• Home
  • History
  • Annotate
  • only in this directory
1/*
2 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved.
3 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *   1. Redistributions of source code must retain the above copyright
9 *      notice, this list of conditions and the following disclaimer.
10 *   2. Redistributions in binary form must reproduce the above copyright
11 *      notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 * $FreeBSD$
29 *
30 * The header contains the definitions of constants and function
31 * prototypes used only in kernelspace.
32 */
33
34#ifndef _NET_NETMAP_KERN_H_
35#define _NET_NETMAP_KERN_H_
36
37#define WITH_VALE	// comment out to disable VALE support
38#define WITH_PIPES
39#define WITH_MONITOR
40#define WITH_GENERIC
41
42#if defined(__FreeBSD__)
43
44#define likely(x)	__builtin_expect((long)!!(x), 1L)
45#define unlikely(x)	__builtin_expect((long)!!(x), 0L)
46
47#define	NM_LOCK_T	struct mtx
48
49/* netmap global lock */
50#define	NMG_LOCK_T	struct sx
51#define NMG_LOCK_INIT()	sx_init(&netmap_global_lock, \
52				"netmap global lock")
53#define NMG_LOCK_DESTROY()	sx_destroy(&netmap_global_lock)
54#define NMG_LOCK()	sx_xlock(&netmap_global_lock)
55#define NMG_UNLOCK()	sx_xunlock(&netmap_global_lock)
56#define NMG_LOCK_ASSERT()	sx_assert(&netmap_global_lock, SA_XLOCKED)
57
58#define	NM_SELINFO_T	struct nm_selinfo
59#define	MBUF_LEN(m)	((m)->m_pkthdr.len)
60#define	MBUF_IFP(m)	((m)->m_pkthdr.rcvif)
61#define	NM_SEND_UP(ifp, m)	((NA(ifp))->if_input)(ifp, m)
62
63#define NM_ATOMIC_T	volatile int	// XXX ?
64/* atomic operations */
65#include <machine/atomic.h>
66#define NM_ATOMIC_TEST_AND_SET(p)       (!atomic_cmpset_acq_int((p), 0, 1))
67#define NM_ATOMIC_CLEAR(p)              atomic_store_rel_int((p), 0)
68
69#if __FreeBSD_version >= 1100030
70#define	WNA(_ifp)	(_ifp)->if_netmap
71#else /* older FreeBSD */
72#define	WNA(_ifp)	(_ifp)->if_pspare[0]
73#endif /* older FreeBSD */
74
75#if __FreeBSD_version >= 1100005
76struct netmap_adapter *netmap_getna(if_t ifp);
77#endif
78
79#if __FreeBSD_version >= 1100027
80#define GET_MBUF_REFCNT(m)      ((m)->m_ext.ext_cnt ? *((m)->m_ext.ext_cnt) : -1)
81#define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ext_cnt) = x
82#define PNT_MBUF_REFCNT(m)      ((m)->m_ext.ext_cnt)
83#else
84#define GET_MBUF_REFCNT(m)      ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
85#define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ref_cnt) = x
86#define PNT_MBUF_REFCNT(m)      ((m)->m_ext.ref_cnt)
87#endif
88
89MALLOC_DECLARE(M_NETMAP);
90
91struct nm_selinfo {
92	struct selinfo si;
93	struct mtx m;
94};
95
96void freebsd_selwakeup(struct nm_selinfo *si, int pri);
97
98// XXX linux struct, not used in FreeBSD
99struct net_device_ops {
100};
101struct ethtool_ops {
102};
103struct hrtimer {
104};
105
106#elif defined (linux)
107
108#define	NM_LOCK_T	safe_spinlock_t	// see bsd_glue.h
109#define	NM_SELINFO_T	wait_queue_head_t
110#define	MBUF_LEN(m)	((m)->len)
111#define	MBUF_IFP(m)	((m)->dev)
112#define	NM_SEND_UP(ifp, m)  \
113                        do { \
114                            m->priority = NM_MAGIC_PRIORITY_RX; \
115                            netif_rx(m); \
116                        } while (0)
117
118#define NM_ATOMIC_T	volatile long unsigned int
119
120#define NM_MTX_T		struct mutex
121#define NM_MTX_INIT(m, s)	do { (void)s; mutex_init(&(m)); } while (0)
122#define NM_MTX_DESTROY(m)	do { (void)m; } while (0)
123#define NM_MTX_LOCK(m)		mutex_lock(&(m))
124#define NM_MTX_UNLOCK(m)	mutex_unlock(&(m))
125#define NM_MTX_LOCK_ASSERT(m)	mutex_is_locked(&(m))
126
127#define	NMG_LOCK_T		NM_MTX_T
128#define	NMG_LOCK_INIT()		NM_MTX_INIT(netmap_global_lock, \
129					"netmap_global_lock")
130#define	NMG_LOCK_DESTROY()	NM_MTX_DESTROY(netmap_global_lock)
131#define	NMG_LOCK()		NM_MTX_LOCK(netmap_global_lock)
132#define	NMG_UNLOCK()		NM_MTX_UNLOCK(netmap_global_lock)
133#define	NMG_LOCK_ASSERT()	NM_MTX_LOCK_ASSERT(netmap_global_lock)
134
135#ifndef DEV_NETMAP
136#define DEV_NETMAP
137#endif /* DEV_NETMAP */
138
139#elif defined (__APPLE__)
140
141#warning apple support is incomplete.
142#define likely(x)	__builtin_expect(!!(x), 1)
143#define unlikely(x)	__builtin_expect(!!(x), 0)
144#define	NM_LOCK_T	IOLock *
145#define	NM_SELINFO_T	struct selinfo
146#define	MBUF_LEN(m)	((m)->m_pkthdr.len)
147#define	NM_SEND_UP(ifp, m)	((ifp)->if_input)(ifp, m)
148
149#else
150
151#error unsupported platform
152
153#endif /* end - platform-specific code */
154
155#define ND(format, ...)
156#define D(format, ...)						\
157	do {							\
158		struct timeval __xxts;				\
159		microtime(&__xxts);				\
160		printf("%03d.%06d [%4d] %-25s " format "\n",	\
161		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
162		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
163	} while (0)
164
165/* rate limited, lps indicates how many per second */
166#define RD(lps, format, ...)					\
167	do {							\
168		static int t0, __cnt;				\
169		if (t0 != time_second) {			\
170			t0 = time_second;			\
171			__cnt = 0;				\
172		}						\
173		if (__cnt++ < lps)				\
174			D(format, ##__VA_ARGS__);		\
175	} while (0)
176
177struct netmap_adapter;
178struct nm_bdg_fwd;
179struct nm_bridge;
180struct netmap_priv_d;
181
182const char *nm_dump_buf(char *p, int len, int lim, char *dst);
183
184#include "netmap_mbq.h"
185
186extern NMG_LOCK_T	netmap_global_lock;
187
188/*
189 * private, kernel view of a ring. Keeps track of the status of
190 * a ring across system calls.
191 *
192 *	nr_hwcur	index of the next buffer to refill.
193 *			It corresponds to ring->head
194 *			at the time the system call returns.
195 *
196 *	nr_hwtail	index of the first buffer owned by the kernel.
197 *			On RX, hwcur->hwtail are receive buffers
198 *			not yet released. hwcur is advanced following
199 *			ring->head, hwtail is advanced on incoming packets,
200 *			and a wakeup is generated when hwtail passes ring->cur
201 *			    On TX, hwcur->rcur have been filled by the sender
202 *			but not sent yet to the NIC; rcur->hwtail are available
203 *			for new transmissions, and hwtail->hwcur-1 are pending
204 *			transmissions not yet acknowledged.
205 *
206 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
207 * This is so that, on a reset, buffers owned by userspace are not
208 * modified by the kernel. In particular:
209 * RX rings: the next empty buffer (hwtail + hwofs) coincides with
210 * 	the next empty buffer as known by the hardware (next_to_check or so).
