if_mwl.c revision 262007
1/*-
2 * Copyright (c) 2007-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2007-2008 Marvell Semiconductor, Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer,
11 *    without modification.
12 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
13 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
14 *    redistribution must be conditioned upon including a substantially
15 *    similar Disclaimer requirement for further binary redistribution.
16 *
17 * NO WARRANTY
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
21 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
23 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
26 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28 * THE POSSIBILITY OF SUCH DAMAGES.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: stable/10/sys/dev/mwl/if_mwl.c 262007 2014-02-17 01:36:53Z kevlo $");
33
34/*
35 * Driver for the Marvell 88W8363 Wireless LAN controller.
36 */
37
38#include "opt_inet.h"
39#include "opt_mwl.h"
40#include "opt_wlan.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/sysctl.h>
45#include <sys/mbuf.h>
46#include <sys/malloc.h>
47#include <sys/lock.h>
48#include <sys/mutex.h>
49#include <sys/kernel.h>
50#include <sys/socket.h>
51#include <sys/sockio.h>
52#include <sys/errno.h>
53#include <sys/callout.h>
54#include <sys/bus.h>
55#include <sys/endian.h>
56#include <sys/kthread.h>
57#include <sys/taskqueue.h>
58
59#include <machine/bus.h>
60
61#include <net/if.h>
62#include <net/if_dl.h>
63#include <net/if_media.h>
64#include <net/if_types.h>
65#include <net/if_arp.h>
66#include <net/ethernet.h>
67#include <net/if_llc.h>
68
69#include <net/bpf.h>
70
71#include <net80211/ieee80211_var.h>
72#include <net80211/ieee80211_regdomain.h>
73
74#ifdef INET
75#include <netinet/in.h>
76#include <netinet/if_ether.h>
77#endif /* INET */
78
79#include <dev/mwl/if_mwlvar.h>
80#include <dev/mwl/mwldiag.h>
81
82/* idiomatic shorthands: MS = mask+shift, SM = shift+mask */
83#define	MS(v,x)	(((v) & x) >> x##_S)
84#define	SM(v,x)	(((v) << x##_S) & x)
85
86static struct ieee80211vap *mwl_vap_create(struct ieee80211com *,
87		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
88		    const uint8_t [IEEE80211_ADDR_LEN],
89		    const uint8_t [IEEE80211_ADDR_LEN]);
90static void	mwl_vap_delete(struct ieee80211vap *);
91static int	mwl_setupdma(struct mwl_softc *);
92static int	mwl_hal_reset(struct mwl_softc *sc);
93static int	mwl_init_locked(struct mwl_softc *);
94static void	mwl_init(void *);
95static void	mwl_stop_locked(struct ifnet *, int);
96static int	mwl_reset(struct ieee80211vap *, u_long);
97static void	mwl_stop(struct ifnet *, int);
98static void	mwl_start(struct ifnet *);
99static int	mwl_raw_xmit(struct ieee80211_node *, struct mbuf *,
100			const struct ieee80211_bpf_params *);
101static int	mwl_media_change(struct ifnet *);
102static void	mwl_watchdog(void *);
103static int	mwl_ioctl(struct ifnet *, u_long, caddr_t);
104static void	mwl_radar_proc(void *, int);
105static void	mwl_chanswitch_proc(void *, int);
106static void	mwl_bawatchdog_proc(void *, int);
107static int	mwl_key_alloc(struct ieee80211vap *,
108			struct ieee80211_key *,
109			ieee80211_keyix *, ieee80211_keyix *);
110static int	mwl_key_delete(struct ieee80211vap *,
111			const struct ieee80211_key *);
112static int	mwl_key_set(struct ieee80211vap *, const struct ieee80211_key *,
113			const uint8_t mac[IEEE80211_ADDR_LEN]);
114static int	mwl_mode_init(struct mwl_softc *);
115static void	mwl_update_mcast(struct ifnet *);
116static void	mwl_update_promisc(struct ifnet *);
117static void	mwl_updateslot(struct ifnet *);
118static int	mwl_beacon_setup(struct ieee80211vap *);
119static void	mwl_beacon_update(struct ieee80211vap *, int);
120#ifdef MWL_HOST_PS_SUPPORT
121static void	mwl_update_ps(struct ieee80211vap *, int);
122static int	mwl_set_tim(struct ieee80211_node *, int);
123#endif
124static int	mwl_dma_setup(struct mwl_softc *);
125static void	mwl_dma_cleanup(struct mwl_softc *);
126static struct ieee80211_node *mwl_node_alloc(struct ieee80211vap *,
127		    const uint8_t [IEEE80211_ADDR_LEN]);
128static void	mwl_node_cleanup(struct ieee80211_node *);
129static void	mwl_node_drain(struct ieee80211_node *);
130static void	mwl_node_getsignal(const struct ieee80211_node *,
131			int8_t *, int8_t *);
132static void	mwl_node_getmimoinfo(const struct ieee80211_node *,
133			struct ieee80211_mimo_info *);
134static int	mwl_rxbuf_init(struct mwl_softc *, struct mwl_rxbuf *);
135static void	mwl_rx_proc(void *, int);
136static void	mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *, int);
137static int	mwl_tx_setup(struct mwl_softc *, int, int);
138static int	mwl_wme_update(struct ieee80211com *);
139static void	mwl_tx_cleanupq(struct mwl_softc *, struct mwl_txq *);
140static void	mwl_tx_cleanup(struct mwl_softc *);
141static uint16_t	mwl_calcformat(uint8_t rate, const struct ieee80211_node *);
142static int	mwl_tx_start(struct mwl_softc *, struct ieee80211_node *,
143			     struct mwl_txbuf *, struct mbuf *);
144static void	mwl_tx_proc(void *, int);
145static int	mwl_chan_set(struct mwl_softc *, struct ieee80211_channel *);
146static void	mwl_draintxq(struct mwl_softc *);
147static void	mwl_cleartxq(struct mwl_softc *, struct ieee80211vap *);
148static int	mwl_recv_action(struct ieee80211_node *,
149			const struct ieee80211_frame *,
150			const uint8_t *, const uint8_t *);
151static int	mwl_addba_request(struct ieee80211_node *,
152			struct ieee80211_tx_ampdu *, int dialogtoken,
153			int baparamset, int batimeout);
154static int	mwl_addba_response(struct ieee80211_node *,
155			struct ieee80211_tx_ampdu *, int status,
156			int baparamset, int batimeout);
157static void	mwl_addba_stop(struct ieee80211_node *,
158			struct ieee80211_tx_ampdu *);
159static int	mwl_startrecv(struct mwl_softc *);
160static MWL_HAL_APMODE mwl_getapmode(const struct ieee80211vap *,
161			struct ieee80211_channel *);
162static int	mwl_setapmode(struct ieee80211vap *, struct ieee80211_channel*);
163static void	mwl_scan_start(struct ieee80211com *);
164static void	mwl_scan_end(struct ieee80211com *);
165static void	mwl_set_channel(struct ieee80211com *);
166static int	mwl_peerstadb(struct ieee80211_node *,
167			int aid, int staid, MWL_HAL_PEERINFO *pi);
168static int	mwl_localstadb(struct ieee80211vap *);
169static int	mwl_newstate(struct ieee80211vap *, enum ieee80211_state, int);
170static int	allocstaid(struct mwl_softc *sc, int aid);
171static void	delstaid(struct mwl_softc *sc, int staid);
172static void	mwl_newassoc(struct ieee80211_node *, int);
173static void	mwl_agestations(void *);
174static int	mwl_setregdomain(struct ieee80211com *,
175			struct ieee80211_regdomain *, int,
176			struct ieee80211_channel []);
177static void	mwl_getradiocaps(struct ieee80211com *, int, int *,
178			struct ieee80211_channel []);
179static int	mwl_getchannels(struct mwl_softc *);
180
181static void	mwl_sysctlattach(struct mwl_softc *);
182static void	mwl_announce(struct mwl_softc *);
183
184SYSCTL_NODE(_hw, OID_AUTO, mwl, CTLFLAG_RD, 0, "Marvell driver parameters");
185
186static	int mwl_rxdesc = MWL_RXDESC;		/* # rx desc's to allocate */
187SYSCTL_INT(_hw_mwl, OID_AUTO, rxdesc, CTLFLAG_RW, &mwl_rxdesc,
188	    0, "rx descriptors allocated");
189static	int mwl_rxbuf = MWL_RXBUF;		/* # rx buffers to allocate */
190SYSCTL_INT(_hw_mwl, OID_AUTO, rxbuf, CTLFLAG_RW, &mwl_rxbuf,
191	    0, "rx buffers allocated");
192TUNABLE_INT("hw.mwl.rxbuf", &mwl_rxbuf);
193static	int mwl_txbuf = MWL_TXBUF;		/* # tx buffers to allocate */
194SYSCTL_INT(_hw_mwl, OID_AUTO, txbuf, CTLFLAG_RW, &mwl_txbuf,
195	    0, "tx buffers allocated");
196TUNABLE_INT("hw.mwl.txbuf", &mwl_txbuf);
197static	int mwl_txcoalesce = 8;		/* # tx packets to q before poking f/w*/
198SYSCTL_INT(_hw_mwl, OID_AUTO, txcoalesce, CTLFLAG_RW, &mwl_txcoalesce,
199	    0, "tx buffers to send at once");
200TUNABLE_INT("hw.mwl.txcoalesce", &mwl_txcoalesce);
201static	int mwl_rxquota = MWL_RXBUF;		/* # max buffers to process */
202SYSCTL_INT(_hw_mwl, OID_AUTO, rxquota, CTLFLAG_RW, &mwl_rxquota,
203	    0, "max rx buffers to process per interrupt");
204TUNABLE_INT("hw.mwl.rxquota", &mwl_rxquota);
205static	int mwl_rxdmalow = 3;			/* # min buffers for wakeup */
206SYSCTL_INT(_hw_mwl, OID_AUTO, rxdmalow, CTLFLAG_RW, &mwl_rxdmalow,
207	    0, "min free rx buffers before restarting traffic");
208TUNABLE_INT("hw.mwl.rxdmalow", &mwl_rxdmalow);
209
210#ifdef MWL_DEBUG
211static	int mwl_debug = 0;
212SYSCTL_INT(_hw_mwl, OID_AUTO, debug, CTLFLAG_RW, &mwl_debug,
213	    0, "control debugging printfs");
214TUNABLE_INT("hw.mwl.debug", &mwl_debug);
215enum {
216	MWL_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
217	MWL_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
218	MWL_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
219	MWL_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
220	MWL_DEBUG_RESET		= 0x00000010,	/* reset processing */
221	MWL_DEBUG_BEACON 	= 0x00000020,	/* beacon handling */
222	MWL_DEBUG_INTR		= 0x00000040,	/* ISR */
223	MWL_DEBUG_TX_PROC	= 0x00000080,	/* tx ISR proc */
224	MWL_DEBUG_RX_PROC	= 0x00000100,	/* rx ISR proc */
225	MWL_DEBUG_KEYCACHE	= 0x00000200,	/* key cache management */
226	MWL_DEBUG_STATE		= 0x00000400,	/* 802.11 state transitions */
227	MWL_DEBUG_NODE		= 0x00000800,	/* node management */
228	MWL_DEBUG_RECV_ALL	= 0x00001000,	/* trace all frames (beacons) */
229	MWL_DEBUG_TSO		= 0x00002000,	/* TSO processing */
230	MWL_DEBUG_AMPDU		= 0x00004000,	/* BA stream handling */
231	MWL_DEBUG_ANY		= 0xffffffff
232};
233#define	IS_BEACON(wh) \
234    ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK|IEEE80211_FC0_SUBTYPE_MASK)) == \
235	 (IEEE80211_FC0_TYPE_MGT|IEEE80211_FC0_SUBTYPE_BEACON))
236#define	IFF_DUMPPKTS_RECV(sc, wh) \
237    (((sc->sc_debug & MWL_DEBUG_RECV) && \
238      ((sc->sc_debug & MWL_DEBUG_RECV_ALL) || !IS_BEACON(wh))) || \
239     (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
240#define	IFF_DUMPPKTS_XMIT(sc) \
241	((sc->sc_debug & MWL_DEBUG_XMIT) || \
242	 (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
243#define	DPRINTF(sc, m, fmt, ...) do {				\
244	if (sc->sc_debug & (m))					\
245		printf(fmt, __VA_ARGS__);			\
246} while (0)
247#define	KEYPRINTF(sc, hk, mac) do {				\
248	if (sc->sc_debug & MWL_DEBUG_KEYCACHE)			\
249		mwl_keyprint(sc, __func__, hk, mac);		\
250} while (0)
251static	void mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix);
252static	void mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix);
253#else
254#define	IFF_DUMPPKTS_RECV(sc, wh) \
255	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
256#define	IFF_DUMPPKTS_XMIT(sc) \
257	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
258#define	DPRINTF(sc, m, fmt, ...) do {				\
259	(void) sc;						\
260} while (0)
261#define	KEYPRINTF(sc, k, mac) do {				\
262	(void) sc;						\
263} while (0)
264#endif
265
266static MALLOC_DEFINE(M_MWLDEV, "mwldev", "mwl driver dma buffers");
267
268/*
269 * Each packet has fixed front matter: a 2-byte length
270 * of the payload, followed by a 4-address 802.11 header
271 * (regardless of the actual header and always w/o any
272 * QoS header).  The payload then follows.
273 */
274struct mwltxrec {
275	uint16_t fwlen;
276	struct ieee80211_frame_addr4 wh;
277} __packed;
278
279/*
280 * Read/Write shorthands for accesses to BAR 0.  Note
281 * that all BAR 1 operations are done in the "hal" and
282 * there should be no reference to them here.
283 */
284#ifdef MWL_DEBUG
285static __inline uint32_t
286RD4(struct mwl_softc *sc, bus_size_t off)
287{
288	return bus_space_read_4(sc->sc_io0t, sc->sc_io0h, off);
289}
290#endif
291
292static __inline void
293WR4(struct mwl_softc *sc, bus_size_t off, uint32_t val)
294{
295	bus_space_write_4(sc->sc_io0t, sc->sc_io0h, off, val);
296}
297
298int
299mwl_attach(uint16_t devid, struct mwl_softc *sc)
300{
301	struct ifnet *ifp;
302	struct ieee80211com *ic;
303	struct mwl_hal *mh;
304	int error = 0;
305
306	DPRINTF(sc, MWL_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
307
308	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
309	if (ifp == NULL) {
310		device_printf(sc->sc_dev, "cannot if_alloc()\n");
311		return ENOSPC;
312	}
313	ic = ifp->if_l2com;
314
315	/*
316	 * Setup the RX free list lock early, so it can be consistently
317	 * removed.
318	 */
319	MWL_RXFREE_INIT(sc);
320
321	/* set these up early for if_printf use */
322	if_initname(ifp, device_get_name(sc->sc_dev),
323		device_get_unit(sc->sc_dev));
324
325	mh = mwl_hal_attach(sc->sc_dev, devid,
326	    sc->sc_io1h, sc->sc_io1t, sc->sc_dmat);
327	if (mh == NULL) {
328		if_printf(ifp, "unable to attach HAL\n");
329		error = EIO;
330		goto bad;
331	}
332	sc->sc_mh = mh;
333	/*
334	 * Load firmware so we can get setup.  We arbitrarily
335	 * pick station firmware; we'll re-load firmware as
336	 * needed so setting up the wrong mode isn't a big deal.
337	 */
338	if (mwl_hal_fwload(mh, NULL) != 0) {
339		if_printf(ifp, "unable to setup builtin firmware\n");
340		error = EIO;
341		goto bad1;
342	}
343	if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) {
344		if_printf(ifp, "unable to fetch h/w specs\n");
345		error = EIO;
346		goto bad1;
347	}
348	error = mwl_getchannels(sc);
349	if (error != 0)
350		goto bad1;
351
352	sc->sc_txantenna = 0;		/* h/w default */
353	sc->sc_rxantenna = 0;		/* h/w default */
354	sc->sc_invalid = 0;		/* ready to go, enable int handling */
355	sc->sc_ageinterval = MWL_AGEINTERVAL;
356
357	/*
358	 * Allocate tx+rx descriptors and populate the lists.
359	 * We immediately push the information to the firmware
360	 * as otherwise it gets upset.
361	 */
362	error = mwl_dma_setup(sc);
363	if (error != 0) {
364		if_printf(ifp, "failed to setup descriptors: %d\n", error);
365		goto bad1;
366	}
367	error = mwl_setupdma(sc);	/* push to firmware */
368	if (error != 0)			/* NB: mwl_setupdma prints msg */
369		goto bad1;
370
371	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
372	callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0);
373
374	sc->sc_tq = taskqueue_create("mwl_taskq", M_NOWAIT,
375		taskqueue_thread_enqueue, &sc->sc_tq);
376	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
377		"%s taskq", ifp->if_xname);
378
379	TASK_INIT(&sc->sc_rxtask, 0, mwl_rx_proc, sc);
380	TASK_INIT(&sc->sc_radartask, 0, mwl_radar_proc, sc);
381	TASK_INIT(&sc->sc_chanswitchtask, 0, mwl_chanswitch_proc, sc);
382	TASK_INIT(&sc->sc_bawatchdogtask, 0, mwl_bawatchdog_proc, sc);
383
384	/* NB: insure BK queue is the lowest priority h/w queue */
385	if (!mwl_tx_setup(sc, WME_AC_BK, MWL_WME_AC_BK)) {
386		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
387			ieee80211_wme_acnames[WME_AC_BK]);
388		error = EIO;
389		goto bad2;
390	}
391	if (!mwl_tx_setup(sc, WME_AC_BE, MWL_WME_AC_BE) ||
392	    !mwl_tx_setup(sc, WME_AC_VI, MWL_WME_AC_VI) ||
393	    !mwl_tx_setup(sc, WME_AC_VO, MWL_WME_AC_VO)) {
394		/*
395		 * Not enough hardware tx queues to properly do WME;
396		 * just punt and assign them all to the same h/w queue.
397		 * We could do a better job of this if, for example,
398		 * we allocate queues when we switch from station to
399		 * AP mode.
400		 */
401		if (sc->sc_ac2q[WME_AC_VI] != NULL)
402			mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
403		if (sc->sc_ac2q[WME_AC_BE] != NULL)
404			mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
405		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
406		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
407		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
408	}
409	TASK_INIT(&sc->sc_txtask, 0, mwl_tx_proc, sc);
410
411	ifp->if_softc = sc;
412	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
413	ifp->if_start = mwl_start;
414	ifp->if_ioctl = mwl_ioctl;
415	ifp->if_init = mwl_init;
416	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
417	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
418	IFQ_SET_READY(&ifp->if_snd);
419
420	ic->ic_ifp = ifp;
421	/* XXX not right but it's not used anywhere important */
422	ic->ic_phytype = IEEE80211_T_OFDM;
423	ic->ic_opmode = IEEE80211_M_STA;
424	ic->ic_caps =
425		  IEEE80211_C_STA		/* station mode supported */
426		| IEEE80211_C_HOSTAP		/* hostap mode */
427		| IEEE80211_C_MONITOR		/* monitor mode */
428#if 0
429		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
430		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
431#endif
432		| IEEE80211_C_MBSS		/* mesh point link mode */
433		| IEEE80211_C_WDS		/* WDS supported */
434		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
435		| IEEE80211_C_SHSLOT		/* short slot time supported */
436		| IEEE80211_C_WME		/* WME/WMM supported */
437		| IEEE80211_C_BURST		/* xmit bursting supported */
438		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
439		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
440		| IEEE80211_C_TXFRAG		/* handle tx frags */
441		| IEEE80211_C_TXPMGT		/* capable of txpow mgt */
442		| IEEE80211_C_DFS		/* DFS supported */
443		;
444
445	ic->ic_htcaps =
446		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
447		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
448		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
449		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
450		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
451#if MWL_AGGR_SIZE == 7935
452		| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
453#else
454		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
455#endif
456#if 0
457		| IEEE80211_HTCAP_PSMP		/* PSMP supported */
458		| IEEE80211_HTCAP_40INTOLERANT	/* 40MHz intolerant */
459#endif
460		/* s/w capabilities */
461		| IEEE80211_HTC_HT		/* HT operation */
462		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
463		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
464		| IEEE80211_HTC_SMPS		/* SMPS available */
465		;
466
467	/*
468	 * Mark h/w crypto support.
469	 * XXX no way to query h/w support.
470	 */
471	ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP
472			  |  IEEE80211_CRYPTO_AES_CCM
473			  |  IEEE80211_CRYPTO_TKIP
474			  |  IEEE80211_CRYPTO_TKIPMIC
475			  ;
476	/*
477	 * Transmit requires space in the packet for a special
478	 * format transmit record and optional padding between
479	 * this record and the payload.  Ask the net80211 layer
480	 * to arrange this when encapsulating packets so we can
481	 * add it efficiently.
482	 */
483	ic->ic_headroom = sizeof(struct mwltxrec) -
484		sizeof(struct ieee80211_frame);
485
486	/* call MI attach routine. */
487	ieee80211_ifattach(ic, sc->sc_hwspecs.macAddr);
488	ic->ic_setregdomain = mwl_setregdomain;
489	ic->ic_getradiocaps = mwl_getradiocaps;
490	/* override default methods */
491	ic->ic_raw_xmit = mwl_raw_xmit;
492	ic->ic_newassoc = mwl_newassoc;
493	ic->ic_updateslot = mwl_updateslot;
494	ic->ic_update_mcast = mwl_update_mcast;
495	ic->ic_update_promisc = mwl_update_promisc;
496	ic->ic_wme.wme_update = mwl_wme_update;
497
498	ic->ic_node_alloc = mwl_node_alloc;
499	sc->sc_node_cleanup = ic->ic_node_cleanup;
500	ic->ic_node_cleanup = mwl_node_cleanup;
501	sc->sc_node_drain = ic->ic_node_drain;
502	ic->ic_node_drain = mwl_node_drain;
503	ic->ic_node_getsignal = mwl_node_getsignal;
504	ic->ic_node_getmimoinfo = mwl_node_getmimoinfo;
505
506	ic->ic_scan_start = mwl_scan_start;
507	ic->ic_scan_end = mwl_scan_end;
508	ic->ic_set_channel = mwl_set_channel;
509
510	sc->sc_recv_action = ic->ic_recv_action;
511	ic->ic_recv_action = mwl_recv_action;
512	sc->sc_addba_request = ic->ic_addba_request;
513	ic->ic_addba_request = mwl_addba_request;
514	sc->sc_addba_response = ic->ic_addba_response;
515	ic->ic_addba_response = mwl_addba_response;
516	sc->sc_addba_stop = ic->ic_addba_stop;
517	ic->ic_addba_stop = mwl_addba_stop;
518
519	ic->ic_vap_create = mwl_vap_create;
520	ic->ic_vap_delete = mwl_vap_delete;
521
522	ieee80211_radiotap_attach(ic,
523	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
524		MWL_TX_RADIOTAP_PRESENT,
525	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
526		MWL_RX_RADIOTAP_PRESENT);
527	/*
528	 * Setup dynamic sysctl's now that country code and
529	 * regdomain are available from the hal.
530	 */
531	mwl_sysctlattach(sc);
532
533	if (bootverbose)
534		ieee80211_announce(ic);
535	mwl_announce(sc);
536	return 0;
537bad2:
538	mwl_dma_cleanup(sc);
539bad1:
540	mwl_hal_detach(mh);
541bad:
542	MWL_RXFREE_DESTROY(sc);
543	if_free(ifp);
544	sc->sc_invalid = 1;
545	return error;
546}
547
548int
549mwl_detach(struct mwl_softc *sc)
550{
551	struct ifnet *ifp = sc->sc_ifp;
552	struct ieee80211com *ic = ifp->if_l2com;
553
554	DPRINTF(sc, MWL_DEBUG_ANY, "%s: if_flags %x\n",
555		__func__, ifp->if_flags);
556
557	mwl_stop(ifp, 1);
558	/*
559	 * NB: the order of these is important:
560	 * o call the 802.11 layer before detaching the hal to
561	 *   insure callbacks into the driver to delete global
562	 *   key cache entries can be handled
563	 * o reclaim the tx queue data structures after calling
564	 *   the 802.11 layer as we'll get called back to reclaim
565	 *   node state and potentially want to use them
566	 * o to cleanup the tx queues the hal is called, so detach
567	 *   it last
568	 * Other than that, it's straightforward...
569	 */
570	ieee80211_ifdetach(ic);
571	callout_drain(&sc->sc_watchdog);
572	mwl_dma_cleanup(sc);
573	MWL_RXFREE_DESTROY(sc);
574	mwl_tx_cleanup(sc);
575	mwl_hal_detach(sc->sc_mh);
576	if_free(ifp);
577
578	return 0;
579}
580
581/*
582 * MAC address handling for multiple BSS on the same radio.
583 * The first vap uses the MAC address from the EEPROM.  For
584 * subsequent vap's we set the U/L bit (bit 1) in the MAC
585 * address and use the next six bits as an index.
