nvme_ns.c revision 297126
1141296Sdas/*-
2141296Sdas * Copyright (C) 2012-2013 Intel Corporation
32116Sjkh * All rights reserved.
42116Sjkh *
52116Sjkh * Redistribution and use in source and binary forms, with or without
62116Sjkh * modification, are permitted provided that the following conditions
7141296Sdas * are met:
82116Sjkh * 1. Redistributions of source code must retain the above copyright
9141296Sdas *    notice, this list of conditions and the following disclaimer.
102116Sjkh * 2. Redistributions in binary form must reproduce the above copyright
112116Sjkh *    notice, this list of conditions and the following disclaimer in the
12141296Sdas *    documentation and/or other materials provided with the distribution.
132116Sjkh *
142116Sjkh * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15176451Sdas * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16176451Sdas * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
172116Sjkh * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
182116Sjkh * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19141296Sdas * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20141296Sdas * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
212116Sjkh * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
222116Sjkh * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
232116Sjkh * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
242116Sjkh * SUCH DAMAGE.
252116Sjkh */
262116Sjkh
272116Sjkh#include <sys/cdefs.h>
2897407Salfred__FBSDID("$FreeBSD: stable/10/sys/dev/nvme/nvme_ns.c 297126 2016-03-21 00:34:22Z mav $");
2997407Salfred
302116Sjkh#include <sys/param.h>
312116Sjkh#include <sys/bio.h>
322116Sjkh#include <sys/bus.h>
33#include <sys/conf.h>
34#include <sys/disk.h>
35#include <sys/fcntl.h>
36#include <sys/ioccom.h>
37#include <sys/malloc.h>
38#include <sys/module.h>
39#include <sys/proc.h>
40#include <sys/systm.h>
41
42#include <dev/pci/pcivar.h>
43
44#include <geom/geom.h>
45
46#include "nvme_private.h"
47
48static void		nvme_bio_child_inbed(struct bio *parent, int bio_error);
49static void		nvme_bio_child_done(void *arg,
50					    const struct nvme_completion *cpl);
51static uint32_t		nvme_get_num_segments(uint64_t addr, uint64_t size,
52					      uint32_t alignment);
53static void		nvme_free_child_bios(int num_bios,
54					     struct bio **child_bios);
55static struct bio **	nvme_allocate_child_bios(int num_bios);
56static struct bio **	nvme_construct_child_bios(struct bio *bp,
57						  uint32_t alignment,
58						  int *num_bios);
59static int		nvme_ns_split_bio(struct nvme_namespace *ns,
60					  struct bio *bp,
61					  uint32_t alignment);
62
63static int
64nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
65    struct thread *td)
66{
67	struct nvme_namespace			*ns;
68	struct nvme_controller			*ctrlr;
69	struct nvme_pt_command			*pt;
70
71	ns = cdev->si_drv1;
72	ctrlr = ns->ctrlr;
73
74	switch (cmd) {
75	case NVME_IO_TEST:
76	case NVME_BIO_TEST:
77		nvme_ns_test(ns, cmd, arg);
78		break;
79	case NVME_PASSTHROUGH_CMD:
80		pt = (struct nvme_pt_command *)arg;
81		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id,
82		    1 /* is_user_buffer */, 0 /* is_admin_cmd */));
83	case DIOCGMEDIASIZE:
84		*(off_t *)arg = (off_t)nvme_ns_get_size(ns);
85		break;
86	case DIOCGSECTORSIZE:
87		*(u_int *)arg = nvme_ns_get_sector_size(ns);
88		break;
89	default:
90		return (ENOTTY);
91	}
92
93	return (0);
94}
95
96static int
97nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused,
98    struct thread *td)
99{
100	int error = 0;
101
102	if (flags & FWRITE)
103		error = securelevel_gt(td->td_ucred, 0);
104
105	return (error);
106}
107
108static int
109nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused,
110    struct thread *td)
111{
112
113	return (0);
114}
115
116static void
117nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl)
118{
119	struct bio *bp = arg;
120
121	/*
122	 * TODO: add more extensive translation of NVMe status codes
123	 *  to different bio error codes (i.e. EIO, EINVAL, etc.)