211 * TX rings: hwcur + hwofs coincides with next_to_send
212 *
213 * For received packets, slot->flags is set to nkr_slot_flags
214 * so we can provide a proper initial value (e.g. set NS_FORWARD
215 * when operating in 'transparent' mode).
216 *
217 * The following fields are used to implement lock-free copy of packets
218 * from input to output ports in VALE switch:
219 *	nkr_hwlease	buffer after the last one being copied.
220 *			A writer in nm_bdg_flush reserves N buffers
221 *			from nr_hwlease, advances it, then does the
222 *			copy outside the lock.
223 *			In RX rings (used for VALE ports),
224 *			nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
225 *			In TX rings (used for NIC or host stack ports)
226 *			nkr_hwcur <= nkr_hwlease < nkr_hwtail
227 *	nkr_leases	array of nkr_num_slots where writers can report
228 *			completion of their block. NR_NOSLOT (~0) indicates
229 *			that the writer has not finished yet
230 *	nkr_lease_idx	index of next free slot in nr_leases, to be assigned
231 *
232 * The kring is manipulated by txsync/rxsync and generic netmap function.
233 *
234 * Concurrent rxsync or txsync on the same ring are prevented through
235 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
236 * for NIC rings, and for TX rings attached to the host stack.
237 *
238 * RX rings attached to the host stack use an mbq (rx_queue) on both
239 * rxsync_from_host() and netmap_transmit(). The mbq is protected
240 * by its internal lock.
241 *
242 * RX rings attached to the VALE switch are accessed by both senders
243 * and receiver. They are protected through the q_lock on the RX ring.
244 */
245struct netmap_kring {
246	struct netmap_ring	*ring;
247
248	uint32_t	nr_hwcur;
249	uint32_t	nr_hwtail;
250
251	/*
252	 * Copies of values in user rings, so we do not need to look
253	 * at the ring (which could be modified). These are set in the
254	 * *sync_prologue()/finalize() routines.
255	 */
256	uint32_t	rhead;
257	uint32_t	rcur;
258	uint32_t	rtail;
259
260	uint32_t	nr_kflags;	/* private driver flags */
261#define NKR_PENDINTR	0x1		// Pending interrupt.
262	uint32_t	nkr_num_slots;
263
264	/*
265	 * On a NIC reset, the NIC ring indexes may be reset but the
266	 * indexes in the netmap rings remain the same. nkr_hwofs
267	 * keeps track of the offset between the two.
268	 */
269	int32_t		nkr_hwofs;
270
271	uint16_t	nkr_slot_flags;	/* initial value for flags */
272
273	/* last_reclaim is opaque marker to help reduce the frequency
274	 * of operations such as reclaiming tx buffers. A possible use
275	 * is set it to ticks and do the reclaim only once per tick.
276	 */
277	uint64_t	last_reclaim;
278
279
280	NM_SELINFO_T	si;		/* poll/select wait queue */
281	NM_LOCK_T	q_lock;		/* protects kring and ring. */
282	NM_ATOMIC_T	nr_busy;	/* prevent concurrent syscalls */
283
284	struct netmap_adapter *na;
285
286	/* The following fields are for VALE switch support */
287	struct nm_bdg_fwd *nkr_ft;
288	uint32_t	*nkr_leases;
289#define NR_NOSLOT	((uint32_t)~0)	/* used in nkr_*lease* */
290	uint32_t	nkr_hwlease;
291	uint32_t	nkr_lease_idx;
292
293	/* while nkr_stopped is set, no new [tr]xsync operations can
294	 * be started on this kring.
295	 * This is used by netmap_disable_all_rings()
296	 * to find a synchronization point where critical data
297	 * structures pointed to by the kring can be added or removed
298	 */
299	volatile int nkr_stopped;
300
301	/* Support for adapters without native netmap support.
302	 * On tx rings we preallocate an array of tx buffers
303	 * (same size as the netmap ring), on rx rings we
304	 * store incoming mbufs in a queue that is drained by
305	 * a rxsync.
306	 */
307	struct mbuf **tx_pool;
308	// u_int nr_ntc;		/* Emulation of a next-to-clean RX ring pointer. */
309	struct mbq rx_queue;            /* intercepted rx mbufs. */
310
311	uint32_t	ring_id;	/* debugging */
312	char name[64];			/* diagnostic */
313
314	/* [tx]sync callback for this kring.
315	 * The default nm_kring_create callback (netmap_krings_create)
316	 * sets the nm_sync callback of each hardware tx(rx) kring to
317	 * the corresponding nm_txsync(nm_rxsync) taken from the
318	 * netmap_adapter; moreover, it sets the sync callback
319	 * of the host tx(rx) ring to netmap_txsync_to_host
320	 * (netmap_rxsync_from_host).
321	 *
322	 * Overrides: the above configuration is not changed by
323	 * any of the nm_krings_create callbacks.
324	 */
325	int (*nm_sync)(struct netmap_kring *kring, int flags);
326
327#ifdef WITH_PIPES
328	struct netmap_kring *pipe;	/* if this is a pipe ring,
329					 * pointer to the other end
330					 */
331	struct netmap_ring *save_ring;	/* pointer to hidden rings
332       					 * (see netmap_pipe.c for details)
333					 */
334#endif /* WITH_PIPES */
335
336#ifdef WITH_MONITOR
337	/* pointer to the adapter that is monitoring this kring (if any)
338	 */
339	struct netmap_monitor_adapter *monitor;
340	/*
341	 * Monitors work by intercepting the txsync and/or rxsync of the
342	 * monitored krings. This is implemented by replacing
343	 * the nm_sync pointer above and saving the previous
344	 * one in save_sync below.
345	 */
346	int (*save_sync)(struct netmap_kring *kring, int flags);
347#endif
348} __attribute__((__aligned__(64)));
349
350
351/* return the next index, with wraparound */
352static inline uint32_t
353nm_next(uint32_t i, uint32_t lim)
354{
355	return unlikely (i == lim) ? 0 : i + 1;
356}
357
358
359/* return the previous index, with wraparound */
360static inline uint32_t
361nm_prev(uint32_t i, uint32_t lim)
362{
363	return unlikely (i == 0) ? lim : i - 1;
364}
365
366
367/*
368 *
369 * Here is the layout for the Rx and Tx rings.
370
371       RxRING                            TxRING
372
373      +-----------------+            +-----------------+
374      |                 |            |                 |
375      |XXX free slot XXX|            |XXX free slot XXX|
376      +-----------------+            +-----------------+
377head->| owned by user   |<-hwcur     | not sent to nic |<-hwcur
378      |                 |            | yet             |
379      +-----------------+            |                 |
380 cur->| available to    |            |                 |
381      | user, not read  |            +-----------------+
382      | yet             |       cur->| (being          |
383      |                 |            |  prepared)      |
384      |                 |            |                 |
385      +-----------------+            +     ------      +
386tail->|                 |<-hwtail    |                 |<-hwlease
387      | (being          | ...        |                 | ...
388      |  prepared)      | ...        |                 | ...
389      +-----------------+ ...        |                 | ...
390      |                 |<-hwlease   +-----------------+
391      |                 |      tail->|                 |<-hwtail
392      |                 |            |                 |
393      |                 |            |                 |
394      |                 |            |                 |
395      +-----------------+            +-----------------+
396
397 * The cur/tail (user view) and hwcur/hwtail (kernel view)
398 * are used in the normal operation of the card.
399 *
400 * When a ring is the output of a switch port (Rx ring for
401 * a VALE port, Tx ring for the host stack or NIC), slots
402 * are reserved in blocks through 'hwlease' which points
403 * to the next unused slot.
404 * On an Rx ring, hwlease is always after hwtail,
405 * and completions cause hwtail to advance.
