ixgbe_common.c revision 315333
1215911Sjfv/******************************************************************************
2215911Sjfv
3215911Sjfv  Copyright (c) 2001-2017, Intel Corporation
4215911Sjfv  All rights reserved.
5215911Sjfv
6215911Sjfv  Redistribution and use in source and binary forms, with or without
7215911Sjfv  modification, are permitted provided that the following conditions are met:
8215911Sjfv
9215911Sjfv   1. Redistributions of source code must retain the above copyright notice,
10215911Sjfv      this list of conditions and the following disclaimer.
11215911Sjfv
12215911Sjfv   2. Redistributions in binary form must reproduce the above copyright
13215911Sjfv      notice, this list of conditions and the following disclaimer in the
14215911Sjfv      documentation and/or other materials provided with the distribution.
15215911Sjfv
16215911Sjfv   3. Neither the name of the Intel Corporation nor the names of its
17215911Sjfv      contributors may be used to endorse or promote products derived from
18215911Sjfv      this software without specific prior written permission.
19215911Sjfv
20215911Sjfv  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21215911Sjfv  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22215911Sjfv  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23215911Sjfv  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24215911Sjfv  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25215911Sjfv  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26215911Sjfv  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27215911Sjfv  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28215911Sjfv  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29215911Sjfv  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30215911Sjfv  POSSIBILITY OF SUCH DAMAGE.
31215911Sjfv
32215911Sjfv******************************************************************************/
33215911Sjfv/*$FreeBSD: stable/10/sys/dev/ixgbe/ixgbe_common.c 315333 2017-03-15 21:20:17Z erj $*/
34215911Sjfv
35215911Sjfv#include "ixgbe_common.h"
36215911Sjfv#include "ixgbe_phy.h"
37215911Sjfv#include "ixgbe_dcb.h"
38215911Sjfv#include "ixgbe_dcb_82599.h"
39215911Sjfv#include "ixgbe_api.h"
40215911Sjfv
41215911Sjfvstatic s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
42215911Sjfvstatic s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
43215911Sjfvstatic void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
44215911Sjfvstatic s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
45215911Sjfvstatic void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
46215911Sjfvstatic void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
47215911Sjfv					u16 count);
48215911Sjfvstatic u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
49215911Sjfvstatic void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50215911Sjfvstatic void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51215911Sjfvstatic void ixgbe_release_eeprom(struct ixgbe_hw *hw);
52215911Sjfv
53215911Sjfvstatic s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54215911Sjfvstatic s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
55215911Sjfv					 u16 *san_mac_offset);
56215911Sjfvstatic s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57215911Sjfv					     u16 words, u16 *data);
58215911Sjfvstatic s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59215911Sjfv					      u16 words, u16 *data);
60215911Sjfvstatic s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
61215911Sjfv						 u16 offset);
62215911Sjfv
63215911Sjfv/**
64215911Sjfv *  ixgbe_init_ops_generic - Inits function ptrs
65215911Sjfv *  @hw: pointer to the hardware structure
66215911Sjfv *
67215911Sjfv *  Initialize the function pointers.
68215911Sjfv **/
69215911Sjfvs32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
70215911Sjfv{
71215911Sjfv	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
72215911Sjfv	struct ixgbe_mac_info *mac = &hw->mac;
73215911Sjfv	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
74215911Sjfv
75215911Sjfv	DEBUGFUNC("ixgbe_init_ops_generic");
76215911Sjfv
77215911Sjfv	/* EEPROM */
78215911Sjfv	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
79215911Sjfv	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
80215911Sjfv	if (eec & IXGBE_EEC_PRES) {
81215911Sjfv		eeprom->ops.read = ixgbe_read_eerd_generic;
82215911Sjfv		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
83215911Sjfv	} else {
84215911Sjfv		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
85215911Sjfv		eeprom->ops.read_buffer =
86215911Sjfv				 ixgbe_read_eeprom_buffer_bit_bang_generic;
87215911Sjfv	}
88215911Sjfv	eeprom->ops.write = ixgbe_write_eeprom_generic;
89215911Sjfv	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
90215911Sjfv	eeprom->ops.validate_checksum =
91215911Sjfv				      ixgbe_validate_eeprom_checksum_generic;
92215911Sjfv	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
93215911Sjfv	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
94215911Sjfv
95215911Sjfv	/* MAC */
96215911Sjfv	mac->ops.init_hw = ixgbe_init_hw_generic;
97215911Sjfv	mac->ops.reset_hw = NULL;
98215911Sjfv	mac->ops.start_hw = ixgbe_start_hw_generic;
99215911Sjfv	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
100215911Sjfv	mac->ops.get_media_type = NULL;
101215911Sjfv	mac->ops.get_supported_physical_layer = NULL;
102215911Sjfv	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
103215911Sjfv	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
104215911Sjfv	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
105215911Sjfv	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
106215911Sjfv	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
107215911Sjfv	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
108215911Sjfv	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
109215911Sjfv	mac->ops.prot_autoc_read = prot_autoc_read_generic;
110215911Sjfv	mac->ops.prot_autoc_write = prot_autoc_write_generic;
111215911Sjfv
112215911Sjfv	/* LEDs */
113215911Sjfv	mac->ops.led_on = ixgbe_led_on_generic;
114	mac->ops.led_off = ixgbe_led_off_generic;
115	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
116	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
117	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
118
119	/* RAR, Multicast, VLAN */
120	mac->ops.set_rar = ixgbe_set_rar_generic;
121	mac->ops.clear_rar = ixgbe_clear_rar_generic;
122	mac->ops.insert_mac_addr = NULL;
123	mac->ops.set_vmdq = NULL;
124	mac->ops.clear_vmdq = NULL;
125	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
126	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
127	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
128	mac->ops.enable_mc = ixgbe_enable_mc_generic;
129	mac->ops.disable_mc = ixgbe_disable_mc_generic;
130	mac->ops.clear_vfta = NULL;
131	mac->ops.set_vfta = NULL;
132	mac->ops.set_vlvf = NULL;
133	mac->ops.init_uta_tables = NULL;
134	mac->ops.enable_rx = ixgbe_enable_rx_generic;
135	mac->ops.disable_rx = ixgbe_disable_rx_generic;
136
137	/* Flow Control */
138	mac->ops.fc_enable = ixgbe_fc_enable_generic;
139	mac->ops.setup_fc = ixgbe_setup_fc_generic;
140	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
141
142	/* Link */
143	mac->ops.get_link_capabilities = NULL;
144	mac->ops.setup_link = NULL;
145	mac->ops.check_link = NULL;
146	mac->ops.dmac_config = NULL;
147	mac->ops.dmac_update_tcs = NULL;
148	mac->ops.dmac_config_tcs = NULL;
149
150	return IXGBE_SUCCESS;
151}
152
153/**
154 * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
155 * of flow control
156 * @hw: pointer to hardware structure
157 *
158 * This function returns TRUE if the device supports flow control
159 * autonegotiation, and FALSE if it does not.
160 *
161 **/
162bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
163{
164	bool supported = FALSE;
165	ixgbe_link_speed speed;
166	bool link_up;
167
168	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
169
170	switch (hw->phy.media_type) {
171	case ixgbe_media_type_fiber_fixed:
172	case ixgbe_media_type_fiber_qsfp:
173	case ixgbe_media_type_fiber:
174		/* flow control autoneg black list */
175		switch (hw->device_id) {
176		case IXGBE_DEV_ID_X550EM_A_SFP:
177		case IXGBE_DEV_ID_X550EM_A_SFP_N:
178		case IXGBE_DEV_ID_X550EM_A_QSFP:
179		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
180			supported = FALSE;
181			break;
182		default:
183			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
184			/* if link is down, assume supported */
185			if (link_up)
186				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
187				TRUE : FALSE;
188			else
189				supported = TRUE;
190		}
191
192		break;
193	case ixgbe_media_type_backplane:
194		supported = TRUE;
195		break;
196	case ixgbe_media_type_copper:
197		/* only some copper devices support flow control autoneg */
198		switch (hw->device_id) {
199		case IXGBE_DEV_ID_82599_T3_LOM:
200		case IXGBE_DEV_ID_X540T:
201		case IXGBE_DEV_ID_X540T1:
202		case IXGBE_DEV_ID_X540_BYPASS:
203		case IXGBE_DEV_ID_X550T:
204		case IXGBE_DEV_ID_X550T1:
205		case IXGBE_DEV_ID_X550EM_X_10G_T:
206		case IXGBE_DEV_ID_X550EM_A_10G_T:
207		case IXGBE_DEV_ID_X550EM_A_1G_T:
208		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
209			supported = TRUE;
210			break;
211		default:
212			supported = FALSE;
213		}
214	default:
215		break;
216	}
217
218	if (!supported)
219		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
220			      "Device %x does not support flow control autoneg",
221			      hw->device_id);
222	return supported;
223}
224
225/**
226 *  ixgbe_setup_fc_generic - Set up flow control
227 *  @hw: pointer to hardware structure
228 *
229 *  Called at init time to set up flow control.
230 **/
231s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
232{
233	s32 ret_val = IXGBE_SUCCESS;
234	u32 reg = 0, reg_bp = 0;
235	u16 reg_cu = 0;
236	bool locked = FALSE;
237
238	DEBUGFUNC("ixgbe_setup_fc_generic");
239
240	/* Validate the requested mode */
241	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
242		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
243			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
244		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
245		goto out;
246	}
247
248	/*
249	 * 10gig parts do not have a word in the EEPROM to determine the
250	 * default flow control setting, so we explicitly set it to full.
251	 */
252	if (hw->fc.requested_mode == ixgbe_fc_default)
253		hw->fc.requested_mode = ixgbe_fc_full;
254
255	/*
256	 * Set up the 1G and 10G flow control advertisement registers so the
257	 * HW will be able to do fc autoneg once the cable is plugged in.  If
258	 * we link at 10G, the 1G advertisement is harmless and vice versa.
259	 */
260	switch (hw->phy.media_type) {
261	case ixgbe_media_type_backplane:
262		/* some MAC's need RMW protection on AUTOC */
263		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
264		if (ret_val != IXGBE_SUCCESS)
265			goto out;
266
267		/* only backplane uses autoc so fall though */
268	case ixgbe_media_type_fiber_fixed:
269	case ixgbe_media_type_fiber_qsfp:
270	case ixgbe_media_type_fiber:
271		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
272
273		break;
274	case ixgbe_media_type_copper:
275		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
276				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
277		break;
278	default:
279		break;
280	}
281
282	/*
283	 * The possible values of fc.requested_mode are:
284	 * 0: Flow control is completely disabled
285	 * 1: Rx flow control is enabled (we can receive pause frames,
286	 *    but not send pause frames).
287	 * 2: Tx flow control is enabled (we can send pause frames but
288	 *    we do not support receiving pause frames).
289	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
290	 * other: Invalid.
291	 */
292	switch (hw->fc.requested_mode) {
293	case ixgbe_fc_none:
294		/* Flow control completely disabled by software override. */
295		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
296		if (hw->phy.media_type == ixgbe_media_type_backplane)
297			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
298				    IXGBE_AUTOC_ASM_PAUSE);
299		else if (hw->phy.media_type == ixgbe_media_type_copper)
300			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
301		break;
302	case ixgbe_fc_tx_pause:
303		/*
304		 * Tx Flow control is enabled, and Rx Flow control is
305		 * disabled by software override.
306		 */
307		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
308		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
309		if (hw->phy.media_type == ixgbe_media_type_backplane) {
310			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
311			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
312		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
313			reg_cu |= IXGBE_TAF_ASM_PAUSE;
314			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
315		}
316		break;
317	case ixgbe_fc_rx_pause:
318		/*
319		 * Rx Flow control is enabled and Tx Flow control is
320		 * disabled by software override. Since there really
321		 * isn't a way to advertise that we are capable of RX
322		 * Pause ONLY, we will advertise that we support both
323		 * symmetric and asymmetric Rx PAUSE, as such we fall
324		 * through to the fc_full statement.  Later, we will
325		 * disable the adapter's ability to send PAUSE frames.
326		 */
327	case ixgbe_fc_full:
328		/* Flow control (both Rx and Tx) is enabled by SW override. */
329		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
330		if (hw->phy.media_type == ixgbe_media_type_backplane)
331			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
332				  IXGBE_AUTOC_ASM_PAUSE;
333		else if (hw->phy.media_type == ixgbe_media_type_copper)
334			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
335		break;
336	default:
337		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
338			     "Flow control param set incorrectly\n");
339		ret_val = IXGBE_ERR_CONFIG;
340		goto out;
341		break;
342	}
343
344	if (hw->mac.type < ixgbe_mac_X540) {
345		/*
346		 * Enable auto-negotiation between the MAC & PHY;
347		 * the MAC will advertise clause 37 flow control.
348		 */
349		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
350		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
351
352		/* Disable AN timeout */
353		if (hw->fc.strict_ieee)
354			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
355
356		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
357		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
358	}
359
360	/*
361	 * AUTOC restart handles negotiation of 1G and 10G on backplane
362	 * and copper. There is no need to set the PCS1GCTL register.
363	 *
364	 */
365	if (hw->phy.media_type == ixgbe_media_type_backplane) {
366		reg_bp |= IXGBE_AUTOC_AN_RESTART;
367		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
368		if (ret_val)
369			goto out;
370	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
371		    (ixgbe_device_supports_autoneg_fc(hw))) {
372		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
373				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
374	}
375
376	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
377out:
378	return ret_val;
379}
380
381/**
382 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
383 *  @hw: pointer to hardware structure
384 *
385 *  Starts the hardware by filling the bus info structure and media type, clears
386 *  all on chip counters, initializes receive address registers, multicast
387 *  table, VLAN filter table, calls routine to set up link and flow control
388 *  settings, and leaves transmit and receive units disabled and uninitialized
389 **/
390s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
391{
392	s32 ret_val;
393	u32 ctrl_ext;
394	u16 device_caps;
395
396	DEBUGFUNC("ixgbe_start_hw_generic");
397
398	/* Set the media type */
399	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
400
401	/* PHY ops initialization must be done in reset_hw() */
402
403	/* Clear the VLAN filter table */
404	hw->mac.ops.clear_vfta(hw);
405
406	/* Clear statistics registers */
407	hw->mac.ops.clear_hw_cntrs(hw);
408
409	/* Set No Snoop Disable */
410	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
411	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
412	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
413	IXGBE_WRITE_FLUSH(hw);
414
415	/* Setup flow control */
416	ret_val = ixgbe_setup_fc(hw);
417	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
418		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
419		return ret_val;
420	}
421
422	/* Cache bit indicating need for crosstalk fix */
423	switch (hw->mac.type) {
424	case ixgbe_mac_82599EB:
425	case ixgbe_mac_X550EM_x:
426	case ixgbe_mac_X550EM_a:
427		hw->mac.ops.get_device_caps(hw, &device_caps);
428		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
429			hw->need_crosstalk_fix = FALSE;
430		else
431			hw->need_crosstalk_fix = TRUE;
432		break;
433	default:
434		hw->need_crosstalk_fix = FALSE;
435		break;
436	}
437
438	/* Clear adapter stopped flag */
439	hw->adapter_stopped = FALSE;
440
441	return IXGBE_SUCCESS;
442}
443
444/**
445 *  ixgbe_start_hw_gen2 - Init sequence for common device family
446 *  @hw: pointer to hw structure
447 *
448 * Performs the init sequence common to the second generation
449 * of 10 GbE devices.
450 * Devices in the second generation:
451 *     82599
452 *     X540
453 **/
454s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
455{
456	u32 i;
457	u32 regval;
458
459	/* Clear the rate limiters */
460	for (i = 0; i < hw->mac.max_tx_queues; i++) {
461		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
462		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
463	}
464	IXGBE_WRITE_FLUSH(hw);
465
466	/* Disable relaxed ordering */
467	for (i = 0; i < hw->mac.max_tx_queues; i++) {
468		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
469		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
470		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
471	}
472
473	for (i = 0; i < hw->mac.max_rx_queues; i++) {
474		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
475		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
476			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
477		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
478	}
479
480	return IXGBE_SUCCESS;
481}
482
483/**
484 *  ixgbe_init_hw_generic - Generic hardware initialization
485 *  @hw: pointer to hardware structure
486 *
487 *  Initialize the hardware by resetting the hardware, filling the bus info
488 *  structure and media type, clears all on chip counters, initializes receive
489 *  address registers, multicast table, VLAN filter table, calls routine to set
490 *  up link and flow control settings, and leaves transmit and receive units
491 *  disabled and uninitialized
492 **/
493s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
494{
495	s32 status;
496
497	DEBUGFUNC("ixgbe_init_hw_generic");
498
499	/* Reset the hardware */
500	status = hw->mac.ops.reset_hw(hw);
501
502	if (status == IXGBE_SUCCESS) {
503		/* Start the HW */
504		status = hw->mac.ops.start_hw(hw);
505	}
506
507	/* Initialize the LED link active for LED blink support */
508	hw->mac.ops.init_led_link_act(hw);
509
510	if (status != IXGBE_SUCCESS)
511		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
512
513	return status;
514}
515
516/**
517 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
518 *  @hw: pointer to hardware structure
519 *
520 *  Clears all hardware statistics counters by reading them from the hardware
521 *  Statistics counters are clear on read.
