nvme_ctrlr.c revision 293668
1/*-
2 * Copyright (C) 2012-2015 Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/dev/nvme/nvme_ctrlr.c 293668 2016-01-11 17:27:20Z jimharris $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/buf.h>
33#include <sys/bus.h>
34#include <sys/conf.h>
35#include <sys/ioccom.h>
36#include <sys/proc.h>
37#include <sys/smp.h>
38#include <sys/uio.h>
39
40#include <dev/pci/pcireg.h>
41#include <dev/pci/pcivar.h>
42
43#include "nvme_private.h"
44
45static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
46						struct nvme_async_event_request *aer);
47
48static int
49nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
50{
51
52	ctrlr->resource_id = PCIR_BAR(0);
53
54	ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
55	    &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
56
57	if(ctrlr->resource == NULL) {
58		nvme_printf(ctrlr, "unable to allocate pci resource\n");
59		return (ENOMEM);
60	}
61
62	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
63	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
64	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
65
66	/*
67	 * The NVMe spec allows for the MSI-X table to be placed behind
68	 *  BAR 4/5, separate from the control/doorbell registers.  Always
69	 *  try to map this bar, because it must be mapped prior to calling
70	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
71	 *  bus_alloc_resource() will just return NULL which is OK.
72	 */
73	ctrlr->bar4_resource_id = PCIR_BAR(4);
74	ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
75	    &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
76
77	return (0);
78}
79
80static void
81nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
82{
83	struct nvme_qpair	*qpair;
84	uint32_t		num_entries;
85
86	qpair = &ctrlr->adminq;
87
88	num_entries = NVME_ADMIN_ENTRIES;
89	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
90	/*
91	 * If admin_entries was overridden to an invalid value, revert it
92	 *  back to our default value.
93	 */
94	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
95	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
96		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
97		    "specified\n", num_entries);
98		num_entries = NVME_ADMIN_ENTRIES;
99	}
100
101	/*
102	 * The admin queue's max xfer size is treated differently than the
103	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
104	 */
105	nvme_qpair_construct(qpair,
106			     0, /* qpair ID */
107			     0, /* vector */
108			     num_entries,
109			     NVME_ADMIN_TRACKERS,
110			     ctrlr);
111}
112
113static int
114nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
115{
116	struct nvme_qpair	*qpair;
117	union cap_lo_register	cap_lo;
118	int			i, num_entries, num_trackers;
119
120	num_entries = NVME_IO_ENTRIES;
121	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
122
123	/*
124	 * NVMe spec sets a hard limit of 64K max entries, but
125	 *  devices may specify a smaller limit, so we need to check
126	 *  the MQES field in the capabilities register.
127	 */
128	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
129	num_entries = min(num_entries, cap_lo.bits.mqes+1);
130
131	num_trackers = NVME_IO_TRACKERS;
132	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
133
134	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
135	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
136	/*
137	 * No need to have more trackers than entries in the submit queue.
138	 *  Note also that for a queue size of N, we can only have (N-1)
139	 *  commands outstanding, hence the "-1" here.
140	 */
141	num_trackers = min(num_trackers, (num_entries-1));
142
143	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
144	    M_NVME, M_ZERO | M_WAITOK);
145
146	for (i = 0; i < ctrlr->num_io_queues; i++) {
147		qpair = &ctrlr->ioq[i];
148
149		/*
150		 * Admin queue has ID=0. IO queues start at ID=1 -
151		 *  hence the 'i+1' here.
152		 *
153		 * For I/O queues, use the controller-wide max_xfer_size
154		 *  calculated in nvme_attach().
