ixgbe_common.c revision 295524
1/******************************************************************************
2
3  Copyright (c) 2001-2015, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: stable/10/sys/dev/ixgbe/ixgbe_common.c 295524 2016-02-11 16:16:10Z sbruno $*/
34
35#include "ixgbe_common.h"
36#include "ixgbe_phy.h"
37#include "ixgbe_dcb.h"
38#include "ixgbe_dcb_82599.h"
39#include "ixgbe_api.h"
40
41static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
42static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
43static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
44static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
45static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
46static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
47					u16 count);
48static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
49static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
52
53static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
55					 u16 *san_mac_offset);
56static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57					     u16 words, u16 *data);
58static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59					      u16 words, u16 *data);
60static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
61						 u16 offset);
62
63/**
64 *  ixgbe_init_ops_generic - Inits function ptrs
65 *  @hw: pointer to the hardware structure
66 *
67 *  Initialize the function pointers.
68 **/
69s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
70{
71	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
72	struct ixgbe_mac_info *mac = &hw->mac;
73	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
74
75	DEBUGFUNC("ixgbe_init_ops_generic");
76
77	/* EEPROM */
78	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
79	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
80	if (eec & IXGBE_EEC_PRES) {
81		eeprom->ops.read = ixgbe_read_eerd_generic;
82		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
83	} else {
84		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
85		eeprom->ops.read_buffer =
86				 ixgbe_read_eeprom_buffer_bit_bang_generic;
87	}
88	eeprom->ops.write = ixgbe_write_eeprom_generic;
89	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
90	eeprom->ops.validate_checksum =
91				      ixgbe_validate_eeprom_checksum_generic;
92	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
93	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
94
95	/* MAC */
96	mac->ops.init_hw = ixgbe_init_hw_generic;
97	mac->ops.reset_hw = NULL;
98	mac->ops.start_hw = ixgbe_start_hw_generic;
99	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
100	mac->ops.get_media_type = NULL;
101	mac->ops.get_supported_physical_layer = NULL;
102	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
103	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
104	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
105	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
106	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
107	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
108	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
109	mac->ops.prot_autoc_read = prot_autoc_read_generic;
110	mac->ops.prot_autoc_write = prot_autoc_write_generic;
111
112	/* LEDs */
113	mac->ops.led_on = ixgbe_led_on_generic;
114	mac->ops.led_off = ixgbe_led_off_generic;
115	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
116	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
117
118	/* RAR, Multicast, VLAN */
119	mac->ops.set_rar = ixgbe_set_rar_generic;
120	mac->ops.clear_rar = ixgbe_clear_rar_generic;
121	mac->ops.insert_mac_addr = NULL;
122	mac->ops.set_vmdq = NULL;
123	mac->ops.clear_vmdq = NULL;
124	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
125	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
126	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
127	mac->ops.enable_mc = ixgbe_enable_mc_generic;
128	mac->ops.disable_mc = ixgbe_disable_mc_generic;
129	mac->ops.clear_vfta = NULL;
130	mac->ops.set_vfta = NULL;
131	mac->ops.set_vlvf = NULL;
132	mac->ops.init_uta_tables = NULL;
133	mac->ops.enable_rx = ixgbe_enable_rx_generic;
134	mac->ops.disable_rx = ixgbe_disable_rx_generic;
135
136	/* Flow Control */
137	mac->ops.fc_enable = ixgbe_fc_enable_generic;
138	mac->ops.setup_fc = ixgbe_setup_fc_generic;
139
140	/* Link */
141	mac->ops.get_link_capabilities = NULL;
142	mac->ops.setup_link = NULL;
143	mac->ops.check_link = NULL;
144	mac->ops.dmac_config = NULL;
145	mac->ops.dmac_update_tcs = NULL;
146	mac->ops.dmac_config_tcs = NULL;
147
148	return IXGBE_SUCCESS;
149}
150
151/**
152 * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
153 * of flow control
154 * @hw: pointer to hardware structure
155 *
156 * This function returns TRUE if the device supports flow control
157 * autonegotiation, and FALSE if it does not.
158 *
159 **/
160bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
161{
162	bool supported = FALSE;
163	ixgbe_link_speed speed;
164	bool link_up;
165
166	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
167
168	switch (hw->phy.media_type) {
169	case ixgbe_media_type_fiber_fixed:
170	case ixgbe_media_type_fiber_qsfp:
171	case ixgbe_media_type_fiber:
172		hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
173		/* if link is down, assume supported */
174		if (link_up)
175			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
176				TRUE : FALSE;
177		else
178			supported = TRUE;
179		break;
180	case ixgbe_media_type_backplane:
181		supported = TRUE;
182		break;
183	case ixgbe_media_type_copper:
184		/* only some copper devices support flow control autoneg */
185		switch (hw->device_id) {
186		case IXGBE_DEV_ID_82599_T3_LOM:
187		case IXGBE_DEV_ID_X540T:
188		case IXGBE_DEV_ID_X540T1:
189		case IXGBE_DEV_ID_X540_BYPASS:
190		case IXGBE_DEV_ID_X550T:
191		case IXGBE_DEV_ID_X550T1:
192		case IXGBE_DEV_ID_X550EM_X_10G_T:
193			supported = TRUE;
194			break;
195		default:
196			supported = FALSE;
197		}
198	default:
199		break;
200	}
201
202	ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
203		      "Device %x does not support flow control autoneg",
204		      hw->device_id);
205	return supported;
206}
207
208/**
209 *  ixgbe_setup_fc_generic - Set up flow control
210 *  @hw: pointer to hardware structure
211 *
212 *  Called at init time to set up flow control.
213 **/
214s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
215{
216	s32 ret_val = IXGBE_SUCCESS;
217	u32 reg = 0, reg_bp = 0;
218	u16 reg_cu = 0;
219	bool locked = FALSE;
220
221	DEBUGFUNC("ixgbe_setup_fc_generic");
222
223	/* Validate the requested mode */
224	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
225		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
226			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
227		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
228		goto out;
229	}
230
231	/*
232	 * 10gig parts do not have a word in the EEPROM to determine the
233	 * default flow control setting, so we explicitly set it to full.
234	 */
235	if (hw->fc.requested_mode == ixgbe_fc_default)
236		hw->fc.requested_mode = ixgbe_fc_full;
237
238	/*
239	 * Set up the 1G and 10G flow control advertisement registers so the
240	 * HW will be able to do fc autoneg once the cable is plugged in.  If
241	 * we link at 10G, the 1G advertisement is harmless and vice versa.
242	 */
243	switch (hw->phy.media_type) {
244	case ixgbe_media_type_backplane:
245		/* some MAC's need RMW protection on AUTOC */
246		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
247		if (ret_val != IXGBE_SUCCESS)
248			goto out;
249
250		/* only backplane uses autoc so fall though */
251	case ixgbe_media_type_fiber_fixed:
252	case ixgbe_media_type_fiber_qsfp:
253	case ixgbe_media_type_fiber:
254		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
255
256		break;
257	case ixgbe_media_type_copper:
258		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
259				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
260		break;
261	default:
262		break;
263	}
264
265	/*
266	 * The possible values of fc.requested_mode are:
267	 * 0: Flow control is completely disabled
268	 * 1: Rx flow control is enabled (we can receive pause frames,
269	 *    but not send pause frames).
270	 * 2: Tx flow control is enabled (we can send pause frames but
271	 *    we do not support receiving pause frames).
272	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
273	 * other: Invalid.
274	 */
275	switch (hw->fc.requested_mode) {
276	case ixgbe_fc_none:
277		/* Flow control completely disabled by software override. */
278		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
279		if (hw->phy.media_type == ixgbe_media_type_backplane)
280			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
281				    IXGBE_AUTOC_ASM_PAUSE);
282		else if (hw->phy.media_type == ixgbe_media_type_copper)
283			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
284		break;
285	case ixgbe_fc_tx_pause:
286		/*
287		 * Tx Flow control is enabled, and Rx Flow control is
288		 * disabled by software override.
289		 */
290		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
291		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
292		if (hw->phy.media_type == ixgbe_media_type_backplane) {
293			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
294			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
295		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
296			reg_cu |= IXGBE_TAF_ASM_PAUSE;
297			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
298		}
299		break;
300	case ixgbe_fc_rx_pause:
301		/*
302		 * Rx Flow control is enabled and Tx Flow control is
303		 * disabled by software override. Since there really
304		 * isn't a way to advertise that we are capable of RX
305		 * Pause ONLY, we will advertise that we support both
306		 * symmetric and asymmetric Rx PAUSE, as such we fall
307		 * through to the fc_full statement.  Later, we will
308		 * disable the adapter's ability to send PAUSE frames.
309		 */
310	case ixgbe_fc_full:
311		/* Flow control (both Rx and Tx) is enabled by SW override. */
312		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
313		if (hw->phy.media_type == ixgbe_media_type_backplane)
314			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
315				  IXGBE_AUTOC_ASM_PAUSE;
316		else if (hw->phy.media_type == ixgbe_media_type_copper)
317			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
318		break;
319	default:
320		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
321			     "Flow control param set incorrectly\n");
322		ret_val = IXGBE_ERR_CONFIG;
323		goto out;
324		break;
325	}
326
327	if (hw->mac.type < ixgbe_mac_X540) {
328		/*
329		 * Enable auto-negotiation between the MAC & PHY;
330		 * the MAC will advertise clause 37 flow control.
331		 */
332		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
333		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
334
335		/* Disable AN timeout */
336		if (hw->fc.strict_ieee)
337			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
338
339		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
340		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
341	}
342
343	/*
344	 * AUTOC restart handles negotiation of 1G and 10G on backplane
345	 * and copper. There is no need to set the PCS1GCTL register.
346	 *
347	 */
348	if (hw->phy.media_type == ixgbe_media_type_backplane) {
349		reg_bp |= IXGBE_AUTOC_AN_RESTART;
350		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
351		if (ret_val)
352			goto out;
353	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
354		    (ixgbe_device_supports_autoneg_fc(hw))) {
355		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
356				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
357	}
358
359	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
360out:
361	return ret_val;
362}
363
364/**
365 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
366 *  @hw: pointer to hardware structure
367 *
368 *  Starts the hardware by filling the bus info structure and media type, clears
369 *  all on chip counters, initializes receive address registers, multicast
370 *  table, VLAN filter table, calls routine to set up link and flow control
371 *  settings, and leaves transmit and receive units disabled and uninitialized
372 **/
373s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
374{
375	s32 ret_val;
376	u32 ctrl_ext;
377
378	DEBUGFUNC("ixgbe_start_hw_generic");
379
380	/* Set the media type */
381	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
382
383	/* PHY ops initialization must be done in reset_hw() */
384
385	/* Clear the VLAN filter table */
386	hw->mac.ops.clear_vfta(hw);
387
388	/* Clear statistics registers */
389	hw->mac.ops.clear_hw_cntrs(hw);
390
391	/* Set No Snoop Disable */
392	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
393	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
394	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
395	IXGBE_WRITE_FLUSH(hw);
396
397	/* Setup flow control */
398	ret_val = ixgbe_setup_fc(hw);
399	if (ret_val != IXGBE_SUCCESS)
400		goto out;
401
402	/* Clear adapter stopped flag */
403	hw->adapter_stopped = FALSE;
404
405out:
406	return ret_val;
407}
408
409/**
410 *  ixgbe_start_hw_gen2 - Init sequence for common device family
411 *  @hw: pointer to hw structure
412 *
413 * Performs the init sequence common to the second generation
414 * of 10 GbE devices.
415 * Devices in the second generation:
416 *     82599
417 *     X540
418 **/
419s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
420{
421	u32 i;
422	u32 regval;
423
424	/* Clear the rate limiters */
425	for (i = 0; i < hw->mac.max_tx_queues; i++) {
426		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
427		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
428	}
429	IXGBE_WRITE_FLUSH(hw);
430
431	/* Disable relaxed ordering */
432	for (i = 0; i < hw->mac.max_tx_queues; i++) {
433		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
434		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
435		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
436	}
437
438	for (i = 0; i < hw->mac.max_rx_queues; i++) {
439		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
440		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
441			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
442		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
443	}
444
445	return IXGBE_SUCCESS;
446}
447
448/**
449 *  ixgbe_init_hw_generic - Generic hardware initialization
450 *  @hw: pointer to hardware structure
451 *
452 *  Initialize the hardware by resetting the hardware, filling the bus info
453 *  structure and media type, clears all on chip counters, initializes receive
454 *  address registers, multicast table, VLAN filter table, calls routine to set
455 *  up link and flow control settings, and leaves transmit and receive units
456 *  disabled and uninitialized
457 **/
458s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
459{
460	s32 status;
461
462	DEBUGFUNC("ixgbe_init_hw_generic");
463
464	/* Reset the hardware */
465	status = hw->mac.ops.reset_hw(hw);
466
467	if (status == IXGBE_SUCCESS) {
468		/* Start the HW */
469		status = hw->mac.ops.start_hw(hw);
470	}
471
472	return status;
473}
474
475/**
476 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
477 *  @hw: pointer to hardware structure
478 *
479 *  Clears all hardware statistics counters by reading them from the hardware
480 *  Statistics counters are clear on read.
481 **/
482s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
483{
484	u16 i = 0;
485
486	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
487
488	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
489	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
490	IXGBE_READ_REG(hw, IXGBE_ERRBC);
491	IXGBE_READ_REG(hw, IXGBE_MSPDC);
492	for (i = 0; i < 8; i++)
493		IXGBE_READ_REG(hw, IXGBE_MPC(i));
494
495	IXGBE_READ_REG(hw, IXGBE_MLFC);
496	IXGBE_READ_REG(hw, IXGBE_MRFC);
497	IXGBE_READ_REG(hw, IXGBE_RLEC);
498	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
499	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
500	if (hw->mac.type >= ixgbe_mac_82599EB) {
501		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
502		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
503	} else {
504		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
505		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
506	}
507
508	for (i = 0; i < 8; i++) {
509		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
510		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
511		if (hw->mac.type >= ixgbe_mac_82599EB) {
512			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
513			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
514		} else {
515			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
516			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
517		}
518	}
519	if (hw->mac.type >= ixgbe_mac_82599EB)
520		for (i = 0; i < 8; i++)
521			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
522	IXGBE_READ_REG(hw, IXGBE_PRC64);
523	IXGBE_READ_REG(hw, IXGBE_PRC127);
524	IXGBE_READ_REG(hw, IXGBE_PRC255);
525	IXGBE_READ_REG(hw, IXGBE_PRC511);
526	IXGBE_READ_REG(hw, IXGBE_PRC1023);
527	IXGBE_READ_REG(hw, IXGBE_PRC1522);
528	IXGBE_READ_REG(hw, IXGBE_GPRC);
529	IXGBE_READ_REG(hw, IXGBE_BPRC);
530	IXGBE_READ_REG(hw, IXGBE_MPRC);
531	IXGBE_READ_REG(hw, IXGBE_GPTC);
532	IXGBE_READ_REG(hw, IXGBE_GORCL);
533	IXGBE_READ_REG(hw, IXGBE_GORCH);
534	IXGBE_READ_REG(hw, IXGBE_GOTCL);
535	IXGBE_READ_REG(hw, IXGBE_GOTCH);
536	if (hw->mac.type == ixgbe_mac_82598EB)
537		for (i = 0; i < 8; i++)
538			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
539	IXGBE_READ_REG(hw, IXGBE_RUC);
540	IXGBE_READ_REG(hw, IXGBE_RFC);
541	IXGBE_READ_REG(hw, IXGBE_ROC);
542	IXGBE_READ_REG(hw, IXGBE_RJC);
543	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
544	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
545	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
546	IXGBE_READ_REG(hw, IXGBE_TORL);
547	IXGBE_READ_REG(hw, IXGBE_TORH);
548	IXGBE_READ_REG(hw, IXGBE_TPR);
549	IXGBE_READ_REG(hw, IXGBE_TPT);
550	IXGBE_READ_REG(hw, IXGBE_PTC64);
551	IXGBE_READ_REG(hw, IXGBE_PTC127);
552	IXGBE_READ_REG(hw, IXGBE_PTC255);
553	IXGBE_READ_REG(hw, IXGBE_PTC511);
554	IXGBE_READ_REG(hw, IXGBE_PTC1023);
555	IXGBE_READ_REG(hw, IXGBE_PTC1522);
556	IXGBE_READ_REG(hw, IXGBE_MPTC);
557	IXGBE_READ_REG(hw, IXGBE_BPTC);
558	for (i = 0; i < 16; i++) {
559		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
560		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
561		if (hw->mac.type >= ixgbe_mac_82599EB) {
562			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
563			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
564			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
565			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
566			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
567		} else {
568			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
569			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
570		}
571	}
572
573	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
574		if (hw->phy.id == 0)
575			ixgbe_identify_phy(hw);
576		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
577				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
578		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
579				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
580		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
581				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
582		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
583				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
584	}
585
586	return IXGBE_SUCCESS;
587}
588
589/**
590 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
591 *  @hw: pointer to hardware structure
592 *  @pba_num: stores the part number string from the EEPROM
593 *  @pba_num_size: part number string buffer length
594 *
595 *  Reads the part number string from the EEPROM.
