nvme_ctrlr.c revision 293671
1/*-
2 * Copyright (C) 2012-2015 Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/dev/nvme/nvme_ctrlr.c 293671 2016-01-11 17:31:18Z jimharris $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/buf.h>
33#include <sys/bus.h>
34#include <sys/conf.h>
35#include <sys/ioccom.h>
36#include <sys/proc.h>
37#include <sys/smp.h>
38#include <sys/uio.h>
39
40#include <dev/pci/pcireg.h>
41#include <dev/pci/pcivar.h>
42
43#include "nvme_private.h"
44
45/*
46 * Used for calculating number of CPUs to assign to each core and number of I/O
47 *  queues to allocate per controller.
48 */
49#define NVME_CEILING(num, div)	((((num) - 1) / (div)) + 1)
50
51static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
52						struct nvme_async_event_request *aer);
53static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr);
54
55static int
56nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
57{
58
59	ctrlr->resource_id = PCIR_BAR(0);
60
61	ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
62	    &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
63
64	if(ctrlr->resource == NULL) {
65		nvme_printf(ctrlr, "unable to allocate pci resource\n");
66		return (ENOMEM);
67	}
68
69	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
70	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
71	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
72
73	/*
74	 * The NVMe spec allows for the MSI-X table to be placed behind
75	 *  BAR 4/5, separate from the control/doorbell registers.  Always
76	 *  try to map this bar, because it must be mapped prior to calling
77	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
78	 *  bus_alloc_resource() will just return NULL which is OK.
79	 */
80	ctrlr->bar4_resource_id = PCIR_BAR(4);
81	ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
82	    &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
83
84	return (0);
85}
86
87static void
88nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
89{
90	struct nvme_qpair	*qpair;
91	uint32_t		num_entries;
92
93	qpair = &ctrlr->adminq;
94
95	num_entries = NVME_ADMIN_ENTRIES;
96	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
97	/*
98	 * If admin_entries was overridden to an invalid value, revert it
99	 *  back to our default value.
100	 */
101	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
102	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
103		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
104		    "specified\n", num_entries);
105		num_entries = NVME_ADMIN_ENTRIES;
106	}
107
108	/*
109	 * The admin queue's max xfer size is treated differently than the
110	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
111	 */
112	nvme_qpair_construct(qpair,
113			     0, /* qpair ID */
114			     0, /* vector */
115			     num_entries,
116			     NVME_ADMIN_TRACKERS,
117			     ctrlr);
118}
119
120static int
121nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
122{
123	struct nvme_qpair	*qpair;
124	union cap_lo_register	cap_lo;
125	int			i, num_entries, num_trackers;
126
127	num_entries = NVME_IO_ENTRIES;
128	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
129
130	/*
131	 * NVMe spec sets a hard limit of 64K max entries, but
132	 *  devices may specify a smaller limit, so we need to check
133	 *  the MQES field in the capabilities register.
134	 */
135	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
136	num_entries = min(num_entries, cap_lo.bits.mqes+1);
137
138	num_trackers = NVME_IO_TRACKERS;
139	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
140
141	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
142	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
143	/*
144	 * No need to have more trackers than entries in the submit queue.
145	 *  Note also that for a queue size of N, we can only have (N-1)
146	 *  commands outstanding, hence the "-1" here.
147	 */
148	num_trackers = min(num_trackers, (num_entries-1));
149
150	/*
151	 * This was calculated previously when setting up interrupts, but
152	 *  a controller could theoretically support fewer I/O queues than
153	 *  MSI-X vectors.  So calculate again here just to be safe.
154	 */
155	ctrlr->num_cpus_per_ioq = NVME_CEILING(mp_ncpus, ctrlr->num_io_queues);
156
157	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
158	    M_NVME, M_ZERO | M_WAITOK);
159
160	for (i = 0; i < ctrlr->num_io_queues; i++) {
161		qpair = &ctrlr->ioq[i];
162
163		/*
164		 * Admin queue has ID=0. IO queues start at ID=1 -
165		 *  hence the 'i+1' here.
166		 *
167		 * For I/O queues, use the controller-wide max_xfer_size
168		 *  calculated in nvme_attach().