124	 */
125	if (nvme_completion_is_error(cpl)) {
126		bp->bio_error = EIO;
127		bp->bio_flags |= BIO_ERROR;
128		bp->bio_resid = bp->bio_bcount;
129	} else
130		bp->bio_resid = 0;
131
132	biodone(bp);
133}
134
135static void
136nvme_ns_strategy(struct bio *bp)
137{
138	struct nvme_namespace	*ns;
139	int			err;
140
141	ns = bp->bio_dev->si_drv1;
142	err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done);
143
144	if (err) {
145		bp->bio_error = err;
146		bp->bio_flags |= BIO_ERROR;
147		bp->bio_resid = bp->bio_bcount;
148		biodone(bp);
149	}
150
151}
152
153static struct cdevsw nvme_ns_cdevsw = {
154	.d_version =	D_VERSION,
155	.d_flags =	D_DISK,
156	.d_read =	physread,
157	.d_write =	physwrite,
158	.d_open =	nvme_ns_open,
159	.d_close =	nvme_ns_close,
160	.d_strategy =	nvme_ns_strategy,
161	.d_ioctl =	nvme_ns_ioctl
162};
163
164uint32_t
165nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns)
166{
167	return ns->ctrlr->max_xfer_size;
168}
169
170uint32_t
171nvme_ns_get_sector_size(struct nvme_namespace *ns)
172{
173	return (1 << ns->data.lbaf[ns->data.flbas.format].lbads);
174}
175
176uint64_t
177nvme_ns_get_num_sectors(struct nvme_namespace *ns)
178{
179	return (ns->data.nsze);
180}
181
182uint64_t
183nvme_ns_get_size(struct nvme_namespace *ns)
184{
185	return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns));
186}
187
188uint32_t
189nvme_ns_get_flags(struct nvme_namespace *ns)
190{
191	return (ns->flags);
192}
193
194const char *
195nvme_ns_get_serial_number(struct nvme_namespace *ns)
196{
197	return ((const char *)ns->ctrlr->cdata.sn);
198}
199
200const char *
201nvme_ns_get_model_number(struct nvme_namespace *ns)
202{
203	return ((const char *)ns->ctrlr->cdata.mn);
204}
205
206const struct nvme_namespace_data *
207nvme_ns_get_data(struct nvme_namespace *ns)
208{
209
210	return (&ns->data);
211}
212
213uint32_t
214nvme_ns_get_stripesize(struct nvme_namespace *ns)
215{
216
217	return (ns->stripesize);
218}
219
220static void
221nvme_ns_bio_done(void *arg, const struct nvme_completion *status)
222{
223	struct bio	*bp = arg;
224	nvme_cb_fn_t	bp_cb_fn;
225
226	bp_cb_fn = bp->bio_driver1;
227
228	if (bp->bio_driver2)
229		free(bp->bio_driver2, M_NVME);
230
231	if (nvme_completion_is_error(status)) {
232		bp->bio_flags |= BIO_ERROR;
233		if (bp->bio_error == 0)
234			bp->bio_error = EIO;
235	}
236
237	if ((bp->bio_flags & BIO_ERROR) == 0)
238		bp->bio_resid = 0;
239	else
240		bp->bio_resid = bp->bio_bcount;
241
242	bp_cb_fn(bp, status);
243}
244
245static void
246nvme_bio_child_inbed(struct bio *parent, int bio_error)
247{
248	struct nvme_completion	parent_cpl;
249	int			children, inbed;
250
251	if (bio_error != 0) {
252		parent->bio_flags |= BIO_ERROR;
253		parent->bio_error = bio_error;
254	}
255
256	/*
257	 * atomic_fetchadd will return value before adding 1, so we still
258	 *  must add 1 to get the updated inbed number.  Save bio_children
259	 *  before incrementing to guard against race conditions when
260	 *  two children bios complete on different queues.