586 */
587static void
588assign_address(struct mwl_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
589{
590	int i;
591
592	if (clone && mwl_hal_ismbsscapable(sc->sc_mh)) {
593		/* NB: we only do this if h/w supports multiple bssid */
594		for (i = 0; i < 32; i++)
595			if ((sc->sc_bssidmask & (1<<i)) == 0)
596				break;
597		if (i != 0)
598			mac[0] |= (i << 2)|0x2;
599	} else
600		i = 0;
601	sc->sc_bssidmask |= 1<<i;
602	if (i == 0)
603		sc->sc_nbssid0++;
604}
605
606static void
607reclaim_address(struct mwl_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN])
608{
609	int i = mac[0] >> 2;
610	if (i != 0 || --sc->sc_nbssid0 == 0)
611		sc->sc_bssidmask &= ~(1<<i);
612}
613
614static struct ieee80211vap *
615mwl_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
616    enum ieee80211_opmode opmode, int flags,
617    const uint8_t bssid[IEEE80211_ADDR_LEN],
618    const uint8_t mac0[IEEE80211_ADDR_LEN])
619{
620	struct ifnet *ifp = ic->ic_ifp;
621	struct mwl_softc *sc = ifp->if_softc;
622	struct mwl_hal *mh = sc->sc_mh;
623	struct ieee80211vap *vap, *apvap;
624	struct mwl_hal_vap *hvap;
625	struct mwl_vap *mvp;
626	uint8_t mac[IEEE80211_ADDR_LEN];
627
628	IEEE80211_ADDR_COPY(mac, mac0);
629	switch (opmode) {
630	case IEEE80211_M_HOSTAP:
631	case IEEE80211_M_MBSS:
632		if ((flags & IEEE80211_CLONE_MACADDR) == 0)
633			assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
634		hvap = mwl_hal_newvap(mh, MWL_HAL_AP, mac);
635		if (hvap == NULL) {
636			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
637				reclaim_address(sc, mac);
638			return NULL;
639		}
640		break;
641	case IEEE80211_M_STA:
642		if ((flags & IEEE80211_CLONE_MACADDR) == 0)
643			assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
644		hvap = mwl_hal_newvap(mh, MWL_HAL_STA, mac);
645		if (hvap == NULL) {
646			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
647				reclaim_address(sc, mac);
648			return NULL;
649		}
650		/* no h/w beacon miss support; always use s/w */
651		flags |= IEEE80211_CLONE_NOBEACONS;
652		break;
653	case IEEE80211_M_WDS:
654		hvap = NULL;		/* NB: we use associated AP vap */
655		if (sc->sc_napvaps == 0)
656			return NULL;	/* no existing AP vap */
657		break;
658	case IEEE80211_M_MONITOR:
659		hvap = NULL;
660		break;
661	case IEEE80211_M_IBSS:
662	case IEEE80211_M_AHDEMO:
663	default:
664		return NULL;
665	}
666
667	mvp = (struct mwl_vap *) malloc(sizeof(struct mwl_vap),
668	    M_80211_VAP, M_NOWAIT | M_ZERO);
669	if (mvp == NULL) {
670		if (hvap != NULL) {
671			mwl_hal_delvap(hvap);
672			if ((flags & IEEE80211_CLONE_MACADDR) == 0)
673				reclaim_address(sc, mac);
674		}
675		/* XXX msg */
676		return NULL;
677	}
678	mvp->mv_hvap = hvap;
679	if (opmode == IEEE80211_M_WDS) {
680		/*
681		 * WDS vaps must have an associated AP vap; find one.
682		 * XXX not right.
683		 */
684		TAILQ_FOREACH(apvap, &ic->ic_vaps, iv_next)
685			if (apvap->iv_opmode == IEEE80211_M_HOSTAP) {
686				mvp->mv_ap_hvap = MWL_VAP(apvap)->mv_hvap;
687				break;
688			}
689		KASSERT(mvp->mv_ap_hvap != NULL, ("no ap vap"));
690	}
691	vap = &mvp->mv_vap;
692	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
693	if (hvap != NULL)
694		IEEE80211_ADDR_COPY(vap->iv_myaddr, mac);
695	/* override with driver methods */
696	mvp->mv_newstate = vap->iv_newstate;
697	vap->iv_newstate = mwl_newstate;
698	vap->iv_max_keyix = 0;	/* XXX */
699	vap->iv_key_alloc = mwl_key_alloc;
700	vap->iv_key_delete = mwl_key_delete;
701	vap->iv_key_set = mwl_key_set;
702#ifdef MWL_HOST_PS_SUPPORT
703	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
704		vap->iv_update_ps = mwl_update_ps;
705		mvp->mv_set_tim = vap->iv_set_tim;
706		vap->iv_set_tim = mwl_set_tim;
707	}
708#endif
709	vap->iv_reset = mwl_reset;
710	vap->iv_update_beacon = mwl_beacon_update;
711
712	/* override max aid so sta's cannot assoc when we're out of sta id's */
713	vap->iv_max_aid = MWL_MAXSTAID;
714	/* override default A-MPDU rx parameters */
715	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
716	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4;
717
718	/* complete setup */
719	ieee80211_vap_attach(vap, mwl_media_change, ieee80211_media_status);
720
721	switch (vap->iv_opmode) {
722	case IEEE80211_M_HOSTAP:
723	case IEEE80211_M_MBSS:
724	case IEEE80211_M_STA:
725		/*
726		 * Setup sta db entry for local address.
727		 */
728		mwl_localstadb(vap);
729		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
730		    vap->iv_opmode == IEEE80211_M_MBSS)
731			sc->sc_napvaps++;
732		else
733			sc->sc_nstavaps++;
734		break;
735	case IEEE80211_M_WDS:
736		sc->sc_nwdsvaps++;
737		break;
738	default:
739		break;
740	}
741	/*
742	 * Setup overall operating mode.
743	 */
744	if (sc->sc_napvaps)
745		ic->ic_opmode = IEEE80211_M_HOSTAP;
746	else if (sc->sc_nstavaps)
747		ic->ic_opmode = IEEE80211_M_STA;
748	else
749		ic->ic_opmode = opmode;
750
751	return vap;
752}
753
754static void
755mwl_vap_delete(struct ieee80211vap *vap)
756{
757	struct mwl_vap *mvp = MWL_VAP(vap);
758	struct ifnet *parent = vap->iv_ic->ic_ifp;
759	struct mwl_softc *sc = parent->if_softc;
760	struct mwl_hal *mh = sc->sc_mh;
761	struct mwl_hal_vap *hvap = mvp->mv_hvap;
762	enum ieee80211_opmode opmode = vap->iv_opmode;
763
764	/* XXX disallow ap vap delete if WDS still present */
765	if (parent->if_drv_flags & IFF_DRV_RUNNING) {
766		/* quiesce h/w while we remove the vap */
767		mwl_hal_intrset(mh, 0);		/* disable interrupts */
768	}
769	ieee80211_vap_detach(vap);
770	switch (opmode) {
771	case IEEE80211_M_HOSTAP:
772	case IEEE80211_M_MBSS:
773	case IEEE80211_M_STA:
774		KASSERT(hvap != NULL, ("no hal vap handle"));
775		(void) mwl_hal_delstation(hvap, vap->iv_myaddr);
776		mwl_hal_delvap(hvap);
777		if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS)
778			sc->sc_napvaps--;
779		else
780			sc->sc_nstavaps--;
781		/* XXX don't do it for IEEE80211_CLONE_MACADDR */
782		reclaim_address(sc, vap->iv_myaddr);
783		break;
784	case IEEE80211_M_WDS:
785		sc->sc_nwdsvaps--;
786		break;
787	default:
788		break;
789	}
790	mwl_cleartxq(sc, vap);
791	free(mvp, M_80211_VAP);
792	if (parent->if_drv_flags & IFF_DRV_RUNNING)
793		mwl_hal_intrset(mh, sc->sc_imask);
794}
795
796void
797mwl_suspend(struct mwl_softc *sc)
798{
799	struct ifnet *ifp = sc->sc_ifp;
800
801	DPRINTF(sc, MWL_DEBUG_ANY, "%s: if_flags %x\n",
802		__func__, ifp->if_flags);
803
804	mwl_stop(ifp, 1);
805}
806
807void
808mwl_resume(struct mwl_softc *sc)
809{
810	struct ifnet *ifp = sc->sc_ifp;
811
812	DPRINTF(sc, MWL_DEBUG_ANY, "%s: if_flags %x\n",
813		__func__, ifp->if_flags);
814
815	if (ifp->if_flags & IFF_UP)
816		mwl_init(sc);
817}
818
819void
820mwl_shutdown(void *arg)
821{
822	struct mwl_softc *sc = arg;
823
824	mwl_stop(sc->sc_ifp, 1);
825}
826
827/*
828 * Interrupt handler.  Most of the actual processing is deferred.
829 */
830void
831mwl_intr(void *arg)
832{
833	struct mwl_softc *sc = arg;
834	struct mwl_hal *mh = sc->sc_mh;
835	uint32_t status;
836
837	if (sc->sc_invalid) {
838		/*
839		 * The hardware is not ready/present, don't touch anything.
840		 * Note this can happen early on if the IRQ is shared.
841		 */
842		DPRINTF(sc, MWL_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
843		return;
844	}
845	/*
846	 * Figure out the reason(s) for the interrupt.
847	 */
848	mwl_hal_getisr(mh, &status);		/* NB: clears ISR too */
849	if (status == 0)			/* must be a shared irq */
850		return;
851
852	DPRINTF(sc, MWL_DEBUG_INTR, "%s: status 0x%x imask 0x%x\n",
853	    __func__, status, sc->sc_imask);
854	if (status & MACREG_A2HRIC_BIT_RX_RDY)
855		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
856	if (status & MACREG_A2HRIC_BIT_TX_DONE)
857		taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
858	if (status & MACREG_A2HRIC_BIT_BA_WATCHDOG)
859		taskqueue_enqueue(sc->sc_tq, &sc->sc_bawatchdogtask);
860	if (status & MACREG_A2HRIC_BIT_OPC_DONE)
861		mwl_hal_cmddone(mh);
862	if (status & MACREG_A2HRIC_BIT_MAC_EVENT) {
863		;
864	}
865	if (status & MACREG_A2HRIC_BIT_ICV_ERROR) {
866		/* TKIP ICV error */
867		sc->sc_stats.mst_rx_badtkipicv++;
868	}
869	if (status & MACREG_A2HRIC_BIT_QUEUE_EMPTY) {
870		/* 11n aggregation queue is empty, re-fill */
871		;
872	}
873	if (status & MACREG_A2HRIC_BIT_QUEUE_FULL) {
874		;
875	}
876	if (status & MACREG_A2HRIC_BIT_RADAR_DETECT) {
877		/* radar detected, process event */
878		taskqueue_enqueue(sc->sc_tq, &sc->sc_radartask);
879	}
880	if (status & MACREG_A2HRIC_BIT_CHAN_SWITCH) {
881		/* DFS channel switch */
882		taskqueue_enqueue(sc->sc_tq, &sc->sc_chanswitchtask);
883	}
884}
885
886static void
887mwl_radar_proc(void *arg, int pending)
888{
889	struct mwl_softc *sc = arg;
890	struct ifnet *ifp = sc->sc_ifp;
891	struct ieee80211com *ic = ifp->if_l2com;
892
893	DPRINTF(sc, MWL_DEBUG_ANY, "%s: radar detected, pending %u\n",
894	    __func__, pending);
895
896	sc->sc_stats.mst_radardetect++;
897	/* XXX stop h/w BA streams? */
898
899	IEEE80211_LOCK(ic);
900	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
901	IEEE80211_UNLOCK(ic);
902}
903
904static void
905mwl_chanswitch_proc(void *arg, int pending)
906{
907	struct mwl_softc *sc = arg;
908	struct ifnet *ifp = sc->sc_ifp;
909	struct ieee80211com *ic = ifp->if_l2com;
910
911	DPRINTF(sc, MWL_DEBUG_ANY, "%s: channel switch notice, pending %u\n",
912	    __func__, pending);
913
914	IEEE80211_LOCK(ic);
915	sc->sc_csapending = 0;
916	ieee80211_csa_completeswitch(ic);
917	IEEE80211_UNLOCK(ic);
918}
919
920static void
921mwl_bawatchdog(const MWL_HAL_BASTREAM *sp)
922{
923	struct ieee80211_node *ni = sp->data[0];
924
925	/* send DELBA and drop the stream */
926	ieee80211_ampdu_stop(ni, sp->data[1], IEEE80211_REASON_UNSPECIFIED);
927}
928
929static void
930mwl_bawatchdog_proc(void *arg, int pending)
931{
932	struct mwl_softc *sc = arg;
933	struct mwl_hal *mh = sc->sc_mh;
934	const MWL_HAL_BASTREAM *sp;
935	uint8_t bitmap, n;
936
937	sc->sc_stats.mst_bawatchdog++;
938
939	if (mwl_hal_getwatchdogbitmap(mh, &bitmap) != 0) {
940		DPRINTF(sc, MWL_DEBUG_AMPDU,
941		    "%s: could not get bitmap\n", __func__);
942		sc->sc_stats.mst_bawatchdog_failed++;
943		return;
944	}
945	DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: bitmap 0x%x\n", __func__, bitmap);
946	if (bitmap == 0xff) {
947		n = 0;
948		/* disable all ba streams */
949		for (bitmap = 0; bitmap < 8; bitmap++) {
950			sp = mwl_hal_bastream_lookup(mh, bitmap);
951			if (sp != NULL) {
952				mwl_bawatchdog(sp);
953				n++;
954			}
955		}
956		if (n == 0) {
957			DPRINTF(sc, MWL_DEBUG_AMPDU,
958			    "%s: no BA streams found\n", __func__);
959			sc->sc_stats.mst_bawatchdog_empty++;
960		}
961	} else if (bitmap != 0xaa) {
962		/* disable a single ba stream */
963		sp = mwl_hal_bastream_lookup(mh, bitmap);
964		if (sp != NULL) {
965			mwl_bawatchdog(sp);
966		} else {
967			DPRINTF(sc, MWL_DEBUG_AMPDU,
968			    "%s: no BA stream %d\n", __func__, bitmap);
969			sc->sc_stats.mst_bawatchdog_notfound++;
970		}
971	}
972}
973
974/*
975 * Convert net80211 channel to a HAL channel.
976 */
977static void
978mwl_mapchan(MWL_HAL_CHANNEL *hc, const struct ieee80211_channel *chan)
979{
980	hc->channel = chan->ic_ieee;
981
982	*(uint32_t *)&hc->channelFlags = 0;
983	if (IEEE80211_IS_CHAN_2GHZ(chan))
984		hc->channelFlags.FreqBand = MWL_FREQ_BAND_2DOT4GHZ;
985	else if (IEEE80211_IS_CHAN_5GHZ(chan))
986		hc->channelFlags.FreqBand = MWL_FREQ_BAND_5GHZ;
987	if (IEEE80211_IS_CHAN_HT40(chan)) {
988		hc->channelFlags.ChnlWidth = MWL_CH_40_MHz_WIDTH;
989		if (IEEE80211_IS_CHAN_HT40U(chan))
990			hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_ABOVE_CTRL_CH;
991		else
992			hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_BELOW_CTRL_CH;
993	} else
994		hc->channelFlags.ChnlWidth = MWL_CH_20_MHz_WIDTH;
995	/* XXX 10MHz channels */
996}
997
998/*
999 * Inform firmware of our tx/rx dma setup.  The BAR 0
1000 * writes below are for compatibility with older firmware.
1001 * For current firmware we send this information with a
1002 * cmd block via mwl_hal_sethwdma.
1003 */
1004static int
1005mwl_setupdma(struct mwl_softc *sc)
1006{
1007	int error, i;
1008
1009	sc->sc_hwdma.rxDescRead = sc->sc_rxdma.dd_desc_paddr;
1010	WR4(sc, sc->sc_hwspecs.rxDescRead, sc->sc_hwdma.rxDescRead);
1011	WR4(sc, sc->sc_hwspecs.rxDescWrite, sc->sc_hwdma.rxDescRead);
1012
1013	for (i = 0; i < MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES; i++) {
1014		struct mwl_txq *txq = &sc->sc_txq[i];
1015		sc->sc_hwdma.wcbBase[i] = txq->dma.dd_desc_paddr;
1016		WR4(sc, sc->sc_hwspecs.wcbBase[i], sc->sc_hwdma.wcbBase[i]);
1017	}
1018	sc->sc_hwdma.maxNumTxWcb = mwl_txbuf;
1019	sc->sc_hwdma.maxNumWCB = MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES;
1020
1021	error = mwl_hal_sethwdma(sc->sc_mh, &sc->sc_hwdma);
1022	if (error != 0) {
1023		device_printf(sc->sc_dev,
1024		    "unable to setup tx/rx dma; hal status %u\n", error);
1025		/* XXX */
1026	}
1027	return error;
1028}
1029
1030/*
1031 * Inform firmware of tx rate parameters.
1032 * Called after a channel change.
1033 */
1034static int
1035mwl_setcurchanrates(struct mwl_softc *sc)
1036{
1037	struct ifnet *ifp = sc->sc_ifp;
1038	struct ieee80211com *ic = ifp->if_l2com;
1039	const struct ieee80211_rateset *rs;
1040	MWL_HAL_TXRATE rates;
1041
1042	memset(&rates, 0, sizeof(rates));
1043	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1044	/* rate used to send management frames */
1045	rates.MgtRate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
1046	/* rate used to send multicast frames */
1047	rates.McastRate = rates.MgtRate;
1048
1049	return mwl_hal_settxrate_auto(sc->sc_mh, &rates);
1050}
1051
1052/*
1053 * Inform firmware of tx rate parameters.  Called whenever
1054 * user-settable params change and after a channel change.
1055 */
1056static int
1057mwl_setrates(struct ieee80211vap *vap)
1058{
1059	struct mwl_vap *mvp = MWL_VAP(vap);
1060	struct ieee80211_node *ni = vap->iv_bss;
1061	const struct ieee80211_txparam *tp = ni->ni_txparms;
1062	MWL_HAL_TXRATE rates;
1063
1064	KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
1065
1066	/*
1067	 * Update the h/w rate map.
1068	 * NB: 0x80 for MCS is passed through unchanged
1069	 */
1070	memset(&rates, 0, sizeof(rates));
1071	/* rate used to send management frames */
1072	rates.MgtRate = tp->mgmtrate;
1073	/* rate used to send multicast frames */
1074	rates.McastRate = tp->mcastrate;
1075
1076	/* while here calculate EAPOL fixed rate cookie */
1077	mvp->mv_eapolformat = htole16(mwl_calcformat(rates.MgtRate, ni));
1078
1079	return mwl_hal_settxrate(mvp->mv_hvap,
1080	    tp->ucastrate != IEEE80211_FIXED_RATE_NONE ?
1081		RATE_FIXED : RATE_AUTO, &rates);
1082}
1083
1084/*
1085 * Setup a fixed xmit rate cookie for EAPOL frames.
1086 */
1087static void
1088mwl_seteapolformat(struct ieee80211vap *vap)
1089{
1090	struct mwl_vap *mvp = MWL_VAP(vap);
1091	struct ieee80211_node *ni = vap->iv_bss;
1092	enum ieee80211_phymode mode;
1093	uint8_t rate;
1094
1095	KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state));
1096
1097	mode = ieee80211_chan2mode(ni->ni_chan);
1098	/*
1099	 * Use legacy rates when operating a mixed HT+non-HT bss.
1100	 * NB: this may violate POLA for sta and wds vap's.
1101	 */
1102	if (mode == IEEE80211_MODE_11NA &&
1103	    (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0)
1104		rate = vap->iv_txparms[IEEE80211_MODE_11A].mgmtrate;
1105	else if (mode == IEEE80211_MODE_11NG &&
1106	    (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0)
1107		rate = vap->iv_txparms[IEEE80211_MODE_11G].mgmtrate;
1108	else
1109		rate = vap->iv_txparms[mode].mgmtrate;
1110
1111	mvp->mv_eapolformat = htole16(mwl_calcformat(rate, ni));
1112}
1113
1114/*
1115 * Map SKU+country code to region code for radar bin'ing.
1116 */
1117static int
1118mwl_map2regioncode(const struct ieee80211_regdomain *rd)
1119{
1120	switch (rd->regdomain) {
1121	case SKU_FCC:
1122	case SKU_FCC3:
1123		return DOMAIN_CODE_FCC;
1124	case SKU_CA:
1125		return DOMAIN_CODE_IC;
1126	case SKU_ETSI:
1127	case SKU_ETSI2:
1128	case SKU_ETSI3:
1129		if (rd->country == CTRY_SPAIN)
1130			return DOMAIN_CODE_SPAIN;
1131		if (rd->country == CTRY_FRANCE || rd->country == CTRY_FRANCE2)
1132			return DOMAIN_CODE_FRANCE;
1133		/* XXX force 1.3.1 radar type */
1134		return DOMAIN_CODE_ETSI_131;
1135	case SKU_JAPAN:
1136		return DOMAIN_CODE_MKK;
1137	case SKU_ROW:
1138		return DOMAIN_CODE_DGT;	/* Taiwan */
1139	case SKU_APAC:
1140	case SKU_APAC2:
1141	case SKU_APAC3:
1142		return DOMAIN_CODE_AUS;	/* Australia */
1143	}
1144	/* XXX KOREA? */
1145	return DOMAIN_CODE_FCC;			/* XXX? */
1146}
1147
1148static int
1149mwl_hal_reset(struct mwl_softc *sc)
1150{
1151	struct ifnet *ifp = sc->sc_ifp;
1152	struct ieee80211com *ic = ifp->if_l2com;
1153	struct mwl_hal *mh = sc->sc_mh;
1154
1155	mwl_hal_setantenna(mh, WL_ANTENNATYPE_RX, sc->sc_rxantenna);
1156	mwl_hal_setantenna(mh, WL_ANTENNATYPE_TX, sc->sc_txantenna);
1157	mwl_hal_setradio(mh, 1, WL_AUTO_PREAMBLE);
1158	mwl_hal_setwmm(sc->sc_mh, (ic->ic_flags & IEEE80211_F_WME) != 0);
1159	mwl_chan_set(sc, ic->ic_curchan);
1160	/* NB: RF/RA performance tuned for indoor mode */
1161	mwl_hal_setrateadaptmode(mh, 0);
1162	mwl_hal_setoptimizationlevel(mh,
1163	    (ic->ic_flags & IEEE80211_F_BURST) != 0);
1164
1165	mwl_hal_setregioncode(mh, mwl_map2regioncode(&ic->ic_regdomain));
1166
1167	mwl_hal_setaggampduratemode(mh, 1, 80);		/* XXX */
1168	mwl_hal_setcfend(mh, 0);			/* XXX */
1169
1170	return 1;
1171}
1172
1173static int
1174mwl_init_locked(struct mwl_softc *sc)
1175{
1176	struct ifnet *ifp = sc->sc_ifp;
1177	struct mwl_hal *mh = sc->sc_mh;
1178	int error = 0;
1179
1180	DPRINTF(sc, MWL_DEBUG_ANY, "%s: if_flags 0x%x\n",
1181		__func__, ifp->if_flags);
1182
1183	MWL_LOCK_ASSERT(sc);
1184
1185	/*
1186	 * Stop anything previously setup.  This is safe
1187	 * whether this is the first time through or not.
1188	 */
1189	mwl_stop_locked(ifp, 0);
1190
1191	/*
1192	 * Push vap-independent state to the firmware.
1193	 */
1194	if (!mwl_hal_reset(sc)) {
1195		if_printf(ifp, "unable to reset hardware\n");
1196		return EIO;
1197	}
1198
1199	/*
1200	 * Setup recv (once); transmit is already good to go.
1201	 */
1202	error = mwl_startrecv(sc);
1203	if (error != 0) {
1204		if_printf(ifp, "unable to start recv logic\n");
1205		return error;
1206	}
1207
1208	/*
1209	 * Enable interrupts.
1210	 */
1211	sc->sc_imask = MACREG_A2HRIC_BIT_RX_RDY
1212		     | MACREG_A2HRIC_BIT_TX_DONE
1213		     | MACREG_A2HRIC_BIT_OPC_DONE
1214#if 0
1215		     | MACREG_A2HRIC_BIT_MAC_EVENT
1216#endif
1217		     | MACREG_A2HRIC_BIT_ICV_ERROR
1218		     | MACREG_A2HRIC_BIT_RADAR_DETECT
1219		     | MACREG_A2HRIC_BIT_CHAN_SWITCH
1220#if 0
1221		     | MACREG_A2HRIC_BIT_QUEUE_EMPTY
1222#endif
1223		     | MACREG_A2HRIC_BIT_BA_WATCHDOG
1224		     | MACREQ_A2HRIC_BIT_TX_ACK
1225		     ;
1226
1227	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1228	mwl_hal_intrset(mh, sc->sc_imask);
1229	callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc);
1230
1231	return 0;
1232}
1233
1234static void
1235mwl_init(void *arg)
1236{
1237	struct mwl_softc *sc = arg;
1238	struct ifnet *ifp = sc->sc_ifp;
1239	struct ieee80211com *ic = ifp->if_l2com;
1240	int error = 0;
1241
1242	DPRINTF(sc, MWL_DEBUG_ANY, "%s: if_flags 0x%x\n",
1243		__func__, ifp->if_flags);
1244
1245	MWL_LOCK(sc);
1246	error = mwl_init_locked(sc);
1247	MWL_UNLOCK(sc);
1248
1249	if (error == 0)
1250		ieee80211_start_all(ic);	/* start all vap's */
1251}
1252
1253static void
1254mwl_stop_locked(struct ifnet *ifp, int disable)
1255{
1256	struct mwl_softc *sc = ifp->if_softc;
1257
1258	DPRINTF(sc, MWL_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1259		__func__, sc->sc_invalid, ifp->if_flags);
1260
1261	MWL_LOCK_ASSERT(sc);
1262	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1263		/*
1264		 * Shutdown the hardware and driver.