155		 */
156		nvme_qpair_construct(qpair,
157				     i+1, /* qpair ID */
158				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
159				     num_entries,
160				     num_trackers,
161				     ctrlr);
162
163		if (ctrlr->num_io_queues > 1)
164			bus_bind_intr(ctrlr->dev, qpair->res, i);
165	}
166
167	return (0);
168}
169
170static void
171nvme_ctrlr_fail(struct nvme_controller *ctrlr)
172{
173	int i;
174
175	ctrlr->is_failed = TRUE;
176	nvme_qpair_fail(&ctrlr->adminq);
177	for (i = 0; i < ctrlr->num_io_queues; i++)
178		nvme_qpair_fail(&ctrlr->ioq[i]);
179	nvme_notify_fail_consumers(ctrlr);
180}
181
182void
183nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
184    struct nvme_request *req)
185{
186
187	mtx_lock(&ctrlr->lock);
188	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
189	mtx_unlock(&ctrlr->lock);
190	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
191}
192
193static void
194nvme_ctrlr_fail_req_task(void *arg, int pending)
195{
196	struct nvme_controller	*ctrlr = arg;
197	struct nvme_request	*req;
198
199	mtx_lock(&ctrlr->lock);
200	while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
201		req = STAILQ_FIRST(&ctrlr->fail_req);
202		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
203		nvme_qpair_manual_complete_request(req->qpair, req,
204		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
205	}
206	mtx_unlock(&ctrlr->lock);
207}
208
209static int
210nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
211{
212	int ms_waited;
213	union cc_register cc;
214	union csts_register csts;
215
216	cc.raw = nvme_mmio_read_4(ctrlr, cc);
217	csts.raw = nvme_mmio_read_4(ctrlr, csts);
218
219	if (cc.bits.en != desired_val) {
220		nvme_printf(ctrlr, "%s called with desired_val = %d "
221		    "but cc.en = %d\n", __func__, desired_val, cc.bits.en);
222		return (ENXIO);
223	}
224
225	ms_waited = 0;
226
227	while (csts.bits.rdy != desired_val) {
228		DELAY(1000);
229		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
230			nvme_printf(ctrlr, "controller ready did not become %d "
231			    "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
232			return (ENXIO);
233		}
234		csts.raw = nvme_mmio_read_4(ctrlr, csts);
235	}
236
237	return (0);
238}
239
240static void
241nvme_ctrlr_disable(struct nvme_controller *ctrlr)
242{
243	union cc_register cc;
244	union csts_register csts;
245
246	cc.raw = nvme_mmio_read_4(ctrlr, cc);
247	csts.raw = nvme_mmio_read_4(ctrlr, csts);
248
249	if (cc.bits.en == 1 && csts.bits.rdy == 0)
250		nvme_ctrlr_wait_for_ready(ctrlr, 1);
251
252	cc.bits.en = 0;
253	nvme_mmio_write_4(ctrlr, cc, cc.raw);
254	DELAY(5000);
255	nvme_ctrlr_wait_for_ready(ctrlr, 0);
256}
257
258static int
259nvme_ctrlr_enable(struct nvme_controller *ctrlr)
260{
261	union cc_register	cc;
262	union csts_register	csts;
263	union aqa_register	aqa;
264
265	cc.raw = nvme_mmio_read_4(ctrlr, cc);
266	csts.raw = nvme_mmio_read_4(ctrlr, csts);
267
268	if (cc.bits.en == 1) {
269		if (csts.bits.rdy == 1)
270			return (0);
271		else
272			return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
273	}
274
275	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
276	DELAY(5000);
277	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
278	DELAY(5000);
279
280	aqa.raw = 0;
281	/* acqs and asqs are 0-based. */
282	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
283	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
284	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
285	DELAY(5000);
286
287	cc.bits.en = 1;
288	cc.bits.css = 0;
289	cc.bits.ams = 0;
290	cc.bits.shn = 0;
291	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
292	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
293
294	/* This evaluates to 0, which is according to spec. */
295	cc.bits.mps = (PAGE_SIZE >> 13);
296
297	nvme_mmio_write_4(ctrlr, cc, cc.raw);
298	DELAY(5000);
299
300	return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
301}
302
303int
304nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
305{
306	int i;
307
308	nvme_admin_qpair_disable(&ctrlr->adminq);
309	for (i = 0; i < ctrlr->num_io_queues; i++)
310		nvme_io_qpair_disable(&ctrlr->ioq[i]);
311
312	DELAY(100*1000);
313
314	nvme_ctrlr_disable(ctrlr);
315	return (nvme_ctrlr_enable(ctrlr));
316}
317
318void
319nvme_ctrlr_reset(struct nvme_controller *ctrlr)
320{
321	int cmpset;
322
323	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
324
325	if (cmpset == 0 || ctrlr->is_failed)
326		/*
327		 * Controller is already resetting or has failed.  Return
328		 *  immediately since there is no need to kick off another
329		 *  reset in these cases.
