if_dc.c revision 218786
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/dc/if_dc.c 218786 2011-02-18 01:56:25Z yongari $");
35
36/*
37 * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38 * series chips and several workalikes including the following:
39 *
40 * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41 * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42 * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43 * ASIX Electronics AX88140A (www.asix.com.tw)
44 * ASIX Electronics AX88141 (www.asix.com.tw)
45 * ADMtek AL981 (www.admtek.com.tw)
46 * ADMtek AN983 (www.admtek.com.tw)
47 * ADMtek CardBus AN985 (www.admtek.com.tw)
48 * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek CardBus AN985
49 * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
50 * Accton EN1217 (www.accton.com)
51 * Xircom X3201 (www.xircom.com)
52 * Abocom FE2500
53 * Conexant LANfinity (www.conexant.com)
54 * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
55 *
56 * Datasheets for the 21143 are available at developer.intel.com.
57 * Datasheets for the clone parts can be found at their respective sites.
58 * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
59 * The PNIC II is essentially a Macronix 98715A chip; the only difference
60 * worth noting is that its multicast hash table is only 128 bits wide
61 * instead of 512.
62 *
63 * Written by Bill Paul <wpaul@ee.columbia.edu>
64 * Electrical Engineering Department
65 * Columbia University, New York City
66 */
67/*
68 * The Intel 21143 is the successor to the DEC 21140. It is basically
69 * the same as the 21140 but with a few new features. The 21143 supports
70 * three kinds of media attachments:
71 *
72 * o MII port, for 10Mbps and 100Mbps support and NWAY
73 *   autonegotiation provided by an external PHY.
74 * o SYM port, for symbol mode 100Mbps support.
75 * o 10baseT port.
76 * o AUI/BNC port.
77 *
78 * The 100Mbps SYM port and 10baseT port can be used together in
79 * combination with the internal NWAY support to create a 10/100
80 * autosensing configuration.
81 *
82 * Note that not all tulip workalikes are handled in this driver: we only
83 * deal with those which are relatively well behaved. The Winbond is
84 * handled separately due to its different register offsets and the
85 * special handling needed for its various bugs. The PNIC is handled
86 * here, but I'm not thrilled about it.
87 *
88 * All of the workalike chips use some form of MII transceiver support
89 * with the exception of the Macronix chips, which also have a SYM port.
90 * The ASIX AX88140A is also documented to have a SYM port, but all
91 * the cards I've seen use an MII transceiver, probably because the
92 * AX88140A doesn't support internal NWAY.
93 */
94
95#ifdef HAVE_KERNEL_OPTION_HEADERS
96#include "opt_device_polling.h"
97#endif
98
99#include <sys/param.h>
100#include <sys/endian.h>
101#include <sys/systm.h>
102#include <sys/sockio.h>
103#include <sys/mbuf.h>
104#include <sys/malloc.h>
105#include <sys/kernel.h>
106#include <sys/module.h>
107#include <sys/socket.h>
108
109#include <net/if.h>
110#include <net/if_arp.h>
111#include <net/ethernet.h>
112#include <net/if_dl.h>
113#include <net/if_media.h>
114#include <net/if_types.h>
115#include <net/if_vlan_var.h>
116
117#include <net/bpf.h>
118
119#include <machine/bus.h>
120#include <machine/resource.h>
121#include <sys/bus.h>
122#include <sys/rman.h>
123
124#include <dev/mii/mii.h>
125#include <dev/mii/miivar.h>
126
127#include <dev/pci/pcireg.h>
128#include <dev/pci/pcivar.h>
129
130#define DC_USEIOSPACE
131
132#include <dev/dc/if_dcreg.h>
133
134#ifdef __sparc64__
135#include <dev/ofw/openfirm.h>
136#include <machine/ofw_machdep.h>
137#endif
138
139MODULE_DEPEND(dc, pci, 1, 1, 1);
140MODULE_DEPEND(dc, ether, 1, 1, 1);
141MODULE_DEPEND(dc, miibus, 1, 1, 1);
142
143/*
144 * "device miibus" is required in kernel config.  See GENERIC if you get
145 * errors here.
146 */
147#include "miibus_if.h"
148
149/*
150 * Various supported device vendors/types and their names.
151 */
152static const struct dc_type dc_devs[] = {
153	{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
154		"Intel 21143 10/100BaseTX" },
155	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
156		"Davicom DM9009 10/100BaseTX" },
157	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
158		"Davicom DM9100 10/100BaseTX" },
159	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
160		"Davicom DM9102A 10/100BaseTX" },
161	{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
162		"Davicom DM9102 10/100BaseTX" },
163	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
164		"ADMtek AL981 10/100BaseTX" },
165	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983), 0,
166		"ADMtek AN983 10/100BaseTX" },
167	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
168		"ADMtek AN985 CardBus 10/100BaseTX or clone" },
169	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
170		"ADMtek ADM9511 10/100BaseTX" },
171	{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
172		"ADMtek ADM9513 10/100BaseTX" },
173	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
174		"ASIX AX88141 10/100BaseTX" },
175	{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
176		"ASIX AX88140A 10/100BaseTX" },
177	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
178		"Macronix 98713A 10/100BaseTX" },
179	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
180		"Macronix 98713 10/100BaseTX" },
181	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
182		"Compex RL100-TX 10/100BaseTX" },
183	{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
184		"Compex RL100-TX 10/100BaseTX" },
185	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
186		"Macronix 98725 10/100BaseTX" },
187	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
188		"Macronix 98715AEC-C 10/100BaseTX" },
189	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
190		"Macronix 98715/98715A 10/100BaseTX" },
191	{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
192		"Macronix 98727/98732 10/100BaseTX" },
193	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
194		"LC82C115 PNIC II 10/100BaseTX" },
195	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
196		"82c169 PNIC 10/100BaseTX" },
197	{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
198		"82c168 PNIC 10/100BaseTX" },
199	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
200		"Accton EN1217 10/100BaseTX" },
201	{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
202		"Accton EN2242 MiniPCI 10/100BaseTX" },
203	{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
204		"Xircom X3201 10/100BaseTX" },
205	{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
206		"Neteasy DRP-32TXD Cardbus 10/100" },
207	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
208		"Abocom FE2500 10/100BaseTX" },
209	{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
210		"Abocom FE2500MX 10/100BaseTX" },
211	{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
212		"Conexant LANfinity MiniPCI 10/100BaseTX" },
213	{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
214		"Hawking CB102 CardBus 10/100" },
215	{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
216		"PlaneX FNW-3602-T CardBus 10/100" },
217	{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
218		"3Com OfficeConnect 10/100B" },
219	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
220		"Microsoft MN-120 CardBus 10/100" },
221	{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
222		"Microsoft MN-130 10/100" },
223	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
224		"Linksys PCMPC200 CardBus 10/100" },
225	{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
226		"Linksys PCMPC200 CardBus 10/100" },
227	{ 0, 0, NULL }
228};
229
230static int dc_probe(device_t);
231static int dc_attach(device_t);
232static int dc_detach(device_t);
233static int dc_suspend(device_t);
234static int dc_resume(device_t);
235static const struct dc_type *dc_devtype(device_t);
236static int dc_newbuf(struct dc_softc *, int, int);
237static int dc_encap(struct dc_softc *, struct mbuf **);
238static void dc_pnic_rx_bug_war(struct dc_softc *, int);
239static int dc_rx_resync(struct dc_softc *);
240static int dc_rxeof(struct dc_softc *);
241static void dc_txeof(struct dc_softc *);
242static void dc_tick(void *);
243static void dc_tx_underrun(struct dc_softc *);
244static void dc_intr(void *);
245static void dc_start(struct ifnet *);
246static void dc_start_locked(struct ifnet *);
247static int dc_ioctl(struct ifnet *, u_long, caddr_t);
248static void dc_init(void *);
249static void dc_init_locked(struct dc_softc *);
250static void dc_stop(struct dc_softc *);
251static void dc_watchdog(void *);
252static int dc_shutdown(device_t);
253static int dc_ifmedia_upd(struct ifnet *);
254static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
255
256static void dc_delay(struct dc_softc *);
257static void dc_eeprom_idle(struct dc_softc *);
258static void dc_eeprom_putbyte(struct dc_softc *, int);
259static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
260static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
261static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
262static void dc_eeprom_width(struct dc_softc *);
263static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
264
265static void dc_mii_writebit(struct dc_softc *, int);
266static int dc_mii_readbit(struct dc_softc *);
267static void dc_mii_sync(struct dc_softc *);
268static void dc_mii_send(struct dc_softc *, u_int32_t, int);
269static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
270static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
271static int dc_miibus_readreg(device_t, int, int);
272static int dc_miibus_writereg(device_t, int, int, int);
273static void dc_miibus_statchg(device_t);
274static void dc_miibus_mediainit(device_t);
275
276static void dc_setcfg(struct dc_softc *, int);
277static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
278static uint32_t dc_mchash_be(const uint8_t *);
279static void dc_setfilt_21143(struct dc_softc *);
280static void dc_setfilt_asix(struct dc_softc *);
281static void dc_setfilt_admtek(struct dc_softc *);
282static void dc_setfilt_xircom(struct dc_softc *);
283
284static void dc_setfilt(struct dc_softc *);
285
286static void dc_reset(struct dc_softc *);
287static int dc_list_rx_init(struct dc_softc *);
288static int dc_list_tx_init(struct dc_softc *);
289
290static int dc_read_srom(struct dc_softc *, int);
291static int dc_parse_21143_srom(struct dc_softc *);
292static int dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
293static int dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
294static int dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
295static void dc_apply_fixup(struct dc_softc *, int);
296static int dc_check_multiport(struct dc_softc *);
297
298#ifdef DC_USEIOSPACE
299#define DC_RES			SYS_RES_IOPORT
300#define DC_RID			DC_PCI_CFBIO
301#else
302#define DC_RES			SYS_RES_MEMORY
303#define DC_RID			DC_PCI_CFBMA
304#endif
305
306static device_method_t dc_methods[] = {
307	/* Device interface */
308	DEVMETHOD(device_probe,		dc_probe),
309	DEVMETHOD(device_attach,	dc_attach),
310	DEVMETHOD(device_detach,	dc_detach),
311	DEVMETHOD(device_suspend,	dc_suspend),
312	DEVMETHOD(device_resume,	dc_resume),
313	DEVMETHOD(device_shutdown,	dc_shutdown),
314
315	/* bus interface */
316	DEVMETHOD(bus_print_child,	bus_generic_print_child),
317	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
318
319	/* MII interface */
320	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
321	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
322	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
323	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
324
325	{ 0, 0 }
326};
327
328static driver_t dc_driver = {
329	"dc",
330	dc_methods,
331	sizeof(struct dc_softc)
332};
333
334static devclass_t dc_devclass;
335
336DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
337DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
338
339#define DC_SETBIT(sc, reg, x)				\
340	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
341
342#define DC_CLRBIT(sc, reg, x)				\
343	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
344
345#define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
346#define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
347
348static void
349dc_delay(struct dc_softc *sc)
350{
351	int idx;
352
353	for (idx = (300 / 33) + 1; idx > 0; idx--)
354		CSR_READ_4(sc, DC_BUSCTL);
355}
356
357static void
358dc_eeprom_width(struct dc_softc *sc)
359{
360	int i;
361
362	/* Force EEPROM to idle state. */
363	dc_eeprom_idle(sc);
364
365	/* Enter EEPROM access mode. */
366	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
367	dc_delay(sc);
368	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
369	dc_delay(sc);
370	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
371	dc_delay(sc);
372	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
373	dc_delay(sc);
374
375	for (i = 3; i--;) {
376		if (6 & (1 << i))
377			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
378		else
379			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
380		dc_delay(sc);
381		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
382		dc_delay(sc);
383		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
384		dc_delay(sc);
385	}
386
387	for (i = 1; i <= 12; i++) {
388		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
389		dc_delay(sc);
390		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
391			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
392			dc_delay(sc);
393			break;
394		}
395		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
396		dc_delay(sc);
397	}
398
399	/* Turn off EEPROM access mode. */
400	dc_eeprom_idle(sc);
401
402	if (i < 4 || i > 12)
403		sc->dc_romwidth = 6;
404	else
405		sc->dc_romwidth = i;
406
407	/* Enter EEPROM access mode. */
408	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
409	dc_delay(sc);
410	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
411	dc_delay(sc);
412	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
413	dc_delay(sc);
414	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
415	dc_delay(sc);
416
417	/* Turn off EEPROM access mode. */
418	dc_eeprom_idle(sc);
419}
420
421static void
422dc_eeprom_idle(struct dc_softc *sc)
423{
424	int i;
425
426	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
427	dc_delay(sc);
428	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
429	dc_delay(sc);
430	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
431	dc_delay(sc);
432	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
433	dc_delay(sc);
434
435	for (i = 0; i < 25; i++) {
436		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
437		dc_delay(sc);
438		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
439		dc_delay(sc);
440	}
441
442	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
443	dc_delay(sc);
444	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
445	dc_delay(sc);
446	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
447}
448
449/*
450 * Send a read command and address to the EEPROM, check for ACK.