169		 */
170		nvme_qpair_construct(qpair,
171				     i+1, /* qpair ID */
172				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
173				     num_entries,
174				     num_trackers,
175				     ctrlr);
176
177		/*
178		 * Do not bother binding interrupts if we only have one I/O
179		 *  interrupt thread for this controller.
180		 */
181		if (ctrlr->num_io_queues > 1)
182			bus_bind_intr(ctrlr->dev, qpair->res,
183			    i * ctrlr->num_cpus_per_ioq);
184	}
185
186	return (0);
187}
188
189static void
190nvme_ctrlr_fail(struct nvme_controller *ctrlr)
191{
192	int i;
193
194	ctrlr->is_failed = TRUE;
195	nvme_qpair_fail(&ctrlr->adminq);
196	for (i = 0; i < ctrlr->num_io_queues; i++)
197		nvme_qpair_fail(&ctrlr->ioq[i]);
198	nvme_notify_fail_consumers(ctrlr);
199}
200
201void
202nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
203    struct nvme_request *req)
204{
205
206	mtx_lock(&ctrlr->lock);
207	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
208	mtx_unlock(&ctrlr->lock);
209	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
210}
211
212static void
213nvme_ctrlr_fail_req_task(void *arg, int pending)
214{
215	struct nvme_controller	*ctrlr = arg;
216	struct nvme_request	*req;
217
218	mtx_lock(&ctrlr->lock);
219	while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
220		req = STAILQ_FIRST(&ctrlr->fail_req);
221		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
222		nvme_qpair_manual_complete_request(req->qpair, req,
223		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
224	}
225	mtx_unlock(&ctrlr->lock);
226}
227
228static int
229nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
230{
231	int ms_waited;
232	union cc_register cc;
233	union csts_register csts;
234
235	cc.raw = nvme_mmio_read_4(ctrlr, cc);
236	csts.raw = nvme_mmio_read_4(ctrlr, csts);
237
238	if (cc.bits.en != desired_val) {
239		nvme_printf(ctrlr, "%s called with desired_val = %d "
240		    "but cc.en = %d\n", __func__, desired_val, cc.bits.en);
241		return (ENXIO);
242	}
243
244	ms_waited = 0;
245
246	while (csts.bits.rdy != desired_val) {
247		DELAY(1000);
248		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
249			nvme_printf(ctrlr, "controller ready did not become %d "
250			    "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
251			return (ENXIO);
252		}
253		csts.raw = nvme_mmio_read_4(ctrlr, csts);
254	}
255
256	return (0);
257}
258
259static void
260nvme_ctrlr_disable(struct nvme_controller *ctrlr)
261{
262	union cc_register cc;
263	union csts_register csts;
264
265	cc.raw = nvme_mmio_read_4(ctrlr, cc);
266	csts.raw = nvme_mmio_read_4(ctrlr, csts);
267
268	if (cc.bits.en == 1 && csts.bits.rdy == 0)
269		nvme_ctrlr_wait_for_ready(ctrlr, 1);
270
271	cc.bits.en = 0;
272	nvme_mmio_write_4(ctrlr, cc, cc.raw);
273	DELAY(5000);
274	nvme_ctrlr_wait_for_ready(ctrlr, 0);
275}
276
277static int
278nvme_ctrlr_enable(struct nvme_controller *ctrlr)
279{
280	union cc_register	cc;
281	union csts_register	csts;
282	union aqa_register	aqa;
283
284	cc.raw = nvme_mmio_read_4(ctrlr, cc);
285	csts.raw = nvme_mmio_read_4(ctrlr, csts);
286
287	if (cc.bits.en == 1) {
288		if (csts.bits.rdy == 1)
289			return (0);
290		else
291			return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
292	}
293
294	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
295	DELAY(5000);
296	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
297	DELAY(5000);
298
299	aqa.raw = 0;
300	/* acqs and asqs are 0-based. */
301	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
302	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
303	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
304	DELAY(5000);
305
306	cc.bits.en = 1;
307	cc.bits.css = 0;
308	cc.bits.ams = 0;
309	cc.bits.shn = 0;
310	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
311	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
312
313	/* This evaluates to 0, which is according to spec. */
314	cc.bits.mps = (PAGE_SIZE >> 13);
315
316	nvme_mmio_write_4(ctrlr, cc, cc.raw);
317	DELAY(5000);
318
319	return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
320}
321
322int
323nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
324{
325	int i;
326
327	nvme_admin_qpair_disable(&ctrlr->adminq);
328	/*
329	 * I/O queues are not allocated before the initial HW
330	 *  reset, so do not try to disable them.  Use is_initialized
331	 *  to determine if this is the initial HW reset.