330		 */
331		return;
332
333	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
334}
335
336static int
337nvme_ctrlr_identify(struct nvme_controller *ctrlr)
338{
339	struct nvme_completion_poll_status	status;
340
341	status.done = FALSE;
342	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
343	    nvme_completion_poll_cb, &status);
344	while (status.done == FALSE)
345		pause("nvme", 1);
346	if (nvme_completion_is_error(&status.cpl)) {
347		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
348		return (ENXIO);
349	}
350
351	/*
352	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
353	 *  controller supports.
354	 */
355	if (ctrlr->cdata.mdts > 0)
356		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
357		    ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
358
359	return (0);
360}
361
362static int
363nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
364{
365	struct nvme_completion_poll_status	status;
366	int					cq_allocated, i, sq_allocated;
367
368	status.done = FALSE;
369	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
370	    nvme_completion_poll_cb, &status);
371	while (status.done == FALSE)
372		pause("nvme", 1);
373	if (nvme_completion_is_error(&status.cpl)) {
374		nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
375		return (ENXIO);
376	}
377
378	/*
379	 * Data in cdw0 is 0-based.
380	 * Lower 16-bits indicate number of submission queues allocated.
381	 * Upper 16-bits indicate number of completion queues allocated.
382	 */
383	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
384	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
385
386	/*
387	 * Check that the controller was able to allocate the number of
388	 *  queues we requested.  If not, revert to one IO queue pair.
389	 */
390	if (sq_allocated < ctrlr->num_io_queues ||
391	    cq_allocated < ctrlr->num_io_queues) {
392
393		/*
394		 * Destroy extra IO queue pairs that were created at
395		 *  controller construction time but are no longer
396		 *  needed.  This will only happen when a controller
397		 *  supports fewer queues than MSI-X vectors.  This
398		 *  is not the normal case, but does occur with the
399		 *  Chatham prototype board.
400		 */
401		for (i = 1; i < ctrlr->num_io_queues; i++)
402			nvme_io_qpair_destroy(&ctrlr->ioq[i]);
403
404		ctrlr->num_io_queues = 1;
405	}
406
407	return (0);
408}
409
410static int
411nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
412{
413	struct nvme_completion_poll_status	status;
414	struct nvme_qpair			*qpair;
415	int					i;
416
417	for (i = 0; i < ctrlr->num_io_queues; i++) {
418		qpair = &ctrlr->ioq[i];
419
420		status.done = FALSE;
421		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
422		    nvme_completion_poll_cb, &status);
423		while (status.done == FALSE)
424			pause("nvme", 1);
425		if (nvme_completion_is_error(&status.cpl)) {
426			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
427			return (ENXIO);
428		}
429
430		status.done = FALSE;
431		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
432		    nvme_completion_poll_cb, &status);
433		while (status.done == FALSE)
434			pause("nvme", 1);
435		if (nvme_completion_is_error(&status.cpl)) {
436			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
437			return (ENXIO);
438		}
439	}
440
441	return (0);
442}
443
444static int
445nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
446{
447	struct nvme_namespace	*ns;
448	int			i, status;
449
450	for (i = 0; i < ctrlr->cdata.nn; i++) {
451		ns = &ctrlr->ns[i];
452		status = nvme_ns_construct(ns, i+1, ctrlr);
453		if (status != 0)
454			return (status);
455	}
456
457	return (0);
458}
459
460static boolean_t
461is_log_page_id_valid(uint8_t page_id)
462{
463
464	switch (page_id) {
465	case NVME_LOG_ERROR:
466	case NVME_LOG_HEALTH_INFORMATION:
467	case NVME_LOG_FIRMWARE_SLOT:
468		return (TRUE);
469	}
470
471	return (FALSE);
472}
473
474static uint32_t
475nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
476{
477	uint32_t	log_page_size;
478
479	switch (page_id) {
480	case NVME_LOG_ERROR:
481		log_page_size = min(
482		    sizeof(struct nvme_error_information_entry) *
483		    ctrlr->cdata.elpe,
484		    NVME_MAX_AER_LOG_SIZE);
485		break;
486	case NVME_LOG_HEALTH_INFORMATION:
487		log_page_size = sizeof(struct nvme_health_information_page);
488		break;
489	case NVME_LOG_FIRMWARE_SLOT:
490		log_page_size = sizeof(struct nvme_firmware_page);