1265		 */
1266		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1267		callout_stop(&sc->sc_watchdog);
1268		sc->sc_tx_timer = 0;
1269		mwl_draintxq(sc);
1270	}
1271}
1272
1273static void
1274mwl_stop(struct ifnet *ifp, int disable)
1275{
1276	struct mwl_softc *sc = ifp->if_softc;
1277
1278	MWL_LOCK(sc);
1279	mwl_stop_locked(ifp, disable);
1280	MWL_UNLOCK(sc);
1281}
1282
1283static int
1284mwl_reset_vap(struct ieee80211vap *vap, int state)
1285{
1286	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1287	struct ieee80211com *ic = vap->iv_ic;
1288
1289	if (state == IEEE80211_S_RUN)
1290		mwl_setrates(vap);
1291	/* XXX off by 1? */
1292	mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold);
1293	/* XXX auto? 20/40 split? */
1294	mwl_hal_sethtgi(hvap, (vap->iv_flags_ht &
1295	    (IEEE80211_FHT_SHORTGI20|IEEE80211_FHT_SHORTGI40)) ? 1 : 0);
1296	mwl_hal_setnprot(hvap, ic->ic_htprotmode == IEEE80211_PROT_NONE ?
1297	    HTPROTECT_NONE : HTPROTECT_AUTO);
1298	/* XXX txpower cap */
1299
1300	/* re-setup beacons */
1301	if (state == IEEE80211_S_RUN &&
1302	    (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1303	     vap->iv_opmode == IEEE80211_M_MBSS ||
1304	     vap->iv_opmode == IEEE80211_M_IBSS)) {
1305		mwl_setapmode(vap, vap->iv_bss->ni_chan);
1306		mwl_hal_setnprotmode(hvap,
1307		    MS(ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE));
1308		return mwl_beacon_setup(vap);
1309	}
1310	return 0;
1311}
1312
1313/*
1314 * Reset the hardware w/o losing operational state.
1315 * Used to to reset or reload hardware state for a vap.
1316 */
1317static int
1318mwl_reset(struct ieee80211vap *vap, u_long cmd)
1319{
1320	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1321	int error = 0;
1322
1323	if (hvap != NULL) {			/* WDS, MONITOR, etc. */
1324		struct ieee80211com *ic = vap->iv_ic;
1325		struct ifnet *ifp = ic->ic_ifp;
1326		struct mwl_softc *sc = ifp->if_softc;
1327		struct mwl_hal *mh = sc->sc_mh;
1328
1329		/* XXX handle DWDS sta vap change */
1330		/* XXX do we need to disable interrupts? */
1331		mwl_hal_intrset(mh, 0);		/* disable interrupts */
1332		error = mwl_reset_vap(vap, vap->iv_state);
1333		mwl_hal_intrset(mh, sc->sc_imask);
1334	}
1335	return error;
1336}
1337
1338/*
1339 * Allocate a tx buffer for sending a frame.  The
1340 * packet is assumed to have the WME AC stored so
1341 * we can use it to select the appropriate h/w queue.
1342 */
1343static struct mwl_txbuf *
1344mwl_gettxbuf(struct mwl_softc *sc, struct mwl_txq *txq)
1345{
1346	struct mwl_txbuf *bf;
1347
1348	/*
1349	 * Grab a TX buffer and associated resources.
1350	 */
1351	MWL_TXQ_LOCK(txq);
1352	bf = STAILQ_FIRST(&txq->free);
1353	if (bf != NULL) {
1354		STAILQ_REMOVE_HEAD(&txq->free, bf_list);
1355		txq->nfree--;
1356	}
1357	MWL_TXQ_UNLOCK(txq);
1358	if (bf == NULL)
1359		DPRINTF(sc, MWL_DEBUG_XMIT,
1360		    "%s: out of xmit buffers on q %d\n", __func__, txq->qnum);
1361	return bf;
1362}
1363
1364/*
1365 * Return a tx buffer to the queue it came from.  Note there
1366 * are two cases because we must preserve the order of buffers
1367 * as it reflects the fixed order of descriptors in memory
1368 * (the firmware pre-fetches descriptors so we cannot reorder).
1369 */
1370static void
1371mwl_puttxbuf_head(struct mwl_txq *txq, struct mwl_txbuf *bf)
1372{
1373	bf->bf_m = NULL;
1374	bf->bf_node = NULL;
1375	MWL_TXQ_LOCK(txq);
1376	STAILQ_INSERT_HEAD(&txq->free, bf, bf_list);
1377	txq->nfree++;
1378	MWL_TXQ_UNLOCK(txq);
1379}
1380
1381static void
1382mwl_puttxbuf_tail(struct mwl_txq *txq, struct mwl_txbuf *bf)
1383{
1384	bf->bf_m = NULL;
1385	bf->bf_node = NULL;
1386	MWL_TXQ_LOCK(txq);
1387	STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
1388	txq->nfree++;
1389	MWL_TXQ_UNLOCK(txq);
1390}
1391
1392static void
1393mwl_start(struct ifnet *ifp)
1394{
1395	struct mwl_softc *sc = ifp->if_softc;
1396	struct ieee80211_node *ni;
1397	struct mwl_txbuf *bf;
1398	struct mbuf *m;
1399	struct mwl_txq *txq = NULL;	/* XXX silence gcc */
1400	int nqueued;
1401
1402	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1403		return;
1404	nqueued = 0;
1405	for (;;) {
1406		bf = NULL;
1407		IFQ_DEQUEUE(&ifp->if_snd, m);
1408		if (m == NULL)
1409			break;
1410		/*
1411		 * Grab the node for the destination.
1412		 */
1413		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1414		KASSERT(ni != NULL, ("no node"));
1415		m->m_pkthdr.rcvif = NULL;	/* committed, clear ref */
1416		/*
1417		 * Grab a TX buffer and associated resources.
1418		 * We honor the classification by the 802.11 layer.
1419		 */
1420		txq = sc->sc_ac2q[M_WME_GETAC(m)];
1421		bf = mwl_gettxbuf(sc, txq);
1422		if (bf == NULL) {
1423			m_freem(m);
1424			ieee80211_free_node(ni);
1425#ifdef MWL_TX_NODROP
1426			sc->sc_stats.mst_tx_qstop++;
1427			/* XXX blocks other traffic */
1428			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1429			break;
1430#else
1431			DPRINTF(sc, MWL_DEBUG_XMIT,
1432			    "%s: tail drop on q %d\n", __func__, txq->qnum);
1433			sc->sc_stats.mst_tx_qdrop++;
1434			continue;
1435#endif /* MWL_TX_NODROP */
1436		}
1437
1438		/*
1439		 * Pass the frame to the h/w for transmission.
1440		 */
1441		if (mwl_tx_start(sc, ni, bf, m)) {
1442			ifp->if_oerrors++;
1443			mwl_puttxbuf_head(txq, bf);
1444			ieee80211_free_node(ni);
1445			continue;
1446		}
1447		nqueued++;
1448		if (nqueued >= mwl_txcoalesce) {
1449			/*
1450			 * Poke the firmware to process queued frames;
1451			 * see below about (lack of) locking.
1452			 */
1453			nqueued = 0;
1454			mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1455		}
1456	}
1457	if (nqueued) {
1458		/*
1459		 * NB: We don't need to lock against tx done because
1460		 * this just prods the firmware to check the transmit
1461		 * descriptors.  The firmware will also start fetching
1462		 * descriptors by itself if it notices new ones are
1463		 * present when it goes to deliver a tx done interrupt
1464		 * to the host. So if we race with tx done processing
1465		 * it's ok.  Delivering the kick here rather than in
1466		 * mwl_tx_start is an optimization to avoid poking the
1467		 * firmware for each packet.
1468		 *
1469		 * NB: the queue id isn't used so 0 is ok.
1470		 */
1471		mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1472	}
1473}
1474
1475static int
1476mwl_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1477	const struct ieee80211_bpf_params *params)
1478{
1479	struct ieee80211com *ic = ni->ni_ic;
1480	struct ifnet *ifp = ic->ic_ifp;
1481	struct mwl_softc *sc = ifp->if_softc;
1482	struct mwl_txbuf *bf;
1483	struct mwl_txq *txq;
1484
1485	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
1486		ieee80211_free_node(ni);
1487		m_freem(m);
1488		return ENETDOWN;
1489	}
1490	/*
1491	 * Grab a TX buffer and associated resources.
1492	 * Note that we depend on the classification
1493	 * by the 802.11 layer to get to the right h/w
1494	 * queue.  Management frames must ALWAYS go on
1495	 * queue 1 but we cannot just force that here
1496	 * because we may receive non-mgt frames.
1497	 */
1498	txq = sc->sc_ac2q[M_WME_GETAC(m)];
1499	bf = mwl_gettxbuf(sc, txq);
1500	if (bf == NULL) {
1501		sc->sc_stats.mst_tx_qstop++;
1502		/* XXX blocks other traffic */
1503		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1504		ieee80211_free_node(ni);
1505		m_freem(m);
1506		return ENOBUFS;
1507	}
1508	/*
1509	 * Pass the frame to the h/w for transmission.
1510	 */
1511	if (mwl_tx_start(sc, ni, bf, m)) {
1512		ifp->if_oerrors++;
1513		mwl_puttxbuf_head(txq, bf);
1514
1515		ieee80211_free_node(ni);
1516		return EIO;		/* XXX */
1517	}
1518	/*
1519	 * NB: We don't need to lock against tx done because
1520	 * this just prods the firmware to check the transmit
1521	 * descriptors.  The firmware will also start fetching
1522	 * descriptors by itself if it notices new ones are
1523	 * present when it goes to deliver a tx done interrupt
1524	 * to the host. So if we race with tx done processing
1525	 * it's ok.  Delivering the kick here rather than in
1526	 * mwl_tx_start is an optimization to avoid poking the
1527	 * firmware for each packet.
1528	 *
1529	 * NB: the queue id isn't used so 0 is ok.
1530	 */
1531	mwl_hal_txstart(sc->sc_mh, 0/*XXX*/);
1532	return 0;
1533}
1534
1535static int
1536mwl_media_change(struct ifnet *ifp)
1537{
1538	struct ieee80211vap *vap = ifp->if_softc;
1539	int error;
1540
1541	error = ieee80211_media_change(ifp);
1542	/* NB: only the fixed rate can change and that doesn't need a reset */
1543	if (error == ENETRESET) {
1544		mwl_setrates(vap);
1545		error = 0;
1546	}
1547	return error;
1548}
1549
1550#ifdef MWL_DEBUG
1551static void
1552mwl_keyprint(struct mwl_softc *sc, const char *tag,
1553	const MWL_HAL_KEYVAL *hk, const uint8_t mac[IEEE80211_ADDR_LEN])
1554{
1555	static const char *ciphers[] = {
1556		"WEP",
1557		"TKIP",
1558		"AES-CCM",
1559	};
1560	int i, n;
1561
1562	printf("%s: [%u] %-7s", tag, hk->keyIndex, ciphers[hk->keyTypeId]);
1563	for (i = 0, n = hk->keyLen; i < n; i++)
1564		printf(" %02x", hk->key.aes[i]);
1565	printf(" mac %s", ether_sprintf(mac));
1566	if (hk->keyTypeId == KEY_TYPE_ID_TKIP) {
1567		printf(" %s", "rxmic");
1568		for (i = 0; i < sizeof(hk->key.tkip.rxMic); i++)
1569			printf(" %02x", hk->key.tkip.rxMic[i]);
1570		printf(" txmic");
1571		for (i = 0; i < sizeof(hk->key.tkip.txMic); i++)
1572			printf(" %02x", hk->key.tkip.txMic[i]);
1573	}
1574	printf(" flags 0x%x\n", hk->keyFlags);
1575}
1576#endif
1577
1578/*
1579 * Allocate a key cache slot for a unicast key.  The
1580 * firmware handles key allocation and every station is
1581 * guaranteed key space so we are always successful.
1582 */
1583static int
1584mwl_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
1585	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1586{
1587	struct mwl_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1588
1589	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||
1590	    (k->wk_flags & IEEE80211_KEY_GROUP)) {
1591		if (!(&vap->iv_nw_keys[0] <= k &&
1592		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
1593			/* should not happen */
1594			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1595				"%s: bogus group key\n", __func__);
1596			return 0;
1597		}
1598		/* give the caller what they requested */
1599		*keyix = *rxkeyix = k - vap->iv_nw_keys;
1600	} else {
1601		/*
1602		 * Firmware handles key allocation.
1603		 */
1604		*keyix = *rxkeyix = 0;
1605	}
1606	return 1;
1607}
1608
1609/*
1610 * Delete a key entry allocated by mwl_key_alloc.
1611 */
1612static int
1613mwl_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
1614{
1615	struct mwl_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1616	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1617	MWL_HAL_KEYVAL hk;
1618	const uint8_t bcastaddr[IEEE80211_ADDR_LEN] =
1619	    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1620
1621	if (hvap == NULL) {
1622		if (vap->iv_opmode != IEEE80211_M_WDS) {
1623			/* XXX monitor mode? */
1624			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1625			    "%s: no hvap for opmode %d\n", __func__,
1626			    vap->iv_opmode);
1627			return 0;
1628		}
1629		hvap = MWL_VAP(vap)->mv_ap_hvap;
1630	}
1631
1632	DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: delete key %u\n",
1633	    __func__, k->wk_keyix);
1634
1635	memset(&hk, 0, sizeof(hk));
1636	hk.keyIndex = k->wk_keyix;
1637	switch (k->wk_cipher->ic_cipher) {
1638	case IEEE80211_CIPHER_WEP:
1639		hk.keyTypeId = KEY_TYPE_ID_WEP;
1640		break;
1641	case IEEE80211_CIPHER_TKIP:
1642		hk.keyTypeId = KEY_TYPE_ID_TKIP;
1643		break;
1644	case IEEE80211_CIPHER_AES_CCM:
1645		hk.keyTypeId = KEY_TYPE_ID_AES;
1646		break;
1647	default:
1648		/* XXX should not happen */
1649		DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n",
1650		    __func__, k->wk_cipher->ic_cipher);
1651		return 0;
1652	}
1653	return (mwl_hal_keyreset(hvap, &hk, bcastaddr) == 0);	/*XXX*/
1654}
1655
1656static __inline int
1657addgroupflags(MWL_HAL_KEYVAL *hk, const struct ieee80211_key *k)
1658{
1659	if (k->wk_flags & IEEE80211_KEY_GROUP) {
1660		if (k->wk_flags & IEEE80211_KEY_XMIT)
1661			hk->keyFlags |= KEY_FLAG_TXGROUPKEY;
1662		if (k->wk_flags & IEEE80211_KEY_RECV)
1663			hk->keyFlags |= KEY_FLAG_RXGROUPKEY;
1664		return 1;
1665	} else
1666		return 0;
1667}
1668
1669/*
1670 * Set the key cache contents for the specified key.  Key cache
1671 * slot(s) must already have been allocated by mwl_key_alloc.
1672 */
1673static int
1674mwl_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
1675	const uint8_t mac[IEEE80211_ADDR_LEN])
1676{
1677#define	GRPXMIT	(IEEE80211_KEY_XMIT | IEEE80211_KEY_GROUP)
1678/* NB: static wep keys are marked GROUP+tx/rx; GTK will be tx or rx */
1679#define	IEEE80211_IS_STATICKEY(k) \
1680	(((k)->wk_flags & (GRPXMIT|IEEE80211_KEY_RECV)) == \
1681	 (GRPXMIT|IEEE80211_KEY_RECV))
1682	struct mwl_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1683	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1684	const struct ieee80211_cipher *cip = k->wk_cipher;
1685	const uint8_t *macaddr;
1686	MWL_HAL_KEYVAL hk;
1687
1688	KASSERT((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0,
1689		("s/w crypto set?"));
1690
1691	if (hvap == NULL) {
1692		if (vap->iv_opmode != IEEE80211_M_WDS) {
1693			/* XXX monitor mode? */
1694			DPRINTF(sc, MWL_DEBUG_KEYCACHE,
1695			    "%s: no hvap for opmode %d\n", __func__,
1696			    vap->iv_opmode);
1697			return 0;
1698		}
1699		hvap = MWL_VAP(vap)->mv_ap_hvap;
1700	}
1701	memset(&hk, 0, sizeof(hk));
1702	hk.keyIndex = k->wk_keyix;
1703	switch (cip->ic_cipher) {
1704	case IEEE80211_CIPHER_WEP:
1705		hk.keyTypeId = KEY_TYPE_ID_WEP;
1706		hk.keyLen = k->wk_keylen;
1707		if (k->wk_keyix == vap->iv_def_txkey)
1708			hk.keyFlags = KEY_FLAG_WEP_TXKEY;
1709		if (!IEEE80211_IS_STATICKEY(k)) {
1710			/* NB: WEP is never used for the PTK */
1711			(void) addgroupflags(&hk, k);
1712		}
1713		break;
1714	case IEEE80211_CIPHER_TKIP:
1715		hk.keyTypeId = KEY_TYPE_ID_TKIP;
1716		hk.key.tkip.tsc.high = (uint32_t)(k->wk_keytsc >> 16);
1717		hk.key.tkip.tsc.low = (uint16_t)k->wk_keytsc;
1718		hk.keyFlags = KEY_FLAG_TSC_VALID | KEY_FLAG_MICKEY_VALID;
1719		hk.keyLen = k->wk_keylen + IEEE80211_MICBUF_SIZE;
1720		if (!addgroupflags(&hk, k))
1721			hk.keyFlags |= KEY_FLAG_PAIRWISE;
1722		break;
1723	case IEEE80211_CIPHER_AES_CCM:
1724		hk.keyTypeId = KEY_TYPE_ID_AES;
1725		hk.keyLen = k->wk_keylen;
1726		if (!addgroupflags(&hk, k))
1727			hk.keyFlags |= KEY_FLAG_PAIRWISE;
1728		break;
1729	default:
1730		/* XXX should not happen */
1731		DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n",
1732		    __func__, k->wk_cipher->ic_cipher);
1733		return 0;
1734	}
1735	/*
1736	 * NB: tkip mic keys get copied here too; the layout
1737	 *     just happens to match that in ieee80211_key.
1738	 */
1739	memcpy(hk.key.aes, k->wk_key, hk.keyLen);
1740
1741	/*
1742	 * Locate address of sta db entry for writing key;
1743	 * the convention unfortunately is somewhat different
1744	 * than how net80211, hostapd, and wpa_supplicant think.
1745	 */
1746	if (vap->iv_opmode == IEEE80211_M_STA) {
1747		/*
1748		 * NB: keys plumbed before the sta reaches AUTH state
1749		 * will be discarded or written to the wrong sta db
1750		 * entry because iv_bss is meaningless.  This is ok
1751		 * (right now) because we handle deferred plumbing of
1752		 * WEP keys when the sta reaches AUTH state.
1753		 */
1754		macaddr = vap->iv_bss->ni_bssid;
1755		if ((k->wk_flags & IEEE80211_KEY_GROUP) == 0) {
1756			/* XXX plumb to local sta db too for static key wep */
1757			mwl_hal_keyset(hvap, &hk, vap->iv_myaddr);
1758		}
1759	} else if (vap->iv_opmode == IEEE80211_M_WDS &&
1760	    vap->iv_state != IEEE80211_S_RUN) {
1761		/*
1762		 * Prior to RUN state a WDS vap will not it's BSS node
1763		 * setup so we will plumb the key to the wrong mac
1764		 * address (it'll be our local address).  Workaround
1765		 * this for the moment by grabbing the correct address.
1766		 */
1767		macaddr = vap->iv_des_bssid;
1768	} else if ((k->wk_flags & GRPXMIT) == GRPXMIT)
1769		macaddr = vap->iv_myaddr;
1770	else
1771		macaddr = mac;
1772	KEYPRINTF(sc, &hk, macaddr);
1773	return (mwl_hal_keyset(hvap, &hk, macaddr) == 0);
1774#undef IEEE80211_IS_STATICKEY
1775#undef GRPXMIT
1776}
1777
1778/* unaligned little endian access */
1779#define LE_READ_2(p)				\
1780	((uint16_t)				\
1781	 ((((const uint8_t *)(p))[0]      ) |	\
1782	  (((const uint8_t *)(p))[1] <<  8)))
1783#define LE_READ_4(p)				\
1784	((uint32_t)				\
1785	 ((((const uint8_t *)(p))[0]      ) |	\
1786	  (((const uint8_t *)(p))[1] <<  8) |	\
1787	  (((const uint8_t *)(p))[2] << 16) |	\
1788	  (((const uint8_t *)(p))[3] << 24)))
1789
1790/*
1791 * Set the multicast filter contents into the hardware.
1792 * XXX f/w has no support; just defer to the os.
1793 */
1794static void
1795mwl_setmcastfilter(struct mwl_softc *sc)
1796{
1797	struct ifnet *ifp = sc->sc_ifp;
1798#if 0
1799	struct ether_multi *enm;
1800	struct ether_multistep estep;
1801	uint8_t macs[IEEE80211_ADDR_LEN*MWL_HAL_MCAST_MAX];/* XXX stack use */
1802	uint8_t *mp;
1803	int nmc;
1804
1805	mp = macs;
1806	nmc = 0;
1807	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1808	while (enm != NULL) {
1809		/* XXX Punt on ranges. */
1810		if (nmc == MWL_HAL_MCAST_MAX ||
1811		    !IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1812			ifp->if_flags |= IFF_ALLMULTI;
1813			return;
1814		}
1815		IEEE80211_ADDR_COPY(mp, enm->enm_addrlo);
1816		mp += IEEE80211_ADDR_LEN, nmc++;
1817		ETHER_NEXT_MULTI(estep, enm);
1818	}
1819	ifp->if_flags &= ~IFF_ALLMULTI;
1820	mwl_hal_setmcast(sc->sc_mh, nmc, macs);
1821#else
1822	/* XXX no mcast filter support; we get everything */
1823	ifp->if_flags |= IFF_ALLMULTI;
1824#endif
1825}
1826
1827static int
1828mwl_mode_init(struct mwl_softc *sc)
1829{
1830	struct ifnet *ifp = sc->sc_ifp;
1831	struct ieee80211com *ic = ifp->if_l2com;
1832	struct mwl_hal *mh = sc->sc_mh;
1833
1834	/*
1835	 * NB: Ignore promisc in hostap mode; it's set by the
1836	 * bridge.  This is wrong but we have no way to
1837	 * identify internal requests (from the bridge)
1838	 * versus external requests such as for tcpdump.
1839	 */
1840	mwl_hal_setpromisc(mh, (ifp->if_flags & IFF_PROMISC) &&
1841	    ic->ic_opmode != IEEE80211_M_HOSTAP);
1842	mwl_setmcastfilter(sc);
1843
1844	return 0;
1845}
1846
1847/*
1848 * Callback from the 802.11 layer after a multicast state change.
1849 */
1850static void
1851mwl_update_mcast(struct ifnet *ifp)
1852{
1853	struct mwl_softc *sc = ifp->if_softc;
1854
1855	mwl_setmcastfilter(sc);
1856}
1857
1858/*
1859 * Callback from the 802.11 layer after a promiscuous mode change.
1860 * Note this interface does not check the operating mode as this
1861 * is an internal callback and we are expected to honor the current
1862 * state (e.g. this is used for setting the interface in promiscuous
1863 * mode when operating in hostap mode to do ACS).
1864 */
1865static void
1866mwl_update_promisc(struct ifnet *ifp)
1867{
1868	struct mwl_softc *sc = ifp->if_softc;
1869
1870	mwl_hal_setpromisc(sc->sc_mh, (ifp->if_flags & IFF_PROMISC) != 0);
1871}
1872
1873/*
1874 * Callback from the 802.11 layer to update the slot time
1875 * based on the current setting.  We use it to notify the
1876 * firmware of ERP changes and the f/w takes care of things
1877 * like slot time and preamble.
1878 */
1879static void
1880mwl_updateslot(struct ifnet *ifp)
1881{
1882	struct mwl_softc *sc = ifp->if_softc;
1883	struct ieee80211com *ic = ifp->if_l2com;
1884	struct mwl_hal *mh = sc->sc_mh;
1885	int prot;
1886
1887	/* NB: can be called early; suppress needless cmds */
1888	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1889		return;
1890
1891	/*
1892	 * Calculate the ERP flags.  The firwmare will use
1893	 * this to carry out the appropriate measures.
