nvme_ctrlr.c revision 248737
1/*-
2 * Copyright (C) 2012 Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/dev/nvme/nvme_ctrlr.c 248737 2013-03-26 18:37:36Z jimharris $");
29
30#include <sys/param.h>
31#include <sys/bus.h>
32#include <sys/conf.h>
33#include <sys/ioccom.h>
34#include <sys/smp.h>
35
36#include <dev/pci/pcireg.h>
37#include <dev/pci/pcivar.h>
38
39#include "nvme_private.h"
40
41static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
42						struct nvme_async_event_request *aer);
43
44static void
45nvme_ctrlr_cb(void *arg, const struct nvme_completion *status)
46{
47	struct nvme_completion	*cpl = arg;
48	struct mtx		*mtx;
49
50	/*
51	 * Copy status into the argument passed by the caller, so that
52	 *  the caller can check the status to determine if the
53	 *  the request passed or failed.
54	 */
55	memcpy(cpl, status, sizeof(*cpl));
56	mtx = mtx_pool_find(mtxpool_sleep, cpl);
57	mtx_lock(mtx);
58	wakeup(cpl);
59	mtx_unlock(mtx);
60}
61
62static int
63nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
64{
65
66	/* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */
67	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
68		ctrlr->resource_id = PCIR_BAR(2);
69	else
70		ctrlr->resource_id = PCIR_BAR(0);
71
72	ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
73	    &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
74
75	if(ctrlr->resource == NULL) {
76		device_printf(ctrlr->dev, "unable to allocate pci resource\n");
77		return (ENOMEM);
78	}
79
80	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
81	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
82	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
83
84	/*
85	 * The NVMe spec allows for the MSI-X table to be placed behind
86	 *  BAR 4/5, separate from the control/doorbell registers.  Always
87	 *  try to map this bar, because it must be mapped prior to calling
88	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
89	 *  bus_alloc_resource() will just return NULL which is OK.
90	 */
91	ctrlr->bar4_resource_id = PCIR_BAR(4);
92	ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
93	    &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
94
95	return (0);
96}
97
98#ifdef CHATHAM2
99static int
100nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr)
101{
102
103	ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR);
104	ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev,
105	    SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1,
106	    RF_ACTIVE);
107
108	if(ctrlr->chatham_resource == NULL) {
109		device_printf(ctrlr->dev, "unable to alloc pci resource\n");
110		return (ENOMEM);
111	}
112
113	ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource);
114	ctrlr->chatham_bus_handle =
115	    rman_get_bushandle(ctrlr->chatham_resource);
116
117	return (0);
118}
119
120static void
121nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr)
122{
123	uint64_t reg1, reg2, reg3;
124	uint64_t temp1, temp2;
125	uint32_t temp3;
126	uint32_t use_flash_timings = 0;
127
128	DELAY(10000);
129
130	temp3 = chatham_read_4(ctrlr, 0x8080);
131
132	device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3);
133
134	ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110;
135	ctrlr->chatham_size = ctrlr->chatham_lbas * 512;
136
137	device_printf(ctrlr->dev, "Chatham size: %jd\n",
138	    (intmax_t)ctrlr->chatham_size);
139
140	reg1 = reg2 = reg3 = ctrlr->chatham_size - 1;
141
142	TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings);
143	if (use_flash_timings) {
144		device_printf(ctrlr->dev, "Chatham: using flash timings\n");
145		temp1 = 0x00001b58000007d0LL;
146		temp2 = 0x000000cb00000131LL;
147	} else {
148		device_printf(ctrlr->dev, "Chatham: using DDR timings\n");
149		temp1 = temp2 = 0x0LL;
150	}
151
152	chatham_write_8(ctrlr, 0x8000, reg1);
153	chatham_write_8(ctrlr, 0x8008, reg2);
154	chatham_write_8(ctrlr, 0x8010, reg3);
155
156	chatham_write_8(ctrlr, 0x8020, temp1);
157	temp3 = chatham_read_4(ctrlr, 0x8020);
158
159	chatham_write_8(ctrlr, 0x8028, temp2);
160	temp3 = chatham_read_4(ctrlr, 0x8028);
161
162	chatham_write_8(ctrlr, 0x8030, temp1);
163	chatham_write_8(ctrlr, 0x8038, temp2);
164	chatham_write_8(ctrlr, 0x8040, temp1);
165	chatham_write_8(ctrlr, 0x8048, temp2);
166	chatham_write_8(ctrlr, 0x8050, temp1);
167	chatham_write_8(ctrlr, 0x8058, temp2);
168
169	DELAY(10000);
170}
171
172static void
173nvme_chatham_populate_cdata(struct nvme_controller *ctrlr)
174{
175	struct nvme_controller_data *cdata;
176
177	cdata = &ctrlr->cdata;
178
179	cdata->vid = 0x8086;
180	cdata->ssvid = 0x2011;
181
182	/*
183	 * Chatham2 puts garbage data in these fields when we
184	 *  invoke IDENTIFY_CONTROLLER, so we need to re-zero
185	 *  the fields before calling bcopy().
