np->ccbh[hcode];
6566	while (cp) {
6567		if (cp->ccb_ba == dsa)
6568			break;
6569		cp = cp->link_ccbh;
6570	}
6571
6572	return cp;
6573}
6574
6575/*
6576 *  Lun control block allocation and initialization.
6577 */
6578static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
6579{
6580	tcb_p tp = &np->target[tn];
6581	lcb_p lp = sym_lp(tp, ln);
6582
6583	/*
6584	 *  Already done, just return.
6585	 */
6586	if (lp)
6587		return lp;
6588	/*
6589	 *  Check against some race.
6590	 */
6591	assert(!sym_is_bit(tp->busy0_map, ln));
6592
6593	/*
6594	 *  Allocate the LCB bus address array.
6595	 *  Compute the bus address of this table.
6596	 */
6597	if (ln && !tp->luntbl) {
6598		int i;
6599
6600		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
6601		if (!tp->luntbl)
6602			goto fail;
6603		for (i = 0 ; i < 64 ; i++)
6604			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
6605		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
6606	}
6607
6608	/*
6609	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
6610	 */
6611	if (ln && !tp->lunmp) {
6612		tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
6613				   "LUNMP");
6614		if (!tp->lunmp)
6615			goto fail;
6616	}
6617
6618	/*
6619	 *  Allocate the lcb.
6620	 *  Make it available to the chip.
6621	 */
6622	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
6623	if (!lp)
6624		goto fail;
6625	if (ln) {
6626		tp->lunmp[ln] = lp;
6627		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
6628	}
6629	else {
6630		tp->lun0p = lp;
6631		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
6632	}
6633
6634	/*
6635	 *  Let the itl task point to error handling.
6636	 */
6637	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
6638
6639	/*
6640	 *  Set the reselect pattern to our default. :)
6641	 */
6642	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
6643
6644	/*
6645	 *  Set user capabilities.
6646	 */
6647	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
6648
6649fail:
6650	return lp;
6651}
6652
6653/*
6654 *  Allocate LCB resources for tagged command queuing.
6655 */
6656static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
6657{
6658	tcb_p tp = &np->target[tn];
6659	lcb_p lp = sym_lp(tp, ln);
6660	int i;
6661
6662	/*
6663	 *  If LCB not available, try to allocate it.
6664	 */
6665	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
6666		return;
6667
6668	/*
6669	 *  Allocate the task table and and the tag allocation
6670	 *  circular buffer. We want both or none.
6671	 */
6672	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6673	if (!lp->itlq_tbl)
6674		return;
6675	lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
6676	if (!lp->cb_tags) {
6677		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
6678		lp->itlq_tbl = 0;
6679		return;
6680	}
6681
6682	/*
6683	 *  Initialize the task table with invalid entries.
6684	 */
6685	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6686		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
6687
6688	/*
6689	 *  Fill up the tag buffer with tag numbers.
6690	 */
6691	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
6692		lp->cb_tags[i] = i;
6693
6694	/*
6695	 *  Make the task table available to SCRIPTS,
6696	 *  And accept tagged commands now.
6697	 */
6698	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
6699}
6700
6701/*
6702 *  Test the pci bus snoop logic :-(
6703 *
6704 *  Has to be called with interrupts disabled.
6705 */
6706#ifndef SYM_CONF_IOMAPPED
6707static int sym_regtest (hcb_p np)
6708{
6709	register volatile u32 data;
6710	/*
6711	 *  chip registers may NOT be cached.
6712	 *  write 0xffffffff to a read only register area,
6713	 *  and try to read it back.
6714	 */
6715	data = 0xffffffff;
6716	OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
6717	data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
6718#if 1
6719	if (data == 0xffffffff) {
6720#else
6721	if ((data & 0xe2f0fffd) != 0x02000080) {
6722#endif
6723		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
6724			(unsigned) data);
6725		return (0x10);
6726	};
6727	return (0);
6728}
6729#endif
6730
6731static int sym_snooptest (hcb_p np)
6732{
6733	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
6734	int	i, err=0;
6735#ifndef SYM_CONF_IOMAPPED
6736	err |= sym_regtest (np);
6737	if (err) return (err);
6738#endif
6739restart_test:
6740	/*
6741	 *  Enable Master Parity Checking as we intend
6742	 *  to enable it for normal operations.
6743	 */
6744	OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
6745	/*
6746	 *  init
6747	 */
6748	pc  = SCRIPTB0_BA (np, snooptest);
6749	host_wr = 1;
6750	sym_wr  = 2;
6751	/*
6752	 *  Set memory and register.
6753	 */
6754	np->cache = cpu_to_scr(host_wr);
6755	OUTL (nc_temp, sym_wr);
6756	/*
6757	 *  Start script (exchange values)
6758	 */
6759	OUTL (nc_dsa, np->hcb_ba);
6760	OUTL_DSP (pc);
6761	/*
6762	 *  Wait 'til done (with timeout)
6763	 */
6764	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
6765		if (INB(nc_istat) & (INTF|SIP|DIP))
6766			break;
6767	if (i>=SYM_SNOOP_TIMEOUT) {
6768		printf ("CACHE TEST FAILED: timeout.\n");
6769		return (0x20);
6770	};
6771	/*
6772	 *  Check for fatal DMA errors.
6773	 */
6774	dstat = INB (nc_dstat);
6775#if 1	/* Band aiding for broken hardwares that fail PCI parity */
6776	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
6777		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
6778			"DISABLING MASTER DATA PARITY CHECKING.\n",
6779			sym_name(np));
6780		np->rv_ctest4 &= ~MPEE;
6781		goto restart_test;
6782	}
6783#endif
6784	if (dstat & (MDPE|BF|IID)) {
6785		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
6786		return (0x80);
6787	}
6788	/*
6789	 *  Save termination position.
6790	 */
6791	pc = INL (nc_dsp);
6792	/*
6793	 *  Read memory and register.
6794	 */
6795	host_rd = scr_to_cpu(np->cache);
6796	sym_rd  = INL (nc_scratcha);
6797	sym_bk  = INL (nc_temp);
6798
6799	/*
6800	 *  Check termination position.
6801	 */
6802	if (pc != SCRIPTB0_BA (np, snoopend)+8) {
6803		printf ("CACHE TEST FAILED: script execution failed.\n");
6804		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
6805			(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
6806			(u_long) SCRIPTB0_BA (np, snoopend) +8);
6807		return (0x40);
6808	};
6809	/*
6810	 *  Show results.
6811	 */
6812	if (host_wr != sym_rd) {
6813		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
6814			(int) host_wr, (int) sym_rd);
6815		err |= 1;
6816	};
6817	if (host_rd != sym_wr) {
6818		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
6819			(int) sym_wr, (int) host_rd);
6820		err |= 2;
6821	};
6822	if (sym_bk != sym_wr) {
6823		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
6824			(int) sym_wr, (int) sym_bk);
6825		err |= 4;
6826	};
6827
6828	return (err);
6829}
6830
6831/*
6832 *  Determine the chip's clock frequency.
6833 *
6834 *  This is essential for the negotiation of the synchronous
6835 *  transfer rate.
6836 *
6837 *  Note: we have to return the correct value.
6838 *  THERE IS NO SAFE DEFAULT VALUE.
6839 *
6840 *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
6841 *  53C860 and 53C875 rev. 1 support fast20 transfers but
6842 *  do not have a clock doubler and so are provided with a
6843 *  80 MHz clock. All other fast20 boards incorporate a doubler
6844 *  and so should be delivered with a 40 MHz clock.
6845 *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
6846 *  clock and provide a clock quadrupler (160 Mhz).
6847 */
6848
6849/*
6850 *  Select SCSI clock frequency
6851 */
6852static void sym_selectclock(hcb_p np, u_char scntl3)
6853{
6854	/*
6855	 *  If multiplier not present or not selected, leave here.
6856	 */
6857	if (np->multiplier <= 1) {
6858		OUTB(nc_scntl3,	scntl3);
6859		return;
6860	}
6861
6862	if (sym_verbose >= 2)
6863		printf ("%s: enabling clock multiplier\n", sym_name(np));
6864
6865	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
6866	/*
6867	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
6868	 *  Otherwise wait 20 micro-seconds.
6869	 */
6870	if (np->features & FE_LCKFRQ) {
6871		int i = 20;
6872		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
6873			UDELAY (20);
6874		if (!i)
6875			printf("%s: the chip cannot lock the frequency\n",
6876				sym_name(np));
6877	} else
6878		UDELAY (20);
6879	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
6880	OUTB(nc_scntl3,	scntl3);
6881	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
6882	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
6883}
6884
6885/*
6886 *  calculate SCSI clock frequency (in KHz)
6887 */
6888static unsigned getfreq (hcb_p np, int gen)
6889{
6890	unsigned int ms = 0;
6891	unsigned int f;
6892
6893	/*
6894	 * Measure GEN timer delay in order
6895	 * to calculate SCSI clock frequency
6896	 *
6897	 * This code will never execute too
6898	 * many loop iterations (if DELAY is
6899	 * reasonably correct). It could get
6900	 * too low a delay (too high a freq.)
6901	 * if the CPU is slow executing the
6902	 * loop for some reason (an NMI, for
6903	 * example). For this reason we will
6904	 * if multiple measurements are to be
6905	 * performed trust the higher delay
6906	 * (lower frequency returned).
6907	 */
6908	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
6909	(void) INW (nc_sist);	/* clear pending scsi interrupt */
6910	OUTB (nc_dien , 0);	/* mask all dma interrupts */
6911	(void) INW (nc_sist);	/* another one, just to be sure :) */
6912	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
6913	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6914	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
6915	while (!(INW(nc_sist) & GEN) && ms++ < 100000)
6916		UDELAY (1000);	/* count ms */
6917	OUTB (nc_stime1, 0);	/* disable general purpose timer */
6918 	/*
6919 	 * set prescaler to divide by whatever 0 means
6920 	 * 0 ought to choose divide by 2, but appears
6921 	 * to set divide by 3.5 mode in my 53c810 ...
6922 	 */
6923 	OUTB (nc_scntl3, 0);
6924
6925  	/*
6926 	 * adjust for prescaler, and convert into KHz
6927  	 */
6928	f = ms ? ((1 << gen) * 4340) / ms : 0;
6929
6930	if (sym_verbose >= 2)
6931		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
6932			sym_name(np), gen, ms, f);
6933
6934	return f;
6935}
6936
6937static unsigned sym_getfreq (hcb_p np)
6938{
6939	u_int f1, f2;
6940	int gen = 11;
6941
6942	(void) getfreq (np, gen);	/* throw away first result */
6943	f1 = getfreq (np, gen);
6944	f2 = getfreq (np, gen);
6945	if (f1 > f2) f1 = f2;		/* trust lower result	*/
6946	return f1;
6947}
6948
6949/*
6950 *  Get/probe chip SCSI clock frequency
6951 */
6952static void sym_getclock (hcb_p np, int mult)
6953{
6954	unsigned char scntl3 = np->sv_scntl3;
6955	unsigned char stest1 = np->sv_stest1;
6956	unsigned f1;
6957
6958	/*
6959	 *  For the C10 core, assume 40 MHz.
6960	 */
6961	if (np->features & FE_C10) {
6962		np->multiplier = mult;
6963		np->clock_khz = 40000 * mult;
6964		return;
6965	}
6966
6967	np->multiplier = 1;
6968	f1 = 40000;
6969	/*
6970	 *  True with 875/895/896/895A with clock multiplier selected
6971	 */
6972	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
6973		if (sym_verbose >= 2)
6974			printf ("%s: clock multiplier found\n", sym_name(np));
6975		np->multiplier = mult;
6976	}
6977
6978	/*
6979	 *  If multiplier not found or scntl3 not 7,5,3,
6980	 *  reset chip and get frequency from general purpose timer.
6981	 *  Otherwise trust scntl3 BIOS setting.
