ixgbe_common.c revision 283620
1/******************************************************************************
2
3  Copyright (c) 2001-2015, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: stable/10/sys/dev/ixgbe/ixgbe_common.c 283620 2015-05-27 17:44:11Z erj $*/
34
35#include "ixgbe_common.h"
36#include "ixgbe_phy.h"
37#include "ixgbe_dcb.h"
38#include "ixgbe_dcb_82599.h"
39#include "ixgbe_api.h"
40
41static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
42static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
43static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
44static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
45static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
46static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
47					u16 count);
48static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
49static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
52
53static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
55					 u16 *san_mac_offset);
56static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57					     u16 words, u16 *data);
58static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59					      u16 words, u16 *data);
60static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
61						 u16 offset);
62
63/**
64 *  ixgbe_init_ops_generic - Inits function ptrs
65 *  @hw: pointer to the hardware structure
66 *
67 *  Initialize the function pointers.
68 **/
69s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
70{
71	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
72	struct ixgbe_mac_info *mac = &hw->mac;
73	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
74
75	DEBUGFUNC("ixgbe_init_ops_generic");
76
77	/* EEPROM */
78	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
79	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
80	if (eec & IXGBE_EEC_PRES) {
81		eeprom->ops.read = ixgbe_read_eerd_generic;
82		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
83	} else {
84		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
85		eeprom->ops.read_buffer =
86				 ixgbe_read_eeprom_buffer_bit_bang_generic;
87	}
88	eeprom->ops.write = ixgbe_write_eeprom_generic;
89	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
90	eeprom->ops.validate_checksum =
91				      ixgbe_validate_eeprom_checksum_generic;
92	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
93	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
94
95	/* MAC */
96	mac->ops.init_hw = ixgbe_init_hw_generic;
97	mac->ops.reset_hw = NULL;
98	mac->ops.start_hw = ixgbe_start_hw_generic;
99	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
100	mac->ops.get_media_type = NULL;
101	mac->ops.get_supported_physical_layer = NULL;
102	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
103	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
104	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
105	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
106	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
107	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
108	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
109	mac->ops.prot_autoc_read = prot_autoc_read_generic;
110	mac->ops.prot_autoc_write = prot_autoc_write_generic;
111
112	/* LEDs */
113	mac->ops.led_on = ixgbe_led_on_generic;
114	mac->ops.led_off = ixgbe_led_off_generic;
115	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
116	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
117
118	/* RAR, Multicast, VLAN */
119	mac->ops.set_rar = ixgbe_set_rar_generic;
120	mac->ops.clear_rar = ixgbe_clear_rar_generic;
121	mac->ops.insert_mac_addr = NULL;
122	mac->ops.set_vmdq = NULL;
123	mac->ops.clear_vmdq = NULL;
124	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
125	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
126	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
127	mac->ops.enable_mc = ixgbe_enable_mc_generic;
128	mac->ops.disable_mc = ixgbe_disable_mc_generic;
129	mac->ops.clear_vfta = NULL;
130	mac->ops.set_vfta = NULL;
131	mac->ops.set_vlvf = NULL;
132	mac->ops.init_uta_tables = NULL;
133	mac->ops.enable_rx = ixgbe_enable_rx_generic;
134	mac->ops.disable_rx = ixgbe_disable_rx_generic;
135
136	/* Flow Control */
137	mac->ops.fc_enable = ixgbe_fc_enable_generic;
138	mac->ops.setup_fc = ixgbe_setup_fc_generic;
139
140	/* Link */
141	mac->ops.get_link_capabilities = NULL;
142	mac->ops.setup_link = NULL;
143	mac->ops.check_link = NULL;
144	mac->ops.dmac_config = NULL;
145	mac->ops.dmac_update_tcs = NULL;
146	mac->ops.dmac_config_tcs = NULL;
147
148	return IXGBE_SUCCESS;
149}
150
151/**
152 * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
153 * of flow control
154 * @hw: pointer to hardware structure
155 *
156 * This function returns TRUE if the device supports flow control
157 * autonegotiation, and FALSE if it does not.
158 *
159 **/
160bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
161{
162	bool supported = FALSE;
163	ixgbe_link_speed speed;
164	bool link_up;
165
166	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
167
168	switch (hw->phy.media_type) {
169	case ixgbe_media_type_fiber_fixed:
170	case ixgbe_media_type_fiber_qsfp:
171	case ixgbe_media_type_fiber:
172		hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
173		/* if link is down, assume supported */
174		if (link_up)
175			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
176				TRUE : FALSE;
177		else
178			supported = TRUE;
179		break;
180	case ixgbe_media_type_backplane:
181		supported = TRUE;
182		break;
183	case ixgbe_media_type_copper:
184		/* only some copper devices support flow control autoneg */
185		switch (hw->device_id) {
186		case IXGBE_DEV_ID_82599_T3_LOM:
187		case IXGBE_DEV_ID_X540T:
188		case IXGBE_DEV_ID_X540T1:
189		case IXGBE_DEV_ID_X540_BYPASS:
190		case IXGBE_DEV_ID_X550T:
191		case IXGBE_DEV_ID_X550EM_X_10G_T:
192			supported = TRUE;
193			break;
194		default:
195			supported = FALSE;
196		}
197	default:
198		break;
199	}
200
201	ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
202		      "Device %x does not support flow control autoneg",
203		      hw->device_id);
204	return supported;
205}
206
207/**
208 *  ixgbe_setup_fc_generic - Set up flow control
209 *  @hw: pointer to hardware structure
210 *
211 *  Called at init time to set up flow control.
212 **/
213s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
214{
215	s32 ret_val = IXGBE_SUCCESS;
216	u32 reg = 0, reg_bp = 0;
217	u16 reg_cu = 0;
218	bool locked = FALSE;
219
220	DEBUGFUNC("ixgbe_setup_fc_generic");
221
222	/* Validate the requested mode */
223	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
224		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
225			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
226		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
227		goto out;
228	}
229
230	/*
231	 * 10gig parts do not have a word in the EEPROM to determine the
232	 * default flow control setting, so we explicitly set it to full.
233	 */
234	if (hw->fc.requested_mode == ixgbe_fc_default)
235		hw->fc.requested_mode = ixgbe_fc_full;
236
237	/*
238	 * Set up the 1G and 10G flow control advertisement registers so the
239	 * HW will be able to do fc autoneg once the cable is plugged in.  If
240	 * we link at 10G, the 1G advertisement is harmless and vice versa.
241	 */
242	switch (hw->phy.media_type) {
243	case ixgbe_media_type_backplane:
244		/* some MAC's need RMW protection on AUTOC */
245		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
246		if (ret_val != IXGBE_SUCCESS)
247			goto out;
248
249		/* only backplane uses autoc so fall though */
250	case ixgbe_media_type_fiber_fixed:
251	case ixgbe_media_type_fiber_qsfp:
252	case ixgbe_media_type_fiber:
253		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
254
255		break;
256	case ixgbe_media_type_copper:
257		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
258				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
259		break;
260	default:
261		break;
262	}
263
264	/*
265	 * The possible values of fc.requested_mode are:
266	 * 0: Flow control is completely disabled
267	 * 1: Rx flow control is enabled (we can receive pause frames,
268	 *    but not send pause frames).
269	 * 2: Tx flow control is enabled (we can send pause frames but
270	 *    we do not support receiving pause frames).
271	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
272	 * other: Invalid.
273	 */
274	switch (hw->fc.requested_mode) {
275	case ixgbe_fc_none:
276		/* Flow control completely disabled by software override. */
277		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
278		if (hw->phy.media_type == ixgbe_media_type_backplane)
279			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
280				    IXGBE_AUTOC_ASM_PAUSE);
281		else if (hw->phy.media_type == ixgbe_media_type_copper)
282			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
283		break;
284	case ixgbe_fc_tx_pause:
285		/*
286		 * Tx Flow control is enabled, and Rx Flow control is
287		 * disabled by software override.
288		 */
289		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
290		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
291		if (hw->phy.media_type == ixgbe_media_type_backplane) {
292			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
293			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
294		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
295			reg_cu |= IXGBE_TAF_ASM_PAUSE;
296			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
297		}
298		break;
299	case ixgbe_fc_rx_pause:
300		/*
301		 * Rx Flow control is enabled and Tx Flow control is
302		 * disabled by software override. Since there really
303		 * isn't a way to advertise that we are capable of RX
304		 * Pause ONLY, we will advertise that we support both
305		 * symmetric and asymmetric Rx PAUSE, as such we fall
306		 * through to the fc_full statement.  Later, we will
307		 * disable the adapter's ability to send PAUSE frames.
308		 */
309	case ixgbe_fc_full:
310		/* Flow control (both Rx and Tx) is enabled by SW override. */
311		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
312		if (hw->phy.media_type == ixgbe_media_type_backplane)
313			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
314				  IXGBE_AUTOC_ASM_PAUSE;
315		else if (hw->phy.media_type == ixgbe_media_type_copper)
316			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
317		break;
318	default:
319		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
320			     "Flow control param set incorrectly\n");
321		ret_val = IXGBE_ERR_CONFIG;
322		goto out;
323		break;
324	}
325
326	if (hw->mac.type < ixgbe_mac_X540) {
327		/*
328		 * Enable auto-negotiation between the MAC & PHY;
329		 * the MAC will advertise clause 37 flow control.
330		 */
331		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
332		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
333
334		/* Disable AN timeout */
335		if (hw->fc.strict_ieee)
336			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
337
338		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
339		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
340	}
341
342	/*
343	 * AUTOC restart handles negotiation of 1G and 10G on backplane
344	 * and copper. There is no need to set the PCS1GCTL register.
345	 *
346	 */
347	if (hw->phy.media_type == ixgbe_media_type_backplane) {
348		reg_bp |= IXGBE_AUTOC_AN_RESTART;
349		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
350		if (ret_val)
351			goto out;
352	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
353		    (ixgbe_device_supports_autoneg_fc(hw))) {
354		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
355				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
356	}
357
358	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
359out:
360	return ret_val;
361}
362
363/**
364 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
365 *  @hw: pointer to hardware structure
366 *
367 *  Starts the hardware by filling the bus info structure and media type, clears
368 *  all on chip counters, initializes receive address registers, multicast
369 *  table, VLAN filter table, calls routine to set up link and flow control
370 *  settings, and leaves transmit and receive units disabled and uninitialized
371 **/
372s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
373{
374	s32 ret_val;
375	u32 ctrl_ext;
376
377	DEBUGFUNC("ixgbe_start_hw_generic");
378
379	/* Set the media type */
380	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
381
382	/* PHY ops initialization must be done in reset_hw() */
383
384	/* Clear the VLAN filter table */
385	hw->mac.ops.clear_vfta(hw);
386
387	/* Clear statistics registers */
388	hw->mac.ops.clear_hw_cntrs(hw);
389
390	/* Set No Snoop Disable */
391	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
392	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
393	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
394	IXGBE_WRITE_FLUSH(hw);
395
396	/* Setup flow control */
397	ret_val = ixgbe_setup_fc(hw);
398	if (ret_val != IXGBE_SUCCESS)
399		goto out;
400
401	/* Clear adapter stopped flag */
402	hw->adapter_stopped = FALSE;
403
404out:
405	return ret_val;
406}
407
408/**
409 *  ixgbe_start_hw_gen2 - Init sequence for common device family
410 *  @hw: pointer to hw structure
411 *
412 * Performs the init sequence common to the second generation
413 * of 10 GbE devices.
414 * Devices in the second generation:
415 *     82599
416 *     X540
417 **/
418s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
419{
420	u32 i;
421	u32 regval;
422
423	/* Clear the rate limiters */
424	for (i = 0; i < hw->mac.max_tx_queues; i++) {
425		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
426		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
427	}
428	IXGBE_WRITE_FLUSH(hw);
429
430	/* Disable relaxed ordering */
431	for (i = 0; i < hw->mac.max_tx_queues; i++) {
432		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
433		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
434		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
435	}
436
437	for (i = 0; i < hw->mac.max_rx_queues; i++) {
438		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
439		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
440			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
441		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
442	}
443
444	return IXGBE_SUCCESS;
445}
446
447/**
448 *  ixgbe_init_hw_generic - Generic hardware initialization
449 *  @hw: pointer to hardware structure
450 *
451 *  Initialize the hardware by resetting the hardware, filling the bus info
452 *  structure and media type, clears all on chip counters, initializes receive
453 *  address registers, multicast table, VLAN filter table, calls routine to set
454 *  up link and flow control settings, and leaves transmit and receive units
455 *  disabled and uninitialized
456 **/
457s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
458{
459	s32 status;
460
461	DEBUGFUNC("ixgbe_init_hw_generic");
462
463	/* Reset the hardware */
464	status = hw->mac.ops.reset_hw(hw);
465
466	if (status == IXGBE_SUCCESS) {
467		/* Start the HW */
468		status = hw->mac.ops.start_hw(hw);
469	}
470
471	return status;
472}
473
474/**
475 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
476 *  @hw: pointer to hardware structure
477 *
478 *  Clears all hardware statistics counters by reading them from the hardware
479 *  Statistics counters are clear on read.
480 **/
481s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
482{
483	u16 i = 0;
484
485	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
486
487	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
488	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
489	IXGBE_READ_REG(hw, IXGBE_ERRBC);
490	IXGBE_READ_REG(hw, IXGBE_MSPDC);
491	for (i = 0; i < 8; i++)
492		IXGBE_READ_REG(hw, IXGBE_MPC(i));
493
494	IXGBE_READ_REG(hw, IXGBE_MLFC);
495	IXGBE_READ_REG(hw, IXGBE_MRFC);
496	IXGBE_READ_REG(hw, IXGBE_RLEC);
497	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
498	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
499	if (hw->mac.type >= ixgbe_mac_82599EB) {
500		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
501		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
502	} else {
503		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
504		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
505	}
506
507	for (i = 0; i < 8; i++) {
508		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
509		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
510		if (hw->mac.type >= ixgbe_mac_82599EB) {
511			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
512			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
513		} else {
514			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
515			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
516		}
517	}
518	if (hw->mac.type >= ixgbe_mac_82599EB)
519		for (i = 0; i < 8; i++)
520			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
521	IXGBE_READ_REG(hw, IXGBE_PRC64);
522	IXGBE_READ_REG(hw, IXGBE_PRC127);
523	IXGBE_READ_REG(hw, IXGBE_PRC255);
524	IXGBE_READ_REG(hw, IXGBE_PRC511);
525	IXGBE_READ_REG(hw, IXGBE_PRC1023);
526	IXGBE_READ_REG(hw, IXGBE_PRC1522);
527	IXGBE_READ_REG(hw, IXGBE_GPRC);
528	IXGBE_READ_REG(hw, IXGBE_BPRC);
529	IXGBE_READ_REG(hw, IXGBE_MPRC);
530	IXGBE_READ_REG(hw, IXGBE_GPTC);
531	IXGBE_READ_REG(hw, IXGBE_GORCL);
532	IXGBE_READ_REG(hw, IXGBE_GORCH);
533	IXGBE_READ_REG(hw, IXGBE_GOTCL);
534	IXGBE_READ_REG(hw, IXGBE_GOTCH);
535	if (hw->mac.type == ixgbe_mac_82598EB)
536		for (i = 0; i < 8; i++)
537			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
538	IXGBE_READ_REG(hw, IXGBE_RUC);
539	IXGBE_READ_REG(hw, IXGBE_RFC);
540	IXGBE_READ_REG(hw, IXGBE_ROC);
541	IXGBE_READ_REG(hw, IXGBE_RJC);
542	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
543	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
544	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
545	IXGBE_READ_REG(hw, IXGBE_TORL);
546	IXGBE_READ_REG(hw, IXGBE_TORH);
547	IXGBE_READ_REG(hw, IXGBE_TPR);
548	IXGBE_READ_REG(hw, IXGBE_TPT);
549	IXGBE_READ_REG(hw, IXGBE_PTC64);
550	IXGBE_READ_REG(hw, IXGBE_PTC127);
551	IXGBE_READ_REG(hw, IXGBE_PTC255);
552	IXGBE_READ_REG(hw, IXGBE_PTC511);
553	IXGBE_READ_REG(hw, IXGBE_PTC1023);
554	IXGBE_READ_REG(hw, IXGBE_PTC1522);
555	IXGBE_READ_REG(hw, IXGBE_MPTC);
556	IXGBE_READ_REG(hw, IXGBE_BPTC);
557	for (i = 0; i < 16; i++) {
558		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
559		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
560		if (hw->mac.type >= ixgbe_mac_82599EB) {
561			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
562			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
563			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
564			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
565			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
566		} else {
567			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
568			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
569		}
570	}
571
572	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
573		if (hw->phy.id == 0)
574			ixgbe_identify_phy(hw);
575		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
576				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
577		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
578				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
579		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
580				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
581		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
582				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
583	}
584
585	return IXGBE_SUCCESS;
586}
587
588/**
589 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
590 *  @hw: pointer to hardware structure
591 *  @pba_num: stores the part number string from the EEPROM
592 *  @pba_num_size: part number string buffer length
593 *
594 *  Reads the part number string from the EEPROM.