522 **/
523s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
524{
525	u16 i = 0;
526
527	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
528
529	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
530	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
531	IXGBE_READ_REG(hw, IXGBE_ERRBC);
532	IXGBE_READ_REG(hw, IXGBE_MSPDC);
533	for (i = 0; i < 8; i++)
534		IXGBE_READ_REG(hw, IXGBE_MPC(i));
535
536	IXGBE_READ_REG(hw, IXGBE_MLFC);
537	IXGBE_READ_REG(hw, IXGBE_MRFC);
538	IXGBE_READ_REG(hw, IXGBE_RLEC);
539	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
540	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
541	if (hw->mac.type >= ixgbe_mac_82599EB) {
542		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
543		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
544	} else {
545		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
546		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
547	}
548
549	for (i = 0; i < 8; i++) {
550		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
551		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
552		if (hw->mac.type >= ixgbe_mac_82599EB) {
553			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
554			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
555		} else {
556			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
557			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
558		}
559	}
560	if (hw->mac.type >= ixgbe_mac_82599EB)
561		for (i = 0; i < 8; i++)
562			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
563	IXGBE_READ_REG(hw, IXGBE_PRC64);
564	IXGBE_READ_REG(hw, IXGBE_PRC127);
565	IXGBE_READ_REG(hw, IXGBE_PRC255);
566	IXGBE_READ_REG(hw, IXGBE_PRC511);
567	IXGBE_READ_REG(hw, IXGBE_PRC1023);
568	IXGBE_READ_REG(hw, IXGBE_PRC1522);
569	IXGBE_READ_REG(hw, IXGBE_GPRC);
570	IXGBE_READ_REG(hw, IXGBE_BPRC);
571	IXGBE_READ_REG(hw, IXGBE_MPRC);
572	IXGBE_READ_REG(hw, IXGBE_GPTC);
573	IXGBE_READ_REG(hw, IXGBE_GORCL);
574	IXGBE_READ_REG(hw, IXGBE_GORCH);
575	IXGBE_READ_REG(hw, IXGBE_GOTCL);
576	IXGBE_READ_REG(hw, IXGBE_GOTCH);
577	if (hw->mac.type == ixgbe_mac_82598EB)
578		for (i = 0; i < 8; i++)
579			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
580	IXGBE_READ_REG(hw, IXGBE_RUC);
581	IXGBE_READ_REG(hw, IXGBE_RFC);
582	IXGBE_READ_REG(hw, IXGBE_ROC);
583	IXGBE_READ_REG(hw, IXGBE_RJC);
584	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
585	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
586	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
587	IXGBE_READ_REG(hw, IXGBE_TORL);
588	IXGBE_READ_REG(hw, IXGBE_TORH);
589	IXGBE_READ_REG(hw, IXGBE_TPR);
590	IXGBE_READ_REG(hw, IXGBE_TPT);
591	IXGBE_READ_REG(hw, IXGBE_PTC64);
592	IXGBE_READ_REG(hw, IXGBE_PTC127);
593	IXGBE_READ_REG(hw, IXGBE_PTC255);
594	IXGBE_READ_REG(hw, IXGBE_PTC511);
595	IXGBE_READ_REG(hw, IXGBE_PTC1023);
596	IXGBE_READ_REG(hw, IXGBE_PTC1522);
597	IXGBE_READ_REG(hw, IXGBE_MPTC);
598	IXGBE_READ_REG(hw, IXGBE_BPTC);
599	for (i = 0; i < 16; i++) {
600		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
601		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
602		if (hw->mac.type >= ixgbe_mac_82599EB) {
603			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
604			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
605			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
606			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
607			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
608		} else {
609			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
610			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
611		}
612	}
613
614	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
615		if (hw->phy.id == 0)
616			ixgbe_identify_phy(hw);
617		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
618				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
619		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
620				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
621		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
622				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
623		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
624				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
625	}
626
627	return IXGBE_SUCCESS;
628}
629
630/**
631 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
632 *  @hw: pointer to hardware structure
633 *  @pba_num: stores the part number string from the EEPROM
634 *  @pba_num_size: part number string buffer length
635 *
636 *  Reads the part number string from the EEPROM.
637 **/
638s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
639				  u32 pba_num_size)
640{
641	s32 ret_val;
642	u16 data;
643	u16 pba_ptr;
644	u16 offset;
645	u16 length;
646
647	DEBUGFUNC("ixgbe_read_pba_string_generic");
648
649	if (pba_num == NULL) {
650		DEBUGOUT("PBA string buffer was null\n");
651		return IXGBE_ERR_INVALID_ARGUMENT;
652	}
653
654	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
655	if (ret_val) {
656		DEBUGOUT("NVM Read Error\n");
657		return ret_val;
658	}
659
660	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
661	if (ret_val) {
662		DEBUGOUT("NVM Read Error\n");
663		return ret_val;
664	}
665
666	/*
667	 * if data is not ptr guard the PBA must be in legacy format which
668	 * means pba_ptr is actually our second data word for the PBA number
669	 * and we can decode it into an ascii string
670	 */
671	if (data != IXGBE_PBANUM_PTR_GUARD) {
672		DEBUGOUT("NVM PBA number is not stored as string\n");
673
674		/* we will need 11 characters to store the PBA */
675		if (pba_num_size < 11) {
676			DEBUGOUT("PBA string buffer too small\n");
677			return IXGBE_ERR_NO_SPACE;
678		}
679
680		/* extract hex string from data and pba_ptr */
681		pba_num[0] = (data >> 12) & 0xF;
682		pba_num[1] = (data >> 8) & 0xF;
683		pba_num[2] = (data >> 4) & 0xF;
684		pba_num[3] = data & 0xF;
685		pba_num[4] = (pba_ptr >> 12) & 0xF;
686		pba_num[5] = (pba_ptr >> 8) & 0xF;
687		pba_num[6] = '-';
688		pba_num[7] = 0;
689		pba_num[8] = (pba_ptr >> 4) & 0xF;
690		pba_num[9] = pba_ptr & 0xF;
691
692		/* put a null character on the end of our string */
693		pba_num[10] = '\0';
694
695		/* switch all the data but the '-' to hex char */
696		for (offset = 0; offset < 10; offset++) {
697			if (pba_num[offset] < 0xA)
698				pba_num[offset] += '0';
699			else if (pba_num[offset] < 0x10)
700				pba_num[offset] += 'A' - 0xA;
701		}
702
703		return IXGBE_SUCCESS;
704	}
705
706	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
707	if (ret_val) {
708		DEBUGOUT("NVM Read Error\n");
709		return ret_val;
710	}
711
712	if (length == 0xFFFF || length == 0) {
713		DEBUGOUT("NVM PBA number section invalid length\n");
714		return IXGBE_ERR_PBA_SECTION;
715	}
716
717	/* check if pba_num buffer is big enough */
718	if (pba_num_size  < (((u32)length * 2) - 1)) {
719		DEBUGOUT("PBA string buffer too small\n");
720		return IXGBE_ERR_NO_SPACE;
721	}
722
723	/* trim pba length from start of string */
724	pba_ptr++;
725	length--;
726
727	for (offset = 0; offset < length; offset++) {
728		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
729		if (ret_val) {
730			DEBUGOUT("NVM Read Error\n");
731			return ret_val;
732		}
733		pba_num[offset * 2] = (u8)(data >> 8);
734		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
735	}
736	pba_num[offset * 2] = '\0';
737
738	return IXGBE_SUCCESS;
739}
740
741/**
742 *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
743 *  @hw: pointer to hardware structure
744 *  @pba_num: stores the part number from the EEPROM
745 *
746 *  Reads the part number from the EEPROM.
747 **/
748s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
749{
750	s32 ret_val;
751	u16 data;
752
753	DEBUGFUNC("ixgbe_read_pba_num_generic");
754
755	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
756	if (ret_val) {
757		DEBUGOUT("NVM Read Error\n");
758		return ret_val;
759	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
760		DEBUGOUT("NVM Not supported\n");
761		return IXGBE_NOT_IMPLEMENTED;
762	}
763	*pba_num = (u32)(data << 16);
764
765	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
766	if (ret_val) {
767		DEBUGOUT("NVM Read Error\n");
768		return ret_val;
769	}
770	*pba_num |= data;
771
772	return IXGBE_SUCCESS;
773}
774
775/**
776 *  ixgbe_read_pba_raw
777 *  @hw: pointer to the HW structure
778 *  @eeprom_buf: optional pointer to EEPROM image
779 *  @eeprom_buf_size: size of EEPROM image in words
780 *  @max_pba_block_size: PBA block size limit
781 *  @pba: pointer to output PBA structure
782 *
783 *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
784 *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
785 *
786 **/
787s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
788		       u32 eeprom_buf_size, u16 max_pba_block_size,
789		       struct ixgbe_pba *pba)
790{
791	s32 ret_val;
792	u16 pba_block_size;
793
794	if (pba == NULL)
795		return IXGBE_ERR_PARAM;
796
797	if (eeprom_buf == NULL) {
798		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
799						     &pba->word[0]);
800		if (ret_val)
801			return ret_val;
802	} else {
803		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
804			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
805			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
806		} else {
807			return IXGBE_ERR_PARAM;
808		}
809	}
810
811	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
812		if (pba->pba_block == NULL)
813			return IXGBE_ERR_PARAM;
814
815		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
816						   eeprom_buf_size,
817						   &pba_block_size);
818		if (ret_val)
819			return ret_val;
820
821		if (pba_block_size > max_pba_block_size)
822			return IXGBE_ERR_PARAM;
823
824		if (eeprom_buf == NULL) {
825			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
826							     pba_block_size,
827							     pba->pba_block);
828			if (ret_val)
829				return ret_val;
830		} else {
831			if (eeprom_buf_size > (u32)(pba->word[1] +
832					      pba_block_size)) {
833				memcpy(pba->pba_block,
834				       &eeprom_buf[pba->word[1]],
835				       pba_block_size * sizeof(u16));
836			} else {
837				return IXGBE_ERR_PARAM;
838			}
839		}
840	}
841
842	return IXGBE_SUCCESS;
843}
844
845/**
846 *  ixgbe_write_pba_raw
847 *  @hw: pointer to the HW structure
848 *  @eeprom_buf: optional pointer to EEPROM image
849 *  @eeprom_buf_size: size of EEPROM image in words
850 *  @pba: pointer to PBA structure
851 *
852 *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
853 *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
854 *
855 **/
856s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
857			u32 eeprom_buf_size, struct ixgbe_pba *pba)
858{
859	s32 ret_val;
860
861	if (pba == NULL)
862		return IXGBE_ERR_PARAM;
863
864	if (eeprom_buf == NULL) {
865		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
866						      &pba->word[0]);
867		if (ret_val)
868			return ret_val;
869	} else {
870		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
871			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
872			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
873		} else {
874			return IXGBE_ERR_PARAM;
875		}
876	}
877
878	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
879		if (pba->pba_block == NULL)
880			return IXGBE_ERR_PARAM;
881
882		if (eeprom_buf == NULL) {
883			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
884							      pba->pba_block[0],
885							      pba->pba_block);
886			if (ret_val)
887				return ret_val;
888		} else {
889			if (eeprom_buf_size > (u32)(pba->word[1] +
890					      pba->pba_block[0])) {
891				memcpy(&eeprom_buf[pba->word[1]],
892				       pba->pba_block,
893				       pba->pba_block[0] * sizeof(u16));
894			} else {
895				return IXGBE_ERR_PARAM;
896			}
897		}
898	}
899
900	return IXGBE_SUCCESS;
901}
902
903/**
904 *  ixgbe_get_pba_block_size
905 *  @hw: pointer to the HW structure
906 *  @eeprom_buf: optional pointer to EEPROM image
907 *  @eeprom_buf_size: size of EEPROM image in words
908 *  @pba_data_size: pointer to output variable
909 *
910 *  Returns the size of the PBA block in words. Function operates on EEPROM
911 *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
912 *  EEPROM device.
913 *
914 **/
915s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
916			     u32 eeprom_buf_size, u16 *pba_block_size)
917{
918	s32 ret_val;
919	u16 pba_word[2];
920	u16 length;
921
922	DEBUGFUNC("ixgbe_get_pba_block_size");
923
924	if (eeprom_buf == NULL) {
925		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
926						     &pba_word[0]);
927		if (ret_val)
928			return ret_val;
929	} else {
930		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
931			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
932			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
933		} else {
934			return IXGBE_ERR_PARAM;
935		}
936	}
937
938	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
939		if (eeprom_buf == NULL) {
940			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
941						      &length);
942			if (ret_val)
943				return ret_val;
944		} else {
945			if (eeprom_buf_size > pba_word[1])
946				length = eeprom_buf[pba_word[1] + 0];
947			else
948				return IXGBE_ERR_PARAM;
949		}
950
951		if (length == 0xFFFF || length == 0)
952			return IXGBE_ERR_PBA_SECTION;
953	} else {
954		/* PBA number in legacy format, there is no PBA Block. */
955		length = 0;
956	}
957
958	if (pba_block_size != NULL)
959		*pba_block_size = length;
960
961	return IXGBE_SUCCESS;
962}
963
964/**
965 *  ixgbe_get_mac_addr_generic - Generic get MAC address
966 *  @hw: pointer to hardware structure
967 *  @mac_addr: Adapter MAC address
968 *
969 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
970 *  A reset of the adapter must be performed prior to calling this function
971 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
972 **/
973s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
974{
975	u32 rar_high;
976	u32 rar_low;
977	u16 i;
978
979	DEBUGFUNC("ixgbe_get_mac_addr_generic");
980
981	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
982	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
983
984	for (i = 0; i < 4; i++)
985		mac_addr[i] = (u8)(rar_low >> (i*8));
986
987	for (i = 0; i < 2; i++)
988		mac_addr[i+4] = (u8)(rar_high >> (i*8));
989
990	return IXGBE_SUCCESS;
991}
992
993/**
994 *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
995 *  @hw: pointer to hardware structure
996 *  @link_status: the link status returned by the PCI config space
997 *
998 *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
999 **/
1000void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1001{
1002	struct ixgbe_mac_info *mac = &hw->mac;
1003
1004	if (hw->bus.type == ixgbe_bus_type_unknown)
1005		hw->bus.type = ixgbe_bus_type_pci_express;
1006
1007	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1008	case IXGBE_PCI_LINK_WIDTH_1:
1009		hw->bus.width = ixgbe_bus_width_pcie_x1;
1010		break;
1011	case IXGBE_PCI_LINK_WIDTH_2:
1012		hw->bus.width = ixgbe_bus_width_pcie_x2;
1013		break;
1014	case IXGBE_PCI_LINK_WIDTH_4:
1015		hw->bus.width = ixgbe_bus_width_pcie_x4;
1016		break;
1017	case IXGBE_PCI_LINK_WIDTH_8:
1018		hw->bus.width = ixgbe_bus_width_pcie_x8;
1019		break;
1020	default:
1021		hw->bus.width = ixgbe_bus_width_unknown;
1022		break;
1023	}
1024
1025	switch (link_status & IXGBE_PCI_LINK_SPEED) {
1026	case IXGBE_PCI_LINK_SPEED_2500:
1027		hw->bus.speed = ixgbe_bus_speed_2500;
1028		break;
1029	case IXGBE_PCI_LINK_SPEED_5000:
1030		hw->bus.speed = ixgbe_bus_speed_5000;
1031		break;
1032	case IXGBE_PCI_LINK_SPEED_8000:
1033		hw->bus.speed = ixgbe_bus_speed_8000;
1034		break;
1035	default:
1036		hw->bus.speed = ixgbe_bus_speed_unknown;
1037		break;
1038	}
1039
1040	mac->ops.set_lan_id(hw);
1041}
1042
1043/**
1044 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
1045 *  @hw: pointer to hardware structure
1046 *
1047 *  Gets the PCI bus info (speed, width, type) then calls helper function to
1048 *  store this data within the ixgbe_hw structure.
1049 **/
1050s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1051{
1052	u16 link_status;
1053
1054	DEBUGFUNC("ixgbe_get_bus_info_generic");
1055
1056	/* Get the negotiated link width and speed from PCI config space */
1057	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1058
1059	ixgbe_set_pci_config_data_generic(hw, link_status);
1060
1061	return IXGBE_SUCCESS;
1062}
1063
1064/**
1065 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1066 *  @hw: pointer to the HW structure
1067 *
1068 *  Determines the LAN function id by reading memory-mapped registers and swaps
1069 *  the port value if requested, and set MAC instance for devices that share
1070 *  CS4227.
1071 **/
1072void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1073{
1074	struct ixgbe_bus_info *bus = &hw->bus;
1075	u32 reg;
1076	u16 ee_ctrl_4;
1077
1078	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1079
1080	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1081	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1082	bus->lan_id = (u8)bus->func;
1083
1084	/* check for a port swap */
1085	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1086	if (reg & IXGBE_FACTPS_LFS)
1087		bus->func ^= 0x1;
1088
1089	/* Get MAC instance from EEPROM for configuring CS4227 */
1090	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1091		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1092		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1093				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1094	}
1095}
1096
1097/**
1098 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1099 *  @hw: pointer to hardware structure
1100 *
1101 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1102 *  disables transmit and receive units. The adapter_stopped flag is used by
1103 *  the shared code and drivers to determine if the adapter is in a stopped
1104 *  state and should not touch the hardware.
1105 **/
1106s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1107{
1108	u32 reg_val;
1109	u16 i;
1110
1111	DEBUGFUNC("ixgbe_stop_adapter_generic");
1112
1113	/*
1114	 * Set the adapter_stopped flag so other driver functions stop touching
1115	 * the hardware
1116	 */
1117	hw->adapter_stopped = TRUE;
1118
1119	/* Disable the receive unit */
1120	ixgbe_disable_rx(hw);
1121
1122	/* Clear interrupt mask to stop interrupts from being generated */
1123	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1124
1125	/* Clear any pending interrupts, flush previous writes */
1126	IXGBE_READ_REG(hw, IXGBE_EICR);
1127
1128	/* Disable the transmit unit.  Each queue must be disabled. */
1129	for (i = 0; i < hw->mac.max_tx_queues; i++)
1130		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1131
1132	/* Disable the receive unit by stopping each queue */
1133	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1134		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1135		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1136		reg_val |= IXGBE_RXDCTL_SWFLSH;
1137		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1138	}
1139
1140	/* flush all queues disables */
1141	IXGBE_WRITE_FLUSH(hw);
1142	msec_delay(2);
1143
1144	/*
1145	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1146	 * access and verify no pending requests
1147	 */
1148	return ixgbe_disable_pcie_master(hw);
1149}
1150
1151/**
1152 *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1153 *  @hw: pointer to hardware structure
1154 *
1155 *  Store the index for the link active LED. This will be used to support
1156 *  blinking the LED.
1157 **/
1158s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1159{
1160	struct ixgbe_mac_info *mac = &hw->mac;
1161	u32 led_reg, led_mode;
1162	u8 i;
1163
1164	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1165
1166	/* Get LED link active from the LEDCTL register */
1167	for (i = 0; i < 4; i++) {
1168		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1169
1170		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1171		     IXGBE_LED_LINK_ACTIVE) {
1172			mac->led_link_act = i;
1173			return IXGBE_SUCCESS;
1174		}
1175	}
1176
1177	/*
1178	 * If LEDCTL register does not have the LED link active set, then use
1179	 * known MAC defaults.
1180	 */
1181	switch (hw->mac.type) {
1182	case ixgbe_mac_X550EM_a:
1183	case ixgbe_mac_X550EM_x:
1184		mac->led_link_act = 1;
1185		break;
1186	default:
1187		mac->led_link_act = 2;
1188	}
1189	return IXGBE_SUCCESS;
1190}
1191
1192/**
1193 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
1194 *  @hw: pointer to hardware structure
1195 *  @index: led number to turn on
1196 **/
1197s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1198{
1199	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1200
1201	DEBUGFUNC("ixgbe_led_on_generic");
1202
1203	if (index > 3)
1204		return IXGBE_ERR_PARAM;
1205
1206	/* To turn on the LED, set mode to ON. */
1207	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1208	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1209	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1210	IXGBE_WRITE_FLUSH(hw);
1211
1212	return IXGBE_SUCCESS;
1213}
1214
1215/**
1216 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
1217 *  @hw: pointer to hardware structure
1218 *  @index: led number to turn off
1219 **/
1220s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1221{
1222	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1223
1224	DEBUGFUNC("ixgbe_led_off_generic");
1225
1226	if (index > 3)
1227		return IXGBE_ERR_PARAM;
1228
1229	/* To turn off the LED, set mode to OFF. */
1230	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1231	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1232	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1233	IXGBE_WRITE_FLUSH(hw);
1234
1235	return IXGBE_SUCCESS;
1236}
1237
1238/**
1239 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1240 *  @hw: pointer to hardware structure
1241 *
1242 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
1243 *  ixgbe_hw struct in order to set up EEPROM access.