332	 */
333	if (ctrlr->is_initialized) {
334		for (i = 0; i < ctrlr->num_io_queues; i++)
335			nvme_io_qpair_disable(&ctrlr->ioq[i]);
336	}
337
338	DELAY(100*1000);
339
340	nvme_ctrlr_disable(ctrlr);
341	return (nvme_ctrlr_enable(ctrlr));
342}
343
344void
345nvme_ctrlr_reset(struct nvme_controller *ctrlr)
346{
347	int cmpset;
348
349	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
350
351	if (cmpset == 0 || ctrlr->is_failed)
352		/*
353		 * Controller is already resetting or has failed.  Return
354		 *  immediately since there is no need to kick off another
355		 *  reset in these cases.
356		 */
357		return;
358
359	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
360}
361
362static int
363nvme_ctrlr_identify(struct nvme_controller *ctrlr)
364{
365	struct nvme_completion_poll_status	status;
366
367	status.done = FALSE;
368	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
369	    nvme_completion_poll_cb, &status);
370	while (status.done == FALSE)
371		pause("nvme", 1);
372	if (nvme_completion_is_error(&status.cpl)) {
373		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
374		return (ENXIO);
375	}
376
377	/*
378	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
379	 *  controller supports.
380	 */
381	if (ctrlr->cdata.mdts > 0)
382		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
383		    ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
384
385	return (0);
386}
387
388static int
389nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
390{
391	struct nvme_completion_poll_status	status;
392	int					cq_allocated, sq_allocated;
393
394	status.done = FALSE;
395	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
396	    nvme_completion_poll_cb, &status);
397	while (status.done == FALSE)
398		pause("nvme", 1);
399	if (nvme_completion_is_error(&status.cpl)) {
400		nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
401		return (ENXIO);
402	}
403
404	/*
405	 * Data in cdw0 is 0-based.
406	 * Lower 16-bits indicate number of submission queues allocated.
407	 * Upper 16-bits indicate number of completion queues allocated.
408	 */
409	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
410	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
411
412	/*
413	 * Controller may allocate more queues than we requested,
414	 *  so use the minimum of the number requested and what was
415	 *  actually allocated.
416	 */
417	ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
418	ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
419
420	return (0);
421}
422
423static int
424nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
425{
426	struct nvme_completion_poll_status	status;
427	struct nvme_qpair			*qpair;
428	int					i;
429
430	for (i = 0; i < ctrlr->num_io_queues; i++) {
431		qpair = &ctrlr->ioq[i];
432
433		status.done = FALSE;
434		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
435		    nvme_completion_poll_cb, &status);
436		while (status.done == FALSE)
437			pause("nvme", 1);
438		if (nvme_completion_is_error(&status.cpl)) {
439			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
440			return (ENXIO);
441		}
442
443		status.done = FALSE;
444		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
445		    nvme_completion_poll_cb, &status);
446		while (status.done == FALSE)
447			pause("nvme", 1);
448		if (nvme_completion_is_error(&status.cpl)) {
449			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
450			return (ENXIO);
451		}
452	}
453
454	return (0);
455}
456
457static int
458nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
459{
460	struct nvme_namespace	*ns;
461	int			i, status;
462
463	for (i = 0; i < ctrlr->cdata.nn; i++) {
464		ns = &ctrlr->ns[i];
465		status = nvme_ns_construct(ns, i+1, ctrlr);
466		if (status != 0)
467			return (status);
468	}
469
470	return (0);
471}
472
473static boolean_t
474is_log_page_id_valid(uint8_t page_id)
475{
476
477	switch (page_id) {
478	case NVME_LOG_ERROR:
479	case NVME_LOG_HEALTH_INFORMATION:
480	case NVME_LOG_FIRMWARE_SLOT:
481		return (TRUE);
482	}
483
484	return (FALSE);
485}
486
487static uint32_t
488nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
489{
490	uint32_t	log_page_size;
491
492	switch (page_id) {
493	case NVME_LOG_ERROR:
494		log_page_size = min(
495		    sizeof(struct nvme_error_information_entry) *
496		    ctrlr->cdata.elpe,
497		    NVME_MAX_AER_LOG_SIZE);
498		break;
499	case NVME_LOG_HEALTH_INFORMATION:
500		log_page_size = sizeof(struct nvme_health_information_page);