596 **/
597s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
598				  u32 pba_num_size)
599{
600	s32 ret_val;
601	u16 data;
602	u16 pba_ptr;
603	u16 offset;
604	u16 length;
605
606	DEBUGFUNC("ixgbe_read_pba_string_generic");
607
608	if (pba_num == NULL) {
609		DEBUGOUT("PBA string buffer was null\n");
610		return IXGBE_ERR_INVALID_ARGUMENT;
611	}
612
613	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
614	if (ret_val) {
615		DEBUGOUT("NVM Read Error\n");
616		return ret_val;
617	}
618
619	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
620	if (ret_val) {
621		DEBUGOUT("NVM Read Error\n");
622		return ret_val;
623	}
624
625	/*
626	 * if data is not ptr guard the PBA must be in legacy format which
627	 * means pba_ptr is actually our second data word for the PBA number
628	 * and we can decode it into an ascii string
629	 */
630	if (data != IXGBE_PBANUM_PTR_GUARD) {
631		DEBUGOUT("NVM PBA number is not stored as string\n");
632
633		/* we will need 11 characters to store the PBA */
634		if (pba_num_size < 11) {
635			DEBUGOUT("PBA string buffer too small\n");
636			return IXGBE_ERR_NO_SPACE;
637		}
638
639		/* extract hex string from data and pba_ptr */
640		pba_num[0] = (data >> 12) & 0xF;
641		pba_num[1] = (data >> 8) & 0xF;
642		pba_num[2] = (data >> 4) & 0xF;
643		pba_num[3] = data & 0xF;
644		pba_num[4] = (pba_ptr >> 12) & 0xF;
645		pba_num[5] = (pba_ptr >> 8) & 0xF;
646		pba_num[6] = '-';
647		pba_num[7] = 0;
648		pba_num[8] = (pba_ptr >> 4) & 0xF;
649		pba_num[9] = pba_ptr & 0xF;
650
651		/* put a null character on the end of our string */
652		pba_num[10] = '\0';
653
654		/* switch all the data but the '-' to hex char */
655		for (offset = 0; offset < 10; offset++) {
656			if (pba_num[offset] < 0xA)
657				pba_num[offset] += '0';
658			else if (pba_num[offset] < 0x10)
659				pba_num[offset] += 'A' - 0xA;
660		}
661
662		return IXGBE_SUCCESS;
663	}
664
665	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
666	if (ret_val) {
667		DEBUGOUT("NVM Read Error\n");
668		return ret_val;
669	}
670
671	if (length == 0xFFFF || length == 0) {
672		DEBUGOUT("NVM PBA number section invalid length\n");
673		return IXGBE_ERR_PBA_SECTION;
674	}
675
676	/* check if pba_num buffer is big enough */
677	if (pba_num_size  < (((u32)length * 2) - 1)) {
678		DEBUGOUT("PBA string buffer too small\n");
679		return IXGBE_ERR_NO_SPACE;
680	}
681
682	/* trim pba length from start of string */
683	pba_ptr++;
684	length--;
685
686	for (offset = 0; offset < length; offset++) {
687		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
688		if (ret_val) {
689			DEBUGOUT("NVM Read Error\n");
690			return ret_val;
691		}
692		pba_num[offset * 2] = (u8)(data >> 8);
693		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
694	}
695	pba_num[offset * 2] = '\0';
696
697	return IXGBE_SUCCESS;
698}
699
700/**
701 *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
702 *  @hw: pointer to hardware structure
703 *  @pba_num: stores the part number from the EEPROM
704 *
705 *  Reads the part number from the EEPROM.
706 **/
707s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
708{
709	s32 ret_val;
710	u16 data;
711
712	DEBUGFUNC("ixgbe_read_pba_num_generic");
713
714	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
715	if (ret_val) {
716		DEBUGOUT("NVM Read Error\n");
717		return ret_val;
718	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
719		DEBUGOUT("NVM Not supported\n");
720		return IXGBE_NOT_IMPLEMENTED;
721	}
722	*pba_num = (u32)(data << 16);
723
724	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
725	if (ret_val) {
726		DEBUGOUT("NVM Read Error\n");
727		return ret_val;
728	}
729	*pba_num |= data;
730
731	return IXGBE_SUCCESS;
732}
733
734/**
735 *  ixgbe_read_pba_raw
736 *  @hw: pointer to the HW structure
737 *  @eeprom_buf: optional pointer to EEPROM image
738 *  @eeprom_buf_size: size of EEPROM image in words
739 *  @max_pba_block_size: PBA block size limit
740 *  @pba: pointer to output PBA structure
741 *
742 *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
743 *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
744 *
745 **/
746s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
747		       u32 eeprom_buf_size, u16 max_pba_block_size,
748		       struct ixgbe_pba *pba)
749{
750	s32 ret_val;
751	u16 pba_block_size;
752
753	if (pba == NULL)
754		return IXGBE_ERR_PARAM;
755
756	if (eeprom_buf == NULL) {
757		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
758						     &pba->word[0]);
759		if (ret_val)
760			return ret_val;
761	} else {
762		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
763			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
764			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
765		} else {
766			return IXGBE_ERR_PARAM;
767		}
768	}
769
770	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
771		if (pba->pba_block == NULL)
772			return IXGBE_ERR_PARAM;
773
774		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
775						   eeprom_buf_size,
776						   &pba_block_size);
777		if (ret_val)
778			return ret_val;
779
780		if (pba_block_size > max_pba_block_size)
781			return IXGBE_ERR_PARAM;
782
783		if (eeprom_buf == NULL) {
784			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
785							     pba_block_size,
786							     pba->pba_block);
787			if (ret_val)
788				return ret_val;
789		} else {
790			if (eeprom_buf_size > (u32)(pba->word[1] +
791					      pba_block_size)) {
792				memcpy(pba->pba_block,
793				       &eeprom_buf[pba->word[1]],
794				       pba_block_size * sizeof(u16));
795			} else {
796				return IXGBE_ERR_PARAM;
797			}
798		}
799	}
800
801	return IXGBE_SUCCESS;
802}
803
804/**
805 *  ixgbe_write_pba_raw
806 *  @hw: pointer to the HW structure
807 *  @eeprom_buf: optional pointer to EEPROM image
808 *  @eeprom_buf_size: size of EEPROM image in words
809 *  @pba: pointer to PBA structure
810 *
811 *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
812 *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
813 *
814 **/
815s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
816			u32 eeprom_buf_size, struct ixgbe_pba *pba)
817{
818	s32 ret_val;
819
820	if (pba == NULL)
821		return IXGBE_ERR_PARAM;
822
823	if (eeprom_buf == NULL) {
824		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
825						      &pba->word[0]);
826		if (ret_val)
827			return ret_val;
828	} else {
829		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
830			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
831			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
832		} else {
833			return IXGBE_ERR_PARAM;
834		}
835	}
836
837	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
838		if (pba->pba_block == NULL)
839			return IXGBE_ERR_PARAM;
840
841		if (eeprom_buf == NULL) {
842			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
843							      pba->pba_block[0],
844							      pba->pba_block);
845			if (ret_val)
846				return ret_val;
847		} else {
848			if (eeprom_buf_size > (u32)(pba->word[1] +
849					      pba->pba_block[0])) {
850				memcpy(&eeprom_buf[pba->word[1]],
851				       pba->pba_block,
852				       pba->pba_block[0] * sizeof(u16));
853			} else {
854				return IXGBE_ERR_PARAM;
855			}
856		}
857	}
858
859	return IXGBE_SUCCESS;
860}
861
862/**
863 *  ixgbe_get_pba_block_size
864 *  @hw: pointer to the HW structure
865 *  @eeprom_buf: optional pointer to EEPROM image
866 *  @eeprom_buf_size: size of EEPROM image in words
867 *  @pba_data_size: pointer to output variable
868 *
869 *  Returns the size of the PBA block in words. Function operates on EEPROM
870 *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
871 *  EEPROM device.
872 *
873 **/
874s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
875			     u32 eeprom_buf_size, u16 *pba_block_size)
876{
877	s32 ret_val;
878	u16 pba_word[2];
879	u16 length;
880
881	DEBUGFUNC("ixgbe_get_pba_block_size");
882
883	if (eeprom_buf == NULL) {
884		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
885						     &pba_word[0]);
886		if (ret_val)
887			return ret_val;
888	} else {
889		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
890			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
891			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
892		} else {
893			return IXGBE_ERR_PARAM;
894		}
895	}
896
897	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
898		if (eeprom_buf == NULL) {
899			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
900						      &length);
901			if (ret_val)
902				return ret_val;
903		} else {
904			if (eeprom_buf_size > pba_word[1])
905				length = eeprom_buf[pba_word[1] + 0];
906			else
907				return IXGBE_ERR_PARAM;
908		}
909
910		if (length == 0xFFFF || length == 0)
911			return IXGBE_ERR_PBA_SECTION;
912	} else {
913		/* PBA number in legacy format, there is no PBA Block. */
914		length = 0;
915	}
916
917	if (pba_block_size != NULL)
918		*pba_block_size = length;
919
920	return IXGBE_SUCCESS;
921}
922
923/**
924 *  ixgbe_get_mac_addr_generic - Generic get MAC address
925 *  @hw: pointer to hardware structure
926 *  @mac_addr: Adapter MAC address
927 *
928 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
929 *  A reset of the adapter must be performed prior to calling this function
930 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
931 **/
932s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
933{
934	u32 rar_high;
935	u32 rar_low;
936	u16 i;
937
938	DEBUGFUNC("ixgbe_get_mac_addr_generic");
939
940	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
941	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
942
943	for (i = 0; i < 4; i++)
944		mac_addr[i] = (u8)(rar_low >> (i*8));
945
946	for (i = 0; i < 2; i++)
947		mac_addr[i+4] = (u8)(rar_high >> (i*8));
948
949	return IXGBE_SUCCESS;
950}
951
952/**
953 *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
954 *  @hw: pointer to hardware structure
955 *  @link_status: the link status returned by the PCI config space
956 *
957 *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
958 **/
959void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
960{
961	struct ixgbe_mac_info *mac = &hw->mac;
962
963	if (hw->bus.type == ixgbe_bus_type_unknown)
964		hw->bus.type = ixgbe_bus_type_pci_express;
965
966	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
967	case IXGBE_PCI_LINK_WIDTH_1:
968		hw->bus.width = ixgbe_bus_width_pcie_x1;
969		break;
970	case IXGBE_PCI_LINK_WIDTH_2:
971		hw->bus.width = ixgbe_bus_width_pcie_x2;
972		break;
973	case IXGBE_PCI_LINK_WIDTH_4:
974		hw->bus.width = ixgbe_bus_width_pcie_x4;
975		break;
976	case IXGBE_PCI_LINK_WIDTH_8:
977		hw->bus.width = ixgbe_bus_width_pcie_x8;
978		break;
979	default:
980		hw->bus.width = ixgbe_bus_width_unknown;
981		break;
982	}
983
984	switch (link_status & IXGBE_PCI_LINK_SPEED) {
985	case IXGBE_PCI_LINK_SPEED_2500:
986		hw->bus.speed = ixgbe_bus_speed_2500;
987		break;
988	case IXGBE_PCI_LINK_SPEED_5000:
989		hw->bus.speed = ixgbe_bus_speed_5000;
990		break;
991	case IXGBE_PCI_LINK_SPEED_8000:
992		hw->bus.speed = ixgbe_bus_speed_8000;
993		break;
994	default:
995		hw->bus.speed = ixgbe_bus_speed_unknown;
996		break;
997	}
998
999	mac->ops.set_lan_id(hw);
1000}
1001
1002/**
1003 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
1004 *  @hw: pointer to hardware structure
1005 *
1006 *  Gets the PCI bus info (speed, width, type) then calls helper function to
1007 *  store this data within the ixgbe_hw structure.
1008 **/
1009s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1010{
1011	u16 link_status;
1012
1013	DEBUGFUNC("ixgbe_get_bus_info_generic");
1014
1015	/* Get the negotiated link width and speed from PCI config space */
1016	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1017
1018	ixgbe_set_pci_config_data_generic(hw, link_status);
1019
1020	return IXGBE_SUCCESS;
1021}
1022
1023/**
1024 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1025 *  @hw: pointer to the HW structure
1026 *
1027 *  Determines the LAN function id by reading memory-mapped registers
1028 *  and swaps the port value if requested.
1029 **/
1030void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1031{
1032	struct ixgbe_bus_info *bus = &hw->bus;
1033	u32 reg;
1034
1035	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1036
1037	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1038	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1039	bus->lan_id = bus->func;
1040
1041	/* check for a port swap */
1042	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1043	if (reg & IXGBE_FACTPS_LFS)
1044		bus->func ^= 0x1;
1045}
1046
1047/**
1048 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1049 *  @hw: pointer to hardware structure
1050 *
1051 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1052 *  disables transmit and receive units. The adapter_stopped flag is used by
1053 *  the shared code and drivers to determine if the adapter is in a stopped
1054 *  state and should not touch the hardware.
1055 **/
1056s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1057{
1058	u32 reg_val;
1059	u16 i;
1060
1061	DEBUGFUNC("ixgbe_stop_adapter_generic");
1062
1063	/*
1064	 * Set the adapter_stopped flag so other driver functions stop touching
1065	 * the hardware
1066	 */
1067	hw->adapter_stopped = TRUE;
1068
1069	/* Disable the receive unit */
1070	ixgbe_disable_rx(hw);
1071
1072	/* Clear interrupt mask to stop interrupts from being generated */
1073	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1074
1075	/* Clear any pending interrupts, flush previous writes */
1076	IXGBE_READ_REG(hw, IXGBE_EICR);
1077
1078	/* Disable the transmit unit.  Each queue must be disabled. */
1079	for (i = 0; i < hw->mac.max_tx_queues; i++)
1080		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1081
1082	/* Disable the receive unit by stopping each queue */
1083	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1084		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1085		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1086		reg_val |= IXGBE_RXDCTL_SWFLSH;
1087		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1088	}
1089
1090	/* flush all queues disables */
1091	IXGBE_WRITE_FLUSH(hw);
1092	msec_delay(2);
1093
1094	/*
1095	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1096	 * access and verify no pending requests
1097	 */
1098	return ixgbe_disable_pcie_master(hw);
1099}
1100
1101/**
1102 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
1103 *  @hw: pointer to hardware structure
1104 *  @index: led number to turn on
1105 **/
1106s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1107{
1108	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1109
1110	DEBUGFUNC("ixgbe_led_on_generic");
1111
1112	/* To turn on the LED, set mode to ON. */
1113	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1114	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1115	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1116	IXGBE_WRITE_FLUSH(hw);
1117
1118	return IXGBE_SUCCESS;
1119}
1120
1121/**
1122 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
1123 *  @hw: pointer to hardware structure
1124 *  @index: led number to turn off
1125 **/
1126s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1127{
1128	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1129
1130	DEBUGFUNC("ixgbe_led_off_generic");
1131
1132	/* To turn off the LED, set mode to OFF. */
1133	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1134	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1135	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1136	IXGBE_WRITE_FLUSH(hw);
1137
1138	return IXGBE_SUCCESS;
1139}
1140
1141/**
1142 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1143 *  @hw: pointer to hardware structure
1144 *
1145 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
1146 *  ixgbe_hw struct in order to set up EEPROM access.
1147 **/
1148s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1149{
1150	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1151	u32 eec;
1152	u16 eeprom_size;
1153
1154	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1155
1156	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1157		eeprom->type = ixgbe_eeprom_none;
1158		/* Set default semaphore delay to 10ms which is a well
1159		 * tested value */
1160		eeprom->semaphore_delay = 10;
1161		/* Clear EEPROM page size, it will be initialized as needed */
1162		eeprom->word_page_size = 0;
1163
1164		/*
1165		 * Check for EEPROM present first.
1166		 * If not present leave as none
1167		 */
1168		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1169		if (eec & IXGBE_EEC_PRES) {
1170			eeprom->type = ixgbe_eeprom_spi;
1171
1172			/*
1173			 * SPI EEPROM is assumed here.  This code would need to
1174			 * change if a future EEPROM is not SPI.
1175			 */
1176			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1177					    IXGBE_EEC_SIZE_SHIFT);
1178			eeprom->word_size = 1 << (eeprom_size +
1179					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1180		}
1181
1182		if (eec & IXGBE_EEC_ADDR_SIZE)
1183			eeprom->address_bits = 16;
1184		else
1185			eeprom->address_bits = 8;
1186		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1187			  "%d\n", eeprom->type, eeprom->word_size,
1188			  eeprom->address_bits);
1189	}
1190
1191	return IXGBE_SUCCESS;
1192}
1193
1194/**
1195 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1196 *  @hw: pointer to hardware structure
1197 *  @offset: offset within the EEPROM to write
1198 *  @words: number of word(s)
1199 *  @data: 16 bit word(s) to write to EEPROM
1200 *
1201 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1202 **/
1203s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1204					       u16 words, u16 *data)
1205{
1206	s32 status = IXGBE_SUCCESS;
1207	u16 i, count;
1208
1209	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1210
1211	hw->eeprom.ops.init_params(hw);
1212
1213	if (words == 0) {
1214		status = IXGBE_ERR_INVALID_ARGUMENT;
1215		goto out;
1216	}
1217
1218	if (offset + words > hw->eeprom.word_size) {
1219		status = IXGBE_ERR_EEPROM;
1220		goto out;
1221	}
1222
1223	/*
1224	 * The EEPROM page size cannot be queried from the chip. We do lazy
1225	 * initialization. It is worth to do that when we write large buffer.