1894	 */
1895	prot = 0;
1896	if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
1897		if ((ic->ic_flags & IEEE80211_F_SHSLOT) == 0)
1898			prot |= IEEE80211_ERP_NON_ERP_PRESENT;
1899		if (ic->ic_flags & IEEE80211_F_USEPROT)
1900			prot |= IEEE80211_ERP_USE_PROTECTION;
1901		if (ic->ic_flags & IEEE80211_F_USEBARKER)
1902			prot |= IEEE80211_ERP_LONG_PREAMBLE;
1903	}
1904
1905	DPRINTF(sc, MWL_DEBUG_RESET,
1906	    "%s: chan %u MHz/flags 0x%x %s slot, (prot 0x%x ic_flags 0x%x)\n",
1907	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
1908	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", prot,
1909	    ic->ic_flags);
1910
1911	mwl_hal_setgprot(mh, prot);
1912}
1913
1914/*
1915 * Setup the beacon frame.
1916 */
1917static int
1918mwl_beacon_setup(struct ieee80211vap *vap)
1919{
1920	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1921	struct ieee80211_node *ni = vap->iv_bss;
1922	struct ieee80211_beacon_offsets bo;
1923	struct mbuf *m;
1924
1925	m = ieee80211_beacon_alloc(ni, &bo);
1926	if (m == NULL)
1927		return ENOBUFS;
1928	mwl_hal_setbeacon(hvap, mtod(m, const void *), m->m_len);
1929	m_free(m);
1930
1931	return 0;
1932}
1933
1934/*
1935 * Update the beacon frame in response to a change.
1936 */
1937static void
1938mwl_beacon_update(struct ieee80211vap *vap, int item)
1939{
1940	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
1941	struct ieee80211com *ic = vap->iv_ic;
1942
1943	KASSERT(hvap != NULL, ("no beacon"));
1944	switch (item) {
1945	case IEEE80211_BEACON_ERP:
1946		mwl_updateslot(ic->ic_ifp);
1947		break;
1948	case IEEE80211_BEACON_HTINFO:
1949		mwl_hal_setnprotmode(hvap,
1950		    MS(ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE));
1951		break;
1952	case IEEE80211_BEACON_CAPS:
1953	case IEEE80211_BEACON_WME:
1954	case IEEE80211_BEACON_APPIE:
1955	case IEEE80211_BEACON_CSA:
1956		break;
1957	case IEEE80211_BEACON_TIM:
1958		/* NB: firmware always forms TIM */
1959		return;
1960	}
1961	/* XXX retain beacon frame and update */
1962	mwl_beacon_setup(vap);
1963}
1964
1965static void
1966mwl_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1967{
1968	bus_addr_t *paddr = (bus_addr_t*) arg;
1969	KASSERT(error == 0, ("error %u on bus_dma callback", error));
1970	*paddr = segs->ds_addr;
1971}
1972
1973#ifdef MWL_HOST_PS_SUPPORT
1974/*
1975 * Handle power save station occupancy changes.
1976 */
1977static void
1978mwl_update_ps(struct ieee80211vap *vap, int nsta)
1979{
1980	struct mwl_vap *mvp = MWL_VAP(vap);
1981
1982	if (nsta == 0 || mvp->mv_last_ps_sta == 0)
1983		mwl_hal_setpowersave_bss(mvp->mv_hvap, nsta);
1984	mvp->mv_last_ps_sta = nsta;
1985}
1986
1987/*
1988 * Handle associated station power save state changes.
1989 */
1990static int
1991mwl_set_tim(struct ieee80211_node *ni, int set)
1992{
1993	struct ieee80211vap *vap = ni->ni_vap;
1994	struct mwl_vap *mvp = MWL_VAP(vap);
1995
1996	if (mvp->mv_set_tim(ni, set)) {		/* NB: state change */
1997		mwl_hal_setpowersave_sta(mvp->mv_hvap,
1998		    IEEE80211_AID(ni->ni_associd), set);
1999		return 1;
2000	} else
2001		return 0;
2002}
2003#endif /* MWL_HOST_PS_SUPPORT */
2004
2005static int
2006mwl_desc_setup(struct mwl_softc *sc, const char *name,
2007	struct mwl_descdma *dd,
2008	int nbuf, size_t bufsize, int ndesc, size_t descsize)
2009{
2010	struct ifnet *ifp = sc->sc_ifp;
2011	uint8_t *ds;
2012	int error;
2013
2014	DPRINTF(sc, MWL_DEBUG_RESET,
2015	    "%s: %s DMA: %u bufs (%ju) %u desc/buf (%ju)\n",
2016	    __func__, name, nbuf, (uintmax_t) bufsize,
2017	    ndesc, (uintmax_t) descsize);
2018
2019	dd->dd_name = name;
2020	dd->dd_desc_len = nbuf * ndesc * descsize;
2021
2022	/*
2023	 * Setup DMA descriptor area.
2024	 */
2025	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2026		       PAGE_SIZE, 0,		/* alignment, bounds */
2027		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2028		       BUS_SPACE_MAXADDR,	/* highaddr */
2029		       NULL, NULL,		/* filter, filterarg */
2030		       dd->dd_desc_len,		/* maxsize */
2031		       1,			/* nsegments */
2032		       dd->dd_desc_len,		/* maxsegsize */
2033		       BUS_DMA_ALLOCNOW,	/* flags */
2034		       NULL,			/* lockfunc */
2035		       NULL,			/* lockarg */
2036		       &dd->dd_dmat);
2037	if (error != 0) {
2038		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2039		return error;
2040	}
2041
2042	/* allocate descriptors */
2043	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2044	if (error != 0) {
2045		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2046			"error %u\n", dd->dd_name, error);
2047		goto fail0;
2048	}
2049
2050	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2051				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2052				 &dd->dd_dmamap);
2053	if (error != 0) {
2054		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2055			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2056		goto fail1;
2057	}
2058
2059	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2060				dd->dd_desc, dd->dd_desc_len,
2061				mwl_load_cb, &dd->dd_desc_paddr,
2062				BUS_DMA_NOWAIT);
2063	if (error != 0) {
2064		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2065			dd->dd_name, error);
2066		goto fail2;
2067	}
2068
2069	ds = dd->dd_desc;
2070	memset(ds, 0, dd->dd_desc_len);
2071	DPRINTF(sc, MWL_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2072	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2073	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2074
2075	return 0;
2076fail2:
2077	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2078fail1:
2079	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2080fail0:
2081	bus_dma_tag_destroy(dd->dd_dmat);
2082	memset(dd, 0, sizeof(*dd));
2083	return error;
2084#undef DS2PHYS
2085}
2086
2087static void
2088mwl_desc_cleanup(struct mwl_softc *sc, struct mwl_descdma *dd)
2089{
2090	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2091	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2092	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2093	bus_dma_tag_destroy(dd->dd_dmat);
2094
2095	memset(dd, 0, sizeof(*dd));
2096}
2097
2098/*
2099 * Construct a tx q's free list.  The order of entries on
2100 * the list must reflect the physical layout of tx descriptors
2101 * because the firmware pre-fetches descriptors.
2102 *
2103 * XXX might be better to use indices into the buffer array.
2104 */
2105static void
2106mwl_txq_reset(struct mwl_softc *sc, struct mwl_txq *txq)
2107{
2108	struct mwl_txbuf *bf;
2109	int i;
2110
2111	bf = txq->dma.dd_bufptr;
2112	STAILQ_INIT(&txq->free);
2113	for (i = 0; i < mwl_txbuf; i++, bf++)
2114		STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
2115	txq->nfree = i;
2116}
2117
2118#define	DS2PHYS(_dd, _ds) \
2119	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2120
2121static int
2122mwl_txdma_setup(struct mwl_softc *sc, struct mwl_txq *txq)
2123{
2124	struct ifnet *ifp = sc->sc_ifp;
2125	int error, bsize, i;
2126	struct mwl_txbuf *bf;
2127	struct mwl_txdesc *ds;
2128
2129	error = mwl_desc_setup(sc, "tx", &txq->dma,
2130			mwl_txbuf, sizeof(struct mwl_txbuf),
2131			MWL_TXDESC, sizeof(struct mwl_txdesc));
2132	if (error != 0)
2133		return error;
2134
2135	/* allocate and setup tx buffers */
2136	bsize = mwl_txbuf * sizeof(struct mwl_txbuf);
2137	bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO);
2138	if (bf == NULL) {
2139		if_printf(ifp, "malloc of %u tx buffers failed\n",
2140			mwl_txbuf);
2141		return ENOMEM;
2142	}
2143	txq->dma.dd_bufptr = bf;
2144
2145	ds = txq->dma.dd_desc;
2146	for (i = 0; i < mwl_txbuf; i++, bf++, ds += MWL_TXDESC) {
2147		bf->bf_desc = ds;
2148		bf->bf_daddr = DS2PHYS(&txq->dma, ds);
2149		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2150				&bf->bf_dmamap);
2151		if (error != 0) {
2152			if_printf(ifp, "unable to create dmamap for tx "
2153				"buffer %u, error %u\n", i, error);
2154			return error;
2155		}
2156	}
2157	mwl_txq_reset(sc, txq);
2158	return 0;
2159}
2160
2161static void
2162mwl_txdma_cleanup(struct mwl_softc *sc, struct mwl_txq *txq)
2163{
2164	struct mwl_txbuf *bf;
2165	int i;
2166
2167	bf = txq->dma.dd_bufptr;
2168	for (i = 0; i < mwl_txbuf; i++, bf++) {
2169		KASSERT(bf->bf_m == NULL, ("mbuf on free list"));
2170		KASSERT(bf->bf_node == NULL, ("node on free list"));
2171		if (bf->bf_dmamap != NULL)
2172			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2173	}
2174	STAILQ_INIT(&txq->free);
2175	txq->nfree = 0;
2176	if (txq->dma.dd_bufptr != NULL) {
2177		free(txq->dma.dd_bufptr, M_MWLDEV);
2178		txq->dma.dd_bufptr = NULL;
2179	}
2180	if (txq->dma.dd_desc_len != 0)
2181		mwl_desc_cleanup(sc, &txq->dma);
2182}
2183
2184static int
2185mwl_rxdma_setup(struct mwl_softc *sc)
2186{
2187	struct ifnet *ifp = sc->sc_ifp;
2188	int error, jumbosize, bsize, i;
2189	struct mwl_rxbuf *bf;
2190	struct mwl_jumbo *rbuf;
2191	struct mwl_rxdesc *ds;
2192	caddr_t data;
2193
2194	error = mwl_desc_setup(sc, "rx", &sc->sc_rxdma,
2195			mwl_rxdesc, sizeof(struct mwl_rxbuf),
2196			1, sizeof(struct mwl_rxdesc));
2197	if (error != 0)
2198		return error;
2199
2200	/*
2201	 * Receive is done to a private pool of jumbo buffers.
2202	 * This allows us to attach to mbuf's and avoid re-mapping
2203	 * memory on each rx we post.  We allocate a large chunk
2204	 * of memory and manage it in the driver.  The mbuf free
2205	 * callback method is used to reclaim frames after sending
2206	 * them up the stack.  By default we allocate 2x the number of
2207	 * rx descriptors configured so we have some slop to hold
2208	 * us while frames are processed.
2209	 */
2210	if (mwl_rxbuf < 2*mwl_rxdesc) {
2211		if_printf(ifp,
2212		    "too few rx dma buffers (%d); increasing to %d\n",
2213		    mwl_rxbuf, 2*mwl_rxdesc);
2214		mwl_rxbuf = 2*mwl_rxdesc;
2215	}
2216	jumbosize = roundup(MWL_AGGR_SIZE, PAGE_SIZE);
2217	sc->sc_rxmemsize = mwl_rxbuf*jumbosize;
2218
2219	error = bus_dma_tag_create(sc->sc_dmat,	/* parent */
2220		       PAGE_SIZE, 0,		/* alignment, bounds */
2221		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2222		       BUS_SPACE_MAXADDR,	/* highaddr */
2223		       NULL, NULL,		/* filter, filterarg */
2224		       sc->sc_rxmemsize,	/* maxsize */
2225		       1,			/* nsegments */
2226		       sc->sc_rxmemsize,	/* maxsegsize */
2227		       BUS_DMA_ALLOCNOW,	/* flags */
2228		       NULL,			/* lockfunc */
2229		       NULL,			/* lockarg */
2230		       &sc->sc_rxdmat);
2231	error = bus_dmamap_create(sc->sc_rxdmat, BUS_DMA_NOWAIT, &sc->sc_rxmap);
2232	if (error != 0) {
2233		if_printf(ifp, "could not create rx DMA map\n");
2234		return error;
2235	}
2236
2237	error = bus_dmamem_alloc(sc->sc_rxdmat, (void**) &sc->sc_rxmem,
2238				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2239				 &sc->sc_rxmap);
2240	if (error != 0) {
2241		if_printf(ifp, "could not alloc %ju bytes of rx DMA memory\n",
2242		    (uintmax_t) sc->sc_rxmemsize);
2243		return error;
2244	}
2245
2246	error = bus_dmamap_load(sc->sc_rxdmat, sc->sc_rxmap,
2247				sc->sc_rxmem, sc->sc_rxmemsize,
2248				mwl_load_cb, &sc->sc_rxmem_paddr,
2249				BUS_DMA_NOWAIT);
2250	if (error != 0) {
2251		if_printf(ifp, "could not load rx DMA map\n");
2252		return error;
2253	}
2254
2255	/*
2256	 * Allocate rx buffers and set them up.
2257	 */
2258	bsize = mwl_rxdesc * sizeof(struct mwl_rxbuf);
2259	bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO);
2260	if (bf == NULL) {
2261		if_printf(ifp, "malloc of %u rx buffers failed\n", bsize);
2262		return error;
2263	}
2264	sc->sc_rxdma.dd_bufptr = bf;
2265
2266	STAILQ_INIT(&sc->sc_rxbuf);
2267	ds = sc->sc_rxdma.dd_desc;
2268	for (i = 0; i < mwl_rxdesc; i++, bf++, ds++) {
2269		bf->bf_desc = ds;
2270		bf->bf_daddr = DS2PHYS(&sc->sc_rxdma, ds);
2271		/* pre-assign dma buffer */
2272		bf->bf_data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize);
2273		/* NB: tail is intentional to preserve descriptor order */
2274		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2275	}
2276
2277	/*
2278	 * Place remainder of dma memory buffers on the free list.
2279	 */
2280	SLIST_INIT(&sc->sc_rxfree);
2281	for (; i < mwl_rxbuf; i++) {
2282		data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize);
2283		rbuf = MWL_JUMBO_DATA2BUF(data);
2284		SLIST_INSERT_HEAD(&sc->sc_rxfree, rbuf, next);
2285		sc->sc_nrxfree++;
2286	}
2287	return 0;
2288}
2289#undef DS2PHYS
2290
2291static void
2292mwl_rxdma_cleanup(struct mwl_softc *sc)
2293{
2294	if (sc->sc_rxmap != NULL)
2295		bus_dmamap_unload(sc->sc_rxdmat, sc->sc_rxmap);
2296	if (sc->sc_rxmem != NULL) {
2297		bus_dmamem_free(sc->sc_rxdmat, sc->sc_rxmem, sc->sc_rxmap);
2298		sc->sc_rxmem = NULL;
2299	}
2300	if (sc->sc_rxmap != NULL) {
2301		bus_dmamap_destroy(sc->sc_rxdmat, sc->sc_rxmap);
2302		sc->sc_rxmap = NULL;
2303	}
2304	if (sc->sc_rxdma.dd_bufptr != NULL) {
2305		free(sc->sc_rxdma.dd_bufptr, M_MWLDEV);
2306		sc->sc_rxdma.dd_bufptr = NULL;
2307	}
2308	if (sc->sc_rxdma.dd_desc_len != 0)
2309		mwl_desc_cleanup(sc, &sc->sc_rxdma);
2310}
2311
2312static int
2313mwl_dma_setup(struct mwl_softc *sc)
2314{
2315	int error, i;
2316
2317	error = mwl_rxdma_setup(sc);
2318	if (error != 0) {
2319		mwl_rxdma_cleanup(sc);
2320		return error;
2321	}
2322
2323	for (i = 0; i < MWL_NUM_TX_QUEUES; i++) {
2324		error = mwl_txdma_setup(sc, &sc->sc_txq[i]);
2325		if (error != 0) {
2326			mwl_dma_cleanup(sc);
2327			return error;
2328		}
2329	}
2330	return 0;
2331}
2332
2333static void
2334mwl_dma_cleanup(struct mwl_softc *sc)
2335{
2336	int i;
2337
2338	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
2339		mwl_txdma_cleanup(sc, &sc->sc_txq[i]);
2340	mwl_rxdma_cleanup(sc);
2341}
2342
2343static struct ieee80211_node *
2344mwl_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2345{
2346	struct ieee80211com *ic = vap->iv_ic;
2347	struct mwl_softc *sc = ic->ic_ifp->if_softc;
2348	const size_t space = sizeof(struct mwl_node);
2349	struct mwl_node *mn;
2350
2351	mn = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2352	if (mn == NULL) {
2353		/* XXX stat+msg */
2354		return NULL;
2355	}
2356	DPRINTF(sc, MWL_DEBUG_NODE, "%s: mn %p\n", __func__, mn);
2357	return &mn->mn_node;
2358}
2359
2360static void
2361mwl_node_cleanup(struct ieee80211_node *ni)
2362{
2363	struct ieee80211com *ic = ni->ni_ic;
2364        struct mwl_softc *sc = ic->ic_ifp->if_softc;
2365	struct mwl_node *mn = MWL_NODE(ni);
2366
2367	DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p ic %p staid %d\n",
2368	    __func__, ni, ni->ni_ic, mn->mn_staid);
2369
2370	if (mn->mn_staid != 0) {
2371		struct ieee80211vap *vap = ni->ni_vap;
2372
2373		if (mn->mn_hvap != NULL) {
2374			if (vap->iv_opmode == IEEE80211_M_STA)
2375				mwl_hal_delstation(mn->mn_hvap, vap->iv_myaddr);
2376			else
2377				mwl_hal_delstation(mn->mn_hvap, ni->ni_macaddr);
2378		}
2379		/*
2380		 * NB: legacy WDS peer sta db entry is installed using
2381		 * the associate ap's hvap; use it again to delete it.
2382		 * XXX can vap be NULL?
2383		 */
2384		else if (vap->iv_opmode == IEEE80211_M_WDS &&
2385		    MWL_VAP(vap)->mv_ap_hvap != NULL)
2386			mwl_hal_delstation(MWL_VAP(vap)->mv_ap_hvap,
2387			    ni->ni_macaddr);
2388		delstaid(sc, mn->mn_staid);
2389		mn->mn_staid = 0;
2390	}
2391	sc->sc_node_cleanup(ni);
2392}
2393
2394/*
2395 * Reclaim rx dma buffers from packets sitting on the ampdu
2396 * reorder queue for a station.  We replace buffers with a
2397 * system cluster (if available).
2398 */
2399static void
2400mwl_ampdu_rxdma_reclaim(struct ieee80211_rx_ampdu *rap)
2401{
2402#if 0
2403	int i, n, off;
2404	struct mbuf *m;
2405	void *cl;
2406
2407	n = rap->rxa_qframes;
2408	for (i = 0; i < rap->rxa_wnd && n > 0; i++) {
2409		m = rap->rxa_m[i];
2410		if (m == NULL)
2411			continue;
2412		n--;
2413		/* our dma buffers have a well-known free routine */
2414		if ((m->m_flags & M_EXT) == 0 ||
2415		    m->m_ext.ext_free != mwl_ext_free)
2416			continue;
2417		/*
2418		 * Try to allocate a cluster and move the data.
2419		 */
2420		off = m->m_data - m->m_ext.ext_buf;
2421		if (off + m->m_pkthdr.len > MCLBYTES) {
2422			/* XXX no AMSDU for now */
2423			continue;
2424		}
2425		cl = pool_cache_get_paddr(&mclpool_cache, 0,
2426		    &m->m_ext.ext_paddr);
2427		if (cl != NULL) {
2428			/*
2429			 * Copy the existing data to the cluster, remove
2430			 * the rx dma buffer, and attach the cluster in
2431			 * its place.  Note we preserve the offset to the
2432			 * data so frames being bridged can still prepend
2433			 * their headers without adding another mbuf.
2434			 */
2435			memcpy((caddr_t) cl + off, m->m_data, m->m_pkthdr.len);
2436			MEXTREMOVE(m);
2437			MEXTADD(m, cl, MCLBYTES, 0, NULL, &mclpool_cache);
2438			/* setup mbuf like _MCLGET does */
2439			m->m_flags |= M_CLUSTER | M_EXT_RW;
2440			_MOWNERREF(m, M_EXT | M_CLUSTER);
2441			/* NB: m_data is clobbered by MEXTADDR, adjust */
2442			m->m_data += off;
2443		}
2444	}
2445#endif
2446}
2447
2448/*
2449 * Callback to reclaim resources.  We first let the
2450 * net80211 layer do it's thing, then if we are still
2451 * blocked by a lack of rx dma buffers we walk the ampdu
2452 * reorder q's to reclaim buffers by copying to a system
2453 * cluster.
2454 */
2455static void
2456mwl_node_drain(struct ieee80211_node *ni)
2457{
2458	struct ieee80211com *ic = ni->ni_ic;
2459        struct mwl_softc *sc = ic->ic_ifp->if_softc;
2460	struct mwl_node *mn = MWL_NODE(ni);
2461
2462	DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p vap %p staid %d\n",
2463	    __func__, ni, ni->ni_vap, mn->mn_staid);
2464
2465	/* NB: call up first to age out ampdu q's */
2466	sc->sc_node_drain(ni);
2467
2468	/* XXX better to not check low water mark? */
2469	if (sc->sc_rxblocked && mn->mn_staid != 0 &&
2470	    (ni->ni_flags & IEEE80211_NODE_HT)) {
2471		uint8_t tid;
2472		/*
2473		 * Walk the reorder q and reclaim rx dma buffers by copying
2474		 * the packet contents into clusters.
2475		 */
2476		for (tid = 0; tid < WME_NUM_TID; tid++) {
2477			struct ieee80211_rx_ampdu *rap;
2478
2479			rap = &ni->ni_rx_ampdu[tid];
2480			if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0)
2481				continue;
2482			if (rap->rxa_qframes)
2483				mwl_ampdu_rxdma_reclaim(rap);
2484		}
2485	}
2486}
2487
2488static void
2489mwl_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
2490{
2491	*rssi = ni->ni_ic->ic_node_getrssi(ni);
2492#ifdef MWL_ANT_INFO_SUPPORT
2493#if 0
2494	/* XXX need to smooth data */
2495	*noise = -MWL_NODE_CONST(ni)->mn_ai.nf;
2496#else
2497	*noise = -95;		/* XXX */
2498#endif
2499#else
2500	*noise = -95;		/* XXX */
2501#endif
2502}
2503
2504/*
2505 * Convert Hardware per-antenna rssi info to common format:
2506 * Let a1, a2, a3 represent the amplitudes per chain
2507 * Let amax represent max[a1, a2, a3]
2508 * Rssi1_dBm = RSSI_dBm + 20*log10(a1/amax)
2509 * Rssi1_dBm = RSSI_dBm + 20*log10(a1) - 20*log10(amax)
2510 * We store a table that is 4*20*log10(idx) - the extra 4 is to store or
2511 * maintain some extra precision.
2512 *
2513 * Values are stored in .5 db format capped at 127.
2514 */
2515static void
2516mwl_node_getmimoinfo(const struct ieee80211_node *ni,
2517	struct ieee80211_mimo_info *mi)
2518{
2519#define	CVT(_dst, _src) do {						\
2520	(_dst) = rssi + ((logdbtbl[_src] - logdbtbl[rssi_max]) >> 2);	\
2521	(_dst) = (_dst) > 64 ? 127 : ((_dst) << 1);			\
2522} while (0)
2523	static const int8_t logdbtbl[32] = {
2524	       0,   0,  24,  38,  48,  56,  62,  68,
2525	      72,  76,  80,  83,  86,  89,  92,  94,
2526	      96,  98, 100, 102, 104, 106, 107, 109,
2527	     110, 112, 113, 115, 116, 117, 118, 119
2528	};
2529	const struct mwl_node *mn = MWL_NODE_CONST(ni);
2530	uint8_t rssi = mn->mn_ai.rsvd1/2;		/* XXX */
2531	uint32_t rssi_max;
2532
2533	rssi_max = mn->mn_ai.rssi_a;
2534	if (mn->mn_ai.rssi_b > rssi_max)
2535		rssi_max = mn->mn_ai.rssi_b;
2536	if (mn->mn_ai.rssi_c > rssi_max)
2537		rssi_max = mn->mn_ai.rssi_c;
2538
2539	CVT(mi->rssi[0], mn->mn_ai.rssi_a);
2540	CVT(mi->rssi[1], mn->mn_ai.rssi_b);
2541	CVT(mi->rssi[2], mn->mn_ai.rssi_c);
2542
2543	mi->noise[0] = mn->mn_ai.nf_a;
2544	mi->noise[1] = mn->mn_ai.nf_b;
2545	mi->noise[2] = mn->mn_ai.nf_c;
2546#undef CVT
2547}
2548
2549static __inline void *
2550mwl_getrxdma(struct mwl_softc *sc)
2551{
2552	struct mwl_jumbo *buf;
2553	void *data;
2554
2555	/*
2556	 * Allocate from jumbo pool.