406 * On a Tx ring, hwlease is always between cur and hwtail,
407 * and completions cause cur to advance.
408 *
409 * nm_kr_space() returns the maximum number of slots that
410 * can be assigned.
411 * nm_kr_lease() reserves the required number of buffers,
412 *    advances nkr_hwlease and also returns an entry in
413 *    a circular array where completions should be reported.
414 */
415
416
417
418enum txrx { NR_RX = 0, NR_TX = 1 };
419
420struct netmap_vp_adapter; // forward
421
422/*
423 * The "struct netmap_adapter" extends the "struct adapter"
424 * (or equivalent) device descriptor.
425 * It contains all base fields needed to support netmap operation.
426 * There are in fact different types of netmap adapters
427 * (native, generic, VALE switch...) so a netmap_adapter is
428 * just the first field in the derived type.
429 */
430struct netmap_adapter {
431	/*
432	 * On linux we do not have a good way to tell if an interface
433	 * is netmap-capable. So we always use the following trick:
434	 * NA(ifp) points here, and the first entry (which hopefully
435	 * always exists and is at least 32 bits) contains a magic
436	 * value which we can use to detect that the interface is good.
437	 */
438	uint32_t magic;
439	uint32_t na_flags;	/* enabled, and other flags */
440#define NAF_SKIP_INTR	1	/* use the regular interrupt handler.
441				 * useful during initialization
442				 */
443#define NAF_SW_ONLY	2	/* forward packets only to sw adapter */
444#define NAF_BDG_MAYSLEEP 4	/* the bridge is allowed to sleep when
445				 * forwarding packets coming from this
446				 * interface
447				 */
448#define NAF_MEM_OWNER	8	/* the adapter is responsible for the
449				 * deallocation of the memory allocator
450				 */
451#define NAF_NATIVE_ON   16      /* the adapter is native and the attached
452				 * interface is in netmap mode.
453				 * Virtual ports (vale, pipe, monitor...)
454				 * should never use this flag.
455				 */
456#define	NAF_NETMAP_ON	32	/* netmap is active (either native or
457				 * emulated). Where possible (e.g. FreeBSD)
458				 * IFCAP_NETMAP also mirrors this flag.
459				 */
460#define NAF_HOST_RINGS  64	/* the adapter supports the host rings */
461#define NAF_FORCE_NATIVE 128	/* the adapter is always NATIVE */
462#define	NAF_BUSY	(1U<<31) /* the adapter is used internally and
463				  * cannot be registered from userspace
464				  */
465	int active_fds; /* number of user-space descriptors using this
466			 interface, which is equal to the number of
467			 struct netmap_if objs in the mapped region. */
468
469	u_int num_rx_rings; /* number of adapter receive rings */
470	u_int num_tx_rings; /* number of adapter transmit rings */
471
472	u_int num_tx_desc; /* number of descriptor in each queue */
473	u_int num_rx_desc;
474
475	/* tx_rings and rx_rings are private but allocated
476	 * as a contiguous chunk of memory. Each array has
477	 * N+1 entries, for the adapter queues and for the host queue.
478	 */
479	struct netmap_kring *tx_rings; /* array of TX rings. */
480	struct netmap_kring *rx_rings; /* array of RX rings. */
481
482	void *tailroom;		       /* space below the rings array */
483				       /* (used for leases) */
484
485
486	NM_SELINFO_T tx_si, rx_si;	/* global wait queues */
487
488	/* count users of the global wait queues */
489	int tx_si_users, rx_si_users;
490
491	void *pdev; /* used to store pci device */
492
493	/* copy of if_qflush and if_transmit pointers, to intercept
494	 * packets from the network stack when netmap is active.
495	 */
496	int     (*if_transmit)(struct ifnet *, struct mbuf *);
497
498	/* copy of if_input for netmap_send_up() */
499	void     (*if_input)(struct ifnet *, struct mbuf *);
500
501	/* references to the ifnet and device routines, used by
502	 * the generic netmap functions.
503	 */
504	struct ifnet *ifp; /* adapter is ifp->if_softc */
505
506	/*---- callbacks for this netmap adapter -----*/
507	/*
508	 * nm_dtor() is the cleanup routine called when destroying
509	 *	the adapter.
510	 *	Called with NMG_LOCK held.
511	 *
512	 * nm_register() is called on NIOCREGIF and close() to enter
513	 *	or exit netmap mode on the NIC
514	 *	Called with NNG_LOCK held.
515	 *
516	 * nm_txsync() pushes packets to the underlying hw/switch
517	 *
518	 * nm_rxsync() collects packets from the underlying hw/switch
519	 *
520	 * nm_config() returns configuration information from the OS
521	 *	Called with NMG_LOCK held.
522	 *
523	 * nm_krings_create() create and init the tx_rings and
524	 * 	rx_rings arrays of kring structures. In particular,
525	 * 	set the nm_sync callbacks for each ring.
526	 * 	There is no need to also allocate the corresponding
527	 * 	netmap_rings, since netmap_mem_rings_create() will always
528	 * 	be called to provide the missing ones.
529	 *	Called with NNG_LOCK held.
530	 *
531	 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
532	 * 	arrays
533	 *	Called with NMG_LOCK held.
534	 *
535	 * nm_notify() is used to act after data have become available
536	 * 	(or the stopped state of the ring has changed)
537	 *	For hw devices this is typically a selwakeup(),
538	 *	but for NIC/host ports attached to a switch (or vice-versa)
539	 *	we also need to invoke the 'txsync' code downstream.
540	 */
541	void (*nm_dtor)(struct netmap_adapter *);
542
543	int (*nm_register)(struct netmap_adapter *, int onoff);
544
545	int (*nm_txsync)(struct netmap_kring *kring, int flags);
546	int (*nm_rxsync)(struct netmap_kring *kring, int flags);
547#define NAF_FORCE_READ    1
548#define NAF_FORCE_RECLAIM 2
549	/* return configuration information */
550	int (*nm_config)(struct netmap_adapter *,
551		u_int *txr, u_int *txd, u_int *rxr, u_int *rxd);
552	int (*nm_krings_create)(struct netmap_adapter *);
553	void (*nm_krings_delete)(struct netmap_adapter *);
554	int (*nm_notify)(struct netmap_adapter *,
555		u_int ring, enum txrx, int flags);
556#define NAF_DISABLE_NOTIFY 8	/* notify that the stopped state of the
557				 * ring has changed (kring->nkr_stopped)
558				 */
559
560#ifdef WITH_VALE
561	/*
562	 * nm_bdg_attach() initializes the na_vp field to point
563	 *      to an adapter that can be attached to a VALE switch. If the
564	 *      current adapter is already a VALE port, na_vp is simply a cast;
565	 *      otherwise, na_vp points to a netmap_bwrap_adapter.
566	 *      If applicable, this callback also initializes na_hostvp,
567	 *      that can be used to connect the adapter host rings to the
568	 *      switch.
569	 *      Called with NMG_LOCK held.
570	 *
571	 * nm_bdg_ctl() is called on the actual attach/detach to/from
572	 *      to/from the switch, to perform adapter-specific
573	 *      initializations
574	 *      Called with NMG_LOCK held.
575	 */
576	int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *);
577	int (*nm_bdg_ctl)(struct netmap_adapter *, struct nmreq *, int);
578
579	/* adapter used to attach this adapter to a VALE switch (if any) */
580	struct netmap_vp_adapter *na_vp;
581	/* adapter used to attach the host rings of this adapter
582	 * to a VALE switch (if any) */
583	struct netmap_vp_adapter *na_hostvp;
584#endif
585
586	/* standard refcount to control the lifetime of the adapter
587	 * (it should be equal to the lifetime of the corresponding ifp)
588	 */
589	int na_refcount;
590
591	/* memory allocator (opaque)
592	 * We also cache a pointer to the lut_entry for translating
593	 * buffer addresses, and the total number of buffers.