595 **/
596s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
597				  u32 pba_num_size)
598{
599	s32 ret_val;
600	u16 data;
601	u16 pba_ptr;
602	u16 offset;
603	u16 length;
604
605	DEBUGFUNC("ixgbe_read_pba_string_generic");
606
607	if (pba_num == NULL) {
608		DEBUGOUT("PBA string buffer was null\n");
609		return IXGBE_ERR_INVALID_ARGUMENT;
610	}
611
612	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
613	if (ret_val) {
614		DEBUGOUT("NVM Read Error\n");
615		return ret_val;
616	}
617
618	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
619	if (ret_val) {
620		DEBUGOUT("NVM Read Error\n");
621		return ret_val;
622	}
623
624	/*
625	 * if data is not ptr guard the PBA must be in legacy format which
626	 * means pba_ptr is actually our second data word for the PBA number
627	 * and we can decode it into an ascii string
628	 */
629	if (data != IXGBE_PBANUM_PTR_GUARD) {
630		DEBUGOUT("NVM PBA number is not stored as string\n");
631
632		/* we will need 11 characters to store the PBA */
633		if (pba_num_size < 11) {
634			DEBUGOUT("PBA string buffer too small\n");
635			return IXGBE_ERR_NO_SPACE;
636		}
637
638		/* extract hex string from data and pba_ptr */
639		pba_num[0] = (data >> 12) & 0xF;
640		pba_num[1] = (data >> 8) & 0xF;
641		pba_num[2] = (data >> 4) & 0xF;
642		pba_num[3] = data & 0xF;
643		pba_num[4] = (pba_ptr >> 12) & 0xF;
644		pba_num[5] = (pba_ptr >> 8) & 0xF;
645		pba_num[6] = '-';
646		pba_num[7] = 0;
647		pba_num[8] = (pba_ptr >> 4) & 0xF;
648		pba_num[9] = pba_ptr & 0xF;
649
650		/* put a null character on the end of our string */
651		pba_num[10] = '\0';
652
653		/* switch all the data but the '-' to hex char */
654		for (offset = 0; offset < 10; offset++) {
655			if (pba_num[offset] < 0xA)
656				pba_num[offset] += '0';
657			else if (pba_num[offset] < 0x10)
658				pba_num[offset] += 'A' - 0xA;
659		}
660
661		return IXGBE_SUCCESS;
662	}
663
664	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
665	if (ret_val) {
666		DEBUGOUT("NVM Read Error\n");
667		return ret_val;
668	}
669
670	if (length == 0xFFFF || length == 0) {
671		DEBUGOUT("NVM PBA number section invalid length\n");
672		return IXGBE_ERR_PBA_SECTION;
673	}
674
675	/* check if pba_num buffer is big enough */
676	if (pba_num_size  < (((u32)length * 2) - 1)) {
677		DEBUGOUT("PBA string buffer too small\n");
678		return IXGBE_ERR_NO_SPACE;
679	}
680
681	/* trim pba length from start of string */
682	pba_ptr++;
683	length--;
684
685	for (offset = 0; offset < length; offset++) {
686		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
687		if (ret_val) {
688			DEBUGOUT("NVM Read Error\n");
689			return ret_val;
690		}
691		pba_num[offset * 2] = (u8)(data >> 8);
692		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
693	}
694	pba_num[offset * 2] = '\0';
695
696	return IXGBE_SUCCESS;
697}
698
699/**
700 *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
701 *  @hw: pointer to hardware structure
702 *  @pba_num: stores the part number from the EEPROM
703 *
704 *  Reads the part number from the EEPROM.
705 **/
706s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
707{
708	s32 ret_val;
709	u16 data;
710
711	DEBUGFUNC("ixgbe_read_pba_num_generic");
712
713	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
714	if (ret_val) {
715		DEBUGOUT("NVM Read Error\n");
716		return ret_val;
717	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
718		DEBUGOUT("NVM Not supported\n");
719		return IXGBE_NOT_IMPLEMENTED;
720	}
721	*pba_num = (u32)(data << 16);
722
723	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
724	if (ret_val) {
725		DEBUGOUT("NVM Read Error\n");
726		return ret_val;
727	}
728	*pba_num |= data;
729
730	return IXGBE_SUCCESS;
731}
732
733/**
734 *  ixgbe_read_pba_raw
735 *  @hw: pointer to the HW structure
736 *  @eeprom_buf: optional pointer to EEPROM image
737 *  @eeprom_buf_size: size of EEPROM image in words
738 *  @max_pba_block_size: PBA block size limit
739 *  @pba: pointer to output PBA structure
740 *
741 *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
742 *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
743 *
744 **/
745s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
746		       u32 eeprom_buf_size, u16 max_pba_block_size,
747		       struct ixgbe_pba *pba)
748{
749	s32 ret_val;
750	u16 pba_block_size;
751
752	if (pba == NULL)
753		return IXGBE_ERR_PARAM;
754
755	if (eeprom_buf == NULL) {
756		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
757						     &pba->word[0]);
758		if (ret_val)
759			return ret_val;
760	} else {
761		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
762			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
763			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
764		} else {
765			return IXGBE_ERR_PARAM;
766		}
767	}
768
769	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
770		if (pba->pba_block == NULL)
771			return IXGBE_ERR_PARAM;
772
773		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
774						   eeprom_buf_size,
775						   &pba_block_size);
776		if (ret_val)
777			return ret_val;
778
779		if (pba_block_size > max_pba_block_size)
780			return IXGBE_ERR_PARAM;
781
782		if (eeprom_buf == NULL) {
783			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
784							     pba_block_size,
785							     pba->pba_block);
786			if (ret_val)
787				return ret_val;
788		} else {
789			if (eeprom_buf_size > (u32)(pba->word[1] +
790					      pba_block_size)) {
791				memcpy(pba->pba_block,
792				       &eeprom_buf[pba->word[1]],
793				       pba_block_size * sizeof(u16));
794			} else {
795				return IXGBE_ERR_PARAM;
796			}
797		}
798	}
799
800	return IXGBE_SUCCESS;
801}
802
803/**
804 *  ixgbe_write_pba_raw
805 *  @hw: pointer to the HW structure
806 *  @eeprom_buf: optional pointer to EEPROM image
807 *  @eeprom_buf_size: size of EEPROM image in words
808 *  @pba: pointer to PBA structure
809 *
810 *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
811 *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
812 *
813 **/
814s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
815			u32 eeprom_buf_size, struct ixgbe_pba *pba)
816{
817	s32 ret_val;
818
819	if (pba == NULL)
820		return IXGBE_ERR_PARAM;
821
822	if (eeprom_buf == NULL) {
823		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
824						      &pba->word[0]);
825		if (ret_val)
826			return ret_val;
827	} else {
828		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
829			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
830			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
831		} else {
832			return IXGBE_ERR_PARAM;
833		}
834	}
835
836	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
837		if (pba->pba_block == NULL)
838			return IXGBE_ERR_PARAM;
839
840		if (eeprom_buf == NULL) {
841			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
842							      pba->pba_block[0],
843							      pba->pba_block);
844			if (ret_val)
845				return ret_val;
846		} else {
847			if (eeprom_buf_size > (u32)(pba->word[1] +
848					      pba->pba_block[0])) {
849				memcpy(&eeprom_buf[pba->word[1]],
850				       pba->pba_block,
851				       pba->pba_block[0] * sizeof(u16));
852			} else {
853				return IXGBE_ERR_PARAM;
854			}
855		}
856	}
857
858	return IXGBE_SUCCESS;
859}
860
861/**
862 *  ixgbe_get_pba_block_size
863 *  @hw: pointer to the HW structure
864 *  @eeprom_buf: optional pointer to EEPROM image
865 *  @eeprom_buf_size: size of EEPROM image in words
866 *  @pba_data_size: pointer to output variable
867 *
868 *  Returns the size of the PBA block in words. Function operates on EEPROM
869 *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
870 *  EEPROM device.
871 *
872 **/
873s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
874			     u32 eeprom_buf_size, u16 *pba_block_size)
875{
876	s32 ret_val;
877	u16 pba_word[2];
878	u16 length;
879
880	DEBUGFUNC("ixgbe_get_pba_block_size");
881
882	if (eeprom_buf == NULL) {
883		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
884						     &pba_word[0]);
885		if (ret_val)
886			return ret_val;
887	} else {
888		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
889			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
890			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
891		} else {
892			return IXGBE_ERR_PARAM;
893		}
894	}
895
896	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
897		if (eeprom_buf == NULL) {
898			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
899						      &length);
900			if (ret_val)
901				return ret_val;
902		} else {
903			if (eeprom_buf_size > pba_word[1])
904				length = eeprom_buf[pba_word[1] + 0];
905			else
906				return IXGBE_ERR_PARAM;
907		}
908
909		if (length == 0xFFFF || length == 0)
910			return IXGBE_ERR_PBA_SECTION;
911	} else {
912		/* PBA number in legacy format, there is no PBA Block. */
913		length = 0;
914	}
915
916	if (pba_block_size != NULL)
917		*pba_block_size = length;
918
919	return IXGBE_SUCCESS;
920}
921
922/**
923 *  ixgbe_get_mac_addr_generic - Generic get MAC address
924 *  @hw: pointer to hardware structure
925 *  @mac_addr: Adapter MAC address
926 *
927 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
928 *  A reset of the adapter must be performed prior to calling this function
929 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
930 **/
931s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
932{
933	u32 rar_high;
934	u32 rar_low;
935	u16 i;
936
937	DEBUGFUNC("ixgbe_get_mac_addr_generic");
938
939	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
940	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
941
942	for (i = 0; i < 4; i++)
943		mac_addr[i] = (u8)(rar_low >> (i*8));
944
945	for (i = 0; i < 2; i++)
946		mac_addr[i+4] = (u8)(rar_high >> (i*8));
947
948	return IXGBE_SUCCESS;
949}
950
951/**
952 *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
953 *  @hw: pointer to hardware structure
954 *  @link_status: the link status returned by the PCI config space
955 *
956 *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
957 **/
958void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
959{
960	struct ixgbe_mac_info *mac = &hw->mac;
961
962	if (hw->bus.type == ixgbe_bus_type_unknown)
963		hw->bus.type = ixgbe_bus_type_pci_express;
964
965	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
966	case IXGBE_PCI_LINK_WIDTH_1:
967		hw->bus.width = ixgbe_bus_width_pcie_x1;
968		break;
969	case IXGBE_PCI_LINK_WIDTH_2:
970		hw->bus.width = ixgbe_bus_width_pcie_x2;
971		break;
972	case IXGBE_PCI_LINK_WIDTH_4:
973		hw->bus.width = ixgbe_bus_width_pcie_x4;
974		break;
975	case IXGBE_PCI_LINK_WIDTH_8:
976		hw->bus.width = ixgbe_bus_width_pcie_x8;
977		break;
978	default:
979		hw->bus.width = ixgbe_bus_width_unknown;
980		break;
981	}
982
983	switch (link_status & IXGBE_PCI_LINK_SPEED) {
984	case IXGBE_PCI_LINK_SPEED_2500:
985		hw->bus.speed = ixgbe_bus_speed_2500;
986		break;
987	case IXGBE_PCI_LINK_SPEED_5000:
988		hw->bus.speed = ixgbe_bus_speed_5000;
989		break;
990	case IXGBE_PCI_LINK_SPEED_8000:
991		hw->bus.speed = ixgbe_bus_speed_8000;
992		break;
993	default:
994		hw->bus.speed = ixgbe_bus_speed_unknown;
995		break;
996	}
997
998	mac->ops.set_lan_id(hw);
999}
1000
1001/**
1002 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
1003 *  @hw: pointer to hardware structure
1004 *
1005 *  Gets the PCI bus info (speed, width, type) then calls helper function to
1006 *  store this data within the ixgbe_hw structure.
1007 **/
1008s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1009{
1010	u16 link_status;
1011
1012	DEBUGFUNC("ixgbe_get_bus_info_generic");
1013
1014	/* Get the negotiated link width and speed from PCI config space */
1015	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1016
1017	ixgbe_set_pci_config_data_generic(hw, link_status);
1018
1019	return IXGBE_SUCCESS;
1020}
1021
1022/**
1023 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1024 *  @hw: pointer to the HW structure
1025 *
1026 *  Determines the LAN function id by reading memory-mapped registers
1027 *  and swaps the port value if requested.
1028 **/
1029void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1030{
1031	struct ixgbe_bus_info *bus = &hw->bus;
1032	u32 reg;
1033
1034	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1035
1036	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1037	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1038	bus->lan_id = bus->func;
1039
1040	/* check for a port swap */
1041	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
1042	if (reg & IXGBE_FACTPS_LFS)
1043		bus->func ^= 0x1;
1044}
1045
1046/**
1047 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1048 *  @hw: pointer to hardware structure
1049 *
1050 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1051 *  disables transmit and receive units. The adapter_stopped flag is used by
1052 *  the shared code and drivers to determine if the adapter is in a stopped
1053 *  state and should not touch the hardware.
1054 **/
1055s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1056{
1057	u32 reg_val;
1058	u16 i;
1059
1060	DEBUGFUNC("ixgbe_stop_adapter_generic");
1061
1062	/*
1063	 * Set the adapter_stopped flag so other driver functions stop touching
1064	 * the hardware
1065	 */
1066	hw->adapter_stopped = TRUE;
1067
1068	/* Disable the receive unit */
1069	ixgbe_disable_rx(hw);
1070
1071	/* Clear interrupt mask to stop interrupts from being generated */
1072	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1073
1074	/* Clear any pending interrupts, flush previous writes */
1075	IXGBE_READ_REG(hw, IXGBE_EICR);
1076
1077	/* Disable the transmit unit.  Each queue must be disabled. */
1078	for (i = 0; i < hw->mac.max_tx_queues; i++)
1079		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1080
1081	/* Disable the receive unit by stopping each queue */
1082	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1083		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1084		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1085		reg_val |= IXGBE_RXDCTL_SWFLSH;
1086		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1087	}
1088
1089	/* flush all queues disables */
1090	IXGBE_WRITE_FLUSH(hw);
1091	msec_delay(2);
1092
1093	/*
1094	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1095	 * access and verify no pending requests
1096	 */
1097	return ixgbe_disable_pcie_master(hw);
1098}
1099
1100/**
1101 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
1102 *  @hw: pointer to hardware structure
1103 *  @index: led number to turn on
1104 **/
1105s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1106{
1107	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1108
1109	DEBUGFUNC("ixgbe_led_on_generic");
1110
1111	/* To turn on the LED, set mode to ON. */
1112	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1113	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1114	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1115	IXGBE_WRITE_FLUSH(hw);
1116
1117	return IXGBE_SUCCESS;
1118}
1119
1120/**
1121 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
1122 *  @hw: pointer to hardware structure
1123 *  @index: led number to turn off
1124 **/
1125s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1126{
1127	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1128
1129	DEBUGFUNC("ixgbe_led_off_generic");
1130
1131	/* To turn off the LED, set mode to OFF. */
1132	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1133	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1134	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1135	IXGBE_WRITE_FLUSH(hw);
1136
1137	return IXGBE_SUCCESS;
1138}
1139
1140/**
1141 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1142 *  @hw: pointer to hardware structure
1143 *
1144 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
1145 *  ixgbe_hw struct in order to set up EEPROM access.
1146 **/
1147s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1148{
1149	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1150	u32 eec;
1151	u16 eeprom_size;
1152
1153	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1154
1155	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1156		eeprom->type = ixgbe_eeprom_none;
1157		/* Set default semaphore delay to 10ms which is a well
1158		 * tested value */
1159		eeprom->semaphore_delay = 10;
1160		/* Clear EEPROM page size, it will be initialized as needed */
1161		eeprom->word_page_size = 0;
1162
1163		/*
1164		 * Check for EEPROM present first.
1165		 * If not present leave as none
1166		 */
1167		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1168		if (eec & IXGBE_EEC_PRES) {
1169			eeprom->type = ixgbe_eeprom_spi;
1170
1171			/*
1172			 * SPI EEPROM is assumed here.  This code would need to
1173			 * change if a future EEPROM is not SPI.
1174			 */
1175			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1176					    IXGBE_EEC_SIZE_SHIFT);
1177			eeprom->word_size = 1 << (eeprom_size +
1178					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1179		}
1180
1181		if (eec & IXGBE_EEC_ADDR_SIZE)
1182			eeprom->address_bits = 16;
1183		else
1184			eeprom->address_bits = 8;
1185		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1186			  "%d\n", eeprom->type, eeprom->word_size,
1187			  eeprom->address_bits);
1188	}
1189
1190	return IXGBE_SUCCESS;
1191}
1192
1193/**
1194 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1195 *  @hw: pointer to hardware structure
1196 *  @offset: offset within the EEPROM to write
1197 *  @words: number of word(s)
1198 *  @data: 16 bit word(s) to write to EEPROM
1199 *
1200 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1201 **/
1202s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1203					       u16 words, u16 *data)
1204{
1205	s32 status = IXGBE_SUCCESS;
1206	u16 i, count;
1207
1208	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1209
1210	hw->eeprom.ops.init_params(hw);
1211
1212	if (words == 0) {
1213		status = IXGBE_ERR_INVALID_ARGUMENT;
1214		goto out;
1215	}
1216
1217	if (offset + words > hw->eeprom.word_size) {
1218		status = IXGBE_ERR_EEPROM;
1219		goto out;
1220	}
1221
1222	/*
1223	 * The EEPROM page size cannot be queried from the chip. We do lazy
1224	 * initialization. It is worth to do that when we write large buffer.