451 */
452static void
453dc_eeprom_putbyte(struct dc_softc *sc, int addr)
454{
455	int d, i;
456
457	d = DC_EECMD_READ >> 6;
458	for (i = 3; i--; ) {
459		if (d & (1 << i))
460			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
461		else
462			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
463		dc_delay(sc);
464		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
465		dc_delay(sc);
466		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
467		dc_delay(sc);
468	}
469
470	/*
471	 * Feed in each bit and strobe the clock.
472	 */
473	for (i = sc->dc_romwidth; i--;) {
474		if (addr & (1 << i)) {
475			SIO_SET(DC_SIO_EE_DATAIN);
476		} else {
477			SIO_CLR(DC_SIO_EE_DATAIN);
478		}
479		dc_delay(sc);
480		SIO_SET(DC_SIO_EE_CLK);
481		dc_delay(sc);
482		SIO_CLR(DC_SIO_EE_CLK);
483		dc_delay(sc);
484	}
485}
486
487/*
488 * Read a word of data stored in the EEPROM at address 'addr.'
489 * The PNIC 82c168/82c169 has its own non-standard way to read
490 * the EEPROM.
491 */
492static void
493dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
494{
495	int i;
496	u_int32_t r;
497
498	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
499
500	for (i = 0; i < DC_TIMEOUT; i++) {
501		DELAY(1);
502		r = CSR_READ_4(sc, DC_SIO);
503		if (!(r & DC_PN_SIOCTL_BUSY)) {
504			*dest = (u_int16_t)(r & 0xFFFF);
505			return;
506		}
507	}
508}
509
510/*
511 * Read a word of data stored in the EEPROM at address 'addr.'
512 * The Xircom X3201 has its own non-standard way to read
513 * the EEPROM, too.
514 */
515static void
516dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
517{
518
519	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
520
521	addr *= 2;
522	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
523	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
524	addr += 1;
525	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
526	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
527
528	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
529}
530
531/*
532 * Read a word of data stored in the EEPROM at address 'addr.'
533 */
534static void
535dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
536{
537	int i;
538	u_int16_t word = 0;
539
540	/* Force EEPROM to idle state. */
541	dc_eeprom_idle(sc);
542
543	/* Enter EEPROM access mode. */
544	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
545	dc_delay(sc);
546	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
547	dc_delay(sc);
548	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
549	dc_delay(sc);
550	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
551	dc_delay(sc);
552
553	/*
554	 * Send address of word we want to read.
555	 */
556	dc_eeprom_putbyte(sc, addr);
557
558	/*
559	 * Start reading bits from EEPROM.
560	 */
561	for (i = 0x8000; i; i >>= 1) {
562		SIO_SET(DC_SIO_EE_CLK);
563		dc_delay(sc);
564		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
565			word |= i;
566		dc_delay(sc);
567		SIO_CLR(DC_SIO_EE_CLK);
568		dc_delay(sc);
569	}
570
571	/* Turn off EEPROM access mode. */
572	dc_eeprom_idle(sc);
573
574	*dest = word;
575}
576
577/*
578 * Read a sequence of words from the EEPROM.
579 */
580static void
581dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
582{
583	int i;
584	u_int16_t word = 0, *ptr;
585
586	for (i = 0; i < cnt; i++) {
587		if (DC_IS_PNIC(sc))
588			dc_eeprom_getword_pnic(sc, off + i, &word);
589		else if (DC_IS_XIRCOM(sc))
590			dc_eeprom_getword_xircom(sc, off + i, &word);
591		else
592			dc_eeprom_getword(sc, off + i, &word);
593		ptr = (u_int16_t *)(dest + (i * 2));
594		if (be)
595			*ptr = be16toh(word);
596		else
597			*ptr = le16toh(word);
598	}
599}
600
601/*
602 * The following two routines are taken from the Macronix 98713
603 * Application Notes pp.19-21.
604 */
605/*
606 * Write a bit to the MII bus.
607 */
608static void
609dc_mii_writebit(struct dc_softc *sc, int bit)
610{
611	uint32_t reg;
612
613	reg = DC_SIO_ROMCTL_WRITE | (bit != 0 ? DC_SIO_MII_DATAOUT : 0);
614	CSR_WRITE_4(sc, DC_SIO, reg);
615	CSR_BARRIER_4(sc, DC_SIO,
616	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
617	DELAY(1);
618
619	CSR_WRITE_4(sc, DC_SIO, reg | DC_SIO_MII_CLK);
620	CSR_BARRIER_4(sc, DC_SIO,
621	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
622	DELAY(1);
623	CSR_WRITE_4(sc, DC_SIO, reg);
624	CSR_BARRIER_4(sc, DC_SIO,
625	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
626	DELAY(1);
627}
628
629/*
630 * Read a bit from the MII bus.
631 */
632static int
633dc_mii_readbit(struct dc_softc *sc)
634{
635	uint32_t reg;
636
637	reg = DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR;
638	CSR_WRITE_4(sc, DC_SIO, reg);
639	CSR_BARRIER_4(sc, DC_SIO,
640	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
641	DELAY(1);
642	(void)CSR_READ_4(sc, DC_SIO);
643	CSR_WRITE_4(sc, DC_SIO, reg | DC_SIO_MII_CLK);
644	CSR_BARRIER_4(sc, DC_SIO,
645	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
646	DELAY(1);
647	CSR_WRITE_4(sc, DC_SIO, reg);
648	CSR_BARRIER_4(sc, DC_SIO,
649	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
650	DELAY(1);
651	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
652		return (1);
653
654	return (0);
655}
656
657/*
658 * Sync the PHYs by setting data bit and strobing the clock 32 times.
659 */
660static void
661dc_mii_sync(struct dc_softc *sc)
662{
663	int i;
664
665	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
666	CSR_BARRIER_4(sc, DC_SIO,
667	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
668	DELAY(1);
669
670	for (i = 0; i < 32; i++)
671		dc_mii_writebit(sc, 1);
672}
673
674/*
675 * Clock a series of bits through the MII.
676 */
677static void
678dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
679{
680	int i;
681
682	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
683		dc_mii_writebit(sc, bits & i);
684}
685
686/*
687 * Read an PHY register through the MII.
688 */
689static int
690dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
691{
692	int i;
693
694	/*
695	 * Set up frame for RX.
696	 */
697	frame->mii_stdelim = DC_MII_STARTDELIM;
698	frame->mii_opcode = DC_MII_READOP;
699
700	/*
701	 * Sync the PHYs.
702	 */
703	dc_mii_sync(sc);
704
705	/*
706	 * Send command/address info.
707	 */
708	dc_mii_send(sc, frame->mii_stdelim, 2);
709	dc_mii_send(sc, frame->mii_opcode, 2);
710	dc_mii_send(sc, frame->mii_phyaddr, 5);
711	dc_mii_send(sc, frame->mii_regaddr, 5);
712
713	/*
714	 * Now try reading data bits.  If the turnaround failed, we still
715	 * need to clock through 16 cycles to keep the PHY(s) in sync.
716	 */
717	frame->mii_turnaround = dc_mii_readbit(sc);
718	if (frame->mii_turnaround != 0) {
719		for (i = 0; i < 16; i++)
720			dc_mii_readbit(sc);
721		goto fail;
722	}
723	for (i = 0x8000; i; i >>= 1) {
724		if (dc_mii_readbit(sc))
725			frame->mii_data |= i;
726	}
727
728fail:
729
730	/* Clock the idle bits. */
731	dc_mii_writebit(sc, 0);
732	dc_mii_writebit(sc, 0);
733
734	if (frame->mii_turnaround != 0)
735		return (1);
736	return (0);
737}
738
739/*
740 * Write to a PHY register through the MII.
741 */
742static int
743dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
744{
745
746	/*
747	 * Set up frame for TX.