491		break;
492	default:
493		log_page_size = 0;
494		break;
495	}
496
497	return (log_page_size);
498}
499
500static void
501nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
502    union nvme_critical_warning_state state)
503{
504
505	if (state.bits.available_spare == 1)
506		nvme_printf(ctrlr, "available spare space below threshold\n");
507
508	if (state.bits.temperature == 1)
509		nvme_printf(ctrlr, "temperature above threshold\n");
510
511	if (state.bits.device_reliability == 1)
512		nvme_printf(ctrlr, "device reliability degraded\n");
513
514	if (state.bits.read_only == 1)
515		nvme_printf(ctrlr, "media placed in read only mode\n");
516
517	if (state.bits.volatile_memory_backup == 1)
518		nvme_printf(ctrlr, "volatile memory backup device failed\n");
519
520	if (state.bits.reserved != 0)
521		nvme_printf(ctrlr,
522		    "unknown critical warning(s): state = 0x%02x\n", state.raw);
523}
524
525static void
526nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
527{
528	struct nvme_async_event_request		*aer = arg;
529	struct nvme_health_information_page	*health_info;
530
531	/*
532	 * If the log page fetch for some reason completed with an error,
533	 *  don't pass log page data to the consumers.  In practice, this case
534	 *  should never happen.
535	 */
536	if (nvme_completion_is_error(cpl))
537		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
538		    aer->log_page_id, NULL, 0);
539	else {
540		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
541			health_info = (struct nvme_health_information_page *)
542			    aer->log_page_buffer;
543			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
544			    health_info->critical_warning);
545			/*
546			 * Critical warnings reported through the
547			 *  SMART/health log page are persistent, so
548			 *  clear the associated bits in the async event
549			 *  config so that we do not receive repeated
550			 *  notifications for the same event.
551			 */
552			aer->ctrlr->async_event_config.raw &=
553			    ~health_info->critical_warning.raw;
554			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
555			    aer->ctrlr->async_event_config, NULL, NULL);
556		}
557
558
559		/*
560		 * Pass the cpl data from the original async event completion,
561		 *  not the log page fetch.
562		 */
563		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
564		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
565	}
566
567	/*
568	 * Repost another asynchronous event request to replace the one
569	 *  that just completed.
570	 */
571	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
572}
573
574static void
575nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
576{
577	struct nvme_async_event_request	*aer = arg;
578
579	if (nvme_completion_is_error(cpl)) {
580		/*
581		 *  Do not retry failed async event requests.  This avoids
582		 *  infinite loops where a new async event request is submitted
583		 *  to replace the one just failed, only to fail again and
584		 *  perpetuate the loop.
585		 */
586		return;
587	}
588
589	/* Associated log page is in bits 23:16 of completion entry dw0. */
590	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
591
592	nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
593	    aer->log_page_id);
594
595	if (is_log_page_id_valid(aer->log_page_id)) {
596		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
597		    aer->log_page_id);
598		memcpy(&aer->cpl, cpl, sizeof(*cpl));
599		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
600		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
601		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
602		    aer);
603		/* Wait to notify consumers until after log page is fetched. */
604	} else {
605		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
606		    NULL, 0);
607
608		/*
609		 * Repost another asynchronous event request to replace the one
610		 *  that just completed.
611		 */
612		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
613	}
614}
615
616static void
617nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
618    struct nvme_async_event_request *aer)
619{
620	struct nvme_request *req;
621
622	aer->ctrlr = ctrlr;
623	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
624	aer->req = req;
625
626	/*
627	 * Disable timeout here, since asynchronous event requests should by
628	 *  nature never be timed out.