261	 */
262	children = atomic_load_acq_int(&parent->bio_children);
263	inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1;
264	if (inbed == children) {
265		bzero(&parent_cpl, sizeof(parent_cpl));
266		if (parent->bio_flags & BIO_ERROR)
267			parent_cpl.status.sc = NVME_SC_DATA_TRANSFER_ERROR;
268		nvme_ns_bio_done(parent, &parent_cpl);
269	}
270}
271
272static void
273nvme_bio_child_done(void *arg, const struct nvme_completion *cpl)
274{
275	struct bio		*child = arg;
276	struct bio		*parent;
277	int			bio_error;
278
279	parent = child->bio_parent;
280	g_destroy_bio(child);
281	bio_error = nvme_completion_is_error(cpl) ? EIO : 0;
282	nvme_bio_child_inbed(parent, bio_error);
283}
284
285static uint32_t
286nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align)
287{
288	uint32_t	num_segs, offset, remainder;
289
290	if (align == 0)
291		return (1);
292
293	KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n"));
294
295	num_segs = size / align;
296	remainder = size & (align - 1);
297	offset = addr & (align - 1);
298	if (remainder > 0 || offset > 0)
299		num_segs += 1 + (remainder + offset - 1) / align;
300	return (num_segs);
301}
302
303static void
304nvme_free_child_bios(int num_bios, struct bio **child_bios)
305{
306	int i;
307
308	for (i = 0; i < num_bios; i++) {
309		if (child_bios[i] != NULL)
310			g_destroy_bio(child_bios[i]);
311	}
312
313	free(child_bios, M_NVME);
314}
315
316static struct bio **
317nvme_allocate_child_bios(int num_bios)
318{
319	struct bio **child_bios;
320	int err = 0, i;
321
322	child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT);
323	if (child_bios == NULL)
324		return (NULL);
325
326	for (i = 0; i < num_bios; i++) {
327		child_bios[i] = g_new_bio();
328		if (child_bios[i] == NULL)
329			err = ENOMEM;
330	}
331
332	if (err == ENOMEM) {
333		nvme_free_child_bios(num_bios, child_bios);
334		return (NULL);
335	}
336
337	return (child_bios);
338}
339
340static struct bio **
341nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios)
342{
343	struct bio	**child_bios;
344	struct bio	*child;
345	uint64_t	cur_offset;
346	caddr_t		data;
347	uint32_t	rem_bcount;
348	int		i;
349#ifdef NVME_UNMAPPED_BIO_SUPPORT
350	struct vm_page	**ma;
351	uint32_t	ma_offset;
352#endif
353
354	*num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount,
355	    alignment);
356	child_bios = nvme_allocate_child_bios(*num_bios);
357	if (child_bios == NULL)
358		return (NULL);
359
360	bp->bio_children = *num_bios;
361	bp->bio_inbed = 0;
362	cur_offset = bp->bio_offset;
363	rem_bcount = bp->bio_bcount;
364	data = bp->bio_data;
365#ifdef NVME_UNMAPPED_BIO_SUPPORT
366	ma_offset = bp->bio_ma_offset;
367	ma = bp->bio_ma;
368#endif
369
370	for (i = 0; i < *num_bios; i++) {
371		child = child_bios[i];
372		child->bio_parent = bp;
373		child->bio_cmd = bp->bio_cmd;
374		child->bio_offset = cur_offset;
375		child->bio_bcount = min(rem_bcount,
376		    alignment - (cur_offset & (alignment - 1)));
377		child->bio_flags = bp->bio_flags;
378#ifdef NVME_UNMAPPED_BIO_SUPPORT
379		if (bp->bio_flags & BIO_UNMAPPED) {
380			child->bio_ma_offset = ma_offset;
381			child->bio_ma = ma;
382			child->bio_ma_n =
383			    nvme_get_num_segments(child->bio_ma_offset,
384				child->bio_bcount, PAGE_SIZE);
385			ma_offset = (ma_offset + child->bio_bcount) &
386			    PAGE_MASK;
387			ma += child->bio_ma_n;
388			if (ma_offset != 0)
389				ma -= 1;
390		} else
391#endif
392		{
393			child->bio_data = data;
394			data += child->bio_bcount;
395		}
396		cur_offset += child->bio_bcount;
397		rem_bcount -= child->bio_bcount;
398	}
399
400	return (child_bios);
401}
402
403static int
404nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp,
405    uint32_t alignment)
406{
407	struct bio	*child;
408	struct bio	**child_bios;
409	int		err, i, num_bios;
410
411	child_bios = nvme_construct_child_bios(bp, alignment, &num_bios);
412	if (child_bios == NULL)
413		return (ENOMEM);
414
415	for (i = 0; i < num_bios; i++) {
416		child = child_bios[i];
417		err = nvme_ns_bio_process(ns, child, nvme_bio_child_done);
418		if (err != 0) {
419			nvme_bio_child_inbed(bp, err);
420			g_destroy_bio(child);
421		}
422	}
423
424	free(child_bios, M_NVME);
425	return (0);
426}
427
428int
429nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp,
430	nvme_cb_fn_t cb_fn)
431{
432	struct nvme_dsm_range	*dsm_range;
433	uint32_t		num_bios;
434	int			err;
435
436	bp->bio_driver1 = cb_fn;
437
438	if (ns->stripesize > 0 &&
439	    (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) {
440		num_bios = nvme_get_num_segments(bp->bio_offset,
441		    bp->bio_bcount, ns->stripesize);
442		if (num_bios > 1)
443			return (nvme_ns_split_bio(ns, bp, ns->stripesize));
444	}
445
446	switch (bp->bio_cmd) {
447	case BIO_READ:
448		err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp);
449		break;
450	case BIO_WRITE:
451		err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp);
452		break;
453	case BIO_FLUSH:
454		err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp);
455		break;
456	case BIO_DELETE:
457		dsm_range =
458		    malloc(sizeof(struct nvme_dsm_range), M_NVME,
459		    M_ZERO | M_WAITOK);
460		dsm_range->length =
461		    bp->bio_bcount/nvme_ns_get_sector_size(ns);
462		dsm_range->starting_lba =
463		    bp->bio_offset/nvme_ns_get_sector_size(ns);
464		bp->bio_driver2 = dsm_range;
465		err = nvme_ns_cmd_deallocate(ns, dsm_range, 1,
466			nvme_ns_bio_done, bp);
467		if (err != 0)
468			free(dsm_range, M_NVME);
469		break;
470	default:
471		err = EIO;
472		break;
473	}
474
475	return (err);
476}
477
478int
479nvme_ns_construct(struct nvme_namespace *ns, uint16_t id,
480    struct nvme_controller *ctrlr)
481{
482	struct nvme_completion_poll_status	status;
483	int					unit;
484
485	ns->ctrlr = ctrlr;
486	ns->id = id;
487	ns->stripesize = 0;
488
489	if (pci_get_devid(ctrlr->dev) == 0x09538086 && ctrlr->cdata.vs[3] != 0)
490		ns->stripesize =
491		    (1 << ctrlr->cdata.vs[3]) * ctrlr->min_page_size;
492
493	/*
494	 * Namespaces are reconstructed after a controller reset, so check
495	 *  to make sure we only call mtx_init once on each mtx.
496	 *
497	 * TODO: Move this somewhere where it gets called at controller
498	 *  construction time, which is not invoked as part of each
499	 *  controller reset.
500	 */
501	if (!mtx_initialized(&ns->lock))
502		mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF);
503
504	status.done = FALSE;
505	nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data,
506	    nvme_completion_poll_cb, &status);
507	while (status.done == FALSE)
508		DELAY(5);
509	if (nvme_completion_is_error(&status.cpl)) {
510		nvme_printf(ctrlr, "nvme_identify_namespace failed\n");
511		return (ENXIO);
512	}
513
514	/*
515	 * Note: format is a 0-based value, so > is appropriate here,
516	 *  not >=.
517	 */
518	if (ns->data.flbas.format > ns->data.nlbaf) {
519		printf("lba format %d exceeds number supported (%d)\n",
520		    ns->data.flbas.format, ns->data.nlbaf+1);
521		return (1);
522	}
523
524	if (ctrlr->cdata.oncs.dsm)
525		ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED;
526
527	if (ctrlr->cdata.vwc.present)
528		ns->flags |= NVME_NS_FLUSH_SUPPORTED;
529
530	/*
531	 * cdev may have already been created, if we are reconstructing the
532	 *  namespace after a controller-level reset.
533	 */
534	if (ns->cdev != NULL)
535		return (0);
536
537	/*
538	 * Namespace IDs start at 1, so we need to subtract 1 to create a
539	 *  correct unit number.
540	 */
541	unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1;
542
543/*
544 * MAKEDEV_ETERNAL was added in r210923, for cdevs that will never
545 *  be destroyed.  This avoids refcounting on the cdev object.
546 *  That should be OK case here, as long as we're not supporting PCIe
547 *  surprise removal nor namespace deletion.
548 */
549#ifdef MAKEDEV_ETERNAL_KLD
550	ns->cdev = make_dev_credf(MAKEDEV_ETERNAL_KLD, &nvme_ns_cdevsw, unit,
551	    NULL, UID_ROOT, GID_WHEEL, 0600, "nvme%dns%d",
552	    device_get_unit(ctrlr->dev), ns->id);
553#else
554	ns->cdev = make_dev_credf(0, &nvme_ns_cdevsw, unit,
555	    NULL, UID_ROOT, GID_WHEEL, 0600, "nvme%dns%d",
556	    device_get_unit(ctrlr->dev), ns->id);
557#endif
558#ifdef NVME_UNMAPPED_BIO_SUPPORT
559	ns->cdev->si_flags |= SI_UNMAPPED;
560#endif
561
562	if (ns->cdev != NULL)
563		ns->cdev->si_drv1 = ns;
564
565	return (0);
566}
567
568void nvme_ns_destruct(struct nvme_namespace *ns)
569{
570
571	if (ns->cdev != NULL)
572		destroy_dev(ns->cdev);
573}
574