186	 */
187	memset(cdata->sn, 0, sizeof(cdata->sn));
188	memcpy(cdata->sn, "2012", strlen("2012"));
189	memset(cdata->mn, 0, sizeof(cdata->mn));
190	memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2"));
191	memset(cdata->fr, 0, sizeof(cdata->fr));
192	memcpy(cdata->fr, "0", strlen("0"));
193	cdata->rab = 8;
194	cdata->aerl = 3;
195	cdata->lpa.ns_smart = 1;
196	cdata->sqes.min = 6;
197	cdata->sqes.max = 6;
198	cdata->sqes.min = 4;
199	cdata->sqes.max = 4;
200	cdata->nn = 1;
201
202	/* Chatham2 doesn't support DSM command */
203	cdata->oncs.dsm = 0;
204
205	cdata->vwc.present = 1;
206}
207#endif /* CHATHAM2 */
208
209static void
210nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
211{
212	struct nvme_qpair	*qpair;
213	uint32_t		num_entries;
214
215	qpair = &ctrlr->adminq;
216
217	num_entries = NVME_ADMIN_ENTRIES;
218	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
219	/*
220	 * If admin_entries was overridden to an invalid value, revert it
221	 *  back to our default value.
222	 */
223	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
224	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
225		printf("nvme: invalid hw.nvme.admin_entries=%d specified\n",
226		    num_entries);
227		num_entries = NVME_ADMIN_ENTRIES;
228	}
229
230	/*
231	 * The admin queue's max xfer size is treated differently than the
232	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
233	 */
234	nvme_qpair_construct(qpair,
235			     0, /* qpair ID */
236			     0, /* vector */
237			     num_entries,
238			     NVME_ADMIN_TRACKERS,
239			     16*1024, /* max xfer size */
240			     ctrlr);
241}
242
243static int
244nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
245{
246	struct nvme_qpair	*qpair;
247	union cap_lo_register	cap_lo;
248	int			i, num_entries, num_trackers;
249
250	num_entries = NVME_IO_ENTRIES;
251	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
252
253	/*
254	 * NVMe spec sets a hard limit of 64K max entries, but
255	 *  devices may specify a smaller limit, so we need to check
256	 *  the MQES field in the capabilities register.
257	 */
258	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
259	num_entries = min(num_entries, cap_lo.bits.mqes+1);
260
261	num_trackers = NVME_IO_TRACKERS;
262	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
263
264	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
265	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
266	/*
267	 * No need to have more trackers than entries in the submit queue.
268	 *  Note also that for a queue size of N, we can only have (N-1)
269	 *  commands outstanding, hence the "-1" here.
270	 */
271	num_trackers = min(num_trackers, (num_entries-1));
272
273	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
274	TUNABLE_INT_FETCH("hw.nvme.max_xfer_size", &ctrlr->max_xfer_size);
275	/*
276	 * Check that tunable doesn't specify a size greater than what our
277	 *  driver supports, and is an even PAGE_SIZE multiple.
278	 */
279	if (ctrlr->max_xfer_size > NVME_MAX_XFER_SIZE ||
280	    ctrlr->max_xfer_size % PAGE_SIZE)
281		ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
282
283	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
284	    M_NVME, M_ZERO | M_NOWAIT);
285
286	if (ctrlr->ioq == NULL)
287		return (ENOMEM);
288
289	for (i = 0; i < ctrlr->num_io_queues; i++) {
290		qpair = &ctrlr->ioq[i];
291
292		/*
293		 * Admin queue has ID=0. IO queues start at ID=1 -
294		 *  hence the 'i+1' here.
295		 *
296		 * For I/O queues, use the controller-wide max_xfer_size
297		 *  calculated in nvme_attach().