501		break;
502	case NVME_LOG_FIRMWARE_SLOT:
503		log_page_size = sizeof(struct nvme_firmware_page);
504		break;
505	default:
506		log_page_size = 0;
507		break;
508	}
509
510	return (log_page_size);
511}
512
513static void
514nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
515    union nvme_critical_warning_state state)
516{
517
518	if (state.bits.available_spare == 1)
519		nvme_printf(ctrlr, "available spare space below threshold\n");
520
521	if (state.bits.temperature == 1)
522		nvme_printf(ctrlr, "temperature above threshold\n");
523
524	if (state.bits.device_reliability == 1)
525		nvme_printf(ctrlr, "device reliability degraded\n");
526
527	if (state.bits.read_only == 1)
528		nvme_printf(ctrlr, "media placed in read only mode\n");
529
530	if (state.bits.volatile_memory_backup == 1)
531		nvme_printf(ctrlr, "volatile memory backup device failed\n");
532
533	if (state.bits.reserved != 0)
534		nvme_printf(ctrlr,
535		    "unknown critical warning(s): state = 0x%02x\n", state.raw);
536}
537
538static void
539nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
540{
541	struct nvme_async_event_request		*aer = arg;
542	struct nvme_health_information_page	*health_info;
543
544	/*
545	 * If the log page fetch for some reason completed with an error,
546	 *  don't pass log page data to the consumers.  In practice, this case
547	 *  should never happen.
548	 */
549	if (nvme_completion_is_error(cpl))
550		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
551		    aer->log_page_id, NULL, 0);
552	else {
553		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
554			health_info = (struct nvme_health_information_page *)
555			    aer->log_page_buffer;
556			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
557			    health_info->critical_warning);
558			/*
559			 * Critical warnings reported through the
560			 *  SMART/health log page are persistent, so
561			 *  clear the associated bits in the async event
562			 *  config so that we do not receive repeated
563			 *  notifications for the same event.
564			 */
565			aer->ctrlr->async_event_config.raw &=
566			    ~health_info->critical_warning.raw;
567			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
568			    aer->ctrlr->async_event_config, NULL, NULL);
569		}
570
571
572		/*
573		 * Pass the cpl data from the original async event completion,
574		 *  not the log page fetch.
575		 */
576		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
577		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
578	}
579
580	/*
581	 * Repost another asynchronous event request to replace the one
582	 *  that just completed.
583	 */
584	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
585}
586
587static void
588nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
589{
590	struct nvme_async_event_request	*aer = arg;
591
592	if (nvme_completion_is_error(cpl)) {
593		/*
594		 *  Do not retry failed async event requests.  This avoids
595		 *  infinite loops where a new async event request is submitted
596		 *  to replace the one just failed, only to fail again and
597		 *  perpetuate the loop.
598		 */
599		return;
600	}
601
602	/* Associated log page is in bits 23:16 of completion entry dw0. */
603	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
604
605	nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
606	    aer->log_page_id);
607
608	if (is_log_page_id_valid(aer->log_page_id)) {
609		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
610		    aer->log_page_id);
611		memcpy(&aer->cpl, cpl, sizeof(*cpl));
612		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
613		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
614		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
615		    aer);
616		/* Wait to notify consumers until after log page is fetched. */
617	} else {
618		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
619		    NULL, 0);
620
621		/*
622		 * Repost another asynchronous event request to replace the one
623		 *  that just completed.
624		 */
625		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
626	}
627}
628
629static void
630nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
631    struct nvme_async_event_request *aer)
632{
633	struct nvme_request *req;
634
635	aer->ctrlr = ctrlr;
636	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
637	aer->req = req;
638
639	/*
640	 * Disable timeout here, since asynchronous event requests should by
641	 *  nature never be timed out.