1244 **/
1245s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1246{
1247	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1248	u32 eec;
1249	u16 eeprom_size;
1250
1251	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1252
1253	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1254		eeprom->type = ixgbe_eeprom_none;
1255		/* Set default semaphore delay to 10ms which is a well
1256		 * tested value */
1257		eeprom->semaphore_delay = 10;
1258		/* Clear EEPROM page size, it will be initialized as needed */
1259		eeprom->word_page_size = 0;
1260
1261		/*
1262		 * Check for EEPROM present first.
1263		 * If not present leave as none
1264		 */
1265		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1266		if (eec & IXGBE_EEC_PRES) {
1267			eeprom->type = ixgbe_eeprom_spi;
1268
1269			/*
1270			 * SPI EEPROM is assumed here.  This code would need to
1271			 * change if a future EEPROM is not SPI.
1272			 */
1273			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1274					    IXGBE_EEC_SIZE_SHIFT);
1275			eeprom->word_size = 1 << (eeprom_size +
1276					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1277		}
1278
1279		if (eec & IXGBE_EEC_ADDR_SIZE)
1280			eeprom->address_bits = 16;
1281		else
1282			eeprom->address_bits = 8;
1283		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1284			  "%d\n", eeprom->type, eeprom->word_size,
1285			  eeprom->address_bits);
1286	}
1287
1288	return IXGBE_SUCCESS;
1289}
1290
1291/**
1292 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1293 *  @hw: pointer to hardware structure
1294 *  @offset: offset within the EEPROM to write
1295 *  @words: number of word(s)
1296 *  @data: 16 bit word(s) to write to EEPROM
1297 *
1298 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1299 **/
1300s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1301					       u16 words, u16 *data)
1302{
1303	s32 status = IXGBE_SUCCESS;
1304	u16 i, count;
1305
1306	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1307
1308	hw->eeprom.ops.init_params(hw);
1309
1310	if (words == 0) {
1311		status = IXGBE_ERR_INVALID_ARGUMENT;
1312		goto out;
1313	}
1314
1315	if (offset + words > hw->eeprom.word_size) {
1316		status = IXGBE_ERR_EEPROM;
1317		goto out;
1318	}
1319
1320	/*
1321	 * The EEPROM page size cannot be queried from the chip. We do lazy
1322	 * initialization. It is worth to do that when we write large buffer.
1323	 */
1324	if ((hw->eeprom.word_page_size == 0) &&
1325	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1326		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1327
1328	/*
1329	 * We cannot hold synchronization semaphores for too long
1330	 * to avoid other entity starvation. However it is more efficient
1331	 * to read in bursts than synchronizing access for each word.
1332	 */
1333	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1334		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1335			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1336		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1337							    count, &data[i]);
1338
1339		if (status != IXGBE_SUCCESS)
1340			break;
1341	}
1342
1343out:
1344	return status;
1345}
1346
1347/**
1348 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1349 *  @hw: pointer to hardware structure
1350 *  @offset: offset within the EEPROM to be written to
1351 *  @words: number of word(s)
1352 *  @data: 16 bit word(s) to be written to the EEPROM
1353 *
1354 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1355 *  EEPROM will most likely contain an invalid checksum.
1356 **/
1357static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1358					      u16 words, u16 *data)
1359{
1360	s32 status;
1361	u16 word;
1362	u16 page_size;
1363	u16 i;
1364	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1365
1366	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1367
1368	/* Prepare the EEPROM for writing  */
1369	status = ixgbe_acquire_eeprom(hw);
1370
1371	if (status == IXGBE_SUCCESS) {
1372		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1373			ixgbe_release_eeprom(hw);
1374			status = IXGBE_ERR_EEPROM;
1375		}
1376	}
1377
1378	if (status == IXGBE_SUCCESS) {
1379		for (i = 0; i < words; i++) {
1380			ixgbe_standby_eeprom(hw);
1381
1382			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1383			ixgbe_shift_out_eeprom_bits(hw,
1384						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1385						   IXGBE_EEPROM_OPCODE_BITS);
1386
1387			ixgbe_standby_eeprom(hw);
1388
1389			/*
1390			 * Some SPI eeproms use the 8th address bit embedded
1391			 * in the opcode
1392			 */
1393			if ((hw->eeprom.address_bits == 8) &&
1394			    ((offset + i) >= 128))
1395				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1396
1397			/* Send the Write command (8-bit opcode + addr) */
1398			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1399						    IXGBE_EEPROM_OPCODE_BITS);
1400			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1401						    hw->eeprom.address_bits);
1402
1403			page_size = hw->eeprom.word_page_size;
1404
1405			/* Send the data in burst via SPI*/
1406			do {
1407				word = data[i];
1408				word = (word >> 8) | (word << 8);
1409				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1410
1411				if (page_size == 0)
1412					break;
1413
1414				/* do not wrap around page */
1415				if (((offset + i) & (page_size - 1)) ==
1416				    (page_size - 1))
1417					break;
1418			} while (++i < words);
1419
1420			ixgbe_standby_eeprom(hw);
1421			msec_delay(10);
1422		}
1423		/* Done with writing - release the EEPROM */
1424		ixgbe_release_eeprom(hw);
1425	}
1426
1427	return status;
1428}
1429
1430/**
1431 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1432 *  @hw: pointer to hardware structure
1433 *  @offset: offset within the EEPROM to be written to
1434 *  @data: 16 bit word to be written to the EEPROM
1435 *
1436 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1437 *  EEPROM will most likely contain an invalid checksum.
1438 **/
1439s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1440{
1441	s32 status;
1442
1443	DEBUGFUNC("ixgbe_write_eeprom_generic");
1444
1445	hw->eeprom.ops.init_params(hw);
1446
1447	if (offset >= hw->eeprom.word_size) {
1448		status = IXGBE_ERR_EEPROM;
1449		goto out;
1450	}
1451
1452	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1453
1454out:
1455	return status;
1456}
1457
1458/**
1459 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1460 *  @hw: pointer to hardware structure
1461 *  @offset: offset within the EEPROM to be read
1462 *  @data: read 16 bit words(s) from EEPROM
1463 *  @words: number of word(s)
1464 *
1465 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1466 **/
1467s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1468					      u16 words, u16 *data)
1469{
1470	s32 status = IXGBE_SUCCESS;
1471	u16 i, count;
1472
1473	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1474
1475	hw->eeprom.ops.init_params(hw);
1476
1477	if (words == 0) {
1478		status = IXGBE_ERR_INVALID_ARGUMENT;
1479		goto out;
1480	}
1481
1482	if (offset + words > hw->eeprom.word_size) {
1483		status = IXGBE_ERR_EEPROM;
1484		goto out;
1485	}
1486
1487	/*
1488	 * We cannot hold synchronization semaphores for too long
1489	 * to avoid other entity starvation. However it is more efficient
1490	 * to read in bursts than synchronizing access for each word.
1491	 */
1492	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1493		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1494			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1495
1496		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1497							   count, &data[i]);
1498
1499		if (status != IXGBE_SUCCESS)
1500			break;
1501	}
1502
1503out:
1504	return status;
1505}
1506
1507/**
1508 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1509 *  @hw: pointer to hardware structure
1510 *  @offset: offset within the EEPROM to be read
1511 *  @words: number of word(s)
1512 *  @data: read 16 bit word(s) from EEPROM
1513 *
1514 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1515 **/
1516static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1517					     u16 words, u16 *data)
1518{
1519	s32 status;
1520	u16 word_in;
1521	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1522	u16 i;
1523
1524	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1525
1526	/* Prepare the EEPROM for reading  */
1527	status = ixgbe_acquire_eeprom(hw);
1528
1529	if (status == IXGBE_SUCCESS) {
1530		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1531			ixgbe_release_eeprom(hw);
1532			status = IXGBE_ERR_EEPROM;
1533		}
1534	}
1535
1536	if (status == IXGBE_SUCCESS) {
1537		for (i = 0; i < words; i++) {
1538			ixgbe_standby_eeprom(hw);
1539			/*
1540			 * Some SPI eeproms use the 8th address bit embedded
1541			 * in the opcode
1542			 */
1543			if ((hw->eeprom.address_bits == 8) &&
1544			    ((offset + i) >= 128))
1545				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1546
1547			/* Send the READ command (opcode + addr) */
1548			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1549						    IXGBE_EEPROM_OPCODE_BITS);
1550			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1551						    hw->eeprom.address_bits);
1552
1553			/* Read the data. */
1554			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1555			data[i] = (word_in >> 8) | (word_in << 8);
1556		}
1557
1558		/* End this read operation */
1559		ixgbe_release_eeprom(hw);
1560	}
1561
1562	return status;
1563}
1564
1565/**
1566 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1567 *  @hw: pointer to hardware structure
1568 *  @offset: offset within the EEPROM to be read
1569 *  @data: read 16 bit value from EEPROM
1570 *
1571 *  Reads 16 bit value from EEPROM through bit-bang method
1572 **/
1573s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1574				       u16 *data)
1575{
1576	s32 status;
1577
1578	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1579
1580	hw->eeprom.ops.init_params(hw);
1581
1582	if (offset >= hw->eeprom.word_size) {
1583		status = IXGBE_ERR_EEPROM;
1584		goto out;
1585	}
1586
1587	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1588
1589out:
1590	return status;
1591}
1592
1593/**
1594 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1595 *  @hw: pointer to hardware structure
1596 *  @offset: offset of word in the EEPROM to read
1597 *  @words: number of word(s)
1598 *  @data: 16 bit word(s) from the EEPROM
1599 *
1600 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1601 **/
1602s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1603				   u16 words, u16 *data)
1604{
1605	u32 eerd;
1606	s32 status = IXGBE_SUCCESS;
1607	u32 i;
1608
1609	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1610
1611	hw->eeprom.ops.init_params(hw);
1612
1613	if (words == 0) {
1614		status = IXGBE_ERR_INVALID_ARGUMENT;
1615		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1616		goto out;
1617	}
1618
1619	if (offset >= hw->eeprom.word_size) {
1620		status = IXGBE_ERR_EEPROM;
1621		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1622		goto out;
1623	}
1624
1625	for (i = 0; i < words; i++) {
1626		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1627		       IXGBE_EEPROM_RW_REG_START;
1628
1629		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1630		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1631
1632		if (status == IXGBE_SUCCESS) {
1633			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1634				   IXGBE_EEPROM_RW_REG_DATA);
1635		} else {
1636			DEBUGOUT("Eeprom read timed out\n");
1637			goto out;
1638		}
1639	}
1640out:
1641	return status;
1642}
1643
1644/**
1645 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1646 *  @hw: pointer to hardware structure
1647 *  @offset: offset within the EEPROM to be used as a scratch pad
1648 *
1649 *  Discover EEPROM page size by writing marching data at given offset.
1650 *  This function is called only when we are writing a new large buffer
1651 *  at given offset so the data would be overwritten anyway.
1652 **/
1653static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1654						 u16 offset)
1655{
1656	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1657	s32 status = IXGBE_SUCCESS;
1658	u16 i;
1659
1660	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1661
1662	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1663		data[i] = i;
1664
1665	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1666	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1667					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1668	hw->eeprom.word_page_size = 0;
1669	if (status != IXGBE_SUCCESS)
1670		goto out;
1671
1672	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1673	if (status != IXGBE_SUCCESS)
1674		goto out;
1675
1676	/*
1677	 * When writing in burst more than the actual page size
1678	 * EEPROM address wraps around current page.
1679	 */
1680	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1681
1682	DEBUGOUT1("Detected EEPROM page size = %d words.",
1683		  hw->eeprom.word_page_size);
1684out:
1685	return status;
1686}
1687
1688/**
1689 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1690 *  @hw: pointer to hardware structure
1691 *  @offset: offset of  word in the EEPROM to read
1692 *  @data: word read from the EEPROM
1693 *
1694 *  Reads a 16 bit word from the EEPROM using the EERD register.
1695 **/
1696s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1697{
1698	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1699}
1700
1701/**
1702 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1703 *  @hw: pointer to hardware structure
1704 *  @offset: offset of  word in the EEPROM to write
1705 *  @words: number of word(s)
1706 *  @data: word(s) write to the EEPROM
1707 *
1708 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1709 **/
1710s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1711				    u16 words, u16 *data)
1712{
1713	u32 eewr;
1714	s32 status = IXGBE_SUCCESS;
1715	u16 i;
1716
1717	DEBUGFUNC("ixgbe_write_eewr_generic");
1718
1719	hw->eeprom.ops.init_params(hw);
1720
1721	if (words == 0) {
1722		status = IXGBE_ERR_INVALID_ARGUMENT;
1723		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1724		goto out;
1725	}
1726
1727	if (offset >= hw->eeprom.word_size) {
1728		status = IXGBE_ERR_EEPROM;
1729		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1730		goto out;
1731	}
1732
1733	for (i = 0; i < words; i++) {
1734		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1735			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1736			IXGBE_EEPROM_RW_REG_START;
1737
1738		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1739		if (status != IXGBE_SUCCESS) {
1740			DEBUGOUT("Eeprom write EEWR timed out\n");
1741			goto out;
1742		}
1743
1744		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1745
1746		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1747		if (status != IXGBE_SUCCESS) {
1748			DEBUGOUT("Eeprom write EEWR timed out\n");
1749			goto out;
1750		}
1751	}
1752
1753out:
1754	return status;
1755}
1756
1757/**
1758 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1759 *  @hw: pointer to hardware structure
1760 *  @offset: offset of  word in the EEPROM to write
1761 *  @data: word write to the EEPROM
1762 *
1763 *  Write a 16 bit word to the EEPROM using the EEWR register.
1764 **/
1765s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1766{
1767	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1768}
1769
1770/**
1771 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1772 *  @hw: pointer to hardware structure
1773 *  @ee_reg: EEPROM flag for polling
1774 *
1775 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1776 *  read or write is done respectively.
1777 **/
1778s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1779{
1780	u32 i;
1781	u32 reg;
1782	s32 status = IXGBE_ERR_EEPROM;
1783
1784	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1785
1786	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1787		if (ee_reg == IXGBE_NVM_POLL_READ)
1788			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1789		else
1790			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1791
1792		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1793			status = IXGBE_SUCCESS;
1794			break;
1795		}
1796		usec_delay(5);
1797	}
1798
1799	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1800		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1801			     "EEPROM read/write done polling timed out");
1802
1803	return status;
1804}
1805
1806/**
1807 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1808 *  @hw: pointer to hardware structure
1809 *
1810 *  Prepares EEPROM for access using bit-bang method. This function should
1811 *  be called before issuing a command to the EEPROM.
1812 **/
1813static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1814{
1815	s32 status = IXGBE_SUCCESS;
1816	u32 eec;
1817	u32 i;
1818
1819	DEBUGFUNC("ixgbe_acquire_eeprom");
1820
1821	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1822	    != IXGBE_SUCCESS)
1823		status = IXGBE_ERR_SWFW_SYNC;
1824
1825	if (status == IXGBE_SUCCESS) {
1826		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1827
1828		/* Request EEPROM Access */
1829		eec |= IXGBE_EEC_REQ;
1830		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1831
1832		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1833			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1834			if (eec & IXGBE_EEC_GNT)
1835				break;
1836			usec_delay(5);
1837		}
1838
1839		/* Release if grant not acquired */
1840		if (!(eec & IXGBE_EEC_GNT)) {
1841			eec &= ~IXGBE_EEC_REQ;
1842			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1843			DEBUGOUT("Could not acquire EEPROM grant\n");
1844
1845			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1846			status = IXGBE_ERR_EEPROM;
1847		}
1848
1849		/* Setup EEPROM for Read/Write */
1850		if (status == IXGBE_SUCCESS) {
1851			/* Clear CS and SK */
1852			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1853			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1854			IXGBE_WRITE_FLUSH(hw);
1855			usec_delay(1);
1856		}
1857	}
1858	return status;
1859}
1860
1861/**
1862 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1863 *  @hw: pointer to hardware structure
1864 *
1865 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1866 **/
1867static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1868{
1869	s32 status = IXGBE_ERR_EEPROM;
1870	u32 timeout = 2000;
1871	u32 i;
1872	u32 swsm;
1873
1874	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1875
1876
1877	/* Get SMBI software semaphore between device drivers first */
1878	for (i = 0; i < timeout; i++) {
1879		/*
1880		 * If the SMBI bit is 0 when we read it, then the bit will be
1881		 * set and we have the semaphore
1882		 */
1883		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1884		if (!(swsm & IXGBE_SWSM_SMBI)) {
1885			status = IXGBE_SUCCESS;
1886			break;
1887		}
1888		usec_delay(50);
1889	}
1890
1891	if (i == timeout) {
1892		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1893			 "not granted.\n");
1894		/*
1895		 * this release is particularly important because our attempts
1896		 * above to get the semaphore may have succeeded, and if there
1897		 * was a timeout, we should unconditionally clear the semaphore
1898		 * bits to free the driver to make progress
1899		 */
1900		ixgbe_release_eeprom_semaphore(hw);
1901
1902		usec_delay(50);
1903		/*
1904		 * one last try
1905		 * If the SMBI bit is 0 when we read it, then the bit will be
1906		 * set and we have the semaphore
1907		 */
1908		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1909		if (!(swsm & IXGBE_SWSM_SMBI))
1910			status = IXGBE_SUCCESS;
1911	}
1912
1913	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1914	if (status == IXGBE_SUCCESS) {
1915		for (i = 0; i < timeout; i++) {
1916			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1917
1918			/* Set the SW EEPROM semaphore bit to request access */
1919			swsm |= IXGBE_SWSM_SWESMBI;
1920			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1921
1922			/*
1923			 * If we set the bit successfully then we got the
1924			 * semaphore.
1925			 */
1926			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1927			if (swsm & IXGBE_SWSM_SWESMBI)
1928				break;
1929
1930			usec_delay(50);
1931		}
1932
1933		/*
1934		 * Release semaphores and return error if SW EEPROM semaphore
1935		 * was not granted because we don't have access to the EEPROM
1936		 */
1937		if (i >= timeout) {
1938			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1939			    "SWESMBI Software EEPROM semaphore not granted.\n");
1940			ixgbe_release_eeprom_semaphore(hw);
1941			status = IXGBE_ERR_EEPROM;
1942		}
1943	} else {
1944		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1945			     "Software semaphore SMBI between device drivers "
1946			     "not granted.\n");
1947	}
1948
1949	return status;
1950}
1951
1952/**
1953 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1954 *  @hw: pointer to hardware structure
1955 *
1956 *  This function clears hardware semaphore bits.