6982	 */
6983	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
6984		OUTB (nc_stest1, 0);		/* make sure doubler is OFF */
6985		f1 = sym_getfreq (np);
6986
6987		if (sym_verbose)
6988			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
6989
6990		if	(f1 <	45000)		f1 =  40000;
6991		else if (f1 <	55000)		f1 =  50000;
6992		else				f1 =  80000;
6993
6994		if (f1 < 80000 && mult > 1) {
6995			if (sym_verbose >= 2)
6996				printf ("%s: clock multiplier assumed\n",
6997					sym_name(np));
6998			np->multiplier	= mult;
6999		}
7000	} else {
7001		if	((scntl3 & 7) == 3)	f1 =  40000;
7002		else if	((scntl3 & 7) == 5)	f1 =  80000;
7003		else 				f1 = 160000;
7004
7005		f1 /= np->multiplier;
7006	}
7007
7008	/*
7009	 *  Compute controller synchronous parameters.
7010	 */
7011	f1		*= np->multiplier;
7012	np->clock_khz	= f1;
7013}
7014
7015/*
7016 *  Get/probe PCI clock frequency
7017 */
7018static int sym_getpciclock (hcb_p np)
7019{
7020	int f = 0;
7021
7022	/*
7023	 *  For the C1010-33, this doesn't work.
7024	 *  For the C1010-66, this will be tested when I'll have
7025	 *  such a beast to play with.
7026	 */
7027	if (!(np->features & FE_C10)) {
7028		OUTB (nc_stest1, SCLK);	/* Use the PCI clock as SCSI clock */
7029		f = (int) sym_getfreq (np);
7030		OUTB (nc_stest1, 0);
7031	}
7032	np->pciclk_khz = f;
7033
7034	return f;
7035}
7036
7037/*============= DRIVER ACTION/COMPLETION ====================*/
7038
7039/*
7040 *  Print something that tells about extended errors.
7041 */
7042static void sym_print_xerr(ccb_p cp, int x_status)
7043{
7044	if (x_status & XE_PARITY_ERR) {
7045		PRINT_ADDR(cp);
7046		printf ("unrecovered SCSI parity error.\n");
7047	}
7048	if (x_status & XE_EXTRA_DATA) {
7049		PRINT_ADDR(cp);
7050		printf ("extraneous data discarded.\n");
7051	}
7052	if (x_status & XE_BAD_PHASE) {
7053		PRINT_ADDR(cp);
7054		printf ("illegal scsi phase (4/5).\n");
7055	}
7056	if (x_status & XE_SODL_UNRUN) {
7057		PRINT_ADDR(cp);
7058		printf ("ODD transfer in DATA OUT phase.\n");
7059	}
7060	if (x_status & XE_SWIDE_OVRUN) {
7061		PRINT_ADDR(cp);
7062		printf ("ODD transfer in DATA IN phase.\n");
7063	}
7064}
7065
7066/*
7067 *  Choose the more appropriate CAM status if
7068 *  the IO encountered an extended error.
7069 */
7070static int sym_xerr_cam_status(int cam_status, int x_status)
7071{
7072	if (x_status) {
7073		if	(x_status & XE_PARITY_ERR)
7074			cam_status = CAM_UNCOR_PARITY;
7075		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
7076			cam_status = CAM_DATA_RUN_ERR;
7077		else if	(x_status & XE_BAD_PHASE)
7078			cam_status = CAM_REQ_CMP_ERR;
7079		else
7080			cam_status = CAM_REQ_CMP_ERR;
7081	}
7082	return cam_status;
7083}
7084
7085/*
7086 *  Complete execution of a SCSI command with extented
7087 *  error, SCSI status error, or having been auto-sensed.
7088 *
7089 *  The SCRIPTS processor is not running there, so we
7090 *  can safely access IO registers and remove JOBs from
7091 *  the START queue.
7092 *  SCRATCHA is assumed to have been loaded with STARTPOS
7093 *  before the SCRIPTS called the C code.
7094 */
7095static void sym_complete_error (hcb_p np, ccb_p cp)
7096{
7097	struct ccb_scsiio *csio;
7098	u_int cam_status;
7099	int i, sense_returned;
7100
7101	SYM_LOCK_ASSERT(MA_OWNED);
7102
7103	/*
7104	 *  Paranoid check. :)
7105	 */
7106	if (!cp || !cp->cam_ccb)
7107		return;
7108
7109	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
7110		printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
7111			cp->host_status, cp->ssss_status, cp->host_flags,
7112			cp->target, cp->lun);
7113		MDELAY(100);
7114	}
7115
7116	/*
7117	 *  Get CAM command pointer.
7118	 */
7119	csio = &cp->cam_ccb->csio;
7120
7121	/*
7122	 *  Check for extended errors.
7123	 */
7124	if (cp->xerr_status) {
7125		if (sym_verbose)
7126			sym_print_xerr(cp, cp->xerr_status);
7127		if (cp->host_status == HS_COMPLETE)
7128			cp->host_status = HS_COMP_ERR;
7129	}
7130
7131	/*
7132	 *  Calculate the residual.
7133	 */
7134	csio->sense_resid = 0;
7135	csio->resid = sym_compute_residual(np, cp);
7136
7137	if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
7138		csio->resid  = 0;	/* throw them away. :)		   */
7139		cp->sv_resid = 0;
7140	}
7141
7142	if (cp->host_flags & HF_SENSE) {		/* Auto sense     */
7143		csio->scsi_status = cp->sv_scsi_status;	/* Restore status */
7144		csio->sense_resid = csio->resid;	/* Swap residuals */
7145		csio->resid       = cp->sv_resid;
7146		cp->sv_resid	  = 0;
7147		if (sym_verbose && cp->sv_xerr_status)
7148			sym_print_xerr(cp, cp->sv_xerr_status);
7149		if (cp->host_status == HS_COMPLETE &&
7150		    cp->ssss_status == S_GOOD &&
7151		    cp->xerr_status == 0) {
7152			cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
7153							 cp->sv_xerr_status);
7154			cam_status |= CAM_AUTOSNS_VALID;
7155			/*
7156			 *  Bounce back the sense data to user and
7157			 *  fix the residual.
7158			 */
7159			bzero(&csio->sense_data, sizeof(csio->sense_data));
7160			sense_returned = SYM_SNS_BBUF_LEN - csio->sense_resid;
7161			if (sense_returned < csio->sense_len)
7162				csio->sense_resid = csio->sense_len -
7163				    sense_returned;
7164			else
7165				csio->sense_resid = 0;
7166			bcopy(cp->sns_bbuf, &csio->sense_data,
7167			    MIN(csio->sense_len, sense_returned));
7168#if 0
7169			/*
7170			 *  If the device reports a UNIT ATTENTION condition
7171			 *  due to a RESET condition, we should consider all
7172			 *  disconnect CCBs for this unit as aborted.
7173			 */
7174			if (1) {
7175				u_char *p;
7176				p  = (u_char *) csio->sense_data;
7177				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
7178					sym_clear_tasks(np, CAM_REQ_ABORTED,
7179							cp->target,cp->lun, -1);
7180			}
7181#endif
7182		}
7183		else
7184			cam_status = CAM_AUTOSENSE_FAIL;
7185	}
7186	else if (cp->host_status == HS_COMPLETE) {	/* Bad SCSI status */
7187		csio->scsi_status = cp->ssss_status;
7188		cam_status = CAM_SCSI_STATUS_ERROR;
7189	}
7190	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
7191		cam_status = CAM_SEL_TIMEOUT;
7192	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
7193		cam_status = CAM_UNEXP_BUSFREE;
7194	else {						/* Extended error */
7195		if (sym_verbose) {
7196			PRINT_ADDR(cp);
7197			printf ("COMMAND FAILED (%x %x %x).\n",
7198				cp->host_status, cp->ssss_status,
7199				cp->xerr_status);
7200		}
7201		csio->scsi_status = cp->ssss_status;
7202		/*
7203		 *  Set the most appropriate value for CAM status.
7204		 */
7205		cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
7206						 cp->xerr_status);
7207	}
7208
7209	/*
7210	 *  Dequeue all queued CCBs for that device
7211	 *  not yet started by SCRIPTS.
7212	 */
7213	i = (INL (nc_scratcha) - np->squeue_ba) / 4;
7214	(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
7215
7216	/*
7217	 *  Restart the SCRIPTS processor.
7218	 */
7219	OUTL_DSP (SCRIPTA_BA (np, start));
7220
7221	/*
7222	 *  Synchronize DMA map if needed.
7223	 */
7224	if (cp->dmamapped) {
7225		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7226			(cp->dmamapped == SYM_DMA_READ ?
7227				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7228	}
7229	/*
7230	 *  Add this one to the COMP queue.
7231	 *  Complete all those commands with either error
7232	 *  or requeue condition.
7233	 */
7234	sym_set_cam_status((union ccb *) csio, cam_status);
7235	sym_remque(&cp->link_ccbq);
7236	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
7237	sym_flush_comp_queue(np, 0);
7238}
7239
7240/*
7241 *  Complete execution of a successful SCSI command.
7242 *
7243 *  Only successful commands go to the DONE queue,
7244 *  since we need to have the SCRIPTS processor
7245 *  stopped on any error condition.
7246 *  The SCRIPTS processor is running while we are
7247 *  completing successful commands.
7248 */
7249static void sym_complete_ok (hcb_p np, ccb_p cp)
7250{
7251	struct ccb_scsiio *csio;
7252	tcb_p tp;
7253	lcb_p lp;
7254
7255	SYM_LOCK_ASSERT(MA_OWNED);
7256
7257	/*
7258	 *  Paranoid check. :)
7259	 */
7260	if (!cp || !cp->cam_ccb)
7261		return;
7262	assert (cp->host_status == HS_COMPLETE);
7263
7264	/*
7265	 *  Get command, target and lun pointers.
7266	 */
7267	csio = &cp->cam_ccb->csio;
7268	tp = &np->target[cp->target];
7269	lp = sym_lp(tp, cp->lun);
7270
7271	/*
7272	 *  Assume device discovered on first success.
7273	 */
7274	if (!lp)
7275		sym_set_bit(tp->lun_map, cp->lun);
7276
7277	/*
7278	 *  If all data have been transferred, given than no
7279	 *  extended error did occur, there is no residual.
7280	 */
7281	csio->resid = 0;
7282	if (cp->phys.head.lastp != cp->phys.head.goalp)
7283		csio->resid = sym_compute_residual(np, cp);
7284
7285	/*
7286	 *  Wrong transfer residuals may be worse than just always
7287	 *  returning zero. User can disable this feature from
7288	 *  sym_conf.h. Residual support is enabled by default.
7289	 */
7290	if (!SYM_CONF_RESIDUAL_SUPPORT)
7291		csio->resid  = 0;
7292
7293	/*
7294	 *  Synchronize DMA map if needed.
7295	 */
7296	if (cp->dmamapped) {
7297		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7298			(cp->dmamapped == SYM_DMA_READ ?
7299				BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
7300	}
7301	/*
7302	 *  Set status and complete the command.
7303	 */
7304	csio->scsi_status = cp->ssss_status;
7305	sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
7306	sym_xpt_done(np, (union ccb *) csio, cp);
7307	sym_free_ccb(np, cp);
7308}
7309
7310/*
7311 *  Our callout handler
7312 */
7313static void sym_callout(void *arg)
7314{
7315	union ccb *ccb = (union ccb *) arg;
7316	hcb_p np = ccb->ccb_h.sym_hcb_ptr;
7317
7318	/*
7319	 *  Check that the CAM CCB is still queued.
7320	 */
7321	if (!np)
7322		return;
7323
7324	SYM_LOCK();
7325
7326	switch(ccb->ccb_h.func_code) {
7327	case XPT_SCSI_IO:
7328		(void) sym_abort_scsiio(np, ccb, 1);
7329		break;
7330	default:
7331		break;
7332	}
7333
7334	SYM_UNLOCK();
7335}
7336
7337/*
7338 *  Abort an SCSI IO.
7339 */
7340static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
7341{
7342	ccb_p cp;
7343	SYM_QUEHEAD *qp;
7344
7345	SYM_LOCK_ASSERT(MA_OWNED);
7346
7347	/*
7348	 *  Look up our CCB control block.
7349	 */
7350	cp = NULL;
7351	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
7352		ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
7353		if (cp2->cam_ccb == ccb) {
7354			cp = cp2;
7355			break;
7356		}
7357	}
7358	if (!cp || cp->host_status == HS_WAIT)
7359		return -1;
7360
7361	/*
7362	 *  If a previous abort didn't succeed in time,
7363	 *  perform a BUS reset.