642	 */
643	req->timeout = FALSE;
644	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
645	nvme_ctrlr_submit_admin_request(ctrlr, req);
646}
647
648static void
649nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
650{
651	struct nvme_completion_poll_status	status;
652	struct nvme_async_event_request		*aer;
653	uint32_t				i;
654
655	ctrlr->async_event_config.raw = 0xFF;
656	ctrlr->async_event_config.bits.reserved = 0;
657
658	status.done = FALSE;
659	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
660	    0, NULL, 0, nvme_completion_poll_cb, &status);
661	while (status.done == FALSE)
662		pause("nvme", 1);
663	if (nvme_completion_is_error(&status.cpl) ||
664	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
665	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
666		nvme_printf(ctrlr, "temperature threshold not supported\n");
667		ctrlr->async_event_config.bits.temperature = 0;
668	}
669
670	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
671	    ctrlr->async_event_config, NULL, NULL);
672
673	/* aerl is a zero-based value, so we need to add 1 here. */
674	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
675
676	for (i = 0; i < ctrlr->num_aers; i++) {
677		aer = &ctrlr->aer[i];
678		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
679	}
680}
681
682static void
683nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
684{
685
686	ctrlr->int_coal_time = 0;
687	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
688	    &ctrlr->int_coal_time);
689
690	ctrlr->int_coal_threshold = 0;
691	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
692	    &ctrlr->int_coal_threshold);
693
694	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
695	    ctrlr->int_coal_threshold, NULL, NULL);
696}
697
698static void
699nvme_ctrlr_start(void *ctrlr_arg)
700{
701	struct nvme_controller *ctrlr = ctrlr_arg;
702	uint32_t old_num_io_queues;
703	int i;
704
705	/*
706	 * Only reset adminq here when we are restarting the
707	 *  controller after a reset.  During initialization,
708	 *  we have already submitted admin commands to get
709	 *  the number of I/O queues supported, so cannot reset
710	 *  the adminq again here.
711	 */
712	if (ctrlr->is_resetting) {
713		nvme_qpair_reset(&ctrlr->adminq);
714	}
715
716	for (i = 0; i < ctrlr->num_io_queues; i++)
717		nvme_qpair_reset(&ctrlr->ioq[i]);
718
719	nvme_admin_qpair_enable(&ctrlr->adminq);
720
721	if (nvme_ctrlr_identify(ctrlr) != 0) {
722		nvme_ctrlr_fail(ctrlr);
723		return;
724	}
725
726	/*
727	 * The number of qpairs are determined during controller initialization,
728	 *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
729	 *  HW limit.  We call SET_FEATURES again here so that it gets called
730	 *  after any reset for controllers that depend on the driver to
731	 *  explicit specify how many queues it will use.  This value should
732	 *  never change between resets, so panic if somehow that does happen.
733	 */
734	old_num_io_queues = ctrlr->num_io_queues;
735	if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
736		nvme_ctrlr_fail(ctrlr);
737		return;
738	}
739
740	if (old_num_io_queues != ctrlr->num_io_queues) {
741		panic("num_io_queues changed from %u to %u", old_num_io_queues,
742		    ctrlr->num_io_queues);
743	}
744
745	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
746		nvme_ctrlr_fail(ctrlr);
747		return;
748	}
749
750	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
751		nvme_ctrlr_fail(ctrlr);
752		return;
753	}
754
755	nvme_ctrlr_configure_aer(ctrlr);
756	nvme_ctrlr_configure_int_coalescing(ctrlr);
757
758	for (i = 0; i < ctrlr->num_io_queues; i++)
759		nvme_io_qpair_enable(&ctrlr->ioq[i]);
760}
761
762void
763nvme_ctrlr_start_config_hook(void *arg)
764{
765	struct nvme_controller *ctrlr = arg;
766
767	nvme_qpair_reset(&ctrlr->adminq);
768	nvme_admin_qpair_enable(&ctrlr->adminq);
769
770	if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
771	    nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
772		nvme_ctrlr_start(ctrlr);
773	else
774		nvme_ctrlr_fail(ctrlr);
775
776	nvme_sysctl_initialize_ctrlr(ctrlr);
777	config_intrhook_disestablish(&ctrlr->config_hook);
778
779	ctrlr->is_initialized = 1;
780	nvme_notify_new_controller(ctrlr);
781}
782
783static void
784nvme_ctrlr_reset_task(void *arg, int pending)
785{
786	struct nvme_controller	*ctrlr = arg;
787	int			status;
788
789	nvme_printf(ctrlr, "resetting controller\n");
790	status = nvme_ctrlr_hw_reset(ctrlr);
791	/*
792	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
793	 *  handlers on this CPU that were blocked on a qpair lock. We want
794	 *  all nvme interrupts completed before proceeding with restarting the
795	 *  controller.