298		 */
299		nvme_qpair_construct(qpair,
300				     i+1, /* qpair ID */
301				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
302				     num_entries,
303				     num_trackers,
304				     ctrlr->max_xfer_size,
305				     ctrlr);
306
307		if (ctrlr->per_cpu_io_queues)
308			bus_bind_intr(ctrlr->dev, qpair->res, i);
309	}
310
311	return (0);
312}
313
314static int
315nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
316{
317	int ms_waited;
318	union cc_register cc;
319	union csts_register csts;
320
321	cc.raw = nvme_mmio_read_4(ctrlr, cc);
322	csts.raw = nvme_mmio_read_4(ctrlr, csts);
323
324	if (!cc.bits.en) {
325		device_printf(ctrlr->dev, "%s called with cc.en = 0\n",
326		    __func__);
327		return (ENXIO);
328	}
329
330	ms_waited = 0;
331
332	while (!csts.bits.rdy) {
333		DELAY(1000);
334		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
335			device_printf(ctrlr->dev, "controller did not become "
336			    "ready within %d ms\n", ctrlr->ready_timeout_in_ms);
337			return (ENXIO);
338		}
339		csts.raw = nvme_mmio_read_4(ctrlr, csts);
340	}
341
342	return (0);
343}
344
345static void
346nvme_ctrlr_disable(struct nvme_controller *ctrlr)
347{
348	union cc_register cc;
349	union csts_register csts;
350
351	cc.raw = nvme_mmio_read_4(ctrlr, cc);
352	csts.raw = nvme_mmio_read_4(ctrlr, csts);
353
354	if (cc.bits.en == 1 && csts.bits.rdy == 0)
355		nvme_ctrlr_wait_for_ready(ctrlr);
356
357	cc.bits.en = 0;
358	nvme_mmio_write_4(ctrlr, cc, cc.raw);
359	DELAY(5000);
360}
361
362static int
363nvme_ctrlr_enable(struct nvme_controller *ctrlr)
364{
365	union cc_register	cc;
366	union csts_register	csts;
367	union aqa_register	aqa;
368
369	cc.raw = nvme_mmio_read_4(ctrlr, cc);
370	csts.raw = nvme_mmio_read_4(ctrlr, csts);
371
372	if (cc.bits.en == 1) {
373		if (csts.bits.rdy == 1)
374			return (0);
375		else
376			return (nvme_ctrlr_wait_for_ready(ctrlr));
377	}
378
379	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
380	DELAY(5000);
381	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
382	DELAY(5000);
383
384	aqa.raw = 0;
385	/* acqs and asqs are 0-based. */
386	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
387	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
388	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
389	DELAY(5000);
390
391	cc.bits.en = 1;
392	cc.bits.css = 0;
393	cc.bits.ams = 0;
394	cc.bits.shn = 0;
395	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
396	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
397
398	/* This evaluates to 0, which is according to spec. */
399	cc.bits.mps = (PAGE_SIZE >> 13);
400
401	nvme_mmio_write_4(ctrlr, cc, cc.raw);
402	DELAY(5000);
403
404	return (nvme_ctrlr_wait_for_ready(ctrlr));
405}
406
407int
408nvme_ctrlr_reset(struct nvme_controller *ctrlr)
409{
410
411	nvme_ctrlr_disable(ctrlr);
412	return (nvme_ctrlr_enable(ctrlr));
413}
414
415static int
416nvme_ctrlr_identify(struct nvme_controller *ctrlr)
417{
418	struct mtx		*mtx;
419	struct nvme_completion	cpl;
420	int			status;
421
422	mtx = mtx_pool_find(mtxpool_sleep, &cpl);
423
424	mtx_lock(mtx);
425	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
426	    nvme_ctrlr_cb, &cpl);
427	status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
428	mtx_unlock(mtx);
429	if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
430		printf("nvme_identify_controller failed!\n");
431		return (ENXIO);
432	}
433
434#ifdef CHATHAM2
435	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
436		nvme_chatham_populate_cdata(ctrlr);
437#endif
438
439	return (0);
440}
441
442static int
443nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
444{
445	struct mtx		*mtx;
446	struct nvme_completion	cpl;
447	int			cq_allocated, sq_allocated, status;
448
449	mtx = mtx_pool_find(mtxpool_sleep, &cpl);
450
451	mtx_lock(mtx);
452	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
453	    nvme_ctrlr_cb, &cpl);
454	status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
455	mtx_unlock(mtx);
456	if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
457		printf("nvme_set_num_queues failed!\n");
458		return (ENXIO);
459	}
460
461	/*
462	 * Data in cdw0 is 0-based.