1957 **/
1958static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1959{
1960	u32 swsm;
1961
1962	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1963
1964	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1965
1966	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1967	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1968	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1969	IXGBE_WRITE_FLUSH(hw);
1970}
1971
1972/**
1973 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1974 *  @hw: pointer to hardware structure
1975 **/
1976static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1977{
1978	s32 status = IXGBE_SUCCESS;
1979	u16 i;
1980	u8 spi_stat_reg;
1981
1982	DEBUGFUNC("ixgbe_ready_eeprom");
1983
1984	/*
1985	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1986	 * EEPROM will signal that the command has been completed by clearing
1987	 * bit 0 of the internal status register.  If it's not cleared within
1988	 * 5 milliseconds, then error out.
1989	 */
1990	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1991		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1992					    IXGBE_EEPROM_OPCODE_BITS);
1993		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1994		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1995			break;
1996
1997		usec_delay(5);
1998		ixgbe_standby_eeprom(hw);
1999	};
2000
2001	/*
2002	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2003	 * devices (and only 0-5mSec on 5V devices)
2004	 */
2005	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2006		DEBUGOUT("SPI EEPROM Status error\n");
2007		status = IXGBE_ERR_EEPROM;
2008	}
2009
2010	return status;
2011}
2012
2013/**
2014 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2015 *  @hw: pointer to hardware structure
2016 **/
2017static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2018{
2019	u32 eec;
2020
2021	DEBUGFUNC("ixgbe_standby_eeprom");
2022
2023	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2024
2025	/* Toggle CS to flush commands */
2026	eec |= IXGBE_EEC_CS;
2027	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2028	IXGBE_WRITE_FLUSH(hw);
2029	usec_delay(1);
2030	eec &= ~IXGBE_EEC_CS;
2031	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2032	IXGBE_WRITE_FLUSH(hw);
2033	usec_delay(1);
2034}
2035
2036/**
2037 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2038 *  @hw: pointer to hardware structure
2039 *  @data: data to send to the EEPROM
2040 *  @count: number of bits to shift out
2041 **/
2042static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2043					u16 count)
2044{
2045	u32 eec;
2046	u32 mask;
2047	u32 i;
2048
2049	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2050
2051	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2052
2053	/*
2054	 * Mask is used to shift "count" bits of "data" out to the EEPROM
2055	 * one bit at a time.  Determine the starting bit based on count
2056	 */
2057	mask = 0x01 << (count - 1);
2058
2059	for (i = 0; i < count; i++) {
2060		/*
2061		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2062		 * "1", and then raising and then lowering the clock (the SK
2063		 * bit controls the clock input to the EEPROM).  A "0" is
2064		 * shifted out to the EEPROM by setting "DI" to "0" and then
2065		 * raising and then lowering the clock.
2066		 */
2067		if (data & mask)
2068			eec |= IXGBE_EEC_DI;
2069		else
2070			eec &= ~IXGBE_EEC_DI;
2071
2072		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2073		IXGBE_WRITE_FLUSH(hw);
2074
2075		usec_delay(1);
2076
2077		ixgbe_raise_eeprom_clk(hw, &eec);
2078		ixgbe_lower_eeprom_clk(hw, &eec);
2079
2080		/*
2081		 * Shift mask to signify next bit of data to shift in to the
2082		 * EEPROM
2083		 */
2084		mask = mask >> 1;
2085	};
2086
2087	/* We leave the "DI" bit set to "0" when we leave this routine. */
2088	eec &= ~IXGBE_EEC_DI;
2089	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2090	IXGBE_WRITE_FLUSH(hw);
2091}
2092
2093/**
2094 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2095 *  @hw: pointer to hardware structure
2096 **/
2097static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2098{
2099	u32 eec;
2100	u32 i;
2101	u16 data = 0;
2102
2103	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2104
2105	/*
2106	 * In order to read a register from the EEPROM, we need to shift
2107	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2108	 * the clock input to the EEPROM (setting the SK bit), and then reading
2109	 * the value of the "DO" bit.  During this "shifting in" process the
2110	 * "DI" bit should always be clear.
2111	 */
2112	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2113
2114	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2115
2116	for (i = 0; i < count; i++) {
2117		data = data << 1;
2118		ixgbe_raise_eeprom_clk(hw, &eec);
2119
2120		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2121
2122		eec &= ~(IXGBE_EEC_DI);
2123		if (eec & IXGBE_EEC_DO)
2124			data |= 1;
2125
2126		ixgbe_lower_eeprom_clk(hw, &eec);
2127	}
2128
2129	return data;
2130}
2131
2132/**
2133 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2134 *  @hw: pointer to hardware structure
2135 *  @eec: EEC register's current value
2136 **/
2137static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2138{
2139	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2140
2141	/*
2142	 * Raise the clock input to the EEPROM
2143	 * (setting the SK bit), then delay
2144	 */
2145	*eec = *eec | IXGBE_EEC_SK;
2146	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2147	IXGBE_WRITE_FLUSH(hw);
2148	usec_delay(1);
2149}
2150
2151/**
2152 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2153 *  @hw: pointer to hardware structure
2154 *  @eecd: EECD's current value
2155 **/
2156static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2157{
2158	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2159
2160	/*
2161	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2162	 * delay
2163	 */
2164	*eec = *eec & ~IXGBE_EEC_SK;
2165	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2166	IXGBE_WRITE_FLUSH(hw);
2167	usec_delay(1);
2168}
2169
2170/**
2171 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
2172 *  @hw: pointer to hardware structure
2173 **/
2174static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2175{
2176	u32 eec;
2177
2178	DEBUGFUNC("ixgbe_release_eeprom");
2179
2180	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2181
2182	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2183	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2184
2185	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2186	IXGBE_WRITE_FLUSH(hw);
2187
2188	usec_delay(1);
2189
2190	/* Stop requesting EEPROM access */
2191	eec &= ~IXGBE_EEC_REQ;
2192	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2193
2194	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2195
2196	/* Delay before attempt to obtain semaphore again to allow FW access */
2197	msec_delay(hw->eeprom.semaphore_delay);
2198}
2199
2200/**
2201 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2202 *  @hw: pointer to hardware structure
2203 *
2204 *  Returns a negative error code on error, or the 16-bit checksum
2205 **/
2206s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2207{
2208	u16 i;
2209	u16 j;
2210	u16 checksum = 0;
2211	u16 length = 0;
2212	u16 pointer = 0;
2213	u16 word = 0;
2214
2215	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2216
2217	/* Include 0x0-0x3F in the checksum */
2218	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2219		if (hw->eeprom.ops.read(hw, i, &word)) {
2220			DEBUGOUT("EEPROM read failed\n");
2221			return IXGBE_ERR_EEPROM;
2222		}
2223		checksum += word;
2224	}
2225
2226	/* Include all data from pointers except for the fw pointer */
2227	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2228		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2229			DEBUGOUT("EEPROM read failed\n");
2230			return IXGBE_ERR_EEPROM;
2231		}
2232
2233		/* If the pointer seems invalid */
2234		if (pointer == 0xFFFF || pointer == 0)
2235			continue;
2236
2237		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2238			DEBUGOUT("EEPROM read failed\n");
2239			return IXGBE_ERR_EEPROM;
2240		}
2241
2242		if (length == 0xFFFF || length == 0)
2243			continue;
2244
2245		for (j = pointer + 1; j <= pointer + length; j++) {
2246			if (hw->eeprom.ops.read(hw, j, &word)) {
2247				DEBUGOUT("EEPROM read failed\n");
2248				return IXGBE_ERR_EEPROM;
2249			}
2250			checksum += word;
2251		}
2252	}
2253
2254	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2255
2256	return (s32)checksum;
2257}
2258
2259/**
2260 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2261 *  @hw: pointer to hardware structure
2262 *  @checksum_val: calculated checksum
2263 *
2264 *  Performs checksum calculation and validates the EEPROM checksum.  If the
2265 *  caller does not need checksum_val, the value can be NULL.
2266 **/
2267s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2268					   u16 *checksum_val)
2269{
2270	s32 status;
2271	u16 checksum;
2272	u16 read_checksum = 0;
2273
2274	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2275
2276	/* Read the first word from the EEPROM. If this times out or fails, do
2277	 * not continue or we could be in for a very long wait while every
2278	 * EEPROM read fails
2279	 */
2280	status = hw->eeprom.ops.read(hw, 0, &checksum);
2281	if (status) {
2282		DEBUGOUT("EEPROM read failed\n");
2283		return status;
2284	}
2285
2286	status = hw->eeprom.ops.calc_checksum(hw);
2287	if (status < 0)
2288		return status;
2289
2290	checksum = (u16)(status & 0xffff);
2291
2292	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2293	if (status) {
2294		DEBUGOUT("EEPROM read failed\n");
2295		return status;
2296	}
2297
2298	/* Verify read checksum from EEPROM is the same as
2299	 * calculated checksum
2300	 */
2301	if (read_checksum != checksum)
2302		status = IXGBE_ERR_EEPROM_CHECKSUM;
2303
2304	/* If the user cares, return the calculated checksum */
2305	if (checksum_val)
2306		*checksum_val = checksum;
2307
2308	return status;
2309}
2310
2311/**
2312 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2313 *  @hw: pointer to hardware structure
2314 **/
2315s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2316{
2317	s32 status;
2318	u16 checksum;
2319
2320	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2321
2322	/* Read the first word from the EEPROM. If this times out or fails, do
2323	 * not continue or we could be in for a very long wait while every
2324	 * EEPROM read fails
2325	 */
2326	status = hw->eeprom.ops.read(hw, 0, &checksum);
2327	if (status) {
2328		DEBUGOUT("EEPROM read failed\n");
2329		return status;
2330	}
2331
2332	status = hw->eeprom.ops.calc_checksum(hw);
2333	if (status < 0)
2334		return status;
2335
2336	checksum = (u16)(status & 0xffff);
2337
2338	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2339
2340	return status;
2341}
2342
2343/**
2344 *  ixgbe_validate_mac_addr - Validate MAC address
2345 *  @mac_addr: pointer to MAC address.
2346 *
2347 *  Tests a MAC address to ensure it is a valid Individual Address.
2348 **/
2349s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2350{
2351	s32 status = IXGBE_SUCCESS;
2352
2353	DEBUGFUNC("ixgbe_validate_mac_addr");
2354
2355	/* Make sure it is not a multicast address */
2356	if (IXGBE_IS_MULTICAST(mac_addr)) {
2357		status = IXGBE_ERR_INVALID_MAC_ADDR;
2358	/* Not a broadcast address */
2359	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2360		status = IXGBE_ERR_INVALID_MAC_ADDR;
2361	/* Reject the zero address */
2362	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2363		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2364		status = IXGBE_ERR_INVALID_MAC_ADDR;
2365	}
2366	return status;
2367}
2368
2369/**
2370 *  ixgbe_set_rar_generic - Set Rx address register
2371 *  @hw: pointer to hardware structure
2372 *  @index: Receive address register to write
2373 *  @addr: Address to put into receive address register
2374 *  @vmdq: VMDq "set" or "pool" index
2375 *  @enable_addr: set flag that address is active
2376 *
2377 *  Puts an ethernet address into a receive address register.
2378 **/
2379s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2380			  u32 enable_addr)
2381{
2382	u32 rar_low, rar_high;
2383	u32 rar_entries = hw->mac.num_rar_entries;
2384
2385	DEBUGFUNC("ixgbe_set_rar_generic");
2386
2387	/* Make sure we are using a valid rar index range */
2388	if (index >= rar_entries) {
2389		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2390			     "RAR index %d is out of range.\n", index);
2391		return IXGBE_ERR_INVALID_ARGUMENT;
2392	}
2393
2394	/* setup VMDq pool selection before this RAR gets enabled */
2395	hw->mac.ops.set_vmdq(hw, index, vmdq);
2396
2397	/*
2398	 * HW expects these in little endian so we reverse the byte
2399	 * order from network order (big endian) to little endian
2400	 */
2401	rar_low = ((u32)addr[0] |
2402		   ((u32)addr[1] << 8) |
2403		   ((u32)addr[2] << 16) |
2404		   ((u32)addr[3] << 24));
2405	/*
2406	 * Some parts put the VMDq setting in the extra RAH bits,
2407	 * so save everything except the lower 16 bits that hold part
2408	 * of the address and the address valid bit.
2409	 */
2410	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2411	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2412	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2413
2414	if (enable_addr != 0)
2415		rar_high |= IXGBE_RAH_AV;
2416
2417	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2418	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2419
2420	return IXGBE_SUCCESS;
2421}
2422
2423/**
2424 *  ixgbe_clear_rar_generic - Remove Rx address register
2425 *  @hw: pointer to hardware structure
2426 *  @index: Receive address register to write
2427 *
2428 *  Clears an ethernet address from a receive address register.
2429 **/
2430s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2431{
2432	u32 rar_high;
2433	u32 rar_entries = hw->mac.num_rar_entries;
2434
2435	DEBUGFUNC("ixgbe_clear_rar_generic");
2436
2437	/* Make sure we are using a valid rar index range */
2438	if (index >= rar_entries) {
2439		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2440			     "RAR index %d is out of range.\n", index);
2441		return IXGBE_ERR_INVALID_ARGUMENT;
2442	}
2443
2444	/*
2445	 * Some parts put the VMDq setting in the extra RAH bits,
2446	 * so save everything except the lower 16 bits that hold part
2447	 * of the address and the address valid bit.
2448	 */
2449	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2450	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2451
2452	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2453	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2454
2455	/* clear VMDq pool/queue selection for this RAR */
2456	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2457
2458	return IXGBE_SUCCESS;
2459}
2460
2461/**
2462 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2463 *  @hw: pointer to hardware structure
2464 *
2465 *  Places the MAC address in receive address register 0 and clears the rest
2466 *  of the receive address registers. Clears the multicast table. Assumes
2467 *  the receiver is in reset when the routine is called.
2468 **/
2469s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2470{
2471	u32 i;
2472	u32 rar_entries = hw->mac.num_rar_entries;
2473
2474	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2475
2476	/*
2477	 * If the current mac address is valid, assume it is a software override
2478	 * to the permanent address.
2479	 * Otherwise, use the permanent address from the eeprom.
2480	 */
2481	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2482	    IXGBE_ERR_INVALID_MAC_ADDR) {
2483		/* Get the MAC address from the RAR0 for later reference */
2484		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2485
2486		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2487			  hw->mac.addr[0], hw->mac.addr[1],
2488			  hw->mac.addr[2]);
2489		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2490			  hw->mac.addr[4], hw->mac.addr[5]);
2491	} else {
2492		/* Setup the receive address. */
2493		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2494		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2495			  hw->mac.addr[0], hw->mac.addr[1],
2496			  hw->mac.addr[2]);
2497		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2498			  hw->mac.addr[4], hw->mac.addr[5]);
2499
2500		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2501	}
2502
2503	/* clear VMDq pool/queue selection for RAR 0 */
2504	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2505
2506	hw->addr_ctrl.overflow_promisc = 0;
2507
2508	hw->addr_ctrl.rar_used_count = 1;
2509
2510	/* Zero out the other receive addresses. */
2511	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2512	for (i = 1; i < rar_entries; i++) {
2513		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2514		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2515	}
2516
2517	/* Clear the MTA */
2518	hw->addr_ctrl.mta_in_use = 0;
2519	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2520
2521	DEBUGOUT(" Clearing MTA\n");
2522	for (i = 0; i < hw->mac.mcft_size; i++)
2523		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2524
2525	ixgbe_init_uta_tables(hw);
2526
2527	return IXGBE_SUCCESS;
2528}
2529
2530/**
2531 *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2532 *  @hw: pointer to hardware structure
2533 *  @addr: new address
2534 *
2535 *  Adds it to unused receive address register or goes into promiscuous mode.
2536 **/
2537void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2538{
2539	u32 rar_entries = hw->mac.num_rar_entries;
2540	u32 rar;
2541
2542	DEBUGFUNC("ixgbe_add_uc_addr");
2543
2544	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2545		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2546
2547	/*
2548	 * Place this address in the RAR if there is room,
2549	 * else put the controller into promiscuous mode
2550	 */
2551	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2552		rar = hw->addr_ctrl.rar_used_count;
2553		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2554		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2555		hw->addr_ctrl.rar_used_count++;
2556	} else {
2557		hw->addr_ctrl.overflow_promisc++;
2558	}
2559
2560	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2561}
2562
2563/**
2564 *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2565 *  @hw: pointer to hardware structure
2566 *  @addr_list: the list of new addresses
2567 *  @addr_count: number of addresses
2568 *  @next: iterator function to walk the address list
2569 *
2570 *  The given list replaces any existing list.  Clears the secondary addrs from
2571 *  receive address registers.  Uses unused receive address registers for the
2572 *  first secondary addresses, and falls back to promiscuous mode as needed.
2573 *
2574 *  Drivers using secondary unicast addresses must set user_set_promisc when
2575 *  manually putting the device into promiscuous mode.
2576 **/
2577s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2578				      u32 addr_count, ixgbe_mc_addr_itr next)
2579{
2580	u8 *addr;
2581	u32 i;
2582	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2583	u32 uc_addr_in_use;
2584	u32 fctrl;
2585	u32 vmdq;
2586
2587	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2588
2589	/*
2590	 * Clear accounting of old secondary address list,
2591	 * don't count RAR[0]
2592	 */
2593	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2594	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2595	hw->addr_ctrl.overflow_promisc = 0;
2596
2597	/* Zero out the other receive addresses */
2598	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2599	for (i = 0; i < uc_addr_in_use; i++) {
2600		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2601		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2602	}
2603
2604	/* Add the new addresses */
2605	for (i = 0; i < addr_count; i++) {
2606		DEBUGOUT(" Adding the secondary addresses:\n");
2607		addr = next(hw, &addr_list, &vmdq);
2608		ixgbe_add_uc_addr(hw, addr, vmdq);
2609	}
2610
2611	if (hw->addr_ctrl.overflow_promisc) {
2612		/* enable promisc if not already in overflow or set by user */
2613		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2614			DEBUGOUT(" Entering address overflow promisc mode\n");
2615			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2616			fctrl |= IXGBE_FCTRL_UPE;
2617			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2618		}
2619	} else {
2620		/* only disable if set by overflow, not by user */
2621		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2622			DEBUGOUT(" Leaving address overflow promisc mode\n");
2623			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2624			fctrl &= ~IXGBE_FCTRL_UPE;
2625			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2626		}
2627	}
2628
2629	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2630	return IXGBE_SUCCESS;
2631}
2632
2633/**
2634 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2635 *  @hw: pointer to hardware structure
2636 *  @mc_addr: the multicast address
2637 *
2638 *  Extracts the 12 bits, from a multicast address, to determine which
2639 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2640 *  incoming rx multicast addresses, to determine the bit-vector to check in
2641 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2642 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2643 *  to mc_filter_type.