748	 */
749	frame->mii_stdelim = DC_MII_STARTDELIM;
750	frame->mii_opcode = DC_MII_WRITEOP;
751	frame->mii_turnaround = DC_MII_TURNAROUND;
752
753	/*
754	 * Sync the PHYs.
755	 */
756	dc_mii_sync(sc);
757
758	dc_mii_send(sc, frame->mii_stdelim, 2);
759	dc_mii_send(sc, frame->mii_opcode, 2);
760	dc_mii_send(sc, frame->mii_phyaddr, 5);
761	dc_mii_send(sc, frame->mii_regaddr, 5);
762	dc_mii_send(sc, frame->mii_turnaround, 2);
763	dc_mii_send(sc, frame->mii_data, 16);
764
765	/* Clock the idle bits. */
766	dc_mii_writebit(sc, 0);
767	dc_mii_writebit(sc, 0);
768
769	return (0);
770}
771
772static int
773dc_miibus_readreg(device_t dev, int phy, int reg)
774{
775	struct dc_mii_frame frame;
776	struct dc_softc	 *sc;
777	int i, rval, phy_reg = 0;
778
779	sc = device_get_softc(dev);
780	bzero(&frame, sizeof(frame));
781
782	if (sc->dc_pmode != DC_PMODE_MII) {
783		if (phy == (MII_NPHY - 1)) {
784			switch (reg) {
785			case MII_BMSR:
786			/*
787			 * Fake something to make the probe
788			 * code think there's a PHY here.
789			 */
790				return (BMSR_MEDIAMASK);
791				break;
792			case MII_PHYIDR1:
793				if (DC_IS_PNIC(sc))
794					return (DC_VENDORID_LO);
795				return (DC_VENDORID_DEC);
796				break;
797			case MII_PHYIDR2:
798				if (DC_IS_PNIC(sc))
799					return (DC_DEVICEID_82C168);
800				return (DC_DEVICEID_21143);
801				break;
802			default:
803				return (0);
804				break;
805			}
806		} else
807			return (0);
808	}
809
810	if (DC_IS_PNIC(sc)) {
811		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
812		    (phy << 23) | (reg << 18));
813		for (i = 0; i < DC_TIMEOUT; i++) {
814			DELAY(1);
815			rval = CSR_READ_4(sc, DC_PN_MII);
816			if (!(rval & DC_PN_MII_BUSY)) {
817				rval &= 0xFFFF;
818				return (rval == 0xFFFF ? 0 : rval);
819			}
820		}
821		return (0);
822	}
823
824	if (DC_IS_COMET(sc)) {
825		switch (reg) {
826		case MII_BMCR:
827			phy_reg = DC_AL_BMCR;
828			break;
829		case MII_BMSR:
830			phy_reg = DC_AL_BMSR;
831			break;
832		case MII_PHYIDR1:
833			phy_reg = DC_AL_VENID;
834			break;
835		case MII_PHYIDR2:
836			phy_reg = DC_AL_DEVID;
837			break;
838		case MII_ANAR:
839			phy_reg = DC_AL_ANAR;
840			break;
841		case MII_ANLPAR:
842			phy_reg = DC_AL_LPAR;
843			break;
844		case MII_ANER:
845			phy_reg = DC_AL_ANER;
846			break;
847		default:
848			device_printf(dev, "phy_read: bad phy register %x\n",
849			    reg);
850			return (0);
851			break;
852		}
853
854		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
855
856		if (rval == 0xFFFF)
857			return (0);
858		return (rval);
859	}
860
861	frame.mii_phyaddr = phy;
862	frame.mii_regaddr = reg;
863	if (sc->dc_type == DC_TYPE_98713) {
864		phy_reg = CSR_READ_4(sc, DC_NETCFG);
865		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
866	}
867	dc_mii_readreg(sc, &frame);
868	if (sc->dc_type == DC_TYPE_98713)
869		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
870
871	return (frame.mii_data);
872}
873
874static int
875dc_miibus_writereg(device_t dev, int phy, int reg, int data)
876{
877	struct dc_softc *sc;
878	struct dc_mii_frame frame;
879	int i, phy_reg = 0;
880
881	sc = device_get_softc(dev);
882	bzero(&frame, sizeof(frame));
883
884	if (DC_IS_PNIC(sc)) {
885		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
886		    (phy << 23) | (reg << 10) | data);
887		for (i = 0; i < DC_TIMEOUT; i++) {
888			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
889				break;
890		}
891		return (0);
892	}
893
894	if (DC_IS_COMET(sc)) {
895		switch (reg) {
896		case MII_BMCR:
897			phy_reg = DC_AL_BMCR;
898			break;
899		case MII_BMSR:
900			phy_reg = DC_AL_BMSR;
901			break;
902		case MII_PHYIDR1:
903			phy_reg = DC_AL_VENID;
904			break;
905		case MII_PHYIDR2:
906			phy_reg = DC_AL_DEVID;
907			break;
908		case MII_ANAR:
909			phy_reg = DC_AL_ANAR;
910			break;
911		case MII_ANLPAR:
912			phy_reg = DC_AL_LPAR;
913			break;
914		case MII_ANER:
915			phy_reg = DC_AL_ANER;
916			break;
917		default:
918			device_printf(dev, "phy_write: bad phy register %x\n",
919			    reg);
920			return (0);
921			break;
922		}
923
924		CSR_WRITE_4(sc, phy_reg, data);
925		return (0);
926	}
927
928	frame.mii_phyaddr = phy;
929	frame.mii_regaddr = reg;
930	frame.mii_data = data;
931
932	if (sc->dc_type == DC_TYPE_98713) {
933		phy_reg = CSR_READ_4(sc, DC_NETCFG);
934		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
935	}
936	dc_mii_writereg(sc, &frame);
937	if (sc->dc_type == DC_TYPE_98713)
938		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
939
940	return (0);
941}
942
943static void
944dc_miibus_statchg(device_t dev)
945{
946	struct dc_softc *sc;
947	struct mii_data *mii;
948	struct ifmedia *ifm;
949
950	sc = device_get_softc(dev);
951	if (DC_IS_ADMTEK(sc))
952		return;
953
954	mii = device_get_softc(sc->dc_miibus);
955	ifm = &mii->mii_media;
956	if (DC_IS_DAVICOM(sc) &&
957	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
958		dc_setcfg(sc, ifm->ifm_media);
959		sc->dc_if_media = ifm->ifm_media;
960	} else {
961		dc_setcfg(sc, mii->mii_media_active);
962		sc->dc_if_media = mii->mii_media_active;
963	}
964}
965
966/*
967 * Special support for DM9102A cards with HomePNA PHYs. Note:
968 * with the Davicom DM9102A/DM9801 eval board that I have, it seems
969 * to be impossible to talk to the management interface of the DM9801
970 * PHY (its MDIO pin is not connected to anything). Consequently,
971 * the driver has to just 'know' about the additional mode and deal
972 * with it itself. *sigh*
973 */
974static void
975dc_miibus_mediainit(device_t dev)
976{
977	struct dc_softc *sc;
978	struct mii_data *mii;
979	struct ifmedia *ifm;
980	int rev;
981
982	rev = pci_get_revid(dev);
983
984	sc = device_get_softc(dev);
985	mii = device_get_softc(sc->dc_miibus);
986	ifm = &mii->mii_media;
987
988	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
989		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
990}
991
992#define DC_BITS_512	9
993#define DC_BITS_128	7
994#define DC_BITS_64	6
995
996static uint32_t
997dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
998{
999	uint32_t crc;
1000
1001	/* Compute CRC for the address value. */
1002	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1003
1004	/*
1005	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1006	 * chips is only 128 bits wide.
1007	 */
1008	if (sc->dc_flags & DC_128BIT_HASH)
1009		return (crc & ((1 << DC_BITS_128) - 1));
1010
1011	/* The hash table on the MX98715BEC is only 64 bits wide. */
1012	if (sc->dc_flags & DC_64BIT_HASH)
1013		return (crc & ((1 << DC_BITS_64) - 1));
1014
1015	/* Xircom's hash filtering table is different (read: weird) */
1016	/* Xircom uses the LEAST significant bits */
1017	if (DC_IS_XIRCOM(sc)) {
1018		if ((crc & 0x180) == 0x180)
1019			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1020		else
1021			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1022			    (12 << 4));
1023	}
1024
1025	return (crc & ((1 << DC_BITS_512) - 1));
1026}
1027
1028/*
1029 * Calculate CRC of a multicast group address, return the lower 6 bits.
1030 */
1031static uint32_t
1032dc_mchash_be(const uint8_t *addr)
1033{
1034	uint32_t crc;
1035
1036	/* Compute CRC for the address value. */
1037	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1038
1039	/* Return the filter bit position. */
1040	return ((crc >> 26) & 0x0000003F);
1041}
1042
1043/*
1044 * 21143-style RX filter setup routine. Filter programming is done by
1045 * downloading a special setup frame into the TX engine. 21143, Macronix,
1046 * PNIC, PNIC II and Davicom chips are programmed this way.
1047 *
1048 * We always program the chip using 'hash perfect' mode, i.e. one perfect
1049 * address (our node address) and a 512-bit hash filter for multicast
1050 * frames. We also sneak the broadcast address into the hash filter since
1051 * we need that too.
1052 */
1053static void
1054dc_setfilt_21143(struct dc_softc *sc)
1055{
1056	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1057	struct dc_desc *sframe;
1058	u_int32_t h, *sp;
1059	struct ifmultiaddr *ifma;
1060	struct ifnet *ifp;
1061	int i;
1062
1063	ifp = sc->dc_ifp;
1064
1065	i = sc->dc_cdata.dc_tx_prod;
1066	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1067	sc->dc_cdata.dc_tx_cnt++;
1068	sframe = &sc->dc_ldata->dc_tx_list[i];
1069	sp = sc->dc_cdata.dc_sbuf;
1070	bzero(sp, DC_SFRAME_LEN);
1071
1072	sframe->dc_data = htole32(sc->dc_saddr);
1073	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1074	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1075
1076	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1077
1078	/* If we want promiscuous mode, set the allframes bit. */
1079	if (ifp->if_flags & IFF_PROMISC)
1080		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1081	else
1082		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1083
1084	if (ifp->if_flags & IFF_ALLMULTI)
1085		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1086	else
1087		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1088
1089	if_maddr_rlock(ifp);
1090	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1091		if (ifma->ifma_addr->sa_family != AF_LINK)
1092			continue;
1093		h = dc_mchash_le(sc,
1094		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1095		sp[h >> 4] |= htole32(1 << (h & 0xF));
1096	}
1097	if_maddr_runlock(ifp);
1098
1099	if (ifp->if_flags & IFF_BROADCAST) {
1100		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1101		sp[h >> 4] |= htole32(1 << (h & 0xF));
1102	}
1103
1104	/* Set our MAC address. */
1105	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1106	sp[39] = DC_SP_MAC(eaddr[0]);
1107	sp[40] = DC_SP_MAC(eaddr[1]);
1108	sp[41] = DC_SP_MAC(eaddr[2]);
1109
1110	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1111	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1112
1113	/*
1114	 * The PNIC takes an exceedingly long time to process its
1115	 * setup frame; wait 10ms after posting the setup frame
1116	 * before proceeding, just so it has time to swallow its
1117	 * medicine.