2557	 */
2558	MWL_RXFREE_LOCK(sc);
2559	buf = SLIST_FIRST(&sc->sc_rxfree);
2560	if (buf == NULL) {
2561		DPRINTF(sc, MWL_DEBUG_ANY,
2562		    "%s: out of rx dma buffers\n", __func__);
2563		sc->sc_stats.mst_rx_nodmabuf++;
2564		data = NULL;
2565	} else {
2566		SLIST_REMOVE_HEAD(&sc->sc_rxfree, next);
2567		sc->sc_nrxfree--;
2568		data = MWL_JUMBO_BUF2DATA(buf);
2569	}
2570	MWL_RXFREE_UNLOCK(sc);
2571	return data;
2572}
2573
2574static __inline void
2575mwl_putrxdma(struct mwl_softc *sc, void *data)
2576{
2577	struct mwl_jumbo *buf;
2578
2579	/* XXX bounds check data */
2580	MWL_RXFREE_LOCK(sc);
2581	buf = MWL_JUMBO_DATA2BUF(data);
2582	SLIST_INSERT_HEAD(&sc->sc_rxfree, buf, next);
2583	sc->sc_nrxfree++;
2584	MWL_RXFREE_UNLOCK(sc);
2585}
2586
2587static int
2588mwl_rxbuf_init(struct mwl_softc *sc, struct mwl_rxbuf *bf)
2589{
2590	struct mwl_rxdesc *ds;
2591
2592	ds = bf->bf_desc;
2593	if (bf->bf_data == NULL) {
2594		bf->bf_data = mwl_getrxdma(sc);
2595		if (bf->bf_data == NULL) {
2596			/* mark descriptor to be skipped */
2597			ds->RxControl = EAGLE_RXD_CTRL_OS_OWN;
2598			/* NB: don't need PREREAD */
2599			MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREWRITE);
2600			sc->sc_stats.mst_rxbuf_failed++;
2601			return ENOMEM;
2602		}
2603	}
2604	/*
2605	 * NB: DMA buffer contents is known to be unmodified
2606	 *     so there's no need to flush the data cache.
2607	 */
2608
2609	/*
2610	 * Setup descriptor.
2611	 */
2612	ds->QosCtrl = 0;
2613	ds->RSSI = 0;
2614	ds->Status = EAGLE_RXD_STATUS_IDLE;
2615	ds->Channel = 0;
2616	ds->PktLen = htole16(MWL_AGGR_SIZE);
2617	ds->SQ2 = 0;
2618	ds->pPhysBuffData = htole32(MWL_JUMBO_DMA_ADDR(sc, bf->bf_data));
2619	/* NB: don't touch pPhysNext, set once */
2620	ds->RxControl = EAGLE_RXD_CTRL_DRIVER_OWN;
2621	MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2622
2623	return 0;
2624}
2625
2626static int
2627mwl_ext_free(struct mbuf *m, void *data, void *arg)
2628{
2629	struct mwl_softc *sc = arg;
2630
2631	/* XXX bounds check data */
2632	mwl_putrxdma(sc, data);
2633	/*
2634	 * If we were previously blocked by a lack of rx dma buffers
2635	 * check if we now have enough to restart rx interrupt handling.
2636	 * NB: we know we are called at splvm which is above splnet.
2637	 */
2638	if (sc->sc_rxblocked && sc->sc_nrxfree > mwl_rxdmalow) {
2639		sc->sc_rxblocked = 0;
2640		mwl_hal_intrset(sc->sc_mh, sc->sc_imask);
2641	}
2642	return (EXT_FREE_OK);
2643}
2644
2645struct mwl_frame_bar {
2646	u_int8_t	i_fc[2];
2647	u_int8_t	i_dur[2];
2648	u_int8_t	i_ra[IEEE80211_ADDR_LEN];
2649	u_int8_t	i_ta[IEEE80211_ADDR_LEN];
2650	/* ctl, seq, FCS */
2651} __packed;
2652
2653/*
2654 * Like ieee80211_anyhdrsize, but handles BAR frames
2655 * specially so the logic below to piece the 802.11
2656 * header together works.
2657 */
2658static __inline int
2659mwl_anyhdrsize(const void *data)
2660{
2661	const struct ieee80211_frame *wh = data;
2662
2663	if ((wh->i_fc[0]&IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) {
2664		switch (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) {
2665		case IEEE80211_FC0_SUBTYPE_CTS:
2666		case IEEE80211_FC0_SUBTYPE_ACK:
2667			return sizeof(struct ieee80211_frame_ack);
2668		case IEEE80211_FC0_SUBTYPE_BAR:
2669			return sizeof(struct mwl_frame_bar);
2670		}
2671		return sizeof(struct ieee80211_frame_min);
2672	} else
2673		return ieee80211_hdrsize(data);
2674}
2675
2676static void
2677mwl_handlemicerror(struct ieee80211com *ic, const uint8_t *data)
2678{
2679	const struct ieee80211_frame *wh;
2680	struct ieee80211_node *ni;
2681
2682	wh = (const struct ieee80211_frame *)(data + sizeof(uint16_t));
2683	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
2684	if (ni != NULL) {
2685		ieee80211_notify_michael_failure(ni->ni_vap, wh, 0);
2686		ieee80211_free_node(ni);
2687	}
2688}
2689
2690/*
2691 * Convert hardware signal strength to rssi.  The value
2692 * provided by the device has the noise floor added in;
2693 * we need to compensate for this but we don't have that
2694 * so we use a fixed value.
2695 *
2696 * The offset of 8 is good for both 2.4 and 5GHz.  The LNA
2697 * offset is already set as part of the initial gain.  This
2698 * will give at least +/- 3dB for 2.4GHz and +/- 5dB for 5GHz.
2699 */
2700static __inline int
2701cvtrssi(uint8_t ssi)
2702{
2703	int rssi = (int) ssi + 8;
2704	/* XXX hack guess until we have a real noise floor */
2705	rssi = 2*(87 - rssi);	/* NB: .5 dBm units */
2706	return (rssi < 0 ? 0 : rssi > 127 ? 127 : rssi);
2707}
2708
2709static void
2710mwl_rx_proc(void *arg, int npending)
2711{
2712#define	IEEE80211_DIR_DSTODS(wh) \
2713	((((const struct ieee80211_frame *)wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
2714	struct mwl_softc *sc = arg;
2715	struct ifnet *ifp = sc->sc_ifp;
2716	struct ieee80211com *ic = ifp->if_l2com;
2717	struct mwl_rxbuf *bf;
2718	struct mwl_rxdesc *ds;
2719	struct mbuf *m;
2720	struct ieee80211_qosframe *wh;
2721	struct ieee80211_qosframe_addr4 *wh4;
2722	struct ieee80211_node *ni;
2723	struct mwl_node *mn;
2724	int off, len, hdrlen, pktlen, rssi, ntodo;
2725	uint8_t *data, status;
2726	void *newdata;
2727	int16_t nf;
2728
2729	DPRINTF(sc, MWL_DEBUG_RX_PROC, "%s: pending %u rdptr 0x%x wrptr 0x%x\n",
2730	    __func__, npending, RD4(sc, sc->sc_hwspecs.rxDescRead),
2731	    RD4(sc, sc->sc_hwspecs.rxDescWrite));
2732	nf = -96;			/* XXX */
2733	bf = sc->sc_rxnext;
2734	for (ntodo = mwl_rxquota; ntodo > 0; ntodo--) {
2735		if (bf == NULL)
2736			bf = STAILQ_FIRST(&sc->sc_rxbuf);
2737		ds = bf->bf_desc;
2738		data = bf->bf_data;
2739		if (data == NULL) {
2740			/*
2741			 * If data allocation failed previously there
2742			 * will be no buffer; try again to re-populate it.
2743			 * Note the firmware will not advance to the next
2744			 * descriptor with a dma buffer so we must mimic
2745			 * this or we'll get out of sync.
2746			 */
2747			DPRINTF(sc, MWL_DEBUG_ANY,
2748			    "%s: rx buf w/o dma memory\n", __func__);
2749			(void) mwl_rxbuf_init(sc, bf);
2750			sc->sc_stats.mst_rx_dmabufmissing++;
2751			break;
2752		}
2753		MWL_RXDESC_SYNC(sc, ds,
2754		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2755		if (ds->RxControl != EAGLE_RXD_CTRL_DMA_OWN)
2756			break;
2757#ifdef MWL_DEBUG
2758		if (sc->sc_debug & MWL_DEBUG_RECV_DESC)
2759			mwl_printrxbuf(bf, 0);
2760#endif
2761		status = ds->Status;
2762		if (status & EAGLE_RXD_STATUS_DECRYPT_ERR_MASK) {
2763			ifp->if_ierrors++;
2764			sc->sc_stats.mst_rx_crypto++;
2765			/*
2766			 * NB: Check EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR
2767			 *     for backwards compatibility.
2768			 */
2769			if (status != EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR &&
2770			    (status & EAGLE_RXD_STATUS_TKIP_MIC_DECRYPT_ERR)) {
2771				/*
2772				 * MIC error, notify upper layers.
2773				 */
2774				bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap,
2775				    BUS_DMASYNC_POSTREAD);
2776				mwl_handlemicerror(ic, data);
2777				sc->sc_stats.mst_rx_tkipmic++;
2778			}
2779			/* XXX too painful to tap packets */
2780			goto rx_next;
2781		}
2782		/*
2783		 * Sync the data buffer.
2784		 */
2785		len = le16toh(ds->PktLen);
2786		bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap, BUS_DMASYNC_POSTREAD);
2787		/*
2788		 * The 802.11 header is provided all or in part at the front;
2789		 * use it to calculate the true size of the header that we'll
2790		 * construct below.  We use this to figure out where to copy
2791		 * payload prior to constructing the header.
2792		 */
2793		hdrlen = mwl_anyhdrsize(data + sizeof(uint16_t));
2794		off = sizeof(uint16_t) + sizeof(struct ieee80211_frame_addr4);
2795
2796		/* calculate rssi early so we can re-use for each aggregate */
2797		rssi = cvtrssi(ds->RSSI);
2798
2799		pktlen = hdrlen + (len - off);
2800		/*
2801		 * NB: we know our frame is at least as large as
2802		 * IEEE80211_MIN_LEN because there is a 4-address
2803		 * frame at the front.  Hence there's no need to
2804		 * vet the packet length.  If the frame in fact
2805		 * is too small it should be discarded at the
2806		 * net80211 layer.
2807		 */
2808
2809		/*
2810		 * Attach dma buffer to an mbuf.  We tried
2811		 * doing this based on the packet size (i.e.
2812		 * copying small packets) but it turns out to
2813		 * be a net loss.  The tradeoff might be system
2814		 * dependent (cache architecture is important).
2815		 */
2816		MGETHDR(m, M_NOWAIT, MT_DATA);
2817		if (m == NULL) {
2818			DPRINTF(sc, MWL_DEBUG_ANY,
2819			    "%s: no rx mbuf\n", __func__);
2820			sc->sc_stats.mst_rx_nombuf++;
2821			goto rx_next;
2822		}
2823		/*
2824		 * Acquire the replacement dma buffer before
2825		 * processing the frame.  If we're out of dma
2826		 * buffers we disable rx interrupts and wait
2827		 * for the free pool to reach mlw_rxdmalow buffers
2828		 * before starting to do work again.  If the firmware
2829		 * runs out of descriptors then it will toss frames
2830		 * which is better than our doing it as that can
2831		 * starve our processing.  It is also important that
2832		 * we always process rx'd frames in case they are
2833		 * A-MPDU as otherwise the host's view of the BA
2834		 * window may get out of sync with the firmware.
2835		 */
2836		newdata = mwl_getrxdma(sc);
2837		if (newdata == NULL) {
2838			/* NB: stat+msg in mwl_getrxdma */
2839			m_free(m);
2840			/* disable RX interrupt and mark state */
2841			mwl_hal_intrset(sc->sc_mh,
2842			    sc->sc_imask &~ MACREG_A2HRIC_BIT_RX_RDY);
2843			sc->sc_rxblocked = 1;
2844			ieee80211_drain(ic);
2845			/* XXX check rxblocked and immediately start again? */
2846			goto rx_stop;
2847		}
2848		bf->bf_data = newdata;
2849		/*
2850		 * Attach the dma buffer to the mbuf;
2851		 * mwl_rxbuf_init will re-setup the rx
2852		 * descriptor using the replacement dma
2853		 * buffer we just installed above.
2854		 */
2855		MEXTADD(m, data, MWL_AGGR_SIZE, mwl_ext_free,
2856		    data, sc, 0, EXT_NET_DRV);
2857		m->m_data += off - hdrlen;
2858		m->m_pkthdr.len = m->m_len = pktlen;
2859		m->m_pkthdr.rcvif = ifp;
2860		/* NB: dma buffer assumed read-only */
2861
2862		/*
2863		 * Piece 802.11 header together.
2864		 */
2865		wh = mtod(m, struct ieee80211_qosframe *);
2866		/* NB: don't need to do this sometimes but ... */
2867		/* XXX special case so we can memcpy after m_devget? */
2868		ovbcopy(data + sizeof(uint16_t), wh, hdrlen);
2869		if (IEEE80211_QOS_HAS_SEQ(wh)) {
2870			if (IEEE80211_DIR_DSTODS(wh)) {
2871				wh4 = mtod(m,
2872				    struct ieee80211_qosframe_addr4*);
2873				*(uint16_t *)wh4->i_qos = ds->QosCtrl;
2874			} else {
2875				*(uint16_t *)wh->i_qos = ds->QosCtrl;
2876			}
2877		}
2878		/*
2879		 * The f/w strips WEP header but doesn't clear
2880		 * the WEP bit; mark the packet with M_WEP so
2881		 * net80211 will treat the data as decrypted.
2882		 * While here also clear the PWR_MGT bit since
2883		 * power save is handled by the firmware and
2884		 * passing this up will potentially cause the
2885		 * upper layer to put a station in power save
2886		 * (except when configured with MWL_HOST_PS_SUPPORT).
2887		 */
2888		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2889			m->m_flags |= M_WEP;
2890#ifdef MWL_HOST_PS_SUPPORT
2891		wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
2892#else
2893		wh->i_fc[1] &= ~(IEEE80211_FC1_PROTECTED |
2894		    IEEE80211_FC1_PWR_MGT);
2895#endif
2896
2897		if (ieee80211_radiotap_active(ic)) {
2898			struct mwl_rx_radiotap_header *tap = &sc->sc_rx_th;
2899
2900			tap->wr_flags = 0;
2901			tap->wr_rate = ds->Rate;
2902			tap->wr_antsignal = rssi + nf;
2903			tap->wr_antnoise = nf;
2904		}
2905		if (IFF_DUMPPKTS_RECV(sc, wh)) {
2906			ieee80211_dump_pkt(ic, mtod(m, caddr_t),
2907			    len, ds->Rate, rssi);
2908		}
2909		ifp->if_ipackets++;
2910
2911		/* dispatch */
2912		ni = ieee80211_find_rxnode(ic,
2913		    (const struct ieee80211_frame_min *) wh);
2914		if (ni != NULL) {
2915			mn = MWL_NODE(ni);
2916#ifdef MWL_ANT_INFO_SUPPORT
2917			mn->mn_ai.rssi_a = ds->ai.rssi_a;
2918			mn->mn_ai.rssi_b = ds->ai.rssi_b;
2919			mn->mn_ai.rssi_c = ds->ai.rssi_c;
2920			mn->mn_ai.rsvd1 = rssi;
2921#endif
2922			/* tag AMPDU aggregates for reorder processing */
2923			if (ni->ni_flags & IEEE80211_NODE_HT)
2924				m->m_flags |= M_AMPDU;
2925			(void) ieee80211_input(ni, m, rssi, nf);
2926			ieee80211_free_node(ni);
2927		} else
2928			(void) ieee80211_input_all(ic, m, rssi, nf);
2929rx_next:
2930		/* NB: ignore ENOMEM so we process more descriptors */
2931		(void) mwl_rxbuf_init(sc, bf);
2932		bf = STAILQ_NEXT(bf, bf_list);
2933	}
2934rx_stop:
2935	sc->sc_rxnext = bf;
2936
2937	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2938	    !IFQ_IS_EMPTY(&ifp->if_snd)) {
2939		/* NB: kick fw; the tx thread may have been preempted */
2940		mwl_hal_txstart(sc->sc_mh, 0);
2941		mwl_start(ifp);
2942	}
2943#undef IEEE80211_DIR_DSTODS
2944}
2945
2946static void
2947mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *txq, int qnum)
2948{
2949	struct mwl_txbuf *bf, *bn;
2950	struct mwl_txdesc *ds;
2951
2952	MWL_TXQ_LOCK_INIT(sc, txq);
2953	txq->qnum = qnum;
2954	txq->txpri = 0;	/* XXX */
2955#if 0
2956	/* NB: q setup by mwl_txdma_setup XXX */
2957	STAILQ_INIT(&txq->free);
2958#endif
2959	STAILQ_FOREACH(bf, &txq->free, bf_list) {
2960		bf->bf_txq = txq;
2961
2962		ds = bf->bf_desc;
2963		bn = STAILQ_NEXT(bf, bf_list);
2964		if (bn == NULL)
2965			bn = STAILQ_FIRST(&txq->free);
2966		ds->pPhysNext = htole32(bn->bf_daddr);
2967	}
2968	STAILQ_INIT(&txq->active);
2969}
2970
2971/*
2972 * Setup a hardware data transmit queue for the specified
2973 * access control.  We record the mapping from ac's
2974 * to h/w queues for use by mwl_tx_start.
2975 */
2976static int
2977mwl_tx_setup(struct mwl_softc *sc, int ac, int mvtype)
2978{
2979#define	N(a)	(sizeof(a)/sizeof(a[0]))
2980	struct mwl_txq *txq;
2981
2982	if (ac >= N(sc->sc_ac2q)) {
2983		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2984			ac, N(sc->sc_ac2q));
2985		return 0;
2986	}
2987	if (mvtype >= MWL_NUM_TX_QUEUES) {
2988		device_printf(sc->sc_dev, "mvtype %u out of range, max %u!\n",
2989			mvtype, MWL_NUM_TX_QUEUES);
2990		return 0;
2991	}
2992	txq = &sc->sc_txq[mvtype];
2993	mwl_txq_init(sc, txq, mvtype);
2994	sc->sc_ac2q[ac] = txq;
2995	return 1;
2996#undef N
2997}
2998
2999/*
3000 * Update WME parameters for a transmit queue.
3001 */
3002static int
3003mwl_txq_update(struct mwl_softc *sc, int ac)
3004{
3005#define	MWL_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3006	struct ifnet *ifp = sc->sc_ifp;
3007	struct ieee80211com *ic = ifp->if_l2com;
3008	struct mwl_txq *txq = sc->sc_ac2q[ac];
3009	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3010	struct mwl_hal *mh = sc->sc_mh;
3011	int aifs, cwmin, cwmax, txoplim;
3012
3013	aifs = wmep->wmep_aifsn;
3014	/* XXX in sta mode need to pass log values for cwmin/max */
3015	cwmin = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3016	cwmax = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3017	txoplim = wmep->wmep_txopLimit;		/* NB: units of 32us */
3018
3019	if (mwl_hal_setedcaparams(mh, txq->qnum, cwmin, cwmax, aifs, txoplim)) {
3020		device_printf(sc->sc_dev, "unable to update hardware queue "
3021			"parameters for %s traffic!\n",
3022			ieee80211_wme_acnames[ac]);
3023		return 0;
3024	}
3025	return 1;
3026#undef MWL_EXPONENT_TO_VALUE
3027}
3028
3029/*
3030 * Callback from the 802.11 layer to update WME parameters.
3031 */
3032static int
3033mwl_wme_update(struct ieee80211com *ic)
3034{
3035	struct mwl_softc *sc = ic->ic_ifp->if_softc;
3036
3037	return !mwl_txq_update(sc, WME_AC_BE) ||
3038	    !mwl_txq_update(sc, WME_AC_BK) ||
3039	    !mwl_txq_update(sc, WME_AC_VI) ||
3040	    !mwl_txq_update(sc, WME_AC_VO) ? EIO : 0;
3041}
3042
3043/*
3044 * Reclaim resources for a setup queue.
3045 */
3046static void
3047mwl_tx_cleanupq(struct mwl_softc *sc, struct mwl_txq *txq)
3048{
3049	/* XXX hal work? */
3050	MWL_TXQ_LOCK_DESTROY(txq);
3051}
3052
3053/*
3054 * Reclaim all tx queue resources.
3055 */
3056static void
3057mwl_tx_cleanup(struct mwl_softc *sc)
3058{
3059	int i;
3060
3061	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3062		mwl_tx_cleanupq(sc, &sc->sc_txq[i]);
3063}
3064
3065static int
3066mwl_tx_dmasetup(struct mwl_softc *sc, struct mwl_txbuf *bf, struct mbuf *m0)
3067{
3068	struct mbuf *m;
3069	int error;
3070
3071	/*
3072	 * Load the DMA map so any coalescing is done.  This
3073	 * also calculates the number of descriptors we need.
3074	 */
3075	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3076				     bf->bf_segs, &bf->bf_nseg,
3077				     BUS_DMA_NOWAIT);
3078	if (error == EFBIG) {
3079		/* XXX packet requires too many descriptors */
3080		bf->bf_nseg = MWL_TXDESC+1;
3081	} else if (error != 0) {
3082		sc->sc_stats.mst_tx_busdma++;
3083		m_freem(m0);
3084		return error;
3085	}
3086	/*
3087	 * Discard null packets and check for packets that
3088	 * require too many TX descriptors.  We try to convert
3089	 * the latter to a cluster.
3090	 */
3091	if (error == EFBIG) {		/* too many desc's, linearize */
3092		sc->sc_stats.mst_tx_linear++;
3093#if MWL_TXDESC > 1
3094		m = m_collapse(m0, M_NOWAIT, MWL_TXDESC);
3095#else
3096		m = m_defrag(m0, M_NOWAIT);
3097#endif
3098		if (m == NULL) {
3099			m_freem(m0);
3100			sc->sc_stats.mst_tx_nombuf++;
3101			return ENOMEM;
3102		}
3103		m0 = m;
3104		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3105					     bf->bf_segs, &bf->bf_nseg,
3106					     BUS_DMA_NOWAIT);
3107		if (error != 0) {
3108			sc->sc_stats.mst_tx_busdma++;
3109			m_freem(m0);
3110			return error;
3111		}
3112		KASSERT(bf->bf_nseg <= MWL_TXDESC,
3113		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3114	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3115		sc->sc_stats.mst_tx_nodata++;
3116		m_freem(m0);
3117		return EIO;
3118	}
3119	DPRINTF(sc, MWL_DEBUG_XMIT, "%s: m %p len %u\n",
3120		__func__, m0, m0->m_pkthdr.len);
3121	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3122	bf->bf_m = m0;
3123
3124	return 0;
3125}
3126
3127static __inline int
3128mwl_cvtlegacyrate(int rate)
3129{
3130	switch (rate) {
3131	case 2:	 return 0;
3132	case 4:	 return 1;
3133	case 11: return 2;
3134	case 22: return 3;
3135	case 44: return 4;
3136	case 12: return 5;
3137	case 18: return 6;
3138	case 24: return 7;
3139	case 36: return 8;
3140	case 48: return 9;
3141	case 72: return 10;
3142	case 96: return 11;
3143	case 108:return 12;
3144	}
3145	return 0;
3146}
3147
3148/*
3149 * Calculate fixed tx rate information per client state;
3150 * this value is suitable for writing to the Format field
3151 * of a tx descriptor.
3152 */
3153static uint16_t
3154mwl_calcformat(uint8_t rate, const struct ieee80211_node *ni)
3155{
3156	uint16_t fmt;
3157
3158	fmt = SM(3, EAGLE_TXD_ANTENNA)
3159	    | (IEEE80211_IS_CHAN_HT40D(ni->ni_chan) ?
3160		EAGLE_TXD_EXTCHAN_LO : EAGLE_TXD_EXTCHAN_HI);
3161	if (rate & IEEE80211_RATE_MCS) {	/* HT MCS */
3162		fmt |= EAGLE_TXD_FORMAT_HT
3163		    /* NB: 0x80 implicitly stripped from ucastrate */
3164		    | SM(rate, EAGLE_TXD_RATE);
3165		/* XXX short/long GI may be wrong; re-check */
3166		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
3167			fmt |= EAGLE_TXD_CHW_40
3168			    | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40 ?