1225	 */
1226	if ((hw->eeprom.word_page_size == 0) &&
1227	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1228		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1229
1230	/*
1231	 * We cannot hold synchronization semaphores for too long
1232	 * to avoid other entity starvation. However it is more efficient
1233	 * to read in bursts than synchronizing access for each word.
1234	 */
1235	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1236		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1237			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1238		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1239							    count, &data[i]);
1240
1241		if (status != IXGBE_SUCCESS)
1242			break;
1243	}
1244
1245out:
1246	return status;
1247}
1248
1249/**
1250 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1251 *  @hw: pointer to hardware structure
1252 *  @offset: offset within the EEPROM to be written to
1253 *  @words: number of word(s)
1254 *  @data: 16 bit word(s) to be written to the EEPROM
1255 *
1256 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1257 *  EEPROM will most likely contain an invalid checksum.
1258 **/
1259static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1260					      u16 words, u16 *data)
1261{
1262	s32 status;
1263	u16 word;
1264	u16 page_size;
1265	u16 i;
1266	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1267
1268	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1269
1270	/* Prepare the EEPROM for writing  */
1271	status = ixgbe_acquire_eeprom(hw);
1272
1273	if (status == IXGBE_SUCCESS) {
1274		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1275			ixgbe_release_eeprom(hw);
1276			status = IXGBE_ERR_EEPROM;
1277		}
1278	}
1279
1280	if (status == IXGBE_SUCCESS) {
1281		for (i = 0; i < words; i++) {
1282			ixgbe_standby_eeprom(hw);
1283
1284			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1285			ixgbe_shift_out_eeprom_bits(hw,
1286						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1287						   IXGBE_EEPROM_OPCODE_BITS);
1288
1289			ixgbe_standby_eeprom(hw);
1290
1291			/*
1292			 * Some SPI eeproms use the 8th address bit embedded
1293			 * in the opcode
1294			 */
1295			if ((hw->eeprom.address_bits == 8) &&
1296			    ((offset + i) >= 128))
1297				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1298
1299			/* Send the Write command (8-bit opcode + addr) */
1300			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1301						    IXGBE_EEPROM_OPCODE_BITS);
1302			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1303						    hw->eeprom.address_bits);
1304
1305			page_size = hw->eeprom.word_page_size;
1306
1307			/* Send the data in burst via SPI*/
1308			do {
1309				word = data[i];
1310				word = (word >> 8) | (word << 8);
1311				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1312
1313				if (page_size == 0)
1314					break;
1315
1316				/* do not wrap around page */
1317				if (((offset + i) & (page_size - 1)) ==
1318				    (page_size - 1))
1319					break;
1320			} while (++i < words);
1321
1322			ixgbe_standby_eeprom(hw);
1323			msec_delay(10);
1324		}
1325		/* Done with writing - release the EEPROM */
1326		ixgbe_release_eeprom(hw);
1327	}
1328
1329	return status;
1330}
1331
1332/**
1333 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1334 *  @hw: pointer to hardware structure
1335 *  @offset: offset within the EEPROM to be written to
1336 *  @data: 16 bit word to be written to the EEPROM
1337 *
1338 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1339 *  EEPROM will most likely contain an invalid checksum.
1340 **/
1341s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1342{
1343	s32 status;
1344
1345	DEBUGFUNC("ixgbe_write_eeprom_generic");
1346
1347	hw->eeprom.ops.init_params(hw);
1348
1349	if (offset >= hw->eeprom.word_size) {
1350		status = IXGBE_ERR_EEPROM;
1351		goto out;
1352	}
1353
1354	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1355
1356out:
1357	return status;
1358}
1359
1360/**
1361 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1362 *  @hw: pointer to hardware structure
1363 *  @offset: offset within the EEPROM to be read
1364 *  @data: read 16 bit words(s) from EEPROM
1365 *  @words: number of word(s)
1366 *
1367 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1368 **/
1369s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1370					      u16 words, u16 *data)
1371{
1372	s32 status = IXGBE_SUCCESS;
1373	u16 i, count;
1374
1375	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1376
1377	hw->eeprom.ops.init_params(hw);
1378
1379	if (words == 0) {
1380		status = IXGBE_ERR_INVALID_ARGUMENT;
1381		goto out;
1382	}
1383
1384	if (offset + words > hw->eeprom.word_size) {
1385		status = IXGBE_ERR_EEPROM;
1386		goto out;
1387	}
1388
1389	/*
1390	 * We cannot hold synchronization semaphores for too long
1391	 * to avoid other entity starvation. However it is more efficient
1392	 * to read in bursts than synchronizing access for each word.
1393	 */
1394	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1395		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1396			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1397
1398		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1399							   count, &data[i]);
1400
1401		if (status != IXGBE_SUCCESS)
1402			break;
1403	}
1404
1405out:
1406	return status;
1407}
1408
1409/**
1410 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1411 *  @hw: pointer to hardware structure
1412 *  @offset: offset within the EEPROM to be read
1413 *  @words: number of word(s)
1414 *  @data: read 16 bit word(s) from EEPROM
1415 *
1416 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1417 **/
1418static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1419					     u16 words, u16 *data)
1420{
1421	s32 status;
1422	u16 word_in;
1423	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1424	u16 i;
1425
1426	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1427
1428	/* Prepare the EEPROM for reading  */
1429	status = ixgbe_acquire_eeprom(hw);
1430
1431	if (status == IXGBE_SUCCESS) {
1432		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1433			ixgbe_release_eeprom(hw);
1434			status = IXGBE_ERR_EEPROM;
1435		}
1436	}
1437
1438	if (status == IXGBE_SUCCESS) {
1439		for (i = 0; i < words; i++) {
1440			ixgbe_standby_eeprom(hw);
1441			/*
1442			 * Some SPI eeproms use the 8th address bit embedded
1443			 * in the opcode
1444			 */
1445			if ((hw->eeprom.address_bits == 8) &&
1446			    ((offset + i) >= 128))
1447				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1448
1449			/* Send the READ command (opcode + addr) */
1450			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1451						    IXGBE_EEPROM_OPCODE_BITS);
1452			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1453						    hw->eeprom.address_bits);
1454
1455			/* Read the data. */
1456			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1457			data[i] = (word_in >> 8) | (word_in << 8);
1458		}
1459
1460		/* End this read operation */
1461		ixgbe_release_eeprom(hw);
1462	}
1463
1464	return status;
1465}
1466
1467/**
1468 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1469 *  @hw: pointer to hardware structure
1470 *  @offset: offset within the EEPROM to be read
1471 *  @data: read 16 bit value from EEPROM
1472 *
1473 *  Reads 16 bit value from EEPROM through bit-bang method
1474 **/
1475s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1476				       u16 *data)
1477{
1478	s32 status;
1479
1480	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1481
1482	hw->eeprom.ops.init_params(hw);
1483
1484	if (offset >= hw->eeprom.word_size) {
1485		status = IXGBE_ERR_EEPROM;
1486		goto out;
1487	}
1488
1489	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1490
1491out:
1492	return status;
1493}
1494
1495/**
1496 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1497 *  @hw: pointer to hardware structure
1498 *  @offset: offset of word in the EEPROM to read
1499 *  @words: number of word(s)
1500 *  @data: 16 bit word(s) from the EEPROM
1501 *
1502 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1503 **/
1504s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1505				   u16 words, u16 *data)
1506{
1507	u32 eerd;
1508	s32 status = IXGBE_SUCCESS;
1509	u32 i;
1510
1511	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1512
1513	hw->eeprom.ops.init_params(hw);
1514
1515	if (words == 0) {
1516		status = IXGBE_ERR_INVALID_ARGUMENT;
1517		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1518		goto out;
1519	}
1520
1521	if (offset >= hw->eeprom.word_size) {
1522		status = IXGBE_ERR_EEPROM;
1523		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1524		goto out;
1525	}
1526
1527	for (i = 0; i < words; i++) {
1528		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1529		       IXGBE_EEPROM_RW_REG_START;
1530
1531		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1532		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1533
1534		if (status == IXGBE_SUCCESS) {
1535			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1536				   IXGBE_EEPROM_RW_REG_DATA);
1537		} else {
1538			DEBUGOUT("Eeprom read timed out\n");
1539			goto out;
1540		}
1541	}
1542out:
1543	return status;
1544}
1545
1546/**
1547 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1548 *  @hw: pointer to hardware structure
1549 *  @offset: offset within the EEPROM to be used as a scratch pad
1550 *
1551 *  Discover EEPROM page size by writing marching data at given offset.
1552 *  This function is called only when we are writing a new large buffer
1553 *  at given offset so the data would be overwritten anyway.
1554 **/
1555static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1556						 u16 offset)
1557{
1558	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1559	s32 status = IXGBE_SUCCESS;
1560	u16 i;
1561
1562	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1563
1564	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1565		data[i] = i;
1566
1567	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1568	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1569					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1570	hw->eeprom.word_page_size = 0;
1571	if (status != IXGBE_SUCCESS)
1572		goto out;
1573
1574	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1575	if (status != IXGBE_SUCCESS)
1576		goto out;
1577
1578	/*
1579	 * When writing in burst more than the actual page size
1580	 * EEPROM address wraps around current page.
1581	 */
1582	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1583
1584	DEBUGOUT1("Detected EEPROM page size = %d words.",
1585		  hw->eeprom.word_page_size);
1586out:
1587	return status;
1588}
1589
1590/**
1591 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1592 *  @hw: pointer to hardware structure
1593 *  @offset: offset of  word in the EEPROM to read
1594 *  @data: word read from the EEPROM
1595 *
1596 *  Reads a 16 bit word from the EEPROM using the EERD register.
1597 **/
1598s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1599{
1600	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1601}
1602
1603/**
1604 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1605 *  @hw: pointer to hardware structure
1606 *  @offset: offset of  word in the EEPROM to write
1607 *  @words: number of word(s)
1608 *  @data: word(s) write to the EEPROM
1609 *
1610 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1611 **/
1612s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1613				    u16 words, u16 *data)
1614{
1615	u32 eewr;
1616	s32 status = IXGBE_SUCCESS;
1617	u16 i;
1618
1619	DEBUGFUNC("ixgbe_write_eewr_generic");
1620
1621	hw->eeprom.ops.init_params(hw);
1622
1623	if (words == 0) {
1624		status = IXGBE_ERR_INVALID_ARGUMENT;
1625		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1626		goto out;
1627	}
1628
1629	if (offset >= hw->eeprom.word_size) {
1630		status = IXGBE_ERR_EEPROM;
1631		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1632		goto out;
1633	}
1634
1635	for (i = 0; i < words; i++) {
1636		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1637			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1638			IXGBE_EEPROM_RW_REG_START;
1639
1640		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1641		if (status != IXGBE_SUCCESS) {
1642			DEBUGOUT("Eeprom write EEWR timed out\n");
1643			goto out;
1644		}
1645
1646		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1647
1648		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1649		if (status != IXGBE_SUCCESS) {
1650			DEBUGOUT("Eeprom write EEWR timed out\n");
1651			goto out;
1652		}
1653	}
1654
1655out:
1656	return status;
1657}
1658
1659/**
1660 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1661 *  @hw: pointer to hardware structure
1662 *  @offset: offset of  word in the EEPROM to write
1663 *  @data: word write to the EEPROM
1664 *
1665 *  Write a 16 bit word to the EEPROM using the EEWR register.
1666 **/
1667s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1668{
1669	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1670}
1671
1672/**
1673 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1674 *  @hw: pointer to hardware structure
1675 *  @ee_reg: EEPROM flag for polling
1676 *
1677 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1678 *  read or write is done respectively.
1679 **/
1680s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1681{
1682	u32 i;
1683	u32 reg;
1684	s32 status = IXGBE_ERR_EEPROM;
1685
1686	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1687
1688	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1689		if (ee_reg == IXGBE_NVM_POLL_READ)
1690			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1691		else
1692			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1693
1694		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1695			status = IXGBE_SUCCESS;
1696			break;
1697		}
1698		usec_delay(5);
1699	}
1700
1701	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1702		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1703			     "EEPROM read/write done polling timed out");
1704
1705	return status;
1706}
1707
1708/**
1709 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1710 *  @hw: pointer to hardware structure
1711 *
1712 *  Prepares EEPROM for access using bit-bang method. This function should
1713 *  be called before issuing a command to the EEPROM.
1714 **/
1715static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1716{
1717	s32 status = IXGBE_SUCCESS;
1718	u32 eec;
1719	u32 i;
1720
1721	DEBUGFUNC("ixgbe_acquire_eeprom");
1722
1723	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1724	    != IXGBE_SUCCESS)
1725		status = IXGBE_ERR_SWFW_SYNC;
1726
1727	if (status == IXGBE_SUCCESS) {
1728		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1729
1730		/* Request EEPROM Access */
1731		eec |= IXGBE_EEC_REQ;
1732		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1733
1734		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1735			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1736			if (eec & IXGBE_EEC_GNT)
1737				break;
1738			usec_delay(5);
1739		}
1740
1741		/* Release if grant not acquired */
1742		if (!(eec & IXGBE_EEC_GNT)) {
1743			eec &= ~IXGBE_EEC_REQ;
1744			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1745			DEBUGOUT("Could not acquire EEPROM grant\n");
1746
1747			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1748			status = IXGBE_ERR_EEPROM;
1749		}
1750
1751		/* Setup EEPROM for Read/Write */
1752		if (status == IXGBE_SUCCESS) {
1753			/* Clear CS and SK */
1754			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1755			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1756			IXGBE_WRITE_FLUSH(hw);
1757			usec_delay(1);
1758		}
1759	}
1760	return status;
1761}
1762
1763/**
1764 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1765 *  @hw: pointer to hardware structure
1766 *
1767 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1768 **/
1769static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1770{
1771	s32 status = IXGBE_ERR_EEPROM;
1772	u32 timeout = 2000;
1773	u32 i;
1774	u32 swsm;
1775
1776	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1777
1778
1779	/* Get SMBI software semaphore between device drivers first */
1780	for (i = 0; i < timeout; i++) {
1781		/*
1782		 * If the SMBI bit is 0 when we read it, then the bit will be
1783		 * set and we have the semaphore
1784		 */
1785		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1786		if (!(swsm & IXGBE_SWSM_SMBI)) {
1787			status = IXGBE_SUCCESS;
1788			break;
1789		}
1790		usec_delay(50);
1791	}
1792
1793	if (i == timeout) {
1794		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1795			 "not granted.\n");
1796		/*
1797		 * this release is particularly important because our attempts
1798		 * above to get the semaphore may have succeeded, and if there
1799		 * was a timeout, we should unconditionally clear the semaphore
1800		 * bits to free the driver to make progress
1801		 */
1802		ixgbe_release_eeprom_semaphore(hw);
1803
1804		usec_delay(50);
1805		/*
1806		 * one last try
1807		 * If the SMBI bit is 0 when we read it, then the bit will be
1808		 * set and we have the semaphore
1809		 */
1810		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1811		if (!(swsm & IXGBE_SWSM_SMBI))
1812			status = IXGBE_SUCCESS;
1813	}
1814
1815	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1816	if (status == IXGBE_SUCCESS) {
1817		for (i = 0; i < timeout; i++) {
1818			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1819
1820			/* Set the SW EEPROM semaphore bit to request access */
1821			swsm |= IXGBE_SWSM_SWESMBI;
1822			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1823
1824			/*
1825			 * If we set the bit successfully then we got the
1826			 * semaphore.
1827			 */
1828			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1829			if (swsm & IXGBE_SWSM_SWESMBI)
1830				break;
1831
1832			usec_delay(50);
1833		}
1834
1835		/*
1836		 * Release semaphores and return error if SW EEPROM semaphore
1837		 * was not granted because we don't have access to the EEPROM
1838		 */
1839		if (i >= timeout) {
1840			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1841			    "SWESMBI Software EEPROM semaphore not granted.\n");
1842			ixgbe_release_eeprom_semaphore(hw);
1843			status = IXGBE_ERR_EEPROM;
1844		}
1845	} else {
1846		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1847			     "Software semaphore SMBI between device drivers "
1848			     "not granted.\n");
1849	}
1850
1851	return status;
1852}
1853
1854/**
1855 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1856 *  @hw: pointer to hardware structure
1857 *
1858 *  This function clears hardware semaphore bits.