7364	 */
7365	if (cp->to_abort) {
7366		sym_reset_scsi_bus(np, 1);
7367		return 0;
7368	}
7369
7370	/*
7371	 *  Mark the CCB for abort and allow time for.
7372	 */
7373	cp->to_abort = timed_out ? 2 : 1;
7374	callout_reset(&cp->ch, 10 * hz, sym_callout, (caddr_t) ccb);
7375
7376	/*
7377	 *  Tell the SCRIPTS processor to stop and synchronize with us.
7378	 */
7379	np->istat_sem = SEM;
7380	OUTB (nc_istat, SIGP|SEM);
7381	return 0;
7382}
7383
7384/*
7385 *  Reset a SCSI device (all LUNs of a target).
7386 */
7387static void sym_reset_dev(hcb_p np, union ccb *ccb)
7388{
7389	tcb_p tp;
7390	struct ccb_hdr *ccb_h = &ccb->ccb_h;
7391
7392	SYM_LOCK_ASSERT(MA_OWNED);
7393
7394	if (ccb_h->target_id   == np->myaddr ||
7395	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7396	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7397		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7398		return;
7399	}
7400
7401	tp = &np->target[ccb_h->target_id];
7402
7403	tp->to_reset = 1;
7404	sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7405
7406	np->istat_sem = SEM;
7407	OUTB (nc_istat, SIGP|SEM);
7408}
7409
7410/*
7411 *  SIM action entry point.
7412 */
7413static void sym_action(struct cam_sim *sim, union ccb *ccb)
7414{
7415	hcb_p	np;
7416	tcb_p	tp;
7417	lcb_p	lp;
7418	ccb_p	cp;
7419	int 	tmp;
7420	u_char	idmsg, *msgptr;
7421	u_int   msglen;
7422	struct	ccb_scsiio *csio;
7423	struct	ccb_hdr  *ccb_h;
7424
7425	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
7426
7427	/*
7428	 *  Retrieve our controller data structure.
7429	 */
7430	np = (hcb_p) cam_sim_softc(sim);
7431
7432	SYM_LOCK_ASSERT(MA_OWNED);
7433
7434	/*
7435	 *  The common case is SCSI IO.
7436	 *  We deal with other ones elsewhere.
7437	 */
7438	if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
7439		sym_action2(sim, ccb);
7440		return;
7441	}
7442	csio  = &ccb->csio;
7443	ccb_h = &csio->ccb_h;
7444
7445	/*
7446	 *  Work around races.
7447	 */
7448	if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
7449		xpt_done(ccb);
7450		return;
7451	}
7452
7453	/*
7454	 *  Minimal checkings, so that we will not
7455	 *  go outside our tables.
7456	 */
7457	if (ccb_h->target_id   == np->myaddr ||
7458	    ccb_h->target_id   >= SYM_CONF_MAX_TARGET ||
7459	    ccb_h->target_lun  >= SYM_CONF_MAX_LUN) {
7460		sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7461		return;
7462        }
7463
7464	/*
7465	 *  Retrieve the target and lun descriptors.
7466	 */
7467	tp = &np->target[ccb_h->target_id];
7468	lp = sym_lp(tp, ccb_h->target_lun);
7469
7470	/*
7471	 *  Complete the 1st INQUIRY command with error
7472	 *  condition if the device is flagged NOSCAN
7473	 *  at BOOT in the NVRAM. This may speed up
7474	 *  the boot and maintain coherency with BIOS
7475	 *  device numbering. Clearing the flag allows
7476	 *  user to rescan skipped devices later.
7477	 *  We also return error for devices not flagged
7478	 *  for SCAN LUNS in the NVRAM since some mono-lun
7479	 *  devices behave badly when asked for some non
7480	 *  zero LUN. Btw, this is an absolute hack.:-)
7481	 */
7482	if (!(ccb_h->flags & CAM_CDB_PHYS) &&
7483	    (0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
7484		  csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
7485		if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
7486		    ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
7487		     ccb_h->target_lun != 0)) {
7488			tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
7489			sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
7490			return;
7491		}
7492	}
7493
7494	/*
7495	 *  Get a control block for this IO.
7496	 */
7497	tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
7498	cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
7499	if (!cp) {
7500		sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
7501		return;
7502	}
7503
7504	/*
7505	 *  Keep track of the IO in our CCB.
7506	 */
7507	cp->cam_ccb = ccb;
7508
7509	/*
7510	 *  Build the IDENTIFY message.
7511	 */
7512	idmsg = M_IDENTIFY | cp->lun;
7513	if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
7514		idmsg |= 0x40;
7515
7516	msgptr = cp->scsi_smsg;
7517	msglen = 0;
7518	msgptr[msglen++] = idmsg;
7519
7520	/*
7521	 *  Build the tag message if present.
7522	 */
7523	if (cp->tag != NO_TAG) {
7524		u_char order = csio->tag_action;
7525
7526		switch(order) {
7527		case M_ORDERED_TAG:
7528			break;
7529		case M_HEAD_TAG:
7530			break;
7531		default:
7532			order = M_SIMPLE_TAG;
7533		}
7534		msgptr[msglen++] = order;
7535
7536		/*
7537		 *  For less than 128 tags, actual tags are numbered
7538		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
7539		 *  with devices that have problems with #TAG 0 or too
7540		 *  great #TAG numbers. For more tags (up to 256),
7541		 *  we use directly our tag number.
7542		 */
7543#if SYM_CONF_MAX_TASK > (512/4)
7544		msgptr[msglen++] = cp->tag;
7545#else
7546		msgptr[msglen++] = (cp->tag << 1) + 1;
7547#endif
7548	}
7549
7550	/*
7551	 *  Build a negotiation message if needed.
7552	 *  (nego_status is filled by sym_prepare_nego())
7553	 */
7554	cp->nego_status = 0;
7555	if (tp->tinfo.current.width   != tp->tinfo.goal.width  ||
7556	    tp->tinfo.current.period  != tp->tinfo.goal.period ||
7557	    tp->tinfo.current.offset  != tp->tinfo.goal.offset ||
7558	    tp->tinfo.current.options != tp->tinfo.goal.options) {
7559		if (!tp->nego_cp && lp)
7560			msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
7561	}
7562
7563	/*
7564	 *  Fill in our ccb
7565	 */
7566
7567	/*
7568	 *  Startqueue
7569	 */
7570	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA (np, select));
7571	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
7572
7573	/*
7574	 *  select
7575	 */
7576	cp->phys.select.sel_id		= cp->target;
7577	cp->phys.select.sel_scntl3	= tp->head.wval;
7578	cp->phys.select.sel_sxfer	= tp->head.sval;
7579	cp->phys.select.sel_scntl4	= tp->head.uval;
7580
7581	/*
7582	 *  message
7583	 */
7584	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA (cp, scsi_smsg));
7585	cp->phys.smsg.size	= cpu_to_scr(msglen);
7586
7587	/*
7588	 *  command
7589	 */
7590	if (sym_setup_cdb(np, csio, cp) < 0) {
7591		sym_xpt_done(np, ccb, cp);
7592		sym_free_ccb(np, cp);
7593		return;
7594	}
7595
7596	/*
7597	 *  status
7598	 */
7599#if	0	/* Provision */
7600	cp->actualquirks	= tp->quirks;
7601#endif
7602	cp->actualquirks	= SYM_QUIRK_AUTOSAVE;
7603	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7604	cp->ssss_status		= S_ILLEGAL;
7605	cp->xerr_status		= 0;
7606	cp->host_flags		= 0;
7607	cp->extra_bytes		= 0;
7608
7609	/*
7610	 *  extreme data pointer.
7611	 *  shall be positive, so -1 is lower than lowest.:)
7612	 */
7613	cp->ext_sg  = -1;
7614	cp->ext_ofs = 0;
7615
7616	/*
7617	 *  Build the data descriptor block
7618	 *  and start the IO.
7619	 */
7620	sym_setup_data_and_start(np, csio, cp);
7621}
7622
7623/*
7624 *  Setup buffers and pointers that address the CDB.
7625 *  I bet, physical CDBs will never be used on the planet,
7626 *  since they can be bounced without significant overhead.
7627 */
7628static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7629{
7630	struct ccb_hdr *ccb_h;
7631	u32	cmd_ba;
7632	int	cmd_len;
7633
7634	SYM_LOCK_ASSERT(MA_OWNED);
7635
7636	ccb_h = &csio->ccb_h;
7637
7638	/*
7639	 *  CDB is 16 bytes max.
7640	 */
7641	if (csio->cdb_len > sizeof(cp->cdb_buf)) {
7642		sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7643		return -1;
7644	}
7645	cmd_len = csio->cdb_len;
7646
7647	if (ccb_h->flags & CAM_CDB_POINTER) {
7648		/* CDB is a pointer */
7649		if (!(ccb_h->flags & CAM_CDB_PHYS)) {
7650			/* CDB pointer is virtual */
7651			bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
7652			cmd_ba = CCB_BA (cp, cdb_buf[0]);
7653		} else {
7654			/* CDB pointer is physical */
7655#if 0
7656			cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
7657#else
7658			sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
7659			return -1;
7660#endif
7661		}
7662	} else {
7663		/* CDB is in the CAM ccb (buffer) */
7664		bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
7665		cmd_ba = CCB_BA (cp, cdb_buf[0]);
7666	}
7667
7668	cp->phys.cmd.addr	= cpu_to_scr(cmd_ba);
7669	cp->phys.cmd.size	= cpu_to_scr(cmd_len);
7670
7671	return 0;
7672}
7673
7674/*
7675 *  Set up data pointers used by SCRIPTS.
7676 */
7677static void __inline
7678sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
7679{
7680	u32 lastp, goalp;
7681
7682	SYM_LOCK_ASSERT(MA_OWNED);
7683
7684	/*
7685	 *  No segments means no data.
7686	 */
7687	if (!cp->segments)
7688		dir = CAM_DIR_NONE;
7689
7690	/*
7691	 *  Set the data pointer.
7692	 */
7693	switch(dir) {
7694	case CAM_DIR_OUT:
7695		goalp = SCRIPTA_BA (np, data_out2) + 8;
7696		lastp = goalp - 8 - (cp->segments * (2*4));
7697		break;
7698	case CAM_DIR_IN:
7699		cp->host_flags |= HF_DATA_IN;
7700		goalp = SCRIPTA_BA (np, data_in2) + 8;
7701		lastp = goalp - 8 - (cp->segments * (2*4));
7702		break;
7703	case CAM_DIR_NONE:
7704	default:
7705		lastp = goalp = SCRIPTB_BA (np, no_data);
7706		break;
7707	}
7708
7709	cp->phys.head.lastp = cpu_to_scr(lastp);
7710	cp->phys.head.goalp = cpu_to_scr(goalp);
7711	cp->phys.head.savep = cpu_to_scr(lastp);
7712	cp->startp	    = cp->phys.head.savep;
7713}
7714
7715/*
7716 *  Call back routine for the DMA map service.
7717 *  If bounce buffers are used (why ?), we may sleep and then
7718 *  be called there in another context.
7719 */
7720static void
7721sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
7722{
7723	ccb_p	cp;
7724	hcb_p	np;
7725	union	ccb *ccb;
7726
7727	cp  = (ccb_p) arg;
7728	ccb = cp->cam_ccb;
7729	np  = (hcb_p) cp->arg;
7730
7731	SYM_LOCK_ASSERT(MA_OWNED);
7732
7733	/*
7734	 *  Deal with weird races.
7735	 */
7736	if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
7737		goto out_abort;
7738
7739	/*
7740	 *  Deal with weird errors.
7741	 */
7742	if (error) {
7743		cp->dmamapped = 0;
7744		sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
7745		goto out_abort;
7746	}
7747
7748	/*
7749	 *  Build the data descriptor for the chip.
7750	 */
7751	if (nsegs) {
7752		int retv;
7753		/* 896 rev 1 requires to be careful about boundaries */
7754		if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
7755			retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
7756		else
7757			retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
7758		if (retv < 0) {
7759			sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
7760			goto out_abort;
7761		}
7762	}
7763
7764	/*
7765	 *  Synchronize the DMA map only if we have
7766	 *  actually mapped the data.
7767	 */
7768	if (cp->dmamapped) {
7769		bus_dmamap_sync(np->data_dmat, cp->dmamap,
7770			(cp->dmamapped == SYM_DMA_READ ?