1226	 */
1227	if ((hw->eeprom.word_page_size == 0) &&
1228	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1229		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1230
1231	/*
1232	 * We cannot hold synchronization semaphores for too long
1233	 * to avoid other entity starvation. However it is more efficient
1234	 * to read in bursts than synchronizing access for each word.
1235	 */
1236	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1237		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1238			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1239		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1240							    count, &data[i]);
1241
1242		if (status != IXGBE_SUCCESS)
1243			break;
1244	}
1245
1246out:
1247	return status;
1248}
1249
1250/**
1251 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1252 *  @hw: pointer to hardware structure
1253 *  @offset: offset within the EEPROM to be written to
1254 *  @words: number of word(s)
1255 *  @data: 16 bit word(s) to be written to the EEPROM
1256 *
1257 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1258 *  EEPROM will most likely contain an invalid checksum.
1259 **/
1260static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1261					      u16 words, u16 *data)
1262{
1263	s32 status;
1264	u16 word;
1265	u16 page_size;
1266	u16 i;
1267	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1268
1269	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1270
1271	/* Prepare the EEPROM for writing  */
1272	status = ixgbe_acquire_eeprom(hw);
1273
1274	if (status == IXGBE_SUCCESS) {
1275		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1276			ixgbe_release_eeprom(hw);
1277			status = IXGBE_ERR_EEPROM;
1278		}
1279	}
1280
1281	if (status == IXGBE_SUCCESS) {
1282		for (i = 0; i < words; i++) {
1283			ixgbe_standby_eeprom(hw);
1284
1285			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1286			ixgbe_shift_out_eeprom_bits(hw,
1287						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1288						   IXGBE_EEPROM_OPCODE_BITS);
1289
1290			ixgbe_standby_eeprom(hw);
1291
1292			/*
1293			 * Some SPI eeproms use the 8th address bit embedded
1294			 * in the opcode
1295			 */
1296			if ((hw->eeprom.address_bits == 8) &&
1297			    ((offset + i) >= 128))
1298				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1299
1300			/* Send the Write command (8-bit opcode + addr) */
1301			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1302						    IXGBE_EEPROM_OPCODE_BITS);
1303			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1304						    hw->eeprom.address_bits);
1305
1306			page_size = hw->eeprom.word_page_size;
1307
1308			/* Send the data in burst via SPI*/
1309			do {
1310				word = data[i];
1311				word = (word >> 8) | (word << 8);
1312				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1313
1314				if (page_size == 0)
1315					break;
1316
1317				/* do not wrap around page */
1318				if (((offset + i) & (page_size - 1)) ==
1319				    (page_size - 1))
1320					break;
1321			} while (++i < words);
1322
1323			ixgbe_standby_eeprom(hw);
1324			msec_delay(10);
1325		}
1326		/* Done with writing - release the EEPROM */
1327		ixgbe_release_eeprom(hw);
1328	}
1329
1330	return status;
1331}
1332
1333/**
1334 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1335 *  @hw: pointer to hardware structure
1336 *  @offset: offset within the EEPROM to be written to
1337 *  @data: 16 bit word to be written to the EEPROM
1338 *
1339 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1340 *  EEPROM will most likely contain an invalid checksum.
1341 **/
1342s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1343{
1344	s32 status;
1345
1346	DEBUGFUNC("ixgbe_write_eeprom_generic");
1347
1348	hw->eeprom.ops.init_params(hw);
1349
1350	if (offset >= hw->eeprom.word_size) {
1351		status = IXGBE_ERR_EEPROM;
1352		goto out;
1353	}
1354
1355	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1356
1357out:
1358	return status;
1359}
1360
1361/**
1362 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1363 *  @hw: pointer to hardware structure
1364 *  @offset: offset within the EEPROM to be read
1365 *  @data: read 16 bit words(s) from EEPROM
1366 *  @words: number of word(s)
1367 *
1368 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1369 **/
1370s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1371					      u16 words, u16 *data)
1372{
1373	s32 status = IXGBE_SUCCESS;
1374	u16 i, count;
1375
1376	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1377
1378	hw->eeprom.ops.init_params(hw);
1379
1380	if (words == 0) {
1381		status = IXGBE_ERR_INVALID_ARGUMENT;
1382		goto out;
1383	}
1384
1385	if (offset + words > hw->eeprom.word_size) {
1386		status = IXGBE_ERR_EEPROM;
1387		goto out;
1388	}
1389
1390	/*
1391	 * We cannot hold synchronization semaphores for too long
1392	 * to avoid other entity starvation. However it is more efficient
1393	 * to read in bursts than synchronizing access for each word.
1394	 */
1395	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1396		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1397			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1398
1399		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1400							   count, &data[i]);
1401
1402		if (status != IXGBE_SUCCESS)
1403			break;
1404	}
1405
1406out:
1407	return status;
1408}
1409
1410/**
1411 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1412 *  @hw: pointer to hardware structure
1413 *  @offset: offset within the EEPROM to be read
1414 *  @words: number of word(s)
1415 *  @data: read 16 bit word(s) from EEPROM
1416 *
1417 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1418 **/
1419static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1420					     u16 words, u16 *data)
1421{
1422	s32 status;
1423	u16 word_in;
1424	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1425	u16 i;
1426
1427	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1428
1429	/* Prepare the EEPROM for reading  */
1430	status = ixgbe_acquire_eeprom(hw);
1431
1432	if (status == IXGBE_SUCCESS) {
1433		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1434			ixgbe_release_eeprom(hw);
1435			status = IXGBE_ERR_EEPROM;
1436		}
1437	}
1438
1439	if (status == IXGBE_SUCCESS) {
1440		for (i = 0; i < words; i++) {
1441			ixgbe_standby_eeprom(hw);
1442			/*
1443			 * Some SPI eeproms use the 8th address bit embedded
1444			 * in the opcode
1445			 */
1446			if ((hw->eeprom.address_bits == 8) &&
1447			    ((offset + i) >= 128))
1448				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1449
1450			/* Send the READ command (opcode + addr) */
1451			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1452						    IXGBE_EEPROM_OPCODE_BITS);
1453			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1454						    hw->eeprom.address_bits);
1455
1456			/* Read the data. */
1457			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1458			data[i] = (word_in >> 8) | (word_in << 8);
1459		}
1460
1461		/* End this read operation */
1462		ixgbe_release_eeprom(hw);
1463	}
1464
1465	return status;
1466}
1467
1468/**
1469 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1470 *  @hw: pointer to hardware structure
1471 *  @offset: offset within the EEPROM to be read
1472 *  @data: read 16 bit value from EEPROM
1473 *
1474 *  Reads 16 bit value from EEPROM through bit-bang method
1475 **/
1476s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1477				       u16 *data)
1478{
1479	s32 status;
1480
1481	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1482
1483	hw->eeprom.ops.init_params(hw);
1484
1485	if (offset >= hw->eeprom.word_size) {
1486		status = IXGBE_ERR_EEPROM;
1487		goto out;
1488	}
1489
1490	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1491
1492out:
1493	return status;
1494}
1495
1496/**
1497 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1498 *  @hw: pointer to hardware structure
1499 *  @offset: offset of word in the EEPROM to read
1500 *  @words: number of word(s)
1501 *  @data: 16 bit word(s) from the EEPROM
1502 *
1503 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1504 **/
1505s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1506				   u16 words, u16 *data)
1507{
1508	u32 eerd;
1509	s32 status = IXGBE_SUCCESS;
1510	u32 i;
1511
1512	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1513
1514	hw->eeprom.ops.init_params(hw);
1515
1516	if (words == 0) {
1517		status = IXGBE_ERR_INVALID_ARGUMENT;
1518		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1519		goto out;
1520	}
1521
1522	if (offset >= hw->eeprom.word_size) {
1523		status = IXGBE_ERR_EEPROM;
1524		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1525		goto out;
1526	}
1527
1528	for (i = 0; i < words; i++) {
1529		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1530		       IXGBE_EEPROM_RW_REG_START;
1531
1532		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1533		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1534
1535		if (status == IXGBE_SUCCESS) {
1536			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1537				   IXGBE_EEPROM_RW_REG_DATA);
1538		} else {
1539			DEBUGOUT("Eeprom read timed out\n");
1540			goto out;
1541		}
1542	}
1543out:
1544	return status;
1545}
1546
1547/**
1548 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1549 *  @hw: pointer to hardware structure
1550 *  @offset: offset within the EEPROM to be used as a scratch pad
1551 *
1552 *  Discover EEPROM page size by writing marching data at given offset.
1553 *  This function is called only when we are writing a new large buffer
1554 *  at given offset so the data would be overwritten anyway.
1555 **/
1556static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1557						 u16 offset)
1558{
1559	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1560	s32 status = IXGBE_SUCCESS;
1561	u16 i;
1562
1563	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1564
1565	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1566		data[i] = i;
1567
1568	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1569	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1570					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1571	hw->eeprom.word_page_size = 0;
1572	if (status != IXGBE_SUCCESS)
1573		goto out;
1574
1575	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1576	if (status != IXGBE_SUCCESS)
1577		goto out;
1578
1579	/*
1580	 * When writing in burst more than the actual page size
1581	 * EEPROM address wraps around current page.
1582	 */
1583	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1584
1585	DEBUGOUT1("Detected EEPROM page size = %d words.",
1586		  hw->eeprom.word_page_size);
1587out:
1588	return status;
1589}
1590
1591/**
1592 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1593 *  @hw: pointer to hardware structure
1594 *  @offset: offset of  word in the EEPROM to read
1595 *  @data: word read from the EEPROM
1596 *
1597 *  Reads a 16 bit word from the EEPROM using the EERD register.
1598 **/
1599s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1600{
1601	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1602}
1603
1604/**
1605 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1606 *  @hw: pointer to hardware structure
1607 *  @offset: offset of  word in the EEPROM to write
1608 *  @words: number of word(s)
1609 *  @data: word(s) write to the EEPROM
1610 *
1611 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1612 **/
1613s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1614				    u16 words, u16 *data)
1615{
1616	u32 eewr;
1617	s32 status = IXGBE_SUCCESS;
1618	u16 i;
1619
1620	DEBUGFUNC("ixgbe_write_eewr_generic");
1621
1622	hw->eeprom.ops.init_params(hw);
1623
1624	if (words == 0) {
1625		status = IXGBE_ERR_INVALID_ARGUMENT;
1626		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1627		goto out;
1628	}
1629
1630	if (offset >= hw->eeprom.word_size) {
1631		status = IXGBE_ERR_EEPROM;
1632		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1633		goto out;
1634	}
1635
1636	for (i = 0; i < words; i++) {
1637		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1638			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1639			IXGBE_EEPROM_RW_REG_START;
1640
1641		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1642		if (status != IXGBE_SUCCESS) {
1643			DEBUGOUT("Eeprom write EEWR timed out\n");
1644			goto out;
1645		}
1646
1647		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1648
1649		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1650		if (status != IXGBE_SUCCESS) {
1651			DEBUGOUT("Eeprom write EEWR timed out\n");
1652			goto out;
1653		}
1654	}
1655
1656out:
1657	return status;
1658}
1659
1660/**
1661 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1662 *  @hw: pointer to hardware structure
1663 *  @offset: offset of  word in the EEPROM to write
1664 *  @data: word write to the EEPROM
1665 *
1666 *  Write a 16 bit word to the EEPROM using the EEWR register.
1667 **/
1668s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1669{
1670	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1671}
1672
1673/**
1674 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1675 *  @hw: pointer to hardware structure
1676 *  @ee_reg: EEPROM flag for polling
1677 *
1678 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1679 *  read or write is done respectively.
1680 **/
1681s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1682{
1683	u32 i;
1684	u32 reg;
1685	s32 status = IXGBE_ERR_EEPROM;
1686
1687	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1688
1689	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1690		if (ee_reg == IXGBE_NVM_POLL_READ)
1691			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1692		else
1693			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1694
1695		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1696			status = IXGBE_SUCCESS;
1697			break;
1698		}
1699		usec_delay(5);
1700	}
1701
1702	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1703		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1704			     "EEPROM read/write done polling timed out");
1705
1706	return status;
1707}
1708
1709/**
1710 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1711 *  @hw: pointer to hardware structure
1712 *
1713 *  Prepares EEPROM for access using bit-bang method. This function should
1714 *  be called before issuing a command to the EEPROM.
1715 **/
1716static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1717{
1718	s32 status = IXGBE_SUCCESS;
1719	u32 eec;
1720	u32 i;
1721
1722	DEBUGFUNC("ixgbe_acquire_eeprom");
1723
1724	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1725	    != IXGBE_SUCCESS)
1726		status = IXGBE_ERR_SWFW_SYNC;
1727
1728	if (status == IXGBE_SUCCESS) {
1729		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1730
1731		/* Request EEPROM Access */
1732		eec |= IXGBE_EEC_REQ;
1733		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1734
1735		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1736			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1737			if (eec & IXGBE_EEC_GNT)
1738				break;
1739			usec_delay(5);
1740		}
1741
1742		/* Release if grant not acquired */
1743		if (!(eec & IXGBE_EEC_GNT)) {
1744			eec &= ~IXGBE_EEC_REQ;
1745			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1746			DEBUGOUT("Could not acquire EEPROM grant\n");
1747
1748			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1749			status = IXGBE_ERR_EEPROM;
1750		}
1751
1752		/* Setup EEPROM for Read/Write */
1753		if (status == IXGBE_SUCCESS) {
1754			/* Clear CS and SK */
1755			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1756			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1757			IXGBE_WRITE_FLUSH(hw);
1758			usec_delay(1);
1759		}
1760	}
1761	return status;
1762}
1763
1764/**
1765 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1766 *  @hw: pointer to hardware structure
1767 *
1768 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1769 **/
1770static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1771{
1772	s32 status = IXGBE_ERR_EEPROM;
1773	u32 timeout = 2000;
1774	u32 i;
1775	u32 swsm;
1776
1777	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1778
1779
1780	/* Get SMBI software semaphore between device drivers first */
1781	for (i = 0; i < timeout; i++) {
1782		/*
1783		 * If the SMBI bit is 0 when we read it, then the bit will be
1784		 * set and we have the semaphore
1785		 */
1786		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1787		if (!(swsm & IXGBE_SWSM_SMBI)) {
1788			status = IXGBE_SUCCESS;
1789			break;
1790		}
1791		usec_delay(50);
1792	}
1793
1794	if (i == timeout) {
1795		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1796			 "not granted.\n");
1797		/*
1798		 * this release is particularly important because our attempts
1799		 * above to get the semaphore may have succeeded, and if there
1800		 * was a timeout, we should unconditionally clear the semaphore
1801		 * bits to free the driver to make progress
1802		 */
1803		ixgbe_release_eeprom_semaphore(hw);
1804
1805		usec_delay(50);
1806		/*
1807		 * one last try
1808		 * If the SMBI bit is 0 when we read it, then the bit will be
1809		 * set and we have the semaphore
1810		 */
1811		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1812		if (!(swsm & IXGBE_SWSM_SMBI))
1813			status = IXGBE_SUCCESS;
1814	}
1815
1816	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1817	if (status == IXGBE_SUCCESS) {
1818		for (i = 0; i < timeout; i++) {
1819			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1820
1821			/* Set the SW EEPROM semaphore bit to request access */
1822			swsm |= IXGBE_SWSM_SWESMBI;
1823			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1824
1825			/*
1826			 * If we set the bit successfully then we got the
1827			 * semaphore.
1828			 */
1829			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1830			if (swsm & IXGBE_SWSM_SWESMBI)
1831				break;
1832
1833			usec_delay(50);
1834		}
1835
1836		/*
1837		 * Release semaphores and return error if SW EEPROM semaphore
1838		 * was not granted because we don't have access to the EEPROM
1839		 */
1840		if (i >= timeout) {
1841			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1842			    "SWESMBI Software EEPROM semaphore not granted.\n");
1843			ixgbe_release_eeprom_semaphore(hw);
1844			status = IXGBE_ERR_EEPROM;
1845		}
1846	} else {
1847		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1848			     "Software semaphore SMBI between device drivers "
1849			     "not granted.\n");
1850	}
1851
1852	return status;
1853}
1854
1855/**
1856 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1857 *  @hw: pointer to hardware structure
1858 *
1859 *  This function clears hardware semaphore bits.