1859 **/
1860static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1861{
1862	u32 swsm;
1863
1864	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1865
1866	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1867
1868	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1869	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1870	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1871	IXGBE_WRITE_FLUSH(hw);
1872}
1873
1874/**
1875 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1876 *  @hw: pointer to hardware structure
1877 **/
1878static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1879{
1880	s32 status = IXGBE_SUCCESS;
1881	u16 i;
1882	u8 spi_stat_reg;
1883
1884	DEBUGFUNC("ixgbe_ready_eeprom");
1885
1886	/*
1887	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1888	 * EEPROM will signal that the command has been completed by clearing
1889	 * bit 0 of the internal status register.  If it's not cleared within
1890	 * 5 milliseconds, then error out.
1891	 */
1892	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1893		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1894					    IXGBE_EEPROM_OPCODE_BITS);
1895		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1896		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1897			break;
1898
1899		usec_delay(5);
1900		ixgbe_standby_eeprom(hw);
1901	};
1902
1903	/*
1904	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1905	 * devices (and only 0-5mSec on 5V devices)
1906	 */
1907	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1908		DEBUGOUT("SPI EEPROM Status error\n");
1909		status = IXGBE_ERR_EEPROM;
1910	}
1911
1912	return status;
1913}
1914
1915/**
1916 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1917 *  @hw: pointer to hardware structure
1918 **/
1919static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1920{
1921	u32 eec;
1922
1923	DEBUGFUNC("ixgbe_standby_eeprom");
1924
1925	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1926
1927	/* Toggle CS to flush commands */
1928	eec |= IXGBE_EEC_CS;
1929	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1930	IXGBE_WRITE_FLUSH(hw);
1931	usec_delay(1);
1932	eec &= ~IXGBE_EEC_CS;
1933	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1934	IXGBE_WRITE_FLUSH(hw);
1935	usec_delay(1);
1936}
1937
1938/**
1939 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1940 *  @hw: pointer to hardware structure
1941 *  @data: data to send to the EEPROM
1942 *  @count: number of bits to shift out
1943 **/
1944static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1945					u16 count)
1946{
1947	u32 eec;
1948	u32 mask;
1949	u32 i;
1950
1951	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1952
1953	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1954
1955	/*
1956	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1957	 * one bit at a time.  Determine the starting bit based on count
1958	 */
1959	mask = 0x01 << (count - 1);
1960
1961	for (i = 0; i < count; i++) {
1962		/*
1963		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1964		 * "1", and then raising and then lowering the clock (the SK
1965		 * bit controls the clock input to the EEPROM).  A "0" is
1966		 * shifted out to the EEPROM by setting "DI" to "0" and then
1967		 * raising and then lowering the clock.
1968		 */
1969		if (data & mask)
1970			eec |= IXGBE_EEC_DI;
1971		else
1972			eec &= ~IXGBE_EEC_DI;
1973
1974		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1975		IXGBE_WRITE_FLUSH(hw);
1976
1977		usec_delay(1);
1978
1979		ixgbe_raise_eeprom_clk(hw, &eec);
1980		ixgbe_lower_eeprom_clk(hw, &eec);
1981
1982		/*
1983		 * Shift mask to signify next bit of data to shift in to the
1984		 * EEPROM
1985		 */
1986		mask = mask >> 1;
1987	};
1988
1989	/* We leave the "DI" bit set to "0" when we leave this routine. */
1990	eec &= ~IXGBE_EEC_DI;
1991	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1992	IXGBE_WRITE_FLUSH(hw);
1993}
1994
1995/**
1996 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1997 *  @hw: pointer to hardware structure
1998 **/
1999static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2000{
2001	u32 eec;
2002	u32 i;
2003	u16 data = 0;
2004
2005	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2006
2007	/*
2008	 * In order to read a register from the EEPROM, we need to shift
2009	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2010	 * the clock input to the EEPROM (setting the SK bit), and then reading
2011	 * the value of the "DO" bit.  During this "shifting in" process the
2012	 * "DI" bit should always be clear.
2013	 */
2014	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2015
2016	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2017
2018	for (i = 0; i < count; i++) {
2019		data = data << 1;
2020		ixgbe_raise_eeprom_clk(hw, &eec);
2021
2022		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2023
2024		eec &= ~(IXGBE_EEC_DI);
2025		if (eec & IXGBE_EEC_DO)
2026			data |= 1;
2027
2028		ixgbe_lower_eeprom_clk(hw, &eec);
2029	}
2030
2031	return data;
2032}
2033
2034/**
2035 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2036 *  @hw: pointer to hardware structure
2037 *  @eec: EEC register's current value
2038 **/
2039static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2040{
2041	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2042
2043	/*
2044	 * Raise the clock input to the EEPROM
2045	 * (setting the SK bit), then delay
2046	 */
2047	*eec = *eec | IXGBE_EEC_SK;
2048	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
2049	IXGBE_WRITE_FLUSH(hw);
2050	usec_delay(1);
2051}
2052
2053/**
2054 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2055 *  @hw: pointer to hardware structure
2056 *  @eecd: EECD's current value
2057 **/
2058static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2059{
2060	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2061
2062	/*
2063	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2064	 * delay
2065	 */
2066	*eec = *eec & ~IXGBE_EEC_SK;
2067	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
2068	IXGBE_WRITE_FLUSH(hw);
2069	usec_delay(1);
2070}
2071
2072/**
2073 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
2074 *  @hw: pointer to hardware structure
2075 **/
2076static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2077{
2078	u32 eec;
2079
2080	DEBUGFUNC("ixgbe_release_eeprom");
2081
2082	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2083
2084	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2085	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2086
2087	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
2088	IXGBE_WRITE_FLUSH(hw);
2089
2090	usec_delay(1);
2091
2092	/* Stop requesting EEPROM access */
2093	eec &= ~IXGBE_EEC_REQ;
2094	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
2095
2096	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2097
2098	/* Delay before attempt to obtain semaphore again to allow FW access */
2099	msec_delay(hw->eeprom.semaphore_delay);
2100}
2101
2102/**
2103 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2104 *  @hw: pointer to hardware structure
2105 *
2106 *  Returns a negative error code on error, or the 16-bit checksum
2107 **/
2108s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2109{
2110	u16 i;
2111	u16 j;
2112	u16 checksum = 0;
2113	u16 length = 0;
2114	u16 pointer = 0;
2115	u16 word = 0;
2116
2117	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2118
2119	/* Include 0x0-0x3F in the checksum */
2120	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2121		if (hw->eeprom.ops.read(hw, i, &word)) {
2122			DEBUGOUT("EEPROM read failed\n");
2123			return IXGBE_ERR_EEPROM;
2124		}
2125		checksum += word;
2126	}
2127
2128	/* Include all data from pointers except for the fw pointer */
2129	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2130		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2131			DEBUGOUT("EEPROM read failed\n");
2132			return IXGBE_ERR_EEPROM;
2133		}
2134
2135		/* If the pointer seems invalid */
2136		if (pointer == 0xFFFF || pointer == 0)
2137			continue;
2138
2139		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2140			DEBUGOUT("EEPROM read failed\n");
2141			return IXGBE_ERR_EEPROM;
2142		}
2143
2144		if (length == 0xFFFF || length == 0)
2145			continue;
2146
2147		for (j = pointer + 1; j <= pointer + length; j++) {
2148			if (hw->eeprom.ops.read(hw, j, &word)) {
2149				DEBUGOUT("EEPROM read failed\n");
2150				return IXGBE_ERR_EEPROM;
2151			}
2152			checksum += word;
2153		}
2154	}
2155
2156	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2157
2158	return (s32)checksum;
2159}
2160
2161/**
2162 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2163 *  @hw: pointer to hardware structure
2164 *  @checksum_val: calculated checksum
2165 *
2166 *  Performs checksum calculation and validates the EEPROM checksum.  If the
2167 *  caller does not need checksum_val, the value can be NULL.
2168 **/
2169s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2170					   u16 *checksum_val)
2171{
2172	s32 status;
2173	u16 checksum;
2174	u16 read_checksum = 0;
2175
2176	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2177
2178	/* Read the first word from the EEPROM. If this times out or fails, do
2179	 * not continue or we could be in for a very long wait while every
2180	 * EEPROM read fails
2181	 */
2182	status = hw->eeprom.ops.read(hw, 0, &checksum);
2183	if (status) {
2184		DEBUGOUT("EEPROM read failed\n");
2185		return status;
2186	}
2187
2188	status = hw->eeprom.ops.calc_checksum(hw);
2189	if (status < 0)
2190		return status;
2191
2192	checksum = (u16)(status & 0xffff);
2193
2194	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2195	if (status) {
2196		DEBUGOUT("EEPROM read failed\n");
2197		return status;
2198	}
2199
2200	/* Verify read checksum from EEPROM is the same as
2201	 * calculated checksum
2202	 */
2203	if (read_checksum != checksum)
2204		status = IXGBE_ERR_EEPROM_CHECKSUM;
2205
2206	/* If the user cares, return the calculated checksum */
2207	if (checksum_val)
2208		*checksum_val = checksum;
2209
2210	return status;
2211}
2212
2213/**
2214 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2215 *  @hw: pointer to hardware structure
2216 **/
2217s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2218{
2219	s32 status;
2220	u16 checksum;
2221
2222	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2223
2224	/* Read the first word from the EEPROM. If this times out or fails, do
2225	 * not continue or we could be in for a very long wait while every
2226	 * EEPROM read fails
2227	 */
2228	status = hw->eeprom.ops.read(hw, 0, &checksum);
2229	if (status) {
2230		DEBUGOUT("EEPROM read failed\n");
2231		return status;
2232	}
2233
2234	status = hw->eeprom.ops.calc_checksum(hw);
2235	if (status < 0)
2236		return status;
2237
2238	checksum = (u16)(status & 0xffff);
2239
2240	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2241
2242	return status;
2243}
2244
2245/**
2246 *  ixgbe_validate_mac_addr - Validate MAC address
2247 *  @mac_addr: pointer to MAC address.
2248 *
2249 *  Tests a MAC address to ensure it is a valid Individual Address
2250 **/
2251s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2252{
2253	s32 status = IXGBE_SUCCESS;
2254
2255	DEBUGFUNC("ixgbe_validate_mac_addr");
2256
2257	/* Make sure it is not a multicast address */
2258	if (IXGBE_IS_MULTICAST(mac_addr)) {
2259		DEBUGOUT("MAC address is multicast\n");
2260		status = IXGBE_ERR_INVALID_MAC_ADDR;
2261	/* Not a broadcast address */
2262	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2263		DEBUGOUT("MAC address is broadcast\n");
2264		status = IXGBE_ERR_INVALID_MAC_ADDR;
2265	/* Reject the zero address */
2266	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2267		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2268		DEBUGOUT("MAC address is all zeros\n");
2269		status = IXGBE_ERR_INVALID_MAC_ADDR;
2270	}
2271	return status;
2272}
2273
2274/**
2275 *  ixgbe_set_rar_generic - Set Rx address register
2276 *  @hw: pointer to hardware structure
2277 *  @index: Receive address register to write
2278 *  @addr: Address to put into receive address register
2279 *  @vmdq: VMDq "set" or "pool" index
2280 *  @enable_addr: set flag that address is active
2281 *
2282 *  Puts an ethernet address into a receive address register.
2283 **/
2284s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2285			  u32 enable_addr)
2286{
2287	u32 rar_low, rar_high;
2288	u32 rar_entries = hw->mac.num_rar_entries;
2289
2290	DEBUGFUNC("ixgbe_set_rar_generic");
2291
2292	/* Make sure we are using a valid rar index range */
2293	if (index >= rar_entries) {
2294		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2295			     "RAR index %d is out of range.\n", index);
2296		return IXGBE_ERR_INVALID_ARGUMENT;
2297	}
2298
2299	/* setup VMDq pool selection before this RAR gets enabled */
2300	hw->mac.ops.set_vmdq(hw, index, vmdq);
2301
2302	/*
2303	 * HW expects these in little endian so we reverse the byte
2304	 * order from network order (big endian) to little endian
2305	 */
2306	rar_low = ((u32)addr[0] |
2307		   ((u32)addr[1] << 8) |
2308		   ((u32)addr[2] << 16) |
2309		   ((u32)addr[3] << 24));
2310	/*
2311	 * Some parts put the VMDq setting in the extra RAH bits,
2312	 * so save everything except the lower 16 bits that hold part
2313	 * of the address and the address valid bit.
2314	 */
2315	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2316	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2317	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2318
2319	if (enable_addr != 0)
2320		rar_high |= IXGBE_RAH_AV;
2321
2322	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2323	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2324
2325	return IXGBE_SUCCESS;
2326}
2327
2328/**
2329 *  ixgbe_clear_rar_generic - Remove Rx address register
2330 *  @hw: pointer to hardware structure
2331 *  @index: Receive address register to write
2332 *
2333 *  Clears an ethernet address from a receive address register.
2334 **/
2335s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2336{
2337	u32 rar_high;
2338	u32 rar_entries = hw->mac.num_rar_entries;
2339
2340	DEBUGFUNC("ixgbe_clear_rar_generic");
2341
2342	/* Make sure we are using a valid rar index range */
2343	if (index >= rar_entries) {
2344		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2345			     "RAR index %d is out of range.\n", index);
2346		return IXGBE_ERR_INVALID_ARGUMENT;
2347	}
2348
2349	/*
2350	 * Some parts put the VMDq setting in the extra RAH bits,
2351	 * so save everything except the lower 16 bits that hold part
2352	 * of the address and the address valid bit.
2353	 */
2354	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2355	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2356
2357	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2358	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2359
2360	/* clear VMDq pool/queue selection for this RAR */
2361	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2362
2363	return IXGBE_SUCCESS;
2364}
2365
2366/**
2367 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2368 *  @hw: pointer to hardware structure
2369 *
2370 *  Places the MAC address in receive address register 0 and clears the rest
2371 *  of the receive address registers. Clears the multicast table. Assumes
2372 *  the receiver is in reset when the routine is called.
2373 **/
2374s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2375{
2376	u32 i;
2377	u32 rar_entries = hw->mac.num_rar_entries;
2378
2379	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2380
2381	/*
2382	 * If the current mac address is valid, assume it is a software override
2383	 * to the permanent address.
2384	 * Otherwise, use the permanent address from the eeprom.
2385	 */
2386	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2387	    IXGBE_ERR_INVALID_MAC_ADDR) {
2388		/* Get the MAC address from the RAR0 for later reference */
2389		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2390
2391		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2392			  hw->mac.addr[0], hw->mac.addr[1],
2393			  hw->mac.addr[2]);
2394		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2395			  hw->mac.addr[4], hw->mac.addr[5]);
2396	} else {
2397		/* Setup the receive address. */
2398		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2399		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2400			  hw->mac.addr[0], hw->mac.addr[1],
2401			  hw->mac.addr[2]);
2402		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2403			  hw->mac.addr[4], hw->mac.addr[5]);
2404
2405		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2406
2407		/* clear VMDq pool/queue selection for RAR 0 */
2408		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2409	}
2410	hw->addr_ctrl.overflow_promisc = 0;
2411
2412	hw->addr_ctrl.rar_used_count = 1;
2413
2414	/* Zero out the other receive addresses. */
2415	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2416	for (i = 1; i < rar_entries; i++) {
2417		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2418		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2419	}
2420
2421	/* Clear the MTA */
2422	hw->addr_ctrl.mta_in_use = 0;
2423	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2424
2425	DEBUGOUT(" Clearing MTA\n");
2426	for (i = 0; i < hw->mac.mcft_size; i++)
2427		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2428
2429	ixgbe_init_uta_tables(hw);
2430
2431	return IXGBE_SUCCESS;
2432}
2433
2434/**
2435 *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2436 *  @hw: pointer to hardware structure
2437 *  @addr: new address
2438 *
2439 *  Adds it to unused receive address register or goes into promiscuous mode.
2440 **/
2441void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2442{
2443	u32 rar_entries = hw->mac.num_rar_entries;
2444	u32 rar;
2445
2446	DEBUGFUNC("ixgbe_add_uc_addr");
2447
2448	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2449		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2450
2451	/*
2452	 * Place this address in the RAR if there is room,
2453	 * else put the controller into promiscuous mode
2454	 */
2455	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2456		rar = hw->addr_ctrl.rar_used_count;
2457		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2458		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2459		hw->addr_ctrl.rar_used_count++;
2460	} else {
2461		hw->addr_ctrl.overflow_promisc++;
2462	}
2463
2464	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2465}
2466
2467/**
2468 *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2469 *  @hw: pointer to hardware structure
2470 *  @addr_list: the list of new addresses
2471 *  @addr_count: number of addresses
2472 *  @next: iterator function to walk the address list
2473 *
2474 *  The given list replaces any existing list.  Clears the secondary addrs from
2475 *  receive address registers.  Uses unused receive address registers for the
2476 *  first secondary addresses, and falls back to promiscuous mode as needed.
2477 *
2478 *  Drivers using secondary unicast addresses must set user_set_promisc when
2479 *  manually putting the device into promiscuous mode.