1118	 */
1119	DELAY(10000);
1120
1121	sc->dc_wdog_timer = 5;
1122}
1123
1124static void
1125dc_setfilt_admtek(struct dc_softc *sc)
1126{
1127	uint8_t eaddr[ETHER_ADDR_LEN];
1128	struct ifnet *ifp;
1129	struct ifmultiaddr *ifma;
1130	int h = 0;
1131	u_int32_t hashes[2] = { 0, 0 };
1132
1133	ifp = sc->dc_ifp;
1134
1135	/* Init our MAC address. */
1136	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1137	CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
1138	    eaddr[1] << 8 | eaddr[0]);
1139	CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
1140
1141	/* If we want promiscuous mode, set the allframes bit. */
1142	if (ifp->if_flags & IFF_PROMISC)
1143		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1144	else
1145		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1146
1147	if (ifp->if_flags & IFF_ALLMULTI)
1148		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1149	else
1150		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1151
1152	/* First, zot all the existing hash bits. */
1153	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1154	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1155
1156	/*
1157	 * If we're already in promisc or allmulti mode, we
1158	 * don't have to bother programming the multicast filter.
1159	 */
1160	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1161		return;
1162
1163	/* Now program new ones. */
1164	if_maddr_rlock(ifp);
1165	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1166		if (ifma->ifma_addr->sa_family != AF_LINK)
1167			continue;
1168		if (DC_IS_CENTAUR(sc))
1169			h = dc_mchash_le(sc,
1170			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1171		else
1172			h = dc_mchash_be(
1173			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1174		if (h < 32)
1175			hashes[0] |= (1 << h);
1176		else
1177			hashes[1] |= (1 << (h - 32));
1178	}
1179	if_maddr_runlock(ifp);
1180
1181	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1182	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1183}
1184
1185static void
1186dc_setfilt_asix(struct dc_softc *sc)
1187{
1188	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1189	struct ifnet *ifp;
1190	struct ifmultiaddr *ifma;
1191	int h = 0;
1192	u_int32_t hashes[2] = { 0, 0 };
1193
1194	ifp = sc->dc_ifp;
1195
1196	/* Init our MAC address. */
1197	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1198	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1199	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
1200	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1201	CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
1202
1203	/* If we want promiscuous mode, set the allframes bit. */
1204	if (ifp->if_flags & IFF_PROMISC)
1205		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1206	else
1207		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1208
1209	if (ifp->if_flags & IFF_ALLMULTI)
1210		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1211	else
1212		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1213
1214	/*
1215	 * The ASIX chip has a special bit to enable reception
1216	 * of broadcast frames.
1217	 */
1218	if (ifp->if_flags & IFF_BROADCAST)
1219		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1220	else
1221		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1222
1223	/* first, zot all the existing hash bits */
1224	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1225	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1226	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1227	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1228
1229	/*
1230	 * If we're already in promisc or allmulti mode, we
1231	 * don't have to bother programming the multicast filter.
1232	 */
1233	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1234		return;
1235
1236	/* now program new ones */
1237	if_maddr_rlock(ifp);
1238	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1239		if (ifma->ifma_addr->sa_family != AF_LINK)
1240			continue;
1241		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1242		if (h < 32)
1243			hashes[0] |= (1 << h);
1244		else
1245			hashes[1] |= (1 << (h - 32));
1246	}
1247	if_maddr_runlock(ifp);
1248
1249	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1250	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1251	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1252	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1253}
1254
1255static void
1256dc_setfilt_xircom(struct dc_softc *sc)
1257{
1258	uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
1259	struct ifnet *ifp;
1260	struct ifmultiaddr *ifma;
1261	struct dc_desc *sframe;
1262	u_int32_t h, *sp;
1263	int i;
1264
1265	ifp = sc->dc_ifp;
1266	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1267
1268	i = sc->dc_cdata.dc_tx_prod;
1269	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1270	sc->dc_cdata.dc_tx_cnt++;
1271	sframe = &sc->dc_ldata->dc_tx_list[i];
1272	sp = sc->dc_cdata.dc_sbuf;
1273	bzero(sp, DC_SFRAME_LEN);
1274
1275	sframe->dc_data = htole32(sc->dc_saddr);
1276	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1277	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1278
1279	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1280
1281	/* If we want promiscuous mode, set the allframes bit. */
1282	if (ifp->if_flags & IFF_PROMISC)
1283		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1284	else
1285		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1286
1287	if (ifp->if_flags & IFF_ALLMULTI)
1288		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1289	else
1290		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1291
1292	if_maddr_rlock(ifp);
1293	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1294		if (ifma->ifma_addr->sa_family != AF_LINK)
1295			continue;
1296		h = dc_mchash_le(sc,
1297		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1298		sp[h >> 4] |= htole32(1 << (h & 0xF));
1299	}
1300	if_maddr_runlock(ifp);
1301
1302	if (ifp->if_flags & IFF_BROADCAST) {
1303		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1304		sp[h >> 4] |= htole32(1 << (h & 0xF));
1305	}
1306
1307	/* Set our MAC address. */
1308	bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
1309	sp[0] = DC_SP_MAC(eaddr[0]);
1310	sp[1] = DC_SP_MAC(eaddr[1]);
1311	sp[2] = DC_SP_MAC(eaddr[2]);
1312
1313	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1314	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1315	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1316	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1317	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1318
1319	/*
1320	 * Wait some time...
1321	 */
1322	DELAY(1000);
1323
1324	sc->dc_wdog_timer = 5;
1325}
1326
1327static void
1328dc_setfilt(struct dc_softc *sc)
1329{
1330
1331	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1332	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1333		dc_setfilt_21143(sc);
1334
1335	if (DC_IS_ASIX(sc))
1336		dc_setfilt_asix(sc);
1337
1338	if (DC_IS_ADMTEK(sc))
1339		dc_setfilt_admtek(sc);
1340
1341	if (DC_IS_XIRCOM(sc))
1342		dc_setfilt_xircom(sc);
1343}
1344
1345/*
1346 * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1347 * the netconfig register, we first have to put the transmit and/or
1348 * receive logic in the idle state.
1349 */
1350static void
1351dc_setcfg(struct dc_softc *sc, int media)
1352{
1353	int i, restart = 0, watchdogreg;
1354	u_int32_t isr;
1355
1356	if (IFM_SUBTYPE(media) == IFM_NONE)
1357		return;
1358
1359	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1360		restart = 1;
1361		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1362
1363		for (i = 0; i < DC_TIMEOUT; i++) {
1364			isr = CSR_READ_4(sc, DC_ISR);
1365			if (isr & DC_ISR_TX_IDLE &&
1366			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1367			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1368				break;
1369			DELAY(10);
1370		}
1371
1372		if (i == DC_TIMEOUT) {
1373			if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
1374				device_printf(sc->dc_dev,
1375				    "%s: failed to force tx to idle state\n",
1376				    __func__);
1377			if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1378			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
1379			    !DC_HAS_BROKEN_RXSTATE(sc))
1380				device_printf(sc->dc_dev,
1381				    "%s: failed to force rx to idle state\n",
1382				    __func__);
1383		}
1384	}
1385
1386	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1387		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1388		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1389		if (sc->dc_pmode == DC_PMODE_MII) {
1390			if (DC_IS_INTEL(sc)) {
1391			/* There's a write enable bit here that reads as 1. */
1392				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1393				watchdogreg &= ~DC_WDOG_CTLWREN;
1394				watchdogreg |= DC_WDOG_JABBERDIS;
1395				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1396			} else {
1397				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1398			}
1399			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1400			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1401			if (sc->dc_type == DC_TYPE_98713)
1402				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1403				    DC_NETCFG_SCRAMBLER));
1404			if (!DC_IS_DAVICOM(sc))
1405				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1406			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1407			if (DC_IS_INTEL(sc))
1408				dc_apply_fixup(sc, IFM_AUTO);
1409		} else {
1410			if (DC_IS_PNIC(sc)) {
1411				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1412				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1413				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1414			}
1415			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1416			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1417			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1418			if (DC_IS_INTEL(sc))
1419				dc_apply_fixup(sc,
1420				    (media & IFM_GMASK) == IFM_FDX ?
1421				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1422		}
1423	}
1424
1425	if (IFM_SUBTYPE(media) == IFM_10_T) {
1426		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1427		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1428		if (sc->dc_pmode == DC_PMODE_MII) {
1429			/* There's a write enable bit here that reads as 1. */
1430			if (DC_IS_INTEL(sc)) {
1431				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1432				watchdogreg &= ~DC_WDOG_CTLWREN;
1433				watchdogreg |= DC_WDOG_JABBERDIS;
1434				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1435			} else {
1436				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1437			}
1438			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1439			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1440			if (sc->dc_type == DC_TYPE_98713)
1441				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1442			if (!DC_IS_DAVICOM(sc))
1443				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1444			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1445			if (DC_IS_INTEL(sc))
1446				dc_apply_fixup(sc, IFM_AUTO);
1447		} else {
1448			if (DC_IS_PNIC(sc)) {
1449				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1450				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1451				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1452			}
1453			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1454			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1455			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1456			if (DC_IS_INTEL(sc)) {
1457				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1458				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1459				if ((media & IFM_GMASK) == IFM_FDX)
1460					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1461				else
1462					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1463				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1464				DC_CLRBIT(sc, DC_10BTCTRL,
1465				    DC_TCTL_AUTONEGENBL);
1466				dc_apply_fixup(sc,
1467				    (media & IFM_GMASK) == IFM_FDX ?
1468				    IFM_10_T | IFM_FDX : IFM_10_T);
1469				DELAY(20000);
1470			}
1471		}
1472	}
1473
1474	/*
1475	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1476	 * PHY and we want HomePNA mode, set the portsel bit to turn
1477	 * on the external MII port.