594	 */
595 	struct netmap_mem_d *nm_mem;
596	struct lut_entry *na_lut;
597	uint32_t na_lut_objtotal;	/* max buffer index */
598	uint32_t na_lut_objsize;	/* buffer size */
599
600	/* additional information attached to this adapter
601	 * by other netmap subsystems. Currently used by
602	 * bwrap and LINUX/v1000.
603	 */
604	void *na_private;
605
606#ifdef WITH_PIPES
607	/* array of pipes that have this adapter as a parent */
608	struct netmap_pipe_adapter **na_pipes;
609	int na_next_pipe;	/* next free slot in the array */
610	int na_max_pipes;	/* size of the array */
611#endif /* WITH_PIPES */
612
613	char name[64];
614};
615
616
617/*
618 * If the NIC is owned by the kernel
619 * (i.e., bridge), neither another bridge nor user can use it;
620 * if the NIC is owned by a user, only users can share it.
621 * Evaluation must be done under NMG_LOCK().
622 */
623#define NETMAP_OWNED_BY_KERN(na)	((na)->na_flags & NAF_BUSY)
624#define NETMAP_OWNED_BY_ANY(na) \
625	(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
626
627
628/*
629 * derived netmap adapters for various types of ports
630 */
631struct netmap_vp_adapter {	/* VALE software port */
632	struct netmap_adapter up;
633
634	/*
635	 * Bridge support:
636	 *
637	 * bdg_port is the port number used in the bridge;
638	 * na_bdg points to the bridge this NA is attached to.
639	 */
640	int bdg_port;
641	struct nm_bridge *na_bdg;
642	int retry;
643
644	/* Offset of ethernet header for each packet. */
645	u_int virt_hdr_len;
646	/* Maximum Frame Size, used in bdg_mismatch_datapath() */
647	u_int mfs;
648};
649
650
651struct netmap_hw_adapter {	/* physical device */
652	struct netmap_adapter up;
653
654	struct net_device_ops nm_ndo;	// XXX linux only
655	struct ethtool_ops    nm_eto;	// XXX linux only
656	const struct ethtool_ops*   save_ethtool;
657
658	int (*nm_hw_register)(struct netmap_adapter *, int onoff);
659};
660
661#ifdef WITH_GENERIC
662/* Mitigation support. */
663struct nm_generic_mit {
664	struct hrtimer mit_timer;
665	int mit_pending;
666	int mit_ring_idx;  /* index of the ring being mitigated */
667	struct netmap_adapter *mit_na;  /* backpointer */
668};
669
670struct netmap_generic_adapter {	/* emulated device */
671	struct netmap_hw_adapter up;
672
673	/* Pointer to a previously used netmap adapter. */
674	struct netmap_adapter *prev;
675
676	/* generic netmap adapters support:
677	 * a net_device_ops struct overrides ndo_select_queue(),
678	 * save_if_input saves the if_input hook (FreeBSD),
679	 * mit implements rx interrupt mitigation,
680	 */
681	struct net_device_ops generic_ndo;
682	void (*save_if_input)(struct ifnet *, struct mbuf *);
683
684	struct nm_generic_mit *mit;
685#ifdef linux
686        netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
687#endif
688};
689#endif  /* WITH_GENERIC */
690
691static __inline int
692netmap_real_tx_rings(struct netmap_adapter *na)
693{
694	return na->num_tx_rings + !!(na->na_flags & NAF_HOST_RINGS);
695}
696
697static __inline int
698netmap_real_rx_rings(struct netmap_adapter *na)
699{
700	return na->num_rx_rings + !!(na->na_flags & NAF_HOST_RINGS);
701}
702
703#ifdef WITH_VALE
704
705/*
706 * Bridge wrapper for non VALE ports attached to a VALE switch.
707 *
708 * The real device must already have its own netmap adapter (hwna).
709 * The bridge wrapper and the hwna adapter share the same set of
710 * netmap rings and buffers, but they have two separate sets of
711 * krings descriptors, with tx/rx meanings swapped:
712 *
713 *                                  netmap
714 *           bwrap     krings       rings      krings      hwna
715 *         +------+   +------+     +-----+    +------+   +------+
716 *         |tx_rings->|      |\   /|     |----|      |<-tx_rings|
717 *         |      |   +------+ \ / +-----+    +------+   |      |
718 *         |      |             X                        |      |
719 *         |      |            / \                       |      |
720 *         |      |   +------+/   \+-----+    +------+   |      |
721 *         |rx_rings->|      |     |     |----|      |<-rx_rings|
722 *         |      |   +------+     +-----+    +------+   |      |
723 *         +------+                                      +------+
724 *
725 * - packets coming from the bridge go to the brwap rx rings,
726 *   which are also the hwna tx rings.  The bwrap notify callback
727 *   will then complete the hwna tx (see netmap_bwrap_notify).
728 *
729 * - packets coming from the outside go to the hwna rx rings,
730 *   which are also the bwrap tx rings.  The (overwritten) hwna
731 *   notify method will then complete the bridge tx
732 *   (see netmap_bwrap_intr_notify).
733 *
734 *   The bridge wrapper may optionally connect the hwna 'host' rings
735 *   to the bridge. This is done by using a second port in the
736 *   bridge and connecting it to the 'host' netmap_vp_adapter
737 *   contained in the netmap_bwrap_adapter. The brwap host adapter
738 *   cross-links the hwna host rings in the same way as shown above.
739 *
740 * - packets coming from the bridge and directed to the host stack
741 *   are handled by the bwrap host notify callback
742 *   (see netmap_bwrap_host_notify)
743 *
744 * - packets coming from the host stack are still handled by the
745 *   overwritten hwna notify callback (netmap_bwrap_intr_notify),
746 *   but are diverted to the host adapter depending on the ring number.
747 *
748 */
749struct netmap_bwrap_adapter {
750	struct netmap_vp_adapter up;
751	struct netmap_vp_adapter host;  /* for host rings */
752	struct netmap_adapter *hwna;	/* the underlying device */
753
754	/* backup of the hwna notify callback */
755	int (*save_notify)(struct netmap_adapter *,
756			u_int ring, enum txrx, int flags);
757	/* backup of the hwna memory allocator */
758	struct netmap_mem_d *save_nmd;
759
760	/*
761	 * When we attach a physical interface to the bridge, we
762	 * allow the controlling process to terminate, so we need
763	 * a place to store the n_detmap_priv_d data structure.
764	 * This is only done when physical interfaces
765	 * are attached to a bridge.
766	 */
767	struct netmap_priv_d *na_kpriv;
768};
769int netmap_bwrap_attach(const char *name, struct netmap_adapter *);
770
771
772#endif /* WITH_VALE */
773
774#ifdef WITH_PIPES
775
776#define NM_MAXPIPES 	64	/* max number of pipes per adapter */
777
778struct netmap_pipe_adapter {
779	struct netmap_adapter up;
780
781	u_int id; 	/* pipe identifier */
782	int role;	/* either NR_REG_PIPE_MASTER or NR_REG_PIPE_SLAVE */
783
784	struct netmap_adapter *parent; /* adapter that owns the memory */
785	struct netmap_pipe_adapter *peer; /* the other end of the pipe */
786	int peer_ref;		/* 1 iff we are holding a ref to the peer */
787
788	u_int parent_slot; /* index in the parent pipe array */
789};
790
791#endif /* WITH_PIPES */
792
793
794/* return slots reserved to rx clients; used in drivers */
795static inline uint32_t
796nm_kr_rxspace(struct netmap_kring *k)
797{
798	int space = k->nr_hwtail - k->nr_hwcur;
799	if (space < 0)
800		space += k->nkr_num_slots;
801	ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
802
803	return space;
804}
805
806
807/* True if no space in the tx ring. only valid after txsync_prologue */
808static inline int
809nm_kr_txempty(struct netmap_kring *kring)
810{
811	return kring->rcur == kring->nr_hwtail;
812}
813
814
815/*
816 * protect against multiple threads using the same ring.