3169			        EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG);
3170		} else {
3171			fmt |= EAGLE_TXD_CHW_20
3172			    | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20 ?
3173			        EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG);
3174		}
3175	} else {			/* legacy rate */
3176		fmt |= EAGLE_TXD_FORMAT_LEGACY
3177		    | SM(mwl_cvtlegacyrate(rate), EAGLE_TXD_RATE)
3178		    | EAGLE_TXD_CHW_20
3179		    /* XXX iv_flags & IEEE80211_F_SHPREAMBLE? */
3180		    | (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE ?
3181			EAGLE_TXD_PREAMBLE_SHORT : EAGLE_TXD_PREAMBLE_LONG);
3182	}
3183	return fmt;
3184}
3185
3186static int
3187mwl_tx_start(struct mwl_softc *sc, struct ieee80211_node *ni, struct mwl_txbuf *bf,
3188    struct mbuf *m0)
3189{
3190#define	IEEE80211_DIR_DSTODS(wh) \
3191	((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
3192	struct ifnet *ifp = sc->sc_ifp;
3193	struct ieee80211com *ic = ifp->if_l2com;
3194	struct ieee80211vap *vap = ni->ni_vap;
3195	int error, iswep, ismcast;
3196	int hdrlen, copyhdrlen, pktlen;
3197	struct mwl_txdesc *ds;
3198	struct mwl_txq *txq;
3199	struct ieee80211_frame *wh;
3200	struct mwltxrec *tr;
3201	struct mwl_node *mn;
3202	uint16_t qos;
3203#if MWL_TXDESC > 1
3204	int i;
3205#endif
3206
3207	wh = mtod(m0, struct ieee80211_frame *);
3208	iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED;
3209	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3210	hdrlen = ieee80211_anyhdrsize(wh);
3211	copyhdrlen = hdrlen;
3212	pktlen = m0->m_pkthdr.len;
3213	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3214		if (IEEE80211_DIR_DSTODS(wh)) {
3215			qos = *(uint16_t *)
3216			    (((struct ieee80211_qosframe_addr4 *) wh)->i_qos);
3217			copyhdrlen -= sizeof(qos);
3218		} else
3219			qos = *(uint16_t *)
3220			    (((struct ieee80211_qosframe *) wh)->i_qos);
3221	} else
3222		qos = 0;
3223
3224	if (iswep) {
3225		const struct ieee80211_cipher *cip;
3226		struct ieee80211_key *k;
3227
3228		/*
3229		 * Construct the 802.11 header+trailer for an encrypted
3230		 * frame. The only reason this can fail is because of an
3231		 * unknown or unsupported cipher/key type.
3232		 *
3233		 * NB: we do this even though the firmware will ignore
3234		 *     what we've done for WEP and TKIP as we need the
3235		 *     ExtIV filled in for CCMP and this also adjusts
3236		 *     the headers which simplifies our work below.
3237		 */
3238		k = ieee80211_crypto_encap(ni, m0);
3239		if (k == NULL) {
3240			/*
3241			 * This can happen when the key is yanked after the
3242			 * frame was queued.  Just discard the frame; the
3243			 * 802.11 layer counts failures and provides
3244			 * debugging/diagnostics.
3245			 */
3246			m_freem(m0);
3247			return EIO;
3248		}
3249		/*
3250		 * Adjust the packet length for the crypto additions
3251		 * done during encap and any other bits that the f/w
3252		 * will add later on.
3253		 */
3254		cip = k->wk_cipher;
3255		pktlen += cip->ic_header + cip->ic_miclen + cip->ic_trailer;
3256
3257		/* packet header may have moved, reset our local pointer */
3258		wh = mtod(m0, struct ieee80211_frame *);
3259	}
3260
3261	if (ieee80211_radiotap_active_vap(vap)) {
3262		sc->sc_tx_th.wt_flags = 0;	/* XXX */
3263		if (iswep)
3264			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3265#if 0
3266		sc->sc_tx_th.wt_rate = ds->DataRate;
3267#endif
3268		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3269		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3270
3271		ieee80211_radiotap_tx(vap, m0);
3272	}
3273	/*
3274	 * Copy up/down the 802.11 header; the firmware requires
3275	 * we present a 2-byte payload length followed by a
3276	 * 4-address header (w/o QoS), followed (optionally) by
3277	 * any WEP/ExtIV header (but only filled in for CCMP).
3278	 * We are assured the mbuf has sufficient headroom to
3279	 * prepend in-place by the setup of ic_headroom in
3280	 * mwl_attach.
3281	 */
3282	if (hdrlen < sizeof(struct mwltxrec)) {
3283		const int space = sizeof(struct mwltxrec) - hdrlen;
3284		if (M_LEADINGSPACE(m0) < space) {
3285			/* NB: should never happen */
3286			device_printf(sc->sc_dev,
3287			    "not enough headroom, need %d found %zd, "
3288			    "m_flags 0x%x m_len %d\n",
3289			    space, M_LEADINGSPACE(m0), m0->m_flags, m0->m_len);
3290			ieee80211_dump_pkt(ic,
3291			    mtod(m0, const uint8_t *), m0->m_len, 0, -1);
3292			m_freem(m0);
3293			sc->sc_stats.mst_tx_noheadroom++;
3294			return EIO;
3295		}
3296		M_PREPEND(m0, space, M_NOWAIT);
3297	}
3298	tr = mtod(m0, struct mwltxrec *);
3299	if (wh != (struct ieee80211_frame *) &tr->wh)
3300		ovbcopy(wh, &tr->wh, hdrlen);
3301	/*
3302	 * Note: the "firmware length" is actually the length
3303	 * of the fully formed "802.11 payload".  That is, it's
3304	 * everything except for the 802.11 header.  In particular
3305	 * this includes all crypto material including the MIC!
3306	 */
3307	tr->fwlen = htole16(pktlen - hdrlen);
3308
3309	/*
3310	 * Load the DMA map so any coalescing is done.  This
3311	 * also calculates the number of descriptors we need.
3312	 */
3313	error = mwl_tx_dmasetup(sc, bf, m0);
3314	if (error != 0) {
3315		/* NB: stat collected in mwl_tx_dmasetup */
3316		DPRINTF(sc, MWL_DEBUG_XMIT,
3317		    "%s: unable to setup dma\n", __func__);
3318		return error;
3319	}
3320	bf->bf_node = ni;			/* NB: held reference */
3321	m0 = bf->bf_m;				/* NB: may have changed */
3322	tr = mtod(m0, struct mwltxrec *);
3323	wh = (struct ieee80211_frame *)&tr->wh;
3324
3325	/*
3326	 * Formulate tx descriptor.
3327	 */
3328	ds = bf->bf_desc;
3329	txq = bf->bf_txq;
3330
3331	ds->QosCtrl = qos;			/* NB: already little-endian */
3332#if MWL_TXDESC == 1
3333	/*
3334	 * NB: multiframes should be zero because the descriptors
3335	 *     are initialized to zero.  This should handle the case
3336	 *     where the driver is built with MWL_TXDESC=1 but we are
3337	 *     using firmware with multi-segment support.
3338	 */
3339	ds->PktPtr = htole32(bf->bf_segs[0].ds_addr);
3340	ds->PktLen = htole16(bf->bf_segs[0].ds_len);
3341#else
3342	ds->multiframes = htole32(bf->bf_nseg);
3343	ds->PktLen = htole16(m0->m_pkthdr.len);
3344	for (i = 0; i < bf->bf_nseg; i++) {
3345		ds->PktPtrArray[i] = htole32(bf->bf_segs[i].ds_addr);
3346		ds->PktLenArray[i] = htole16(bf->bf_segs[i].ds_len);
3347	}
3348#endif
3349	/* NB: pPhysNext, DataRate, and SapPktInfo setup once, don't touch */
3350	ds->Format = 0;
3351	ds->pad = 0;
3352	ds->ack_wcb_addr = 0;
3353
3354	mn = MWL_NODE(ni);
3355	/*
3356	 * Select transmit rate.
3357	 */
3358	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3359	case IEEE80211_FC0_TYPE_MGT:
3360		sc->sc_stats.mst_tx_mgmt++;
3361		/* fall thru... */
3362	case IEEE80211_FC0_TYPE_CTL:
3363		/* NB: assign to BE q to avoid bursting */
3364		ds->TxPriority = MWL_WME_AC_BE;
3365		break;
3366	case IEEE80211_FC0_TYPE_DATA:
3367		if (!ismcast) {
3368			const struct ieee80211_txparam *tp = ni->ni_txparms;
3369			/*
3370			 * EAPOL frames get forced to a fixed rate and w/o
3371			 * aggregation; otherwise check for any fixed rate
3372			 * for the client (may depend on association state).
3373			 */
3374			if (m0->m_flags & M_EAPOL) {
3375				const struct mwl_vap *mvp = MWL_VAP_CONST(vap);
3376				ds->Format = mvp->mv_eapolformat;
3377				ds->pad = htole16(
3378				    EAGLE_TXD_FIXED_RATE | EAGLE_TXD_DONT_AGGR);
3379			} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3380				/* XXX pre-calculate per node */
3381				ds->Format = htole16(
3382				    mwl_calcformat(tp->ucastrate, ni));
3383				ds->pad = htole16(EAGLE_TXD_FIXED_RATE);
3384			}
3385			/* NB: EAPOL frames will never have qos set */
3386			if (qos == 0)
3387				ds->TxPriority = txq->qnum;
3388#if MWL_MAXBA > 3
3389			else if (mwl_bastream_match(&mn->mn_ba[3], qos))
3390				ds->TxPriority = mn->mn_ba[3].txq;
3391#endif
3392#if MWL_MAXBA > 2
3393			else if (mwl_bastream_match(&mn->mn_ba[2], qos))
3394				ds->TxPriority = mn->mn_ba[2].txq;
3395#endif
3396#if MWL_MAXBA > 1
3397			else if (mwl_bastream_match(&mn->mn_ba[1], qos))
3398				ds->TxPriority = mn->mn_ba[1].txq;
3399#endif
3400#if MWL_MAXBA > 0
3401			else if (mwl_bastream_match(&mn->mn_ba[0], qos))
3402				ds->TxPriority = mn->mn_ba[0].txq;
3403#endif
3404			else
3405				ds->TxPriority = txq->qnum;
3406		} else
3407			ds->TxPriority = txq->qnum;
3408		break;
3409	default:
3410		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3411			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3412		sc->sc_stats.mst_tx_badframetype++;
3413		m_freem(m0);
3414		return EIO;
3415	}
3416
3417	if (IFF_DUMPPKTS_XMIT(sc))
3418		ieee80211_dump_pkt(ic,
3419		    mtod(m0, const uint8_t *)+sizeof(uint16_t),
3420		    m0->m_len - sizeof(uint16_t), ds->DataRate, -1);
3421
3422	MWL_TXQ_LOCK(txq);
3423	ds->Status = htole32(EAGLE_TXD_STATUS_FW_OWNED);
3424	STAILQ_INSERT_TAIL(&txq->active, bf, bf_list);
3425	MWL_TXDESC_SYNC(txq, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3426
3427	ifp->if_opackets++;
3428	sc->sc_tx_timer = 5;
3429	MWL_TXQ_UNLOCK(txq);
3430
3431	return 0;
3432#undef	IEEE80211_DIR_DSTODS
3433}
3434
3435static __inline int
3436mwl_cvtlegacyrix(int rix)
3437{
3438#define	N(x)	(sizeof(x)/sizeof(x[0]))
3439	static const int ieeerates[] =
3440	    { 2, 4, 11, 22, 44, 12, 18, 24, 36, 48, 72, 96, 108 };
3441	return (rix < N(ieeerates) ? ieeerates[rix] : 0);
3442#undef N
3443}
3444
3445/*
3446 * Process completed xmit descriptors from the specified queue.
3447 */
3448static int
3449mwl_tx_processq(struct mwl_softc *sc, struct mwl_txq *txq)
3450{
3451#define	EAGLE_TXD_STATUS_MCAST \
3452	(EAGLE_TXD_STATUS_MULTICAST_TX | EAGLE_TXD_STATUS_BROADCAST_TX)
3453	struct ifnet *ifp = sc->sc_ifp;
3454	struct ieee80211com *ic = ifp->if_l2com;
3455	struct mwl_txbuf *bf;
3456	struct mwl_txdesc *ds;
3457	struct ieee80211_node *ni;
3458	struct mwl_node *an;
3459	int nreaped;
3460	uint32_t status;
3461
3462	DPRINTF(sc, MWL_DEBUG_TX_PROC, "%s: tx queue %u\n", __func__, txq->qnum);
3463	for (nreaped = 0;; nreaped++) {
3464		MWL_TXQ_LOCK(txq);
3465		bf = STAILQ_FIRST(&txq->active);
3466		if (bf == NULL) {
3467			MWL_TXQ_UNLOCK(txq);
3468			break;
3469		}
3470		ds = bf->bf_desc;
3471		MWL_TXDESC_SYNC(txq, ds,
3472		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3473		if (ds->Status & htole32(EAGLE_TXD_STATUS_FW_OWNED)) {
3474			MWL_TXQ_UNLOCK(txq);
3475			break;
3476		}
3477		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
3478		MWL_TXQ_UNLOCK(txq);
3479
3480#ifdef MWL_DEBUG
3481		if (sc->sc_debug & MWL_DEBUG_XMIT_DESC)
3482			mwl_printtxbuf(bf, txq->qnum, nreaped);
3483#endif
3484		ni = bf->bf_node;
3485		if (ni != NULL) {
3486			an = MWL_NODE(ni);
3487			status = le32toh(ds->Status);
3488			if (status & EAGLE_TXD_STATUS_OK) {
3489				uint16_t Format = le16toh(ds->Format);
3490				uint8_t txant = MS(Format, EAGLE_TXD_ANTENNA);
3491
3492				sc->sc_stats.mst_ant_tx[txant]++;
3493				if (status & EAGLE_TXD_STATUS_OK_RETRY)
3494					sc->sc_stats.mst_tx_retries++;
3495				if (status & EAGLE_TXD_STATUS_OK_MORE_RETRY)
3496					sc->sc_stats.mst_tx_mretries++;
3497				if (txq->qnum >= MWL_WME_AC_VO)
3498					ic->ic_wme.wme_hipri_traffic++;
3499				ni->ni_txrate = MS(Format, EAGLE_TXD_RATE);
3500				if ((Format & EAGLE_TXD_FORMAT_HT) == 0) {
3501					ni->ni_txrate = mwl_cvtlegacyrix(
3502					    ni->ni_txrate);
3503				} else
3504					ni->ni_txrate |= IEEE80211_RATE_MCS;
3505				sc->sc_stats.mst_tx_rate = ni->ni_txrate;
3506			} else {
3507				if (status & EAGLE_TXD_STATUS_FAILED_LINK_ERROR)
3508					sc->sc_stats.mst_tx_linkerror++;
3509				if (status & EAGLE_TXD_STATUS_FAILED_XRETRY)
3510					sc->sc_stats.mst_tx_xretries++;
3511				if (status & EAGLE_TXD_STATUS_FAILED_AGING)
3512					sc->sc_stats.mst_tx_aging++;
3513				if (bf->bf_m->m_flags & M_FF)
3514					sc->sc_stats.mst_ff_txerr++;
3515			}
3516			/*
3517			 * Do any tx complete callback.  Note this must
3518			 * be done before releasing the node reference.
3519			 * XXX no way to figure out if frame was ACK'd
3520			 */
3521			if (bf->bf_m->m_flags & M_TXCB) {
3522				/* XXX strip fw len in case header inspected */
3523				m_adj(bf->bf_m, sizeof(uint16_t));
3524				ieee80211_process_callback(ni, bf->bf_m,
3525					(status & EAGLE_TXD_STATUS_OK) == 0);
3526			}
3527			/*
3528			 * Reclaim reference to node.
3529			 *
3530			 * NB: the node may be reclaimed here if, for example
3531			 *     this is a DEAUTH message that was sent and the
3532			 *     node was timed out due to inactivity.
3533			 */
3534			ieee80211_free_node(ni);
3535		}
3536		ds->Status = htole32(EAGLE_TXD_STATUS_IDLE);
3537
3538		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3539		    BUS_DMASYNC_POSTWRITE);
3540		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3541		m_freem(bf->bf_m);
3542
3543		mwl_puttxbuf_tail(txq, bf);
3544	}
3545	return nreaped;
3546#undef EAGLE_TXD_STATUS_MCAST
3547}
3548
3549/*
3550 * Deferred processing of transmit interrupt; special-cased
3551 * for four hardware queues, 0-3.
3552 */
3553static void
3554mwl_tx_proc(void *arg, int npending)
3555{
3556	struct mwl_softc *sc = arg;
3557	struct ifnet *ifp = sc->sc_ifp;
3558	int nreaped;
3559
3560	/*
3561	 * Process each active queue.
3562	 */
3563	nreaped = 0;
3564	if (!STAILQ_EMPTY(&sc->sc_txq[0].active))
3565		nreaped += mwl_tx_processq(sc, &sc->sc_txq[0]);
3566	if (!STAILQ_EMPTY(&sc->sc_txq[1].active))
3567		nreaped += mwl_tx_processq(sc, &sc->sc_txq[1]);
3568	if (!STAILQ_EMPTY(&sc->sc_txq[2].active))
3569		nreaped += mwl_tx_processq(sc, &sc->sc_txq[2]);
3570	if (!STAILQ_EMPTY(&sc->sc_txq[3].active))
3571		nreaped += mwl_tx_processq(sc, &sc->sc_txq[3]);
3572
3573	if (nreaped != 0) {
3574		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3575		sc->sc_tx_timer = 0;
3576		if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
3577			/* NB: kick fw; the tx thread may have been preempted */
3578			mwl_hal_txstart(sc->sc_mh, 0);
3579			mwl_start(ifp);
3580		}
3581	}
3582}
3583
3584static void
3585mwl_tx_draintxq(struct mwl_softc *sc, struct mwl_txq *txq)
3586{
3587	struct ieee80211_node *ni;
3588	struct mwl_txbuf *bf;
3589	u_int ix;
3590
3591	/*
3592	 * NB: this assumes output has been stopped and
3593	 *     we do not need to block mwl_tx_tasklet
3594	 */
3595	for (ix = 0;; ix++) {
3596		MWL_TXQ_LOCK(txq);
3597		bf = STAILQ_FIRST(&txq->active);
3598		if (bf == NULL) {
3599			MWL_TXQ_UNLOCK(txq);
3600			break;
3601		}
3602		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
3603		MWL_TXQ_UNLOCK(txq);
3604#ifdef MWL_DEBUG
3605		if (sc->sc_debug & MWL_DEBUG_RESET) {
3606			struct ifnet *ifp = sc->sc_ifp;
3607			struct ieee80211com *ic = ifp->if_l2com;
3608			const struct mwltxrec *tr =
3609			    mtod(bf->bf_m, const struct mwltxrec *);
3610			mwl_printtxbuf(bf, txq->qnum, ix);
3611			ieee80211_dump_pkt(ic, (const uint8_t *)&tr->wh,
3612				bf->bf_m->m_len - sizeof(tr->fwlen), 0, -1);
3613		}
3614#endif /* MWL_DEBUG */
3615		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3616		ni = bf->bf_node;
3617		if (ni != NULL) {
3618			/*
3619			 * Reclaim node reference.
3620			 */
3621			ieee80211_free_node(ni);
3622		}
3623		m_freem(bf->bf_m);
3624
3625		mwl_puttxbuf_tail(txq, bf);
3626	}
3627}
3628
3629/*
3630 * Drain the transmit queues and reclaim resources.
3631 */
3632static void
3633mwl_draintxq(struct mwl_softc *sc)
3634{
3635	struct ifnet *ifp = sc->sc_ifp;
3636	int i;
3637
3638	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3639		mwl_tx_draintxq(sc, &sc->sc_txq[i]);
3640	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3641	sc->sc_tx_timer = 0;
3642}
3643
3644#ifdef MWL_DIAGAPI
3645/*
3646 * Reset the transmit queues to a pristine state after a fw download.
3647 */
3648static void
3649mwl_resettxq(struct mwl_softc *sc)
3650{
3651	int i;
3652
3653	for (i = 0; i < MWL_NUM_TX_QUEUES; i++)
3654		mwl_txq_reset(sc, &sc->sc_txq[i]);
3655}
3656#endif /* MWL_DIAGAPI */
3657
3658/*
3659 * Clear the transmit queues of any frames submitted for the
3660 * specified vap.  This is done when the vap is deleted so we
3661 * don't potentially reference the vap after it is gone.
3662 * Note we cannot remove the frames; we only reclaim the node
3663 * reference.
3664 */
3665static void
3666mwl_cleartxq(struct mwl_softc *sc, struct ieee80211vap *vap)
3667{
3668	struct mwl_txq *txq;
3669	struct mwl_txbuf *bf;
3670	int i;
3671
3672	for (i = 0; i < MWL_NUM_TX_QUEUES; i++) {
3673		txq = &sc->sc_txq[i];
3674		MWL_TXQ_LOCK(txq);
3675		STAILQ_FOREACH(bf, &txq->active, bf_list) {
3676			struct ieee80211_node *ni = bf->bf_node;
3677			if (ni != NULL && ni->ni_vap == vap) {
3678				bf->bf_node = NULL;
3679				ieee80211_free_node(ni);
3680			}
3681		}
3682		MWL_TXQ_UNLOCK(txq);
3683	}
3684}
3685
3686static int
3687mwl_recv_action(struct ieee80211_node *ni, const struct ieee80211_frame *wh,
3688	const uint8_t *frm, const uint8_t *efrm)
3689{
3690	struct mwl_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3691	const struct ieee80211_action *ia;
3692
3693	ia = (const struct ieee80211_action *) frm;
3694	if (ia->ia_category == IEEE80211_ACTION_CAT_HT &&
3695	    ia->ia_action == IEEE80211_ACTION_HT_MIMOPWRSAVE) {
3696		const struct ieee80211_action_ht_mimopowersave *mps =
3697		    (const struct ieee80211_action_ht_mimopowersave *) ia;
3698
3699		mwl_hal_setmimops(sc->sc_mh, ni->ni_macaddr,
3700		    mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA,
3701		    MS(mps->am_control, IEEE80211_A_HT_MIMOPWRSAVE_MODE));
3702		return 0;
3703	} else
3704		return sc->sc_recv_action(ni, wh, frm, efrm);
3705}
3706
3707static int
3708mwl_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3709	int dialogtoken, int baparamset, int batimeout)
3710{
3711	struct mwl_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3712	struct ieee80211vap *vap = ni->ni_vap;
3713	struct mwl_node *mn = MWL_NODE(ni);
3714	struct mwl_bastate *bas;
3715
3716	bas = tap->txa_private;
3717	if (bas == NULL) {
3718		const MWL_HAL_BASTREAM *sp;
3719		/*
3720		 * Check for a free BA stream slot.
3721		 */
3722#if MWL_MAXBA > 3
3723		if (mn->mn_ba[3].bastream == NULL)
3724			bas = &mn->mn_ba[3];
3725		else
3726#endif
3727#if MWL_MAXBA > 2
3728		if (mn->mn_ba[2].bastream == NULL)
3729			bas = &mn->mn_ba[2];
3730		else
3731#endif
3732#if MWL_MAXBA > 1
3733		if (mn->mn_ba[1].bastream == NULL)
3734			bas = &mn->mn_ba[1];
3735		else
3736#endif
3737#if MWL_MAXBA > 0
3738		if (mn->mn_ba[0].bastream == NULL)
3739			bas = &mn->mn_ba[0];
3740		else
3741#endif
3742		{
3743			/* sta already has max BA streams */
3744			/* XXX assign BA stream to highest priority tid */
3745			DPRINTF(sc, MWL_DEBUG_AMPDU,
3746			    "%s: already has max bastreams\n", __func__);
3747			sc->sc_stats.mst_ampdu_reject++;
3748			return 0;
3749		}
3750		/* NB: no held reference to ni */
3751		sp = mwl_hal_bastream_alloc(MWL_VAP(vap)->mv_hvap,
3752		    (baparamset & IEEE80211_BAPS_POLICY_IMMEDIATE) != 0,
3753		    ni->ni_macaddr, tap->txa_tid, ni->ni_htparam,
3754		    ni, tap);
3755		if (sp == NULL) {
3756			/*
3757			 * No available stream, return 0 so no
3758			 * a-mpdu aggregation will be done.