2644 **/
2645static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2646{
2647	u32 vector = 0;
2648
2649	DEBUGFUNC("ixgbe_mta_vector");
2650
2651	switch (hw->mac.mc_filter_type) {
2652	case 0:   /* use bits [47:36] of the address */
2653		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2654		break;
2655	case 1:   /* use bits [46:35] of the address */
2656		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2657		break;
2658	case 2:   /* use bits [45:34] of the address */
2659		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2660		break;
2661	case 3:   /* use bits [43:32] of the address */
2662		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2663		break;
2664	default:  /* Invalid mc_filter_type */
2665		DEBUGOUT("MC filter type param set incorrectly\n");
2666		ASSERT(0);
2667		break;
2668	}
2669
2670	/* vector can only be 12-bits or boundary will be exceeded */
2671	vector &= 0xFFF;
2672	return vector;
2673}
2674
2675/**
2676 *  ixgbe_set_mta - Set bit-vector in multicast table
2677 *  @hw: pointer to hardware structure
2678 *  @hash_value: Multicast address hash value
2679 *
2680 *  Sets the bit-vector in the multicast table.
2681 **/
2682void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2683{
2684	u32 vector;
2685	u32 vector_bit;
2686	u32 vector_reg;
2687
2688	DEBUGFUNC("ixgbe_set_mta");
2689
2690	hw->addr_ctrl.mta_in_use++;
2691
2692	vector = ixgbe_mta_vector(hw, mc_addr);
2693	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2694
2695	/*
2696	 * The MTA is a register array of 128 32-bit registers. It is treated
2697	 * like an array of 4096 bits.  We want to set bit
2698	 * BitArray[vector_value]. So we figure out what register the bit is
2699	 * in, read it, OR in the new bit, then write back the new value.  The
2700	 * register is determined by the upper 7 bits of the vector value and
2701	 * the bit within that register are determined by the lower 5 bits of
2702	 * the value.
2703	 */
2704	vector_reg = (vector >> 5) & 0x7F;
2705	vector_bit = vector & 0x1F;
2706	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2707}
2708
2709/**
2710 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2711 *  @hw: pointer to hardware structure
2712 *  @mc_addr_list: the list of new multicast addresses
2713 *  @mc_addr_count: number of addresses
2714 *  @next: iterator function to walk the multicast address list
2715 *  @clear: flag, when set clears the table beforehand
2716 *
2717 *  When the clear flag is set, the given list replaces any existing list.
2718 *  Hashes the given addresses into the multicast table.
2719 **/
2720s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2721				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2722				      bool clear)
2723{
2724	u32 i;
2725	u32 vmdq;
2726
2727	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2728
2729	/*
2730	 * Set the new number of MC addresses that we are being requested to
2731	 * use.
2732	 */
2733	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2734	hw->addr_ctrl.mta_in_use = 0;
2735
2736	/* Clear mta_shadow */
2737	if (clear) {
2738		DEBUGOUT(" Clearing MTA\n");
2739		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2740	}
2741
2742	/* Update mta_shadow */
2743	for (i = 0; i < mc_addr_count; i++) {
2744		DEBUGOUT(" Adding the multicast addresses:\n");
2745		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2746	}
2747
2748	/* Enable mta */
2749	for (i = 0; i < hw->mac.mcft_size; i++)
2750		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2751				      hw->mac.mta_shadow[i]);
2752
2753	if (hw->addr_ctrl.mta_in_use > 0)
2754		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2755				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2756
2757	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2758	return IXGBE_SUCCESS;
2759}
2760
2761/**
2762 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2763 *  @hw: pointer to hardware structure
2764 *
2765 *  Enables multicast address in RAR and the use of the multicast hash table.
2766 **/
2767s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2768{
2769	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2770
2771	DEBUGFUNC("ixgbe_enable_mc_generic");
2772
2773	if (a->mta_in_use > 0)
2774		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2775				hw->mac.mc_filter_type);
2776
2777	return IXGBE_SUCCESS;
2778}
2779
2780/**
2781 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2782 *  @hw: pointer to hardware structure
2783 *
2784 *  Disables multicast address in RAR and the use of the multicast hash table.
2785 **/
2786s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2787{
2788	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2789
2790	DEBUGFUNC("ixgbe_disable_mc_generic");
2791
2792	if (a->mta_in_use > 0)
2793		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2794
2795	return IXGBE_SUCCESS;
2796}
2797
2798/**
2799 *  ixgbe_fc_enable_generic - Enable flow control
2800 *  @hw: pointer to hardware structure
2801 *
2802 *  Enable flow control according to the current settings.
2803 **/
2804s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2805{
2806	s32 ret_val = IXGBE_SUCCESS;
2807	u32 mflcn_reg, fccfg_reg;
2808	u32 reg;
2809	u32 fcrtl, fcrth;
2810	int i;
2811
2812	DEBUGFUNC("ixgbe_fc_enable_generic");
2813
2814	/* Validate the water mark configuration */
2815	if (!hw->fc.pause_time) {
2816		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2817		goto out;
2818	}
2819
2820	/* Low water mark of zero causes XOFF floods */
2821	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2822		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2823		    hw->fc.high_water[i]) {
2824			if (!hw->fc.low_water[i] ||
2825			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2826				DEBUGOUT("Invalid water mark configuration\n");
2827				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2828				goto out;
2829			}
2830		}
2831	}
2832
2833	/* Negotiate the fc mode to use */
2834	hw->mac.ops.fc_autoneg(hw);
2835
2836	/* Disable any previous flow control settings */
2837	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2838	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2839
2840	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2841	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2842
2843	/*
2844	 * The possible values of fc.current_mode are:
2845	 * 0: Flow control is completely disabled
2846	 * 1: Rx flow control is enabled (we can receive pause frames,
2847	 *    but not send pause frames).
2848	 * 2: Tx flow control is enabled (we can send pause frames but
2849	 *    we do not support receiving pause frames).
2850	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2851	 * other: Invalid.
2852	 */
2853	switch (hw->fc.current_mode) {
2854	case ixgbe_fc_none:
2855		/*
2856		 * Flow control is disabled by software override or autoneg.
2857		 * The code below will actually disable it in the HW.
2858		 */
2859		break;
2860	case ixgbe_fc_rx_pause:
2861		/*
2862		 * Rx Flow control is enabled and Tx Flow control is
2863		 * disabled by software override. Since there really
2864		 * isn't a way to advertise that we are capable of RX
2865		 * Pause ONLY, we will advertise that we support both
2866		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2867		 * disable the adapter's ability to send PAUSE frames.
2868		 */
2869		mflcn_reg |= IXGBE_MFLCN_RFCE;
2870		break;
2871	case ixgbe_fc_tx_pause:
2872		/*
2873		 * Tx Flow control is enabled, and Rx Flow control is
2874		 * disabled by software override.
2875		 */
2876		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2877		break;
2878	case ixgbe_fc_full:
2879		/* Flow control (both Rx and Tx) is enabled by SW override. */
2880		mflcn_reg |= IXGBE_MFLCN_RFCE;
2881		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2882		break;
2883	default:
2884		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2885			     "Flow control param set incorrectly\n");
2886		ret_val = IXGBE_ERR_CONFIG;
2887		goto out;
2888		break;
2889	}
2890
2891	/* Set 802.3x based flow control settings. */
2892	mflcn_reg |= IXGBE_MFLCN_DPF;
2893	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2894	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2895
2896
2897	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2898	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2899		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2900		    hw->fc.high_water[i]) {
2901			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2902			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2903			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2904		} else {
2905			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2906			/*
2907			 * In order to prevent Tx hangs when the internal Tx
2908			 * switch is enabled we must set the high water mark
2909			 * to the Rx packet buffer size - 24KB.  This allows
2910			 * the Tx switch to function even under heavy Rx
2911			 * workloads.
2912			 */
2913			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2914		}
2915
2916		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2917	}
2918
2919	/* Configure pause time (2 TCs per register) */
2920	reg = hw->fc.pause_time * 0x00010001;
2921	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2922		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2923
2924	/* Configure flow control refresh threshold value */
2925	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2926
2927out:
2928	return ret_val;
2929}
2930
2931/**
2932 *  ixgbe_negotiate_fc - Negotiate flow control
2933 *  @hw: pointer to hardware structure
2934 *  @adv_reg: flow control advertised settings
2935 *  @lp_reg: link partner's flow control settings
2936 *  @adv_sym: symmetric pause bit in advertisement
2937 *  @adv_asm: asymmetric pause bit in advertisement
2938 *  @lp_sym: symmetric pause bit in link partner advertisement
2939 *  @lp_asm: asymmetric pause bit in link partner advertisement
2940 *
2941 *  Find the intersection between advertised settings and link partner's
2942 *  advertised settings
2943 **/
2944s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2945		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2946{
2947	if ((!(adv_reg)) ||  (!(lp_reg))) {
2948		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2949			     "Local or link partner's advertised flow control "
2950			     "settings are NULL. Local: %x, link partner: %x\n",
2951			     adv_reg, lp_reg);
2952		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2953	}
2954
2955	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2956		/*
2957		 * Now we need to check if the user selected Rx ONLY
2958		 * of pause frames.  In this case, we had to advertise
2959		 * FULL flow control because we could not advertise RX
2960		 * ONLY. Hence, we must now check to see if we need to
2961		 * turn OFF the TRANSMISSION of PAUSE frames.
2962		 */
2963		if (hw->fc.requested_mode == ixgbe_fc_full) {
2964			hw->fc.current_mode = ixgbe_fc_full;
2965			DEBUGOUT("Flow Control = FULL.\n");
2966		} else {
2967			hw->fc.current_mode = ixgbe_fc_rx_pause;
2968			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2969		}
2970	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2971		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2972		hw->fc.current_mode = ixgbe_fc_tx_pause;
2973		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2974	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2975		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2976		hw->fc.current_mode = ixgbe_fc_rx_pause;
2977		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2978	} else {
2979		hw->fc.current_mode = ixgbe_fc_none;
2980		DEBUGOUT("Flow Control = NONE.\n");
2981	}
2982	return IXGBE_SUCCESS;
2983}
2984
2985/**
2986 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2987 *  @hw: pointer to hardware structure
2988 *
2989 *  Enable flow control according on 1 gig fiber.
2990 **/
2991static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2992{
2993	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2994	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2995
2996	/*
2997	 * On multispeed fiber at 1g, bail out if
2998	 * - link is up but AN did not complete, or if
2999	 * - link is up and AN completed but timed out
3000	 */
3001
3002	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3003	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3004	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3005		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3006		goto out;
3007	}
3008
3009	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3010	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3011
3012	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3013				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3014				      IXGBE_PCS1GANA_ASM_PAUSE,
3015				      IXGBE_PCS1GANA_SYM_PAUSE,
3016				      IXGBE_PCS1GANA_ASM_PAUSE);
3017
3018out:
3019	return ret_val;
3020}
3021
3022/**
3023 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3024 *  @hw: pointer to hardware structure
3025 *
3026 *  Enable flow control according to IEEE clause 37.
3027 **/
3028static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3029{
3030	u32 links2, anlp1_reg, autoc_reg, links;
3031	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3032
3033	/*
3034	 * On backplane, bail out if
3035	 * - backplane autoneg was not completed, or if
3036	 * - we are 82599 and link partner is not AN enabled
3037	 */
3038	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3039	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3040		DEBUGOUT("Auto-Negotiation did not complete\n");
3041		goto out;
3042	}
3043
3044	if (hw->mac.type == ixgbe_mac_82599EB) {
3045		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3046		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3047			DEBUGOUT("Link partner is not AN enabled\n");
3048			goto out;
3049		}
3050	}
3051	/*
3052	 * Read the 10g AN autoc and LP ability registers and resolve
3053	 * local flow control settings accordingly
3054	 */
3055	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3056	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3057
3058	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3059		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3060		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3061
3062out:
3063	return ret_val;
3064}
3065
3066/**
3067 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3068 *  @hw: pointer to hardware structure
3069 *
3070 *  Enable flow control according to IEEE clause 37.
3071 **/
3072static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3073{
3074	u16 technology_ability_reg = 0;
3075	u16 lp_technology_ability_reg = 0;
3076
3077	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3078			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3079			     &technology_ability_reg);
3080	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3081			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3082			     &lp_technology_ability_reg);
3083
3084	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3085				  (u32)lp_technology_ability_reg,
3086				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3087				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3088}
3089
3090/**
3091 *  ixgbe_fc_autoneg - Configure flow control
3092 *  @hw: pointer to hardware structure
3093 *
3094 *  Compares our advertised flow control capabilities to those advertised by
3095 *  our link partner, and determines the proper flow control mode to use.
3096 **/
3097void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3098{
3099	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3100	ixgbe_link_speed speed;
3101	bool link_up;
3102
3103	DEBUGFUNC("ixgbe_fc_autoneg");
3104
3105	/*
3106	 * AN should have completed when the cable was plugged in.
3107	 * Look for reasons to bail out.  Bail out if:
3108	 * - FC autoneg is disabled, or if
3109	 * - link is not up.
3110	 */
3111	if (hw->fc.disable_fc_autoneg) {
3112		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3113			     "Flow control autoneg is disabled");
3114		goto out;
3115	}
3116
3117	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3118	if (!link_up) {
3119		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3120		goto out;
3121	}
3122
3123	switch (hw->phy.media_type) {
3124	/* Autoneg flow control on fiber adapters */
3125	case ixgbe_media_type_fiber_fixed:
3126	case ixgbe_media_type_fiber_qsfp:
3127	case ixgbe_media_type_fiber:
3128		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3129			ret_val = ixgbe_fc_autoneg_fiber(hw);
3130		break;
3131
3132	/* Autoneg flow control on backplane adapters */
3133	case ixgbe_media_type_backplane:
3134		ret_val = ixgbe_fc_autoneg_backplane(hw);
3135		break;
3136
3137	/* Autoneg flow control on copper adapters */
3138	case ixgbe_media_type_copper:
3139		if (ixgbe_device_supports_autoneg_fc(hw))
3140			ret_val = ixgbe_fc_autoneg_copper(hw);
3141		break;
3142
3143	default:
3144		break;
3145	}
3146
3147out:
3148	if (ret_val == IXGBE_SUCCESS) {
3149		hw->fc.fc_was_autonegged = TRUE;
3150	} else {
3151		hw->fc.fc_was_autonegged = FALSE;
3152		hw->fc.current_mode = hw->fc.requested_mode;
3153	}
3154}
3155
3156/*
3157 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3158 * @hw: pointer to hardware structure
3159 *
3160 * System-wide timeout range is encoded in PCIe Device Control2 register.
3161 *
3162 * Add 10% to specified maximum and return the number of times to poll for
3163 * completion timeout, in units of 100 microsec.  Never return less than
3164 * 800 = 80 millisec.
3165 */
3166static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3167{
3168	s16 devctl2;
3169	u32 pollcnt;
3170
3171	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3172	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3173
3174	switch (devctl2) {
3175	case IXGBE_PCIDEVCTRL2_65_130ms:
3176		pollcnt = 1300;		/* 130 millisec */
3177		break;
3178	case IXGBE_PCIDEVCTRL2_260_520ms:
3179		pollcnt = 5200;		/* 520 millisec */
3180		break;
3181	case IXGBE_PCIDEVCTRL2_1_2s:
3182		pollcnt = 20000;	/* 2 sec */
3183		break;
3184	case IXGBE_PCIDEVCTRL2_4_8s:
3185		pollcnt = 80000;	/* 8 sec */
3186		break;
3187	case IXGBE_PCIDEVCTRL2_17_34s:
3188		pollcnt = 34000;	/* 34 sec */
3189		break;
3190	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3191	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3192	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3193	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3194	default:
3195		pollcnt = 800;		/* 80 millisec minimum */
3196		break;
3197	}
3198
3199	/* add 10% to spec maximum */
3200	return (pollcnt * 11) / 10;
3201}
3202
3203/**
3204 *  ixgbe_disable_pcie_master - Disable PCI-express master access
3205 *  @hw: pointer to hardware structure
3206 *
3207 *  Disables PCI-Express master access and verifies there are no pending
3208 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3209 *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3210 *  is returned signifying master requests disabled.
3211 **/
3212s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3213{
3214	s32 status = IXGBE_SUCCESS;
3215	u32 i, poll;
3216	u16 value;
3217
3218	DEBUGFUNC("ixgbe_disable_pcie_master");
3219
3220	/* Always set this bit to ensure any future transactions are blocked */
3221	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3222
3223	/* Exit if master requests are blocked */
3224	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3225	    IXGBE_REMOVED(hw->hw_addr))
3226		goto out;
3227
3228	/* Poll for master request bit to clear */
3229	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3230		usec_delay(100);
3231		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3232			goto out;
3233	}
3234
3235	/*
3236	 * Two consecutive resets are required via CTRL.RST per datasheet
3237	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3238	 * of this need.  The first reset prevents new master requests from
3239	 * being issued by our device.  We then must wait 1usec or more for any
3240	 * remaining completions from the PCIe bus to trickle in, and then reset
3241	 * again to clear out any effects they may have had on our device.
3242	 */
3243	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3244	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3245
3246	if (hw->mac.type >= ixgbe_mac_X550)
3247		goto out;
3248
3249	/*
3250	 * Before proceeding, make sure that the PCIe block does not have
3251	 * transactions pending.
3252	 */
3253	poll = ixgbe_pcie_timeout_poll(hw);
3254	for (i = 0; i < poll; i++) {
3255		usec_delay(100);
3256		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3257		if (IXGBE_REMOVED(hw->hw_addr))
3258			goto out;
3259		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3260			goto out;
3261	}
3262
3263	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3264		     "PCIe transaction pending bit also did not clear.\n");
3265	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3266
3267out:
3268	return status;
3269}
3270
3271/**
3272 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3273 *  @hw: pointer to hardware structure
3274 *  @mask: Mask to specify which semaphore to acquire
3275 *
3276 *  Acquires the SWFW semaphore through the GSSR register for the specified
3277 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3278 **/
3279s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3280{
3281	u32 gssr = 0;
3282	u32 swmask = mask;
3283	u32 fwmask = mask << 5;
3284	u32 timeout = 200;
3285	u32 i;
3286
3287	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3288
3289	for (i = 0; i < timeout; i++) {
3290		/*
3291		 * SW NVM semaphore bit is used for access to all
3292		 * SW_FW_SYNC bits (not just NVM)
3293		 */
3294		if (ixgbe_get_eeprom_semaphore(hw))
3295			return IXGBE_ERR_SWFW_SYNC;
3296
3297		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3298		if (!(gssr & (fwmask | swmask))) {
3299			gssr |= swmask;
3300			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3301			ixgbe_release_eeprom_semaphore(hw);
3302			return IXGBE_SUCCESS;
3303		} else {
3304			/* Resource is currently in use by FW or SW */
3305			ixgbe_release_eeprom_semaphore(hw);
3306			msec_delay(5);
3307		}
3308	}
3309
3310	/* If time expired clear the bits holding the lock and retry */
3311	if (gssr & (fwmask | swmask))
3312		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3313
3314	msec_delay(5);
3315	return IXGBE_ERR_SWFW_SYNC;
3316}
3317
3318/**
3319 *  ixgbe_release_swfw_sync - Release SWFW semaphore
3320 *  @hw: pointer to hardware structure
3321 *  @mask: Mask to specify which semaphore to release
3322 *
3323 *  Releases the SWFW semaphore through the GSSR register for the specified
3324 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3325 **/
3326void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3327{
3328	u32 gssr;
3329	u32 swmask = mask;
3330
3331	DEBUGFUNC("ixgbe_release_swfw_sync");
3332
3333	ixgbe_get_eeprom_semaphore(hw);
3334
3335	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3336	gssr &= ~swmask;
3337	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3338
3339	ixgbe_release_eeprom_semaphore(hw);
3340}
3341
3342/**
3343 *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3344 *  @hw: pointer to hardware structure
3345 *
3346 *  Stops the receive data path and waits for the HW to internally empty
3347 *  the Rx security block
3348 **/
3349s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3350{
3351#define IXGBE_MAX_SECRX_POLL 40
3352
3353	int i;
3354	int secrxreg;
3355
3356	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3357
3358
3359	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3360	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3361	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3362	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3363		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3364		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3365			break;
3366		else
3367			/* Use interrupt-safe sleep just in case */
3368			usec_delay(1000);
3369	}
3370
3371	/* For informational purposes only */
3372	if (i >= IXGBE_MAX_SECRX_POLL)
3373		DEBUGOUT("Rx unit being enabled before security "
3374			 "path fully disabled.  Continuing with init.\n");
3375
3376	return IXGBE_SUCCESS;
3377}
3378
3379/**
3380 *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3381 *  @hw: pointer to hardware structure
3382 *  @reg_val: Value we read from AUTOC
3383 *
3384 *  The default case requires no protection so just to the register read.