817 * also check that the ring has not been stopped.
818 * We only care for 0 or !=0 as a return code.
819 */
820#define NM_KR_BUSY	1
821#define NM_KR_STOPPED	2
822
823
824static __inline void nm_kr_put(struct netmap_kring *kr)
825{
826	NM_ATOMIC_CLEAR(&kr->nr_busy);
827}
828
829
830static __inline int nm_kr_tryget(struct netmap_kring *kr)
831{
832	/* check a first time without taking the lock
833	 * to avoid starvation for nm_kr_get()
834	 */
835	if (unlikely(kr->nkr_stopped)) {
836		ND("ring %p stopped (%d)", kr, kr->nkr_stopped);
837		return NM_KR_STOPPED;
838	}
839	if (unlikely(NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)))
840		return NM_KR_BUSY;
841	/* check a second time with lock held */
842	if (unlikely(kr->nkr_stopped)) {
843		ND("ring %p stopped (%d)", kr, kr->nkr_stopped);
844		nm_kr_put(kr);
845		return NM_KR_STOPPED;
846	}
847	return 0;
848}
849
850
851/*
852 * The following functions are used by individual drivers to
853 * support netmap operation.
854 *
855 * netmap_attach() initializes a struct netmap_adapter, allocating the
856 * 	struct netmap_ring's and the struct selinfo.
857 *
858 * netmap_detach() frees the memory allocated by netmap_attach().
859 *
860 * netmap_transmit() replaces the if_transmit routine of the interface,
861 *	and is used to intercept packets coming from the stack.
862 *
863 * netmap_load_map/netmap_reload_map are helper routines to set/reset
864 *	the dmamap for a packet buffer
865 *
866 * netmap_reset() is a helper routine to be called in the hw driver
867 *	when reinitializing a ring. It should not be called by
868 *	virtual ports (vale, pipes, monitor)
869 */
870int netmap_attach(struct netmap_adapter *);
871void netmap_detach(struct ifnet *);
872int netmap_transmit(struct ifnet *, struct mbuf *);
873struct netmap_slot *netmap_reset(struct netmap_adapter *na,
874	enum txrx tx, u_int n, u_int new_cur);
875int netmap_ring_reinit(struct netmap_kring *);
876
877/* default functions to handle rx/tx interrupts */
878int netmap_rx_irq(struct ifnet *, u_int, u_int *);
879#define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
880void netmap_common_irq(struct ifnet *, u_int, u_int *work_done);
881
882
883#ifdef WITH_VALE
884/* functions used by external modules to interface with VALE */
885#define netmap_vp_to_ifp(_vp)	((_vp)->up.ifp)
886#define netmap_ifp_to_vp(_ifp)	(NA(_ifp)->na_vp)
887#define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
888#define netmap_bdg_idx(_vp)	((_vp)->bdg_port)
889const char *netmap_bdg_name(struct netmap_vp_adapter *);
890#else /* !WITH_VALE */
891#define netmap_vp_to_ifp(_vp)	NULL
892#define netmap_ifp_to_vp(_ifp)	NULL
893#define netmap_ifp_to_host_vp(_ifp) NULL
894#define netmap_bdg_idx(_vp)	-1
895#define netmap_bdg_name(_vp)	NULL
896#endif /* WITH_VALE */
897
898static inline int
899nm_native_on(struct netmap_adapter *na)
900{
901	return na && na->na_flags & NAF_NATIVE_ON;
902}
903
904static inline int
905nm_netmap_on(struct netmap_adapter *na)
906{
907	return na && na->na_flags & NAF_NETMAP_ON;
908}
909
910/* set/clear native flags and if_transmit/netdev_ops */
911static inline void
912nm_set_native_flags(struct netmap_adapter *na)
913{
914	struct ifnet *ifp = na->ifp;
915
916	na->na_flags |= (NAF_NATIVE_ON | NAF_NETMAP_ON);
917#ifdef IFCAP_NETMAP /* or FreeBSD ? */
918	ifp->if_capenable |= IFCAP_NETMAP;
919#endif
920#ifdef __FreeBSD__
921	na->if_transmit = ifp->if_transmit;
922	ifp->if_transmit = netmap_transmit;
923#else
924	na->if_transmit = (void *)ifp->netdev_ops;
925	ifp->netdev_ops = &((struct netmap_hw_adapter *)na)->nm_ndo;
926	((struct netmap_hw_adapter *)na)->save_ethtool = ifp->ethtool_ops;
927	ifp->ethtool_ops = &((struct netmap_hw_adapter*)na)->nm_eto;
928#endif
929}
930
931
932static inline void
933nm_clear_native_flags(struct netmap_adapter *na)
934{
935	struct ifnet *ifp = na->ifp;
936
937#ifdef __FreeBSD__
938	ifp->if_transmit = na->if_transmit;
939#else
940	ifp->netdev_ops = (void *)na->if_transmit;
941	ifp->ethtool_ops = ((struct netmap_hw_adapter*)na)->save_ethtool;
942#endif
943	na->na_flags &= ~(NAF_NATIVE_ON | NAF_NETMAP_ON);
944#ifdef IFCAP_NETMAP /* or FreeBSD ? */
945	ifp->if_capenable &= ~IFCAP_NETMAP;
946#endif
947}
948
949
950/*
951 * validates parameters in the ring/kring, returns a value for head
952 * If any error, returns ring_size to force a reinit.
953 */
954uint32_t nm_txsync_prologue(struct netmap_kring *);
955
956
957/*
958 * validates parameters in the ring/kring, returns a value for head,
959 * and the 'reserved' value in the argument.
960 * If any error, returns ring_size lim to force a reinit.
961 */
962uint32_t nm_rxsync_prologue(struct netmap_kring *);
963
964
965/*
966 * update kring and ring at the end of txsync.
967 */
968static inline void
969nm_txsync_finalize(struct netmap_kring *kring)
970{
971	/* update ring tail to what the kernel knows */
972	kring->ring->tail = kring->rtail = kring->nr_hwtail;
973
974	/* note, head/rhead/hwcur might be behind cur/rcur
975	 * if no carrier
976	 */
977	ND(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d",
978		kring->name, kring->nr_hwcur, kring->nr_hwtail,
979		kring->rhead, kring->rcur, kring->rtail);
980}
981
982
983/*
984 * update kring and ring at the end of rxsync
985 */
986static inline void
987nm_rxsync_finalize(struct netmap_kring *kring)
988{
989	/* tell userspace that there might be new packets */
990	//struct netmap_ring *ring = kring->ring;
991	ND("head %d cur %d tail %d -> %d", ring->head, ring->cur, ring->tail,
992		kring->nr_hwtail);
993	kring->ring->tail = kring->rtail = kring->nr_hwtail;
994	/* make a copy of the state for next round */
995	kring->rhead = kring->ring->head;
996	kring->rcur = kring->ring->cur;
997}
998
999
1000/* check/fix address and len in tx rings */
1001#if 1 /* debug version */
1002#define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1003	if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) {	\
1004		RD(5, "bad addr/len ring %d slot %d idx %d len %d",	\
1005			kring->ring_id, nm_i, slot->buf_idx, len);	\
1006		if (_l > NETMAP_BUF_SIZE(_na))				\
1007			_l = NETMAP_BUF_SIZE(_na);			\
1008	} } while (0)
1009#else /* no debug version */
1010#define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1011		if (_l > NETMAP_BUF_SIZE(_na))				\
1012			_l = NETMAP_BUF_SIZE(_na);			\
1013	} while (0)
1014#endif
1015
1016
1017/*---------------------------------------------------------------*/
1018/*
1019 * Support routines used by netmap subsystems
1020 * (native drivers, VALE, generic, pipes, monitors, ...)