1478	 */
1479	if (DC_IS_DAVICOM(sc)) {
1480		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1481			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1482			sc->dc_link = 1;
1483		} else {
1484			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1485		}
1486	}
1487
1488	if ((media & IFM_GMASK) == IFM_FDX) {
1489		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1490		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1491			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1492	} else {
1493		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1494		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1495			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1496	}
1497
1498	if (restart)
1499		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1500}
1501
1502static void
1503dc_reset(struct dc_softc *sc)
1504{
1505	int i;
1506
1507	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1508
1509	for (i = 0; i < DC_TIMEOUT; i++) {
1510		DELAY(10);
1511		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1512			break;
1513	}
1514
1515	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1516	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1517		DELAY(10000);
1518		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1519		i = 0;
1520	}
1521
1522	if (i == DC_TIMEOUT)
1523		device_printf(sc->dc_dev, "reset never completed!\n");
1524
1525	/* Wait a little while for the chip to get its brains in order. */
1526	DELAY(1000);
1527
1528	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1529	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1530	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1531
1532	/*
1533	 * Bring the SIA out of reset. In some cases, it looks
1534	 * like failing to unreset the SIA soon enough gets it
1535	 * into a state where it will never come out of reset
1536	 * until we reset the whole chip again.
1537	 */
1538	if (DC_IS_INTEL(sc)) {
1539		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1540		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1541		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1542	}
1543}
1544
1545static const struct dc_type *
1546dc_devtype(device_t dev)
1547{
1548	const struct dc_type *t;
1549	u_int32_t devid;
1550	u_int8_t rev;
1551
1552	t = dc_devs;
1553	devid = pci_get_devid(dev);
1554	rev = pci_get_revid(dev);
1555
1556	while (t->dc_name != NULL) {
1557		if (devid == t->dc_devid && rev >= t->dc_minrev)
1558			return (t);
1559		t++;
1560	}
1561
1562	return (NULL);
1563}
1564
1565/*
1566 * Probe for a 21143 or clone chip. Check the PCI vendor and device
1567 * IDs against our list and return a device name if we find a match.
1568 * We do a little bit of extra work to identify the exact type of
1569 * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1570 * but different revision IDs. The same is true for 98715/98715A
1571 * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1572 * cases, the exact chip revision affects driver behavior.
1573 */
1574static int
1575dc_probe(device_t dev)
1576{
1577	const struct dc_type *t;
1578
1579	t = dc_devtype(dev);
1580
1581	if (t != NULL) {
1582		device_set_desc(dev, t->dc_name);
1583		return (BUS_PROBE_DEFAULT);
1584	}
1585
1586	return (ENXIO);
1587}
1588
1589static void
1590dc_apply_fixup(struct dc_softc *sc, int media)
1591{
1592	struct dc_mediainfo *m;
1593	u_int8_t *p;
1594	int i;
1595	u_int32_t reg;
1596
1597	m = sc->dc_mi;
1598
1599	while (m != NULL) {
1600		if (m->dc_media == media)
1601			break;
1602		m = m->dc_next;
1603	}
1604
1605	if (m == NULL)
1606		return;
1607
1608	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1609		reg = (p[0] | (p[1] << 8)) << 16;
1610		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1611	}
1612
1613	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1614		reg = (p[0] | (p[1] << 8)) << 16;
1615		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1616	}
1617}
1618
1619static int
1620dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1621{
1622	struct dc_mediainfo *m;
1623
1624	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1625	if (m == NULL) {
1626		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1627		return (ENOMEM);
1628	}
1629	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1630	case DC_SIA_CODE_10BT:
1631		m->dc_media = IFM_10_T;
1632		break;
1633	case DC_SIA_CODE_10BT_FDX:
1634		m->dc_media = IFM_10_T | IFM_FDX;
1635		break;
1636	case DC_SIA_CODE_10B2:
1637		m->dc_media = IFM_10_2;
1638		break;
1639	case DC_SIA_CODE_10B5:
1640		m->dc_media = IFM_10_5;
1641		break;
1642	default:
1643		break;
1644	}
1645
1646	/*
1647	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1648	 * Things apparently already work for cards that do
1649	 * supply Media Specific Data.
1650	 */
1651	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1652		m->dc_gp_len = 2;
1653		m->dc_gp_ptr =
1654		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1655	} else {
1656		m->dc_gp_len = 2;
1657		m->dc_gp_ptr =
1658		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1659	}
1660
1661	m->dc_next = sc->dc_mi;
1662	sc->dc_mi = m;
1663
1664	sc->dc_pmode = DC_PMODE_SIA;
1665	return (0);
1666}
1667
1668static int
1669dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1670{
1671	struct dc_mediainfo *m;
1672
1673	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1674	if (m == NULL) {
1675		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1676		return (ENOMEM);
1677	}
1678	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1679		m->dc_media = IFM_100_TX;
1680
1681	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1682		m->dc_media = IFM_100_TX | IFM_FDX;
1683
1684	m->dc_gp_len = 2;
1685	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1686
1687	m->dc_next = sc->dc_mi;
1688	sc->dc_mi = m;
1689
1690	sc->dc_pmode = DC_PMODE_SYM;
1691	return (0);
1692}
1693
1694static int
1695dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1696{
1697	struct dc_mediainfo *m;
1698	u_int8_t *p;
1699
1700	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1701	if (m == NULL) {
1702		device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
1703		return (ENOMEM);
1704	}
1705	/* We abuse IFM_AUTO to represent MII. */
1706	m->dc_media = IFM_AUTO;
1707	m->dc_gp_len = l->dc_gpr_len;
1708
1709	p = (u_int8_t *)l;
1710	p += sizeof(struct dc_eblock_mii);
1711	m->dc_gp_ptr = p;
1712	p += 2 * l->dc_gpr_len;
1713	m->dc_reset_len = *p;
1714	p++;
1715	m->dc_reset_ptr = p;
1716
1717	m->dc_next = sc->dc_mi;
1718	sc->dc_mi = m;
1719	return (0);
1720}
1721
1722static int
1723dc_read_srom(struct dc_softc *sc, int bits)
1724{
1725	int size;
1726
1727	size = DC_ROM_SIZE(bits);
1728	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1729	if (sc->dc_srom == NULL) {
1730		device_printf(sc->dc_dev, "Could not allocate SROM buffer\n");
1731		return (ENOMEM);
1732	}
1733	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1734	return (0);
1735}
1736
1737static int
1738dc_parse_21143_srom(struct dc_softc *sc)
1739{
1740	struct dc_leaf_hdr *lhdr;
1741	struct dc_eblock_hdr *hdr;
1742	int error, have_mii, i, loff;
1743	char *ptr;
1744
1745	have_mii = 0;
1746	loff = sc->dc_srom[27];
1747	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1748
1749	ptr = (char *)lhdr;
1750	ptr += sizeof(struct dc_leaf_hdr) - 1;
1751	/*
1752	 * Look if we got a MII media block.
1753	 */
1754	for (i = 0; i < lhdr->dc_mcnt; i++) {
1755		hdr = (struct dc_eblock_hdr *)ptr;
1756		if (hdr->dc_type == DC_EBLOCK_MII)
1757		    have_mii++;
1758
1759		ptr += (hdr->dc_len & 0x7F);
1760		ptr++;
1761	}
1762
1763	/*
1764	 * Do the same thing again. Only use SIA and SYM media
1765	 * blocks if no MII media block is available.
1766	 */
1767	ptr = (char *)lhdr;
1768	ptr += sizeof(struct dc_leaf_hdr) - 1;
1769	error = 0;
1770	for (i = 0; i < lhdr->dc_mcnt; i++) {
1771		hdr = (struct dc_eblock_hdr *)ptr;
1772		switch (hdr->dc_type) {
1773		case DC_EBLOCK_MII:
1774			error = dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1775			break;
1776		case DC_EBLOCK_SIA:
1777			if (! have_mii)
1778				error = dc_decode_leaf_sia(sc,
1779				    (struct dc_eblock_sia *)hdr);
1780			break;
1781		case DC_EBLOCK_SYM:
1782			if (! have_mii)
1783				error = dc_decode_leaf_sym(sc,
1784				    (struct dc_eblock_sym *)hdr);
1785			break;
1786		default:
1787			/* Don't care. Yet. */
1788			break;
1789		}
1790		ptr += (hdr->dc_len & 0x7F);
1791		ptr++;
1792	}
1793	return (error);
1794}
1795
1796static void
1797dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1798{
1799	u_int32_t *paddr;
1800
1801	KASSERT(nseg == 1,
1802	    ("%s: wrong number of segments (%d)", __func__, nseg));
1803	paddr = arg;
1804	*paddr = segs->ds_addr;
1805}
1806
1807/*
1808 * Attach the interface. Allocate softc structures, do ifmedia
1809 * setup and ethernet/BPF attach.
1810 */
1811static int
1812dc_attach(device_t dev)
1813{
1814	uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
1815	u_int32_t command;
1816	struct dc_softc *sc;
1817	struct ifnet *ifp;
1818	u_int32_t reg, revision;
1819	int error, i, mac_offset, phy, rid, tmp;
1820	u_int8_t *mac;
1821
1822	sc = device_get_softc(dev);
1823	sc->dc_dev = dev;
1824
1825	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1826	    MTX_DEF);
1827
1828	/*
1829	 * Map control/status registers.