796	 *
797	 * XXX - any way to guarantee the interrupt handlers have quiesced?
798	 */
799	pause("nvmereset", hz / 10);
800	if (status == 0)
801		nvme_ctrlr_start(ctrlr);
802	else
803		nvme_ctrlr_fail(ctrlr);
804
805	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
806}
807
808static void
809nvme_ctrlr_intx_handler(void *arg)
810{
811	struct nvme_controller *ctrlr = arg;
812
813	nvme_mmio_write_4(ctrlr, intms, 1);
814
815	nvme_qpair_process_completions(&ctrlr->adminq);
816
817	if (ctrlr->ioq[0].cpl)
818		nvme_qpair_process_completions(&ctrlr->ioq[0]);
819
820	nvme_mmio_write_4(ctrlr, intmc, 1);
821}
822
823static int
824nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
825{
826
827	ctrlr->msix_enabled = 0;
828	ctrlr->num_io_queues = 1;
829	ctrlr->num_cpus_per_ioq = mp_ncpus;
830	ctrlr->rid = 0;
831	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
832	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
833
834	if (ctrlr->res == NULL) {
835		nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
836		return (ENOMEM);
837	}
838
839	bus_setup_intr(ctrlr->dev, ctrlr->res,
840	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
841	    ctrlr, &ctrlr->tag);
842
843	if (ctrlr->tag == NULL) {
844		nvme_printf(ctrlr, "unable to setup intx handler\n");
845		return (ENOMEM);
846	}
847
848	return (0);
849}
850
851static void
852nvme_pt_done(void *arg, const struct nvme_completion *cpl)
853{
854	struct nvme_pt_command *pt = arg;
855
856	bzero(&pt->cpl, sizeof(pt->cpl));
857	pt->cpl.cdw0 = cpl->cdw0;
858	pt->cpl.status = cpl->status;
859	pt->cpl.status.p = 0;
860
861	mtx_lock(pt->driver_lock);
862	wakeup(pt);
863	mtx_unlock(pt->driver_lock);
864}
865
866int
867nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
868    struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
869    int is_admin_cmd)
870{
871	struct nvme_request	*req;
872	struct mtx		*mtx;
873	struct buf		*buf = NULL;
874	int			ret = 0;
875
876	if (pt->len > 0) {
877		if (pt->len > ctrlr->max_xfer_size) {
878			nvme_printf(ctrlr, "pt->len (%d) "
879			    "exceeds max_xfer_size (%d)\n", pt->len,
880			    ctrlr->max_xfer_size);
881			return EIO;
882		}
883		if (is_user_buffer) {
884			/*
885			 * Ensure the user buffer is wired for the duration of
886			 *  this passthrough command.