3759			 */
3760			DPRINTF(sc, MWL_DEBUG_AMPDU,
3761			    "%s: no bastream available\n", __func__);
3762			sc->sc_stats.mst_ampdu_nostream++;
3763			return 0;
3764		}
3765		DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: alloc bastream %p\n",
3766		    __func__, sp);
3767		/* NB: qos is left zero so we won't match in mwl_tx_start */
3768		bas->bastream = sp;
3769		tap->txa_private = bas;
3770	}
3771	/* fetch current seq# from the firmware; if available */
3772	if (mwl_hal_bastream_get_seqno(sc->sc_mh, bas->bastream,
3773	    vap->iv_opmode == IEEE80211_M_STA ? vap->iv_myaddr : ni->ni_macaddr,
3774	    &tap->txa_start) != 0)
3775		tap->txa_start = 0;
3776	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, batimeout);
3777}
3778
3779static int
3780mwl_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3781	int code, int baparamset, int batimeout)
3782{
3783	struct mwl_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3784	struct mwl_bastate *bas;
3785
3786	bas = tap->txa_private;
3787	if (bas == NULL) {
3788		/* XXX should not happen */
3789		DPRINTF(sc, MWL_DEBUG_AMPDU,
3790		    "%s: no BA stream allocated, TID %d\n",
3791		    __func__, tap->txa_tid);
3792		sc->sc_stats.mst_addba_nostream++;
3793		return 0;
3794	}
3795	if (code == IEEE80211_STATUS_SUCCESS) {
3796		struct ieee80211vap *vap = ni->ni_vap;
3797		int bufsiz, error;
3798
3799		/*
3800		 * Tell the firmware to setup the BA stream;
3801		 * we know resources are available because we
3802		 * pre-allocated one before forming the request.
3803		 */
3804		bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ);
3805		if (bufsiz == 0)
3806			bufsiz = IEEE80211_AGGR_BAWMAX;
3807		error = mwl_hal_bastream_create(MWL_VAP(vap)->mv_hvap,
3808		    bas->bastream, bufsiz, bufsiz, tap->txa_start);
3809		if (error != 0) {
3810			/*
3811			 * Setup failed, return immediately so no a-mpdu
3812			 * aggregation will be done.
3813			 */
3814			mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3815			mwl_bastream_free(bas);
3816			tap->txa_private = NULL;
3817
3818			DPRINTF(sc, MWL_DEBUG_AMPDU,
3819			    "%s: create failed, error %d, bufsiz %d TID %d "
3820			    "htparam 0x%x\n", __func__, error, bufsiz,
3821			    tap->txa_tid, ni->ni_htparam);
3822			sc->sc_stats.mst_bacreate_failed++;
3823			return 0;
3824		}
3825		/* NB: cache txq to avoid ptr indirect */
3826		mwl_bastream_setup(bas, tap->txa_tid, bas->bastream->txq);
3827		DPRINTF(sc, MWL_DEBUG_AMPDU,
3828		    "%s: bastream %p assigned to txq %d TID %d bufsiz %d "
3829		    "htparam 0x%x\n", __func__, bas->bastream,
3830		    bas->txq, tap->txa_tid, bufsiz, ni->ni_htparam);
3831	} else {
3832		/*
3833		 * Other side NAK'd us; return the resources.
3834		 */
3835		DPRINTF(sc, MWL_DEBUG_AMPDU,
3836		    "%s: request failed with code %d, destroy bastream %p\n",
3837		    __func__, code, bas->bastream);
3838		mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3839		mwl_bastream_free(bas);
3840		tap->txa_private = NULL;
3841	}
3842	/* NB: firmware sends BAR so we don't need to */
3843	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
3844}
3845
3846static void
3847mwl_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
3848{
3849	struct mwl_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3850	struct mwl_bastate *bas;
3851
3852	bas = tap->txa_private;
3853	if (bas != NULL) {
3854		DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: destroy bastream %p\n",
3855		    __func__, bas->bastream);
3856		mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream);
3857		mwl_bastream_free(bas);
3858		tap->txa_private = NULL;
3859	}
3860	sc->sc_addba_stop(ni, tap);
3861}
3862
3863/*
3864 * Setup the rx data structures.  This should only be
3865 * done once or we may get out of sync with the firmware.
3866 */
3867static int
3868mwl_startrecv(struct mwl_softc *sc)
3869{
3870	if (!sc->sc_recvsetup) {
3871		struct mwl_rxbuf *bf, *prev;
3872		struct mwl_rxdesc *ds;
3873
3874		prev = NULL;
3875		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3876			int error = mwl_rxbuf_init(sc, bf);
3877			if (error != 0) {
3878				DPRINTF(sc, MWL_DEBUG_RECV,
3879					"%s: mwl_rxbuf_init failed %d\n",
3880					__func__, error);
3881				return error;
3882			}
3883			if (prev != NULL) {
3884				ds = prev->bf_desc;
3885				ds->pPhysNext = htole32(bf->bf_daddr);
3886			}
3887			prev = bf;
3888		}
3889		if (prev != NULL) {
3890			ds = prev->bf_desc;
3891			ds->pPhysNext =
3892			    htole32(STAILQ_FIRST(&sc->sc_rxbuf)->bf_daddr);
3893		}
3894		sc->sc_recvsetup = 1;
3895	}
3896	mwl_mode_init(sc);		/* set filters, etc. */
3897	return 0;
3898}
3899
3900static MWL_HAL_APMODE
3901mwl_getapmode(const struct ieee80211vap *vap, struct ieee80211_channel *chan)
3902{
3903	MWL_HAL_APMODE mode;
3904
3905	if (IEEE80211_IS_CHAN_HT(chan)) {
3906		if (vap->iv_flags_ht & IEEE80211_FHT_PUREN)
3907			mode = AP_MODE_N_ONLY;
3908		else if (IEEE80211_IS_CHAN_5GHZ(chan))
3909			mode = AP_MODE_AandN;
3910		else if (vap->iv_flags & IEEE80211_F_PUREG)
3911			mode = AP_MODE_GandN;
3912		else
3913			mode = AP_MODE_BandGandN;
3914	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
3915		if (vap->iv_flags & IEEE80211_F_PUREG)
3916			mode = AP_MODE_G_ONLY;
3917		else
3918			mode = AP_MODE_MIXED;
3919	} else if (IEEE80211_IS_CHAN_B(chan))
3920		mode = AP_MODE_B_ONLY;
3921	else if (IEEE80211_IS_CHAN_A(chan))
3922		mode = AP_MODE_A_ONLY;
3923	else
3924		mode = AP_MODE_MIXED;		/* XXX should not happen? */
3925	return mode;
3926}
3927
3928static int
3929mwl_setapmode(struct ieee80211vap *vap, struct ieee80211_channel *chan)
3930{
3931	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
3932	return mwl_hal_setapmode(hvap, mwl_getapmode(vap, chan));
3933}
3934
3935/*
3936 * Set/change channels.
3937 */
3938static int
3939mwl_chan_set(struct mwl_softc *sc, struct ieee80211_channel *chan)
3940{
3941	struct mwl_hal *mh = sc->sc_mh;
3942	struct ifnet *ifp = sc->sc_ifp;
3943	struct ieee80211com *ic = ifp->if_l2com;
3944	MWL_HAL_CHANNEL hchan;
3945	int maxtxpow;
3946
3947	DPRINTF(sc, MWL_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x\n",
3948	    __func__, chan->ic_freq, chan->ic_flags);
3949
3950	/*
3951	 * Convert to a HAL channel description with
3952	 * the flags constrained to reflect the current
3953	 * operating mode.
3954	 */
3955	mwl_mapchan(&hchan, chan);
3956	mwl_hal_intrset(mh, 0);		/* disable interrupts */
3957#if 0
3958	mwl_draintxq(sc);		/* clear pending tx frames */
3959#endif
3960	mwl_hal_setchannel(mh, &hchan);
3961	/*
3962	 * Tx power is cap'd by the regulatory setting and
3963	 * possibly a user-set limit.  We pass the min of
3964	 * these to the hal to apply them to the cal data
3965	 * for this channel.
3966	 * XXX min bound?
3967	 */
3968	maxtxpow = 2*chan->ic_maxregpower;
3969	if (maxtxpow > ic->ic_txpowlimit)
3970		maxtxpow = ic->ic_txpowlimit;
3971	mwl_hal_settxpower(mh, &hchan, maxtxpow / 2);
3972	/* NB: potentially change mcast/mgt rates */
3973	mwl_setcurchanrates(sc);
3974
3975	/*
3976	 * Update internal state.
3977	 */
3978	sc->sc_tx_th.wt_chan_freq = htole16(chan->ic_freq);
3979	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
3980	if (IEEE80211_IS_CHAN_A(chan)) {
3981		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_A);
3982		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_A);
3983	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
3984		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_G);
3985		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_G);
3986	} else {
3987		sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_B);
3988		sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_B);
3989	}
3990	sc->sc_curchan = hchan;
3991	mwl_hal_intrset(mh, sc->sc_imask);
3992
3993	return 0;
3994}
3995
3996static void
3997mwl_scan_start(struct ieee80211com *ic)
3998{
3999	struct ifnet *ifp = ic->ic_ifp;
4000	struct mwl_softc *sc = ifp->if_softc;
4001
4002	DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__);
4003}
4004
4005static void
4006mwl_scan_end(struct ieee80211com *ic)
4007{
4008	struct ifnet *ifp = ic->ic_ifp;
4009	struct mwl_softc *sc = ifp->if_softc;
4010
4011	DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__);
4012}
4013
4014static void
4015mwl_set_channel(struct ieee80211com *ic)
4016{
4017	struct ifnet *ifp = ic->ic_ifp;
4018	struct mwl_softc *sc = ifp->if_softc;
4019
4020	(void) mwl_chan_set(sc, ic->ic_curchan);
4021}
4022
4023/*
4024 * Handle a channel switch request.  We inform the firmware
4025 * and mark the global state to suppress various actions.
4026 * NB: we issue only one request to the fw; we may be called
4027 * multiple times if there are multiple vap's.
4028 */
4029static void
4030mwl_startcsa(struct ieee80211vap *vap)
4031{
4032	struct ieee80211com *ic = vap->iv_ic;
4033	struct mwl_softc *sc = ic->ic_ifp->if_softc;
4034	MWL_HAL_CHANNEL hchan;
4035
4036	if (sc->sc_csapending)
4037		return;
4038
4039	mwl_mapchan(&hchan, ic->ic_csa_newchan);
4040	/* 1 =>'s quiet channel */
4041	mwl_hal_setchannelswitchie(sc->sc_mh, &hchan, 1, ic->ic_csa_count);
4042	sc->sc_csapending = 1;
4043}
4044
4045/*
4046 * Plumb any static WEP key for the station.  This is
4047 * necessary as we must propagate the key from the
4048 * global key table of the vap to each sta db entry.
4049 */
4050static void
4051mwl_setanywepkey(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4052{
4053	if ((vap->iv_flags & (IEEE80211_F_PRIVACY|IEEE80211_F_WPA)) ==
4054		IEEE80211_F_PRIVACY &&
4055	    vap->iv_def_txkey != IEEE80211_KEYIX_NONE &&
4056	    vap->iv_nw_keys[vap->iv_def_txkey].wk_keyix != IEEE80211_KEYIX_NONE)
4057		(void) mwl_key_set(vap, &vap->iv_nw_keys[vap->iv_def_txkey], mac);
4058}
4059
4060static int
4061mwl_peerstadb(struct ieee80211_node *ni, int aid, int staid, MWL_HAL_PEERINFO *pi)
4062{
4063#define	WME(ie) ((const struct ieee80211_wme_info *) ie)
4064	struct ieee80211vap *vap = ni->ni_vap;
4065	struct mwl_hal_vap *hvap;
4066	int error;
4067
4068	if (vap->iv_opmode == IEEE80211_M_WDS) {
4069		/*
4070		 * WDS vap's do not have a f/w vap; instead they piggyback
4071		 * on an AP vap and we must install the sta db entry and
4072		 * crypto state using that AP's handle (the WDS vap has none).
4073		 */
4074		hvap = MWL_VAP(vap)->mv_ap_hvap;
4075	} else
4076		hvap = MWL_VAP(vap)->mv_hvap;
4077	error = mwl_hal_newstation(hvap, ni->ni_macaddr,
4078	    aid, staid, pi,
4079	    ni->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT),
4080	    ni->ni_ies.wme_ie != NULL ? WME(ni->ni_ies.wme_ie)->wme_info : 0);
4081	if (error == 0) {
4082		/*
4083		 * Setup security for this station.  For sta mode this is
4084		 * needed even though do the same thing on transition to
4085		 * AUTH state because the call to mwl_hal_newstation
4086		 * clobbers the crypto state we setup.
4087		 */
4088		mwl_setanywepkey(vap, ni->ni_macaddr);
4089	}
4090	return error;
4091#undef WME
4092}
4093
4094static void
4095mwl_setglobalkeys(struct ieee80211vap *vap)
4096{
4097	struct ieee80211_key *wk;
4098
4099	wk = &vap->iv_nw_keys[0];
4100	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; wk++)
4101		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4102			(void) mwl_key_set(vap, wk, vap->iv_myaddr);
4103}
4104
4105/*
4106 * Convert a legacy rate set to a firmware bitmask.
4107 */
4108static uint32_t
4109get_rate_bitmap(const struct ieee80211_rateset *rs)
4110{
4111	uint32_t rates;
4112	int i;
4113
4114	rates = 0;
4115	for (i = 0; i < rs->rs_nrates; i++)
4116		switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
4117		case 2:	  rates |= 0x001; break;
4118		case 4:	  rates |= 0x002; break;
4119		case 11:  rates |= 0x004; break;
4120		case 22:  rates |= 0x008; break;
4121		case 44:  rates |= 0x010; break;
4122		case 12:  rates |= 0x020; break;
4123		case 18:  rates |= 0x040; break;
4124		case 24:  rates |= 0x080; break;
4125		case 36:  rates |= 0x100; break;
4126		case 48:  rates |= 0x200; break;
4127		case 72:  rates |= 0x400; break;
4128		case 96:  rates |= 0x800; break;
4129		case 108: rates |= 0x1000; break;
4130		}
4131	return rates;
4132}
4133
4134/*
4135 * Construct an HT firmware bitmask from an HT rate set.
4136 */
4137static uint32_t
4138get_htrate_bitmap(const struct ieee80211_htrateset *rs)
4139{
4140	uint32_t rates;
4141	int i;
4142
4143	rates = 0;
4144	for (i = 0; i < rs->rs_nrates; i++) {
4145		if (rs->rs_rates[i] < 16)
4146			rates |= 1<<rs->rs_rates[i];
4147	}
4148	return rates;
4149}
4150
4151/*
4152 * Craft station database entry for station.
4153 * NB: use host byte order here, the hal handles byte swapping.
4154 */
4155static MWL_HAL_PEERINFO *
4156mkpeerinfo(MWL_HAL_PEERINFO *pi, const struct ieee80211_node *ni)
4157{
4158	const struct ieee80211vap *vap = ni->ni_vap;
4159
4160	memset(pi, 0, sizeof(*pi));
4161	pi->LegacyRateBitMap = get_rate_bitmap(&ni->ni_rates);
4162	pi->CapInfo = ni->ni_capinfo;
4163	if (ni->ni_flags & IEEE80211_NODE_HT) {
4164		/* HT capabilities, etc */
4165		pi->HTCapabilitiesInfo = ni->ni_htcap;
4166		/* XXX pi.HTCapabilitiesInfo */
4167	        pi->MacHTParamInfo = ni->ni_htparam;
4168		pi->HTRateBitMap = get_htrate_bitmap(&ni->ni_htrates);
4169		pi->AddHtInfo.ControlChan = ni->ni_htctlchan;
4170		pi->AddHtInfo.AddChan = ni->ni_ht2ndchan;
4171		pi->AddHtInfo.OpMode = ni->ni_htopmode;
4172		pi->AddHtInfo.stbc = ni->ni_htstbc;
4173
4174		/* constrain according to local configuration */
4175		if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0)
4176			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI40;
4177		if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0)
4178			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI20;
4179		if (ni->ni_chw != 40)
4180			pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_CHWIDTH40;
4181	}
4182	return pi;
4183}
4184
4185/*
4186 * Re-create the local sta db entry for a vap to ensure
4187 * up to date WME state is pushed to the firmware.  Because
4188 * this resets crypto state this must be followed by a
4189 * reload of any keys in the global key table.
4190 */
4191static int
4192mwl_localstadb(struct ieee80211vap *vap)
4193{
4194#define	WME(ie) ((const struct ieee80211_wme_info *) ie)
4195	struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap;
4196	struct ieee80211_node *bss;
4197	MWL_HAL_PEERINFO pi;
4198	int error;
4199
4200	switch (vap->iv_opmode) {
4201	case IEEE80211_M_STA:
4202		bss = vap->iv_bss;
4203		error = mwl_hal_newstation(hvap, vap->iv_myaddr, 0, 0,
4204		    vap->iv_state == IEEE80211_S_RUN ?
4205			mkpeerinfo(&pi, bss) : NULL,
4206		    (bss->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT)),
4207		    bss->ni_ies.wme_ie != NULL ?
4208			WME(bss->ni_ies.wme_ie)->wme_info : 0);
4209		if (error == 0)
4210			mwl_setglobalkeys(vap);
4211		break;
4212	case IEEE80211_M_HOSTAP:
4213	case IEEE80211_M_MBSS:
4214		error = mwl_hal_newstation(hvap, vap->iv_myaddr,
4215		    0, 0, NULL, vap->iv_flags & IEEE80211_F_WME, 0);
4216		if (error == 0)
4217			mwl_setglobalkeys(vap);
4218		break;
4219	default:
4220		error = 0;
4221		break;
4222	}
4223	return error;
4224#undef WME
4225}
4226
4227static int
4228mwl_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4229{
4230	struct mwl_vap *mvp = MWL_VAP(vap);
4231	struct mwl_hal_vap *hvap = mvp->mv_hvap;
4232	struct ieee80211com *ic = vap->iv_ic;
4233	struct ieee80211_node *ni = NULL;
4234	struct ifnet *ifp = ic->ic_ifp;
4235	struct mwl_softc *sc = ifp->if_softc;
4236	struct mwl_hal *mh = sc->sc_mh;
4237	enum ieee80211_state ostate = vap->iv_state;
4238	int error;
4239
4240	DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: %s -> %s\n",
4241	    vap->iv_ifp->if_xname, __func__,
4242	    ieee80211_state_name[ostate], ieee80211_state_name[nstate]);
4243
4244	callout_stop(&sc->sc_timer);
4245	/*
4246	 * Clear current radar detection state.
4247	 */
4248	if (ostate == IEEE80211_S_CAC) {
4249		/* stop quiet mode radar detection */
4250		mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_STOP);
4251	} else if (sc->sc_radarena) {
4252		/* stop in-service radar detection */
4253		mwl_hal_setradardetection(mh, DR_DFS_DISABLE);
4254		sc->sc_radarena = 0;
4255	}
4256	/*
4257	 * Carry out per-state actions before doing net80211 work.
4258	 */
4259	if (nstate == IEEE80211_S_INIT) {
4260		/* NB: only ap+sta vap's have a fw entity */
4261		if (hvap != NULL)
4262			mwl_hal_stop(hvap);
4263	} else if (nstate == IEEE80211_S_SCAN) {
4264		mwl_hal_start(hvap);
4265		/* NB: this disables beacon frames */
4266		mwl_hal_setinframode(hvap);
4267	} else if (nstate == IEEE80211_S_AUTH) {
4268		/*
4269		 * Must create a sta db entry in case a WEP key needs to
4270		 * be plumbed.  This entry will be overwritten if we
4271		 * associate; otherwise it will be reclaimed on node free.
4272		 */
4273		ni = vap->iv_bss;
4274		MWL_NODE(ni)->mn_hvap = hvap;
4275		(void) mwl_peerstadb(ni, 0, 0, NULL);
4276	} else if (nstate == IEEE80211_S_CSA) {
4277		/* XXX move to below? */
4278		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
4279		    vap->iv_opmode == IEEE80211_M_MBSS)
4280			mwl_startcsa(vap);
4281	} else if (nstate == IEEE80211_S_CAC) {
4282		/* XXX move to below? */
4283		/* stop ap xmit and enable quiet mode radar detection */
4284		mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_START);
4285	}
4286
4287	/*
4288	 * Invoke the parent method to do net80211 work.
4289	 */
4290	error = mvp->mv_newstate(vap, nstate, arg);
4291
4292	/*
4293	 * Carry out work that must be done after net80211 runs;
4294	 * this work requires up to date state (e.g. iv_bss).
4295	 */
4296	if (error == 0 && nstate == IEEE80211_S_RUN) {
4297		/* NB: collect bss node again, it may have changed */
4298		ni = vap->iv_bss;
4299
4300		DPRINTF(sc, MWL_DEBUG_STATE,
4301		    "%s: %s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4302		    "capinfo 0x%04x chan %d\n",
4303		    vap->iv_ifp->if_xname, __func__, vap->iv_flags,
4304		    ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo,
4305		    ieee80211_chan2ieee(ic, ic->ic_curchan));
4306
4307		/*
4308		 * Recreate local sta db entry to update WME/HT state.
4309		 */
4310		mwl_localstadb(vap);
4311		switch (vap->iv_opmode) {
4312		case IEEE80211_M_HOSTAP:
4313		case IEEE80211_M_MBSS:
4314			if (ostate == IEEE80211_S_CAC) {
4315				/* enable in-service radar detection */
4316				mwl_hal_setradardetection(mh,
4317				    DR_IN_SERVICE_MONITOR_START);
4318				sc->sc_radarena = 1;
4319			}
4320			/*
4321			 * Allocate and setup the beacon frame
4322			 * (and related state).
4323			 */
4324			error = mwl_reset_vap(vap, IEEE80211_S_RUN);
4325			if (error != 0) {
4326				DPRINTF(sc, MWL_DEBUG_STATE,
4327				    "%s: beacon setup failed, error %d\n",
4328				    __func__, error);
4329				goto bad;
4330			}
4331			/* NB: must be after setting up beacon */
4332			mwl_hal_start(hvap);
4333			break;
4334		case IEEE80211_M_STA:
4335			DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: aid 0x%x\n",
4336			    vap->iv_ifp->if_xname, __func__, ni->ni_associd);
4337			/*
4338			 * Set state now that we're associated.
4339			 */
4340			mwl_hal_setassocid(hvap, ni->ni_bssid, ni->ni_associd);
4341			mwl_setrates(vap);
4342			mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold);
4343			if ((vap->iv_flags & IEEE80211_F_DWDS) &&
4344			    sc->sc_ndwdsvaps++ == 0)
4345				mwl_hal_setdwds(mh, 1);
4346			break;
4347		case IEEE80211_M_WDS:
4348			DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: bssid %s\n",
4349			    vap->iv_ifp->if_xname, __func__,
4350			    ether_sprintf(ni->ni_bssid));
4351			mwl_seteapolformat(vap);
4352			break;
4353		default:
4354			break;
4355		}
4356		/*
4357		 * Set CS mode according to operating channel;
4358		 * this mostly an optimization for 5GHz.
4359		 *
4360		 * NB: must follow mwl_hal_start which resets csmode
4361		 */
4362		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan))
4363			mwl_hal_setcsmode(mh, CSMODE_AGGRESSIVE);
4364		else
4365			mwl_hal_setcsmode(mh, CSMODE_AUTO_ENA);
4366		/*
4367		 * Start timer to prod firmware.
4368		 */
4369		if (sc->sc_ageinterval != 0)
4370			callout_reset(&sc->sc_timer, sc->sc_ageinterval*hz,
4371			    mwl_agestations, sc);
4372	} else if (nstate == IEEE80211_S_SLEEP) {
4373		/* XXX set chip in power save */
4374	} else if ((vap->iv_flags & IEEE80211_F_DWDS) &&
4375	    --sc->sc_ndwdsvaps == 0)
4376		mwl_hal_setdwds(mh, 0);
4377bad:
4378	return error;
4379}
4380
4381/*
4382 * Manage station id's; these are separate from AID's
4383 * as AID's may have values out of the range of possible
4384 * station id's acceptable to the firmware.
4385 */
4386static int
4387allocstaid(struct mwl_softc *sc, int aid)
4388{
4389	int staid;
4390
4391	if (!(0 < aid && aid < MWL_MAXSTAID) || isset(sc->sc_staid, aid)) {
4392		/* NB: don't use 0 */
4393		for (staid = 1; staid < MWL_MAXSTAID; staid++)
4394			if (isclr(sc->sc_staid, staid))
4395				break;
4396	} else
4397		staid = aid;
4398	setbit(sc->sc_staid, staid);
4399	return staid;
4400}
4401
4402static void
4403delstaid(struct mwl_softc *sc, int staid)
4404{
4405	clrbit(sc->sc_staid, staid);
4406}
4407
4408/*
4409 * Setup driver-specific state for a newly associated node.
4410 * Note that we're called also on a re-associate, the isnew
4411 * param tells us if this is the first time or not.