7771				BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
7772	}
7773
7774	/*
7775	 *  Set host status to busy state.
7776	 *  May have been set back to HS_WAIT to avoid a race.
7777	 */
7778	cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
7779
7780	/*
7781	 *  Set data pointers.
7782	 */
7783	sym_setup_data_pointers(np, cp,  (ccb->ccb_h.flags & CAM_DIR_MASK));
7784
7785	/*
7786	 *  Enqueue this IO in our pending queue.
7787	 */
7788	sym_enqueue_cam_ccb(cp);
7789
7790	/*
7791	 *  When `#ifed 1', the code below makes the driver
7792	 *  panic on the first attempt to write to a SCSI device.
7793	 *  It is the first test we want to do after a driver
7794	 *  change that does not seem obviously safe. :)
7795	 */
7796#if 0
7797	switch (cp->cdb_buf[0]) {
7798	case 0x0A: case 0x2A: case 0xAA:
7799		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
7800		MDELAY(10000);
7801		break;
7802	default:
7803		break;
7804	}
7805#endif
7806	/*
7807	 *  Activate this job.
7808	 */
7809	sym_put_start_queue(np, cp);
7810	return;
7811out_abort:
7812	sym_xpt_done(np, ccb, cp);
7813	sym_free_ccb(np, cp);
7814}
7815
7816/*
7817 *  How complex it gets to deal with the data in CAM.
7818 *  The Bus Dma stuff makes things still more complex.
7819 */
7820static void
7821sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
7822{
7823	struct ccb_hdr *ccb_h;
7824	int dir, retv;
7825
7826	SYM_LOCK_ASSERT(MA_OWNED);
7827
7828	ccb_h = &csio->ccb_h;
7829
7830	/*
7831	 *  Now deal with the data.
7832	 */
7833	cp->data_len = csio->dxfer_len;
7834	cp->arg      = np;
7835
7836	/*
7837	 *  No direction means no data.
7838	 */
7839	dir = (ccb_h->flags & CAM_DIR_MASK);
7840	if (dir == CAM_DIR_NONE) {
7841		sym_execute_ccb(cp, NULL, 0, 0);
7842		return;
7843	}
7844
7845	cp->dmamapped = (dir == CAM_DIR_IN) ?  SYM_DMA_READ : SYM_DMA_WRITE;
7846	retv = bus_dmamap_load_ccb(np->data_dmat, cp->dmamap,
7847			       (union ccb *)csio, sym_execute_ccb, cp, 0);
7848	if (retv == EINPROGRESS) {
7849		cp->host_status	= HS_WAIT;
7850		xpt_freeze_simq(np->sim, 1);
7851		csio->ccb_h.status |= CAM_RELEASE_SIMQ;
7852	}
7853}
7854
7855/*
7856 *  Move the scatter list to our data block.
7857 */
7858static int
7859sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
7860			     bus_dma_segment_t *psegs, int nsegs)
7861{
7862	struct sym_tblmove *data;
7863	bus_dma_segment_t *psegs2;
7864
7865	SYM_LOCK_ASSERT(MA_OWNED);
7866
7867	if (nsegs > SYM_CONF_MAX_SG)
7868		return -1;
7869
7870	data   = &cp->phys.data[SYM_CONF_MAX_SG-1];
7871	psegs2 = &psegs[nsegs-1];
7872	cp->segments = nsegs;
7873
7874	while (1) {
7875		data->addr = cpu_to_scr(psegs2->ds_addr);
7876		data->size = cpu_to_scr(psegs2->ds_len);
7877		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7878			printf ("%s scatter: paddr=%lx len=%ld\n",
7879				sym_name(np), (long) psegs2->ds_addr,
7880				(long) psegs2->ds_len);
7881		}
7882		if (psegs2 != psegs) {
7883			--data;
7884			--psegs2;
7885			continue;
7886		}
7887		break;
7888	}
7889	return 0;
7890}
7891
7892/*
7893 *  Scatter a SG list with physical addresses into bus addressable chunks.
7894 */
7895static int
7896sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
7897{
7898	u_long	ps, pe, pn;
7899	u_long	k;
7900	int s, t;
7901
7902	SYM_LOCK_ASSERT(MA_OWNED);
7903
7904	s  = SYM_CONF_MAX_SG - 1;
7905	t  = nsegs - 1;
7906	ps = psegs[t].ds_addr;
7907	pe = ps + psegs[t].ds_len;
7908
7909	while (s >= 0) {
7910		pn = (pe - 1) & ~(SYM_CONF_DMA_BOUNDARY - 1);
7911		if (pn <= ps)
7912			pn = ps;
7913		k = pe - pn;
7914		if (DEBUG_FLAGS & DEBUG_SCATTER) {
7915			printf ("%s scatter: paddr=%lx len=%ld\n",
7916				sym_name(np), pn, k);
7917		}
7918		cp->phys.data[s].addr = cpu_to_scr(pn);
7919		cp->phys.data[s].size = cpu_to_scr(k);
7920		--s;
7921		if (pn == ps) {
7922			if (--t < 0)
7923				break;
7924			ps = psegs[t].ds_addr;
7925			pe = ps + psegs[t].ds_len;
7926		}
7927		else
7928			pe = pn;
7929	}
7930
7931	cp->segments = SYM_CONF_MAX_SG - 1 - s;
7932
7933	return t >= 0 ? -1 : 0;
7934}
7935
7936/*
7937 *  SIM action for non performance critical stuff.
7938 */
7939static void sym_action2(struct cam_sim *sim, union ccb *ccb)
7940{
7941	union ccb *abort_ccb;
7942	struct ccb_hdr *ccb_h;
7943	struct ccb_pathinq *cpi;
7944	struct ccb_trans_settings *cts;
7945	struct sym_trans *tip;
7946	hcb_p	np;
7947	tcb_p	tp;
7948	lcb_p	lp;
7949	u_char dflags;
7950
7951	/*
7952	 *  Retrieve our controller data structure.
7953	 */
7954	np = (hcb_p) cam_sim_softc(sim);
7955
7956	SYM_LOCK_ASSERT(MA_OWNED);
7957
7958	ccb_h = &ccb->ccb_h;
7959
7960	switch (ccb_h->func_code) {
7961	case XPT_SET_TRAN_SETTINGS:
7962		cts  = &ccb->cts;
7963		tp = &np->target[ccb_h->target_id];
7964
7965		/*
7966		 *  Update SPI transport settings in TARGET control block.
7967		 *  Update SCSI device settings in LUN control block.
7968		 */
7969		lp = sym_lp(tp, ccb_h->target_lun);
7970		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7971			sym_update_trans(np, &tp->tinfo.goal, cts);
7972			if (lp)
7973				sym_update_dflags(np, &lp->current_flags, cts);
7974		}
7975		if (cts->type == CTS_TYPE_USER_SETTINGS) {
7976			sym_update_trans(np, &tp->tinfo.user, cts);
7977			if (lp)
7978				sym_update_dflags(np, &lp->user_flags, cts);
7979		}
7980
7981		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
7982		break;
7983	case XPT_GET_TRAN_SETTINGS:
7984		cts = &ccb->cts;
7985		tp = &np->target[ccb_h->target_id];
7986		lp = sym_lp(tp, ccb_h->target_lun);
7987
7988#define	cts__scsi (&cts->proto_specific.scsi)
7989#define	cts__spi  (&cts->xport_specific.spi)
7990		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
7991			tip = &tp->tinfo.current;
7992			dflags = lp ? lp->current_flags : 0;
7993		}
7994		else {
7995			tip = &tp->tinfo.user;
7996			dflags = lp ? lp->user_flags : tp->usrflags;
7997		}
7998
7999		cts->protocol  = PROTO_SCSI;
8000		cts->transport = XPORT_SPI;
8001		cts->protocol_version  = tip->scsi_version;
8002		cts->transport_version = tip->spi_version;
8003
8004		cts__spi->sync_period = tip->period;
8005		cts__spi->sync_offset = tip->offset;
8006		cts__spi->bus_width   = tip->width;
8007		cts__spi->ppr_options = tip->options;
8008
8009		cts__spi->valid = CTS_SPI_VALID_SYNC_RATE
8010		                | CTS_SPI_VALID_SYNC_OFFSET
8011		                | CTS_SPI_VALID_BUS_WIDTH
8012		                | CTS_SPI_VALID_PPR_OPTIONS;
8013
8014		cts__spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
8015		if (dflags & SYM_DISC_ENABLED)
8016			cts__spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
8017		cts__spi->valid |= CTS_SPI_VALID_DISC;
8018
8019		cts__scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
8020		if (dflags & SYM_TAGS_ENABLED)
8021			cts__scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
8022		cts__scsi->valid |= CTS_SCSI_VALID_TQ;
8023#undef	cts__spi
8024#undef	cts__scsi
8025		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8026		break;
8027	case XPT_CALC_GEOMETRY:
8028		cam_calc_geometry(&ccb->ccg, /*extended*/1);
8029		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8030		break;
8031	case XPT_PATH_INQ:
8032		cpi = &ccb->cpi;
8033		cpi->version_num = 1;
8034		cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
8035		if ((np->features & FE_WIDE) != 0)
8036			cpi->hba_inquiry |= PI_WIDE_16;
8037		cpi->target_sprt = 0;
8038		cpi->hba_misc = PIM_UNMAPPED;
8039		if (np->usrflags & SYM_SCAN_TARGETS_HILO)
8040			cpi->hba_misc |= PIM_SCANHILO;
8041		if (np->usrflags & SYM_AVOID_BUS_RESET)
8042			cpi->hba_misc |= PIM_NOBUSRESET;
8043		cpi->hba_eng_cnt = 0;
8044		cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
8045		/* Semantic problem:)LUN number max = max number of LUNs - 1 */
8046		cpi->max_lun = SYM_CONF_MAX_LUN-1;
8047		if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
8048			cpi->max_lun = SYM_SETUP_MAX_LUN-1;
8049		cpi->bus_id = cam_sim_bus(sim);
8050		cpi->initiator_id = np->myaddr;
8051		cpi->base_transfer_speed = 3300;
8052		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
8053		strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
8054		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
8055		cpi->unit_number = cam_sim_unit(sim);
8056
8057		cpi->protocol = PROTO_SCSI;
8058		cpi->protocol_version = SCSI_REV_2;
8059		cpi->transport = XPORT_SPI;
8060		cpi->transport_version = 2;
8061		cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
8062		if (np->features & FE_ULTRA3) {
8063			cpi->transport_version = 3;
8064			cpi->xport_specific.spi.ppr_options =
8065			    SID_SPI_CLOCK_DT_ST;
8066		}
8067		cpi->maxio = SYM_CONF_MAX_SG * PAGE_SIZE;
8068		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8069		break;
8070	case XPT_ABORT:
8071		abort_ccb = ccb->cab.abort_ccb;
8072		switch(abort_ccb->ccb_h.func_code) {
8073		case XPT_SCSI_IO:
8074			if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
8075				sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8076				break;
8077			}
8078		default:
8079			sym_xpt_done2(np, ccb, CAM_UA_ABORT);
8080			break;
8081		}
8082		break;
8083	case XPT_RESET_DEV:
8084		sym_reset_dev(np, ccb);
8085		break;
8086	case XPT_RESET_BUS:
8087		sym_reset_scsi_bus(np, 0);
8088		if (sym_verbose) {
8089			xpt_print_path(np->path);
8090			printf("SCSI BUS reset delivered.\n");
8091		}
8092		sym_init (np, 1);
8093		sym_xpt_done2(np, ccb, CAM_REQ_CMP);
8094		break;
8095	case XPT_ACCEPT_TARGET_IO:
8096	case XPT_CONT_TARGET_IO:
8097	case XPT_EN_LUN:
8098	case XPT_NOTIFY_ACK:
8099	case XPT_IMMED_NOTIFY:
8100	case XPT_TERM_IO:
8101	default:
8102		sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
8103		break;
8104	}
8105}
8106
8107/*
8108 *  Asynchronous notification handler.