629	 */
630	req->timeout = FALSE;
631	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
632	nvme_ctrlr_submit_admin_request(ctrlr, req);
633}
634
635static void
636nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
637{
638	struct nvme_completion_poll_status	status;
639	struct nvme_async_event_request		*aer;
640	uint32_t				i;
641
642	ctrlr->async_event_config.raw = 0xFF;
643	ctrlr->async_event_config.bits.reserved = 0;
644
645	status.done = FALSE;
646	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
647	    0, NULL, 0, nvme_completion_poll_cb, &status);
648	while (status.done == FALSE)
649		pause("nvme", 1);
650	if (nvme_completion_is_error(&status.cpl) ||
651	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
652	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
653		nvme_printf(ctrlr, "temperature threshold not supported\n");
654		ctrlr->async_event_config.bits.temperature = 0;
655	}
656
657	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
658	    ctrlr->async_event_config, NULL, NULL);
659
660	/* aerl is a zero-based value, so we need to add 1 here. */
661	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
662
663	for (i = 0; i < ctrlr->num_aers; i++) {
664		aer = &ctrlr->aer[i];
665		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
666	}
667}
668
669static void
670nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
671{
672
673	ctrlr->int_coal_time = 0;
674	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
675	    &ctrlr->int_coal_time);
676
677	ctrlr->int_coal_threshold = 0;
678	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
679	    &ctrlr->int_coal_threshold);
680
681	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
682	    ctrlr->int_coal_threshold, NULL, NULL);
683}
684
685static void
686nvme_ctrlr_start(void *ctrlr_arg)
687{
688	struct nvme_controller *ctrlr = ctrlr_arg;
689	int i;
690
691	nvme_qpair_reset(&ctrlr->adminq);
692	for (i = 0; i < ctrlr->num_io_queues; i++)
693		nvme_qpair_reset(&ctrlr->ioq[i]);
694
695	nvme_admin_qpair_enable(&ctrlr->adminq);
696
697	if (nvme_ctrlr_identify(ctrlr) != 0) {
698		nvme_ctrlr_fail(ctrlr);
699		return;
700	}
701
702	if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
703		nvme_ctrlr_fail(ctrlr);
704		return;
705	}
706
707	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
708		nvme_ctrlr_fail(ctrlr);
709		return;
710	}
711
712	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
713		nvme_ctrlr_fail(ctrlr);
714		return;
715	}
716
717	nvme_ctrlr_configure_aer(ctrlr);
718	nvme_ctrlr_configure_int_coalescing(ctrlr);
719
720	for (i = 0; i < ctrlr->num_io_queues; i++)
721		nvme_io_qpair_enable(&ctrlr->ioq[i]);
722}
723
724void
725nvme_ctrlr_start_config_hook(void *arg)
726{
727	struct nvme_controller *ctrlr = arg;
728
729	nvme_ctrlr_start(ctrlr);
730	config_intrhook_disestablish(&ctrlr->config_hook);
731
732	ctrlr->is_initialized = 1;
733	nvme_notify_new_controller(ctrlr);
734}
735
736static void
737nvme_ctrlr_reset_task(void *arg, int pending)
738{
739	struct nvme_controller	*ctrlr = arg;
740	int			status;
741
742	nvme_printf(ctrlr, "resetting controller\n");
743	status = nvme_ctrlr_hw_reset(ctrlr);
744	/*
745	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
746	 *  handlers on this CPU that were blocked on a qpair lock. We want
747	 *  all nvme interrupts completed before proceeding with restarting the
748	 *  controller.
749	 *
750	 * XXX - any way to guarantee the interrupt handlers have quiesced?