887			 */
888			PHOLD(curproc);
889			buf = getpbuf(NULL);
890			buf->b_saveaddr = buf->b_data;
891			buf->b_data = pt->buf;
892			buf->b_bufsize = pt->len;
893			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
894#ifdef NVME_UNMAPPED_BIO_SUPPORT
895			if (vmapbuf(buf, 1) < 0) {
896#else
897			if (vmapbuf(buf) < 0) {
898#endif
899				ret = EFAULT;
900				goto err;
901			}
902			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
903			    nvme_pt_done, pt);
904		} else
905			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
906			    nvme_pt_done, pt);
907	} else
908		req = nvme_allocate_request_null(nvme_pt_done, pt);
909
910	req->cmd.opc	= pt->cmd.opc;
911	req->cmd.cdw10	= pt->cmd.cdw10;
912	req->cmd.cdw11	= pt->cmd.cdw11;
913	req->cmd.cdw12	= pt->cmd.cdw12;
914	req->cmd.cdw13	= pt->cmd.cdw13;
915	req->cmd.cdw14	= pt->cmd.cdw14;
916	req->cmd.cdw15	= pt->cmd.cdw15;
917
918	req->cmd.nsid = nsid;
919
920	if (is_admin_cmd)
921		mtx = &ctrlr->lock;
922	else
923		mtx = &ctrlr->ns[nsid-1].lock;
924
925	mtx_lock(mtx);
926	pt->driver_lock = mtx;
927
928	if (is_admin_cmd)
929		nvme_ctrlr_submit_admin_request(ctrlr, req);
930	else
931		nvme_ctrlr_submit_io_request(ctrlr, req);
932
933	mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
934	mtx_unlock(mtx);
935
936	pt->driver_lock = NULL;
937
938err:
939	if (buf != NULL) {
940		relpbuf(buf, NULL);
941		PRELE(curproc);
942	}
943
944	return (ret);
945}
946
947static int
948nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
949    struct thread *td)
950{
951	struct nvme_controller			*ctrlr;
952	struct nvme_pt_command			*pt;
953
954	ctrlr = cdev->si_drv1;
955
956	switch (cmd) {
957	case NVME_RESET_CONTROLLER:
958		nvme_ctrlr_reset(ctrlr);
959		break;
960	case NVME_PASSTHROUGH_CMD:
961		pt = (struct nvme_pt_command *)arg;
962		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
963		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
964	default:
965		return (ENOTTY);
966	}
967
968	return (0);
969}
970
971static struct cdevsw nvme_ctrlr_cdevsw = {
972	.d_version =	D_VERSION,
973	.d_flags =	0,
974	.d_ioctl =	nvme_ctrlr_ioctl
975};
976
977static void
978nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr)
979{
980	device_t	dev;
981	int		per_cpu_io_queues;
982	int		num_vectors_requested, num_vectors_allocated;
983	int		num_vectors_available;
984
985	dev = ctrlr->dev;
986	per_cpu_io_queues = 1;
987	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
988
989	ctrlr->force_intx = 0;
990	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
991
992	/*
993	 * FreeBSD currently cannot allocate more than about 190 vectors at
994	 *  boot, meaning that systems with high core count and many devices
995	 *  requesting per-CPU interrupt vectors will not get their full
996	 *  allotment.  So first, try to allocate as many as we may need to
997	 *  understand what is available, then immediately release them.
998	 *  Then figure out how many of those we will actually use, based on
999	 *  assigning an equal number of cores to each I/O queue.
1000	 */
1001
1002	/* One vector for per core I/O queue, plus one vector for admin queue. */
1003	num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1);
1004	if (pci_alloc_msix(dev, &num_vectors_available) != 0) {
1005		num_vectors_available = 0;
1006	}
1007	pci_release_msi(dev);
1008
1009	if (ctrlr->force_intx || num_vectors_available < 2) {
1010		nvme_ctrlr_configure_intx(ctrlr);
1011		return;
1012	}
1013
1014	if (per_cpu_io_queues)
1015		ctrlr->num_cpus_per_ioq = NVME_CEILING(mp_ncpus, num_vectors_available + 1);
1016	else
1017		ctrlr->num_cpus_per_ioq = mp_ncpus;
1018
1019	ctrlr->num_io_queues = NVME_CEILING(mp_ncpus, ctrlr->num_cpus_per_ioq);
1020	num_vectors_requested = ctrlr->num_io_queues + 1;
1021	num_vectors_allocated = num_vectors_requested;
1022
1023	/*
1024	 * Now just allocate the number of vectors we need.  This should
1025	 *  succeed, since we previously called pci_alloc_msix()
1026	 *  successfully returning at least this many vectors, but just to
1027	 *  be safe, if something goes wrong just revert to INTx.
1028	 */
1029	if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1030		nvme_ctrlr_configure_intx(ctrlr);
1031		return;
1032	}
1033
1034	if (num_vectors_allocated < num_vectors_requested) {
1035		pci_release_msi(dev);
1036		nvme_ctrlr_configure_intx(ctrlr);
1037		return;
1038	}
1039
1040	ctrlr->msix_enabled = 1;
1041}
1042
1043int
1044nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1045{
1046	union cap_lo_register	cap_lo;
1047	union cap_hi_register	cap_hi;
1048	int			status, timeout_period;
1049
1050	ctrlr->dev = dev;
1051
1052	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1053
1054	status = nvme_ctrlr_allocate_bar(ctrlr);
1055
1056	if (status != 0)
1057		return (status);
1058
1059	/*
1060	 * Software emulators may set the doorbell stride to something
1061	 *  other than zero, but this driver is not set up to handle that.