3385 */
3386s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3387{
3388	*locked = FALSE;
3389	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3390	return IXGBE_SUCCESS;
3391}
3392
3393/**
3394 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3395 * @hw: pointer to hardware structure
3396 * @reg_val: value to write to AUTOC
3397 * @locked: bool to indicate whether the SW/FW lock was already taken by
3398 *           previous read.
3399 *
3400 * The default case requires no protection so just to the register write.
3401 */
3402s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3403{
3404	UNREFERENCED_1PARAMETER(locked);
3405
3406	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3407	return IXGBE_SUCCESS;
3408}
3409
3410/**
3411 *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3412 *  @hw: pointer to hardware structure
3413 *
3414 *  Enables the receive data path.
3415 **/
3416s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3417{
3418	u32 secrxreg;
3419
3420	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3421
3422	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3423	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3424	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3425	IXGBE_WRITE_FLUSH(hw);
3426
3427	return IXGBE_SUCCESS;
3428}
3429
3430/**
3431 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3432 *  @hw: pointer to hardware structure
3433 *  @regval: register value to write to RXCTRL
3434 *
3435 *  Enables the Rx DMA unit
3436 **/
3437s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3438{
3439	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3440
3441	if (regval & IXGBE_RXCTRL_RXEN)
3442		ixgbe_enable_rx(hw);
3443	else
3444		ixgbe_disable_rx(hw);
3445
3446	return IXGBE_SUCCESS;
3447}
3448
3449/**
3450 *  ixgbe_blink_led_start_generic - Blink LED based on index.
3451 *  @hw: pointer to hardware structure
3452 *  @index: led number to blink
3453 **/
3454s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3455{
3456	ixgbe_link_speed speed = 0;
3457	bool link_up = 0;
3458	u32 autoc_reg = 0;
3459	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3460	s32 ret_val = IXGBE_SUCCESS;
3461	bool locked = FALSE;
3462
3463	DEBUGFUNC("ixgbe_blink_led_start_generic");
3464
3465	if (index > 3)
3466		return IXGBE_ERR_PARAM;
3467
3468	/*
3469	 * Link must be up to auto-blink the LEDs;
3470	 * Force it if link is down.
3471	 */
3472	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3473
3474	if (!link_up) {
3475		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3476		if (ret_val != IXGBE_SUCCESS)
3477			goto out;
3478
3479		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3480		autoc_reg |= IXGBE_AUTOC_FLU;
3481
3482		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3483		if (ret_val != IXGBE_SUCCESS)
3484			goto out;
3485
3486		IXGBE_WRITE_FLUSH(hw);
3487		msec_delay(10);
3488	}
3489
3490	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3491	led_reg |= IXGBE_LED_BLINK(index);
3492	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3493	IXGBE_WRITE_FLUSH(hw);
3494
3495out:
3496	return ret_val;
3497}
3498
3499/**
3500 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3501 *  @hw: pointer to hardware structure
3502 *  @index: led number to stop blinking
3503 **/
3504s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3505{
3506	u32 autoc_reg = 0;
3507	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3508	s32 ret_val = IXGBE_SUCCESS;
3509	bool locked = FALSE;
3510
3511	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3512
3513	if (index > 3)
3514		return IXGBE_ERR_PARAM;
3515
3516
3517	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3518	if (ret_val != IXGBE_SUCCESS)
3519		goto out;
3520
3521	autoc_reg &= ~IXGBE_AUTOC_FLU;
3522	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3523
3524	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3525	if (ret_val != IXGBE_SUCCESS)
3526		goto out;
3527
3528	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3529	led_reg &= ~IXGBE_LED_BLINK(index);
3530	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3531	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3532	IXGBE_WRITE_FLUSH(hw);
3533
3534out:
3535	return ret_val;
3536}
3537
3538/**
3539 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3540 *  @hw: pointer to hardware structure
3541 *  @san_mac_offset: SAN MAC address offset
3542 *
3543 *  This function will read the EEPROM location for the SAN MAC address
3544 *  pointer, and returns the value at that location.  This is used in both
3545 *  get and set mac_addr routines.
3546 **/
3547static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3548					 u16 *san_mac_offset)
3549{
3550	s32 ret_val;
3551
3552	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3553
3554	/*
3555	 * First read the EEPROM pointer to see if the MAC addresses are
3556	 * available.
3557	 */
3558	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3559				      san_mac_offset);
3560	if (ret_val) {
3561		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3562			      "eeprom at offset %d failed",
3563			      IXGBE_SAN_MAC_ADDR_PTR);
3564	}
3565
3566	return ret_val;
3567}
3568
3569/**
3570 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3571 *  @hw: pointer to hardware structure
3572 *  @san_mac_addr: SAN MAC address
3573 *
3574 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3575 *  per-port, so set_lan_id() must be called before reading the addresses.
3576 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3577 *  upon for non-SFP connections, so we must call it here.
3578 **/
3579s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3580{
3581	u16 san_mac_data, san_mac_offset;
3582	u8 i;
3583	s32 ret_val;
3584
3585	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3586
3587	/*
3588	 * First read the EEPROM pointer to see if the MAC addresses are
3589	 * available.  If they're not, no point in calling set_lan_id() here.
3590	 */
3591	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3592	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3593		goto san_mac_addr_out;
3594
3595	/* make sure we know which port we need to program */
3596	hw->mac.ops.set_lan_id(hw);
3597	/* apply the port offset to the address offset */
3598	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3599			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3600	for (i = 0; i < 3; i++) {
3601		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3602					      &san_mac_data);
3603		if (ret_val) {
3604			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3605				      "eeprom read at offset %d failed",
3606				      san_mac_offset);
3607			goto san_mac_addr_out;
3608		}
3609		san_mac_addr[i * 2] = (u8)(san_mac_data);
3610		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3611		san_mac_offset++;
3612	}
3613	return IXGBE_SUCCESS;
3614
3615san_mac_addr_out:
3616	/*
3617	 * No addresses available in this EEPROM.  It's not an
3618	 * error though, so just wipe the local address and return.
3619	 */
3620	for (i = 0; i < 6; i++)
3621		san_mac_addr[i] = 0xFF;
3622	return IXGBE_SUCCESS;
3623}
3624
3625/**
3626 *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3627 *  @hw: pointer to hardware structure
3628 *  @san_mac_addr: SAN MAC address
3629 *
3630 *  Write a SAN MAC address to the EEPROM.
3631 **/
3632s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3633{
3634	s32 ret_val;
3635	u16 san_mac_data, san_mac_offset;
3636	u8 i;
3637
3638	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3639
3640	/* Look for SAN mac address pointer.  If not defined, return */
3641	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3642	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3643		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3644
3645	/* Make sure we know which port we need to write */
3646	hw->mac.ops.set_lan_id(hw);
3647	/* Apply the port offset to the address offset */
3648	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3649			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3650
3651	for (i = 0; i < 3; i++) {
3652		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3653		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3654		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3655		san_mac_offset++;
3656	}
3657
3658	return IXGBE_SUCCESS;
3659}
3660
3661/**
3662 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3663 *  @hw: pointer to hardware structure
3664 *
3665 *  Read PCIe configuration space, and get the MSI-X vector count from
3666 *  the capabilities table.
3667 **/
3668u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3669{
3670	u16 msix_count = 1;
3671	u16 max_msix_count;
3672	u16 pcie_offset;
3673
3674	switch (hw->mac.type) {
3675	case ixgbe_mac_82598EB:
3676		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3677		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3678		break;
3679	case ixgbe_mac_82599EB:
3680	case ixgbe_mac_X540:
3681	case ixgbe_mac_X550:
3682	case ixgbe_mac_X550EM_x:
3683	case ixgbe_mac_X550EM_a:
3684		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3685		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3686		break;
3687	default:
3688		return msix_count;
3689	}
3690
3691	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3692	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3693	if (IXGBE_REMOVED(hw->hw_addr))
3694		msix_count = 0;
3695	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3696
3697	/* MSI-X count is zero-based in HW */
3698	msix_count++;
3699
3700	if (msix_count > max_msix_count)
3701		msix_count = max_msix_count;
3702
3703	return msix_count;
3704}
3705
3706/**
3707 *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3708 *  @hw: pointer to hardware structure
3709 *  @addr: Address to put into receive address register
3710 *  @vmdq: VMDq pool to assign
3711 *
3712 *  Puts an ethernet address into a receive address register, or
3713 *  finds the rar that it is aleady in; adds to the pool list
3714 **/
3715s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3716{
3717	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3718	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3719	u32 rar;
3720	u32 rar_low, rar_high;
3721	u32 addr_low, addr_high;
3722
3723	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3724
3725	/* swap bytes for HW little endian */
3726	addr_low  = addr[0] | (addr[1] << 8)
3727			    | (addr[2] << 16)
3728			    | (addr[3] << 24);
3729	addr_high = addr[4] | (addr[5] << 8);
3730
3731	/*
3732	 * Either find the mac_id in rar or find the first empty space.
3733	 * rar_highwater points to just after the highest currently used
3734	 * rar in order to shorten the search.  It grows when we add a new
3735	 * rar to the top.
3736	 */
3737	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3738		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3739
3740		if (((IXGBE_RAH_AV & rar_high) == 0)
3741		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3742			first_empty_rar = rar;
3743		} else if ((rar_high & 0xFFFF) == addr_high) {
3744			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3745			if (rar_low == addr_low)
3746				break;    /* found it already in the rars */
3747		}
3748	}
3749
3750	if (rar < hw->mac.rar_highwater) {
3751		/* already there so just add to the pool bits */
3752		ixgbe_set_vmdq(hw, rar, vmdq);
3753	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3754		/* stick it into first empty RAR slot we found */
3755		rar = first_empty_rar;
3756		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3757	} else if (rar == hw->mac.rar_highwater) {
3758		/* add it to the top of the list and inc the highwater mark */
3759		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3760		hw->mac.rar_highwater++;
3761	} else if (rar >= hw->mac.num_rar_entries) {
3762		return IXGBE_ERR_INVALID_MAC_ADDR;
3763	}
3764
3765	/*
3766	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3767	 * remains cleared to be sure default pool packets will get delivered
3768	 */
3769	if (rar == 0)
3770		ixgbe_clear_vmdq(hw, rar, 0);
3771
3772	return rar;
3773}
3774
3775/**
3776 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3777 *  @hw: pointer to hardware struct
3778 *  @rar: receive address register index to disassociate
3779 *  @vmdq: VMDq pool index to remove from the rar
3780 **/
3781s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3782{
3783	u32 mpsar_lo, mpsar_hi;
3784	u32 rar_entries = hw->mac.num_rar_entries;
3785
3786	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3787
3788	/* Make sure we are using a valid rar index range */
3789	if (rar >= rar_entries) {
3790		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3791			     "RAR index %d is out of range.\n", rar);
3792		return IXGBE_ERR_INVALID_ARGUMENT;
3793	}
3794
3795	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3796	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3797
3798	if (IXGBE_REMOVED(hw->hw_addr))
3799		goto done;
3800
3801	if (!mpsar_lo && !mpsar_hi)
3802		goto done;
3803
3804	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3805		if (mpsar_lo) {
3806			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3807			mpsar_lo = 0;
3808		}
3809		if (mpsar_hi) {
3810			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3811			mpsar_hi = 0;
3812		}
3813	} else if (vmdq < 32) {
3814		mpsar_lo &= ~(1 << vmdq);
3815		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3816	} else {
3817		mpsar_hi &= ~(1 << (vmdq - 32));
3818		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3819	}
3820
3821	/* was that the last pool using this rar? */
3822	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3823	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3824		hw->mac.ops.clear_rar(hw, rar);
3825done:
3826	return IXGBE_SUCCESS;
3827}
3828
3829/**
3830 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3831 *  @hw: pointer to hardware struct
3832 *  @rar: receive address register index to associate with a VMDq index
3833 *  @vmdq: VMDq pool index
3834 **/
3835s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3836{
3837	u32 mpsar;
3838	u32 rar_entries = hw->mac.num_rar_entries;
3839
3840	DEBUGFUNC("ixgbe_set_vmdq_generic");
3841
3842	/* Make sure we are using a valid rar index range */
3843	if (rar >= rar_entries) {
3844		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3845			     "RAR index %d is out of range.\n", rar);
3846		return IXGBE_ERR_INVALID_ARGUMENT;
3847	}
3848
3849	if (vmdq < 32) {
3850		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3851		mpsar |= 1 << vmdq;
3852		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3853	} else {
3854		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3855		mpsar |= 1 << (vmdq - 32);
3856		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3857	}
3858	return IXGBE_SUCCESS;
3859}
3860
3861/**
3862 *  This function should only be involved in the IOV mode.
3863 *  In IOV mode, Default pool is next pool after the number of
3864 *  VFs advertized and not 0.
3865 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3866 *
3867 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3868 *  @hw: pointer to hardware struct
3869 *  @vmdq: VMDq pool index
3870 **/
3871s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3872{
3873	u32 rar = hw->mac.san_mac_rar_index;
3874
3875	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3876
3877	if (vmdq < 32) {
3878		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3879		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3880	} else {
3881		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3882		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3883	}
3884
3885	return IXGBE_SUCCESS;
3886}
3887
3888/**
3889 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3890 *  @hw: pointer to hardware structure
3891 **/
3892s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3893{
3894	int i;
3895
3896	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3897	DEBUGOUT(" Clearing UTA\n");
3898
3899	for (i = 0; i < 128; i++)
3900		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3901
3902	return IXGBE_SUCCESS;
3903}
3904
3905/**
3906 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3907 *  @hw: pointer to hardware structure
3908 *  @vlan: VLAN id to write to VLAN filter
3909 *
3910 *  return the VLVF index where this VLAN id should be placed
3911 *
3912 **/
3913s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3914{
3915	s32 regindex, first_empty_slot;
3916	u32 bits;
3917
3918	/* short cut the special case */
3919	if (vlan == 0)
3920		return 0;
3921
3922	/* if vlvf_bypass is set we don't want to use an empty slot, we
3923	 * will simply bypass the VLVF if there are no entries present in the
3924	 * VLVF that contain our VLAN
3925	 */
3926	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3927
3928	/* add VLAN enable bit for comparison */
3929	vlan |= IXGBE_VLVF_VIEN;
3930
3931	/* Search for the vlan id in the VLVF entries. Save off the first empty
3932	 * slot found along the way.
3933	 *
3934	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3935	 */
3936	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3937		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3938		if (bits == vlan)
3939			return regindex;
3940		if (!first_empty_slot && !bits)
3941			first_empty_slot = regindex;
3942	}
3943
3944	/* If we are here then we didn't find the VLAN.  Return first empty
3945	 * slot we found during our search, else error.
3946	 */
3947	if (!first_empty_slot)
3948		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3949
3950	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3951}
3952
3953/**
3954 *  ixgbe_set_vfta_generic - Set VLAN filter table
3955 *  @hw: pointer to hardware structure
3956 *  @vlan: VLAN id to write to VLAN filter
3957 *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
3958 *  @vlan_on: boolean flag to turn on/off VLAN
3959 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3960 *
3961 *  Turn on/off specified VLAN in the VLAN filter table.
3962 **/
3963s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3964			   bool vlan_on, bool vlvf_bypass)
3965{
3966	u32 regidx, vfta_delta, vfta;
3967	s32 ret_val;
3968
3969	DEBUGFUNC("ixgbe_set_vfta_generic");
3970
3971	if (vlan > 4095 || vind > 63)
3972		return IXGBE_ERR_PARAM;
3973
3974	/*
3975	 * this is a 2 part operation - first the VFTA, then the
3976	 * VLVF and VLVFB if VT Mode is set
3977	 * We don't write the VFTA until we know the VLVF part succeeded.
3978	 */
3979
3980	/* Part 1
3981	 * The VFTA is a bitstring made up of 128 32-bit registers
3982	 * that enable the particular VLAN id, much like the MTA:
3983	 *    bits[11-5]: which register
3984	 *    bits[4-0]:  which bit in the register
3985	 */
3986	regidx = vlan / 32;
3987	vfta_delta = 1 << (vlan % 32);
3988	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3989
3990	/*
3991	 * vfta_delta represents the difference between the current value
3992	 * of vfta and the value we want in the register.  Since the diff
3993	 * is an XOR mask we can just update the vfta using an XOR
3994	 */
3995	vfta_delta &= vlan_on ? ~vfta : vfta;
3996	vfta ^= vfta_delta;
3997
3998	/* Part 2
3999	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4000	 */
4001	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4002					 vfta, vlvf_bypass);
4003	if (ret_val != IXGBE_SUCCESS) {
4004		if (vlvf_bypass)
4005			goto vfta_update;
4006		return ret_val;
4007	}
4008
4009vfta_update:
4010	/* Update VFTA now that we are ready for traffic */
4011	if (vfta_delta)
4012		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4013
4014	return IXGBE_SUCCESS;
4015}
4016
4017/**
4018 *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4019 *  @hw: pointer to hardware structure
4020 *  @vlan: VLAN id to write to VLAN filter
4021 *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
4022 *  @vlan_on: boolean flag to turn on/off VLAN in VLVF
4023 *  @vfta_delta: pointer to the difference between the current value of VFTA
4024 *		 and the desired value
4025 *  @vfta: the desired value of the VFTA
4026 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
4027 *
4028 *  Turn on/off specified bit in VLVF table.