1860 **/
1861static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1862{
1863	u32 swsm;
1864
1865	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1866
1867	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1868
1869	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1870	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1871	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1872	IXGBE_WRITE_FLUSH(hw);
1873}
1874
1875/**
1876 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1877 *  @hw: pointer to hardware structure
1878 **/
1879static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1880{
1881	s32 status = IXGBE_SUCCESS;
1882	u16 i;
1883	u8 spi_stat_reg;
1884
1885	DEBUGFUNC("ixgbe_ready_eeprom");
1886
1887	/*
1888	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1889	 * EEPROM will signal that the command has been completed by clearing
1890	 * bit 0 of the internal status register.  If it's not cleared within
1891	 * 5 milliseconds, then error out.
1892	 */
1893	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1894		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1895					    IXGBE_EEPROM_OPCODE_BITS);
1896		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1897		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1898			break;
1899
1900		usec_delay(5);
1901		ixgbe_standby_eeprom(hw);
1902	};
1903
1904	/*
1905	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1906	 * devices (and only 0-5mSec on 5V devices)
1907	 */
1908	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1909		DEBUGOUT("SPI EEPROM Status error\n");
1910		status = IXGBE_ERR_EEPROM;
1911	}
1912
1913	return status;
1914}
1915
1916/**
1917 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1918 *  @hw: pointer to hardware structure
1919 **/
1920static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1921{
1922	u32 eec;
1923
1924	DEBUGFUNC("ixgbe_standby_eeprom");
1925
1926	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1927
1928	/* Toggle CS to flush commands */
1929	eec |= IXGBE_EEC_CS;
1930	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1931	IXGBE_WRITE_FLUSH(hw);
1932	usec_delay(1);
1933	eec &= ~IXGBE_EEC_CS;
1934	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1935	IXGBE_WRITE_FLUSH(hw);
1936	usec_delay(1);
1937}
1938
1939/**
1940 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1941 *  @hw: pointer to hardware structure
1942 *  @data: data to send to the EEPROM
1943 *  @count: number of bits to shift out
1944 **/
1945static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1946					u16 count)
1947{
1948	u32 eec;
1949	u32 mask;
1950	u32 i;
1951
1952	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1953
1954	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1955
1956	/*
1957	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1958	 * one bit at a time.  Determine the starting bit based on count
1959	 */
1960	mask = 0x01 << (count - 1);
1961
1962	for (i = 0; i < count; i++) {
1963		/*
1964		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1965		 * "1", and then raising and then lowering the clock (the SK
1966		 * bit controls the clock input to the EEPROM).  A "0" is
1967		 * shifted out to the EEPROM by setting "DI" to "0" and then
1968		 * raising and then lowering the clock.
1969		 */
1970		if (data & mask)
1971			eec |= IXGBE_EEC_DI;
1972		else
1973			eec &= ~IXGBE_EEC_DI;
1974
1975		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1976		IXGBE_WRITE_FLUSH(hw);
1977
1978		usec_delay(1);
1979
1980		ixgbe_raise_eeprom_clk(hw, &eec);
1981		ixgbe_lower_eeprom_clk(hw, &eec);
1982
1983		/*
1984		 * Shift mask to signify next bit of data to shift in to the
1985		 * EEPROM
1986		 */
1987		mask = mask >> 1;
1988	};
1989
1990	/* We leave the "DI" bit set to "0" when we leave this routine. */
1991	eec &= ~IXGBE_EEC_DI;
1992	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1993	IXGBE_WRITE_FLUSH(hw);
1994}
1995
1996/**
1997 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1998 *  @hw: pointer to hardware structure
1999 **/
2000static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2001{
2002	u32 eec;
2003	u32 i;
2004	u16 data = 0;
2005
2006	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2007
2008	/*
2009	 * In order to read a register from the EEPROM, we need to shift
2010	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2011	 * the clock input to the EEPROM (setting the SK bit), and then reading
2012	 * the value of the "DO" bit.  During this "shifting in" process the
2013	 * "DI" bit should always be clear.
2014	 */
2015	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2016
2017	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2018
2019	for (i = 0; i < count; i++) {
2020		data = data << 1;
2021		ixgbe_raise_eeprom_clk(hw, &eec);
2022
2023		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2024
2025		eec &= ~(IXGBE_EEC_DI);
2026		if (eec & IXGBE_EEC_DO)
2027			data |= 1;
2028
2029		ixgbe_lower_eeprom_clk(hw, &eec);
2030	}
2031
2032	return data;
2033}
2034
2035/**
2036 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2037 *  @hw: pointer to hardware structure
2038 *  @eec: EEC register's current value
2039 **/
2040static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2041{
2042	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2043
2044	/*
2045	 * Raise the clock input to the EEPROM
2046	 * (setting the SK bit), then delay
2047	 */
2048	*eec = *eec | IXGBE_EEC_SK;
2049	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2050	IXGBE_WRITE_FLUSH(hw);
2051	usec_delay(1);
2052}
2053
2054/**
2055 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2056 *  @hw: pointer to hardware structure
2057 *  @eecd: EECD's current value
2058 **/
2059static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2060{
2061	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2062
2063	/*
2064	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2065	 * delay
2066	 */
2067	*eec = *eec & ~IXGBE_EEC_SK;
2068	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2069	IXGBE_WRITE_FLUSH(hw);
2070	usec_delay(1);
2071}
2072
2073/**
2074 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
2075 *  @hw: pointer to hardware structure
2076 **/
2077static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2078{
2079	u32 eec;
2080
2081	DEBUGFUNC("ixgbe_release_eeprom");
2082
2083	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2084
2085	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2086	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2087
2088	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2089	IXGBE_WRITE_FLUSH(hw);
2090
2091	usec_delay(1);
2092
2093	/* Stop requesting EEPROM access */
2094	eec &= ~IXGBE_EEC_REQ;
2095	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2096
2097	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2098
2099	/* Delay before attempt to obtain semaphore again to allow FW access */
2100	msec_delay(hw->eeprom.semaphore_delay);
2101}
2102
2103/**
2104 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2105 *  @hw: pointer to hardware structure
2106 *
2107 *  Returns a negative error code on error, or the 16-bit checksum
2108 **/
2109s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2110{
2111	u16 i;
2112	u16 j;
2113	u16 checksum = 0;
2114	u16 length = 0;
2115	u16 pointer = 0;
2116	u16 word = 0;
2117
2118	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2119
2120	/* Include 0x0-0x3F in the checksum */
2121	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2122		if (hw->eeprom.ops.read(hw, i, &word)) {
2123			DEBUGOUT("EEPROM read failed\n");
2124			return IXGBE_ERR_EEPROM;
2125		}
2126		checksum += word;
2127	}
2128
2129	/* Include all data from pointers except for the fw pointer */
2130	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2131		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2132			DEBUGOUT("EEPROM read failed\n");
2133			return IXGBE_ERR_EEPROM;
2134		}
2135
2136		/* If the pointer seems invalid */
2137		if (pointer == 0xFFFF || pointer == 0)
2138			continue;
2139
2140		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2141			DEBUGOUT("EEPROM read failed\n");
2142			return IXGBE_ERR_EEPROM;
2143		}
2144
2145		if (length == 0xFFFF || length == 0)
2146			continue;
2147
2148		for (j = pointer + 1; j <= pointer + length; j++) {
2149			if (hw->eeprom.ops.read(hw, j, &word)) {
2150				DEBUGOUT("EEPROM read failed\n");
2151				return IXGBE_ERR_EEPROM;
2152			}
2153			checksum += word;
2154		}
2155	}
2156
2157	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2158
2159	return (s32)checksum;
2160}
2161
2162/**
2163 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2164 *  @hw: pointer to hardware structure
2165 *  @checksum_val: calculated checksum
2166 *
2167 *  Performs checksum calculation and validates the EEPROM checksum.  If the
2168 *  caller does not need checksum_val, the value can be NULL.
2169 **/
2170s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2171					   u16 *checksum_val)
2172{
2173	s32 status;
2174	u16 checksum;
2175	u16 read_checksum = 0;
2176
2177	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2178
2179	/* Read the first word from the EEPROM. If this times out or fails, do
2180	 * not continue or we could be in for a very long wait while every
2181	 * EEPROM read fails
2182	 */
2183	status = hw->eeprom.ops.read(hw, 0, &checksum);
2184	if (status) {
2185		DEBUGOUT("EEPROM read failed\n");
2186		return status;
2187	}
2188
2189	status = hw->eeprom.ops.calc_checksum(hw);
2190	if (status < 0)
2191		return status;
2192
2193	checksum = (u16)(status & 0xffff);
2194
2195	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2196	if (status) {
2197		DEBUGOUT("EEPROM read failed\n");
2198		return status;
2199	}
2200
2201	/* Verify read checksum from EEPROM is the same as
2202	 * calculated checksum
2203	 */
2204	if (read_checksum != checksum)
2205		status = IXGBE_ERR_EEPROM_CHECKSUM;
2206
2207	/* If the user cares, return the calculated checksum */
2208	if (checksum_val)
2209		*checksum_val = checksum;
2210
2211	return status;
2212}
2213
2214/**
2215 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2216 *  @hw: pointer to hardware structure
2217 **/
2218s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2219{
2220	s32 status;
2221	u16 checksum;
2222
2223	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2224
2225	/* Read the first word from the EEPROM. If this times out or fails, do
2226	 * not continue or we could be in for a very long wait while every
2227	 * EEPROM read fails
2228	 */
2229	status = hw->eeprom.ops.read(hw, 0, &checksum);
2230	if (status) {
2231		DEBUGOUT("EEPROM read failed\n");
2232		return status;
2233	}
2234
2235	status = hw->eeprom.ops.calc_checksum(hw);
2236	if (status < 0)
2237		return status;
2238
2239	checksum = (u16)(status & 0xffff);
2240
2241	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2242
2243	return status;
2244}
2245
2246/**
2247 *  ixgbe_validate_mac_addr - Validate MAC address
2248 *  @mac_addr: pointer to MAC address.
2249 *
2250 *  Tests a MAC address to ensure it is a valid Individual Address
2251 **/
2252s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2253{
2254	s32 status = IXGBE_SUCCESS;
2255
2256	DEBUGFUNC("ixgbe_validate_mac_addr");
2257
2258	/* Make sure it is not a multicast address */
2259	if (IXGBE_IS_MULTICAST(mac_addr)) {
2260		DEBUGOUT("MAC address is multicast\n");
2261		status = IXGBE_ERR_INVALID_MAC_ADDR;
2262	/* Not a broadcast address */
2263	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2264		DEBUGOUT("MAC address is broadcast\n");
2265		status = IXGBE_ERR_INVALID_MAC_ADDR;
2266	/* Reject the zero address */
2267	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2268		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2269		DEBUGOUT("MAC address is all zeros\n");
2270		status = IXGBE_ERR_INVALID_MAC_ADDR;
2271	}
2272	return status;
2273}
2274
2275/**
2276 *  ixgbe_set_rar_generic - Set Rx address register
2277 *  @hw: pointer to hardware structure
2278 *  @index: Receive address register to write
2279 *  @addr: Address to put into receive address register
2280 *  @vmdq: VMDq "set" or "pool" index
2281 *  @enable_addr: set flag that address is active
2282 *
2283 *  Puts an ethernet address into a receive address register.
2284 **/
2285s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2286			  u32 enable_addr)
2287{
2288	u32 rar_low, rar_high;
2289	u32 rar_entries = hw->mac.num_rar_entries;
2290
2291	DEBUGFUNC("ixgbe_set_rar_generic");
2292
2293	/* Make sure we are using a valid rar index range */
2294	if (index >= rar_entries) {
2295		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2296			     "RAR index %d is out of range.\n", index);
2297		return IXGBE_ERR_INVALID_ARGUMENT;
2298	}
2299
2300	/* setup VMDq pool selection before this RAR gets enabled */
2301	hw->mac.ops.set_vmdq(hw, index, vmdq);
2302
2303	/*
2304	 * HW expects these in little endian so we reverse the byte
2305	 * order from network order (big endian) to little endian
2306	 */
2307	rar_low = ((u32)addr[0] |
2308		   ((u32)addr[1] << 8) |
2309		   ((u32)addr[2] << 16) |
2310		   ((u32)addr[3] << 24));
2311	/*
2312	 * Some parts put the VMDq setting in the extra RAH bits,
2313	 * so save everything except the lower 16 bits that hold part
2314	 * of the address and the address valid bit.
2315	 */
2316	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2317	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2318	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2319
2320	if (enable_addr != 0)
2321		rar_high |= IXGBE_RAH_AV;
2322
2323	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2324	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2325
2326	return IXGBE_SUCCESS;
2327}
2328
2329/**
2330 *  ixgbe_clear_rar_generic - Remove Rx address register
2331 *  @hw: pointer to hardware structure
2332 *  @index: Receive address register to write
2333 *
2334 *  Clears an ethernet address from a receive address register.
2335 **/
2336s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2337{
2338	u32 rar_high;
2339	u32 rar_entries = hw->mac.num_rar_entries;
2340
2341	DEBUGFUNC("ixgbe_clear_rar_generic");
2342
2343	/* Make sure we are using a valid rar index range */
2344	if (index >= rar_entries) {
2345		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2346			     "RAR index %d is out of range.\n", index);
2347		return IXGBE_ERR_INVALID_ARGUMENT;
2348	}
2349
2350	/*
2351	 * Some parts put the VMDq setting in the extra RAH bits,
2352	 * so save everything except the lower 16 bits that hold part
2353	 * of the address and the address valid bit.
2354	 */
2355	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2356	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2357
2358	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2359	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2360
2361	/* clear VMDq pool/queue selection for this RAR */
2362	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2363
2364	return IXGBE_SUCCESS;
2365}
2366
2367/**
2368 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2369 *  @hw: pointer to hardware structure
2370 *
2371 *  Places the MAC address in receive address register 0 and clears the rest
2372 *  of the receive address registers. Clears the multicast table. Assumes
2373 *  the receiver is in reset when the routine is called.
2374 **/
2375s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2376{
2377	u32 i;
2378	u32 rar_entries = hw->mac.num_rar_entries;
2379
2380	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2381
2382	/*
2383	 * If the current mac address is valid, assume it is a software override
2384	 * to the permanent address.
2385	 * Otherwise, use the permanent address from the eeprom.
2386	 */
2387	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2388	    IXGBE_ERR_INVALID_MAC_ADDR) {
2389		/* Get the MAC address from the RAR0 for later reference */
2390		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2391
2392		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2393			  hw->mac.addr[0], hw->mac.addr[1],
2394			  hw->mac.addr[2]);
2395		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2396			  hw->mac.addr[4], hw->mac.addr[5]);
2397	} else {
2398		/* Setup the receive address. */
2399		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2400		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2401			  hw->mac.addr[0], hw->mac.addr[1],
2402			  hw->mac.addr[2]);
2403		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2404			  hw->mac.addr[4], hw->mac.addr[5]);
2405
2406		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2407
2408		/* clear VMDq pool/queue selection for RAR 0 */
2409		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2410	}
2411	hw->addr_ctrl.overflow_promisc = 0;
2412
2413	hw->addr_ctrl.rar_used_count = 1;
2414
2415	/* Zero out the other receive addresses. */
2416	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2417	for (i = 1; i < rar_entries; i++) {
2418		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2419		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2420	}
2421
2422	/* Clear the MTA */
2423	hw->addr_ctrl.mta_in_use = 0;
2424	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2425
2426	DEBUGOUT(" Clearing MTA\n");
2427	for (i = 0; i < hw->mac.mcft_size; i++)
2428		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2429
2430	ixgbe_init_uta_tables(hw);
2431
2432	return IXGBE_SUCCESS;
2433}
2434
2435/**
2436 *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2437 *  @hw: pointer to hardware structure
2438 *  @addr: new address
2439 *
2440 *  Adds it to unused receive address register or goes into promiscuous mode.
2441 **/
2442void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2443{
2444	u32 rar_entries = hw->mac.num_rar_entries;
2445	u32 rar;
2446
2447	DEBUGFUNC("ixgbe_add_uc_addr");
2448
2449	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2450		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2451
2452	/*
2453	 * Place this address in the RAR if there is room,
2454	 * else put the controller into promiscuous mode
2455	 */
2456	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2457		rar = hw->addr_ctrl.rar_used_count;
2458		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2459		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2460		hw->addr_ctrl.rar_used_count++;
2461	} else {
2462		hw->addr_ctrl.overflow_promisc++;
2463	}
2464
2465	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2466}
2467
2468/**
2469 *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2470 *  @hw: pointer to hardware structure
2471 *  @addr_list: the list of new addresses
2472 *  @addr_count: number of addresses
2473 *  @next: iterator function to walk the address list
2474 *
2475 *  The given list replaces any existing list.  Clears the secondary addrs from
2476 *  receive address registers.  Uses unused receive address registers for the
2477 *  first secondary addresses, and falls back to promiscuous mode as needed.
2478 *
2479 *  Drivers using secondary unicast addresses must set user_set_promisc when
2480 *  manually putting the device into promiscuous mode.