8109 */
8110static void
8111sym_async(void *cb_arg, u32 code, struct cam_path *path, void *args __unused)
8112{
8113	hcb_p np;
8114	struct cam_sim *sim;
8115	u_int tn;
8116	tcb_p tp;
8117
8118	sim = (struct cam_sim *) cb_arg;
8119	np  = (hcb_p) cam_sim_softc(sim);
8120
8121	SYM_LOCK_ASSERT(MA_OWNED);
8122
8123	switch (code) {
8124	case AC_LOST_DEVICE:
8125		tn = xpt_path_target_id(path);
8126		if (tn >= SYM_CONF_MAX_TARGET)
8127			break;
8128
8129		tp = &np->target[tn];
8130
8131		tp->to_reset  = 0;
8132		tp->head.sval = 0;
8133		tp->head.wval = np->rv_scntl3;
8134		tp->head.uval = 0;
8135
8136		tp->tinfo.current.period  = tp->tinfo.goal.period = 0;
8137		tp->tinfo.current.offset  = tp->tinfo.goal.offset = 0;
8138		tp->tinfo.current.width   = tp->tinfo.goal.width  = BUS_8_BIT;
8139		tp->tinfo.current.options = tp->tinfo.goal.options = 0;
8140
8141		break;
8142	default:
8143		break;
8144	}
8145}
8146
8147/*
8148 *  Update transfer settings of a target.
8149 */
8150static void sym_update_trans(hcb_p np, struct sym_trans *tip,
8151    struct ccb_trans_settings *cts)
8152{
8153
8154	SYM_LOCK_ASSERT(MA_OWNED);
8155
8156	/*
8157	 *  Update the infos.
8158	 */
8159#define cts__spi (&cts->xport_specific.spi)
8160	if ((cts__spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
8161		tip->width = cts__spi->bus_width;
8162	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
8163		tip->offset = cts__spi->sync_offset;
8164	if ((cts__spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
8165		tip->period = cts__spi->sync_period;
8166	if ((cts__spi->valid & CTS_SPI_VALID_PPR_OPTIONS) != 0)
8167		tip->options = (cts__spi->ppr_options & PPR_OPT_DT);
8168	if (cts->protocol_version != PROTO_VERSION_UNSPECIFIED &&
8169	    cts->protocol_version != PROTO_VERSION_UNKNOWN)
8170		tip->scsi_version = cts->protocol_version;
8171	if (cts->transport_version != XPORT_VERSION_UNSPECIFIED &&
8172	    cts->transport_version != XPORT_VERSION_UNKNOWN)
8173		tip->spi_version = cts->transport_version;
8174#undef cts__spi
8175	/*
8176	 *  Scale against driver configuration limits.
8177	 */
8178	if (tip->width  > SYM_SETUP_MAX_WIDE) tip->width  = SYM_SETUP_MAX_WIDE;
8179	if (tip->period && tip->offset) {
8180		if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset = SYM_SETUP_MAX_OFFS;
8181		if (tip->period < SYM_SETUP_MIN_SYNC) tip->period = SYM_SETUP_MIN_SYNC;
8182	} else {
8183		tip->offset = 0;
8184		tip->period = 0;
8185	}
8186
8187	/*
8188	 *  Scale against actual controller BUS width.
8189	 */
8190	if (tip->width > np->maxwide)
8191		tip->width  = np->maxwide;
8192
8193	/*
8194	 *  Only accept DT if controller supports and SYNC/WIDE asked.
8195	 */
8196	if (!((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) ||
8197	    !(tip->width == BUS_16_BIT && tip->offset)) {
8198		tip->options &= ~PPR_OPT_DT;
8199	}
8200
8201	/*
8202	 *  Scale period factor and offset against controller limits.
8203	 */
8204	if (tip->offset && tip->period) {
8205		if (tip->options & PPR_OPT_DT) {
8206			if (tip->period < np->minsync_dt)
8207				tip->period = np->minsync_dt;
8208			if (tip->period > np->maxsync_dt)
8209				tip->period = np->maxsync_dt;
8210			if (tip->offset > np->maxoffs_dt)
8211				tip->offset = np->maxoffs_dt;
8212		}
8213		else {
8214			if (tip->period < np->minsync)
8215				tip->period = np->minsync;
8216			if (tip->period > np->maxsync)
8217				tip->period = np->maxsync;
8218			if (tip->offset > np->maxoffs)
8219				tip->offset = np->maxoffs;
8220		}
8221	}
8222}
8223
8224/*
8225 *  Update flags for a device (logical unit).
8226 */
8227static void
8228sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
8229{
8230
8231	SYM_LOCK_ASSERT(MA_OWNED);
8232
8233#define	cts__scsi (&cts->proto_specific.scsi)
8234#define	cts__spi  (&cts->xport_specific.spi)
8235	if ((cts__spi->valid & CTS_SPI_VALID_DISC) != 0) {
8236		if ((cts__spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
8237			*flags |= SYM_DISC_ENABLED;
8238		else
8239			*flags &= ~SYM_DISC_ENABLED;
8240	}
8241
8242	if ((cts__scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
8243		if ((cts__scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
8244			*flags |= SYM_TAGS_ENABLED;
8245		else
8246			*flags &= ~SYM_TAGS_ENABLED;
8247	}
8248#undef	cts__spi
8249#undef	cts__scsi
8250}
8251
8252/*============= DRIVER INITIALISATION ==================*/
8253
8254static device_method_t sym_pci_methods[] = {
8255	DEVMETHOD(device_probe,	 sym_pci_probe),
8256	DEVMETHOD(device_attach, sym_pci_attach),
8257	DEVMETHOD_END
8258};
8259
8260static driver_t sym_pci_driver = {
8261	"sym",
8262	sym_pci_methods,
8263	1	/* no softc */
8264};
8265
8266static devclass_t sym_devclass;
8267
8268DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, NULL, NULL);
8269MODULE_DEPEND(sym, cam, 1, 1, 1);
8270MODULE_DEPEND(sym, pci, 1, 1, 1);
8271
8272static const struct sym_pci_chip sym_pci_dev_table[] = {
8273 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
8274 FE_ERL}
8275 ,
8276#ifdef SYM_DEBUG_GENERIC_SUPPORT
8277 {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8278 FE_BOF}
8279 ,
8280#else
8281 {PCI_ID_SYM53C810, 0xff, "810a", 4,  8, 4, 1,
8282 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
8283 ,
8284#endif
8285 {PCI_ID_SYM53C815, 0xff, "815", 4,  8, 4, 64,
8286 FE_BOF|FE_ERL}
8287 ,
8288 {PCI_ID_SYM53C825, 0x0f, "825", 6,  8, 4, 64,
8289 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
8290 ,
8291 {PCI_ID_SYM53C825, 0xff, "825a", 6,  8, 4, 2,
8292 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
8293 ,
8294 {PCI_ID_SYM53C860, 0xff, "860", 4,  8, 5, 1,
8295 FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
8296 ,
8297 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
8298 FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8299 FE_RAM|FE_DIFF}
8300 ,
8301 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
8302 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8303 FE_RAM|FE_DIFF}
8304 ,
8305 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
8306 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8307 FE_RAM|FE_DIFF}
8308 ,
8309 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
8310 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8311 FE_RAM|FE_DIFF}
8312 ,
8313#ifdef SYM_DEBUG_GENERIC_SUPPORT
8314 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8315 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
8316 FE_RAM|FE_LCKFRQ}
8317 ,
8318#else
8319 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
8320 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8321 FE_RAM|FE_LCKFRQ}
8322 ,
8323#endif
8324 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
8325 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8326 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8327 ,
8328 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
8329 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8330 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
8331 ,
8332 {PCI_ID_LSI53C1010, 0x00, "1010-33", 6, 31, 7, 8,
8333 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8334 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8335 FE_C10}
8336 ,
8337 {PCI_ID_LSI53C1010, 0xff, "1010-33", 6, 31, 7, 8,
8338 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8339 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
8340 FE_C10|FE_U3EN}
8341 ,
8342 {PCI_ID_LSI53C1010_2, 0xff, "1010-66", 6, 31, 7, 8,
8343 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
8344 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
8345 FE_C10|FE_U3EN}
8346 ,
8347 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
8348 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
8349 FE_RAM|FE_IO256|FE_LEDC}
8350};
8351
8352/*
8353 *  Look up the chip table.
8354 *
8355 *  Return a pointer to the chip entry if found,
8356 *  zero otherwise.
8357 */
8358static const struct sym_pci_chip *
8359sym_find_pci_chip(device_t dev)
8360{
8361	const struct	sym_pci_chip *chip;
8362	int	i;
8363	u_short	device_id;
8364	u_char	revision;
8365
8366	if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
8367		return NULL;
8368
8369	device_id = pci_get_device(dev);
8370	revision  = pci_get_revid(dev);
8371
8372	for (i = 0; i < nitems(sym_pci_dev_table); i++) {
8373		chip = &sym_pci_dev_table[i];
8374		if (device_id != chip->device_id)
8375			continue;
8376		if (revision > chip->revision_id)
8377			continue;
8378		return chip;
8379	}
8380
8381	return NULL;
8382}
8383
8384/*
8385 *  Tell upper layer if the chip is supported.
8386 */
8387static int
8388sym_pci_probe(device_t dev)
8389{
8390	const struct	sym_pci_chip *chip;
8391
8392	chip = sym_find_pci_chip(dev);
8393	if (chip && sym_find_firmware(chip)) {
8394		device_set_desc(dev, chip->name);
8395		return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)?
8396		  BUS_PROBE_LOW_PRIORITY : BUS_PROBE_DEFAULT;
8397	}
8398	return ENXIO;
8399}
8400
8401/*
8402 *  Attach a sym53c8xx device.
8403 */
8404static int
8405sym_pci_attach(device_t dev)
8406{
8407	const struct	sym_pci_chip *chip;
8408	u_short	command;
8409	u_char	cachelnsz;
8410	struct	sym_hcb *np = NULL;
8411	struct	sym_nvram nvram;
8412	const struct	sym_fw *fw = NULL;
8413	int 	i;
8414	bus_dma_tag_t	bus_dmat;
8415
8416	bus_dmat = bus_get_dma_tag(dev);
8417
8418	/*
8419	 *  Only probed devices should be attached.
8420	 *  We just enjoy being paranoid. :)
8421	 */
8422	chip = sym_find_pci_chip(dev);
8423	if (chip == NULL || (fw = sym_find_firmware(chip)) == NULL)
8424		return (ENXIO);
8425
8426	/*
8427	 *  Allocate immediately the host control block,
8428	 *  since we are only expecting to succeed. :)
8429	 *  We keep track in the HCB of all the resources that
8430	 *  are to be released on error.
8431	 */
8432	np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
8433	if (np)
8434		np->bus_dmat = bus_dmat;
8435	else
8436		return (ENXIO);
8437	device_set_softc(dev, np);
8438
8439	SYM_LOCK_INIT();
8440
8441	/*
8442	 *  Copy some useful infos to the HCB.
8443	 */
8444	np->hcb_ba	 = vtobus(np);
8445	np->verbose	 = bootverbose;
8446	np->device	 = dev;
8447	np->device_id	 = pci_get_device(dev);
8448	np->revision_id  = pci_get_revid(dev);
8449	np->features	 = chip->features;
8450	np->clock_divn	 = chip->nr_divisor;
8451	np->maxoffs	 = chip->offset_max;
8452	np->maxburst	 = chip->burst_max;
8453	np->scripta_sz	 = fw->a_size;
8454	np->scriptb_sz	 = fw->b_size;
8455	np->fw_setup	 = fw->setup;
8456	np->fw_patch	 = fw->patch;
8457	np->fw_name	 = fw->name;
8458
8459#ifdef __amd64__
8460	np->target = sym_calloc_dma(SYM_CONF_MAX_TARGET * sizeof(*(np->target)),
8461			"TARGET");
8462	if (!np->target)
8463		goto attach_failed;
8464#endif
8465
8466	/*
8467	 *  Initialize the CCB free and busy queues.
8468	 */
8469	sym_que_init(&np->free_ccbq);
8470	sym_que_init(&np->busy_ccbq);
8471	sym_que_init(&np->comp_ccbq);
8472	sym_que_init(&np->cam_ccbq);
8473
8474	/*
8475	 *  Allocate a tag for the DMA of user data.