4412 */
4413static void
4414mwl_newassoc(struct ieee80211_node *ni, int isnew)
4415{
4416	struct ieee80211vap *vap = ni->ni_vap;
4417        struct mwl_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4418	struct mwl_node *mn = MWL_NODE(ni);
4419	MWL_HAL_PEERINFO pi;
4420	uint16_t aid;
4421	int error;
4422
4423	aid = IEEE80211_AID(ni->ni_associd);
4424	if (isnew) {
4425		mn->mn_staid = allocstaid(sc, aid);
4426		mn->mn_hvap = MWL_VAP(vap)->mv_hvap;
4427	} else {
4428		mn = MWL_NODE(ni);
4429		/* XXX reset BA stream? */
4430	}
4431	DPRINTF(sc, MWL_DEBUG_NODE, "%s: mac %s isnew %d aid %d staid %d\n",
4432	    __func__, ether_sprintf(ni->ni_macaddr), isnew, aid, mn->mn_staid);
4433	error = mwl_peerstadb(ni, aid, mn->mn_staid, mkpeerinfo(&pi, ni));
4434	if (error != 0) {
4435		DPRINTF(sc, MWL_DEBUG_NODE,
4436		    "%s: error %d creating sta db entry\n",
4437		    __func__, error);
4438		/* XXX how to deal with error? */
4439	}
4440}
4441
4442/*
4443 * Periodically poke the firmware to age out station state
4444 * (power save queues, pending tx aggregates).
4445 */
4446static void
4447mwl_agestations(void *arg)
4448{
4449	struct mwl_softc *sc = arg;
4450
4451	mwl_hal_setkeepalive(sc->sc_mh);
4452	if (sc->sc_ageinterval != 0)		/* NB: catch dynamic changes */
4453		callout_schedule(&sc->sc_timer, sc->sc_ageinterval*hz);
4454}
4455
4456static const struct mwl_hal_channel *
4457findhalchannel(const MWL_HAL_CHANNELINFO *ci, int ieee)
4458{
4459	int i;
4460
4461	for (i = 0; i < ci->nchannels; i++) {
4462		const struct mwl_hal_channel *hc = &ci->channels[i];
4463		if (hc->ieee == ieee)
4464			return hc;
4465	}
4466	return NULL;
4467}
4468
4469static int
4470mwl_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
4471	int nchan, struct ieee80211_channel chans[])
4472{
4473	struct mwl_softc *sc = ic->ic_ifp->if_softc;
4474	struct mwl_hal *mh = sc->sc_mh;
4475	const MWL_HAL_CHANNELINFO *ci;
4476	int i;
4477
4478	for (i = 0; i < nchan; i++) {
4479		struct ieee80211_channel *c = &chans[i];
4480		const struct mwl_hal_channel *hc;
4481
4482		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4483			mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_2DOT4GHZ,
4484			    IEEE80211_IS_CHAN_HT40(c) ?
4485				MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci);
4486		} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4487			mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_5GHZ,
4488			    IEEE80211_IS_CHAN_HT40(c) ?
4489				MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci);
4490		} else {
4491			if_printf(ic->ic_ifp,
4492			    "%s: channel %u freq %u/0x%x not 2.4/5GHz\n",
4493			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
4494			return EINVAL;
4495		}
4496		/*
4497		 * Verify channel has cal data and cap tx power.
4498		 */
4499		hc = findhalchannel(ci, c->ic_ieee);
4500		if (hc != NULL) {
4501			if (c->ic_maxpower > 2*hc->maxTxPow)
4502				c->ic_maxpower = 2*hc->maxTxPow;
4503			goto next;
4504		}
4505		if (IEEE80211_IS_CHAN_HT40(c)) {
4506			/*
4507			 * Look for the extension channel since the
4508			 * hal table only has the primary channel.
4509			 */
4510			hc = findhalchannel(ci, c->ic_extieee);
4511			if (hc != NULL) {
4512				if (c->ic_maxpower > 2*hc->maxTxPow)
4513					c->ic_maxpower = 2*hc->maxTxPow;
4514				goto next;
4515			}
4516		}
4517		if_printf(ic->ic_ifp,
4518		    "%s: no cal data for channel %u ext %u freq %u/0x%x\n",
4519		    __func__, c->ic_ieee, c->ic_extieee,
4520		    c->ic_freq, c->ic_flags);
4521		return EINVAL;
4522	next:
4523		;
4524	}
4525	return 0;
4526}
4527
4528#define	IEEE80211_CHAN_HTG	(IEEE80211_CHAN_HT|IEEE80211_CHAN_G)
4529#define	IEEE80211_CHAN_HTA	(IEEE80211_CHAN_HT|IEEE80211_CHAN_A)
4530
4531static void
4532addchan(struct ieee80211_channel *c, int freq, int flags, int ieee, int txpow)
4533{
4534	c->ic_freq = freq;
4535	c->ic_flags = flags;
4536	c->ic_ieee = ieee;
4537	c->ic_minpower = 0;
4538	c->ic_maxpower = 2*txpow;
4539	c->ic_maxregpower = txpow;
4540}
4541
4542static const struct ieee80211_channel *
4543findchannel(const struct ieee80211_channel chans[], int nchans,
4544	int freq, int flags)
4545{
4546	const struct ieee80211_channel *c;
4547	int i;
4548
4549	for (i = 0; i < nchans; i++) {
4550		c = &chans[i];
4551		if (c->ic_freq == freq && c->ic_flags == flags)
4552			return c;
4553	}
4554	return NULL;
4555}
4556
4557static void
4558addht40channels(struct ieee80211_channel chans[], int maxchans, int *nchans,
4559	const MWL_HAL_CHANNELINFO *ci, int flags)
4560{
4561	struct ieee80211_channel *c;
4562	const struct ieee80211_channel *extc;
4563	const struct mwl_hal_channel *hc;
4564	int i;
4565
4566	c = &chans[*nchans];
4567
4568	flags &= ~IEEE80211_CHAN_HT;
4569	for (i = 0; i < ci->nchannels; i++) {
4570		/*
4571		 * Each entry defines an HT40 channel pair; find the
4572		 * extension channel above and the insert the pair.
4573		 */
4574		hc = &ci->channels[i];
4575		extc = findchannel(chans, *nchans, hc->freq+20,
4576		    flags | IEEE80211_CHAN_HT20);
4577		if (extc != NULL) {
4578			if (*nchans >= maxchans)
4579				break;
4580			addchan(c, hc->freq, flags | IEEE80211_CHAN_HT40U,
4581			    hc->ieee, hc->maxTxPow);
4582			c->ic_extieee = extc->ic_ieee;
4583			c++, (*nchans)++;
4584			if (*nchans >= maxchans)
4585				break;
4586			addchan(c, extc->ic_freq, flags | IEEE80211_CHAN_HT40D,
4587			    extc->ic_ieee, hc->maxTxPow);
4588			c->ic_extieee = hc->ieee;
4589			c++, (*nchans)++;
4590		}
4591	}
4592}
4593
4594static void
4595addchannels(struct ieee80211_channel chans[], int maxchans, int *nchans,
4596	const MWL_HAL_CHANNELINFO *ci, int flags)
4597{
4598	struct ieee80211_channel *c;
4599	int i;
4600
4601	c = &chans[*nchans];
4602
4603	for (i = 0; i < ci->nchannels; i++) {
4604		const struct mwl_hal_channel *hc;
4605
4606		hc = &ci->channels[i];
4607		if (*nchans >= maxchans)
4608			break;
4609		addchan(c, hc->freq, flags, hc->ieee, hc->maxTxPow);
4610		c++, (*nchans)++;
4611		if (flags == IEEE80211_CHAN_G || flags == IEEE80211_CHAN_HTG) {
4612			/* g channel have a separate b-only entry */
4613			if (*nchans >= maxchans)
4614				break;
4615			c[0] = c[-1];
4616			c[-1].ic_flags = IEEE80211_CHAN_B;
4617			c++, (*nchans)++;
4618		}
4619		if (flags == IEEE80211_CHAN_HTG) {
4620			/* HT g channel have a separate g-only entry */
4621			if (*nchans >= maxchans)
4622				break;
4623			c[-1].ic_flags = IEEE80211_CHAN_G;
4624			c[0] = c[-1];
4625			c[0].ic_flags &= ~IEEE80211_CHAN_HT;
4626			c[0].ic_flags |= IEEE80211_CHAN_HT20;	/* HT20 */
4627			c++, (*nchans)++;
4628		}
4629		if (flags == IEEE80211_CHAN_HTA) {
4630			/* HT a channel have a separate a-only entry */
4631			if (*nchans >= maxchans)
4632				break;
4633			c[-1].ic_flags = IEEE80211_CHAN_A;
4634			c[0] = c[-1];
4635			c[0].ic_flags &= ~IEEE80211_CHAN_HT;
4636			c[0].ic_flags |= IEEE80211_CHAN_HT20;	/* HT20 */
4637			c++, (*nchans)++;
4638		}
4639	}
4640}
4641
4642static void
4643getchannels(struct mwl_softc *sc, int maxchans, int *nchans,
4644	struct ieee80211_channel chans[])
4645{
4646	const MWL_HAL_CHANNELINFO *ci;
4647
4648	/*
4649	 * Use the channel info from the hal to craft the
4650	 * channel list.  Note that we pass back an unsorted
4651	 * list; the caller is required to sort it for us
4652	 * (if desired).
4653	 */
4654	*nchans = 0;
4655	if (mwl_hal_getchannelinfo(sc->sc_mh,
4656	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0)
4657		addchannels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTG);
4658	if (mwl_hal_getchannelinfo(sc->sc_mh,
4659	    MWL_FREQ_BAND_5GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0)
4660		addchannels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTA);
4661	if (mwl_hal_getchannelinfo(sc->sc_mh,
4662	    MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
4663		addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTG);
4664	if (mwl_hal_getchannelinfo(sc->sc_mh,
4665	    MWL_FREQ_BAND_5GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0)
4666		addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTA);
4667}
4668
4669static void
4670mwl_getradiocaps(struct ieee80211com *ic,
4671	int maxchans, int *nchans, struct ieee80211_channel chans[])
4672{
4673	struct mwl_softc *sc = ic->ic_ifp->if_softc;
4674
4675	getchannels(sc, maxchans, nchans, chans);
4676}
4677
4678static int
4679mwl_getchannels(struct mwl_softc *sc)
4680{
4681	struct ifnet *ifp = sc->sc_ifp;
4682	struct ieee80211com *ic = ifp->if_l2com;
4683
4684	/*
4685	 * Use the channel info from the hal to craft the
4686	 * channel list for net80211.  Note that we pass up
4687	 * an unsorted list; net80211 will sort it for us.
4688	 */
4689	memset(ic->ic_channels, 0, sizeof(ic->ic_channels));
4690	ic->ic_nchans = 0;
4691	getchannels(sc, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels);
4692
4693	ic->ic_regdomain.regdomain = SKU_DEBUG;
4694	ic->ic_regdomain.country = CTRY_DEFAULT;
4695	ic->ic_regdomain.location = 'I';
4696	ic->ic_regdomain.isocc[0] = ' ';	/* XXX? */
4697	ic->ic_regdomain.isocc[1] = ' ';
4698	return (ic->ic_nchans == 0 ? EIO : 0);
4699}
4700#undef IEEE80211_CHAN_HTA
4701#undef IEEE80211_CHAN_HTG
4702
4703#ifdef MWL_DEBUG
4704static void
4705mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix)
4706{
4707	const struct mwl_rxdesc *ds = bf->bf_desc;
4708	uint32_t status = le32toh(ds->Status);
4709
4710	printf("R[%2u] (DS.V:%p DS.P:%p) NEXT:%08x DATA:%08x RC:%02x%s\n"
4711	       "      STAT:%02x LEN:%04x RSSI:%02x CHAN:%02x RATE:%02x QOS:%04x HT:%04x\n",
4712	    ix, ds, (const struct mwl_desc *)bf->bf_daddr,
4713	    le32toh(ds->pPhysNext), le32toh(ds->pPhysBuffData),
4714	    ds->RxControl,
4715	    ds->RxControl != EAGLE_RXD_CTRL_DRIVER_OWN ?
4716	        "" : (status & EAGLE_RXD_STATUS_OK) ? " *" : " !",
4717	    ds->Status, le16toh(ds->PktLen), ds->RSSI, ds->Channel,
4718	    ds->Rate, le16toh(ds->QosCtrl), le16toh(ds->HtSig2));
4719}
4720
4721static void
4722mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix)
4723{
4724	const struct mwl_txdesc *ds = bf->bf_desc;
4725	uint32_t status = le32toh(ds->Status);
4726
4727	printf("Q%u[%3u]", qnum, ix);
4728	printf(" (DS.V:%p DS.P:%p)\n",
4729	    ds, (const struct mwl_txdesc *)bf->bf_daddr);
4730	printf("    NEXT:%08x DATA:%08x LEN:%04x STAT:%08x%s\n",
4731	    le32toh(ds->pPhysNext),
4732	    le32toh(ds->PktPtr), le16toh(ds->PktLen), status,
4733	    status & EAGLE_TXD_STATUS_USED ?
4734		"" : (status & 3) != 0 ? " *" : " !");
4735	printf("    RATE:%02x PRI:%x QOS:%04x SAP:%08x FORMAT:%04x\n",
4736	    ds->DataRate, ds->TxPriority, le16toh(ds->QosCtrl),
4737	    le32toh(ds->SapPktInfo), le16toh(ds->Format));
4738#if MWL_TXDESC > 1
4739	printf("    MULTIFRAMES:%u LEN:%04x %04x %04x %04x %04x %04x\n"
4740	    , le32toh(ds->multiframes)
4741	    , le16toh(ds->PktLenArray[0]), le16toh(ds->PktLenArray[1])
4742	    , le16toh(ds->PktLenArray[2]), le16toh(ds->PktLenArray[3])
4743	    , le16toh(ds->PktLenArray[4]), le16toh(ds->PktLenArray[5])
4744	);
4745	printf("    DATA:%08x %08x %08x %08x %08x %08x\n"
4746	    , le32toh(ds->PktPtrArray[0]), le32toh(ds->PktPtrArray[1])
4747	    , le32toh(ds->PktPtrArray[2]), le32toh(ds->PktPtrArray[3])
4748	    , le32toh(ds->PktPtrArray[4]), le32toh(ds->PktPtrArray[5])
4749	);
4750#endif
4751#if 0
4752{ const uint8_t *cp = (const uint8_t *) ds;
4753  int i;
4754  for (i = 0; i < sizeof(struct mwl_txdesc); i++) {
4755	printf("%02x ", cp[i]);
4756	if (((i+1) % 16) == 0)
4757		printf("\n");
4758  }
4759  printf("\n");
4760}
4761#endif
4762}
4763#endif /* MWL_DEBUG */
4764
4765#if 0
4766static void
4767mwl_txq_dump(struct mwl_txq *txq)
4768{
4769	struct mwl_txbuf *bf;
4770	int i = 0;
4771
4772	MWL_TXQ_LOCK(txq);
4773	STAILQ_FOREACH(bf, &txq->active, bf_list) {
4774		struct mwl_txdesc *ds = bf->bf_desc;
4775		MWL_TXDESC_SYNC(txq, ds,
4776		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4777#ifdef MWL_DEBUG
4778		mwl_printtxbuf(bf, txq->qnum, i);
4779#endif
4780		i++;
4781	}
4782	MWL_TXQ_UNLOCK(txq);
4783}
4784#endif
4785
4786static void
4787mwl_watchdog(void *arg)
4788{
4789	struct mwl_softc *sc;
4790	struct ifnet *ifp;
4791
4792	sc = arg;
4793	callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc);
4794	if (sc->sc_tx_timer == 0 || --sc->sc_tx_timer > 0)
4795		return;
4796
4797	ifp = sc->sc_ifp;
4798	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && !sc->sc_invalid) {
4799		if (mwl_hal_setkeepalive(sc->sc_mh))
4800			if_printf(ifp, "transmit timeout (firmware hung?)\n");
4801		else
4802			if_printf(ifp, "transmit timeout\n");
4803#if 0
4804		mwl_reset(ifp);
4805mwl_txq_dump(&sc->sc_txq[0]);/*XXX*/
4806#endif
4807		ifp->if_oerrors++;
4808		sc->sc_stats.mst_watchdog++;
4809	}
4810}
4811
4812#ifdef MWL_DIAGAPI
4813/*
4814 * Diagnostic interface to the HAL.  This is used by various
4815 * tools to do things like retrieve register contents for
4816 * debugging.  The mechanism is intentionally opaque so that
4817 * it can change frequently w/o concern for compatiblity.
4818 */
4819static int
4820mwl_ioctl_diag(struct mwl_softc *sc, struct mwl_diag *md)
4821{
4822	struct mwl_hal *mh = sc->sc_mh;
4823	u_int id = md->md_id & MWL_DIAG_ID;
4824	void *indata = NULL;
4825	void *outdata = NULL;
4826	u_int32_t insize = md->md_in_size;
4827	u_int32_t outsize = md->md_out_size;
4828	int error = 0;
4829
4830	if (md->md_id & MWL_DIAG_IN) {
4831		/*
4832		 * Copy in data.
4833		 */
4834		indata = malloc(insize, M_TEMP, M_NOWAIT);
4835		if (indata == NULL) {
4836			error = ENOMEM;
4837			goto bad;
4838		}
4839		error = copyin(md->md_in_data, indata, insize);
4840		if (error)
4841			goto bad;
4842	}
4843	if (md->md_id & MWL_DIAG_DYN) {
4844		/*
4845		 * Allocate a buffer for the results (otherwise the HAL
4846		 * returns a pointer to a buffer where we can read the
4847		 * results).  Note that we depend on the HAL leaving this
4848		 * pointer for us to use below in reclaiming the buffer;
4849		 * may want to be more defensive.
4850		 */
4851		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4852		if (outdata == NULL) {
4853			error = ENOMEM;
4854			goto bad;
4855		}
4856	}
4857	if (mwl_hal_getdiagstate(mh, id, indata, insize, &outdata, &outsize)) {
4858		if (outsize < md->md_out_size)
4859			md->md_out_size = outsize;
4860		if (outdata != NULL)
4861			error = copyout(outdata, md->md_out_data,
4862					md->md_out_size);
4863	} else {
4864		error = EINVAL;
4865	}
4866bad:
4867	if ((md->md_id & MWL_DIAG_IN) && indata != NULL)
4868		free(indata, M_TEMP);
4869	if ((md->md_id & MWL_DIAG_DYN) && outdata != NULL)
4870		free(outdata, M_TEMP);
4871	return error;
4872}
4873
4874static int
4875mwl_ioctl_reset(struct mwl_softc *sc, struct mwl_diag *md)
4876{
4877	struct mwl_hal *mh = sc->sc_mh;
4878	int error;
4879
4880	MWL_LOCK_ASSERT(sc);
4881
4882	if (md->md_id == 0 && mwl_hal_fwload(mh, NULL) != 0) {
4883		device_printf(sc->sc_dev, "unable to load firmware\n");
4884		return EIO;
4885	}
4886	if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) {
4887		device_printf(sc->sc_dev, "unable to fetch h/w specs\n");
4888		return EIO;
4889	}
4890	error = mwl_setupdma(sc);
4891	if (error != 0) {
4892		/* NB: mwl_setupdma prints a msg */
4893		return error;
4894	}
4895	/*
4896	 * Reset tx/rx data structures; after reload we must
4897	 * re-start the driver's notion of the next xmit/recv.
4898	 */
4899	mwl_draintxq(sc);		/* clear pending frames */
4900	mwl_resettxq(sc);		/* rebuild tx q lists */
4901	sc->sc_rxnext = NULL;		/* force rx to start at the list head */
4902	return 0;
4903}
4904#endif /* MWL_DIAGAPI */
4905
4906static int
4907mwl_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4908{
4909#define	IS_RUNNING(ifp) \
4910	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
4911	struct mwl_softc *sc = ifp->if_softc;
4912	struct ieee80211com *ic = ifp->if_l2com;
4913	struct ifreq *ifr = (struct ifreq *)data;
4914	int error = 0, startall;
4915
4916	switch (cmd) {
4917	case SIOCSIFFLAGS:
4918		MWL_LOCK(sc);
4919		startall = 0;
4920		if (IS_RUNNING(ifp)) {
4921			/*
4922			 * To avoid rescanning another access point,
4923			 * do not call mwl_init() here.  Instead,
4924			 * only reflect promisc mode settings.
4925			 */
4926			mwl_mode_init(sc);
4927		} else if (ifp->if_flags & IFF_UP) {
4928			/*
4929			 * Beware of being called during attach/detach
4930			 * to reset promiscuous mode.  In that case we
4931			 * will still be marked UP but not RUNNING.
4932			 * However trying to re-init the interface
4933			 * is the wrong thing to do as we've already
4934			 * torn down much of our state.  There's
4935			 * probably a better way to deal with this.
4936			 */
4937			if (!sc->sc_invalid) {
4938				mwl_init_locked(sc);	/* XXX lose error */
4939				startall = 1;
4940			}
4941		} else
4942			mwl_stop_locked(ifp, 1);
4943		MWL_UNLOCK(sc);
4944		if (startall)
4945			ieee80211_start_all(ic);
4946		break;
4947	case SIOCGMVSTATS:
4948		mwl_hal_gethwstats(sc->sc_mh, &sc->sc_stats.hw_stats);
4949		/* NB: embed these numbers to get a consistent view */
4950		sc->sc_stats.mst_tx_packets = ifp->if_opackets;
4951		sc->sc_stats.mst_rx_packets = ifp->if_ipackets;
4952		/*
4953		 * NB: Drop the softc lock in case of a page fault;
4954		 * we'll accept any potential inconsisentcy in the
4955		 * statistics.  The alternative is to copy the data
4956		 * to a local structure.
4957		 */
4958		return copyout(&sc->sc_stats,
4959				ifr->ifr_data, sizeof (sc->sc_stats));
4960#ifdef MWL_DIAGAPI
4961	case SIOCGMVDIAG:
4962		/* XXX check privs */
4963		return mwl_ioctl_diag(sc, (struct mwl_diag *) ifr);
4964	case SIOCGMVRESET:
4965		/* XXX check privs */
4966		MWL_LOCK(sc);
4967		error = mwl_ioctl_reset(sc,(struct mwl_diag *) ifr);
4968		MWL_UNLOCK(sc);
4969		break;
4970#endif /* MWL_DIAGAPI */
4971	case SIOCGIFMEDIA:
4972		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4973		break;
4974	case SIOCGIFADDR:
4975		error = ether_ioctl(ifp, cmd, data);
4976		break;
4977	default:
4978		error = EINVAL;
4979		break;
4980	}
4981	return error;
4982#undef IS_RUNNING
4983}
4984
4985#ifdef	MWL_DEBUG
4986static int
4987mwl_sysctl_debug(SYSCTL_HANDLER_ARGS)
4988{
4989	struct mwl_softc *sc = arg1;
4990	int debug, error;
4991
4992	debug = sc->sc_debug | (mwl_hal_getdebug(sc->sc_mh) << 24);
4993	error = sysctl_handle_int(oidp, &debug, 0, req);
4994	if (error || !req->newptr)
4995		return error;
4996	mwl_hal_setdebug(sc->sc_mh, debug >> 24);
4997	sc->sc_debug = debug & 0x00ffffff;
4998	return 0;
4999}
5000#endif /* MWL_DEBUG */
5001
5002static void
5003mwl_sysctlattach(struct mwl_softc *sc)
5004{
5005#ifdef	MWL_DEBUG
5006	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
5007	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
5008
5009	sc->sc_debug = mwl_debug;
5010	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5011		"debug", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5012		mwl_sysctl_debug, "I", "control debugging printfs");
5013#endif
5014}
5015
5016/*
5017 * Announce various information on device/driver attach.
5018 */
5019static void
5020mwl_announce(struct mwl_softc *sc)
5021{
5022	struct ifnet *ifp = sc->sc_ifp;
5023
5024	if_printf(ifp, "Rev A%d hardware, v%d.%d.%d.%d firmware (regioncode %d)\n",
5025		sc->sc_hwspecs.hwVersion,
5026		(sc->sc_hwspecs.fwReleaseNumber>>24) & 0xff,
5027		(sc->sc_hwspecs.fwReleaseNumber>>16) & 0xff,
5028		(sc->sc_hwspecs.fwReleaseNumber>>8) & 0xff,
5029		(sc->sc_hwspecs.fwReleaseNumber>>0) & 0xff,
5030		sc->sc_hwspecs.regionCode);
5031	sc->sc_fwrelease = sc->sc_hwspecs.fwReleaseNumber;
5032
5033	if (bootverbose) {
5034		int i;
5035		for (i = 0; i <= WME_AC_VO; i++) {
5036			struct mwl_txq *txq = sc->sc_ac2q[i];
5037			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5038				txq->qnum, ieee80211_wme_acnames[i]);
5039		}
5040	}
5041	if (bootverbose || mwl_rxdesc != MWL_RXDESC)
5042		if_printf(ifp, "using %u rx descriptors\n", mwl_rxdesc);
5043	if (bootverbose || mwl_rxbuf != MWL_RXBUF)
5044		if_printf(ifp, "using %u rx buffers\n", mwl_rxbuf);
5045	if (bootverbose || mwl_txbuf != MWL_TXBUF)
5046		if_printf(ifp, "using %u tx buffers\n", mwl_txbuf);
5047	if (bootverbose && mwl_hal_ismbsscapable(sc->sc_mh))
5048		if_printf(ifp, "multi-bss support\n");
5049#ifdef MWL_TX_NODROP
5050	if (bootverbose)
5051		if_printf(ifp, "no tx drop\n");
5052#endif
5053}
5054