2480 **/
2481s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2482				      u32 addr_count, ixgbe_mc_addr_itr next)
2483{
2484	u8 *addr;
2485	u32 i;
2486	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2487	u32 uc_addr_in_use;
2488	u32 fctrl;
2489	u32 vmdq;
2490
2491	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2492
2493	/*
2494	 * Clear accounting of old secondary address list,
2495	 * don't count RAR[0]
2496	 */
2497	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2498	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2499	hw->addr_ctrl.overflow_promisc = 0;
2500
2501	/* Zero out the other receive addresses */
2502	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2503	for (i = 0; i < uc_addr_in_use; i++) {
2504		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2505		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2506	}
2507
2508	/* Add the new addresses */
2509	for (i = 0; i < addr_count; i++) {
2510		DEBUGOUT(" Adding the secondary addresses:\n");
2511		addr = next(hw, &addr_list, &vmdq);
2512		ixgbe_add_uc_addr(hw, addr, vmdq);
2513	}
2514
2515	if (hw->addr_ctrl.overflow_promisc) {
2516		/* enable promisc if not already in overflow or set by user */
2517		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2518			DEBUGOUT(" Entering address overflow promisc mode\n");
2519			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2520			fctrl |= IXGBE_FCTRL_UPE;
2521			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2522		}
2523	} else {
2524		/* only disable if set by overflow, not by user */
2525		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2526			DEBUGOUT(" Leaving address overflow promisc mode\n");
2527			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2528			fctrl &= ~IXGBE_FCTRL_UPE;
2529			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2530		}
2531	}
2532
2533	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2534	return IXGBE_SUCCESS;
2535}
2536
2537/**
2538 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2539 *  @hw: pointer to hardware structure
2540 *  @mc_addr: the multicast address
2541 *
2542 *  Extracts the 12 bits, from a multicast address, to determine which
2543 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2544 *  incoming rx multicast addresses, to determine the bit-vector to check in
2545 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2546 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2547 *  to mc_filter_type.
2548 **/
2549static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2550{
2551	u32 vector = 0;
2552
2553	DEBUGFUNC("ixgbe_mta_vector");
2554
2555	switch (hw->mac.mc_filter_type) {
2556	case 0:   /* use bits [47:36] of the address */
2557		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2558		break;
2559	case 1:   /* use bits [46:35] of the address */
2560		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2561		break;
2562	case 2:   /* use bits [45:34] of the address */
2563		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2564		break;
2565	case 3:   /* use bits [43:32] of the address */
2566		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2567		break;
2568	default:  /* Invalid mc_filter_type */
2569		DEBUGOUT("MC filter type param set incorrectly\n");
2570		ASSERT(0);
2571		break;
2572	}
2573
2574	/* vector can only be 12-bits or boundary will be exceeded */
2575	vector &= 0xFFF;
2576	return vector;
2577}
2578
2579/**
2580 *  ixgbe_set_mta - Set bit-vector in multicast table
2581 *  @hw: pointer to hardware structure
2582 *  @hash_value: Multicast address hash value
2583 *
2584 *  Sets the bit-vector in the multicast table.
2585 **/
2586void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2587{
2588	u32 vector;
2589	u32 vector_bit;
2590	u32 vector_reg;
2591
2592	DEBUGFUNC("ixgbe_set_mta");
2593
2594	hw->addr_ctrl.mta_in_use++;
2595
2596	vector = ixgbe_mta_vector(hw, mc_addr);
2597	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2598
2599	/*
2600	 * The MTA is a register array of 128 32-bit registers. It is treated
2601	 * like an array of 4096 bits.  We want to set bit
2602	 * BitArray[vector_value]. So we figure out what register the bit is
2603	 * in, read it, OR in the new bit, then write back the new value.  The
2604	 * register is determined by the upper 7 bits of the vector value and
2605	 * the bit within that register are determined by the lower 5 bits of
2606	 * the value.
2607	 */
2608	vector_reg = (vector >> 5) & 0x7F;
2609	vector_bit = vector & 0x1F;
2610	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2611}
2612
2613/**
2614 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2615 *  @hw: pointer to hardware structure
2616 *  @mc_addr_list: the list of new multicast addresses
2617 *  @mc_addr_count: number of addresses
2618 *  @next: iterator function to walk the multicast address list
2619 *  @clear: flag, when set clears the table beforehand
2620 *
2621 *  When the clear flag is set, the given list replaces any existing list.
2622 *  Hashes the given addresses into the multicast table.
2623 **/
2624s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2625				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2626				      bool clear)
2627{
2628	u32 i;
2629	u32 vmdq;
2630
2631	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2632
2633	/*
2634	 * Set the new number of MC addresses that we are being requested to
2635	 * use.
2636	 */
2637	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2638	hw->addr_ctrl.mta_in_use = 0;
2639
2640	/* Clear mta_shadow */
2641	if (clear) {
2642		DEBUGOUT(" Clearing MTA\n");
2643		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2644	}
2645
2646	/* Update mta_shadow */
2647	for (i = 0; i < mc_addr_count; i++) {
2648		DEBUGOUT(" Adding the multicast addresses:\n");
2649		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2650	}
2651
2652	/* Enable mta */
2653	for (i = 0; i < hw->mac.mcft_size; i++)
2654		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2655				      hw->mac.mta_shadow[i]);
2656
2657	if (hw->addr_ctrl.mta_in_use > 0)
2658		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2659				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2660
2661	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2662	return IXGBE_SUCCESS;
2663}
2664
2665/**
2666 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2667 *  @hw: pointer to hardware structure
2668 *
2669 *  Enables multicast address in RAR and the use of the multicast hash table.
2670 **/
2671s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2672{
2673	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2674
2675	DEBUGFUNC("ixgbe_enable_mc_generic");
2676
2677	if (a->mta_in_use > 0)
2678		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2679				hw->mac.mc_filter_type);
2680
2681	return IXGBE_SUCCESS;
2682}
2683
2684/**
2685 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2686 *  @hw: pointer to hardware structure
2687 *
2688 *  Disables multicast address in RAR and the use of the multicast hash table.
2689 **/
2690s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2691{
2692	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2693
2694	DEBUGFUNC("ixgbe_disable_mc_generic");
2695
2696	if (a->mta_in_use > 0)
2697		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2698
2699	return IXGBE_SUCCESS;
2700}
2701
2702/**
2703 *  ixgbe_fc_enable_generic - Enable flow control
2704 *  @hw: pointer to hardware structure
2705 *
2706 *  Enable flow control according to the current settings.
2707 **/
2708s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2709{
2710	s32 ret_val = IXGBE_SUCCESS;
2711	u32 mflcn_reg, fccfg_reg;
2712	u32 reg;
2713	u32 fcrtl, fcrth;
2714	int i;
2715
2716	DEBUGFUNC("ixgbe_fc_enable_generic");
2717
2718	/* Validate the water mark configuration */
2719	if (!hw->fc.pause_time) {
2720		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2721		goto out;
2722	}
2723
2724	/* Low water mark of zero causes XOFF floods */
2725	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2726		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2727		    hw->fc.high_water[i]) {
2728			if (!hw->fc.low_water[i] ||
2729			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2730				DEBUGOUT("Invalid water mark configuration\n");
2731				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2732				goto out;
2733			}
2734		}
2735	}
2736
2737	/* Negotiate the fc mode to use */
2738	ixgbe_fc_autoneg(hw);
2739
2740	/* Disable any previous flow control settings */
2741	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2742	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2743
2744	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2745	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2746
2747	/*
2748	 * The possible values of fc.current_mode are:
2749	 * 0: Flow control is completely disabled
2750	 * 1: Rx flow control is enabled (we can receive pause frames,
2751	 *    but not send pause frames).
2752	 * 2: Tx flow control is enabled (we can send pause frames but
2753	 *    we do not support receiving pause frames).
2754	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2755	 * other: Invalid.
2756	 */
2757	switch (hw->fc.current_mode) {
2758	case ixgbe_fc_none:
2759		/*
2760		 * Flow control is disabled by software override or autoneg.
2761		 * The code below will actually disable it in the HW.
2762		 */
2763		break;
2764	case ixgbe_fc_rx_pause:
2765		/*
2766		 * Rx Flow control is enabled and Tx Flow control is
2767		 * disabled by software override. Since there really
2768		 * isn't a way to advertise that we are capable of RX
2769		 * Pause ONLY, we will advertise that we support both
2770		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2771		 * disable the adapter's ability to send PAUSE frames.
2772		 */
2773		mflcn_reg |= IXGBE_MFLCN_RFCE;
2774		break;
2775	case ixgbe_fc_tx_pause:
2776		/*
2777		 * Tx Flow control is enabled, and Rx Flow control is
2778		 * disabled by software override.
2779		 */
2780		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2781		break;
2782	case ixgbe_fc_full:
2783		/* Flow control (both Rx and Tx) is enabled by SW override. */
2784		mflcn_reg |= IXGBE_MFLCN_RFCE;
2785		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2786		break;
2787	default:
2788		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2789			     "Flow control param set incorrectly\n");
2790		ret_val = IXGBE_ERR_CONFIG;
2791		goto out;
2792		break;
2793	}
2794
2795	/* Set 802.3x based flow control settings. */
2796	mflcn_reg |= IXGBE_MFLCN_DPF;
2797	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2798	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2799
2800
2801	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2802	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2803		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2804		    hw->fc.high_water[i]) {
2805			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2806			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2807			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2808		} else {
2809			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2810			/*
2811			 * In order to prevent Tx hangs when the internal Tx
2812			 * switch is enabled we must set the high water mark
2813			 * to the Rx packet buffer size - 24KB.  This allows
2814			 * the Tx switch to function even under heavy Rx
2815			 * workloads.
2816			 */
2817			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2818		}
2819
2820		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2821	}
2822
2823	/* Configure pause time (2 TCs per register) */
2824	reg = hw->fc.pause_time * 0x00010001;
2825	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2826		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2827
2828	/* Configure flow control refresh threshold value */
2829	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2830
2831out:
2832	return ret_val;
2833}
2834
2835/**
2836 *  ixgbe_negotiate_fc - Negotiate flow control
2837 *  @hw: pointer to hardware structure
2838 *  @adv_reg: flow control advertised settings
2839 *  @lp_reg: link partner's flow control settings
2840 *  @adv_sym: symmetric pause bit in advertisement
2841 *  @adv_asm: asymmetric pause bit in advertisement
2842 *  @lp_sym: symmetric pause bit in link partner advertisement
2843 *  @lp_asm: asymmetric pause bit in link partner advertisement
2844 *
2845 *  Find the intersection between advertised settings and link partner's
2846 *  advertised settings
2847 **/
2848static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2849			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2850{
2851	if ((!(adv_reg)) ||  (!(lp_reg))) {
2852		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2853			     "Local or link partner's advertised flow control "
2854			     "settings are NULL. Local: %x, link partner: %x\n",
2855			     adv_reg, lp_reg);
2856		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2857	}
2858
2859	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2860		/*
2861		 * Now we need to check if the user selected Rx ONLY
2862		 * of pause frames.  In this case, we had to advertise
2863		 * FULL flow control because we could not advertise RX
2864		 * ONLY. Hence, we must now check to see if we need to
2865		 * turn OFF the TRANSMISSION of PAUSE frames.
2866		 */
2867		if (hw->fc.requested_mode == ixgbe_fc_full) {
2868			hw->fc.current_mode = ixgbe_fc_full;
2869			DEBUGOUT("Flow Control = FULL.\n");
2870		} else {
2871			hw->fc.current_mode = ixgbe_fc_rx_pause;
2872			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2873		}
2874	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2875		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2876		hw->fc.current_mode = ixgbe_fc_tx_pause;
2877		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2878	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2879		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2880		hw->fc.current_mode = ixgbe_fc_rx_pause;
2881		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2882	} else {
2883		hw->fc.current_mode = ixgbe_fc_none;
2884		DEBUGOUT("Flow Control = NONE.\n");
2885	}
2886	return IXGBE_SUCCESS;
2887}
2888
2889/**
2890 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2891 *  @hw: pointer to hardware structure
2892 *
2893 *  Enable flow control according on 1 gig fiber.
2894 **/
2895static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2896{
2897	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2898	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2899
2900	/*
2901	 * On multispeed fiber at 1g, bail out if
2902	 * - link is up but AN did not complete, or if
2903	 * - link is up and AN completed but timed out
2904	 */
2905
2906	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2907	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2908	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2909		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
2910		goto out;
2911	}
2912
2913	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2914	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2915
2916	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2917				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2918				      IXGBE_PCS1GANA_ASM_PAUSE,
2919				      IXGBE_PCS1GANA_SYM_PAUSE,
2920				      IXGBE_PCS1GANA_ASM_PAUSE);
2921
2922out:
2923	return ret_val;
2924}
2925
2926/**
2927 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2928 *  @hw: pointer to hardware structure
2929 *
2930 *  Enable flow control according to IEEE clause 37.
2931 **/
2932static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2933{
2934	u32 links2, anlp1_reg, autoc_reg, links;
2935	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2936
2937	/*
2938	 * On backplane, bail out if
2939	 * - backplane autoneg was not completed, or if
2940	 * - we are 82599 and link partner is not AN enabled
2941	 */
2942	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2943	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2944		DEBUGOUT("Auto-Negotiation did not complete\n");
2945		goto out;
2946	}
2947
2948	if (hw->mac.type == ixgbe_mac_82599EB) {
2949		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2950		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2951			DEBUGOUT("Link partner is not AN enabled\n");
2952			goto out;
2953		}
2954	}
2955	/*
2956	 * Read the 10g AN autoc and LP ability registers and resolve
2957	 * local flow control settings accordingly
2958	 */
2959	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2960	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2961
2962	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2963		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2964		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2965
2966out:
2967	return ret_val;
2968}
2969
2970/**
2971 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2972 *  @hw: pointer to hardware structure
2973 *
2974 *  Enable flow control according to IEEE clause 37.
2975 **/
2976static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2977{
2978	u16 technology_ability_reg = 0;
2979	u16 lp_technology_ability_reg = 0;
2980
2981	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2982			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2983			     &technology_ability_reg);
2984	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2985			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2986			     &lp_technology_ability_reg);
2987
2988	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2989				  (u32)lp_technology_ability_reg,
2990				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2991				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2992}
2993
2994/**
2995 *  ixgbe_fc_autoneg - Configure flow control
2996 *  @hw: pointer to hardware structure
2997 *
2998 *  Compares our advertised flow control capabilities to those advertised by
2999 *  our link partner, and determines the proper flow control mode to use.
3000 **/
3001void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3002{
3003	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3004	ixgbe_link_speed speed;
3005	bool link_up;
3006
3007	DEBUGFUNC("ixgbe_fc_autoneg");
3008
3009	/*
3010	 * AN should have completed when the cable was plugged in.
3011	 * Look for reasons to bail out.  Bail out if:
3012	 * - FC autoneg is disabled, or if
3013	 * - link is not up.
3014	 */
3015	if (hw->fc.disable_fc_autoneg) {
3016		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3017			     "Flow control autoneg is disabled");
3018		goto out;
3019	}
3020
3021	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3022	if (!link_up) {
3023		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3024		goto out;
3025	}
3026
3027	switch (hw->phy.media_type) {
3028	/* Autoneg flow control on fiber adapters */
3029	case ixgbe_media_type_fiber_fixed:
3030	case ixgbe_media_type_fiber_qsfp:
3031	case ixgbe_media_type_fiber:
3032		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3033			ret_val = ixgbe_fc_autoneg_fiber(hw);
3034		break;
3035
3036	/* Autoneg flow control on backplane adapters */
3037	case ixgbe_media_type_backplane:
3038		ret_val = ixgbe_fc_autoneg_backplane(hw);
3039		break;
3040
3041	/* Autoneg flow control on copper adapters */
3042	case ixgbe_media_type_copper:
3043		if (ixgbe_device_supports_autoneg_fc(hw))
3044			ret_val = ixgbe_fc_autoneg_copper(hw);
3045		break;
3046
3047	default:
3048		break;
3049	}
3050
3051out:
3052	if (ret_val == IXGBE_SUCCESS) {
3053		hw->fc.fc_was_autonegged = TRUE;
3054	} else {
3055		hw->fc.fc_was_autonegged = FALSE;
3056		hw->fc.current_mode = hw->fc.requested_mode;
3057	}
3058}
3059
3060/*
3061 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3062 * @hw: pointer to hardware structure
3063 *
3064 * System-wide timeout range is encoded in PCIe Device Control2 register.
3065 *
3066 * Add 10% to specified maximum and return the number of times to poll for
3067 * completion timeout, in units of 100 microsec.  Never return less than
3068 * 800 = 80 millisec.