4029 **/
4030s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4031			   bool vlan_on, u32 *vfta_delta, u32 vfta,
4032			   bool vlvf_bypass)
4033{
4034	u32 bits;
4035	s32 vlvf_index;
4036
4037	DEBUGFUNC("ixgbe_set_vlvf_generic");
4038
4039	if (vlan > 4095 || vind > 63)
4040		return IXGBE_ERR_PARAM;
4041
4042	/* If VT Mode is set
4043	 *   Either vlan_on
4044	 *     make sure the vlan is in VLVF
4045	 *     set the vind bit in the matching VLVFB
4046	 *   Or !vlan_on
4047	 *     clear the pool bit and possibly the vind
4048	 */
4049	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4050		return IXGBE_SUCCESS;
4051
4052	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4053	if (vlvf_index < 0)
4054		return vlvf_index;
4055
4056	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4057
4058	/* set the pool bit */
4059	bits |= 1 << (vind % 32);
4060	if (vlan_on)
4061		goto vlvf_update;
4062
4063	/* clear the pool bit */
4064	bits ^= 1 << (vind % 32);
4065
4066	if (!bits &&
4067	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4068		/* Clear VFTA first, then disable VLVF.  Otherwise
4069		 * we run the risk of stray packets leaking into
4070		 * the PF via the default pool
4071		 */
4072		if (*vfta_delta)
4073			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4074
4075		/* disable VLVF and clear remaining bit from pool */
4076		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4077		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4078
4079		return IXGBE_SUCCESS;
4080	}
4081
4082	/* If there are still bits set in the VLVFB registers
4083	 * for the VLAN ID indicated we need to see if the
4084	 * caller is requesting that we clear the VFTA entry bit.
4085	 * If the caller has requested that we clear the VFTA
4086	 * entry bit but there are still pools/VFs using this VLAN
4087	 * ID entry then ignore the request.  We're not worried
4088	 * about the case where we're turning the VFTA VLAN ID
4089	 * entry bit on, only when requested to turn it off as
4090	 * there may be multiple pools and/or VFs using the
4091	 * VLAN ID entry.  In that case we cannot clear the
4092	 * VFTA bit until all pools/VFs using that VLAN ID have also
4093	 * been cleared.  This will be indicated by "bits" being
4094	 * zero.
4095	 */
4096	*vfta_delta = 0;
4097
4098vlvf_update:
4099	/* record pool change and enable VLAN ID if not already enabled */
4100	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4101	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4102
4103	return IXGBE_SUCCESS;
4104}
4105
4106/**
4107 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
4108 *  @hw: pointer to hardware structure
4109 *
4110 *  Clears the VLAN filer table, and the VMDq index associated with the filter
4111 **/
4112s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4113{
4114	u32 offset;
4115
4116	DEBUGFUNC("ixgbe_clear_vfta_generic");
4117
4118	for (offset = 0; offset < hw->mac.vft_size; offset++)
4119		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4120
4121	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4122		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4123		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4124		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
4125	}
4126
4127	return IXGBE_SUCCESS;
4128}
4129
4130/**
4131 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4132 *  @hw: pointer to hardware structure
4133 *
4134 *  Contains the logic to identify if we need to verify link for the
4135 *  crosstalk fix
4136 **/
4137static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4138{
4139
4140	/* Does FW say we need the fix */
4141	if (!hw->need_crosstalk_fix)
4142		return FALSE;
4143
4144	/* Only consider SFP+ PHYs i.e. media type fiber */
4145	switch (hw->mac.ops.get_media_type(hw)) {
4146	case ixgbe_media_type_fiber:
4147	case ixgbe_media_type_fiber_qsfp:
4148		break;
4149	default:
4150		return FALSE;
4151	}
4152
4153	return TRUE;
4154}
4155
4156/**
4157 *  ixgbe_check_mac_link_generic - Determine link and speed status
4158 *  @hw: pointer to hardware structure
4159 *  @speed: pointer to link speed
4160 *  @link_up: TRUE when link is up
4161 *  @link_up_wait_to_complete: bool used to wait for link up or not
4162 *
4163 *  Reads the links register to determine if link is up and the current speed
4164 **/
4165s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4166				 bool *link_up, bool link_up_wait_to_complete)
4167{
4168	u32 links_reg, links_orig;
4169	u32 i;
4170
4171	DEBUGFUNC("ixgbe_check_mac_link_generic");
4172
4173	/* If Crosstalk fix enabled do the sanity check of making sure
4174	 * the SFP+ cage is full.
4175	 */
4176	if (ixgbe_need_crosstalk_fix(hw)) {
4177		u32 sfp_cage_full;
4178
4179		switch (hw->mac.type) {
4180		case ixgbe_mac_82599EB:
4181			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4182					IXGBE_ESDP_SDP2;
4183			break;
4184		case ixgbe_mac_X550EM_x:
4185		case ixgbe_mac_X550EM_a:
4186			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4187					IXGBE_ESDP_SDP0;
4188			break;
4189		default:
4190			/* sanity check - No SFP+ devices here */
4191			sfp_cage_full = FALSE;
4192			break;
4193		}
4194
4195		if (!sfp_cage_full) {
4196			*link_up = FALSE;
4197			*speed = IXGBE_LINK_SPEED_UNKNOWN;
4198			return IXGBE_SUCCESS;
4199		}
4200	}
4201
4202	/* clear the old state */
4203	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4204
4205	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4206
4207	if (links_orig != links_reg) {
4208		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4209			  links_orig, links_reg);
4210	}
4211
4212	if (link_up_wait_to_complete) {
4213		for (i = 0; i < hw->mac.max_link_up_time; i++) {
4214			if (links_reg & IXGBE_LINKS_UP) {
4215				*link_up = TRUE;
4216				break;
4217			} else {
4218				*link_up = FALSE;
4219			}
4220			msec_delay(100);
4221			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4222		}
4223	} else {
4224		if (links_reg & IXGBE_LINKS_UP)
4225			*link_up = TRUE;
4226		else
4227			*link_up = FALSE;
4228	}
4229
4230	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4231	case IXGBE_LINKS_SPEED_10G_82599:
4232		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4233		if (hw->mac.type >= ixgbe_mac_X550) {
4234			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4235				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4236		}
4237		break;
4238	case IXGBE_LINKS_SPEED_1G_82599:
4239		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4240		break;
4241	case IXGBE_LINKS_SPEED_100_82599:
4242		*speed = IXGBE_LINK_SPEED_100_FULL;
4243		if (hw->mac.type == ixgbe_mac_X550) {
4244			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4245				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4246		}
4247		break;
4248	case IXGBE_LINKS_SPEED_10_X550EM_A:
4249		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4250		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4251		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
4252			*speed = IXGBE_LINK_SPEED_10_FULL;
4253		}
4254		break;
4255	default:
4256		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4257	}
4258
4259	return IXGBE_SUCCESS;
4260}
4261
4262/**
4263 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4264 *  the EEPROM
4265 *  @hw: pointer to hardware structure
4266 *  @wwnn_prefix: the alternative WWNN prefix
4267 *  @wwpn_prefix: the alternative WWPN prefix
4268 *
4269 *  This function will read the EEPROM from the alternative SAN MAC address
4270 *  block to check the support for the alternative WWNN/WWPN prefix support.
4271 **/
4272s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4273				 u16 *wwpn_prefix)
4274{
4275	u16 offset, caps;
4276	u16 alt_san_mac_blk_offset;
4277
4278	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4279
4280	/* clear output first */
4281	*wwnn_prefix = 0xFFFF;
4282	*wwpn_prefix = 0xFFFF;
4283
4284	/* check if alternative SAN MAC is supported */
4285	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4286	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4287		goto wwn_prefix_err;
4288
4289	if ((alt_san_mac_blk_offset == 0) ||
4290	    (alt_san_mac_blk_offset == 0xFFFF))
4291		goto wwn_prefix_out;
4292
4293	/* check capability in alternative san mac address block */
4294	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4295	if (hw->eeprom.ops.read(hw, offset, &caps))
4296		goto wwn_prefix_err;
4297	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4298		goto wwn_prefix_out;
4299
4300	/* get the corresponding prefix for WWNN/WWPN */
4301	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4302	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4303		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4304			      "eeprom read at offset %d failed", offset);
4305	}
4306
4307	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4308	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4309		goto wwn_prefix_err;
4310
4311wwn_prefix_out:
4312	return IXGBE_SUCCESS;
4313
4314wwn_prefix_err:
4315	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4316		      "eeprom read at offset %d failed", offset);
4317	return IXGBE_SUCCESS;
4318}
4319
4320/**
4321 *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4322 *  @hw: pointer to hardware structure
4323 *  @bs: the fcoe boot status
4324 *
4325 *  This function will read the FCOE boot status from the iSCSI FCOE block
4326 **/
4327s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4328{
4329	u16 offset, caps, flags;
4330	s32 status;
4331
4332	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4333
4334	/* clear output first */
4335	*bs = ixgbe_fcoe_bootstatus_unavailable;
4336
4337	/* check if FCOE IBA block is present */
4338	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4339	status = hw->eeprom.ops.read(hw, offset, &caps);
4340	if (status != IXGBE_SUCCESS)
4341		goto out;
4342
4343	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4344		goto out;
4345
4346	/* check if iSCSI FCOE block is populated */
4347	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4348	if (status != IXGBE_SUCCESS)
4349		goto out;
4350
4351	if ((offset == 0) || (offset == 0xFFFF))
4352		goto out;
4353
4354	/* read fcoe flags in iSCSI FCOE block */
4355	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4356	status = hw->eeprom.ops.read(hw, offset, &flags);
4357	if (status != IXGBE_SUCCESS)
4358		goto out;
4359
4360	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4361		*bs = ixgbe_fcoe_bootstatus_enabled;
4362	else
4363		*bs = ixgbe_fcoe_bootstatus_disabled;
4364
4365out:
4366	return status;
4367}
4368
4369/**
4370 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4371 *  @hw: pointer to hardware structure
4372 *  @enable: enable or disable switch for MAC anti-spoofing
4373 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4374 *
4375 **/
4376void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4377{
4378	int vf_target_reg = vf >> 3;
4379	int vf_target_shift = vf % 8;
4380	u32 pfvfspoof;
4381
4382	if (hw->mac.type == ixgbe_mac_82598EB)
4383		return;
4384
4385	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4386	if (enable)
4387		pfvfspoof |= (1 << vf_target_shift);
4388	else
4389		pfvfspoof &= ~(1 << vf_target_shift);
4390	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4391}
4392
4393/**
4394 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4395 *  @hw: pointer to hardware structure
4396 *  @enable: enable or disable switch for VLAN anti-spoofing
4397 *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4398 *
4399 **/
4400void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4401{
4402	int vf_target_reg = vf >> 3;
4403	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4404	u32 pfvfspoof;
4405
4406	if (hw->mac.type == ixgbe_mac_82598EB)
4407		return;
4408
4409	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4410	if (enable)
4411		pfvfspoof |= (1 << vf_target_shift);
4412	else
4413		pfvfspoof &= ~(1 << vf_target_shift);
4414	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4415}
4416
4417/**
4418 *  ixgbe_get_device_caps_generic - Get additional device capabilities
4419 *  @hw: pointer to hardware structure
4420 *  @device_caps: the EEPROM word with the extra device capabilities
4421 *
4422 *  This function will read the EEPROM location for the device capabilities,
4423 *  and return the word through device_caps.
4424 **/
4425s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4426{
4427	DEBUGFUNC("ixgbe_get_device_caps_generic");
4428
4429	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4430
4431	return IXGBE_SUCCESS;
4432}
4433
4434/**
4435 *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4436 *  @hw: pointer to hardware structure
4437 *
4438 **/
4439void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4440{
4441	u32 regval;
4442	u32 i;
4443
4444	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4445
4446	/* Enable relaxed ordering */
4447	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4448		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4449		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4450		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4451	}
4452
4453	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4454		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4455		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4456			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4457		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4458	}
4459
4460}
4461
4462/**
4463 *  ixgbe_calculate_checksum - Calculate checksum for buffer
4464 *  @buffer: pointer to EEPROM
4465 *  @length: size of EEPROM to calculate a checksum for
4466 *  Calculates the checksum for some buffer on a specified length.  The
4467 *  checksum calculated is returned.
4468 **/
4469u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4470{
4471	u32 i;
4472	u8 sum = 0;
4473
4474	DEBUGFUNC("ixgbe_calculate_checksum");
4475
4476	if (!buffer)
4477		return 0;
4478
4479	for (i = 0; i < length; i++)
4480		sum += buffer[i];
4481
4482	return (u8) (0 - sum);
4483}
4484
4485/**
4486 *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
4487 *  @hw: pointer to the HW structure
4488 *  @buffer: command to write and where the return status will be placed
4489 *  @length: length of buffer, must be multiple of 4 bytes
4490 *  @timeout: time in ms to wait for command completion
4491 *
4492 *  Communicates with the manageability block. On success return IXGBE_SUCCESS
4493 *  else returns semaphore error when encountering an error acquiring
4494 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4495 *
4496 *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4497 *  by the caller.
4498 **/
4499s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4500		       u32 timeout)
4501{
4502	u32 hicr, i, fwsts;
4503	u16 dword_len;
4504
4505	DEBUGFUNC("ixgbe_hic_unlocked");
4506
4507	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4508		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4509		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4510	}
4511
4512	/* Set bit 9 of FWSTS clearing FW reset indication */
4513	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4514	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4515
4516	/* Check that the host interface is enabled. */
4517	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4518	if (!(hicr & IXGBE_HICR_EN)) {
4519		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4520		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4521	}
4522
4523	/* Calculate length in DWORDs. We must be DWORD aligned */
4524	if (length % sizeof(u32)) {
4525		DEBUGOUT("Buffer length failure, not aligned to dword");
4526		return IXGBE_ERR_INVALID_ARGUMENT;
4527	}
4528
4529	dword_len = length >> 2;
4530
4531	/* The device driver writes the relevant command block
4532	 * into the ram area.
4533	 */
4534	for (i = 0; i < dword_len; i++)
4535		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4536				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4537
4538	/* Setting this bit tells the ARC that a new command is pending. */
4539	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4540
4541	for (i = 0; i < timeout; i++) {
4542		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4543		if (!(hicr & IXGBE_HICR_C))
4544			break;
4545		msec_delay(1);
4546	}
4547
4548	/* Check command completion */
4549	if ((timeout && i == timeout) ||
4550	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4551		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4552			     "Command has failed with no status valid.\n");
4553		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4554	}
4555
4556	return IXGBE_SUCCESS;
4557}
4558
4559/**
4560 *  ixgbe_host_interface_command - Issue command to manageability block
4561 *  @hw: pointer to the HW structure
4562 *  @buffer: contains the command to write and where the return status will
4563 *   be placed
4564 *  @length: length of buffer, must be multiple of 4 bytes
4565 *  @timeout: time in ms to wait for command completion
4566 *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4567 *   Needed because FW structures are big endian and decoding of
4568 *   these fields can be 8 bit or 16 bit based on command. Decoding
4569 *   is not easily understood without making a table of commands.
4570 *   So we will leave this up to the caller to read back the data
4571 *   in these cases.
4572 *
4573 *  Communicates with the manageability block. On success return IXGBE_SUCCESS
4574 *  else returns semaphore error when encountering an error acquiring
4575 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4576 **/
4577s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4578				 u32 length, u32 timeout, bool return_data)
4579{
4580	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4581	u16 dword_len;
4582	u16 buf_len;
4583	s32 status;
4584	u32 bi;
4585
4586	DEBUGFUNC("ixgbe_host_interface_command");
4587
4588	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4589		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4590		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4591	}
4592
4593	/* Take management host interface semaphore */
4594	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4595	if (status)
4596		return status;
4597
4598	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4599	if (status)
4600		goto rel_out;
4601
4602	if (!return_data)
4603		goto rel_out;
4604
4605	/* Calculate length in DWORDs */
4606	dword_len = hdr_size >> 2;
4607
4608	/* first pull in the header so we know the buffer length */
4609	for (bi = 0; bi < dword_len; bi++) {
4610		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4611		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4612	}
4613
4614	/* If there is any thing in data position pull it in */
4615	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4616	if (!buf_len)
4617		goto rel_out;
4618
4619	if (length < buf_len + hdr_size) {
4620		DEBUGOUT("Buffer not large enough for reply message.\n");
4621		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4622		goto rel_out;
4623	}
4624
4625	/* Calculate length in DWORDs, add 3 for odd lengths */
4626	dword_len = (buf_len + 3) >> 2;
4627
4628	/* Pull in the rest of the buffer (bi is where we left off) */
4629	for (; bi <= dword_len; bi++) {
4630		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4631		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4632	}
4633
4634rel_out:
4635	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4636
4637	return status;
4638}
4639
4640/**
4641 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4642 *  @hw: pointer to the HW structure
4643 *  @maj: driver version major number
4644 *  @min: driver version minor number
4645 *  @build: driver version build number
4646 *  @sub: driver version sub build number
4647 *
4648 *  Sends driver version number to firmware through the manageability
4649 *  block.  On success return IXGBE_SUCCESS
4650 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4651 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4652 **/
4653s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4654				 u8 build, u8 sub, u16 len,
4655				 const char *driver_ver)
4656{
4657	struct ixgbe_hic_drv_info fw_cmd;
4658	int i;
4659	s32 ret_val = IXGBE_SUCCESS;
4660
4661	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4662	UNREFERENCED_2PARAMETER(len, driver_ver);
4663
4664	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4665	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4666	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4667	fw_cmd.port_num = (u8)hw->bus.func;
4668	fw_cmd.ver_maj = maj;
4669	fw_cmd.ver_min = min;
4670	fw_cmd.ver_build = build;
4671	fw_cmd.ver_sub = sub;
4672	fw_cmd.hdr.checksum = 0;
4673	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4674				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4675	fw_cmd.pad = 0;
4676	fw_cmd.pad2 = 0;
4677
4678	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4679		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4680						       sizeof(fw_cmd),
4681						       IXGBE_HI_COMMAND_TIMEOUT,
4682						       TRUE);
4683		if (ret_val != IXGBE_SUCCESS)
4684			continue;
4685
4686		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4687		    FW_CEM_RESP_STATUS_SUCCESS)
4688			ret_val = IXGBE_SUCCESS;
4689		else
4690			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4691
4692		break;
4693	}
4694
4695	return ret_val;
4696}
4697
4698/**
4699 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4700 * @hw: pointer to hardware structure
4701 * @num_pb: number of packet buffers to allocate
4702 * @headroom: reserve n KB of headroom
4703 * @strategy: packet buffer allocation strategy
4704 **/
4705void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4706			     int strategy)
4707{
4708	u32 pbsize = hw->mac.rx_pb_size;
4709	int i = 0;
4710	u32 rxpktsize, txpktsize, txpbthresh;
4711
4712	/* Reserve headroom */
4713	pbsize -= headroom;
4714
4715	if (!num_pb)
4716		num_pb = 1;
4717
4718	/* Divide remaining packet buffer space amongst the number of packet
4719	 * buffers requested using supplied strategy.