8476	 */
8477	if (bus_dma_tag_create(np->bus_dmat, 1, SYM_CONF_DMA_BOUNDARY,
8478	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
8479	    BUS_SPACE_MAXSIZE_32BIT, SYM_CONF_MAX_SG, SYM_CONF_DMA_BOUNDARY,
8480	    0, busdma_lock_mutex, &np->mtx, &np->data_dmat)) {
8481		device_printf(dev, "failed to create DMA tag.\n");
8482		goto attach_failed;
8483	}
8484
8485	/*
8486	 *  Read and apply some fix-ups to the PCI COMMAND
8487	 *  register. We want the chip to be enabled for:
8488	 *  - BUS mastering
8489	 *  - PCI parity checking (reporting would also be fine)
8490	 *  - Write And Invalidate.
8491	 */
8492	command = pci_read_config(dev, PCIR_COMMAND, 2);
8493	command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_PERRESPEN |
8494	    PCIM_CMD_MWRICEN;
8495	pci_write_config(dev, PCIR_COMMAND, command, 2);
8496
8497	/*
8498	 *  Let the device know about the cache line size,
8499	 *  if it doesn't yet.
8500	 */
8501	cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
8502	if (!cachelnsz) {
8503		cachelnsz = 8;
8504		pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
8505	}
8506
8507	/*
8508	 *  Alloc/get/map/retrieve everything that deals with MMIO.
8509	 */
8510	i = SYM_PCI_MMIO;
8511	np->mmio_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i,
8512	    RF_ACTIVE);
8513	if (!np->mmio_res) {
8514		device_printf(dev, "failed to allocate MMIO resources\n");
8515		goto attach_failed;
8516	}
8517	np->mmio_ba = rman_get_start(np->mmio_res);
8518
8519	/*
8520	 *  Allocate the IRQ.
8521	 */
8522	i = 0;
8523	np->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
8524					     RF_ACTIVE | RF_SHAREABLE);
8525	if (!np->irq_res) {
8526		device_printf(dev, "failed to allocate IRQ resource\n");
8527		goto attach_failed;
8528	}
8529
8530#ifdef	SYM_CONF_IOMAPPED
8531	/*
8532	 *  User want us to use normal IO with PCI.
8533	 *  Alloc/get/map/retrieve everything that deals with IO.
8534	 */
8535	i = SYM_PCI_IO;
8536	np->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &i, RF_ACTIVE);
8537	if (!np->io_res) {
8538		device_printf(dev, "failed to allocate IO resources\n");
8539		goto attach_failed;
8540	}
8541
8542#endif /* SYM_CONF_IOMAPPED */
8543
8544	/*
8545	 *  If the chip has RAM.
8546	 *  Alloc/get/map/retrieve the corresponding resources.
8547	 */
8548	if (np->features & (FE_RAM|FE_RAM8K)) {
8549		int regs_id = SYM_PCI_RAM;
8550		if (np->features & FE_64BIT)
8551			regs_id = SYM_PCI_RAM64;
8552		np->ram_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
8553						     &regs_id, RF_ACTIVE);
8554		if (!np->ram_res) {
8555			device_printf(dev,"failed to allocate RAM resources\n");
8556			goto attach_failed;
8557		}
8558		np->ram_id  = regs_id;
8559		np->ram_ba = rman_get_start(np->ram_res);
8560	}
8561
8562	/*
8563	 *  Save setting of some IO registers, so we will
8564	 *  be able to probe specific implementations.
8565	 */
8566	sym_save_initial_setting (np);
8567
8568	/*
8569	 *  Reset the chip now, since it has been reported
8570	 *  that SCSI clock calibration may not work properly
8571	 *  if the chip is currently active.
8572	 */
8573	sym_chip_reset (np);
8574
8575	/*
8576	 *  Try to read the user set-up.
8577	 */
8578	(void) sym_read_nvram(np, &nvram);
8579
8580	/*
8581	 *  Prepare controller and devices settings, according
8582	 *  to chip features, user set-up and driver set-up.
8583	 */
8584	(void) sym_prepare_setting(np, &nvram);
8585
8586	/*
8587	 *  Check the PCI clock frequency.
8588	 *  Must be performed after prepare_setting since it destroys
8589	 *  STEST1 that is used to probe for the clock doubler.
8590	 */
8591	i = sym_getpciclock(np);
8592	if (i > 37000)
8593		device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
8594
8595	/*
8596	 *  Allocate the start queue.
8597	 */
8598	np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
8599	if (!np->squeue)
8600		goto attach_failed;
8601	np->squeue_ba = vtobus(np->squeue);
8602
8603	/*
8604	 *  Allocate the done queue.
8605	 */
8606	np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
8607	if (!np->dqueue)
8608		goto attach_failed;
8609	np->dqueue_ba = vtobus(np->dqueue);
8610
8611	/*
8612	 *  Allocate the target bus address array.
8613	 */
8614	np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
8615	if (!np->targtbl)
8616		goto attach_failed;
8617	np->targtbl_ba = vtobus(np->targtbl);
8618
8619	/*
8620	 *  Allocate SCRIPTS areas.
8621	 */
8622	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
8623	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
8624	if (!np->scripta0 || !np->scriptb0)
8625		goto attach_failed;
8626
8627	/*
8628	 *  Allocate the CCBs. We need at least ONE.
8629	 */
8630	for (i = 0; sym_alloc_ccb(np) != NULL; i++)
8631		;
8632	if (i < 1)
8633		goto attach_failed;
8634
8635	/*
8636	 *  Calculate BUS addresses where we are going
8637	 *  to load the SCRIPTS.
8638	 */
8639	np->scripta_ba	= vtobus(np->scripta0);
8640	np->scriptb_ba	= vtobus(np->scriptb0);
8641	np->scriptb0_ba	= np->scriptb_ba;
8642
8643	if (np->ram_ba) {
8644		np->scripta_ba	= np->ram_ba;
8645		if (np->features & FE_RAM8K) {
8646			np->ram_ws = 8192;
8647			np->scriptb_ba = np->scripta_ba + 4096;
8648#ifdef __LP64__
8649			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
8650#endif
8651		}
8652		else
8653			np->ram_ws = 4096;
8654	}
8655
8656	/*
8657	 *  Copy scripts to controller instance.
8658	 */
8659	bcopy(fw->a_base, np->scripta0, np->scripta_sz);
8660	bcopy(fw->b_base, np->scriptb0, np->scriptb_sz);
8661
8662	/*
8663	 *  Setup variable parts in scripts and compute
8664	 *  scripts bus addresses used from the C code.
8665	 */
8666	np->fw_setup(np, fw);
8667
8668	/*
8669	 *  Bind SCRIPTS with physical addresses usable by the
8670	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
8671	 */
8672	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
8673	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
8674
8675#ifdef SYM_CONF_IARB_SUPPORT
8676	/*
8677	 *    If user wants IARB to be set when we win arbitration
8678	 *    and have other jobs, compute the max number of consecutive
8679	 *    settings of IARB hints before we leave devices a chance to
8680	 *    arbitrate for reselection.
8681	 */
8682#ifdef	SYM_SETUP_IARB_MAX
8683	np->iarb_max = SYM_SETUP_IARB_MAX;
8684#else
8685	np->iarb_max = 4;
8686#endif
8687#endif
8688
8689	/*
8690	 *  Prepare the idle and invalid task actions.
8691	 */
8692	np->idletask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8693	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8694	np->idletask_ba		= vtobus(&np->idletask);
8695
8696	np->notask.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8697	np->notask.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8698	np->notask_ba		= vtobus(&np->notask);
8699
8700	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8701	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
8702	np->bad_itl_ba		= vtobus(&np->bad_itl);
8703
8704	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA (np, idle));
8705	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
8706	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
8707
8708	/*
8709	 *  Allocate and prepare the lun JUMP table that is used
8710	 *  for a target prior the probing of devices (bad lun table).
8711	 *  A private table will be allocated for the target on the
8712	 *  first INQUIRY response received.
8713	 */
8714	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
8715	if (!np->badluntbl)
8716		goto attach_failed;
8717
8718	np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
8719	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
8720		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
8721
8722	/*
8723	 *  Prepare the bus address array that contains the bus
8724	 *  address of each target control block.
8725	 *  For now, assume all logical units are wrong. :)
8726	 */
8727	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
8728		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
8729		np->target[i].head.luntbl_sa =
8730				cpu_to_scr(vtobus(np->badluntbl));
8731		np->target[i].head.lun0_sa =
8732				cpu_to_scr(vtobus(&np->badlun_sa));
8733	}
8734
8735	/*
8736	 *  Now check the cache handling of the pci chipset.
8737	 */
8738	if (sym_snooptest (np)) {
8739		device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
8740		goto attach_failed;
8741	};
8742
8743	/*
8744	 *  Now deal with CAM.
8745	 *  Hopefully, we will succeed with that one.:)
8746	 */
8747	if (!sym_cam_attach(np))
8748		goto attach_failed;
8749
8750	/*
8751	 *  Sigh! we are done.
8752	 */
8753	return 0;
8754
8755	/*
8756	 *  We have failed.
8757	 *  We will try to free all the resources we have
8758	 *  allocated, but if we are a boot device, this
8759	 *  will not help that much.;)
8760	 */
8761attach_failed:
8762	if (np)
8763		sym_pci_free(np);
8764	return ENXIO;
8765}
8766
8767/*
8768 *  Free everything that have been allocated for this device.
8769 */
8770static void sym_pci_free(hcb_p np)
8771{
8772	SYM_QUEHEAD *qp;
8773	ccb_p cp;
8774	tcb_p tp;
8775	lcb_p lp;
8776	int target, lun;
8777
8778	/*
8779	 *  First free CAM resources.
8780	 */
8781	sym_cam_free(np);
8782
8783	/*
8784	 *  Now every should be quiet for us to
8785	 *  free other resources.
8786	 */
8787	if (np->ram_res)
8788		bus_release_resource(np->device, SYS_RES_MEMORY,
8789				     np->ram_id, np->ram_res);
8790	if (np->mmio_res)
8791		bus_release_resource(np->device, SYS_RES_MEMORY,
8792				     SYM_PCI_MMIO, np->mmio_res);
8793	if (np->io_res)
8794		bus_release_resource(np->device, SYS_RES_IOPORT,
8795				     SYM_PCI_IO, np->io_res);
8796	if (np->irq_res)
8797		bus_release_resource(np->device, SYS_RES_IRQ,
8798				     0, np->irq_res);
8799
8800	if (np->scriptb0)
8801		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
8802	if (np->scripta0)
8803		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
8804	if (np->squeue)
8805		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
8806	if (np->dqueue)
8807		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
8808
8809	while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
8810		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
8811		bus_dmamap_destroy(np->data_dmat, cp->dmamap);
8812		sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
8813		sym_mfree_dma(cp, sizeof(*cp), "CCB");
8814	}
8815
8816	if (np->badluntbl)
8817		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
8818
8819	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
8820		tp = &np->target[target];
8821		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
8822			lp = sym_lp(tp, lun);
8823			if (!lp)
8824				continue;
8825			if (lp->itlq_tbl)
8826				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
8827				       "ITLQ_TBL");
8828			if (lp->cb_tags)
8829				sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
8830				       "CB_TAGS");
8831			sym_mfree_dma(lp, sizeof(*lp), "LCB");
8832		}
8833#if SYM_CONF_MAX_LUN > 1
8834		if (tp->lunmp)
8835			sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
8836			       "LUNMP");
8837#endif
8838	}
8839#ifdef __amd64__
8840	if (np->target)
8841		sym_mfree_dma(np->target,
8842			SYM_CONF_MAX_TARGET * sizeof(*(np->target)), "TARGET");
8843#endif
8844	if (np->targtbl)
8845		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
8846	if (np->data_dmat)
8847		bus_dma_tag_destroy(np->data_dmat);
8848	if (SYM_LOCK_INITIALIZED() != 0)
8849		SYM_LOCK_DESTROY();
8850	device_set_softc(np->device, NULL);
8851	sym_mfree_dma(np, sizeof(*np), "HCB");
8852}
8853
8854/*
8855 *  Allocate CAM resources and register a bus to CAM.
8856 */
8857static int sym_cam_attach(hcb_p np)
8858{
8859	struct cam_devq *devq = NULL;
8860	struct cam_sim *sim = NULL;
8861	struct cam_path *path = NULL;
8862	int err;
8863
8864	/*
8865	 *  Establish our interrupt handler.