3069 */
3070static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3071{
3072	s16 devctl2;
3073	u32 pollcnt;
3074
3075	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3076	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3077
3078	switch (devctl2) {
3079	case IXGBE_PCIDEVCTRL2_65_130ms:
3080		pollcnt = 1300;		/* 130 millisec */
3081		break;
3082	case IXGBE_PCIDEVCTRL2_260_520ms:
3083		pollcnt = 5200;		/* 520 millisec */
3084		break;
3085	case IXGBE_PCIDEVCTRL2_1_2s:
3086		pollcnt = 20000;	/* 2 sec */
3087		break;
3088	case IXGBE_PCIDEVCTRL2_4_8s:
3089		pollcnt = 80000;	/* 8 sec */
3090		break;
3091	case IXGBE_PCIDEVCTRL2_17_34s:
3092		pollcnt = 34000;	/* 34 sec */
3093		break;
3094	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3095	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3096	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3097	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3098	default:
3099		pollcnt = 800;		/* 80 millisec minimum */
3100		break;
3101	}
3102
3103	/* add 10% to spec maximum */
3104	return (pollcnt * 11) / 10;
3105}
3106
3107/**
3108 *  ixgbe_disable_pcie_master - Disable PCI-express master access
3109 *  @hw: pointer to hardware structure
3110 *
3111 *  Disables PCI-Express master access and verifies there are no pending
3112 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3113 *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3114 *  is returned signifying master requests disabled.
3115 **/
3116s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3117{
3118	s32 status = IXGBE_SUCCESS;
3119	u32 i, poll;
3120	u16 value;
3121
3122	DEBUGFUNC("ixgbe_disable_pcie_master");
3123
3124	/* Always set this bit to ensure any future transactions are blocked */
3125	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3126
3127	/* Exit if master requests are blocked */
3128	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3129	    IXGBE_REMOVED(hw->hw_addr))
3130		goto out;
3131
3132	/* Poll for master request bit to clear */
3133	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3134		usec_delay(100);
3135		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3136			goto out;
3137	}
3138
3139	/*
3140	 * Two consecutive resets are required via CTRL.RST per datasheet
3141	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3142	 * of this need.  The first reset prevents new master requests from
3143	 * being issued by our device.  We then must wait 1usec or more for any
3144	 * remaining completions from the PCIe bus to trickle in, and then reset
3145	 * again to clear out any effects they may have had on our device.
3146	 */
3147	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3148	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3149
3150	/*
3151	 * Before proceeding, make sure that the PCIe block does not have
3152	 * transactions pending.
3153	 */
3154	poll = ixgbe_pcie_timeout_poll(hw);
3155	for (i = 0; i < poll; i++) {
3156		usec_delay(100);
3157		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3158		if (IXGBE_REMOVED(hw->hw_addr))
3159			goto out;
3160		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3161			goto out;
3162	}
3163
3164	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3165		     "PCIe transaction pending bit also did not clear.\n");
3166	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3167
3168out:
3169	return status;
3170}
3171
3172/**
3173 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3174 *  @hw: pointer to hardware structure
3175 *  @mask: Mask to specify which semaphore to acquire
3176 *
3177 *  Acquires the SWFW semaphore through the GSSR register for the specified
3178 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3179 **/
3180s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3181{
3182	u32 gssr = 0;
3183	u32 swmask = mask;
3184	u32 fwmask = mask << 5;
3185	u32 timeout = 200;
3186	u32 i;
3187
3188	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3189
3190	for (i = 0; i < timeout; i++) {
3191		/*
3192		 * SW NVM semaphore bit is used for access to all
3193		 * SW_FW_SYNC bits (not just NVM)
3194		 */
3195		if (ixgbe_get_eeprom_semaphore(hw))
3196			return IXGBE_ERR_SWFW_SYNC;
3197
3198		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3199		if (!(gssr & (fwmask | swmask))) {
3200			gssr |= swmask;
3201			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3202			ixgbe_release_eeprom_semaphore(hw);
3203			return IXGBE_SUCCESS;
3204		} else {
3205			/* Resource is currently in use by FW or SW */
3206			ixgbe_release_eeprom_semaphore(hw);
3207			msec_delay(5);
3208		}
3209	}
3210
3211	/* If time expired clear the bits holding the lock and retry */
3212	if (gssr & (fwmask | swmask))
3213		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3214
3215	msec_delay(5);
3216	return IXGBE_ERR_SWFW_SYNC;
3217}
3218
3219/**
3220 *  ixgbe_release_swfw_sync - Release SWFW semaphore
3221 *  @hw: pointer to hardware structure
3222 *  @mask: Mask to specify which semaphore to release
3223 *
3224 *  Releases the SWFW semaphore through the GSSR register for the specified
3225 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3226 **/
3227void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3228{
3229	u32 gssr;
3230	u32 swmask = mask;
3231
3232	DEBUGFUNC("ixgbe_release_swfw_sync");
3233
3234	ixgbe_get_eeprom_semaphore(hw);
3235
3236	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3237	gssr &= ~swmask;
3238	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3239
3240	ixgbe_release_eeprom_semaphore(hw);
3241}
3242
3243/**
3244 *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3245 *  @hw: pointer to hardware structure
3246 *
3247 *  Stops the receive data path and waits for the HW to internally empty
3248 *  the Rx security block
3249 **/
3250s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3251{
3252#define IXGBE_MAX_SECRX_POLL 40
3253
3254	int i;
3255	int secrxreg;
3256
3257	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3258
3259
3260	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3261	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3262	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3263	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3264		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3265		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3266			break;
3267		else
3268			/* Use interrupt-safe sleep just in case */
3269			usec_delay(1000);
3270	}
3271
3272	/* For informational purposes only */
3273	if (i >= IXGBE_MAX_SECRX_POLL)
3274		DEBUGOUT("Rx unit being enabled before security "
3275			 "path fully disabled.  Continuing with init.\n");
3276
3277	return IXGBE_SUCCESS;
3278}
3279
3280/**
3281 *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3282 *  @hw: pointer to hardware structure
3283 *  @reg_val: Value we read from AUTOC
3284 *
3285 *  The default case requires no protection so just to the register read.
3286 */
3287s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3288{
3289	*locked = FALSE;
3290	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3291	return IXGBE_SUCCESS;
3292}
3293
3294/**
3295 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3296 * @hw: pointer to hardware structure
3297 * @reg_val: value to write to AUTOC
3298 * @locked: bool to indicate whether the SW/FW lock was already taken by
3299 *           previous read.
3300 *
3301 * The default case requires no protection so just to the register write.
3302 */
3303s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3304{
3305	UNREFERENCED_1PARAMETER(locked);
3306
3307	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3308	return IXGBE_SUCCESS;
3309}
3310
3311/**
3312 *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3313 *  @hw: pointer to hardware structure
3314 *
3315 *  Enables the receive data path.
3316 **/
3317s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3318{
3319	int secrxreg;
3320
3321	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3322
3323	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3324	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3325	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3326	IXGBE_WRITE_FLUSH(hw);
3327
3328	return IXGBE_SUCCESS;
3329}
3330
3331/**
3332 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3333 *  @hw: pointer to hardware structure
3334 *  @regval: register value to write to RXCTRL
3335 *
3336 *  Enables the Rx DMA unit
3337 **/
3338s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3339{
3340	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3341
3342	if (regval & IXGBE_RXCTRL_RXEN)
3343		ixgbe_enable_rx(hw);
3344	else
3345		ixgbe_disable_rx(hw);
3346
3347	return IXGBE_SUCCESS;
3348}
3349
3350/**
3351 *  ixgbe_blink_led_start_generic - Blink LED based on index.
3352 *  @hw: pointer to hardware structure
3353 *  @index: led number to blink
3354 **/
3355s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3356{
3357	ixgbe_link_speed speed = 0;
3358	bool link_up = 0;
3359	u32 autoc_reg = 0;
3360	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3361	s32 ret_val = IXGBE_SUCCESS;
3362	bool locked = FALSE;
3363
3364	DEBUGFUNC("ixgbe_blink_led_start_generic");
3365
3366	/*
3367	 * Link must be up to auto-blink the LEDs;
3368	 * Force it if link is down.
3369	 */
3370	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3371
3372	if (!link_up) {
3373		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3374		if (ret_val != IXGBE_SUCCESS)
3375			goto out;
3376
3377		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3378		autoc_reg |= IXGBE_AUTOC_FLU;
3379
3380		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3381		if (ret_val != IXGBE_SUCCESS)
3382			goto out;
3383
3384		IXGBE_WRITE_FLUSH(hw);
3385		msec_delay(10);
3386	}
3387
3388	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3389	led_reg |= IXGBE_LED_BLINK(index);
3390	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3391	IXGBE_WRITE_FLUSH(hw);
3392
3393out:
3394	return ret_val;
3395}
3396
3397/**
3398 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3399 *  @hw: pointer to hardware structure
3400 *  @index: led number to stop blinking
3401 **/
3402s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3403{
3404	u32 autoc_reg = 0;
3405	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3406	s32 ret_val = IXGBE_SUCCESS;
3407	bool locked = FALSE;
3408
3409	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3410
3411	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3412	if (ret_val != IXGBE_SUCCESS)
3413		goto out;
3414
3415	autoc_reg &= ~IXGBE_AUTOC_FLU;
3416	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3417
3418	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3419	if (ret_val != IXGBE_SUCCESS)
3420		goto out;
3421
3422	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3423	led_reg &= ~IXGBE_LED_BLINK(index);
3424	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3425	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3426	IXGBE_WRITE_FLUSH(hw);
3427
3428out:
3429	return ret_val;
3430}
3431
3432/**
3433 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3434 *  @hw: pointer to hardware structure
3435 *  @san_mac_offset: SAN MAC address offset
3436 *
3437 *  This function will read the EEPROM location for the SAN MAC address
3438 *  pointer, and returns the value at that location.  This is used in both
3439 *  get and set mac_addr routines.
3440 **/
3441static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3442					 u16 *san_mac_offset)
3443{
3444	s32 ret_val;
3445
3446	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3447
3448	/*
3449	 * First read the EEPROM pointer to see if the MAC addresses are
3450	 * available.
3451	 */
3452	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3453				      san_mac_offset);
3454	if (ret_val) {
3455		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3456			      "eeprom at offset %d failed",
3457			      IXGBE_SAN_MAC_ADDR_PTR);
3458	}
3459
3460	return ret_val;
3461}
3462
3463/**
3464 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3465 *  @hw: pointer to hardware structure
3466 *  @san_mac_addr: SAN MAC address
3467 *
3468 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3469 *  per-port, so set_lan_id() must be called before reading the addresses.
3470 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3471 *  upon for non-SFP connections, so we must call it here.
3472 **/
3473s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3474{
3475	u16 san_mac_data, san_mac_offset;
3476	u8 i;
3477	s32 ret_val;
3478
3479	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3480
3481	/*
3482	 * First read the EEPROM pointer to see if the MAC addresses are
3483	 * available.  If they're not, no point in calling set_lan_id() here.
3484	 */
3485	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3486	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3487		goto san_mac_addr_out;
3488
3489	/* make sure we know which port we need to program */
3490	hw->mac.ops.set_lan_id(hw);
3491	/* apply the port offset to the address offset */
3492	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3493			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3494	for (i = 0; i < 3; i++) {
3495		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3496					      &san_mac_data);
3497		if (ret_val) {
3498			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3499				      "eeprom read at offset %d failed",
3500				      san_mac_offset);
3501			goto san_mac_addr_out;
3502		}
3503		san_mac_addr[i * 2] = (u8)(san_mac_data);
3504		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3505		san_mac_offset++;
3506	}
3507	return IXGBE_SUCCESS;
3508
3509san_mac_addr_out:
3510	/*
3511	 * No addresses available in this EEPROM.  It's not an
3512	 * error though, so just wipe the local address and return.
3513	 */
3514	for (i = 0; i < 6; i++)
3515		san_mac_addr[i] = 0xFF;
3516	return IXGBE_SUCCESS;
3517}
3518
3519/**
3520 *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3521 *  @hw: pointer to hardware structure
3522 *  @san_mac_addr: SAN MAC address
3523 *
3524 *  Write a SAN MAC address to the EEPROM.
3525 **/
3526s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3527{
3528	s32 ret_val;
3529	u16 san_mac_data, san_mac_offset;
3530	u8 i;
3531
3532	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3533
3534	/* Look for SAN mac address pointer.  If not defined, return */
3535	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3536	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3537		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3538
3539	/* Make sure we know which port we need to write */
3540	hw->mac.ops.set_lan_id(hw);
3541	/* Apply the port offset to the address offset */
3542	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3543			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3544
3545	for (i = 0; i < 3; i++) {
3546		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3547		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3548		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3549		san_mac_offset++;
3550	}
3551
3552	return IXGBE_SUCCESS;
3553}
3554
3555/**
3556 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3557 *  @hw: pointer to hardware structure
3558 *
3559 *  Read PCIe configuration space, and get the MSI-X vector count from
3560 *  the capabilities table.
3561 **/
3562u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3563{
3564	u16 msix_count = 1;
3565	u16 max_msix_count;
3566	u16 pcie_offset;
3567
3568	switch (hw->mac.type) {
3569	case ixgbe_mac_82598EB:
3570		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3571		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3572		break;
3573	case ixgbe_mac_82599EB:
3574	case ixgbe_mac_X540:
3575	case ixgbe_mac_X550:
3576	case ixgbe_mac_X550EM_x:
3577		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3578		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3579		break;
3580	default:
3581		return msix_count;
3582	}
3583
3584	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3585	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3586	if (IXGBE_REMOVED(hw->hw_addr))
3587		msix_count = 0;
3588	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3589
3590	/* MSI-X count is zero-based in HW */
3591	msix_count++;
3592
3593	if (msix_count > max_msix_count)
3594		msix_count = max_msix_count;
3595
3596	return msix_count;
3597}
3598
3599/**
3600 *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3601 *  @hw: pointer to hardware structure
3602 *  @addr: Address to put into receive address register
3603 *  @vmdq: VMDq pool to assign
3604 *
3605 *  Puts an ethernet address into a receive address register, or
3606 *  finds the rar that it is aleady in; adds to the pool list
3607 **/
3608s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3609{
3610	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3611	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3612	u32 rar;
3613	u32 rar_low, rar_high;
3614	u32 addr_low, addr_high;
3615
3616	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3617
3618	/* swap bytes for HW little endian */
3619	addr_low  = addr[0] | (addr[1] << 8)
3620			    | (addr[2] << 16)
3621			    | (addr[3] << 24);
3622	addr_high = addr[4] | (addr[5] << 8);
3623
3624	/*
3625	 * Either find the mac_id in rar or find the first empty space.
3626	 * rar_highwater points to just after the highest currently used
3627	 * rar in order to shorten the search.  It grows when we add a new
3628	 * rar to the top.
3629	 */
3630	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3631		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3632
3633		if (((IXGBE_RAH_AV & rar_high) == 0)
3634		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3635			first_empty_rar = rar;
3636		} else if ((rar_high & 0xFFFF) == addr_high) {
3637			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3638			if (rar_low == addr_low)
3639				break;    /* found it already in the rars */
3640		}
3641	}
3642
3643	if (rar < hw->mac.rar_highwater) {
3644		/* already there so just add to the pool bits */
3645		ixgbe_set_vmdq(hw, rar, vmdq);
3646	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3647		/* stick it into first empty RAR slot we found */
3648		rar = first_empty_rar;
3649		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3650	} else if (rar == hw->mac.rar_highwater) {
3651		/* add it to the top of the list and inc the highwater mark */
3652		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3653		hw->mac.rar_highwater++;
3654	} else if (rar >= hw->mac.num_rar_entries) {
3655		return IXGBE_ERR_INVALID_MAC_ADDR;
3656	}
3657
3658	/*
3659	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3660	 * remains cleared to be sure default pool packets will get delivered
3661	 */
3662	if (rar == 0)
3663		ixgbe_clear_vmdq(hw, rar, 0);
3664
3665	return rar;
3666}
3667
3668/**
3669 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3670 *  @hw: pointer to hardware struct
3671 *  @rar: receive address register index to disassociate
3672 *  @vmdq: VMDq pool index to remove from the rar
3673 **/
3674s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3675{
3676	u32 mpsar_lo, mpsar_hi;
3677	u32 rar_entries = hw->mac.num_rar_entries;
3678
3679	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3680
3681	/* Make sure we are using a valid rar index range */
3682	if (rar >= rar_entries) {
3683		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3684			     "RAR index %d is out of range.\n", rar);
3685		return IXGBE_ERR_INVALID_ARGUMENT;
3686	}
3687
3688	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3689	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3690
3691	if (IXGBE_REMOVED(hw->hw_addr))
3692		goto done;
3693
3694	if (!mpsar_lo && !mpsar_hi)
3695		goto done;
3696
3697	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3698		if (mpsar_lo) {
3699			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3700			mpsar_lo = 0;
3701		}
3702		if (mpsar_hi) {
3703			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3704			mpsar_hi = 0;
3705		}
3706	} else if (vmdq < 32) {
3707		mpsar_lo &= ~(1 << vmdq);
3708		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3709	} else {
3710		mpsar_hi &= ~(1 << (vmdq - 32));
3711		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3712	}
3713
3714	/* was that the last pool using this rar? */
3715	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3716		hw->mac.ops.clear_rar(hw, rar);
3717done:
3718	return IXGBE_SUCCESS;
3719}
3720
3721/**
3722 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3723 *  @hw: pointer to hardware struct
3724 *  @rar: receive address register index to associate with a VMDq index
3725 *  @vmdq: VMDq pool index
3726 **/
3727s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3728{
3729	u32 mpsar;
3730	u32 rar_entries = hw->mac.num_rar_entries;
3731
3732	DEBUGFUNC("ixgbe_set_vmdq_generic");
3733
3734	/* Make sure we are using a valid rar index range */
3735	if (rar >= rar_entries) {
3736		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3737			     "RAR index %d is out of range.\n", rar);
3738		return IXGBE_ERR_INVALID_ARGUMENT;
3739	}
3740
3741	if (vmdq < 32) {
3742		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3743		mpsar |= 1 << vmdq;
3744		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3745	} else {
3746		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3747		mpsar |= 1 << (vmdq - 32);
3748		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3749	}
3750	return IXGBE_SUCCESS;
3751}
3752
3753/**
3754 *  This function should only be involved in the IOV mode.