751	 */
752	pause("nvmereset", hz / 10);
753	if (status == 0)
754		nvme_ctrlr_start(ctrlr);
755	else
756		nvme_ctrlr_fail(ctrlr);
757
758	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
759}
760
761static void
762nvme_ctrlr_intx_handler(void *arg)
763{
764	struct nvme_controller *ctrlr = arg;
765
766	nvme_mmio_write_4(ctrlr, intms, 1);
767
768	nvme_qpair_process_completions(&ctrlr->adminq);
769
770	if (ctrlr->ioq[0].cpl)
771		nvme_qpair_process_completions(&ctrlr->ioq[0]);
772
773	nvme_mmio_write_4(ctrlr, intmc, 1);
774}
775
776static int
777nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
778{
779
780	ctrlr->num_io_queues = 1;
781	ctrlr->rid = 0;
782	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
783	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
784
785	if (ctrlr->res == NULL) {
786		nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
787		return (ENOMEM);
788	}
789
790	bus_setup_intr(ctrlr->dev, ctrlr->res,
791	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
792	    ctrlr, &ctrlr->tag);
793
794	if (ctrlr->tag == NULL) {
795		nvme_printf(ctrlr, "unable to setup intx handler\n");
796		return (ENOMEM);
797	}
798
799	return (0);
800}
801
802static void
803nvme_pt_done(void *arg, const struct nvme_completion *cpl)
804{
805	struct nvme_pt_command *pt = arg;
806
807	bzero(&pt->cpl, sizeof(pt->cpl));
808	pt->cpl.cdw0 = cpl->cdw0;
809	pt->cpl.status = cpl->status;
810	pt->cpl.status.p = 0;
811
812	mtx_lock(pt->driver_lock);
813	wakeup(pt);
814	mtx_unlock(pt->driver_lock);
815}
816
817int
818nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
819    struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
820    int is_admin_cmd)
821{
822	struct nvme_request	*req;
823	struct mtx		*mtx;
824	struct buf		*buf = NULL;
825	int			ret = 0;
826
827	if (pt->len > 0) {
828		if (pt->len > ctrlr->max_xfer_size) {
829			nvme_printf(ctrlr, "pt->len (%d) "
830			    "exceeds max_xfer_size (%d)\n", pt->len,
831			    ctrlr->max_xfer_size);
832			return EIO;
833		}
834		if (is_user_buffer) {
835			/*
836			 * Ensure the user buffer is wired for the duration of
837			 *  this passthrough command.
838			 */
839			PHOLD(curproc);
840			buf = getpbuf(NULL);
841			buf->b_saveaddr = buf->b_data;
842			buf->b_data = pt->buf;
843			buf->b_bufsize = pt->len;
844			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
845#ifdef NVME_UNMAPPED_BIO_SUPPORT
846			if (vmapbuf(buf, 1) < 0) {
847#else
848			if (vmapbuf(buf) < 0) {
849#endif
850				ret = EFAULT;
851				goto err;
852			}
853			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
854			    nvme_pt_done, pt);
855		} else
856			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
857			    nvme_pt_done, pt);
858	} else
859		req = nvme_allocate_request_null(nvme_pt_done, pt);
860
861	req->cmd.opc	= pt->cmd.opc;
862	req->cmd.cdw10	= pt->cmd.cdw10;
863	req->cmd.cdw11	= pt->cmd.cdw11;
864	req->cmd.cdw12	= pt->cmd.cdw12;
865	req->cmd.cdw13	= pt->cmd.cdw13;
866	req->cmd.cdw14	= pt->cmd.cdw14;
867	req->cmd.cdw15	= pt->cmd.cdw15;
868
869	req->cmd.nsid = nsid;
870
871	if (is_admin_cmd)
872		mtx = &ctrlr->lock;
873	else
874		mtx = &ctrlr->ns[nsid-1].lock;
875
876	mtx_lock(mtx);
877	pt->driver_lock = mtx;
878
879	if (is_admin_cmd)
880		nvme_ctrlr_submit_admin_request(ctrlr, req);
881	else
882		nvme_ctrlr_submit_io_request(ctrlr, req);
883
884	mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
885	mtx_unlock(mtx);
886
887	pt->driver_lock = NULL;
888
889err:
890	if (buf != NULL) {
891		relpbuf(buf, NULL);
892		PRELE(curproc);
893	}
894
895	return (ret);
896}
897
898static int
899nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
900    struct thread *td)
901{
902	struct nvme_controller			*ctrlr;
903	struct nvme_pt_command			*pt;
904
905	ctrlr = cdev->si_drv1;
906
907	switch (cmd) {
908	case NVME_RESET_CONTROLLER:
909		nvme_ctrlr_reset(ctrlr);
910		break;
911	case NVME_PASSTHROUGH_CMD:
912		pt = (struct nvme_pt_command *)arg;
913		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
914		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
915	default:
916		return (ENOTTY);
917	}
918
919	return (0);
920}
921
922static struct cdevsw nvme_ctrlr_cdevsw = {
923	.d_version =	D_VERSION,
924	.d_flags =	0,
925	.d_ioctl =	nvme_ctrlr_ioctl
926};
927
928int
929nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
930{
931	union cap_lo_register	cap_lo;
932	union cap_hi_register	cap_hi;
933	int			i, per_cpu_io_queues, rid;
934	int			num_vectors_requested, num_vectors_allocated;
935	int			status, timeout_period;
936
937	ctrlr->dev = dev;
938
939	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
940
941	status = nvme_ctrlr_allocate_bar(ctrlr);
942
943	if (status != 0)
944		return (status);
945
946	/*
947	 * Software emulators may set the doorbell stride to something
948	 *  other than zero, but this driver is not set up to handle that.