463	 * Lower 16-bits indicate number of submission queues allocated.
464	 * Upper 16-bits indicate number of completion queues allocated.
465	 */
466	sq_allocated = (cpl.cdw0 & 0xFFFF) + 1;
467	cq_allocated = (cpl.cdw0 >> 16) + 1;
468
469	/*
470	 * Check that the controller was able to allocate the number of
471	 *  queues we requested.  If not, revert to one IO queue.
472	 */
473	if (sq_allocated < ctrlr->num_io_queues ||
474	    cq_allocated < ctrlr->num_io_queues) {
475		ctrlr->num_io_queues = 1;
476		ctrlr->per_cpu_io_queues = 0;
477
478		/* TODO: destroy extra queues that were created
479		 *  previously but now found to be not needed.
480		 */
481	}
482
483	return (0);
484}
485
486static int
487nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
488{
489	struct mtx		*mtx;
490	struct nvme_qpair	*qpair;
491	struct nvme_completion	cpl;
492	int			i, status;
493
494	mtx = mtx_pool_find(mtxpool_sleep, &cpl);
495
496	for (i = 0; i < ctrlr->num_io_queues; i++) {
497		qpair = &ctrlr->ioq[i];
498
499		mtx_lock(mtx);
500		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
501		    nvme_ctrlr_cb, &cpl);
502		status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
503		mtx_unlock(mtx);
504		if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
505			printf("nvme_create_io_cq failed!\n");
506			return (ENXIO);
507		}
508
509		mtx_lock(mtx);
510		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
511		    nvme_ctrlr_cb, &cpl);
512		status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
513		mtx_unlock(mtx);
514		if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
515			printf("nvme_create_io_sq failed!\n");
516			return (ENXIO);
517		}
518	}
519
520	return (0);
521}
522
523static int
524nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
525{
526	struct nvme_namespace	*ns;
527	int			i, status;
528
529	for (i = 0; i < ctrlr->cdata.nn; i++) {
530		ns = &ctrlr->ns[i];
531		status = nvme_ns_construct(ns, i+1, ctrlr);
532		if (status != 0)
533			return (status);
534	}
535
536	return (0);
537}
538
539static void
540nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
541{
542	struct nvme_async_event_request *aer = arg;
543
544	if (cpl->sf_sc == NVME_SC_ABORTED_SQ_DELETION) {
545		/*
546		 *  This is simulated when controller is being shut down, to
547		 *  effectively abort outstanding asynchronous event requests
548		 *  and make sure all memory is freed.  Do not repost the
549		 *  request in this case.
550		 */
551		return;
552	}
553
554	/* TODO: decode async event type based on status */
555
556	/*
557	 * Repost another asynchronous event request to replace the one that
558	 *  just completed.
559	 */
560	printf("Asynchronous event occurred.\n");
561	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
562}
563
564static void
565nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
566    struct nvme_async_event_request *aer)
567{
568	struct nvme_request *req;
569
570	aer->ctrlr = ctrlr;
571	req = nvme_allocate_request(NULL, 0, nvme_ctrlr_async_event_cb, aer);
572	aer->req = req;
573
574	/*
575	 * Override default timeout value here, since asynchronous event
576	 *  requests should by nature never be timed out.