3755 *  In IOV mode, Default pool is next pool after the number of
3756 *  VFs advertized and not 0.
3757 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3758 *
3759 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3760 *  @hw: pointer to hardware struct
3761 *  @vmdq: VMDq pool index
3762 **/
3763s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3764{
3765	u32 rar = hw->mac.san_mac_rar_index;
3766
3767	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3768
3769	if (vmdq < 32) {
3770		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3771		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3772	} else {
3773		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3774		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3775	}
3776
3777	return IXGBE_SUCCESS;
3778}
3779
3780/**
3781 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3782 *  @hw: pointer to hardware structure
3783 **/
3784s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3785{
3786	int i;
3787
3788	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3789	DEBUGOUT(" Clearing UTA\n");
3790
3791	for (i = 0; i < 128; i++)
3792		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3793
3794	return IXGBE_SUCCESS;
3795}
3796
3797/**
3798 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3799 *  @hw: pointer to hardware structure
3800 *  @vlan: VLAN id to write to VLAN filter
3801 *
3802 *  return the VLVF index where this VLAN id should be placed
3803 *
3804 **/
3805s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3806{
3807	u32 bits = 0;
3808	u32 first_empty_slot = 0;
3809	s32 regindex;
3810
3811	/* short cut the special case */
3812	if (vlan == 0)
3813		return 0;
3814
3815	/*
3816	  * Search for the vlan id in the VLVF entries. Save off the first empty
3817	  * slot found along the way
3818	  */
3819	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3820		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3821		if (!bits && !(first_empty_slot))
3822			first_empty_slot = regindex;
3823		else if ((bits & 0x0FFF) == vlan)
3824			break;
3825	}
3826
3827	/*
3828	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3829	  * in the VLVF. Else use the first empty VLVF register for this
3830	  * vlan id.
3831	  */
3832	if (regindex >= IXGBE_VLVF_ENTRIES) {
3833		if (first_empty_slot)
3834			regindex = first_empty_slot;
3835		else {
3836			ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
3837				     "No space in VLVF.\n");
3838			regindex = IXGBE_ERR_NO_SPACE;
3839		}
3840	}
3841
3842	return regindex;
3843}
3844
3845/**
3846 *  ixgbe_set_vfta_generic - Set VLAN filter table
3847 *  @hw: pointer to hardware structure
3848 *  @vlan: VLAN id to write to VLAN filter
3849 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3850 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3851 *
3852 *  Turn on/off specified VLAN in the VLAN filter table.
3853 **/
3854s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3855			   bool vlan_on)
3856{
3857	s32 regindex;
3858	u32 bitindex;
3859	u32 vfta;
3860	u32 targetbit;
3861	s32 ret_val = IXGBE_SUCCESS;
3862	bool vfta_changed = FALSE;
3863
3864	DEBUGFUNC("ixgbe_set_vfta_generic");
3865
3866	if (vlan > 4095)
3867		return IXGBE_ERR_PARAM;
3868
3869	/*
3870	 * this is a 2 part operation - first the VFTA, then the
3871	 * VLVF and VLVFB if VT Mode is set
3872	 * We don't write the VFTA until we know the VLVF part succeeded.
3873	 */
3874
3875	/* Part 1
3876	 * The VFTA is a bitstring made up of 128 32-bit registers
3877	 * that enable the particular VLAN id, much like the MTA:
3878	 *    bits[11-5]: which register
3879	 *    bits[4-0]:  which bit in the register
3880	 */
3881	regindex = (vlan >> 5) & 0x7F;
3882	bitindex = vlan & 0x1F;
3883	targetbit = (1 << bitindex);
3884	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3885
3886	if (vlan_on) {
3887		if (!(vfta & targetbit)) {
3888			vfta |= targetbit;
3889			vfta_changed = TRUE;
3890		}
3891	} else {
3892		if ((vfta & targetbit)) {
3893			vfta &= ~targetbit;
3894			vfta_changed = TRUE;
3895		}
3896	}
3897
3898	/* Part 2
3899	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3900	 */
3901	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3902					 &vfta_changed);
3903	if (ret_val != IXGBE_SUCCESS)
3904		return ret_val;
3905
3906	if (vfta_changed)
3907		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3908
3909	return IXGBE_SUCCESS;
3910}
3911
3912/**
3913 *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3914 *  @hw: pointer to hardware structure
3915 *  @vlan: VLAN id to write to VLAN filter
3916 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3917 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3918 *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
3919 *                 should be changed
3920 *
3921 *  Turn on/off specified bit in VLVF table.
3922 **/
3923s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3924			    bool vlan_on, bool *vfta_changed)
3925{
3926	u32 vt;
3927
3928	DEBUGFUNC("ixgbe_set_vlvf_generic");
3929
3930	if (vlan > 4095)
3931		return IXGBE_ERR_PARAM;
3932
3933	/* If VT Mode is set
3934	 *   Either vlan_on
3935	 *     make sure the vlan is in VLVF
3936	 *     set the vind bit in the matching VLVFB
3937	 *   Or !vlan_on
3938	 *     clear the pool bit and possibly the vind
3939	 */
3940	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3941	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3942		s32 vlvf_index;
3943		u32 bits;
3944
3945		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3946		if (vlvf_index < 0)
3947			return vlvf_index;
3948
3949		if (vlan_on) {
3950			/* set the pool bit */
3951			if (vind < 32) {
3952				bits = IXGBE_READ_REG(hw,
3953						IXGBE_VLVFB(vlvf_index * 2));
3954				bits |= (1 << vind);
3955				IXGBE_WRITE_REG(hw,
3956						IXGBE_VLVFB(vlvf_index * 2),
3957						bits);
3958			} else {
3959				bits = IXGBE_READ_REG(hw,
3960					IXGBE_VLVFB((vlvf_index * 2) + 1));
3961				bits |= (1 << (vind - 32));
3962				IXGBE_WRITE_REG(hw,
3963					IXGBE_VLVFB((vlvf_index * 2) + 1),
3964					bits);
3965			}
3966		} else {
3967			/* clear the pool bit */
3968			if (vind < 32) {
3969				bits = IXGBE_READ_REG(hw,
3970						IXGBE_VLVFB(vlvf_index * 2));
3971				bits &= ~(1 << vind);
3972				IXGBE_WRITE_REG(hw,
3973						IXGBE_VLVFB(vlvf_index * 2),
3974						bits);
3975				bits |= IXGBE_READ_REG(hw,
3976					IXGBE_VLVFB((vlvf_index * 2) + 1));
3977			} else {
3978				bits = IXGBE_READ_REG(hw,
3979					IXGBE_VLVFB((vlvf_index * 2) + 1));
3980				bits &= ~(1 << (vind - 32));
3981				IXGBE_WRITE_REG(hw,
3982					IXGBE_VLVFB((vlvf_index * 2) + 1),
3983					bits);
3984				bits |= IXGBE_READ_REG(hw,
3985						IXGBE_VLVFB(vlvf_index * 2));
3986			}
3987		}
3988
3989		/*
3990		 * If there are still bits set in the VLVFB registers
3991		 * for the VLAN ID indicated we need to see if the
3992		 * caller is requesting that we clear the VFTA entry bit.
3993		 * If the caller has requested that we clear the VFTA
3994		 * entry bit but there are still pools/VFs using this VLAN
3995		 * ID entry then ignore the request.  We're not worried
3996		 * about the case where we're turning the VFTA VLAN ID
3997		 * entry bit on, only when requested to turn it off as
3998		 * there may be multiple pools and/or VFs using the
3999		 * VLAN ID entry.  In that case we cannot clear the
4000		 * VFTA bit until all pools/VFs using that VLAN ID have also
4001		 * been cleared.  This will be indicated by "bits" being
4002		 * zero.
4003		 */
4004		if (bits) {
4005			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
4006					(IXGBE_VLVF_VIEN | vlan));
4007			if ((!vlan_on) && (vfta_changed != NULL)) {
4008				/* someone wants to clear the vfta entry
4009				 * but some pools/VFs are still using it.
4010				 * Ignore it. */
4011				*vfta_changed = FALSE;
4012			}
4013		} else
4014			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4015	}
4016
4017	return IXGBE_SUCCESS;
4018}
4019
4020/**
4021 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
4022 *  @hw: pointer to hardware structure
4023 *
4024 *  Clears the VLAN filer table, and the VMDq index associated with the filter
4025 **/
4026s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4027{
4028	u32 offset;
4029
4030	DEBUGFUNC("ixgbe_clear_vfta_generic");
4031
4032	for (offset = 0; offset < hw->mac.vft_size; offset++)
4033		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4034
4035	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4036		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4037		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4038		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4039	}
4040
4041	return IXGBE_SUCCESS;
4042}
4043
4044/**
4045 *  ixgbe_check_mac_link_generic - Determine link and speed status
4046 *  @hw: pointer to hardware structure
4047 *  @speed: pointer to link speed
4048 *  @link_up: TRUE when link is up
4049 *  @link_up_wait_to_complete: bool used to wait for link up or not
4050 *
4051 *  Reads the links register to determine if link is up and the current speed
4052 **/
4053s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4054				 bool *link_up, bool link_up_wait_to_complete)
4055{
4056	u32 links_reg, links_orig;
4057	u32 i;
4058
4059	DEBUGFUNC("ixgbe_check_mac_link_generic");
4060
4061	/* clear the old state */
4062	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4063
4064	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4065
4066	if (links_orig != links_reg) {
4067		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4068			  links_orig, links_reg);
4069	}
4070
4071	if (link_up_wait_to_complete) {
4072		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
4073			if (links_reg & IXGBE_LINKS_UP) {
4074				*link_up = TRUE;
4075				break;
4076			} else {
4077				*link_up = FALSE;
4078			}
4079			msec_delay(100);
4080			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4081		}
4082	} else {
4083		if (links_reg & IXGBE_LINKS_UP)
4084			*link_up = TRUE;
4085		else
4086			*link_up = FALSE;
4087	}
4088
4089	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4090	case IXGBE_LINKS_SPEED_10G_82599:
4091		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4092		if (hw->mac.type >= ixgbe_mac_X550) {
4093			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4094				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4095		}
4096		break;
4097	case IXGBE_LINKS_SPEED_1G_82599:
4098		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4099		break;
4100	case IXGBE_LINKS_SPEED_100_82599:
4101		*speed = IXGBE_LINK_SPEED_100_FULL;
4102		if (hw->mac.type >= ixgbe_mac_X550) {
4103			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4104				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4105		}
4106		break;
4107	default:
4108		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4109	}
4110
4111	return IXGBE_SUCCESS;
4112}
4113
4114/**
4115 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4116 *  the EEPROM
4117 *  @hw: pointer to hardware structure
4118 *  @wwnn_prefix: the alternative WWNN prefix
4119 *  @wwpn_prefix: the alternative WWPN prefix
4120 *
4121 *  This function will read the EEPROM from the alternative SAN MAC address
4122 *  block to check the support for the alternative WWNN/WWPN prefix support.
4123 **/
4124s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4125				 u16 *wwpn_prefix)
4126{
4127	u16 offset, caps;
4128	u16 alt_san_mac_blk_offset;
4129
4130	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4131
4132	/* clear output first */
4133	*wwnn_prefix = 0xFFFF;
4134	*wwpn_prefix = 0xFFFF;
4135
4136	/* check if alternative SAN MAC is supported */
4137	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4138	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4139		goto wwn_prefix_err;
4140
4141	if ((alt_san_mac_blk_offset == 0) ||
4142	    (alt_san_mac_blk_offset == 0xFFFF))
4143		goto wwn_prefix_out;
4144
4145	/* check capability in alternative san mac address block */
4146	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4147	if (hw->eeprom.ops.read(hw, offset, &caps))
4148		goto wwn_prefix_err;
4149	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4150		goto wwn_prefix_out;
4151
4152	/* get the corresponding prefix for WWNN/WWPN */
4153	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4154	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4155		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4156			      "eeprom read at offset %d failed", offset);
4157	}
4158
4159	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4160	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4161		goto wwn_prefix_err;
4162
4163wwn_prefix_out:
4164	return IXGBE_SUCCESS;
4165
4166wwn_prefix_err:
4167	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4168		      "eeprom read at offset %d failed", offset);
4169	return IXGBE_SUCCESS;
4170}
4171
4172/**
4173 *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4174 *  @hw: pointer to hardware structure
4175 *  @bs: the fcoe boot status
4176 *
4177 *  This function will read the FCOE boot status from the iSCSI FCOE block
4178 **/
4179s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4180{
4181	u16 offset, caps, flags;
4182	s32 status;
4183
4184	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4185
4186	/* clear output first */
4187	*bs = ixgbe_fcoe_bootstatus_unavailable;
4188
4189	/* check if FCOE IBA block is present */
4190	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4191	status = hw->eeprom.ops.read(hw, offset, &caps);
4192	if (status != IXGBE_SUCCESS)
4193		goto out;
4194
4195	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4196		goto out;
4197
4198	/* check if iSCSI FCOE block is populated */
4199	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4200	if (status != IXGBE_SUCCESS)
4201		goto out;
4202
4203	if ((offset == 0) || (offset == 0xFFFF))
4204		goto out;
4205
4206	/* read fcoe flags in iSCSI FCOE block */
4207	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4208	status = hw->eeprom.ops.read(hw, offset, &flags);
4209	if (status != IXGBE_SUCCESS)
4210		goto out;
4211
4212	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4213		*bs = ixgbe_fcoe_bootstatus_enabled;
4214	else
4215		*bs = ixgbe_fcoe_bootstatus_disabled;
4216
4217out:
4218	return status;
4219}
4220
4221/**
4222 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4223 *  @hw: pointer to hardware structure
4224 *  @enable: enable or disable switch for anti-spoofing
4225 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
4226 *
4227 **/
4228void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
4229{
4230	int j;
4231	int pf_target_reg = pf >> 3;
4232	int pf_target_shift = pf % 8;
4233	u32 pfvfspoof = 0;
4234
4235	if (hw->mac.type == ixgbe_mac_82598EB)
4236		return;
4237
4238	if (enable)
4239		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
4240
4241	/*
4242	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
4243	 * MAC anti-spoof enables in each register array element.
4244	 */
4245	for (j = 0; j < pf_target_reg; j++)
4246		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4247
4248	/*
4249	 * The PF should be allowed to spoof so that it can support
4250	 * emulation mode NICs.  Do not set the bits assigned to the PF
4251	 */
4252	pfvfspoof &= (1 << pf_target_shift) - 1;
4253	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4254
4255	/*
4256	 * Remaining pools belong to the PF so they do not need to have
4257	 * anti-spoofing enabled.
4258	 */
4259	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4260		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4261}
4262
4263/**
4264 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4265 *  @hw: pointer to hardware structure
4266 *  @enable: enable or disable switch for VLAN anti-spoofing
4267 *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4268 *
4269 **/
4270void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4271{
4272	int vf_target_reg = vf >> 3;
4273	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4274	u32 pfvfspoof;
4275
4276	if (hw->mac.type == ixgbe_mac_82598EB)
4277		return;
4278
4279	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4280	if (enable)
4281		pfvfspoof |= (1 << vf_target_shift);
4282	else
4283		pfvfspoof &= ~(1 << vf_target_shift);
4284	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4285}
4286
4287/**
4288 *  ixgbe_get_device_caps_generic - Get additional device capabilities
4289 *  @hw: pointer to hardware structure
4290 *  @device_caps: the EEPROM word with the extra device capabilities
4291 *
4292 *  This function will read the EEPROM location for the device capabilities,
4293 *  and return the word through device_caps.
4294 **/
4295s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4296{
4297	DEBUGFUNC("ixgbe_get_device_caps_generic");
4298
4299	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4300
4301	return IXGBE_SUCCESS;
4302}
4303
4304/**
4305 *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4306 *  @hw: pointer to hardware structure
4307 *
4308 **/
4309void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4310{
4311	u32 regval;
4312	u32 i;
4313
4314	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4315
4316	/* Enable relaxed ordering */
4317	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4318		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4319		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4320		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4321	}
4322
4323	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4324		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4325		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4326			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4327		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4328	}
4329
4330}
4331
4332/**
4333 *  ixgbe_calculate_checksum - Calculate checksum for buffer
4334 *  @buffer: pointer to EEPROM
4335 *  @length: size of EEPROM to calculate a checksum for
4336 *  Calculates the checksum for some buffer on a specified length.  The
4337 *  checksum calculated is returned.