1021 */
1022
1023
1024/* common routine for all functions that create a netmap adapter. It performs
1025 * two main tasks:
1026 * - if the na points to an ifp, mark the ifp as netmap capable
1027 *   using na as its native adapter;
1028 * - provide defaults for the setup callbacks and the memory allocator
1029 */
1030int netmap_attach_common(struct netmap_adapter *);
1031/* common actions to be performed on netmap adapter destruction */
1032void netmap_detach_common(struct netmap_adapter *);
1033/* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1034 * coming from a struct nmreq
1035 */
1036int netmap_interp_ringid(struct netmap_priv_d *priv, uint16_t ringid, uint32_t flags);
1037/* update the ring parameters (number and size of tx and rx rings).
1038 * It calls the nm_config callback, if available.
1039 */
1040int netmap_update_config(struct netmap_adapter *na);
1041/* create and initialize the common fields of the krings array.
1042 * using the information that must be already available in the na.
1043 * tailroom can be used to request the allocation of additional
1044 * tailroom bytes after the krings array. This is used by
1045 * netmap_vp_adapter's (i.e., VALE ports) to make room for
1046 * leasing-related data structures
1047 */
1048int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1049/* deletes the kring array of the adapter. The array must have
1050 * been created using netmap_krings_create
1051 */
1052void netmap_krings_delete(struct netmap_adapter *na);
1053
1054/* set the stopped/enabled status of ring
1055 * When stopping, they also wait for all current activity on the ring to
1056 * terminate. The status change is then notified using the na nm_notify
1057 * callback.
1058 */
1059void netmap_set_txring(struct netmap_adapter *, u_int ring_id, int stopped);
1060void netmap_set_rxring(struct netmap_adapter *, u_int ring_id, int stopped);
1061/* set the stopped/enabled status of all rings of the adapter. */
1062void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1063/* convenience wrappers for netmap_set_all_rings, used in drivers */
1064void netmap_disable_all_rings(struct ifnet *);
1065void netmap_enable_all_rings(struct ifnet *);
1066
1067int netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait);
1068
1069struct netmap_if *
1070netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1071	uint16_t ringid, uint32_t flags, int *err);
1072
1073
1074
1075u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1076int netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1077int netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na);
1078
1079
1080#ifdef WITH_VALE
1081/*
1082 * The following bridge-related functions are used by other
1083 * kernel modules.
1084 *
1085 * VALE only supports unicast or broadcast. The lookup
1086 * function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports,
1087 * NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 for unknown.
1088 * XXX in practice "unknown" might be handled same as broadcast.
1089 */
1090typedef u_int (*bdg_lookup_fn_t)(struct nm_bdg_fwd *ft, uint8_t *ring_nr,
1091		const struct netmap_vp_adapter *);
1092typedef int (*bdg_config_fn_t)(struct nm_ifreq *);
1093typedef void (*bdg_dtor_fn_t)(const struct netmap_vp_adapter *);
1094struct netmap_bdg_ops {
1095	bdg_lookup_fn_t lookup;
1096	bdg_config_fn_t config;
1097	bdg_dtor_fn_t	dtor;
1098};
1099
1100u_int netmap_bdg_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1101		const struct netmap_vp_adapter *);
1102
1103#define	NM_BDG_MAXPORTS		254	/* up to 254 */
1104#define	NM_BDG_BROADCAST	NM_BDG_MAXPORTS
1105#define	NM_BDG_NOPORT		(NM_BDG_MAXPORTS+1)
1106
1107#define	NM_NAME			"vale"	/* prefix for bridge port name */
1108
1109/* these are redefined in case of no VALE support */
1110int netmap_get_bdg_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1111void netmap_init_bridges(void);
1112int netmap_bdg_ctl(struct nmreq *nmr, struct netmap_bdg_ops *bdg_ops);
1113int netmap_bdg_config(struct nmreq *nmr);
1114
1115#else /* !WITH_VALE */
1116#define	netmap_get_bdg_na(_1, _2, _3)	0
1117#define netmap_init_bridges(_1)
1118#define	netmap_bdg_ctl(_1, _2)	EINVAL
1119#endif /* !WITH_VALE */
1120
1121#ifdef WITH_PIPES
1122/* max number of pipes per device */
1123#define NM_MAXPIPES	64	/* XXX how many? */
1124/* in case of no error, returns the actual number of pipes in nmr->nr_arg1 */
1125int netmap_pipe_alloc(struct netmap_adapter *, struct nmreq *nmr);
1126void netmap_pipe_dealloc(struct netmap_adapter *);
1127int netmap_get_pipe_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1128#else /* !WITH_PIPES */
1129#define NM_MAXPIPES	0
1130#define netmap_pipe_alloc(_1, _2) 	EOPNOTSUPP
1131#define netmap_pipe_dealloc(_1)
1132#define netmap_get_pipe_na(_1, _2, _3)	0
1133#endif
1134
1135#ifdef WITH_MONITOR
1136int netmap_get_monitor_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1137#else
1138#define netmap_get_monitor_na(_1, _2, _3) 0
1139#endif
1140
1141/* Various prototypes */
1142int netmap_poll(struct cdev *dev, int events, struct thread *td);
1143int netmap_init(void);
1144void netmap_fini(void);
1145int netmap_get_memory(struct netmap_priv_d* p);
1146void netmap_dtor(void *data);
1147int netmap_dtor_locked(struct netmap_priv_d *priv);
1148
1149int netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td);
1150
1151/* netmap_adapter creation/destruction */
1152
1153// #define NM_DEBUG_PUTGET 1
1154
1155#ifdef NM_DEBUG_PUTGET
1156
1157#define NM_DBG(f) __##f
1158
1159void __netmap_adapter_get(struct netmap_adapter *na);
1160
1161#define netmap_adapter_get(na) 				\
1162	do {						\
1163		struct netmap_adapter *__na = na;	\
1164		D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1165		__netmap_adapter_get(__na);		\
1166	} while (0)
1167
1168int __netmap_adapter_put(struct netmap_adapter *na);
1169
1170#define netmap_adapter_put(na)				\
1171	({						\
1172		struct netmap_adapter *__na = na;	\
1173		D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1174		__netmap_adapter_put(__na);		\
1175	})
1176
1177#else /* !NM_DEBUG_PUTGET */
1178
1179#define NM_DBG(f) f
1180void netmap_adapter_get(struct netmap_adapter *na);
1181int netmap_adapter_put(struct netmap_adapter *na);
1182
1183#endif /* !NM_DEBUG_PUTGET */
1184
1185
1186/*
1187 * module variables
1188 */
1189#define NETMAP_BUF_BASE(na)	((na)->na_lut[0].vaddr)
1190#define NETMAP_BUF_SIZE(na)	((na)->na_lut_objsize)
1191extern int netmap_mitigate;	// XXX not really used
1192extern int netmap_no_pendintr;
1193extern int netmap_verbose;	// XXX debugging
1194enum {                                  /* verbose flags */
1195	NM_VERB_ON = 1,                 /* generic verbose */
1196	NM_VERB_HOST = 0x2,             /* verbose host stack */
1197	NM_VERB_RXSYNC = 0x10,          /* verbose on rxsync/txsync */
1198	NM_VERB_TXSYNC = 0x20,
1199	NM_VERB_RXINTR = 0x100,         /* verbose on rx/tx intr (driver) */
1200	NM_VERB_TXINTR = 0x200,
1201	NM_VERB_NIC_RXSYNC = 0x1000,    /* verbose on rx/tx intr (driver) */
1202	NM_VERB_NIC_TXSYNC = 0x2000,
1203};
1204
1205extern int netmap_txsync_retry;
1206extern int netmap_generic_mit;
1207extern int netmap_generic_ringsize;
1208extern int netmap_generic_rings;
1209
1210/*
1211 * NA returns a pointer to the struct netmap adapter from the ifp,
1212 * WNA is used to write it.