1830	 */
1831	pci_enable_busmaster(dev);
1832
1833	rid = DC_RID;
1834	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1835
1836	if (sc->dc_res == NULL) {
1837		device_printf(dev, "couldn't map ports/memory\n");
1838		error = ENXIO;
1839		goto fail;
1840	}
1841
1842	sc->dc_btag = rman_get_bustag(sc->dc_res);
1843	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1844
1845	/* Allocate interrupt. */
1846	rid = 0;
1847	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1848	    RF_SHAREABLE | RF_ACTIVE);
1849
1850	if (sc->dc_irq == NULL) {
1851		device_printf(dev, "couldn't map interrupt\n");
1852		error = ENXIO;
1853		goto fail;
1854	}
1855
1856	/* Need this info to decide on a chip type. */
1857	sc->dc_info = dc_devtype(dev);
1858	revision = pci_get_revid(dev);
1859
1860	error = 0;
1861	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1862	if (sc->dc_info->dc_devid !=
1863	    DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
1864	    sc->dc_info->dc_devid !=
1865	    DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
1866		dc_eeprom_width(sc);
1867
1868	switch (sc->dc_info->dc_devid) {
1869	case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
1870		sc->dc_type = DC_TYPE_21143;
1871		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1872		sc->dc_flags |= DC_REDUCED_MII_POLL;
1873		/* Save EEPROM contents so we can parse them later. */
1874		error = dc_read_srom(sc, sc->dc_romwidth);
1875		if (error != 0)
1876			goto fail;
1877		break;
1878	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
1879	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
1880	case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
1881		sc->dc_type = DC_TYPE_DM9102;
1882		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1883		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1884		sc->dc_flags |= DC_TX_ALIGN;
1885		sc->dc_pmode = DC_PMODE_MII;
1886
1887		/* Increase the latency timer value. */
1888		pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
1889		break;
1890	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
1891		sc->dc_type = DC_TYPE_AL981;
1892		sc->dc_flags |= DC_TX_USE_TX_INTR;
1893		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1894		sc->dc_pmode = DC_PMODE_MII;
1895		error = dc_read_srom(sc, sc->dc_romwidth);
1896		if (error != 0)
1897			goto fail;
1898		break;
1899	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983):
1900	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
1901	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
1902	case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
1903	case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
1904	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
1905	case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
1906	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
1907	case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
1908	case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
1909	case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
1910	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
1911	case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
1912	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
1913	case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
1914		sc->dc_type = DC_TYPE_AN983;
1915		sc->dc_flags |= DC_64BIT_HASH;
1916		sc->dc_flags |= DC_TX_USE_TX_INTR;
1917		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1918		sc->dc_pmode = DC_PMODE_MII;
1919		/* Don't read SROM for - auto-loaded on reset */
1920		break;
1921	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
1922	case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
1923		if (revision < DC_REVISION_98713A) {
1924			sc->dc_type = DC_TYPE_98713;
1925		}
1926		if (revision >= DC_REVISION_98713A) {
1927			sc->dc_type = DC_TYPE_98713A;
1928			sc->dc_flags |= DC_21143_NWAY;
1929		}
1930		sc->dc_flags |= DC_REDUCED_MII_POLL;
1931		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1932		break;
1933	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
1934	case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
1935		/*
1936		 * Macronix MX98715AEC-C/D/E parts have only a
1937		 * 128-bit hash table. We need to deal with these
1938		 * in the same manner as the PNIC II so that we
1939		 * get the right number of bits out of the
1940		 * CRC routine.
1941		 */
1942		if (revision >= DC_REVISION_98715AEC_C &&
1943		    revision < DC_REVISION_98725)
1944			sc->dc_flags |= DC_128BIT_HASH;
1945		sc->dc_type = DC_TYPE_987x5;
1946		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1947		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1948		break;
1949	case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
1950		sc->dc_type = DC_TYPE_987x5;
1951		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1952		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1953		break;
1954	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
1955		sc->dc_type = DC_TYPE_PNICII;
1956		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1957		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1958		break;
1959	case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
1960		sc->dc_type = DC_TYPE_PNIC;
1961		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1962		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1963		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1964		if (sc->dc_pnic_rx_buf == NULL) {
1965			device_printf(sc->dc_dev,
1966			    "Could not allocate PNIC RX buffer\n");
1967			error = ENOMEM;
1968			goto fail;
1969		}
1970		if (revision < DC_REVISION_82C169)
1971			sc->dc_pmode = DC_PMODE_SYM;
1972		break;
1973	case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
1974		sc->dc_type = DC_TYPE_ASIX;
1975		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1976		sc->dc_flags |= DC_REDUCED_MII_POLL;
1977		sc->dc_pmode = DC_PMODE_MII;
1978		break;
1979	case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
1980		sc->dc_type = DC_TYPE_XIRCOM;
1981		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1982				DC_TX_ALIGN;
1983		/*
1984		 * We don't actually need to coalesce, but we're doing
1985		 * it to obtain a double word aligned buffer.
1986		 * The DC_TX_COALESCE flag is required.
1987		 */
1988		sc->dc_pmode = DC_PMODE_MII;
1989		break;
1990	case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
1991		sc->dc_type = DC_TYPE_CONEXANT;
1992		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1993		sc->dc_flags |= DC_REDUCED_MII_POLL;
1994		sc->dc_pmode = DC_PMODE_MII;
1995		error = dc_read_srom(sc, sc->dc_romwidth);
1996		if (error != 0)
1997			goto fail;
1998		break;
1999	default:
2000		device_printf(dev, "unknown device: %x\n",
2001		    sc->dc_info->dc_devid);
2002		break;
2003	}
2004
2005	/* Save the cache line size. */
2006	if (DC_IS_DAVICOM(sc))
2007		sc->dc_cachesize = 0;
2008	else
2009		sc->dc_cachesize = pci_get_cachelnsz(dev);
2010
2011	/* Reset the adapter. */
2012	dc_reset(sc);
2013
2014	/* Take 21143 out of snooze mode */
2015	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2016		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2017		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2018		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2019	}
2020
2021	/*
2022	 * Try to learn something about the supported media.
2023	 * We know that ASIX and ADMtek and Davicom devices
2024	 * will *always* be using MII media, so that's a no-brainer.
2025	 * The tricky ones are the Macronix/PNIC II and the
2026	 * Intel 21143.
2027	 */
2028	if (DC_IS_INTEL(sc)) {
2029		error = dc_parse_21143_srom(sc);
2030		if (error != 0)
2031			goto fail;
2032	} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2033		if (sc->dc_type == DC_TYPE_98713)
2034			sc->dc_pmode = DC_PMODE_MII;
2035		else
2036			sc->dc_pmode = DC_PMODE_SYM;
2037	} else if (!sc->dc_pmode)
2038		sc->dc_pmode = DC_PMODE_MII;
2039
2040	/*
2041	 * Get station address from the EEPROM.
2042	 */
2043	switch(sc->dc_type) {
2044	case DC_TYPE_98713:
2045	case DC_TYPE_98713A:
2046	case DC_TYPE_987x5:
2047	case DC_TYPE_PNICII:
2048		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2049		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2050		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2051		break;
2052	case DC_TYPE_PNIC:
2053		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2054		break;
2055	case DC_TYPE_DM9102:
2056		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2057#ifdef __sparc64__
2058		/*
2059		 * If this is an onboard dc(4) the station address read from
2060		 * the EEPROM is all zero and we have to get it from the FCode.
2061		 */
2062		if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
2063			OF_getetheraddr(dev, (caddr_t)&eaddr);
2064#endif
2065		break;
2066	case DC_TYPE_21143:
2067	case DC_TYPE_ASIX:
2068		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2069		break;
2070	case DC_TYPE_AL981:
2071	case DC_TYPE_AN983:
2072		reg = CSR_READ_4(sc, DC_AL_PAR0);
2073		mac = (uint8_t *)&eaddr[0];
2074		mac[0] = (reg >> 0) & 0xff;
2075		mac[1] = (reg >> 8) & 0xff;
2076		mac[2] = (reg >> 16) & 0xff;
2077		mac[3] = (reg >> 24) & 0xff;
2078		reg = CSR_READ_4(sc, DC_AL_PAR1);
2079		mac[4] = (reg >> 0) & 0xff;
2080		mac[5] = (reg >> 8) & 0xff;
2081		break;
2082	case DC_TYPE_CONEXANT:
2083		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2084		    ETHER_ADDR_LEN);
2085		break;
2086	case DC_TYPE_XIRCOM:
2087		/* The MAC comes from the CIS. */
2088		mac = pci_get_ether(dev);
2089		if (!mac) {
2090			device_printf(dev, "No station address in CIS!\n");
2091			error = ENXIO;
2092			goto fail;
2093		}
2094		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2095		break;
2096	default:
2097		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2098		break;
2099	}
2100
2101	bcopy(eaddr, sc->dc_eaddr, sizeof(eaddr));
2102	/*
2103	 * If we still have invalid station address, see whether we can
2104	 * find station address for chip 0.  Some multi-port controllers
2105	 * just store station address for chip 0 if they have a shared
2106	 * SROM.
2107	 */
2108	if ((sc->dc_eaddr[0] == 0 && (sc->dc_eaddr[1] & ~0xffff) == 0) ||
2109	    (sc->dc_eaddr[0] == 0xffffffff &&
2110	    (sc->dc_eaddr[1] & 0xffff) == 0xffff)) {
2111		if (dc_check_multiport(sc) == 0)
2112			bcopy(sc->dc_eaddr, eaddr, sizeof(eaddr));
2113	}
2114
2115	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2116	error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
2117	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2118	    sizeof(struct dc_list_data), 1, sizeof(struct dc_list_data),
2119	    0, NULL, NULL, &sc->dc_ltag);
2120	if (error) {
2121		device_printf(dev, "failed to allocate busdma tag\n");
2122		error = ENXIO;
2123		goto fail;
2124	}
2125	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2126	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2127	if (error) {
2128		device_printf(dev, "failed to allocate DMA safe memory\n");
2129		error = ENXIO;
2130		goto fail;
2131	}
2132	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2133	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2134	    BUS_DMA_NOWAIT);
2135	if (error) {
2136		device_printf(dev, "cannot get address of the descriptors\n");
2137		error = ENXIO;
2138		goto fail;
2139	}
2140
2141	/*
2142	 * Allocate a busdma tag and DMA safe memory for the multicast
2143	 * setup frame.
2144	 */
2145	error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
2146	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2147	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
2148	    0, NULL, NULL, &sc->dc_stag);
2149	if (error) {
2150		device_printf(dev, "failed to allocate busdma tag\n");
2151		error = ENXIO;
2152		goto fail;
2153	}
2154	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2155	    BUS_DMA_NOWAIT, &sc->dc_smap);
2156	if (error) {
2157		device_printf(dev, "failed to allocate DMA safe memory\n");
2158		error = ENXIO;
2159		goto fail;
2160	}
2161	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2162	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2163	if (error) {
2164		device_printf(dev, "cannot get address of the descriptors\n");
2165		error = ENXIO;
2166		goto fail;
2167	}
2168
2169	/* Allocate a busdma tag for mbufs. */
2170	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
2171	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2172	    MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
2173	    0, NULL, NULL, &sc->dc_mtag);
2174	if (error) {
2175		device_printf(dev, "failed to allocate busdma tag\n");
2176		error = ENXIO;
2177		goto fail;
2178	}
2179
2180	/* Create the TX/RX busdma maps. */
2181	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2182		error = bus_dmamap_create(sc->dc_mtag, 0,
2183		    &sc->dc_cdata.dc_tx_map[i]);
2184		if (error) {
2185			device_printf(dev, "failed to init TX ring\n");
2186			error = ENXIO;
2187			goto fail;
2188		}
2189	}
2190	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2191		error = bus_dmamap_create(sc->dc_mtag, 0,
2192		    &sc->dc_cdata.dc_rx_map[i]);
2193		if (error) {
2194			device_printf(dev, "failed to init RX ring\n");
2195			error = ENXIO;
2196			goto fail;
2197		}
2198	}
2199	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2200	if (error) {
2201		device_printf(dev, "failed to init RX ring\n");
2202		error = ENXIO;
2203		goto fail;
2204	}
2205
2206	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2207	if (ifp == NULL) {
2208		device_printf(dev, "can not if_alloc()\n");
2209		error = ENOSPC;
2210		goto fail;
2211	}
2212	ifp->if_softc = sc;
2213	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2214	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2215	ifp->if_ioctl = dc_ioctl;
2216	ifp->if_start = dc_start;
2217	ifp->if_init = dc_init;
2218	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2219	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2220	IFQ_SET_READY(&ifp->if_snd);
2221
2222	/*
2223	 * Do MII setup. If this is a 21143, check for a PHY on the
2224	 * MII bus after applying any necessary fixups to twiddle the
2225	 * GPIO bits. If we don't end up finding a PHY, restore the
2226	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2227	 * driver instead.