8866	 */
8867	err = bus_setup_intr(np->device, np->irq_res,
8868			INTR_ENTROPY | INTR_MPSAFE | INTR_TYPE_CAM,
8869			NULL, sym_intr, np, &np->intr);
8870	if (err) {
8871		device_printf(np->device, "bus_setup_intr() failed: %d\n",
8872			      err);
8873		goto fail;
8874	}
8875
8876	/*
8877	 *  Create the device queue for our sym SIM.
8878	 */
8879	devq = cam_simq_alloc(SYM_CONF_MAX_START);
8880	if (!devq)
8881		goto fail;
8882
8883	/*
8884	 *  Construct our SIM entry.
8885	 */
8886	sim = cam_sim_alloc(sym_action, sym_poll, "sym", np,
8887			device_get_unit(np->device),
8888			&np->mtx, 1, SYM_SETUP_MAX_TAG, devq);
8889	if (!sim)
8890		goto fail;
8891
8892	SYM_LOCK();
8893
8894	if (xpt_bus_register(sim, np->device, 0) != CAM_SUCCESS)
8895		goto fail;
8896	np->sim = sim;
8897
8898	if (xpt_create_path(&path, NULL,
8899			    cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
8900			    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
8901		goto fail;
8902	}
8903	np->path = path;
8904
8905	/*
8906	 *  Establish our async notification handler.
8907	 */
8908	if (xpt_register_async(AC_LOST_DEVICE, sym_async, sim, path) !=
8909	    CAM_REQ_CMP)
8910		goto fail;
8911
8912	/*
8913	 *  Start the chip now, without resetting the BUS, since
8914	 *  it seems that this must stay under control of CAM.
8915	 *  With LVD/SE capable chips and BUS in SE mode, we may
8916	 *  get a spurious SMBC interrupt.
8917	 */
8918	sym_init (np, 0);
8919
8920	SYM_UNLOCK();
8921
8922	return 1;
8923fail:
8924	if (sim)
8925		cam_sim_free(sim, FALSE);
8926	if (devq)
8927		cam_simq_free(devq);
8928
8929	SYM_UNLOCK();
8930
8931	sym_cam_free(np);
8932
8933	return 0;
8934}
8935
8936/*
8937 *  Free everything that deals with CAM.
8938 */
8939static void sym_cam_free(hcb_p np)
8940{
8941
8942	SYM_LOCK_ASSERT(MA_NOTOWNED);
8943
8944	if (np->intr) {
8945		bus_teardown_intr(np->device, np->irq_res, np->intr);
8946		np->intr = NULL;
8947	}
8948
8949	SYM_LOCK();
8950
8951	if (np->sim) {
8952		xpt_bus_deregister(cam_sim_path(np->sim));
8953		cam_sim_free(np->sim, /*free_devq*/ TRUE);
8954		np->sim = NULL;
8955	}
8956	if (np->path) {
8957		xpt_free_path(np->path);
8958		np->path = NULL;
8959	}
8960
8961	SYM_UNLOCK();
8962}
8963
8964/*============ OPTIONNAL NVRAM SUPPORT =================*/
8965
8966/*
8967 *  Get host setup from NVRAM.
8968 */
8969static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
8970{
8971#ifdef SYM_CONF_NVRAM_SUPPORT
8972	/*
8973	 *  Get parity checking, host ID, verbose mode
8974	 *  and miscellaneous host flags from NVRAM.
8975	 */
8976	switch(nvram->type) {
8977	case SYM_SYMBIOS_NVRAM:
8978		if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
8979			np->rv_scntl0  &= ~0x0a;
8980		np->myaddr = nvram->data.Symbios.host_id & 0x0f;
8981		if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
8982			np->verbose += 1;
8983		if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
8984			np->usrflags |= SYM_SCAN_TARGETS_HILO;
8985		if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
8986			np->usrflags |= SYM_AVOID_BUS_RESET;
8987		break;
8988	case SYM_TEKRAM_NVRAM:
8989		np->myaddr = nvram->data.Tekram.host_id & 0x0f;
8990		break;
8991	default:
8992		break;
8993	}
8994#endif
8995}
8996
8997/*
8998 *  Get target setup from NVRAM.
8999 */
9000#ifdef SYM_CONF_NVRAM_SUPPORT
9001static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
9002static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
9003#endif
9004
9005static void
9006sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
9007{
9008#ifdef SYM_CONF_NVRAM_SUPPORT
9009	switch(nvp->type) {
9010	case SYM_SYMBIOS_NVRAM:
9011		sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
9012		break;
9013	case SYM_TEKRAM_NVRAM:
9014		sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
9015		break;
9016	default:
9017		break;
9018	}
9019#endif
9020}
9021
9022#ifdef SYM_CONF_NVRAM_SUPPORT
9023/*
9024 *  Get target set-up from Symbios format NVRAM.
9025 */
9026static void
9027sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
9028{
9029	tcb_p tp = &np->target[target];
9030	Symbios_target *tn = &nvram->target[target];
9031
9032	tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
9033	tp->tinfo.user.width  = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
9034	tp->usrtags =
9035		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
9036
9037	if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
9038		tp->usrflags &= ~SYM_DISC_ENABLED;
9039	if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
9040		tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
9041	if (!(tn->flags & SYMBIOS_SCAN_LUNS))
9042		tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
9043}
9044
9045/*
9046 *  Get target set-up from Tekram format NVRAM.
9047 */
9048static void
9049sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
9050{
9051	tcb_p tp = &np->target[target];
9052	struct Tekram_target *tn = &nvram->target[target];
9053	int i;
9054
9055	if (tn->flags & TEKRAM_SYNC_NEGO) {
9056		i = tn->sync_index & 0xf;
9057		tp->tinfo.user.period = Tekram_sync[i];
9058	}
9059
9060	tp->tinfo.user.width =
9061		(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
9062
9063	if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
9064		tp->usrtags = 2 << nvram->max_tags_index;
9065	}
9066
9067	if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
9068		tp->usrflags |= SYM_DISC_ENABLED;
9069
9070	/* If any device does not support parity, we will not use this option */
9071	if (!(tn->flags & TEKRAM_PARITY_CHECK))
9072		np->rv_scntl0  &= ~0x0a; /* SCSI parity checking disabled */
9073}
9074
9075#ifdef	SYM_CONF_DEBUG_NVRAM
9076/*
9077 *  Dump Symbios format NVRAM for debugging purpose.
9078 */
9079static void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
9080{
9081	int i;
9082
9083	/* display Symbios nvram host data */
9084	printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
9085		sym_name(np), nvram->host_id & 0x0f,
9086		(nvram->flags  & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9087		(nvram->flags  & SYMBIOS_PARITY_ENABLE)	? " PARITY"	:"",
9088		(nvram->flags  & SYMBIOS_VERBOSE_MSGS)	? " VERBOSE"	:"",
9089		(nvram->flags  & SYMBIOS_CHS_MAPPING)	? " CHS_ALT"	:"",
9090		(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET"	:"",
9091		(nvram->flags1 & SYMBIOS_SCAN_HI_LO)	? " HI_LO"	:"");
9092
9093	/* display Symbios nvram drive data */
9094	for (i = 0 ; i < 15 ; i++) {
9095		struct Symbios_target *tn = &nvram->target[i];
9096		printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
9097		sym_name(np), i,
9098		(tn->flags & SYMBIOS_DISCONNECT_ENABLE)	? " DISC"	: "",
9099		(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)	? " SCAN_BOOT"	: "",
9100		(tn->flags & SYMBIOS_SCAN_LUNS)		? " SCAN_LUNS"	: "",
9101		(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ"	: "",
9102		tn->bus_width,
9103		tn->sync_period / 4,
9104		tn->timeout);
9105	}
9106}
9107
9108/*
9109 *  Dump TEKRAM format NVRAM for debugging purpose.
9110 */
9111static const u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
9112static void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
9113{
9114	int i, tags, boot_delay;
9115	char *rem;
9116
9117	/* display Tekram nvram host data */
9118	tags = 2 << nvram->max_tags_index;
9119	boot_delay = 0;
9120	if (nvram->boot_delay_index < 6)
9121		boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
9122	switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
9123	default:
9124	case 0:	rem = "";			break;
9125	case 1: rem = " REMOVABLE=boot device";	break;
9126	case 2: rem = " REMOVABLE=all";		break;
9127	}
9128
9129	printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
9130		sym_name(np), nvram->host_id & 0x0f,
9131		(nvram->flags1 & SYMBIOS_SCAM_ENABLE)	? " SCAM"	:"",
9132		(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES"	:"",
9133		(nvram->flags & TEKRAM_DRIVES_SUP_1GB)	? " >1GB"	:"",
9134		(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET"	:"",
9135		(nvram->flags & TEKRAM_ACTIVE_NEGATION)	? " ACT_NEG"	:"",
9136		(nvram->flags & TEKRAM_IMMEDIATE_SEEK)	? " IMM_SEEK"	:"",
9137		(nvram->flags & TEKRAM_SCAN_LUNS)	? " SCAN_LUNS"	:"",
9138		(nvram->flags1 & TEKRAM_F2_F6_ENABLED)	? " F2_F6"	:"",
9139		rem, boot_delay, tags);
9140
9141	/* display Tekram nvram drive data */
9142	for (i = 0; i <= 15; i++) {
9143		int sync, j;
9144		struct Tekram_target *tn = &nvram->target[i];
9145		j = tn->sync_index & 0xf;
9146		sync = Tekram_sync[j];
9147		printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
9148		sym_name(np), i,
9149		(tn->flags & TEKRAM_PARITY_CHECK)	? " PARITY"	: "",
9150		(tn->flags & TEKRAM_SYNC_NEGO)		? " SYNC"	: "",
9151		(tn->flags & TEKRAM_DISCONNECT_ENABLE)	? " DISC"	: "",
9152		(tn->flags & TEKRAM_START_CMD)		? " START"	: "",
9153		(tn->flags & TEKRAM_TAGGED_COMMANDS)	? " TCQ"	: "",
9154		(tn->flags & TEKRAM_WIDE_NEGO)		? " WIDE"	: "",
9155		sync);
9156	}
9157}
9158#endif	/* SYM_CONF_DEBUG_NVRAM */
9159#endif	/* SYM_CONF_NVRAM_SUPPORT */
9160
9161/*
9162 *  Try reading Symbios or Tekram NVRAM
9163 */
9164#ifdef SYM_CONF_NVRAM_SUPPORT
9165static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
9166static int sym_read_Tekram_nvram  (hcb_p np, Tekram_nvram *nvram);
9167#endif
9168
9169static int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
9170{
9171#ifdef SYM_CONF_NVRAM_SUPPORT
9172	/*
9173	 *  Try to read SYMBIOS nvram.
9174	 *  Try to read TEKRAM nvram if Symbios nvram not found.
9175	 */
9176	if	(SYM_SETUP_SYMBIOS_NVRAM &&
9177		 !sym_read_Symbios_nvram (np, &nvp->data.Symbios)) {
9178		nvp->type = SYM_SYMBIOS_NVRAM;
9179#ifdef SYM_CONF_DEBUG_NVRAM
9180		sym_display_Symbios_nvram(np, &nvp->data.Symbios);
9181#endif
9182	}
9183	else if	(SYM_SETUP_TEKRAM_NVRAM &&
9184		 !sym_read_Tekram_nvram (np, &nvp->data.Tekram)) {
9185		nvp->type = SYM_TEKRAM_NVRAM;
9186#ifdef SYM_CONF_DEBUG_NVRAM
9187		sym_display_Tekram_nvram(np, &nvp->data.Tekram);
9188#endif
9189	}
9190	else
9191		nvp->type = 0;
9192#else
9193	nvp->type = 0;
9194#endif
9195	return nvp->type;
9196}
9197
9198#ifdef SYM_CONF_NVRAM_SUPPORT
9199/*
9200 *  24C16 EEPROM reading.
9201 *
9202 *  GPOI0 - data in/data out
9203 *  GPIO1 - clock
9204 *  Symbios NVRAM wiring now also used by Tekram.