1062	 */
1063	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
1064	if (cap_hi.bits.dstrd != 0)
1065		return (ENXIO);
1066
1067	ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
1068
1069	/* Get ready timeout value from controller, in units of 500ms. */
1070	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
1071	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
1072
1073	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1074	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1075	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1076	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1077	ctrlr->timeout_period = timeout_period;
1078
1079	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1080	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1081
1082	ctrlr->enable_aborts = 0;
1083	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1084
1085	nvme_ctrlr_setup_interrupts(ctrlr);
1086
1087	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1088	nvme_ctrlr_construct_admin_qpair(ctrlr);
1089
1090	ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1091	    UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1092
1093	if (ctrlr->cdev == NULL)
1094		return (ENXIO);
1095
1096	ctrlr->cdev->si_drv1 = (void *)ctrlr;
1097
1098	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1099	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1100	taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1101
1102	ctrlr->is_resetting = 0;
1103	ctrlr->is_initialized = 0;
1104	ctrlr->notification_sent = 0;
1105	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1106
1107	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1108	STAILQ_INIT(&ctrlr->fail_req);
1109	ctrlr->is_failed = FALSE;
1110
1111	return (0);
1112}
1113
1114void
1115nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1116{
1117	int				i;
1118
1119	/*
1120	 *  Notify the controller of a shutdown, even though this is due to
1121	 *   a driver unload, not a system shutdown (this path is not invoked
1122	 *   during shutdown).  This ensures the controller receives a
1123	 *   shutdown notification in case the system is shutdown before
1124	 *   reloading the driver.
1125	 */
1126	nvme_ctrlr_shutdown(ctrlr);
1127
1128	nvme_ctrlr_disable(ctrlr);
1129	taskqueue_free(ctrlr->taskqueue);
1130
1131	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1132		nvme_ns_destruct(&ctrlr->ns[i]);
1133
1134	if (ctrlr->cdev)
1135		destroy_dev(ctrlr->cdev);
1136
1137	for (i = 0; i < ctrlr->num_io_queues; i++) {
1138		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1139	}
1140
1141	free(ctrlr->ioq, M_NVME);
1142
1143	nvme_admin_qpair_destroy(&ctrlr->adminq);
1144
1145	if (ctrlr->resource != NULL) {
1146		bus_release_resource(dev, SYS_RES_MEMORY,
1147		    ctrlr->resource_id, ctrlr->resource);
1148	}
1149
1150	if (ctrlr->bar4_resource != NULL) {
1151		bus_release_resource(dev, SYS_RES_MEMORY,
1152		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1153	}
1154
1155	if (ctrlr->tag)
1156		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1157
1158	if (ctrlr->res)
1159		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1160		    rman_get_rid(ctrlr->res), ctrlr->res);
1161
1162	if (ctrlr->msix_enabled)
1163		pci_release_msi(dev);
1164}
1165
1166void
1167nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1168{
1169	union cc_register	cc;
1170	union csts_register	csts;
1171	int			ticks = 0;
1172
1173	cc.raw = nvme_mmio_read_4(ctrlr, cc);
1174	cc.bits.shn = NVME_SHN_NORMAL;
1175	nvme_mmio_write_4(ctrlr, cc, cc.raw);
1176	csts.raw = nvme_mmio_read_4(ctrlr, csts);
1177	while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1178		pause("nvme shn", 1);
1179		csts.raw = nvme_mmio_read_4(ctrlr, csts);
1180	}
1181	if (csts.bits.shst != NVME_SHST_COMPLETE)
1182		nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1183		    "of notification\n");
1184}
1185
1186void
1187nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1188    struct nvme_request *req)
1189{
1190
1191	nvme_qpair_submit_request(&ctrlr->adminq, req);
1192}
1193
1194void
1195nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1196    struct nvme_request *req)
1197{
1198	struct nvme_qpair       *qpair;
1199
1200	qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
1201	nvme_qpair_submit_request(qpair, req);
1202}
1203
1204device_t
1205nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1206{
1207
1208	return (ctrlr->dev);
1209}
1210
1211const struct nvme_controller_data *
1212nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1213{
1214
1215	return (&ctrlr->cdata);
1216}
1217