2228	 */
2229	tmp = 0;
2230	if (DC_IS_INTEL(sc)) {
2231		dc_apply_fixup(sc, IFM_AUTO);
2232		tmp = sc->dc_pmode;
2233		sc->dc_pmode = DC_PMODE_MII;
2234	}
2235
2236	/*
2237	 * Setup General Purpose port mode and data so the tulip can talk
2238	 * to the MII.  This needs to be done before mii_attach so that
2239	 * we can actually see them.
2240	 */
2241	if (DC_IS_XIRCOM(sc)) {
2242		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2243		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2244		DELAY(10);
2245		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2246		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2247		DELAY(10);
2248	}
2249
2250	phy = MII_PHY_ANY;
2251	/*
2252	 * Note: both the AL981 and AN983 have internal PHYs, however the
2253	 * AL981 provides direct access to the PHY registers while the AN983
2254	 * uses a serial MII interface. The AN983's MII interface is also
2255	 * buggy in that you can read from any MII address (0 to 31), but
2256	 * only address 1 behaves normally. To deal with both cases, we
2257	 * pretend that the PHY is at MII address 1.
2258	 */
2259	if (DC_IS_ADMTEK(sc))
2260		phy = DC_ADMTEK_PHYADDR;
2261
2262	/*
2263	 * Note: the ukphy probes of the RS7112 report a PHY at MII address
2264	 * 0 (possibly HomePNA?) and 1 (ethernet) so we only respond to the
2265	 * correct one.
2266	 */
2267	if (DC_IS_CONEXANT(sc))
2268		phy = DC_CONEXANT_PHYADDR;
2269
2270	error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2271	    dc_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
2272
2273	if (error && DC_IS_INTEL(sc)) {
2274		sc->dc_pmode = tmp;
2275		if (sc->dc_pmode != DC_PMODE_SIA)
2276			sc->dc_pmode = DC_PMODE_SYM;
2277		sc->dc_flags |= DC_21143_NWAY;
2278		mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
2279		    dc_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
2280		    MII_OFFSET_ANY, 0);
2281		/*
2282		 * For non-MII cards, we need to have the 21143
2283		 * drive the LEDs. Except there are some systems
2284		 * like the NEC VersaPro NoteBook PC which have no
2285		 * LEDs, and twiddling these bits has adverse effects
2286		 * on them. (I.e. you suddenly can't get a link.)
2287		 */
2288		if (!(pci_get_subvendor(dev) == 0x1033 &&
2289		    pci_get_subdevice(dev) == 0x8028))
2290			sc->dc_flags |= DC_TULIP_LEDS;
2291		error = 0;
2292	}
2293
2294	if (error) {
2295		device_printf(dev, "attaching PHYs failed\n");
2296		goto fail;
2297	}
2298
2299	if (DC_IS_ADMTEK(sc)) {
2300		/*
2301		 * Set automatic TX underrun recovery for the ADMtek chips
2302		 */
2303		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2304	}
2305
2306	/*
2307	 * Tell the upper layer(s) we support long frames.
2308	 */
2309	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2310	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2311	ifp->if_capenable = ifp->if_capabilities;
2312#ifdef DEVICE_POLLING
2313	ifp->if_capabilities |= IFCAP_POLLING;
2314#endif
2315
2316	callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
2317	callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
2318
2319	/*
2320	 * Call MI attach routine.
2321	 */
2322	ether_ifattach(ifp, (caddr_t)eaddr);
2323
2324	/* Hook interrupt last to avoid having to lock softc */
2325	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
2326	    NULL, dc_intr, sc, &sc->dc_intrhand);
2327
2328	if (error) {
2329		device_printf(dev, "couldn't set up irq\n");
2330		ether_ifdetach(ifp);
2331		goto fail;
2332	}
2333
2334fail:
2335	if (error)
2336		dc_detach(dev);
2337	return (error);
2338}
2339
2340/*
2341 * Shutdown hardware and free up resources. This can be called any
2342 * time after the mutex has been initialized. It is called in both
2343 * the error case in attach and the normal detach case so it needs
2344 * to be careful about only freeing resources that have actually been
2345 * allocated.
2346 */
2347static int
2348dc_detach(device_t dev)
2349{
2350	struct dc_softc *sc;
2351	struct ifnet *ifp;
2352	struct dc_mediainfo *m;
2353	int i;
2354
2355	sc = device_get_softc(dev);
2356	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2357
2358	ifp = sc->dc_ifp;
2359
2360#ifdef DEVICE_POLLING
2361	if (ifp->if_capenable & IFCAP_POLLING)
2362		ether_poll_deregister(ifp);
2363#endif
2364
2365	/* These should only be active if attach succeeded */
2366	if (device_is_attached(dev)) {
2367		DC_LOCK(sc);
2368		dc_stop(sc);
2369		DC_UNLOCK(sc);
2370		callout_drain(&sc->dc_stat_ch);
2371		callout_drain(&sc->dc_wdog_ch);
2372		ether_ifdetach(ifp);
2373	}
2374	if (sc->dc_miibus)
2375		device_delete_child(dev, sc->dc_miibus);
2376	bus_generic_detach(dev);
2377
2378	if (sc->dc_intrhand)
2379		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2380	if (sc->dc_irq)
2381		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2382	if (sc->dc_res)
2383		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2384
2385	if (ifp)
2386		if_free(ifp);
2387
2388	if (sc->dc_cdata.dc_sbuf != NULL)
2389		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2390	if (sc->dc_ldata != NULL)
2391		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2392	if (sc->dc_mtag) {
2393		for (i = 0; i < DC_TX_LIST_CNT; i++)
2394			if (sc->dc_cdata.dc_tx_map[i] != NULL)
2395				bus_dmamap_destroy(sc->dc_mtag,
2396				    sc->dc_cdata.dc_tx_map[i]);
2397		for (i = 0; i < DC_RX_LIST_CNT; i++)
2398			if (sc->dc_cdata.dc_rx_map[i] != NULL)
2399				bus_dmamap_destroy(sc->dc_mtag,
2400				    sc->dc_cdata.dc_rx_map[i]);
2401		bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2402	}
2403	if (sc->dc_stag)
2404		bus_dma_tag_destroy(sc->dc_stag);
2405	if (sc->dc_mtag)
2406		bus_dma_tag_destroy(sc->dc_mtag);
2407	if (sc->dc_ltag)
2408		bus_dma_tag_destroy(sc->dc_ltag);
2409
2410	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2411
2412	while (sc->dc_mi != NULL) {
2413		m = sc->dc_mi->dc_next;
2414		free(sc->dc_mi, M_DEVBUF);
2415		sc->dc_mi = m;
2416	}
2417	free(sc->dc_srom, M_DEVBUF);
2418
2419	mtx_destroy(&sc->dc_mtx);
2420
2421	return (0);
2422}
2423
2424/*
2425 * Initialize the transmit descriptors.
2426 */
2427static int
2428dc_list_tx_init(struct dc_softc *sc)
2429{
2430	struct dc_chain_data *cd;
2431	struct dc_list_data *ld;
2432	int i, nexti;
2433
2434	cd = &sc->dc_cdata;
2435	ld = sc->dc_ldata;
2436	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2437		if (i == DC_TX_LIST_CNT - 1)
2438			nexti = 0;
2439		else
2440			nexti = i + 1;
2441		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2442		cd->dc_tx_chain[i] = NULL;
2443		ld->dc_tx_list[i].dc_data = 0;
2444		ld->dc_tx_list[i].dc_ctl = 0;
2445	}
2446
2447	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2448	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2449	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2450	return (0);
2451}
2452
2453
2454/*
2455 * Initialize the RX descriptors and allocate mbufs for them. Note that
2456 * we arrange the descriptors in a closed ring, so that the last descriptor
2457 * points back to the first.
2458 */
2459static int
2460dc_list_rx_init(struct dc_softc *sc)
2461{
2462	struct dc_chain_data *cd;
2463	struct dc_list_data *ld;
2464	int i, nexti;
2465
2466	cd = &sc->dc_cdata;
2467	ld = sc->dc_ldata;
2468
2469	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2470		if (dc_newbuf(sc, i, 1) != 0)
2471			return (ENOBUFS);
2472		if (i == DC_RX_LIST_CNT - 1)
2473			nexti = 0;
2474		else
2475			nexti = i + 1;
2476		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2477	}
2478
2479	cd->dc_rx_prod = 0;
2480	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2481	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2482	return (0);
2483}
2484
2485/*
2486 * Initialize an RX descriptor and attach an MBUF cluster.
2487 */
2488static int
2489dc_newbuf(struct dc_softc *sc, int i, int alloc)
2490{
2491	struct mbuf *m_new;
2492	bus_dmamap_t tmp;
2493	bus_dma_segment_t segs[1];
2494	int error, nseg;
2495
2496	if (alloc) {
2497		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2498		if (m_new == NULL)
2499			return (ENOBUFS);
2500	} else {
2501		m_new = sc->dc_cdata.dc_rx_chain[i];
2502		m_new->m_data = m_new->m_ext.ext_buf;
2503	}
2504	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2505	m_adj(m_new, sizeof(u_int64_t));
2506
2507	/*
2508	 * If this is a PNIC chip, zero the buffer. This is part
2509	 * of the workaround for the receive bug in the 82c168 and
2510	 * 82c169 chips.