2481 **/
2482s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2483				      u32 addr_count, ixgbe_mc_addr_itr next)
2484{
2485	u8 *addr;
2486	u32 i;
2487	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2488	u32 uc_addr_in_use;
2489	u32 fctrl;
2490	u32 vmdq;
2491
2492	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2493
2494	/*
2495	 * Clear accounting of old secondary address list,
2496	 * don't count RAR[0]
2497	 */
2498	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2499	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2500	hw->addr_ctrl.overflow_promisc = 0;
2501
2502	/* Zero out the other receive addresses */
2503	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2504	for (i = 0; i < uc_addr_in_use; i++) {
2505		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2506		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2507	}
2508
2509	/* Add the new addresses */
2510	for (i = 0; i < addr_count; i++) {
2511		DEBUGOUT(" Adding the secondary addresses:\n");
2512		addr = next(hw, &addr_list, &vmdq);
2513		ixgbe_add_uc_addr(hw, addr, vmdq);
2514	}
2515
2516	if (hw->addr_ctrl.overflow_promisc) {
2517		/* enable promisc if not already in overflow or set by user */
2518		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2519			DEBUGOUT(" Entering address overflow promisc mode\n");
2520			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2521			fctrl |= IXGBE_FCTRL_UPE;
2522			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2523		}
2524	} else {
2525		/* only disable if set by overflow, not by user */
2526		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2527			DEBUGOUT(" Leaving address overflow promisc mode\n");
2528			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2529			fctrl &= ~IXGBE_FCTRL_UPE;
2530			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2531		}
2532	}
2533
2534	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2535	return IXGBE_SUCCESS;
2536}
2537
2538/**
2539 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2540 *  @hw: pointer to hardware structure
2541 *  @mc_addr: the multicast address
2542 *
2543 *  Extracts the 12 bits, from a multicast address, to determine which
2544 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2545 *  incoming rx multicast addresses, to determine the bit-vector to check in
2546 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2547 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2548 *  to mc_filter_type.
2549 **/
2550static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2551{
2552	u32 vector = 0;
2553
2554	DEBUGFUNC("ixgbe_mta_vector");
2555
2556	switch (hw->mac.mc_filter_type) {
2557	case 0:   /* use bits [47:36] of the address */
2558		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2559		break;
2560	case 1:   /* use bits [46:35] of the address */
2561		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2562		break;
2563	case 2:   /* use bits [45:34] of the address */
2564		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2565		break;
2566	case 3:   /* use bits [43:32] of the address */
2567		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2568		break;
2569	default:  /* Invalid mc_filter_type */
2570		DEBUGOUT("MC filter type param set incorrectly\n");
2571		ASSERT(0);
2572		break;
2573	}
2574
2575	/* vector can only be 12-bits or boundary will be exceeded */
2576	vector &= 0xFFF;
2577	return vector;
2578}
2579
2580/**
2581 *  ixgbe_set_mta - Set bit-vector in multicast table
2582 *  @hw: pointer to hardware structure
2583 *  @hash_value: Multicast address hash value
2584 *
2585 *  Sets the bit-vector in the multicast table.
2586 **/
2587void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2588{
2589	u32 vector;
2590	u32 vector_bit;
2591	u32 vector_reg;
2592
2593	DEBUGFUNC("ixgbe_set_mta");
2594
2595	hw->addr_ctrl.mta_in_use++;
2596
2597	vector = ixgbe_mta_vector(hw, mc_addr);
2598	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2599
2600	/*
2601	 * The MTA is a register array of 128 32-bit registers. It is treated
2602	 * like an array of 4096 bits.  We want to set bit
2603	 * BitArray[vector_value]. So we figure out what register the bit is
2604	 * in, read it, OR in the new bit, then write back the new value.  The
2605	 * register is determined by the upper 7 bits of the vector value and
2606	 * the bit within that register are determined by the lower 5 bits of
2607	 * the value.
2608	 */
2609	vector_reg = (vector >> 5) & 0x7F;
2610	vector_bit = vector & 0x1F;
2611	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2612}
2613
2614/**
2615 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2616 *  @hw: pointer to hardware structure
2617 *  @mc_addr_list: the list of new multicast addresses
2618 *  @mc_addr_count: number of addresses
2619 *  @next: iterator function to walk the multicast address list
2620 *  @clear: flag, when set clears the table beforehand
2621 *
2622 *  When the clear flag is set, the given list replaces any existing list.
2623 *  Hashes the given addresses into the multicast table.
2624 **/
2625s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2626				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2627				      bool clear)
2628{
2629	u32 i;
2630	u32 vmdq;
2631
2632	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2633
2634	/*
2635	 * Set the new number of MC addresses that we are being requested to
2636	 * use.
2637	 */
2638	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2639	hw->addr_ctrl.mta_in_use = 0;
2640
2641	/* Clear mta_shadow */
2642	if (clear) {
2643		DEBUGOUT(" Clearing MTA\n");
2644		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2645	}
2646
2647	/* Update mta_shadow */
2648	for (i = 0; i < mc_addr_count; i++) {
2649		DEBUGOUT(" Adding the multicast addresses:\n");
2650		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2651	}
2652
2653	/* Enable mta */
2654	for (i = 0; i < hw->mac.mcft_size; i++)
2655		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2656				      hw->mac.mta_shadow[i]);
2657
2658	if (hw->addr_ctrl.mta_in_use > 0)
2659		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2660				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2661
2662	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2663	return IXGBE_SUCCESS;
2664}
2665
2666/**
2667 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2668 *  @hw: pointer to hardware structure
2669 *
2670 *  Enables multicast address in RAR and the use of the multicast hash table.
2671 **/
2672s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2673{
2674	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2675
2676	DEBUGFUNC("ixgbe_enable_mc_generic");
2677
2678	if (a->mta_in_use > 0)
2679		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2680				hw->mac.mc_filter_type);
2681
2682	return IXGBE_SUCCESS;
2683}
2684
2685/**
2686 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2687 *  @hw: pointer to hardware structure
2688 *
2689 *  Disables multicast address in RAR and the use of the multicast hash table.
2690 **/
2691s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2692{
2693	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2694
2695	DEBUGFUNC("ixgbe_disable_mc_generic");
2696
2697	if (a->mta_in_use > 0)
2698		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2699
2700	return IXGBE_SUCCESS;
2701}
2702
2703/**
2704 *  ixgbe_fc_enable_generic - Enable flow control
2705 *  @hw: pointer to hardware structure
2706 *
2707 *  Enable flow control according to the current settings.
2708 **/
2709s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2710{
2711	s32 ret_val = IXGBE_SUCCESS;
2712	u32 mflcn_reg, fccfg_reg;
2713	u32 reg;
2714	u32 fcrtl, fcrth;
2715	int i;
2716
2717	DEBUGFUNC("ixgbe_fc_enable_generic");
2718
2719	/* Validate the water mark configuration */
2720	if (!hw->fc.pause_time) {
2721		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2722		goto out;
2723	}
2724
2725	/* Low water mark of zero causes XOFF floods */
2726	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2727		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2728		    hw->fc.high_water[i]) {
2729			if (!hw->fc.low_water[i] ||
2730			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2731				DEBUGOUT("Invalid water mark configuration\n");
2732				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2733				goto out;
2734			}
2735		}
2736	}
2737
2738	/* Negotiate the fc mode to use */
2739	ixgbe_fc_autoneg(hw);
2740
2741	/* Disable any previous flow control settings */
2742	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2743	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2744
2745	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2746	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2747
2748	/*
2749	 * The possible values of fc.current_mode are:
2750	 * 0: Flow control is completely disabled
2751	 * 1: Rx flow control is enabled (we can receive pause frames,
2752	 *    but not send pause frames).
2753	 * 2: Tx flow control is enabled (we can send pause frames but
2754	 *    we do not support receiving pause frames).
2755	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2756	 * other: Invalid.
2757	 */
2758	switch (hw->fc.current_mode) {
2759	case ixgbe_fc_none:
2760		/*
2761		 * Flow control is disabled by software override or autoneg.
2762		 * The code below will actually disable it in the HW.
2763		 */
2764		break;
2765	case ixgbe_fc_rx_pause:
2766		/*
2767		 * Rx Flow control is enabled and Tx Flow control is
2768		 * disabled by software override. Since there really
2769		 * isn't a way to advertise that we are capable of RX
2770		 * Pause ONLY, we will advertise that we support both
2771		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2772		 * disable the adapter's ability to send PAUSE frames.
2773		 */
2774		mflcn_reg |= IXGBE_MFLCN_RFCE;
2775		break;
2776	case ixgbe_fc_tx_pause:
2777		/*
2778		 * Tx Flow control is enabled, and Rx Flow control is
2779		 * disabled by software override.
2780		 */
2781		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2782		break;
2783	case ixgbe_fc_full:
2784		/* Flow control (both Rx and Tx) is enabled by SW override. */
2785		mflcn_reg |= IXGBE_MFLCN_RFCE;
2786		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2787		break;
2788	default:
2789		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2790			     "Flow control param set incorrectly\n");
2791		ret_val = IXGBE_ERR_CONFIG;
2792		goto out;
2793		break;
2794	}
2795
2796	/* Set 802.3x based flow control settings. */
2797	mflcn_reg |= IXGBE_MFLCN_DPF;
2798	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2799	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2800
2801
2802	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2803	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2804		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2805		    hw->fc.high_water[i]) {
2806			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2807			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2808			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2809		} else {
2810			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2811			/*
2812			 * In order to prevent Tx hangs when the internal Tx
2813			 * switch is enabled we must set the high water mark
2814			 * to the Rx packet buffer size - 24KB.  This allows
2815			 * the Tx switch to function even under heavy Rx
2816			 * workloads.
2817			 */
2818			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2819		}
2820
2821		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2822	}
2823
2824	/* Configure pause time (2 TCs per register) */
2825	reg = hw->fc.pause_time * 0x00010001;
2826	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2827		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2828
2829	/* Configure flow control refresh threshold value */
2830	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2831
2832out:
2833	return ret_val;
2834}
2835
2836/**
2837 *  ixgbe_negotiate_fc - Negotiate flow control
2838 *  @hw: pointer to hardware structure
2839 *  @adv_reg: flow control advertised settings
2840 *  @lp_reg: link partner's flow control settings
2841 *  @adv_sym: symmetric pause bit in advertisement
2842 *  @adv_asm: asymmetric pause bit in advertisement
2843 *  @lp_sym: symmetric pause bit in link partner advertisement
2844 *  @lp_asm: asymmetric pause bit in link partner advertisement
2845 *
2846 *  Find the intersection between advertised settings and link partner's
2847 *  advertised settings
2848 **/
2849static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2850			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2851{
2852	if ((!(adv_reg)) ||  (!(lp_reg))) {
2853		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2854			     "Local or link partner's advertised flow control "
2855			     "settings are NULL. Local: %x, link partner: %x\n",
2856			     adv_reg, lp_reg);
2857		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2858	}
2859
2860	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2861		/*
2862		 * Now we need to check if the user selected Rx ONLY
2863		 * of pause frames.  In this case, we had to advertise
2864		 * FULL flow control because we could not advertise RX
2865		 * ONLY. Hence, we must now check to see if we need to
2866		 * turn OFF the TRANSMISSION of PAUSE frames.
2867		 */
2868		if (hw->fc.requested_mode == ixgbe_fc_full) {
2869			hw->fc.current_mode = ixgbe_fc_full;
2870			DEBUGOUT("Flow Control = FULL.\n");
2871		} else {
2872			hw->fc.current_mode = ixgbe_fc_rx_pause;
2873			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2874		}
2875	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2876		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2877		hw->fc.current_mode = ixgbe_fc_tx_pause;
2878		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2879	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2880		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2881		hw->fc.current_mode = ixgbe_fc_rx_pause;
2882		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2883	} else {
2884		hw->fc.current_mode = ixgbe_fc_none;
2885		DEBUGOUT("Flow Control = NONE.\n");
2886	}
2887	return IXGBE_SUCCESS;
2888}
2889
2890/**
2891 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2892 *  @hw: pointer to hardware structure
2893 *
2894 *  Enable flow control according on 1 gig fiber.
2895 **/
2896static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2897{
2898	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2899	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2900
2901	/*
2902	 * On multispeed fiber at 1g, bail out if
2903	 * - link is up but AN did not complete, or if
2904	 * - link is up and AN completed but timed out
2905	 */
2906
2907	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2908	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2909	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2910		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
2911		goto out;
2912	}
2913
2914	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2915	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2916
2917	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2918				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2919				      IXGBE_PCS1GANA_ASM_PAUSE,
2920				      IXGBE_PCS1GANA_SYM_PAUSE,
2921				      IXGBE_PCS1GANA_ASM_PAUSE);
2922
2923out:
2924	return ret_val;
2925}
2926
2927/**
2928 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2929 *  @hw: pointer to hardware structure
2930 *
2931 *  Enable flow control according to IEEE clause 37.
2932 **/
2933static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2934{
2935	u32 links2, anlp1_reg, autoc_reg, links;
2936	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2937
2938	/*
2939	 * On backplane, bail out if
2940	 * - backplane autoneg was not completed, or if
2941	 * - we are 82599 and link partner is not AN enabled
2942	 */
2943	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2944	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2945		DEBUGOUT("Auto-Negotiation did not complete\n");
2946		goto out;
2947	}
2948
2949	if (hw->mac.type == ixgbe_mac_82599EB) {
2950		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2951		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2952			DEBUGOUT("Link partner is not AN enabled\n");
2953			goto out;
2954		}
2955	}
2956	/*
2957	 * Read the 10g AN autoc and LP ability registers and resolve
2958	 * local flow control settings accordingly
2959	 */
2960	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2961	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2962
2963	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2964		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2965		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2966
2967out:
2968	return ret_val;
2969}
2970
2971/**
2972 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2973 *  @hw: pointer to hardware structure
2974 *
2975 *  Enable flow control according to IEEE clause 37.
2976 **/
2977static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2978{
2979	u16 technology_ability_reg = 0;
2980	u16 lp_technology_ability_reg = 0;
2981
2982	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2983			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2984			     &technology_ability_reg);
2985	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2986			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2987			     &lp_technology_ability_reg);
2988
2989	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2990				  (u32)lp_technology_ability_reg,
2991				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2992				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2993}
2994
2995/**
2996 *  ixgbe_fc_autoneg - Configure flow control
2997 *  @hw: pointer to hardware structure
2998 *
2999 *  Compares our advertised flow control capabilities to those advertised by
3000 *  our link partner, and determines the proper flow control mode to use.
3001 **/
3002void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3003{
3004	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3005	ixgbe_link_speed speed;
3006	bool link_up;
3007
3008	DEBUGFUNC("ixgbe_fc_autoneg");
3009
3010	/*
3011	 * AN should have completed when the cable was plugged in.
3012	 * Look for reasons to bail out.  Bail out if:
3013	 * - FC autoneg is disabled, or if
3014	 * - link is not up.
3015	 */
3016	if (hw->fc.disable_fc_autoneg) {
3017		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3018			     "Flow control autoneg is disabled");
3019		goto out;
3020	}
3021
3022	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3023	if (!link_up) {
3024		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3025		goto out;
3026	}
3027
3028	switch (hw->phy.media_type) {
3029	/* Autoneg flow control on fiber adapters */
3030	case ixgbe_media_type_fiber_fixed:
3031	case ixgbe_media_type_fiber_qsfp:
3032	case ixgbe_media_type_fiber:
3033		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3034			ret_val = ixgbe_fc_autoneg_fiber(hw);
3035		break;
3036
3037	/* Autoneg flow control on backplane adapters */
3038	case ixgbe_media_type_backplane:
3039		ret_val = ixgbe_fc_autoneg_backplane(hw);
3040		break;
3041
3042	/* Autoneg flow control on copper adapters */
3043	case ixgbe_media_type_copper:
3044		if (ixgbe_device_supports_autoneg_fc(hw))
3045			ret_val = ixgbe_fc_autoneg_copper(hw);
3046		break;
3047
3048	default:
3049		break;
3050	}
3051
3052out:
3053	if (ret_val == IXGBE_SUCCESS) {
3054		hw->fc.fc_was_autonegged = TRUE;
3055	} else {
3056		hw->fc.fc_was_autonegged = FALSE;
3057		hw->fc.current_mode = hw->fc.requested_mode;
3058	}
3059}
3060
3061/*
3062 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3063 * @hw: pointer to hardware structure
3064 *
3065 * System-wide timeout range is encoded in PCIe Device Control2 register.
3066 *
3067 * Add 10% to specified maximum and return the number of times to poll for
3068 * completion timeout, in units of 100 microsec.  Never return less than
3069 * 800 = 80 millisec.