949	 */
950	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
951	if (cap_hi.bits.dstrd != 0)
952		return (ENXIO);
953
954	ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
955
956	/* Get ready timeout value from controller, in units of 500ms. */
957	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
958	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
959
960	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
961	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
962	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
963	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
964	ctrlr->timeout_period = timeout_period;
965
966	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
967	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
968
969	per_cpu_io_queues = 1;
970	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
971
972	if (per_cpu_io_queues)
973		ctrlr->num_io_queues = mp_ncpus;
974	else
975		ctrlr->num_io_queues = 1;
976
977	ctrlr->force_intx = 0;
978	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
979
980	ctrlr->enable_aborts = 0;
981	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
982
983	ctrlr->msix_enabled = 1;
984
985	if (ctrlr->force_intx) {
986		ctrlr->msix_enabled = 0;
987		goto intx;
988	}
989
990	/* One vector per IO queue, plus one vector for admin queue. */
991	num_vectors_requested = ctrlr->num_io_queues + 1;
992
993	/*
994	 * If we cannot even allocate 2 vectors (one for admin, one for
995	 *  I/O), then revert to INTx.
996	 */
997	if (pci_msix_count(dev) < 2) {
998		ctrlr->msix_enabled = 0;
999		goto intx;
1000	}
1001
1002	if (pci_msix_count(dev) < num_vectors_requested) {
1003		ctrlr->num_io_queues = 1;
1004		num_vectors_requested = 2; /* one for admin, one for I/O */
1005	}
1006
1007	num_vectors_allocated = num_vectors_requested;
1008	if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1009		ctrlr->msix_enabled = 0;
1010		goto intx;
1011	}
1012
1013	if (num_vectors_allocated < num_vectors_requested) {
1014		if (num_vectors_allocated < 2) {
1015			pci_release_msi(dev);
1016			ctrlr->msix_enabled = 0;
1017			goto intx;
1018		}
1019
1020		ctrlr->num_io_queues = 1;
1021		/*
1022		 * Release whatever vectors were allocated, and just
1023		 *  reallocate the two needed for the admin and single
1024		 *  I/O qpair.
1025		 */
1026		num_vectors_allocated = 2;
1027		pci_release_msi(dev);
1028		if (pci_alloc_msix(dev, &num_vectors_allocated) != 0)
1029			panic("could not reallocate any vectors\n");
1030		if (num_vectors_allocated != 2)
1031			panic("could not reallocate 2 vectors\n");
1032	}
1033
1034	/*
1035	 * On earlier FreeBSD releases, there are reports that
1036	 *  pci_alloc_msix() can return successfully with all vectors
1037	 *  requested, but a subsequent bus_alloc_resource_any()
1038	 *  for one of those vectors fails.  This issue occurs more
1039	 *  readily with multiple devices using per-CPU vectors.
1040	 * To workaround this issue, try to allocate the resources now,
1041	 *  and fall back to INTx if we cannot allocate all of them.
1042	 *  This issue cannot be reproduced on more recent versions of
1043	 *  FreeBSD which have increased the maximum number of MSI-X
1044	 *  vectors, but adding the workaround makes it easier for
1045	 *  vendors wishing to import this driver into kernels based on
1046	 *  older versions of FreeBSD.