9205 */
9206
9207#define SET_BIT 0
9208#define CLR_BIT 1
9209#define SET_CLK 2
9210#define CLR_CLK 3
9211
9212/*
9213 *  Set/clear data/clock bit in GPIO0
9214 */
9215static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
9216			  int bit_mode)
9217{
9218	UDELAY (5);
9219	switch (bit_mode){
9220	case SET_BIT:
9221		*gpreg |= write_bit;
9222		break;
9223	case CLR_BIT:
9224		*gpreg &= 0xfe;
9225		break;
9226	case SET_CLK:
9227		*gpreg |= 0x02;
9228		break;
9229	case CLR_CLK:
9230		*gpreg &= 0xfd;
9231		break;
9232
9233	}
9234	OUTB (nc_gpreg, *gpreg);
9235	UDELAY (5);
9236}
9237
9238/*
9239 *  Send START condition to NVRAM to wake it up.
9240 */
9241static void S24C16_start(hcb_p np, u_char *gpreg)
9242{
9243	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9244	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9245	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9246	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9247}
9248
9249/*
9250 *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
9251 */
9252static void S24C16_stop(hcb_p np, u_char *gpreg)
9253{
9254	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9255	S24C16_set_bit(np, 1, gpreg, SET_BIT);
9256}
9257
9258/*
9259 *  Read or write a bit to the NVRAM,
9260 *  read if GPIO0 input else write if GPIO0 output
9261 */
9262static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
9263			 u_char *gpreg)
9264{
9265	S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
9266	S24C16_set_bit(np, 0, gpreg, SET_CLK);
9267	if (read_bit)
9268		*read_bit = INB (nc_gpreg);
9269	S24C16_set_bit(np, 0, gpreg, CLR_CLK);
9270	S24C16_set_bit(np, 0, gpreg, CLR_BIT);
9271}
9272
9273/*
9274 *  Output an ACK to the NVRAM after reading,
9275 *  change GPIO0 to output and when done back to an input
9276 */
9277static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
9278			    u_char *gpcntl)
9279{
9280	OUTB (nc_gpcntl, *gpcntl & 0xfe);
9281	S24C16_do_bit(np, 0, write_bit, gpreg);
9282	OUTB (nc_gpcntl, *gpcntl);
9283}
9284
9285/*
9286 *  Input an ACK from NVRAM after writing,
9287 *  change GPIO0 to input and when done back to an output
9288 */
9289static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
9290			   u_char *gpcntl)
9291{
9292	OUTB (nc_gpcntl, *gpcntl | 0x01);
9293	S24C16_do_bit(np, read_bit, 1, gpreg);
9294	OUTB (nc_gpcntl, *gpcntl);
9295}
9296
9297/*
9298 *  WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
9299 *  GPIO0 must already be set as an output
9300 */
9301static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
9302			     u_char *gpreg, u_char *gpcntl)
9303{
9304	int x;
9305
9306	for (x = 0; x < 8; x++)
9307		S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
9308
9309	S24C16_read_ack(np, ack_data, gpreg, gpcntl);
9310}
9311
9312/*
9313 *  READ a byte from the NVRAM and then send an ACK to say we have got it,
9314 *  GPIO0 must already be set as an input
9315 */
9316static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
9317			    u_char *gpreg, u_char *gpcntl)
9318{
9319	int x;
9320	u_char read_bit;
9321
9322	*read_data = 0;
9323	for (x = 0; x < 8; x++) {
9324		S24C16_do_bit(np, &read_bit, 1, gpreg);
9325		*read_data |= ((read_bit & 0x01) << (7 - x));
9326	}
9327
9328	S24C16_write_ack(np, ack_data, gpreg, gpcntl);
9329}
9330
9331/*
9332 *  Read 'len' bytes starting at 'offset'.
9333 */
9334static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
9335{
9336	u_char	gpcntl, gpreg;
9337	u_char	old_gpcntl, old_gpreg;
9338	u_char	ack_data;
9339	int	retv = 1;
9340	int	x;
9341
9342	/* save current state of GPCNTL and GPREG */
9343	old_gpreg	= INB (nc_gpreg);
9344	old_gpcntl	= INB (nc_gpcntl);
9345	gpcntl		= old_gpcntl & 0x1c;
9346
9347	/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
9348	OUTB (nc_gpreg,  old_gpreg);
9349	OUTB (nc_gpcntl, gpcntl);
9350
9351	/* this is to set NVRAM into a known state with GPIO0/1 both low */
9352	gpreg = old_gpreg;
9353	S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
9354	S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
9355
9356	/* now set NVRAM inactive with GPIO0/1 both high */
9357	S24C16_stop(np, &gpreg);
9358
9359	/* activate NVRAM */
9360	S24C16_start(np, &gpreg);
9361
9362	/* write device code and random address MSB */
9363	S24C16_write_byte(np, &ack_data,
9364		0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9365	if (ack_data & 0x01)
9366		goto out;
9367
9368	/* write random address LSB */
9369	S24C16_write_byte(np, &ack_data,
9370		offset & 0xff, &gpreg, &gpcntl);
9371	if (ack_data & 0x01)
9372		goto out;
9373
9374	/* regenerate START state to set up for reading */
9375	S24C16_start(np, &gpreg);
9376
9377	/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
9378	S24C16_write_byte(np, &ack_data,
9379		0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
9380	if (ack_data & 0x01)
9381		goto out;
9382
9383	/* now set up GPIO0 for inputting data */
9384	gpcntl |= 0x01;
9385	OUTB (nc_gpcntl, gpcntl);
9386
9387	/* input all requested data - only part of total NVRAM */
9388	for (x = 0; x < len; x++)
9389		S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
9390
9391	/* finally put NVRAM back in inactive mode */
9392	gpcntl &= 0xfe;
9393	OUTB (nc_gpcntl, gpcntl);
9394	S24C16_stop(np, &gpreg);
9395	retv = 0;
9396out:
9397	/* return GPIO0/1 to original states after having accessed NVRAM */
9398	OUTB (nc_gpcntl, old_gpcntl);
9399	OUTB (nc_gpreg,  old_gpreg);
9400
9401	return retv;
9402}
9403
9404#undef SET_BIT /* 0 */
9405#undef CLR_BIT /* 1 */
9406#undef SET_CLK /* 2 */
9407#undef CLR_CLK /* 3 */
9408
9409/*
9410 *  Try reading Symbios NVRAM.
9411 *  Return 0 if OK.
9412 */
9413static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
9414{
9415	static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
9416	u_char *data = (u_char *) nvram;
9417	int len  = sizeof(*nvram);
9418	u_short	csum;
9419	int x;
9420
9421	/* probe the 24c16 and read the SYMBIOS 24c16 area */
9422	if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
9423		return 1;
9424
9425	/* check valid NVRAM signature, verify byte count and checksum */
9426	if (nvram->type != 0 ||
9427	    bcmp(nvram->trailer, Symbios_trailer, 6) ||
9428	    nvram->byte_count != len - 12)
9429		return 1;
9430
9431	/* verify checksum */
9432	for (x = 6, csum = 0; x < len - 6; x++)
9433		csum += data[x];
9434	if (csum != nvram->checksum)
9435		return 1;
9436
9437	return 0;
9438}
9439
9440/*
9441 *  93C46 EEPROM reading.
9442 *
9443 *  GPOI0 - data in
9444 *  GPIO1 - data out
9445 *  GPIO2 - clock
9446 *  GPIO4 - chip select
9447 *
9448 *  Used by Tekram.
9449 */
9450
9451/*
9452 *  Pulse clock bit in GPIO0
9453 */
9454static void T93C46_Clk(hcb_p np, u_char *gpreg)
9455{
9456	OUTB (nc_gpreg, *gpreg | 0x04);
9457	UDELAY (2);
9458	OUTB (nc_gpreg, *gpreg);
9459}
9460
9461/*
9462 *  Read bit from NVRAM
9463 */
9464static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
9465{
9466	UDELAY (2);
9467	T93C46_Clk(np, gpreg);
9468	*read_bit = INB (nc_gpreg);
9469}
9470
9471/*
9472 *  Write bit to GPIO0
9473 */
9474static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
9475{
9476	if (write_bit & 0x01)
9477		*gpreg |= 0x02;
9478	else
9479		*gpreg &= 0xfd;
9480
9481	*gpreg |= 0x10;
9482
9483	OUTB (nc_gpreg, *gpreg);
9484	UDELAY (2);
9485
9486	T93C46_Clk(np, gpreg);
9487}
9488
9489/*
9490 *  Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
9491 */
9492static void T93C46_Stop(hcb_p np, u_char *gpreg)
9493{
9494	*gpreg &= 0xef;
9495	OUTB (nc_gpreg, *gpreg);
9496	UDELAY (2);
9497
9498	T93C46_Clk(np, gpreg);
9499}
9500
9501/*
9502 *  Send read command and address to NVRAM
9503 */
9504static void T93C46_Send_Command(hcb_p np, u_short write_data,
9505				u_char *read_bit, u_char *gpreg)
9506{
9507	int x;
9508
9509	/* send 9 bits, start bit (1), command (2), address (6)  */
9510	for (x = 0; x < 9; x++)
9511		T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
9512
9513	*read_bit = INB (nc_gpreg);
9514}
9515
9516/*
9517 *  READ 2 bytes from the NVRAM
9518 */
9519static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
9520{
9521	int x;
9522	u_char read_bit;
9523
9524	*nvram_data = 0;
9525	for (x = 0; x < 16; x++) {
9526		T93C46_Read_Bit(np, &read_bit, gpreg);
9527
9528		if (read_bit & 0x01)
9529			*nvram_data |=  (0x01 << (15 - x));
9530		else
9531			*nvram_data &= ~(0x01 << (15 - x));
9532	}
9533}
9534
9535/*
9536 *  Read Tekram NvRAM data.
9537 */
9538static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
9539{
9540	u_char	read_bit;
9541	int	x;
9542
9543	for (x = 0; x < len; x++)  {
9544
9545		/* output read command and address */
9546		T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
9547		if (read_bit & 0x01)
9548			return 1; /* Bad */
9549		T93C46_Read_Word(np, &data[x], gpreg);
9550		T93C46_Stop(np, gpreg);
9551	}
9552
9553	return 0;
9554}
9555
9556/*
9557 *  Try reading 93C46 Tekram NVRAM.
9558 */
9559static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
9560{
9561	u_char gpcntl, gpreg;
9562	u_char old_gpcntl, old_gpreg;
9563	int retv = 1;
9564
9565	/* save current state of GPCNTL and GPREG */
9566	old_gpreg	= INB (nc_gpreg);
9567	old_gpcntl	= INB (nc_gpcntl);
9568
9569	/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
9570	   1/2/4 out */
9571	gpreg = old_gpreg & 0xe9;
9572	OUTB (nc_gpreg, gpreg);
9573	gpcntl = (old_gpcntl & 0xe9) | 0x09;
9574	OUTB (nc_gpcntl, gpcntl);
9575
9576	/* input all of NVRAM, 64 words */
9577	retv = T93C46_Read_Data(np, (u_short *) nvram,
9578				sizeof(*nvram) / sizeof(short), &gpreg);
9579
9580	/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
9581	OUTB (nc_gpcntl, old_gpcntl);
9582	OUTB (nc_gpreg,  old_gpreg);
9583
9584	return retv;
9585}
9586
9587/*
9588 *  Try reading Tekram NVRAM.
9589 *  Return 0 if OK.
9590 */
9591static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
9592{
9593	u_char *data = (u_char *) nvram;
9594	int len = sizeof(*nvram);
9595	u_short	csum;
9596	int x;
9597
9598	switch (np->device_id) {
9599	case PCI_ID_SYM53C885:
9600	case PCI_ID_SYM53C895:
9601	case PCI_ID_SYM53C896:
9602		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9603					  data, len);
9604		break;
9605	case PCI_ID_SYM53C875:
9606		x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
9607					  data, len);
9608		if (!x)
9609			break;
9610	default:
9611		x = sym_read_T93C46_nvram(np, nvram);
9612		break;
9613	}
9614	if (x)
9615		return 1;
9616
9617	/* verify checksum */
9618	for (x = 0, csum = 0; x < len - 1; x += 2)
9619		csum += data[x] + (data[x+1] << 8);
9620	if (csum != 0x1234)
9621		return 1;
9622
9623	return 0;
9624}
9625
9626#endif	/* SYM_CONF_NVRAM_SUPPORT */
9627