3070 */
3071static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3072{
3073	s16 devctl2;
3074	u32 pollcnt;
3075
3076	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3077	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3078
3079	switch (devctl2) {
3080	case IXGBE_PCIDEVCTRL2_65_130ms:
3081		pollcnt = 1300;		/* 130 millisec */
3082		break;
3083	case IXGBE_PCIDEVCTRL2_260_520ms:
3084		pollcnt = 5200;		/* 520 millisec */
3085		break;
3086	case IXGBE_PCIDEVCTRL2_1_2s:
3087		pollcnt = 20000;	/* 2 sec */
3088		break;
3089	case IXGBE_PCIDEVCTRL2_4_8s:
3090		pollcnt = 80000;	/* 8 sec */
3091		break;
3092	case IXGBE_PCIDEVCTRL2_17_34s:
3093		pollcnt = 34000;	/* 34 sec */
3094		break;
3095	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3096	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3097	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3098	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3099	default:
3100		pollcnt = 800;		/* 80 millisec minimum */
3101		break;
3102	}
3103
3104	/* add 10% to spec maximum */
3105	return (pollcnt * 11) / 10;
3106}
3107
3108/**
3109 *  ixgbe_disable_pcie_master - Disable PCI-express master access
3110 *  @hw: pointer to hardware structure
3111 *
3112 *  Disables PCI-Express master access and verifies there are no pending
3113 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3114 *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3115 *  is returned signifying master requests disabled.
3116 **/
3117s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3118{
3119	s32 status = IXGBE_SUCCESS;
3120	u32 i, poll;
3121	u16 value;
3122
3123	DEBUGFUNC("ixgbe_disable_pcie_master");
3124
3125	/* Always set this bit to ensure any future transactions are blocked */
3126	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3127
3128	/* Exit if master requests are blocked */
3129	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3130	    IXGBE_REMOVED(hw->hw_addr))
3131		goto out;
3132
3133	/* Poll for master request bit to clear */
3134	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3135		usec_delay(100);
3136		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3137			goto out;
3138	}
3139
3140	/*
3141	 * Two consecutive resets are required via CTRL.RST per datasheet
3142	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3143	 * of this need.  The first reset prevents new master requests from
3144	 * being issued by our device.  We then must wait 1usec or more for any
3145	 * remaining completions from the PCIe bus to trickle in, and then reset
3146	 * again to clear out any effects they may have had on our device.
3147	 */
3148	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3149	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3150
3151	if (hw->mac.type >= ixgbe_mac_X550)
3152		goto out;
3153
3154	/*
3155	 * Before proceeding, make sure that the PCIe block does not have
3156	 * transactions pending.
3157	 */
3158	poll = ixgbe_pcie_timeout_poll(hw);
3159	for (i = 0; i < poll; i++) {
3160		usec_delay(100);
3161		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3162		if (IXGBE_REMOVED(hw->hw_addr))
3163			goto out;
3164		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3165			goto out;
3166	}
3167
3168	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3169		     "PCIe transaction pending bit also did not clear.\n");
3170	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3171
3172out:
3173	return status;
3174}
3175
3176/**
3177 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3178 *  @hw: pointer to hardware structure
3179 *  @mask: Mask to specify which semaphore to acquire
3180 *
3181 *  Acquires the SWFW semaphore through the GSSR register for the specified
3182 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3183 **/
3184s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3185{
3186	u32 gssr = 0;
3187	u32 swmask = mask;
3188	u32 fwmask = mask << 5;
3189	u32 timeout = 200;
3190	u32 i;
3191
3192	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3193
3194	for (i = 0; i < timeout; i++) {
3195		/*
3196		 * SW NVM semaphore bit is used for access to all
3197		 * SW_FW_SYNC bits (not just NVM)
3198		 */
3199		if (ixgbe_get_eeprom_semaphore(hw))
3200			return IXGBE_ERR_SWFW_SYNC;
3201
3202		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3203		if (!(gssr & (fwmask | swmask))) {
3204			gssr |= swmask;
3205			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3206			ixgbe_release_eeprom_semaphore(hw);
3207			return IXGBE_SUCCESS;
3208		} else {
3209			/* Resource is currently in use by FW or SW */
3210			ixgbe_release_eeprom_semaphore(hw);
3211			msec_delay(5);
3212		}
3213	}
3214
3215	/* If time expired clear the bits holding the lock and retry */
3216	if (gssr & (fwmask | swmask))
3217		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3218
3219	msec_delay(5);
3220	return IXGBE_ERR_SWFW_SYNC;
3221}
3222
3223/**
3224 *  ixgbe_release_swfw_sync - Release SWFW semaphore
3225 *  @hw: pointer to hardware structure
3226 *  @mask: Mask to specify which semaphore to release
3227 *
3228 *  Releases the SWFW semaphore through the GSSR register for the specified
3229 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3230 **/
3231void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3232{
3233	u32 gssr;
3234	u32 swmask = mask;
3235
3236	DEBUGFUNC("ixgbe_release_swfw_sync");
3237
3238	ixgbe_get_eeprom_semaphore(hw);
3239
3240	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3241	gssr &= ~swmask;
3242	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3243
3244	ixgbe_release_eeprom_semaphore(hw);
3245}
3246
3247/**
3248 *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3249 *  @hw: pointer to hardware structure
3250 *
3251 *  Stops the receive data path and waits for the HW to internally empty
3252 *  the Rx security block
3253 **/
3254s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3255{
3256#define IXGBE_MAX_SECRX_POLL 40
3257
3258	int i;
3259	int secrxreg;
3260
3261	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3262
3263
3264	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3265	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3266	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3267	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3268		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3269		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3270			break;
3271		else
3272			/* Use interrupt-safe sleep just in case */
3273			usec_delay(1000);
3274	}
3275
3276	/* For informational purposes only */
3277	if (i >= IXGBE_MAX_SECRX_POLL)
3278		DEBUGOUT("Rx unit being enabled before security "
3279			 "path fully disabled.  Continuing with init.\n");
3280
3281	return IXGBE_SUCCESS;
3282}
3283
3284/**
3285 *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3286 *  @hw: pointer to hardware structure
3287 *  @reg_val: Value we read from AUTOC
3288 *
3289 *  The default case requires no protection so just to the register read.
3290 */
3291s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3292{
3293	*locked = FALSE;
3294	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3295	return IXGBE_SUCCESS;
3296}
3297
3298/**
3299 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3300 * @hw: pointer to hardware structure
3301 * @reg_val: value to write to AUTOC
3302 * @locked: bool to indicate whether the SW/FW lock was already taken by
3303 *           previous read.
3304 *
3305 * The default case requires no protection so just to the register write.
3306 */
3307s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3308{
3309	UNREFERENCED_1PARAMETER(locked);
3310
3311	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3312	return IXGBE_SUCCESS;
3313}
3314
3315/**
3316 *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3317 *  @hw: pointer to hardware structure
3318 *
3319 *  Enables the receive data path.
3320 **/
3321s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3322{
3323	int secrxreg;
3324
3325	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3326
3327	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3328	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3329	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3330	IXGBE_WRITE_FLUSH(hw);
3331
3332	return IXGBE_SUCCESS;
3333}
3334
3335/**
3336 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3337 *  @hw: pointer to hardware structure
3338 *  @regval: register value to write to RXCTRL
3339 *
3340 *  Enables the Rx DMA unit
3341 **/
3342s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3343{
3344	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3345
3346	if (regval & IXGBE_RXCTRL_RXEN)
3347		ixgbe_enable_rx(hw);
3348	else
3349		ixgbe_disable_rx(hw);
3350
3351	return IXGBE_SUCCESS;
3352}
3353
3354/**
3355 *  ixgbe_blink_led_start_generic - Blink LED based on index.
3356 *  @hw: pointer to hardware structure
3357 *  @index: led number to blink
3358 **/
3359s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3360{
3361	ixgbe_link_speed speed = 0;
3362	bool link_up = 0;
3363	u32 autoc_reg = 0;
3364	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3365	s32 ret_val = IXGBE_SUCCESS;
3366	bool locked = FALSE;
3367
3368	DEBUGFUNC("ixgbe_blink_led_start_generic");
3369
3370	/*
3371	 * Link must be up to auto-blink the LEDs;
3372	 * Force it if link is down.
3373	 */
3374	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3375
3376	if (!link_up) {
3377		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3378		if (ret_val != IXGBE_SUCCESS)
3379			goto out;
3380
3381		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3382		autoc_reg |= IXGBE_AUTOC_FLU;
3383
3384		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3385		if (ret_val != IXGBE_SUCCESS)
3386			goto out;
3387
3388		IXGBE_WRITE_FLUSH(hw);
3389		msec_delay(10);
3390	}
3391
3392	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3393	led_reg |= IXGBE_LED_BLINK(index);
3394	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3395	IXGBE_WRITE_FLUSH(hw);
3396
3397out:
3398	return ret_val;
3399}
3400
3401/**
3402 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3403 *  @hw: pointer to hardware structure
3404 *  @index: led number to stop blinking
3405 **/
3406s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3407{
3408	u32 autoc_reg = 0;
3409	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3410	s32 ret_val = IXGBE_SUCCESS;
3411	bool locked = FALSE;
3412
3413	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3414
3415	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3416	if (ret_val != IXGBE_SUCCESS)
3417		goto out;
3418
3419	autoc_reg &= ~IXGBE_AUTOC_FLU;
3420	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3421
3422	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3423	if (ret_val != IXGBE_SUCCESS)
3424		goto out;
3425
3426	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3427	led_reg &= ~IXGBE_LED_BLINK(index);
3428	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3429	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3430	IXGBE_WRITE_FLUSH(hw);
3431
3432out:
3433	return ret_val;
3434}
3435
3436/**
3437 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3438 *  @hw: pointer to hardware structure
3439 *  @san_mac_offset: SAN MAC address offset
3440 *
3441 *  This function will read the EEPROM location for the SAN MAC address
3442 *  pointer, and returns the value at that location.  This is used in both
3443 *  get and set mac_addr routines.
3444 **/
3445static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3446					 u16 *san_mac_offset)
3447{
3448	s32 ret_val;
3449
3450	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3451
3452	/*
3453	 * First read the EEPROM pointer to see if the MAC addresses are
3454	 * available.
3455	 */
3456	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3457				      san_mac_offset);
3458	if (ret_val) {
3459		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3460			      "eeprom at offset %d failed",
3461			      IXGBE_SAN_MAC_ADDR_PTR);
3462	}
3463
3464	return ret_val;
3465}
3466
3467/**
3468 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3469 *  @hw: pointer to hardware structure
3470 *  @san_mac_addr: SAN MAC address
3471 *
3472 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3473 *  per-port, so set_lan_id() must be called before reading the addresses.
3474 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3475 *  upon for non-SFP connections, so we must call it here.
3476 **/
3477s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3478{
3479	u16 san_mac_data, san_mac_offset;
3480	u8 i;
3481	s32 ret_val;
3482
3483	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3484
3485	/*
3486	 * First read the EEPROM pointer to see if the MAC addresses are
3487	 * available.  If they're not, no point in calling set_lan_id() here.
3488	 */
3489	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3490	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3491		goto san_mac_addr_out;
3492
3493	/* make sure we know which port we need to program */
3494	hw->mac.ops.set_lan_id(hw);
3495	/* apply the port offset to the address offset */
3496	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3497			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3498	for (i = 0; i < 3; i++) {
3499		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3500					      &san_mac_data);
3501		if (ret_val) {
3502			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3503				      "eeprom read at offset %d failed",
3504				      san_mac_offset);
3505			goto san_mac_addr_out;
3506		}
3507		san_mac_addr[i * 2] = (u8)(san_mac_data);
3508		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3509		san_mac_offset++;
3510	}
3511	return IXGBE_SUCCESS;
3512
3513san_mac_addr_out:
3514	/*
3515	 * No addresses available in this EEPROM.  It's not an
3516	 * error though, so just wipe the local address and return.
3517	 */
3518	for (i = 0; i < 6; i++)
3519		san_mac_addr[i] = 0xFF;
3520	return IXGBE_SUCCESS;
3521}
3522
3523/**
3524 *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3525 *  @hw: pointer to hardware structure
3526 *  @san_mac_addr: SAN MAC address
3527 *
3528 *  Write a SAN MAC address to the EEPROM.
3529 **/
3530s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3531{
3532	s32 ret_val;
3533	u16 san_mac_data, san_mac_offset;
3534	u8 i;
3535
3536	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3537
3538	/* Look for SAN mac address pointer.  If not defined, return */
3539	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3540	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3541		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3542
3543	/* Make sure we know which port we need to write */
3544	hw->mac.ops.set_lan_id(hw);
3545	/* Apply the port offset to the address offset */
3546	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3547			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3548
3549	for (i = 0; i < 3; i++) {
3550		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3551		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3552		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3553		san_mac_offset++;
3554	}
3555
3556	return IXGBE_SUCCESS;
3557}
3558
3559/**
3560 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3561 *  @hw: pointer to hardware structure
3562 *
3563 *  Read PCIe configuration space, and get the MSI-X vector count from
3564 *  the capabilities table.
3565 **/
3566u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3567{
3568	u16 msix_count = 1;
3569	u16 max_msix_count;
3570	u16 pcie_offset;
3571
3572	switch (hw->mac.type) {
3573	case ixgbe_mac_82598EB:
3574		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3575		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3576		break;
3577	case ixgbe_mac_82599EB:
3578	case ixgbe_mac_X540:
3579	case ixgbe_mac_X550:
3580	case ixgbe_mac_X550EM_x:
3581		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3582		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3583		break;
3584	default:
3585		return msix_count;
3586	}
3587
3588	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3589	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3590	if (IXGBE_REMOVED(hw->hw_addr))
3591		msix_count = 0;
3592	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3593
3594	/* MSI-X count is zero-based in HW */
3595	msix_count++;
3596
3597	if (msix_count > max_msix_count)
3598		msix_count = max_msix_count;
3599
3600	return msix_count;
3601}
3602
3603/**
3604 *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3605 *  @hw: pointer to hardware structure
3606 *  @addr: Address to put into receive address register
3607 *  @vmdq: VMDq pool to assign
3608 *
3609 *  Puts an ethernet address into a receive address register, or
3610 *  finds the rar that it is aleady in; adds to the pool list
3611 **/
3612s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3613{
3614	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3615	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3616	u32 rar;
3617	u32 rar_low, rar_high;
3618	u32 addr_low, addr_high;
3619
3620	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3621
3622	/* swap bytes for HW little endian */
3623	addr_low  = addr[0] | (addr[1] << 8)
3624			    | (addr[2] << 16)
3625			    | (addr[3] << 24);
3626	addr_high = addr[4] | (addr[5] << 8);
3627
3628	/*
3629	 * Either find the mac_id in rar or find the first empty space.
3630	 * rar_highwater points to just after the highest currently used
3631	 * rar in order to shorten the search.  It grows when we add a new
3632	 * rar to the top.
3633	 */
3634	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3635		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3636
3637		if (((IXGBE_RAH_AV & rar_high) == 0)
3638		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3639			first_empty_rar = rar;
3640		} else if ((rar_high & 0xFFFF) == addr_high) {
3641			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3642			if (rar_low == addr_low)
3643				break;    /* found it already in the rars */
3644		}
3645	}
3646
3647	if (rar < hw->mac.rar_highwater) {
3648		/* already there so just add to the pool bits */
3649		ixgbe_set_vmdq(hw, rar, vmdq);
3650	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3651		/* stick it into first empty RAR slot we found */
3652		rar = first_empty_rar;
3653		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3654	} else if (rar == hw->mac.rar_highwater) {
3655		/* add it to the top of the list and inc the highwater mark */
3656		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3657		hw->mac.rar_highwater++;
3658	} else if (rar >= hw->mac.num_rar_entries) {
3659		return IXGBE_ERR_INVALID_MAC_ADDR;
3660	}
3661
3662	/*
3663	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3664	 * remains cleared to be sure default pool packets will get delivered
3665	 */
3666	if (rar == 0)
3667		ixgbe_clear_vmdq(hw, rar, 0);
3668
3669	return rar;
3670}
3671
3672/**
3673 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3674 *  @hw: pointer to hardware struct
3675 *  @rar: receive address register index to disassociate
3676 *  @vmdq: VMDq pool index to remove from the rar
3677 **/
3678s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3679{
3680	u32 mpsar_lo, mpsar_hi;
3681	u32 rar_entries = hw->mac.num_rar_entries;
3682
3683	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3684
3685	/* Make sure we are using a valid rar index range */
3686	if (rar >= rar_entries) {
3687		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3688			     "RAR index %d is out of range.\n", rar);
3689		return IXGBE_ERR_INVALID_ARGUMENT;
3690	}
3691
3692	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3693	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3694
3695	if (IXGBE_REMOVED(hw->hw_addr))
3696		goto done;
3697
3698	if (!mpsar_lo && !mpsar_hi)
3699		goto done;
3700
3701	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3702		if (mpsar_lo) {
3703			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3704			mpsar_lo = 0;
3705		}
3706		if (mpsar_hi) {
3707			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3708			mpsar_hi = 0;
3709		}
3710	} else if (vmdq < 32) {
3711		mpsar_lo &= ~(1 << vmdq);
3712		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3713	} else {
3714		mpsar_hi &= ~(1 << (vmdq - 32));
3715		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3716	}
3717
3718	/* was that the last pool using this rar? */
3719	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3720		hw->mac.ops.clear_rar(hw, rar);
3721done:
3722	return IXGBE_SUCCESS;
3723}
3724
3725/**
3726 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3727 *  @hw: pointer to hardware struct
3728 *  @rar: receive address register index to associate with a VMDq index
3729 *  @vmdq: VMDq pool index
3730 **/
3731s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3732{
3733	u32 mpsar;
3734	u32 rar_entries = hw->mac.num_rar_entries;
3735
3736	DEBUGFUNC("ixgbe_set_vmdq_generic");
3737
3738	/* Make sure we are using a valid rar index range */
3739	if (rar >= rar_entries) {
3740		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3741			     "RAR index %d is out of range.\n", rar);
3742		return IXGBE_ERR_INVALID_ARGUMENT;
3743	}
3744
3745	if (vmdq < 32) {
3746		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3747		mpsar |= 1 << vmdq;
3748		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3749	} else {
3750		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3751		mpsar |= 1 << (vmdq - 32);
3752		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3753	}
3754	return IXGBE_SUCCESS;
3755}
3756
3757/**
3758 *  This function should only be involved in the IOV mode.