577	 */
578	req->timeout = 0;
579	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
580	nvme_ctrlr_submit_admin_request(ctrlr, req);
581}
582
583static void
584nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
585{
586	union nvme_critical_warning_state	state;
587	struct nvme_async_event_request		*aer;
588	uint32_t				i;
589
590	state.raw = 0xFF;
591	state.bits.reserved = 0;
592	nvme_ctrlr_cmd_set_async_event_config(ctrlr, state, NULL, NULL);
593
594	/* aerl is a zero-based value, so we need to add 1 here. */
595	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
596
597	/* Chatham doesn't support AERs. */
598	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
599		ctrlr->num_aers = 0;
600
601	for (i = 0; i < ctrlr->num_aers; i++) {
602		aer = &ctrlr->aer[i];
603		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
604	}
605}
606
607static void
608nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
609{
610
611	ctrlr->int_coal_time = 0;
612	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
613	    &ctrlr->int_coal_time);
614
615	ctrlr->int_coal_threshold = 0;
616	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
617	    &ctrlr->int_coal_threshold);
618
619	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
620	    ctrlr->int_coal_threshold, NULL, NULL);
621}
622
623void
624nvme_ctrlr_start(void *ctrlr_arg)
625{
626	struct nvme_controller *ctrlr = ctrlr_arg;
627
628	if (nvme_ctrlr_identify(ctrlr) != 0)
629		goto err;
630
631	if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0)
632		goto err;
633
634	if (nvme_ctrlr_create_qpairs(ctrlr) != 0)
635		goto err;
636
637	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0)
638		goto err;
639
640	nvme_ctrlr_configure_aer(ctrlr);
641	nvme_ctrlr_configure_int_coalescing(ctrlr);
642
643	ctrlr->is_started = TRUE;
644
645err:
646
647	/*
648	 * Initialize sysctls, even if controller failed to start, to
649	 *  assist with debugging admin queue pair.
650	 */
651	nvme_sysctl_initialize_ctrlr(ctrlr);
652	config_intrhook_disestablish(&ctrlr->config_hook);
653}
654
655static void
656nvme_ctrlr_intx_handler(void *arg)
657{
658	struct nvme_controller *ctrlr = arg;
659
660	nvme_mmio_write_4(ctrlr, intms, 1);
661
662	nvme_qpair_process_completions(&ctrlr->adminq);
663
664	if (ctrlr->ioq[0].cpl)
665		nvme_qpair_process_completions(&ctrlr->ioq[0]);
666
667	nvme_mmio_write_4(ctrlr, intmc, 1);
668}
669
670static int
671nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
672{
673
674	ctrlr->num_io_queues = 1;
675	ctrlr->per_cpu_io_queues = 0;
676	ctrlr->rid = 0;
677	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
678	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
679
680	if (ctrlr->res == NULL) {
681		device_printf(ctrlr->dev, "unable to allocate shared IRQ\n");
682		return (ENOMEM);
683	}
684
685	bus_setup_intr(ctrlr->dev, ctrlr->res,
686	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
687	    ctrlr, &ctrlr->tag);
688
689	if (ctrlr->tag == NULL) {
690		device_printf(ctrlr->dev,
691		    "unable to setup legacy interrupt handler\n");
692		return (ENOMEM);
693	}
694
695	return (0);
696}
697
698static int
699nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
700    struct thread *td)
701{
702	struct nvme_controller	*ctrlr;
703	struct nvme_completion	cpl;
704	struct mtx		*mtx;
705
706	ctrlr = cdev->si_drv1;
707
708	switch (cmd) {
709	case NVME_IDENTIFY_CONTROLLER:
710#ifdef CHATHAM2
711		/*
712		 * Don't refresh data on Chatham, since Chatham returns
713		 *  garbage on IDENTIFY anyways.
714		 */
715		if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) {
716			memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata));
717			break;
718		}
719#endif
720		/* Refresh data before returning to user. */
721		mtx = mtx_pool_find(mtxpool_sleep, &cpl);
722		mtx_lock(mtx);
723		nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
724		    nvme_ctrlr_cb, &cpl);
725		msleep(&cpl, mtx, PRIBIO, "nvme_ioctl", 0);
726		mtx_unlock(mtx);
727		if (cpl.sf_sc || cpl.sf_sct)
728			return (ENXIO);
729		memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata));
730		break;
731	default:
732		return (ENOTTY);
733	}
734
735	return (0);
736}
737
738static struct cdevsw nvme_ctrlr_cdevsw = {
739	.d_version =	D_VERSION,
740	.d_flags =	0,
741	.d_ioctl =	nvme_ctrlr_ioctl
742};
743
744int
745nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
746{
747	union cap_lo_register	cap_lo;
748	union cap_hi_register	cap_hi;
749	int			num_vectors, per_cpu_io_queues, status = 0;
750
751	ctrlr->dev = dev;
752	ctrlr->is_started = FALSE;
753
754	status = nvme_ctrlr_allocate_bar(ctrlr);
755
756	if (status != 0)
757		return (status);
758
759#ifdef CHATHAM2
760	if (pci_get_devid(dev) == CHATHAM_PCI_ID) {
761		status = nvme_ctrlr_allocate_chatham_bar(ctrlr);
762		if (status != 0)
763			return (status);
764		nvme_ctrlr_setup_chatham(ctrlr);
765	}
766#endif
767
768	/*
769	 * Software emulators may set the doorbell stride to something
770	 *  other than zero, but this driver is not set up to handle that.