4720	 */
4721	switch (strategy) {
4722	case PBA_STRATEGY_WEIGHTED:
4723		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4724		 * buffer with 5/8 of the packet buffer space.
4725		 */
4726		rxpktsize = (pbsize * 5) / (num_pb * 4);
4727		pbsize -= rxpktsize * (num_pb / 2);
4728		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4729		for (; i < (num_pb / 2); i++)
4730			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4731		/* Fall through to configure remaining packet buffers */
4732	case PBA_STRATEGY_EQUAL:
4733		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4734		for (; i < num_pb; i++)
4735			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4736		break;
4737	default:
4738		break;
4739	}
4740
4741	/* Only support an equally distributed Tx packet buffer strategy. */
4742	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4743	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4744	for (i = 0; i < num_pb; i++) {
4745		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4746		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4747	}
4748
4749	/* Clear unused TCs, if any, to zero buffer size*/
4750	for (; i < IXGBE_MAX_PB; i++) {
4751		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4752		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4753		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4754	}
4755}
4756
4757/**
4758 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4759 * @hw: pointer to the hardware structure
4760 *
4761 * The 82599 and x540 MACs can experience issues if TX work is still pending
4762 * when a reset occurs.  This function prevents this by flushing the PCIe
4763 * buffers on the system.
4764 **/
4765void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4766{
4767	u32 gcr_ext, hlreg0, i, poll;
4768	u16 value;
4769
4770	/*
4771	 * If double reset is not requested then all transactions should
4772	 * already be clear and as such there is no work to do
4773	 */
4774	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4775		return;
4776
4777	/*
4778	 * Set loopback enable to prevent any transmits from being sent
4779	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4780	 * has already been cleared.
4781	 */
4782	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4783	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4784
4785	/* Wait for a last completion before clearing buffers */
4786	IXGBE_WRITE_FLUSH(hw);
4787	msec_delay(3);
4788
4789	/*
4790	 * Before proceeding, make sure that the PCIe block does not have
4791	 * transactions pending.
4792	 */
4793	poll = ixgbe_pcie_timeout_poll(hw);
4794	for (i = 0; i < poll; i++) {
4795		usec_delay(100);
4796		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4797		if (IXGBE_REMOVED(hw->hw_addr))
4798			goto out;
4799		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4800			goto out;
4801	}
4802
4803out:
4804	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4805	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4806	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4807			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4808
4809	/* Flush all writes and allow 20usec for all transactions to clear */
4810	IXGBE_WRITE_FLUSH(hw);
4811	usec_delay(20);
4812
4813	/* restore previous register values */
4814	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4815	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4816}
4817
4818/**
4819 *  ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4820 *
4821 *  @hw: pointer to hardware structure
4822 *  @cmd: Command we send to the FW
4823 *  @status: The reply from the FW
4824 *
4825 *  Bit-bangs the cmd to the by_pass FW status points to what is returned.
4826 **/
4827#define IXGBE_BYPASS_BB_WAIT 1
4828s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4829{
4830	int i;
4831	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4832	u32 esdp;
4833
4834	if (!status)
4835		return IXGBE_ERR_PARAM;
4836
4837	*status = 0;
4838
4839	/* SDP vary by MAC type */
4840	switch (hw->mac.type) {
4841	case ixgbe_mac_82599EB:
4842		sck = IXGBE_ESDP_SDP7;
4843		sdi = IXGBE_ESDP_SDP0;
4844		sdo = IXGBE_ESDP_SDP6;
4845		dir_sck = IXGBE_ESDP_SDP7_DIR;
4846		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4847		dir_sdo = IXGBE_ESDP_SDP6_DIR;
4848		break;
4849	case ixgbe_mac_X540:
4850		sck = IXGBE_ESDP_SDP2;
4851		sdi = IXGBE_ESDP_SDP0;
4852		sdo = IXGBE_ESDP_SDP1;
4853		dir_sck = IXGBE_ESDP_SDP2_DIR;
4854		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4855		dir_sdo = IXGBE_ESDP_SDP1_DIR;
4856		break;
4857	default:
4858		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4859	}
4860
4861	/* Set SDP pins direction */
4862	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4863	esdp |= dir_sck;	/* SCK as output */
4864	esdp |= dir_sdi;	/* SDI as output */
4865	esdp &= ~dir_sdo;	/* SDO as input */
4866	esdp |= sck;
4867	esdp |= sdi;
4868	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4869	IXGBE_WRITE_FLUSH(hw);
4870	msec_delay(IXGBE_BYPASS_BB_WAIT);
4871
4872	/* Generate start condition */
4873	esdp &= ~sdi;
4874	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4875	IXGBE_WRITE_FLUSH(hw);
4876	msec_delay(IXGBE_BYPASS_BB_WAIT);
4877
4878	esdp &= ~sck;
4879	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4880	IXGBE_WRITE_FLUSH(hw);
4881	msec_delay(IXGBE_BYPASS_BB_WAIT);
4882
4883	/* Clock out the new control word and clock in the status */
4884	for (i = 0; i < 32; i++) {
4885		if ((cmd >> (31 - i)) & 0x01) {
4886			esdp |= sdi;
4887			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4888		} else {
4889			esdp &= ~sdi;
4890			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4891		}
4892		IXGBE_WRITE_FLUSH(hw);
4893		msec_delay(IXGBE_BYPASS_BB_WAIT);
4894
4895		esdp |= sck;
4896		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4897		IXGBE_WRITE_FLUSH(hw);
4898		msec_delay(IXGBE_BYPASS_BB_WAIT);
4899
4900		esdp &= ~sck;
4901		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4902		IXGBE_WRITE_FLUSH(hw);
4903		msec_delay(IXGBE_BYPASS_BB_WAIT);
4904
4905		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4906		if (esdp & sdo)
4907			*status = (*status << 1) | 0x01;
4908		else
4909			*status = (*status << 1) | 0x00;
4910		msec_delay(IXGBE_BYPASS_BB_WAIT);
4911	}
4912
4913	/* stop condition */
4914	esdp |= sck;
4915	esdp &= ~sdi;
4916	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4917	IXGBE_WRITE_FLUSH(hw);
4918	msec_delay(IXGBE_BYPASS_BB_WAIT);
4919
4920	esdp |= sdi;
4921	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4922	IXGBE_WRITE_FLUSH(hw);
4923
4924	/* set the page bits to match the cmd that the status it belongs to */
4925	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
4926
4927	return IXGBE_SUCCESS;
4928}
4929
4930/**
4931 * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
4932 *
4933 * If we send a write we can't be sure it took until we can read back
4934 * that same register.  It can be a problem as some of the feilds may
4935 * for valid reasons change inbetween the time wrote the register and
4936 * we read it again to verify.  So this function check everything we
4937 * can check and then assumes it worked.
4938 *
4939 * @u32 in_reg - The register cmd for the bit-bang read.
4940 * @u32 out_reg - The register returned from a bit-bang read.
4941 **/
4942bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
4943{
4944	u32 mask;
4945
4946	/* Page must match for all control pages */
4947	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
4948		return FALSE;
4949
4950	switch (in_reg & BYPASS_PAGE_M) {
4951	case BYPASS_PAGE_CTL0:
4952		/* All the following can't change since the last write
4953		 *  - All the event actions
4954		 *  - The timeout value
4955		 */
4956		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
4957		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
4958		       BYPASS_WDTIMEOUT_M |
4959		       BYPASS_WDT_VALUE_M;
4960		if ((out_reg & mask) != (in_reg & mask))
4961			return FALSE;
4962
4963		/* 0x0 is never a valid value for bypass status */
4964		if (!(out_reg & BYPASS_STATUS_OFF_M))
4965			return FALSE;
4966		break;
4967	case BYPASS_PAGE_CTL1:
4968		/* All the following can't change since the last write
4969		 *  - time valid bit
4970		 *  - time we last sent
4971		 */
4972		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
4973		if ((out_reg & mask) != (in_reg & mask))
4974			return FALSE;
4975		break;
4976	case BYPASS_PAGE_CTL2:
4977		/* All we can check in this page is control number
4978		 * which is already done above.
4979		 */
4980		break;
4981	}
4982
4983	/* We are as sure as we can be return TRUE */
4984	return TRUE;
4985}
4986
4987/**
4988 *  ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
4989 *
4990 *  @hw: pointer to hardware structure
4991 *  @cmd: The control word we are setting.
4992 *  @event: The event we are setting in the FW.  This also happens to
4993 *	    be the mask for the event we are setting (handy)
4994 *  @action: The action we set the event to in the FW. This is in a
4995 *	     bit field that happens to be what we want to put in
4996 *	     the event spot (also handy)
4997 **/
4998s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
4999			     u32 action)
5000{
5001	u32 by_ctl = 0;
5002	u32 cmd, verify;
5003	u32 count = 0;
5004
5005	/* Get current values */
5006	cmd = ctrl;	/* just reading only need control number */
5007	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5008		return IXGBE_ERR_INVALID_ARGUMENT;
5009
5010	/* Set to new action */
5011	cmd = (by_ctl & ~event) | BYPASS_WE | action;
5012	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5013		return IXGBE_ERR_INVALID_ARGUMENT;
5014
5015	/* Page 0 force a FW eeprom write which is slow so verify */
5016	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5017		verify = BYPASS_PAGE_CTL0;
5018		do {
5019			if (count++ > 5)
5020				return IXGBE_BYPASS_FW_WRITE_FAILURE;
5021
5022			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5023				return IXGBE_ERR_INVALID_ARGUMENT;
5024		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5025	} else {
5026		/* We have give the FW time for the write to stick */
5027		msec_delay(100);
5028	}
5029
5030	return IXGBE_SUCCESS;
5031}
5032
5033/**
5034 *  ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5035 *
5036 *  @hw: pointer to hardware structure
5037 *  @addr: The bypass eeprom address to read.
5038 *  @value: The 8b of data at the address above.
5039 **/
5040s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5041{
5042	u32 cmd;
5043	u32 status;
5044
5045
5046	/* send the request */
5047	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5048	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5049	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5050		return IXGBE_ERR_INVALID_ARGUMENT;
5051
5052	/* We have give the FW time for the write to stick */
5053	msec_delay(100);
5054
5055	/* now read the results */
5056	cmd &= ~BYPASS_WE;
5057	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5058		return IXGBE_ERR_INVALID_ARGUMENT;
5059
5060	*value = status & BYPASS_CTL2_DATA_M;
5061
5062	return IXGBE_SUCCESS;
5063}
5064
5065
5066/**
5067 * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5068 * @hw: pointer to hardware structure
5069 * @map: pointer to u8 arr for returning map
5070 *
5071 * Read the rtrup2tc HW register and resolve its content into map
5072 **/
5073void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5074{
5075	u32 reg, i;
5076
5077	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5078	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5079		map[i] = IXGBE_RTRUP2TC_UP_MASK &
5080			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5081	return;
5082}
5083
5084void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5085{
5086	u32 pfdtxgswc;
5087	u32 rxctrl;
5088
5089	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5090	if (rxctrl & IXGBE_RXCTRL_RXEN) {
5091		if (hw->mac.type != ixgbe_mac_82598EB) {
5092			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5093			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5094				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5095				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5096				hw->mac.set_lben = TRUE;
5097			} else {
5098				hw->mac.set_lben = FALSE;
5099			}
5100		}
5101		rxctrl &= ~IXGBE_RXCTRL_RXEN;
5102		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5103	}
5104}
5105
5106void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5107{
5108	u32 pfdtxgswc;
5109	u32 rxctrl;
5110
5111	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5112	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5113
5114	if (hw->mac.type != ixgbe_mac_82598EB) {
5115		if (hw->mac.set_lben) {
5116			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5117			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5118			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5119			hw->mac.set_lben = FALSE;
5120		}
5121	}
5122}
5123
5124/**
5125 * ixgbe_mng_present - returns TRUE when management capability is present
5126 * @hw: pointer to hardware structure
5127 */
5128bool ixgbe_mng_present(struct ixgbe_hw *hw)
5129{
5130	u32 fwsm;
5131
5132	if (hw->mac.type < ixgbe_mac_82599EB)
5133		return FALSE;
5134
5135	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5136	fwsm &= IXGBE_FWSM_MODE_MASK;
5137	return fwsm == IXGBE_FWSM_FW_MODE_PT;
5138}
5139
5140/**
5141 * ixgbe_mng_enabled - Is the manageability engine enabled?
5142 * @hw: pointer to hardware structure
5143 *
5144 * Returns TRUE if the manageability engine is enabled.
5145 **/
5146bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5147{
5148	u32 fwsm, manc, factps;
5149
5150	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5151	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5152		return FALSE;
5153
5154	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5155	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5156		return FALSE;
5157
5158	if (hw->mac.type <= ixgbe_mac_X540) {
5159		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5160		if (factps & IXGBE_FACTPS_MNGCG)
5161			return FALSE;
5162	}
5163
5164	return TRUE;
5165}
5166
5167/**
5168 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5169 *  @hw: pointer to hardware structure
5170 *  @speed: new link speed
5171 *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5172 *
5173 *  Set the link speed in the MAC and/or PHY register and restarts link.
5174 **/
5175s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5176					  ixgbe_link_speed speed,
5177					  bool autoneg_wait_to_complete)
5178{
5179	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5180	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5181	s32 status = IXGBE_SUCCESS;
5182	u32 speedcnt = 0;
5183	u32 i = 0;
5184	bool autoneg, link_up = FALSE;
5185
5186	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5187
5188	/* Mask off requested but non-supported speeds */
5189	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5190	if (status != IXGBE_SUCCESS)
5191		return status;
5192
5193	speed &= link_speed;
5194
5195	/* Try each speed one by one, highest priority first.  We do this in
5196	 * software because 10Gb fiber doesn't support speed autonegotiation.
5197	 */
5198	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5199		speedcnt++;
5200		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5201
5202		/* Set the module link speed */
5203		switch (hw->phy.media_type) {
5204		case ixgbe_media_type_fiber_fixed:
5205		case ixgbe_media_type_fiber:
5206			ixgbe_set_rate_select_speed(hw,
5207						    IXGBE_LINK_SPEED_10GB_FULL);
5208			break;
5209		case ixgbe_media_type_fiber_qsfp:
5210			/* QSFP module automatically detects MAC link speed */
5211			break;
5212		default:
5213			DEBUGOUT("Unexpected media type.\n");
5214			break;
5215		}
5216
5217		/* Allow module to change analog characteristics (1G->10G) */
5218		msec_delay(40);
5219
5220		status = ixgbe_setup_mac_link(hw,
5221					      IXGBE_LINK_SPEED_10GB_FULL,
5222					      autoneg_wait_to_complete);
5223		if (status != IXGBE_SUCCESS)
5224			return status;
5225
5226		/* Flap the Tx laser if it has not already been done */
5227		ixgbe_flap_tx_laser(hw);
5228
5229		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
5230		 * Section 73.10.2, we may have to wait up to 500ms if KR is
5231		 * attempted.  82599 uses the same timing for 10g SFI.
5232		 */
5233		for (i = 0; i < 5; i++) {
5234			/* Wait for the link partner to also set speed */
5235			msec_delay(100);
5236
5237			/* If we have link, just jump out */
5238			status = ixgbe_check_link(hw, &link_speed,
5239						  &link_up, FALSE);
5240			if (status != IXGBE_SUCCESS)
5241				return status;
5242
5243			if (link_up)
5244				goto out;
5245		}
5246	}
5247
5248	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5249		speedcnt++;
5250		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5251			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5252
5253		/* Set the module link speed */
5254		switch (hw->phy.media_type) {
5255		case ixgbe_media_type_fiber_fixed:
5256		case ixgbe_media_type_fiber:
5257			ixgbe_set_rate_select_speed(hw,
5258						    IXGBE_LINK_SPEED_1GB_FULL);
5259			break;
5260		case ixgbe_media_type_fiber_qsfp:
5261			/* QSFP module automatically detects link speed */
5262			break;
5263		default:
5264			DEBUGOUT("Unexpected media type.\n");
5265			break;
5266		}
5267
5268		/* Allow module to change analog characteristics (10G->1G) */
5269		msec_delay(40);
5270
5271		status = ixgbe_setup_mac_link(hw,
5272					      IXGBE_LINK_SPEED_1GB_FULL,
5273					      autoneg_wait_to_complete);
5274		if (status != IXGBE_SUCCESS)
5275			return status;
5276
5277		/* Flap the Tx laser if it has not already been done */
5278		ixgbe_flap_tx_laser(hw);
5279
5280		/* Wait for the link partner to also set speed */
5281		msec_delay(100);
5282
5283		/* If we have link, just jump out */
5284		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5285		if (status != IXGBE_SUCCESS)
5286			return status;
5287
5288		if (link_up)
5289			goto out;
5290	}
5291
5292	/* We didn't get link.  Configure back to the highest speed we tried,
5293	 * (if there was more than one).  We call ourselves back with just the
5294	 * single highest speed that the user requested.
5295	 */
5296	if (speedcnt > 1)
5297		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5298						      highest_link_speed,
5299						      autoneg_wait_to_complete);
5300
5301out:
5302	/* Set autoneg_advertised value based on input link speed */
5303	hw->phy.autoneg_advertised = 0;
5304
5305	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5306		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5307
5308	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5309		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5310
5311	return status;
5312}
5313
5314/**
5315 *  ixgbe_set_soft_rate_select_speed - Set module link speed
5316 *  @hw: pointer to hardware structure
5317 *  @speed: link speed to set
5318 *
5319 *  Set module link speed via the soft rate select.
5320 */
5321void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5322					ixgbe_link_speed speed)
5323{
5324	s32 status;
5325	u8 rs, eeprom_data;
5326
5327	switch (speed) {
5328	case IXGBE_LINK_SPEED_10GB_FULL:
5329		/* one bit mask same as setting on */
5330		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5331		break;
5332	case IXGBE_LINK_SPEED_1GB_FULL:
5333		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5334		break;
5335	default:
5336		DEBUGOUT("Invalid fixed module speed\n");
5337		return;
5338	}
5339
5340	/* Set RS0 */
5341	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5342					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5343					   &eeprom_data);
5344	if (status) {
5345		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5346		goto out;
5347	}
5348
5349	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5350
5351	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5352					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5353					    eeprom_data);
5354	if (status) {
5355		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5356		goto out;
5357	}
5358
5359	/* Set RS1 */
5360	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5361					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5362					   &eeprom_data);
5363	if (status) {
5364		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5365		goto out;
5366	}
5367
5368	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5369
5370	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5371					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5372					    eeprom_data);
5373	if (status) {
5374		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5375		goto out;
5376	}
5377out:
5378	return;
5379}
5380