3759 *  In IOV mode, Default pool is next pool after the number of
3760 *  VFs advertized and not 0.
3761 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3762 *
3763 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3764 *  @hw: pointer to hardware struct
3765 *  @vmdq: VMDq pool index
3766 **/
3767s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3768{
3769	u32 rar = hw->mac.san_mac_rar_index;
3770
3771	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3772
3773	if (vmdq < 32) {
3774		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3775		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3776	} else {
3777		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3778		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3779	}
3780
3781	return IXGBE_SUCCESS;
3782}
3783
3784/**
3785 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3786 *  @hw: pointer to hardware structure
3787 **/
3788s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3789{
3790	int i;
3791
3792	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3793	DEBUGOUT(" Clearing UTA\n");
3794
3795	for (i = 0; i < 128; i++)
3796		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3797
3798	return IXGBE_SUCCESS;
3799}
3800
3801/**
3802 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3803 *  @hw: pointer to hardware structure
3804 *  @vlan: VLAN id to write to VLAN filter
3805 *
3806 *  return the VLVF index where this VLAN id should be placed
3807 *
3808 **/
3809s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3810{
3811	u32 bits = 0;
3812	u32 first_empty_slot = 0;
3813	s32 regindex;
3814
3815	/* short cut the special case */
3816	if (vlan == 0)
3817		return 0;
3818
3819	/*
3820	  * Search for the vlan id in the VLVF entries. Save off the first empty
3821	  * slot found along the way
3822	  */
3823	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3824		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3825		if (!bits && !(first_empty_slot))
3826			first_empty_slot = regindex;
3827		else if ((bits & 0x0FFF) == vlan)
3828			break;
3829	}
3830
3831	/*
3832	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3833	  * in the VLVF. Else use the first empty VLVF register for this
3834	  * vlan id.
3835	  */
3836	if (regindex >= IXGBE_VLVF_ENTRIES) {
3837		if (first_empty_slot)
3838			regindex = first_empty_slot;
3839		else {
3840			ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
3841				     "No space in VLVF.\n");
3842			regindex = IXGBE_ERR_NO_SPACE;
3843		}
3844	}
3845
3846	return regindex;
3847}
3848
3849/**
3850 *  ixgbe_set_vfta_generic - Set VLAN filter table
3851 *  @hw: pointer to hardware structure
3852 *  @vlan: VLAN id to write to VLAN filter
3853 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3854 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3855 *
3856 *  Turn on/off specified VLAN in the VLAN filter table.
3857 **/
3858s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3859			   bool vlan_on)
3860{
3861	s32 regindex;
3862	u32 bitindex;
3863	u32 vfta;
3864	u32 targetbit;
3865	s32 ret_val = IXGBE_SUCCESS;
3866	bool vfta_changed = FALSE;
3867
3868	DEBUGFUNC("ixgbe_set_vfta_generic");
3869
3870	if (vlan > 4095)
3871		return IXGBE_ERR_PARAM;
3872
3873	/*
3874	 * this is a 2 part operation - first the VFTA, then the
3875	 * VLVF and VLVFB if VT Mode is set
3876	 * We don't write the VFTA until we know the VLVF part succeeded.
3877	 */
3878
3879	/* Part 1
3880	 * The VFTA is a bitstring made up of 128 32-bit registers
3881	 * that enable the particular VLAN id, much like the MTA:
3882	 *    bits[11-5]: which register
3883	 *    bits[4-0]:  which bit in the register
3884	 */
3885	regindex = (vlan >> 5) & 0x7F;
3886	bitindex = vlan & 0x1F;
3887	targetbit = (1 << bitindex);
3888	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3889
3890	if (vlan_on) {
3891		if (!(vfta & targetbit)) {
3892			vfta |= targetbit;
3893			vfta_changed = TRUE;
3894		}
3895	} else {
3896		if ((vfta & targetbit)) {
3897			vfta &= ~targetbit;
3898			vfta_changed = TRUE;
3899		}
3900	}
3901
3902	/* Part 2
3903	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3904	 */
3905	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3906					 &vfta_changed);
3907	if (ret_val != IXGBE_SUCCESS)
3908		return ret_val;
3909
3910	if (vfta_changed)
3911		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3912
3913	return IXGBE_SUCCESS;
3914}
3915
3916/**
3917 *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3918 *  @hw: pointer to hardware structure
3919 *  @vlan: VLAN id to write to VLAN filter
3920 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3921 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3922 *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
3923 *                 should be changed
3924 *
3925 *  Turn on/off specified bit in VLVF table.
3926 **/
3927s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3928			    bool vlan_on, bool *vfta_changed)
3929{
3930	u32 vt;
3931
3932	DEBUGFUNC("ixgbe_set_vlvf_generic");
3933
3934	if (vlan > 4095)
3935		return IXGBE_ERR_PARAM;
3936
3937	/* If VT Mode is set
3938	 *   Either vlan_on
3939	 *     make sure the vlan is in VLVF
3940	 *     set the vind bit in the matching VLVFB
3941	 *   Or !vlan_on
3942	 *     clear the pool bit and possibly the vind
3943	 */
3944	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3945	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3946		s32 vlvf_index;
3947		u32 bits;
3948
3949		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3950		if (vlvf_index < 0)
3951			return vlvf_index;
3952
3953		if (vlan_on) {
3954			/* set the pool bit */
3955			if (vind < 32) {
3956				bits = IXGBE_READ_REG(hw,
3957						IXGBE_VLVFB(vlvf_index * 2));
3958				bits |= (1 << vind);
3959				IXGBE_WRITE_REG(hw,
3960						IXGBE_VLVFB(vlvf_index * 2),
3961						bits);
3962			} else {
3963				bits = IXGBE_READ_REG(hw,
3964					IXGBE_VLVFB((vlvf_index * 2) + 1));
3965				bits |= (1 << (vind - 32));
3966				IXGBE_WRITE_REG(hw,
3967					IXGBE_VLVFB((vlvf_index * 2) + 1),
3968					bits);
3969			}
3970		} else {
3971			/* clear the pool bit */
3972			if (vind < 32) {
3973				bits = IXGBE_READ_REG(hw,
3974						IXGBE_VLVFB(vlvf_index * 2));
3975				bits &= ~(1 << vind);
3976				IXGBE_WRITE_REG(hw,
3977						IXGBE_VLVFB(vlvf_index * 2),
3978						bits);
3979				bits |= IXGBE_READ_REG(hw,
3980					IXGBE_VLVFB((vlvf_index * 2) + 1));
3981			} else {
3982				bits = IXGBE_READ_REG(hw,
3983					IXGBE_VLVFB((vlvf_index * 2) + 1));
3984				bits &= ~(1 << (vind - 32));
3985				IXGBE_WRITE_REG(hw,
3986					IXGBE_VLVFB((vlvf_index * 2) + 1),
3987					bits);
3988				bits |= IXGBE_READ_REG(hw,
3989						IXGBE_VLVFB(vlvf_index * 2));
3990			}
3991		}
3992
3993		/*
3994		 * If there are still bits set in the VLVFB registers
3995		 * for the VLAN ID indicated we need to see if the
3996		 * caller is requesting that we clear the VFTA entry bit.
3997		 * If the caller has requested that we clear the VFTA
3998		 * entry bit but there are still pools/VFs using this VLAN
3999		 * ID entry then ignore the request.  We're not worried
4000		 * about the case where we're turning the VFTA VLAN ID
4001		 * entry bit on, only when requested to turn it off as
4002		 * there may be multiple pools and/or VFs using the
4003		 * VLAN ID entry.  In that case we cannot clear the
4004		 * VFTA bit until all pools/VFs using that VLAN ID have also
4005		 * been cleared.  This will be indicated by "bits" being
4006		 * zero.
4007		 */
4008		if (bits) {
4009			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
4010					(IXGBE_VLVF_VIEN | vlan));
4011			if ((!vlan_on) && (vfta_changed != NULL)) {
4012				/* someone wants to clear the vfta entry
4013				 * but some pools/VFs are still using it.
4014				 * Ignore it. */
4015				*vfta_changed = FALSE;
4016			}
4017		} else
4018			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4019	}
4020
4021	return IXGBE_SUCCESS;
4022}
4023
4024/**
4025 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
4026 *  @hw: pointer to hardware structure
4027 *
4028 *  Clears the VLAN filer table, and the VMDq index associated with the filter
4029 **/
4030s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4031{
4032	u32 offset;
4033
4034	DEBUGFUNC("ixgbe_clear_vfta_generic");
4035
4036	for (offset = 0; offset < hw->mac.vft_size; offset++)
4037		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4038
4039	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4040		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4041		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4042		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4043	}
4044
4045	return IXGBE_SUCCESS;
4046}
4047
4048/**
4049 *  ixgbe_check_mac_link_generic - Determine link and speed status
4050 *  @hw: pointer to hardware structure
4051 *  @speed: pointer to link speed
4052 *  @link_up: TRUE when link is up
4053 *  @link_up_wait_to_complete: bool used to wait for link up or not
4054 *
4055 *  Reads the links register to determine if link is up and the current speed
4056 **/
4057s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4058				 bool *link_up, bool link_up_wait_to_complete)
4059{
4060	u32 links_reg, links_orig;
4061	u32 i;
4062
4063	DEBUGFUNC("ixgbe_check_mac_link_generic");
4064
4065	/* clear the old state */
4066	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4067
4068	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4069
4070	if (links_orig != links_reg) {
4071		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4072			  links_orig, links_reg);
4073	}
4074
4075	if (link_up_wait_to_complete) {
4076		for (i = 0; i < hw->mac.max_link_up_time; i++) {
4077			if (links_reg & IXGBE_LINKS_UP) {
4078				*link_up = TRUE;
4079				break;
4080			} else {
4081				*link_up = FALSE;
4082			}
4083			msec_delay(100);
4084			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4085		}
4086	} else {
4087		if (links_reg & IXGBE_LINKS_UP)
4088			*link_up = TRUE;
4089		else
4090			*link_up = FALSE;
4091	}
4092
4093	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4094	case IXGBE_LINKS_SPEED_10G_82599:
4095		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4096		if (hw->mac.type >= ixgbe_mac_X550) {
4097			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4098				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4099		}
4100		break;
4101	case IXGBE_LINKS_SPEED_1G_82599:
4102		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4103		break;
4104	case IXGBE_LINKS_SPEED_100_82599:
4105		*speed = IXGBE_LINK_SPEED_100_FULL;
4106		if (hw->mac.type >= ixgbe_mac_X550) {
4107			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4108				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4109		}
4110		break;
4111	default:
4112		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4113	}
4114
4115	return IXGBE_SUCCESS;
4116}
4117
4118/**
4119 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4120 *  the EEPROM
4121 *  @hw: pointer to hardware structure
4122 *  @wwnn_prefix: the alternative WWNN prefix
4123 *  @wwpn_prefix: the alternative WWPN prefix
4124 *
4125 *  This function will read the EEPROM from the alternative SAN MAC address
4126 *  block to check the support for the alternative WWNN/WWPN prefix support.
4127 **/
4128s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4129				 u16 *wwpn_prefix)
4130{
4131	u16 offset, caps;
4132	u16 alt_san_mac_blk_offset;
4133
4134	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4135
4136	/* clear output first */
4137	*wwnn_prefix = 0xFFFF;
4138	*wwpn_prefix = 0xFFFF;
4139
4140	/* check if alternative SAN MAC is supported */
4141	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4142	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4143		goto wwn_prefix_err;
4144
4145	if ((alt_san_mac_blk_offset == 0) ||
4146	    (alt_san_mac_blk_offset == 0xFFFF))
4147		goto wwn_prefix_out;
4148
4149	/* check capability in alternative san mac address block */
4150	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4151	if (hw->eeprom.ops.read(hw, offset, &caps))
4152		goto wwn_prefix_err;
4153	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4154		goto wwn_prefix_out;
4155
4156	/* get the corresponding prefix for WWNN/WWPN */
4157	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4158	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4159		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4160			      "eeprom read at offset %d failed", offset);
4161	}
4162
4163	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4164	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4165		goto wwn_prefix_err;
4166
4167wwn_prefix_out:
4168	return IXGBE_SUCCESS;
4169
4170wwn_prefix_err:
4171	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4172		      "eeprom read at offset %d failed", offset);
4173	return IXGBE_SUCCESS;
4174}
4175
4176/**
4177 *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4178 *  @hw: pointer to hardware structure
4179 *  @bs: the fcoe boot status
4180 *
4181 *  This function will read the FCOE boot status from the iSCSI FCOE block
4182 **/
4183s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4184{
4185	u16 offset, caps, flags;
4186	s32 status;
4187
4188	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4189
4190	/* clear output first */
4191	*bs = ixgbe_fcoe_bootstatus_unavailable;
4192
4193	/* check if FCOE IBA block is present */
4194	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4195	status = hw->eeprom.ops.read(hw, offset, &caps);
4196	if (status != IXGBE_SUCCESS)
4197		goto out;
4198
4199	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4200		goto out;
4201
4202	/* check if iSCSI FCOE block is populated */
4203	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4204	if (status != IXGBE_SUCCESS)
4205		goto out;
4206
4207	if ((offset == 0) || (offset == 0xFFFF))
4208		goto out;
4209
4210	/* read fcoe flags in iSCSI FCOE block */
4211	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4212	status = hw->eeprom.ops.read(hw, offset, &flags);
4213	if (status != IXGBE_SUCCESS)
4214		goto out;
4215
4216	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4217		*bs = ixgbe_fcoe_bootstatus_enabled;
4218	else
4219		*bs = ixgbe_fcoe_bootstatus_disabled;
4220
4221out:
4222	return status;
4223}
4224
4225/**
4226 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4227 *  @hw: pointer to hardware structure
4228 *  @enable: enable or disable switch for anti-spoofing
4229 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
4230 *
4231 **/
4232void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
4233{
4234	int j;
4235	int pf_target_reg = pf >> 3;
4236	int pf_target_shift = pf % 8;
4237	u32 pfvfspoof = 0;
4238
4239	if (hw->mac.type == ixgbe_mac_82598EB)
4240		return;
4241
4242	if (enable)
4243		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
4244
4245	/*
4246	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
4247	 * MAC anti-spoof enables in each register array element.
4248	 */
4249	for (j = 0; j < pf_target_reg; j++)
4250		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4251
4252	/*
4253	 * The PF should be allowed to spoof so that it can support
4254	 * emulation mode NICs.  Do not set the bits assigned to the PF
4255	 */
4256	pfvfspoof &= (1 << pf_target_shift) - 1;
4257	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4258
4259	/*
4260	 * Remaining pools belong to the PF so they do not need to have
4261	 * anti-spoofing enabled.
4262	 */
4263	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4264		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4265}
4266
4267/**
4268 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4269 *  @hw: pointer to hardware structure
4270 *  @enable: enable or disable switch for VLAN anti-spoofing
4271 *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4272 *
4273 **/
4274void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4275{
4276	int vf_target_reg = vf >> 3;
4277	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4278	u32 pfvfspoof;
4279
4280	if (hw->mac.type == ixgbe_mac_82598EB)
4281		return;
4282
4283	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4284	if (enable)
4285		pfvfspoof |= (1 << vf_target_shift);
4286	else
4287		pfvfspoof &= ~(1 << vf_target_shift);
4288	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4289}
4290
4291/**
4292 *  ixgbe_get_device_caps_generic - Get additional device capabilities
4293 *  @hw: pointer to hardware structure
4294 *  @device_caps: the EEPROM word with the extra device capabilities
4295 *
4296 *  This function will read the EEPROM location for the device capabilities,
4297 *  and return the word through device_caps.
4298 **/
4299s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4300{
4301	DEBUGFUNC("ixgbe_get_device_caps_generic");
4302
4303	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4304
4305	return IXGBE_SUCCESS;
4306}
4307
4308/**
4309 *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4310 *  @hw: pointer to hardware structure
4311 *
4312 **/
4313void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4314{
4315	u32 regval;
4316	u32 i;
4317
4318	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4319
4320	/* Enable relaxed ordering */
4321	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4322		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4323		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4324		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4325	}
4326
4327	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4328		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4329		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4330			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4331		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4332	}
4333
4334}
4335
4336/**
4337 *  ixgbe_calculate_checksum - Calculate checksum for buffer
4338 *  @buffer: pointer to EEPROM
4339 *  @length: size of EEPROM to calculate a checksum for
4340 *  Calculates the checksum for some buffer on a specified length.  The
4341 *  checksum calculated is returned.