1213 */
1214#define	NA(_ifp)	((struct netmap_adapter *)WNA(_ifp))
1215
1216/*
1217 * Macros to determine if an interface is netmap capable or netmap enabled.
1218 * See the magic field in struct netmap_adapter.
1219 */
1220#ifdef __FreeBSD__
1221/*
1222 * on FreeBSD just use if_capabilities and if_capenable.
1223 */
1224#define NETMAP_CAPABLE(ifp)	(NA(ifp) &&		\
1225	(ifp)->if_capabilities & IFCAP_NETMAP )
1226
1227#define	NETMAP_SET_CAPABLE(ifp)				\
1228	(ifp)->if_capabilities |= IFCAP_NETMAP
1229
1230#else	/* linux */
1231
1232/*
1233 * on linux:
1234 * we check if NA(ifp) is set and its first element has a related
1235 * magic value. The capenable is within the struct netmap_adapter.
1236 */
1237#define	NETMAP_MAGIC	0x52697a7a
1238
1239#define NETMAP_CAPABLE(ifp)	(NA(ifp) &&		\
1240	((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1241
1242#define	NETMAP_SET_CAPABLE(ifp)				\
1243	NA(ifp)->magic = ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC
1244
1245#endif	/* linux */
1246
1247#ifdef __FreeBSD__
1248
1249/* Assigns the device IOMMU domain to an allocator.
1250 * Returns -ENOMEM in case the domain is different */
1251#define nm_iommu_group_id(dev) (0)
1252
1253/* Callback invoked by the dma machinery after a successful dmamap_load */
1254static void netmap_dmamap_cb(__unused void *arg,
1255    __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1256{
1257}
1258
1259/* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1260 * XXX can we do it without a callback ?
1261 */
1262static inline void
1263netmap_load_map(struct netmap_adapter *na,
1264	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1265{
1266	if (map)
1267		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1268		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1269}
1270
1271static inline void
1272netmap_unload_map(struct netmap_adapter *na,
1273        bus_dma_tag_t tag, bus_dmamap_t map)
1274{
1275	if (map)
1276		bus_dmamap_unload(tag, map);
1277}
1278
1279/* update the map when a buffer changes. */
1280static inline void
1281netmap_reload_map(struct netmap_adapter *na,
1282	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1283{
1284	if (map) {
1285		bus_dmamap_unload(tag, map);
1286		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1287		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1288	}
1289}
1290
1291#else /* linux */
1292
1293int nm_iommu_group_id(bus_dma_tag_t dev);
1294extern size_t     netmap_mem_get_bufsize(struct netmap_mem_d *);
1295#include <linux/dma-mapping.h>
1296
1297static inline void
1298netmap_load_map(struct netmap_adapter *na,
1299	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1300{
1301	if (map) {
1302		*map = dma_map_single(na->pdev, buf, netmap_mem_get_bufsize(na->nm_mem),
1303				DMA_BIDIRECTIONAL);
1304	}
1305}
1306
1307static inline void
1308netmap_unload_map(struct netmap_adapter *na,
1309	bus_dma_tag_t tag, bus_dmamap_t map)
1310{
1311	u_int sz = netmap_mem_get_bufsize(na->nm_mem);
1312
1313	if (*map) {
1314		dma_unmap_single(na->pdev, *map, sz,
1315				DMA_BIDIRECTIONAL);
1316	}
1317}
1318
1319static inline void
1320netmap_reload_map(struct netmap_adapter *na,
1321	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1322{
1323	u_int sz = netmap_mem_get_bufsize(na->nm_mem);
1324
1325	if (*map) {
1326		dma_unmap_single(na->pdev, *map, sz,
1327				DMA_BIDIRECTIONAL);
1328	}
1329
1330	*map = dma_map_single(na->pdev, buf, sz,
1331				DMA_BIDIRECTIONAL);
1332}
1333
1334/*
1335 * XXX How do we redefine these functions:
1336 *
1337 * on linux we need
1338 *	dma_map_single(&pdev->dev, virt_addr, len, direction)
1339 *	dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction
1340 * The len can be implicit (on netmap it is NETMAP_BUF_SIZE)
1341 * unfortunately the direction is not, so we need to change
1342 * something to have a cross API
1343 */
1344
1345#if 0
1346	struct e1000_buffer *buffer_info =  &tx_ring->buffer_info[l];
1347	/* set time_stamp *before* dma to help avoid a possible race */
1348	buffer_info->time_stamp = jiffies;
1349	buffer_info->mapped_as_page = false;
1350	buffer_info->length = len;
1351	//buffer_info->next_to_watch = l;
1352	/* reload dma map */
1353	dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1354			NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1355	buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1356			addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1357
1358	if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1359		D("dma mapping error");
1360		/* goto dma_error; See e1000_put_txbuf() */
1361		/* XXX reset */
1362	}
1363	tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1364
1365#endif
1366
1367/*
1368 * The bus_dmamap_sync() can be one of wmb() or rmb() depending on direction.
1369 */
1370#define bus_dmamap_sync(_a, _b, _c)
1371
1372#endif /* linux */
1373
1374
1375/*
1376 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1377 */
1378static inline int
1379netmap_idx_n2k(struct netmap_kring *kr, int idx)
1380{
1381	int n = kr->nkr_num_slots;
1382	idx += kr->nkr_hwofs;
1383	if (idx < 0)
1384		return idx + n;
1385	else if (idx < n)
1386		return idx;
1387	else
1388		return idx - n;
1389}
1390
1391
1392static inline int
1393netmap_idx_k2n(struct netmap_kring *kr, int idx)
1394{
1395	int n = kr->nkr_num_slots;
1396	idx -= kr->nkr_hwofs;
1397	if (idx < 0)
1398		return idx + n;
1399	else if (idx < n)
1400		return idx;
1401	else
1402		return idx - n;
1403}
1404
1405
1406/* Entries of the look-up table. */
1407struct lut_entry {
1408	void *vaddr;		/* virtual address. */
1409	vm_paddr_t paddr;	/* physical address. */
1410};
1411
1412struct netmap_obj_pool;
1413
1414/*
1415 * NMB return the virtual address of a buffer (buffer 0 on bad index)
1416 * PNMB also fills the physical address
1417 */
1418static inline void *
1419NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1420{
1421	struct lut_entry *lut = na->na_lut;
1422	uint32_t i = slot->buf_idx;
1423	return (unlikely(i >= na->na_lut_objtotal)) ?
1424		lut[0].vaddr : lut[i].vaddr;
1425}
1426
1427static inline void *
1428PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1429{
1430	uint32_t i = slot->buf_idx;
1431	struct lut_entry *lut = na->na_lut;
1432	void *ret = (i >= na->na_lut_objtotal) ? lut[0].vaddr : lut[i].vaddr;
1433
1434	*pp = (i >= na->na_lut_objtotal) ? lut[0].paddr : lut[i].paddr;
1435	return ret;
1436}
1437
1438/* Generic version of NMB, which uses device-specific memory. */
1439
1440
1441
1442void netmap_txsync_to_host(struct netmap_adapter *na);
1443
1444
1445/*
1446 * Structure associated to each thread which registered an interface.
1447 *
1448 * The first 4 fields of this structure are written by NIOCREGIF and
1449 * read by poll() and NIOC?XSYNC.
1450 *
1451 * There is low contention among writers (a correct user program
1452 * should have none) and among writers and readers, so we use a
1453 * single global lock to protect the structure initialization;
1454 * since initialization involves the allocation of memory,
1455 * we reuse the memory allocator lock.
1456 *
1457 * Read access to the structure is lock free. Readers must check that
1458 * np_nifp is not NULL before using the other fields.