771	 */
772	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
773	if (cap_hi.bits.dstrd != 0)
774		return (ENXIO);
775
776	/* Get ready timeout value from controller, in units of 500ms. */
777	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
778	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
779
780	per_cpu_io_queues = 1;
781	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
782	ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
783
784	if (ctrlr->per_cpu_io_queues)
785		ctrlr->num_io_queues = mp_ncpus;
786	else
787		ctrlr->num_io_queues = 1;
788
789	ctrlr->force_intx = 0;
790	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
791
792	ctrlr->msix_enabled = 1;
793
794	if (ctrlr->force_intx) {
795		ctrlr->msix_enabled = 0;
796		goto intx;
797	}
798
799	/* One vector per IO queue, plus one vector for admin queue. */
800	num_vectors = ctrlr->num_io_queues + 1;
801
802	if (pci_msix_count(dev) < num_vectors) {
803		ctrlr->msix_enabled = 0;
804		goto intx;
805	}
806
807	if (pci_alloc_msix(dev, &num_vectors) != 0)
808		ctrlr->msix_enabled = 0;
809
810intx:
811
812	if (!ctrlr->msix_enabled)
813		nvme_ctrlr_configure_intx(ctrlr);
814
815	nvme_ctrlr_construct_admin_qpair(ctrlr);
816
817	status = nvme_ctrlr_construct_io_qpairs(ctrlr);
818
819	if (status != 0)
820		return (status);
821
822	ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
823	    "nvme%d", device_get_unit(dev));
824
825	if (ctrlr->cdev == NULL)
826		return (ENXIO);
827
828	ctrlr->cdev->si_drv1 = (void *)ctrlr;
829
830	return (0);
831}
832
833void
834nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
835{
836	struct nvme_namespace		*ns;
837	int				i;
838
839	for (i = 0; i < NVME_MAX_NAMESPACES; i++) {
840		ns = &ctrlr->ns[i];
841		if (ns->cdev)
842			destroy_dev(ns->cdev);
843	}
844
845	if (ctrlr->cdev)
846		destroy_dev(ctrlr->cdev);
847
848	for (i = 0; i < ctrlr->num_io_queues; i++) {
849		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
850	}
851
852	free(ctrlr->ioq, M_NVME);
853
854	/* Manually abort outstanding async event requests. */
855	for (i = 0; i < ctrlr->num_aers; i++) {
856		nvme_qpair_manual_abort_request(&ctrlr->adminq,
857		    ctrlr->aer[i].req, NVME_SCT_GENERIC,
858		    NVME_SC_ABORTED_SQ_DELETION, FALSE);
859	}
860
861	nvme_admin_qpair_destroy(&ctrlr->adminq);
862
863	if (ctrlr->resource != NULL) {
864		bus_release_resource(dev, SYS_RES_MEMORY,
865		    ctrlr->resource_id, ctrlr->resource);
866	}
867
868	if (ctrlr->bar4_resource != NULL) {
869		bus_release_resource(dev, SYS_RES_MEMORY,
870		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
871	}
872
873#ifdef CHATHAM2
874	if (ctrlr->chatham_resource != NULL) {
875		bus_release_resource(dev, SYS_RES_MEMORY,
876		    ctrlr->chatham_resource_id, ctrlr->chatham_resource);
877	}
878#endif
879
880	if (ctrlr->tag)
881		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
882
883	if (ctrlr->res)
884		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
885		    rman_get_rid(ctrlr->res), ctrlr->res);
886
887	if (ctrlr->msix_enabled)
888		pci_release_msi(dev);
889}
890
891void
892nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
893    struct nvme_request *req)
894{
895
896	nvme_qpair_submit_request(&ctrlr->adminq, req);
897}
898
899void
900nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
901    struct nvme_request *req)
902{
903	struct nvme_qpair       *qpair;
904
905	if (ctrlr->per_cpu_io_queues)
906		qpair = &ctrlr->ioq[curcpu];
907	else
908		qpair = &ctrlr->ioq[0];
909
910	nvme_qpair_submit_request(qpair, req);
911}
912