4342 **/
4343u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4344{
4345	u32 i;
4346	u8 sum = 0;
4347
4348	DEBUGFUNC("ixgbe_calculate_checksum");
4349
4350	if (!buffer)
4351		return 0;
4352
4353	for (i = 0; i < length; i++)
4354		sum += buffer[i];
4355
4356	return (u8) (0 - sum);
4357}
4358
4359/**
4360 *  ixgbe_host_interface_command - Issue command to manageability block
4361 *  @hw: pointer to the HW structure
4362 *  @buffer: contains the command to write and where the return status will
4363 *   be placed
4364 *  @length: length of buffer, must be multiple of 4 bytes
4365 *  @timeout: time in ms to wait for command completion
4366 *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4367 *   Needed because FW structures are big endian and decoding of
4368 *   these fields can be 8 bit or 16 bit based on command. Decoding
4369 *   is not easily understood without making a table of commands.
4370 *   So we will leave this up to the caller to read back the data
4371 *   in these cases.
4372 *
4373 *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
4374 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4375 **/
4376s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4377				 u32 length, u32 timeout, bool return_data)
4378{
4379	u32 hicr, i, bi, fwsts;
4380	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4381	u16 buf_len;
4382	u16 dword_len;
4383
4384	DEBUGFUNC("ixgbe_host_interface_command");
4385
4386	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4387		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4388		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4389	}
4390	/* Set bit 9 of FWSTS clearing FW reset indication */
4391	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4392	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4393
4394	/* Check that the host interface is enabled. */
4395	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4396	if ((hicr & IXGBE_HICR_EN) == 0) {
4397		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4398		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4399	}
4400
4401	/* Calculate length in DWORDs. We must be DWORD aligned */
4402	if ((length % (sizeof(u32))) != 0) {
4403		DEBUGOUT("Buffer length failure, not aligned to dword");
4404		return IXGBE_ERR_INVALID_ARGUMENT;
4405	}
4406
4407	dword_len = length >> 2;
4408
4409	/* The device driver writes the relevant command block
4410	 * into the ram area.
4411	 */
4412	for (i = 0; i < dword_len; i++)
4413		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4414				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4415
4416	/* Setting this bit tells the ARC that a new command is pending. */
4417	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4418
4419	for (i = 0; i < timeout; i++) {
4420		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4421		if (!(hicr & IXGBE_HICR_C))
4422			break;
4423		msec_delay(1);
4424	}
4425
4426	/* Check command completion */
4427	if ((timeout != 0 && i == timeout) ||
4428	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4429		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4430			     "Command has failed with no status valid.\n");
4431		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4432	}
4433
4434	if (!return_data)
4435		return 0;
4436
4437	/* Calculate length in DWORDs */
4438	dword_len = hdr_size >> 2;
4439
4440	/* first pull in the header so we know the buffer length */
4441	for (bi = 0; bi < dword_len; bi++) {
4442		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4443		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4444	}
4445
4446	/* If there is any thing in data position pull it in */
4447	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4448	if (buf_len == 0)
4449		return 0;
4450
4451	if (length < buf_len + hdr_size) {
4452		DEBUGOUT("Buffer not large enough for reply message.\n");
4453		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4454	}
4455
4456	/* Calculate length in DWORDs, add 3 for odd lengths */
4457	dword_len = (buf_len + 3) >> 2;
4458
4459	/* Pull in the rest of the buffer (bi is where we left off) */
4460	for (; bi <= dword_len; bi++) {
4461		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4462		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4463	}
4464
4465	return 0;
4466}
4467
4468/**
4469 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4470 *  @hw: pointer to the HW structure
4471 *  @maj: driver version major number
4472 *  @min: driver version minor number
4473 *  @build: driver version build number
4474 *  @sub: driver version sub build number
4475 *
4476 *  Sends driver version number to firmware through the manageability
4477 *  block.  On success return IXGBE_SUCCESS
4478 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4479 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4480 **/
4481s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4482				 u8 build, u8 sub)
4483{
4484	struct ixgbe_hic_drv_info fw_cmd;
4485	int i;
4486	s32 ret_val = IXGBE_SUCCESS;
4487
4488	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4489
4490	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4491	    != IXGBE_SUCCESS) {
4492		ret_val = IXGBE_ERR_SWFW_SYNC;
4493		goto out;
4494	}
4495
4496	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4497	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4498	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4499	fw_cmd.port_num = (u8)hw->bus.func;
4500	fw_cmd.ver_maj = maj;
4501	fw_cmd.ver_min = min;
4502	fw_cmd.ver_build = build;
4503	fw_cmd.ver_sub = sub;
4504	fw_cmd.hdr.checksum = 0;
4505	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4506				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4507	fw_cmd.pad = 0;
4508	fw_cmd.pad2 = 0;
4509
4510	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4511		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4512						       sizeof(fw_cmd),
4513						       IXGBE_HI_COMMAND_TIMEOUT,
4514						       TRUE);
4515		if (ret_val != IXGBE_SUCCESS)
4516			continue;
4517
4518		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4519		    FW_CEM_RESP_STATUS_SUCCESS)
4520			ret_val = IXGBE_SUCCESS;
4521		else
4522			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4523
4524		break;
4525	}
4526
4527	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4528out:
4529	return ret_val;
4530}
4531
4532/**
4533 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4534 * @hw: pointer to hardware structure
4535 * @num_pb: number of packet buffers to allocate
4536 * @headroom: reserve n KB of headroom
4537 * @strategy: packet buffer allocation strategy
4538 **/
4539void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4540			     int strategy)
4541{
4542	u32 pbsize = hw->mac.rx_pb_size;
4543	int i = 0;
4544	u32 rxpktsize, txpktsize, txpbthresh;
4545
4546	/* Reserve headroom */
4547	pbsize -= headroom;
4548
4549	if (!num_pb)
4550		num_pb = 1;
4551
4552	/* Divide remaining packet buffer space amongst the number of packet
4553	 * buffers requested using supplied strategy.
4554	 */
4555	switch (strategy) {
4556	case PBA_STRATEGY_WEIGHTED:
4557		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4558		 * buffer with 5/8 of the packet buffer space.
4559		 */
4560		rxpktsize = (pbsize * 5) / (num_pb * 4);
4561		pbsize -= rxpktsize * (num_pb / 2);
4562		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4563		for (; i < (num_pb / 2); i++)
4564			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4565		/* Fall through to configure remaining packet buffers */
4566	case PBA_STRATEGY_EQUAL:
4567		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4568		for (; i < num_pb; i++)
4569			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4570		break;
4571	default:
4572		break;
4573	}
4574
4575	/* Only support an equally distributed Tx packet buffer strategy. */
4576	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4577	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4578	for (i = 0; i < num_pb; i++) {
4579		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4580		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4581	}
4582
4583	/* Clear unused TCs, if any, to zero buffer size*/
4584	for (; i < IXGBE_MAX_PB; i++) {
4585		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4586		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4587		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4588	}
4589}
4590
4591/**
4592 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4593 * @hw: pointer to the hardware structure
4594 *
4595 * The 82599 and x540 MACs can experience issues if TX work is still pending
4596 * when a reset occurs.  This function prevents this by flushing the PCIe
4597 * buffers on the system.
4598 **/
4599void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4600{
4601	u32 gcr_ext, hlreg0, i, poll;
4602	u16 value;
4603
4604	/*
4605	 * If double reset is not requested then all transactions should
4606	 * already be clear and as such there is no work to do
4607	 */
4608	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4609		return;
4610
4611	/*
4612	 * Set loopback enable to prevent any transmits from being sent
4613	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4614	 * has already been cleared.
4615	 */
4616	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4617	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4618
4619	/* Wait for a last completion before clearing buffers */
4620	IXGBE_WRITE_FLUSH(hw);
4621	msec_delay(3);
4622
4623	/*
4624	 * Before proceeding, make sure that the PCIe block does not have
4625	 * transactions pending.
4626	 */
4627	poll = ixgbe_pcie_timeout_poll(hw);
4628	for (i = 0; i < poll; i++) {
4629		usec_delay(100);
4630		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4631		if (IXGBE_REMOVED(hw->hw_addr))
4632			goto out;
4633		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4634			goto out;
4635	}
4636
4637out:
4638	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4639	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4640	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4641			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4642
4643	/* Flush all writes and allow 20usec for all transactions to clear */
4644	IXGBE_WRITE_FLUSH(hw);
4645	usec_delay(20);
4646
4647	/* restore previous register values */
4648	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4649	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4650}
4651
4652
4653/**
4654 * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
4655 * @hw: pointer to hardware structure
4656 * @map: pointer to u8 arr for returning map
4657 *
4658 * Read the rtrup2tc HW register and resolve its content into map
4659 **/
4660void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
4661{
4662	u32 reg, i;
4663
4664	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
4665	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
4666		map[i] = IXGBE_RTRUP2TC_UP_MASK &
4667			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
4668	return;
4669}
4670
4671void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4672{
4673	u32 pfdtxgswc;
4674	u32 rxctrl;
4675
4676	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4677	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4678		if (hw->mac.type != ixgbe_mac_82598EB) {
4679			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4680			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4681				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4682				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4683				hw->mac.set_lben = TRUE;
4684			} else {
4685				hw->mac.set_lben = FALSE;
4686			}
4687		}
4688		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4689		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4690	}
4691}
4692
4693void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4694{
4695	u32 pfdtxgswc;
4696	u32 rxctrl;
4697
4698	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4699	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4700
4701	if (hw->mac.type != ixgbe_mac_82598EB) {
4702		if (hw->mac.set_lben) {
4703			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4704			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4705			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4706			hw->mac.set_lben = FALSE;
4707		}
4708	}
4709}
4710
4711/**
4712 * ixgbe_mng_present - returns TRUE when management capability is present
4713 * @hw: pointer to hardware structure
4714 */
4715bool ixgbe_mng_present(struct ixgbe_hw *hw)
4716{
4717	u32 fwsm;
4718
4719	if (hw->mac.type < ixgbe_mac_82599EB)
4720		return FALSE;
4721
4722	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4723	fwsm &= IXGBE_FWSM_MODE_MASK;
4724	return fwsm == IXGBE_FWSM_FW_MODE_PT;
4725}
4726
4727/**
4728 * ixgbe_mng_enabled - Is the manageability engine enabled?
4729 * @hw: pointer to hardware structure
4730 *
4731 * Returns TRUE if the manageability engine is enabled.
4732 **/
4733bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
4734{
4735	u32 fwsm, manc, factps;
4736
4737	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4738	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
4739		return FALSE;
4740
4741	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
4742	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
4743		return FALSE;
4744
4745	if (hw->mac.type <= ixgbe_mac_X540) {
4746		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
4747		if (factps & IXGBE_FACTPS_MNGCG)
4748			return FALSE;
4749	}
4750
4751	return TRUE;
4752}
4753
4754/**
4755 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4756 *  @hw: pointer to hardware structure
4757 *  @speed: new link speed
4758 *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
4759 *
4760 *  Set the link speed in the MAC and/or PHY register and restarts link.
4761 **/
4762s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4763					  ixgbe_link_speed speed,
4764					  bool autoneg_wait_to_complete)
4765{
4766	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4767	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4768	s32 status = IXGBE_SUCCESS;
4769	u32 speedcnt = 0;
4770	u32 i = 0;
4771	bool autoneg, link_up = FALSE;
4772
4773	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
4774
4775	/* Mask off requested but non-supported speeds */
4776	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
4777	if (status != IXGBE_SUCCESS)
4778		return status;
4779
4780	speed &= link_speed;
4781
4782	/* Try each speed one by one, highest priority first.  We do this in
4783	 * software because 10Gb fiber doesn't support speed autonegotiation.
4784	 */
4785	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4786		speedcnt++;
4787		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4788
4789		/* If we already have link at this speed, just jump out */
4790		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4791		if (status != IXGBE_SUCCESS)
4792			return status;
4793
4794		if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
4795			goto out;
4796
4797		/* Set the module link speed */
4798		switch (hw->phy.media_type) {
4799		case ixgbe_media_type_fiber_fixed:
4800		case ixgbe_media_type_fiber:
4801			ixgbe_set_rate_select_speed(hw,
4802						    IXGBE_LINK_SPEED_10GB_FULL);
4803			break;
4804		case ixgbe_media_type_fiber_qsfp:
4805			/* QSFP module automatically detects MAC link speed */
4806			break;
4807		default:
4808			DEBUGOUT("Unexpected media type.\n");
4809			break;
4810		}
4811
4812		/* Allow module to change analog characteristics (1G->10G) */
4813		msec_delay(40);
4814
4815		status = ixgbe_setup_mac_link(hw,
4816					      IXGBE_LINK_SPEED_10GB_FULL,
4817					      autoneg_wait_to_complete);
4818		if (status != IXGBE_SUCCESS)
4819			return status;
4820
4821		/* Flap the Tx laser if it has not already been done */
4822		ixgbe_flap_tx_laser(hw);
4823
4824		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4825		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4826		 * attempted.  82599 uses the same timing for 10g SFI.
4827		 */
4828		for (i = 0; i < 5; i++) {
4829			/* Wait for the link partner to also set speed */
4830			msec_delay(100);
4831
4832			/* If we have link, just jump out */
4833			status = ixgbe_check_link(hw, &link_speed,
4834						  &link_up, FALSE);
4835			if (status != IXGBE_SUCCESS)
4836				return status;
4837
4838			if (link_up)
4839				goto out;
4840		}
4841	}
4842
4843	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4844		speedcnt++;
4845		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4846			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4847
4848		/* If we already have link at this speed, just jump out */
4849		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4850		if (status != IXGBE_SUCCESS)
4851			return status;
4852
4853		if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
4854			goto out;
4855
4856		/* Set the module link speed */
4857		switch (hw->phy.media_type) {
4858		case ixgbe_media_type_fiber_fixed:
4859		case ixgbe_media_type_fiber:
4860			ixgbe_set_rate_select_speed(hw,
4861						    IXGBE_LINK_SPEED_1GB_FULL);
4862			break;
4863		case ixgbe_media_type_fiber_qsfp:
4864			/* QSFP module automatically detects link speed */
4865			break;
4866		default:
4867			DEBUGOUT("Unexpected media type.\n");
4868			break;
4869		}
4870
4871		/* Allow module to change analog characteristics (10G->1G) */
4872		msec_delay(40);
4873
4874		status = ixgbe_setup_mac_link(hw,
4875					      IXGBE_LINK_SPEED_1GB_FULL,
4876					      autoneg_wait_to_complete);
4877		if (status != IXGBE_SUCCESS)
4878			return status;
4879
4880		/* Flap the Tx laser if it has not already been done */
4881		ixgbe_flap_tx_laser(hw);
4882
4883		/* Wait for the link partner to also set speed */
4884		msec_delay(100);
4885
4886		/* If we have link, just jump out */
4887		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4888		if (status != IXGBE_SUCCESS)
4889			return status;
4890
4891		if (link_up)
4892			goto out;
4893	}
4894
4895	/* We didn't get link.  Configure back to the highest speed we tried,
4896	 * (if there was more than one).  We call ourselves back with just the
4897	 * single highest speed that the user requested.
4898	 */
4899	if (speedcnt > 1)
4900		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4901						      highest_link_speed,
4902						      autoneg_wait_to_complete);
4903
4904out:
4905	/* Set autoneg_advertised value based on input link speed */
4906	hw->phy.autoneg_advertised = 0;
4907
4908	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4909		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4910
4911	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4912		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4913
4914	return status;
4915}
4916
4917/**
4918 *  ixgbe_set_soft_rate_select_speed - Set module link speed
4919 *  @hw: pointer to hardware structure
4920 *  @speed: link speed to set
4921 *
4922 *  Set module link speed via the soft rate select.
4923 */
4924void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4925					ixgbe_link_speed speed)
4926{
4927	s32 status;
4928	u8 rs, eeprom_data;
4929
4930	switch (speed) {
4931	case IXGBE_LINK_SPEED_10GB_FULL:
4932		/* one bit mask same as setting on */
4933		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4934		break;
4935	case IXGBE_LINK_SPEED_1GB_FULL:
4936		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4937		break;
4938	default:
4939		DEBUGOUT("Invalid fixed module speed\n");
4940		return;
4941	}
4942
4943	/* Set RS0 */
4944	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4945					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4946					   &eeprom_data);
4947	if (status) {
4948		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
4949		goto out;
4950	}
4951
4952	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4953
4954	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4955					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4956					    eeprom_data);
4957	if (status) {
4958		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
4959		goto out;
4960	}
4961
4962	/* Set RS1 */
4963	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4964					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4965					   &eeprom_data);
4966	if (status) {
4967		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
4968		goto out;
4969	}
4970
4971	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4972
4973	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4974					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4975					    eeprom_data);
4976	if (status) {
4977		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
4978		goto out;
4979	}
4980out:
4981	return;
4982}
4983