1459 * If np_nifp is NULL initialization has not been performed,
1460 * so they should return an error to userspace.
1461 *
1462 * The ref_done field is used to regulate access to the refcount in the
1463 * memory allocator. The refcount must be incremented at most once for
1464 * each open("/dev/netmap"). The increment is performed by the first
1465 * function that calls netmap_get_memory() (currently called by
1466 * mmap(), NIOCGINFO and NIOCREGIF).
1467 * If the refcount is incremented, it is then decremented when the
1468 * private structure is destroyed.
1469 */
1470struct netmap_priv_d {
1471	struct netmap_if * volatile np_nifp;	/* netmap if descriptor. */
1472
1473	struct netmap_adapter	*np_na;
1474	uint32_t	np_flags;	/* from the ioctl */
1475	u_int		np_txqfirst, np_txqlast; /* range of tx rings to scan */
1476	u_int		np_rxqfirst, np_rxqlast; /* range of rx rings to scan */
1477	uint16_t	np_txpoll;	/* XXX and also np_rxpoll ? */
1478
1479	struct netmap_mem_d     *np_mref;	/* use with NMG_LOCK held */
1480	/* np_refcount is only used on FreeBSD */
1481	int		np_refcount;	/* use with NMG_LOCK held */
1482
1483	/* pointers to the selinfo to be used for selrecord.
1484	 * Either the local or the global one depending on the
1485	 * number of rings.
1486	 */
1487	NM_SELINFO_T *np_rxsi, *np_txsi;
1488	struct thread	*np_td;		/* kqueue, just debugging */
1489};
1490
1491#ifdef WITH_MONITOR
1492
1493struct netmap_monitor_adapter {
1494	struct netmap_adapter up;
1495
1496	struct netmap_priv_d priv;
1497	uint32_t flags;
1498};
1499
1500#endif /* WITH_MONITOR */
1501
1502
1503#ifdef WITH_GENERIC
1504/*
1505 * generic netmap emulation for devices that do not have
1506 * native netmap support.
1507 */
1508int generic_netmap_attach(struct ifnet *ifp);
1509
1510int netmap_catch_rx(struct netmap_adapter *na, int intercept);
1511void generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
1512void netmap_catch_tx(struct netmap_generic_adapter *na, int enable);
1513int generic_xmit_frame(struct ifnet *ifp, struct mbuf *m, void *addr, u_int len, u_int ring_nr);
1514int generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
1515void generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
1516
1517//#define RATE_GENERIC  /* Enables communication statistics for generic. */
1518#ifdef RATE_GENERIC
1519void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
1520#else
1521#define generic_rate(txp, txs, txi, rxp, rxs, rxi)
1522#endif
1523
1524/*
1525 * netmap_mitigation API. This is used by the generic adapter
1526 * to reduce the number of interrupt requests/selwakeup
1527 * to clients on incoming packets.
1528 */
1529void netmap_mitigation_init(struct nm_generic_mit *mit, int idx,
1530                                struct netmap_adapter *na);
1531void netmap_mitigation_start(struct nm_generic_mit *mit);
1532void netmap_mitigation_restart(struct nm_generic_mit *mit);
1533int netmap_mitigation_active(struct nm_generic_mit *mit);
1534void netmap_mitigation_cleanup(struct nm_generic_mit *mit);
1535#endif /* WITH_GENERIC */
1536
1537
1538
1539/* Shared declarations for the VALE switch. */
1540
1541/*
1542 * Each transmit queue accumulates a batch of packets into
1543 * a structure before forwarding. Packets to the same
1544 * destination are put in a list using ft_next as a link field.
1545 * ft_frags and ft_next are valid only on the first fragment.
1546 */
1547struct nm_bdg_fwd {	/* forwarding entry for a bridge */
1548	void *ft_buf;		/* netmap or indirect buffer */
1549	uint8_t ft_frags;	/* how many fragments (only on 1st frag) */
1550	uint8_t _ft_port;	/* dst port (unused) */
1551	uint16_t ft_flags;	/* flags, e.g. indirect */
1552	uint16_t ft_len;	/* src fragment len */
1553	uint16_t ft_next;	/* next packet to same destination */
1554};
1555
1556/* struct 'virtio_net_hdr' from linux. */
1557struct nm_vnet_hdr {
1558#define VIRTIO_NET_HDR_F_NEEDS_CSUM     1	/* Use csum_start, csum_offset */
1559#define VIRTIO_NET_HDR_F_DATA_VALID    2	/* Csum is valid */
1560    uint8_t flags;
1561#define VIRTIO_NET_HDR_GSO_NONE         0       /* Not a GSO frame */
1562#define VIRTIO_NET_HDR_GSO_TCPV4        1       /* GSO frame, IPv4 TCP (TSO) */
1563#define VIRTIO_NET_HDR_GSO_UDP          3       /* GSO frame, IPv4 UDP (UFO) */
1564#define VIRTIO_NET_HDR_GSO_TCPV6        4       /* GSO frame, IPv6 TCP */
1565#define VIRTIO_NET_HDR_GSO_ECN          0x80    /* TCP has ECN set */
1566    uint8_t gso_type;
1567    uint16_t hdr_len;
1568    uint16_t gso_size;
1569    uint16_t csum_start;
1570    uint16_t csum_offset;
1571};
1572
1573#define WORST_CASE_GSO_HEADER	(14+40+60)  /* IPv6 + TCP */
1574
1575/* Private definitions for IPv4, IPv6, UDP and TCP headers. */
1576
1577struct nm_iphdr {
1578	uint8_t		version_ihl;
1579	uint8_t		tos;
1580	uint16_t	tot_len;
1581	uint16_t	id;
1582	uint16_t	frag_off;
1583	uint8_t		ttl;
1584	uint8_t		protocol;
1585	uint16_t	check;
1586	uint32_t	saddr;
1587	uint32_t	daddr;
1588	/*The options start here. */
1589};
1590
1591struct nm_tcphdr {
1592	uint16_t	source;
1593	uint16_t	dest;
1594	uint32_t	seq;
1595	uint32_t	ack_seq;
1596	uint8_t		doff;  /* Data offset + Reserved */
1597	uint8_t		flags;
1598	uint16_t	window;
1599	uint16_t	check;
1600	uint16_t	urg_ptr;
1601};
1602
1603struct nm_udphdr {
1604	uint16_t	source;
1605	uint16_t	dest;
1606	uint16_t	len;
1607	uint16_t	check;
1608};
1609
1610struct nm_ipv6hdr {
1611	uint8_t		priority_version;
1612	uint8_t		flow_lbl[3];
1613
1614	uint16_t	payload_len;
1615	uint8_t		nexthdr;
1616	uint8_t		hop_limit;
1617
1618	uint8_t		saddr[16];
1619	uint8_t		daddr[16];
1620};
1621
1622/* Type used to store a checksum (in host byte order) that hasn't been
1623 * folded yet.
1624 */
1625#define rawsum_t uint32_t
1626
1627rawsum_t nm_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
1628uint16_t nm_csum_ipv4(struct nm_iphdr *iph);
1629void nm_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
1630		      size_t datalen, uint16_t *check);
1631void nm_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
1632		      size_t datalen, uint16_t *check);
1633uint16_t nm_csum_fold(rawsum_t cur_sum);
1634
1635void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
1636			   struct netmap_vp_adapter *dst_na,
1637			   struct nm_bdg_fwd *ft_p, struct netmap_ring *ring,
1638			   u_int *j, u_int lim, u_int *howmany);
1639
1640/* persistent virtual port routines */
1641int nm_vi_persist(const char *, struct ifnet **);
1642void nm_vi_detach(struct ifnet *);
1643void nm_vi_init_index(void);
1644
1645#endif /* _NET_NETMAP_KERN_H_ */
1646