4338 **/
4339u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4340{
4341	u32 i;
4342	u8 sum = 0;
4343
4344	DEBUGFUNC("ixgbe_calculate_checksum");
4345
4346	if (!buffer)
4347		return 0;
4348
4349	for (i = 0; i < length; i++)
4350		sum += buffer[i];
4351
4352	return (u8) (0 - sum);
4353}
4354
4355/**
4356 *  ixgbe_host_interface_command - Issue command to manageability block
4357 *  @hw: pointer to the HW structure
4358 *  @buffer: contains the command to write and where the return status will
4359 *   be placed
4360 *  @length: length of buffer, must be multiple of 4 bytes
4361 *  @timeout: time in ms to wait for command completion
4362 *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4363 *   Needed because FW structures are big endian and decoding of
4364 *   these fields can be 8 bit or 16 bit based on command. Decoding
4365 *   is not easily understood without making a table of commands.
4366 *   So we will leave this up to the caller to read back the data
4367 *   in these cases.
4368 *
4369 *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
4370 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4371 **/
4372s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4373				 u32 length, u32 timeout, bool return_data)
4374{
4375	u32 hicr, i, bi, fwsts;
4376	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4377	u16 buf_len;
4378	u16 dword_len;
4379
4380	DEBUGFUNC("ixgbe_host_interface_command");
4381
4382	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4383		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4384		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4385	}
4386	/* Set bit 9 of FWSTS clearing FW reset indication */
4387	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4388	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4389
4390	/* Check that the host interface is enabled. */
4391	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4392	if ((hicr & IXGBE_HICR_EN) == 0) {
4393		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4394		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4395	}
4396
4397	/* Calculate length in DWORDs. We must be DWORD aligned */
4398	if ((length % (sizeof(u32))) != 0) {
4399		DEBUGOUT("Buffer length failure, not aligned to dword");
4400		return IXGBE_ERR_INVALID_ARGUMENT;
4401	}
4402
4403	dword_len = length >> 2;
4404
4405	/* The device driver writes the relevant command block
4406	 * into the ram area.
4407	 */
4408	for (i = 0; i < dword_len; i++)
4409		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4410				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4411
4412	/* Setting this bit tells the ARC that a new command is pending. */
4413	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4414
4415	for (i = 0; i < timeout; i++) {
4416		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4417		if (!(hicr & IXGBE_HICR_C))
4418			break;
4419		msec_delay(1);
4420	}
4421
4422	/* Check command completion */
4423	if ((timeout != 0 && i == timeout) ||
4424	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4425		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4426			     "Command has failed with no status valid.\n");
4427		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4428	}
4429
4430	if (!return_data)
4431		return 0;
4432
4433	/* Calculate length in DWORDs */
4434	dword_len = hdr_size >> 2;
4435
4436	/* first pull in the header so we know the buffer length */
4437	for (bi = 0; bi < dword_len; bi++) {
4438		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4439		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4440	}
4441
4442	/* If there is any thing in data position pull it in */
4443	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4444	if (buf_len == 0)
4445		return 0;
4446
4447	if (length < buf_len + hdr_size) {
4448		DEBUGOUT("Buffer not large enough for reply message.\n");
4449		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4450	}
4451
4452	/* Calculate length in DWORDs, add 3 for odd lengths */
4453	dword_len = (buf_len + 3) >> 2;
4454
4455	/* Pull in the rest of the buffer (bi is where we left off) */
4456	for (; bi <= dword_len; bi++) {
4457		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4458		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4459	}
4460
4461	return 0;
4462}
4463
4464/**
4465 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4466 *  @hw: pointer to the HW structure
4467 *  @maj: driver version major number
4468 *  @min: driver version minor number
4469 *  @build: driver version build number
4470 *  @sub: driver version sub build number
4471 *
4472 *  Sends driver version number to firmware through the manageability
4473 *  block.  On success return IXGBE_SUCCESS
4474 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4475 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4476 **/
4477s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4478				 u8 build, u8 sub)
4479{
4480	struct ixgbe_hic_drv_info fw_cmd;
4481	int i;
4482	s32 ret_val = IXGBE_SUCCESS;
4483
4484	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4485
4486	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4487	    != IXGBE_SUCCESS) {
4488		ret_val = IXGBE_ERR_SWFW_SYNC;
4489		goto out;
4490	}
4491
4492	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4493	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4494	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4495	fw_cmd.port_num = (u8)hw->bus.func;
4496	fw_cmd.ver_maj = maj;
4497	fw_cmd.ver_min = min;
4498	fw_cmd.ver_build = build;
4499	fw_cmd.ver_sub = sub;
4500	fw_cmd.hdr.checksum = 0;
4501	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4502				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4503	fw_cmd.pad = 0;
4504	fw_cmd.pad2 = 0;
4505
4506	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4507		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4508						       sizeof(fw_cmd),
4509						       IXGBE_HI_COMMAND_TIMEOUT,
4510						       TRUE);
4511		if (ret_val != IXGBE_SUCCESS)
4512			continue;
4513
4514		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4515		    FW_CEM_RESP_STATUS_SUCCESS)
4516			ret_val = IXGBE_SUCCESS;
4517		else
4518			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4519
4520		break;
4521	}
4522
4523	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4524out:
4525	return ret_val;
4526}
4527
4528/**
4529 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4530 * @hw: pointer to hardware structure
4531 * @num_pb: number of packet buffers to allocate
4532 * @headroom: reserve n KB of headroom
4533 * @strategy: packet buffer allocation strategy
4534 **/
4535void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4536			     int strategy)
4537{
4538	u32 pbsize = hw->mac.rx_pb_size;
4539	int i = 0;
4540	u32 rxpktsize, txpktsize, txpbthresh;
4541
4542	/* Reserve headroom */
4543	pbsize -= headroom;
4544
4545	if (!num_pb)
4546		num_pb = 1;
4547
4548	/* Divide remaining packet buffer space amongst the number of packet
4549	 * buffers requested using supplied strategy.
4550	 */
4551	switch (strategy) {
4552	case PBA_STRATEGY_WEIGHTED:
4553		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4554		 * buffer with 5/8 of the packet buffer space.
4555		 */
4556		rxpktsize = (pbsize * 5) / (num_pb * 4);
4557		pbsize -= rxpktsize * (num_pb / 2);
4558		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4559		for (; i < (num_pb / 2); i++)
4560			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4561		/* Fall through to configure remaining packet buffers */
4562	case PBA_STRATEGY_EQUAL:
4563		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4564		for (; i < num_pb; i++)
4565			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4566		break;
4567	default:
4568		break;
4569	}
4570
4571	/* Only support an equally distributed Tx packet buffer strategy. */
4572	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4573	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4574	for (i = 0; i < num_pb; i++) {
4575		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4576		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4577	}
4578
4579	/* Clear unused TCs, if any, to zero buffer size*/
4580	for (; i < IXGBE_MAX_PB; i++) {
4581		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4582		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4583		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4584	}
4585}
4586
4587/**
4588 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4589 * @hw: pointer to the hardware structure
4590 *
4591 * The 82599 and x540 MACs can experience issues if TX work is still pending
4592 * when a reset occurs.  This function prevents this by flushing the PCIe
4593 * buffers on the system.
4594 **/
4595void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4596{
4597	u32 gcr_ext, hlreg0, i, poll;
4598	u16 value;
4599
4600	/*
4601	 * If double reset is not requested then all transactions should
4602	 * already be clear and as such there is no work to do
4603	 */
4604	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4605		return;
4606
4607	/*
4608	 * Set loopback enable to prevent any transmits from being sent
4609	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4610	 * has already been cleared.
4611	 */
4612	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4613	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4614
4615	/* Wait for a last completion before clearing buffers */
4616	IXGBE_WRITE_FLUSH(hw);
4617	msec_delay(3);
4618
4619	/*
4620	 * Before proceeding, make sure that the PCIe block does not have
4621	 * transactions pending.
4622	 */
4623	poll = ixgbe_pcie_timeout_poll(hw);
4624	for (i = 0; i < poll; i++) {
4625		usec_delay(100);
4626		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4627		if (IXGBE_REMOVED(hw->hw_addr))
4628			goto out;
4629		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4630			goto out;
4631	}
4632
4633out:
4634	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4635	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4636	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4637			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4638
4639	/* Flush all writes and allow 20usec for all transactions to clear */
4640	IXGBE_WRITE_FLUSH(hw);
4641	usec_delay(20);
4642
4643	/* restore previous register values */
4644	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4645	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4646}
4647
4648
4649/**
4650 * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
4651 * @hw: pointer to hardware structure
4652 * @map: pointer to u8 arr for returning map
4653 *
4654 * Read the rtrup2tc HW register and resolve its content into map
4655 **/
4656void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
4657{
4658	u32 reg, i;
4659
4660	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
4661	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
4662		map[i] = IXGBE_RTRUP2TC_UP_MASK &
4663			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
4664	return;
4665}
4666
4667void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4668{
4669	u32 pfdtxgswc;
4670	u32 rxctrl;
4671
4672	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4673	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4674		if (hw->mac.type != ixgbe_mac_82598EB) {
4675			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4676			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4677				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4678				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4679				hw->mac.set_lben = TRUE;
4680			} else {
4681				hw->mac.set_lben = FALSE;
4682			}
4683		}
4684		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4685		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4686	}
4687}
4688
4689void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4690{
4691	u32 pfdtxgswc;
4692	u32 rxctrl;
4693
4694	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4695	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4696
4697	if (hw->mac.type != ixgbe_mac_82598EB) {
4698		if (hw->mac.set_lben) {
4699			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4700			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4701			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4702			hw->mac.set_lben = FALSE;
4703		}
4704	}
4705}
4706
4707/**
4708 * ixgbe_mng_present - returns TRUE when management capability is present
4709 * @hw: pointer to hardware structure
4710 */
4711bool ixgbe_mng_present(struct ixgbe_hw *hw)
4712{
4713	u32 fwsm;
4714
4715	if (hw->mac.type < ixgbe_mac_82599EB)
4716		return FALSE;
4717
4718	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM);
4719	fwsm &= IXGBE_FWSM_MODE_MASK;
4720	return fwsm == IXGBE_FWSM_FW_MODE_PT;
4721}
4722
4723/**
4724 * ixgbe_mng_enabled - Is the manageability engine enabled?
4725 * @hw: pointer to hardware structure
4726 *
4727 * Returns TRUE if the manageability engine is enabled.
4728 **/
4729bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
4730{
4731	u32 fwsm, manc, factps;
4732
4733	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM);
4734	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
4735		return FALSE;
4736
4737	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
4738	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
4739		return FALSE;
4740
4741	if (hw->mac.type <= ixgbe_mac_X540) {
4742		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS);
4743		if (factps & IXGBE_FACTPS_MNGCG)
4744			return FALSE;
4745	}
4746
4747	return TRUE;
4748}
4749
4750/**
4751 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4752 *  @hw: pointer to hardware structure
4753 *  @speed: new link speed
4754 *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
4755 *
4756 *  Set the link speed in the MAC and/or PHY register and restarts link.
4757 **/
4758s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4759					  ixgbe_link_speed speed,
4760					  bool autoneg_wait_to_complete)
4761{
4762	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4763	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4764	s32 status = IXGBE_SUCCESS;
4765	u32 speedcnt = 0;
4766	u32 i = 0;
4767	bool autoneg, link_up = FALSE;
4768
4769	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
4770
4771	/* Mask off requested but non-supported speeds */
4772	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
4773	if (status != IXGBE_SUCCESS)
4774		return status;
4775
4776	speed &= link_speed;
4777
4778	/* Try each speed one by one, highest priority first.  We do this in
4779	 * software because 10Gb fiber doesn't support speed autonegotiation.
4780	 */
4781	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4782		speedcnt++;
4783		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4784
4785		/* If we already have link at this speed, just jump out */
4786		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4787		if (status != IXGBE_SUCCESS)
4788			return status;
4789
4790		if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
4791			goto out;
4792
4793		/* Set the module link speed */
4794		switch (hw->phy.media_type) {
4795		case ixgbe_media_type_fiber_fixed:
4796		case ixgbe_media_type_fiber:
4797			ixgbe_set_rate_select_speed(hw,
4798						    IXGBE_LINK_SPEED_10GB_FULL);
4799			break;
4800		case ixgbe_media_type_fiber_qsfp:
4801			/* QSFP module automatically detects MAC link speed */
4802			break;
4803		default:
4804			DEBUGOUT("Unexpected media type.\n");
4805			break;
4806		}
4807
4808		/* Allow module to change analog characteristics (1G->10G) */
4809		msec_delay(40);
4810
4811		status = ixgbe_setup_mac_link(hw,
4812					      IXGBE_LINK_SPEED_10GB_FULL,
4813					      autoneg_wait_to_complete);
4814		if (status != IXGBE_SUCCESS)
4815			return status;
4816
4817		/* Flap the Tx laser if it has not already been done */
4818		ixgbe_flap_tx_laser(hw);
4819
4820		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4821		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4822		 * attempted.  82599 uses the same timing for 10g SFI.
4823		 */
4824		for (i = 0; i < 5; i++) {
4825			/* Wait for the link partner to also set speed */
4826			msec_delay(100);
4827
4828			/* If we have link, just jump out */
4829			status = ixgbe_check_link(hw, &link_speed,
4830						  &link_up, FALSE);
4831			if (status != IXGBE_SUCCESS)
4832				return status;
4833
4834			if (link_up)
4835				goto out;
4836		}
4837	}
4838
4839	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4840		speedcnt++;
4841		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4842			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4843
4844		/* If we already have link at this speed, just jump out */
4845		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4846		if (status != IXGBE_SUCCESS)
4847			return status;
4848
4849		if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
4850			goto out;
4851
4852		/* Set the module link speed */
4853		switch (hw->phy.media_type) {
4854		case ixgbe_media_type_fiber_fixed:
4855		case ixgbe_media_type_fiber:
4856			ixgbe_set_rate_select_speed(hw,
4857						    IXGBE_LINK_SPEED_1GB_FULL);
4858			break;
4859		case ixgbe_media_type_fiber_qsfp:
4860			/* QSFP module automatically detects link speed */
4861			break;
4862		default:
4863			DEBUGOUT("Unexpected media type.\n");
4864			break;
4865		}
4866
4867		/* Allow module to change analog characteristics (10G->1G) */
4868		msec_delay(40);
4869
4870		status = ixgbe_setup_mac_link(hw,
4871					      IXGBE_LINK_SPEED_1GB_FULL,
4872					      autoneg_wait_to_complete);
4873		if (status != IXGBE_SUCCESS)
4874			return status;
4875
4876		/* Flap the Tx laser if it has not already been done */
4877		ixgbe_flap_tx_laser(hw);
4878
4879		/* Wait for the link partner to also set speed */
4880		msec_delay(100);
4881
4882		/* If we have link, just jump out */
4883		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4884		if (status != IXGBE_SUCCESS)
4885			return status;
4886
4887		if (link_up)
4888			goto out;
4889	}
4890
4891	/* We didn't get link.  Configure back to the highest speed we tried,
4892	 * (if there was more than one).  We call ourselves back with just the
4893	 * single highest speed that the user requested.
4894	 */
4895	if (speedcnt > 1)
4896		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4897						      highest_link_speed,
4898						      autoneg_wait_to_complete);
4899
4900out:
4901	/* Set autoneg_advertised value based on input link speed */
4902	hw->phy.autoneg_advertised = 0;
4903
4904	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4905		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4906
4907	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4908		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4909
4910	return status;
4911}
4912
4913/**
4914 *  ixgbe_set_soft_rate_select_speed - Set module link speed
4915 *  @hw: pointer to hardware structure
4916 *  @speed: link speed to set
4917 *
4918 *  Set module link speed via the soft rate select.
4919 */
4920void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4921					ixgbe_link_speed speed)
4922{
4923	s32 status;
4924	u8 rs, eeprom_data;
4925
4926	switch (speed) {
4927	case IXGBE_LINK_SPEED_10GB_FULL:
4928		/* one bit mask same as setting on */
4929		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4930		break;
4931	case IXGBE_LINK_SPEED_1GB_FULL:
4932		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4933		break;
4934	default:
4935		DEBUGOUT("Invalid fixed module speed\n");
4936		return;
4937	}
4938
4939	/* Set RS0 */
4940	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4941					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4942					   &eeprom_data);
4943	if (status) {
4944		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
4945		goto out;
4946	}
4947
4948	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4949
4950	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4951					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4952					    eeprom_data);
4953	if (status) {
4954		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
4955		goto out;
4956	}
4957
4958	/* Set RS1 */
4959	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4960					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4961					   &eeprom_data);
4962	if (status) {
4963		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
4964		goto out;
4965	}
4966
4967	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4968
4969	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4970					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4971					    eeprom_data);
4972	if (status) {
4973		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
4974		goto out;
4975	}
4976out:
4977	return;
4978}
4979