1047	 */
1048	for (i = 0; i < num_vectors_allocated; i++) {
1049		rid = i + 1;
1050		ctrlr->msi_res[i] = bus_alloc_resource_any(ctrlr->dev,
1051		    SYS_RES_IRQ, &rid, RF_ACTIVE);
1052
1053		if (ctrlr->msi_res[i] == NULL) {
1054			ctrlr->msix_enabled = 0;
1055			while (i > 0) {
1056				i--;
1057				bus_release_resource(ctrlr->dev,
1058				    SYS_RES_IRQ,
1059				    rman_get_rid(ctrlr->msi_res[i]),
1060				    ctrlr->msi_res[i]);
1061			}
1062			pci_release_msi(dev);
1063			nvme_printf(ctrlr, "could not obtain all MSI-X "
1064			    "resources, reverting to intx\n");
1065			break;
1066		}
1067	}
1068
1069intx:
1070
1071	if (!ctrlr->msix_enabled)
1072		nvme_ctrlr_configure_intx(ctrlr);
1073
1074	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1075	nvme_ctrlr_construct_admin_qpair(ctrlr);
1076	status = nvme_ctrlr_construct_io_qpairs(ctrlr);
1077
1078	if (status != 0)
1079		return (status);
1080
1081	ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1082	    UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1083
1084	if (ctrlr->cdev == NULL)
1085		return (ENXIO);
1086
1087	ctrlr->cdev->si_drv1 = (void *)ctrlr;
1088
1089	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1090	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1091	taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1092
1093	ctrlr->is_resetting = 0;
1094	ctrlr->is_initialized = 0;
1095	ctrlr->notification_sent = 0;
1096	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1097
1098	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1099	STAILQ_INIT(&ctrlr->fail_req);
1100	ctrlr->is_failed = FALSE;
1101
1102	return (0);
1103}
1104
1105void
1106nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1107{
1108	int				i;
1109
1110	/*
1111	 *  Notify the controller of a shutdown, even though this is due to
1112	 *   a driver unload, not a system shutdown (this path is not invoked
1113	 *   during shutdown).  This ensures the controller receives a
1114	 *   shutdown notification in case the system is shutdown before
1115	 *   reloading the driver.
1116	 */
1117	nvme_ctrlr_shutdown(ctrlr);
1118
1119	nvme_ctrlr_disable(ctrlr);
1120	taskqueue_free(ctrlr->taskqueue);
1121
1122	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1123		nvme_ns_destruct(&ctrlr->ns[i]);
1124
1125	if (ctrlr->cdev)
1126		destroy_dev(ctrlr->cdev);
1127
1128	for (i = 0; i < ctrlr->num_io_queues; i++) {
1129		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1130	}
1131
1132	free(ctrlr->ioq, M_NVME);
1133
1134	nvme_admin_qpair_destroy(&ctrlr->adminq);
1135
1136	if (ctrlr->resource != NULL) {
1137		bus_release_resource(dev, SYS_RES_MEMORY,
1138		    ctrlr->resource_id, ctrlr->resource);
1139	}
1140
1141	if (ctrlr->bar4_resource != NULL) {
1142		bus_release_resource(dev, SYS_RES_MEMORY,
1143		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1144	}
1145
1146	if (ctrlr->tag)
1147		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1148
1149	if (ctrlr->res)
1150		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1151		    rman_get_rid(ctrlr->res), ctrlr->res);
1152
1153	if (ctrlr->msix_enabled)
1154		pci_release_msi(dev);
1155}
1156
1157void
1158nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1159{
1160	union cc_register	cc;
1161	union csts_register	csts;
1162	int			ticks = 0;
1163
1164	cc.raw = nvme_mmio_read_4(ctrlr, cc);
1165	cc.bits.shn = NVME_SHN_NORMAL;
1166	nvme_mmio_write_4(ctrlr, cc, cc.raw);
1167	csts.raw = nvme_mmio_read_4(ctrlr, csts);
1168	while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1169		pause("nvme shn", 1);
1170		csts.raw = nvme_mmio_read_4(ctrlr, csts);
1171	}
1172	if (csts.bits.shst != NVME_SHST_COMPLETE)
1173		nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1174		    "of notification\n");
1175}
1176
1177void
1178nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1179    struct nvme_request *req)
1180{
1181
1182	nvme_qpair_submit_request(&ctrlr->adminq, req);
1183}
1184
1185void
1186nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1187    struct nvme_request *req)
1188{
1189	struct nvme_qpair       *qpair;
1190
1191	if (ctrlr->num_io_queues > 1)
1192		qpair = &ctrlr->ioq[curcpu];
1193	else
1194		qpair = &ctrlr->ioq[0];
1195
1196	nvme_qpair_submit_request(qpair, req);
1197}
1198
1199device_t
1200nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1201{
1202
1203	return (ctrlr->dev);
1204}
1205
1206const struct nvme_controller_data *
1207nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1208{
1209
1210	return (&ctrlr->cdata);
1211}
1212