2511	 */
2512	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2513		bzero(mtod(m_new, char *), m_new->m_len);
2514
2515	/* No need to remap the mbuf if we're reusing it. */
2516	if (alloc) {
2517		error = bus_dmamap_load_mbuf_sg(sc->dc_mtag, sc->dc_sparemap,
2518		    m_new, segs, &nseg, 0);
2519		if (error) {
2520			m_freem(m_new);
2521			return (error);
2522		}
2523		KASSERT(nseg == 1,
2524		    ("%s: wrong number of segments (%d)", __func__, nseg));
2525		sc->dc_ldata->dc_rx_list[i].dc_data = htole32(segs->ds_addr);
2526		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2527		tmp = sc->dc_cdata.dc_rx_map[i];
2528		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2529		sc->dc_sparemap = tmp;
2530		sc->dc_cdata.dc_rx_chain[i] = m_new;
2531	}
2532
2533	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2534	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2535	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2536	    BUS_DMASYNC_PREREAD);
2537	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2538	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2539	return (0);
2540}
2541
2542/*
2543 * Grrrrr.
2544 * The PNIC chip has a terrible bug in it that manifests itself during
2545 * periods of heavy activity. The exact mode of failure if difficult to
2546 * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2547 * will happen on slow machines. The bug is that sometimes instead of
2548 * uploading one complete frame during reception, it uploads what looks
2549 * like the entire contents of its FIFO memory. The frame we want is at
2550 * the end of the whole mess, but we never know exactly how much data has
2551 * been uploaded, so salvaging the frame is hard.
2552 *
2553 * There is only one way to do it reliably, and it's disgusting.
2554 * Here's what we know:
2555 *
2556 * - We know there will always be somewhere between one and three extra
2557 *   descriptors uploaded.
2558 *
2559 * - We know the desired received frame will always be at the end of the
2560 *   total data upload.
2561 *
2562 * - We know the size of the desired received frame because it will be
2563 *   provided in the length field of the status word in the last descriptor.
2564 *
2565 * Here's what we do:
2566 *
2567 * - When we allocate buffers for the receive ring, we bzero() them.
2568 *   This means that we know that the buffer contents should be all
2569 *   zeros, except for data uploaded by the chip.
2570 *
2571 * - We also force the PNIC chip to upload frames that include the
2572 *   ethernet CRC at the end.
2573 *
2574 * - We gather all of the bogus frame data into a single buffer.
2575 *
2576 * - We then position a pointer at the end of this buffer and scan
2577 *   backwards until we encounter the first non-zero byte of data.
2578 *   This is the end of the received frame. We know we will encounter
2579 *   some data at the end of the frame because the CRC will always be
2580 *   there, so even if the sender transmits a packet of all zeros,
2581 *   we won't be fooled.
2582 *
2583 * - We know the size of the actual received frame, so we subtract
2584 *   that value from the current pointer location. This brings us
2585 *   to the start of the actual received packet.
2586 *
2587 * - We copy this into an mbuf and pass it on, along with the actual
2588 *   frame length.
2589 *
2590 * The performance hit is tremendous, but it beats dropping frames all
2591 * the time.
2592 */
2593
2594#define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2595static void
2596dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2597{
2598	struct dc_desc *cur_rx;
2599	struct dc_desc *c = NULL;
2600	struct mbuf *m = NULL;
2601	unsigned char *ptr;
2602	int i, total_len;
2603	u_int32_t rxstat = 0;
2604
2605	i = sc->dc_pnic_rx_bug_save;
2606	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2607	ptr = sc->dc_pnic_rx_buf;
2608	bzero(ptr, DC_RXLEN * 5);
2609
2610	/* Copy all the bytes from the bogus buffers. */
2611	while (1) {
2612		c = &sc->dc_ldata->dc_rx_list[i];
2613		rxstat = le32toh(c->dc_status);
2614		m = sc->dc_cdata.dc_rx_chain[i];
2615		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2616		ptr += DC_RXLEN;
2617		/* If this is the last buffer, break out. */
2618		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2619			break;
2620		dc_newbuf(sc, i, 0);
2621		DC_INC(i, DC_RX_LIST_CNT);
2622	}
2623
2624	/* Find the length of the actual receive frame. */
2625	total_len = DC_RXBYTES(rxstat);
2626
2627	/* Scan backwards until we hit a non-zero byte. */
2628	while (*ptr == 0x00)
2629		ptr--;
2630
2631	/* Round off. */
2632	if ((uintptr_t)(ptr) & 0x3)
2633		ptr -= 1;
2634
2635	/* Now find the start of the frame. */
2636	ptr -= total_len;
2637	if (ptr < sc->dc_pnic_rx_buf)
2638		ptr = sc->dc_pnic_rx_buf;
2639
2640	/*
2641	 * Now copy the salvaged frame to the last mbuf and fake up
2642	 * the status word to make it look like a successful
2643	 * frame reception.
2644	 */
2645	dc_newbuf(sc, i, 0);
2646	bcopy(ptr, mtod(m, char *), total_len);
2647	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2648}
2649
2650/*
2651 * This routine searches the RX ring for dirty descriptors in the
2652 * event that the rxeof routine falls out of sync with the chip's
2653 * current descriptor pointer. This may happen sometimes as a result
2654 * of a "no RX buffer available" condition that happens when the chip
2655 * consumes all of the RX buffers before the driver has a chance to
2656 * process the RX ring. This routine may need to be called more than
2657 * once to bring the driver back in sync with the chip, however we
2658 * should still be getting RX DONE interrupts to drive the search
2659 * for new packets in the RX ring, so we should catch up eventually.
2660 */
2661static int
2662dc_rx_resync(struct dc_softc *sc)
2663{
2664	struct dc_desc *cur_rx;
2665	int i, pos;
2666
2667	pos = sc->dc_cdata.dc_rx_prod;
2668
2669	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2670		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2671		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2672			break;
2673		DC_INC(pos, DC_RX_LIST_CNT);
2674	}
2675
2676	/* If the ring really is empty, then just return. */
2677	if (i == DC_RX_LIST_CNT)
2678		return (0);
2679
2680	/* We've fallen behing the chip: catch it. */
2681	sc->dc_cdata.dc_rx_prod = pos;
2682
2683	return (EAGAIN);
2684}
2685
2686/*
2687 * A frame has been uploaded: pass the resulting mbuf chain up to
2688 * the higher level protocols.
2689 */
2690static int
2691dc_rxeof(struct dc_softc *sc)
2692{
2693	struct mbuf *m, *m0;
2694	struct ifnet *ifp;
2695	struct dc_desc *cur_rx;
2696	int i, total_len, rx_npkts;
2697	u_int32_t rxstat;
2698
2699	DC_LOCK_ASSERT(sc);
2700
2701	ifp = sc->dc_ifp;
2702	i = sc->dc_cdata.dc_rx_prod;
2703	total_len = 0;
2704	rx_npkts = 0;
2705
2706	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2707	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2708	    DC_RXSTAT_OWN)) {
2709#ifdef DEVICE_POLLING
2710		if (ifp->if_capenable & IFCAP_POLLING) {
2711			if (sc->rxcycles <= 0)
2712				break;
2713			sc->rxcycles--;
2714		}
2715#endif
2716		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2717		rxstat = le32toh(cur_rx->dc_status);
2718		m = sc->dc_cdata.dc_rx_chain[i];
2719		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2720		    BUS_DMASYNC_POSTREAD);
2721		total_len = DC_RXBYTES(rxstat);
2722
2723		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2724			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2725				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2726					sc->dc_pnic_rx_bug_save = i;
2727				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2728					DC_INC(i, DC_RX_LIST_CNT);
2729					continue;
2730				}
2731				dc_pnic_rx_bug_war(sc, i);
2732				rxstat = le32toh(cur_rx->dc_status);
2733				total_len = DC_RXBYTES(rxstat);
2734			}
2735		}
2736
2737		/*
2738		 * If an error occurs, update stats, clear the
2739		 * status word and leave the mbuf cluster in place:
2740		 * it should simply get re-used next time this descriptor
2741		 * comes up in the ring.  However, don't report long
2742		 * frames as errors since they could be vlans.
2743		 */
2744		if ((rxstat & DC_RXSTAT_RXERR)) {
2745			if (!(rxstat & DC_RXSTAT_GIANT) ||
2746			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2747				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2748				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2749				ifp->if_ierrors++;
2750				if (rxstat & DC_RXSTAT_COLLSEEN)
2751					ifp->if_collisions++;
2752				dc_newbuf(sc, i, 0);
2753				if (rxstat & DC_RXSTAT_CRCERR) {
2754					DC_INC(i, DC_RX_LIST_CNT);
2755					continue;
2756				} else {
2757					dc_init_locked(sc);
2758					return (rx_npkts);
2759				}
2760			}
2761		}
2762
2763		/* No errors; receive the packet. */
2764		total_len -= ETHER_CRC_LEN;
2765#ifdef __NO_STRICT_ALIGNMENT
2766		/*
2767		 * On architectures without alignment problems we try to
2768		 * allocate a new buffer for the receive ring, and pass up
2769		 * the one where the packet is already, saving the expensive
2770		 * copy done in m_devget().
2771		 * If we are on an architecture with alignment problems, or
2772		 * if the allocation fails, then use m_devget and leave the
2773		 * existing buffer in the receive ring.
2774		 */
2775		if (dc_newbuf(sc, i, 1) == 0) {
2776			m->m_pkthdr.rcvif = ifp;
2777			m->m_pkthdr.len = m->m_len = total_len;
2778			DC_INC(i, DC_RX_LIST_CNT);
2779		} else
2780#endif
2781		{
2782			m0 = m_devget(mtod(m, char *), total_len,
2783				ETHER_ALIGN, ifp, NULL);
2784			dc_newbuf(sc, i, 0);
2785			DC_INC(i, DC_RX_LIST_CNT);
2786			if (m0 == NULL) {
2787				ifp->if_ierrors++;
2788				continue;
2789			}
2790			m = m0;
2791		}
2792
2793		ifp->if_ipackets++;
2794		DC_UNLOCK(sc);
2795		(*ifp->if_input)(ifp, m);
2796		DC_LOCK(sc);
2797		rx_npkts++;
2798	}
2799
2800	sc->dc_cdata.dc_rx_prod = i;
2801	return (rx_npkts);
2802}
2803
2804/*
2805 * A frame was downloaded to the chip. It's safe for us to clean up
2806 * the list buffers.
2807 */
2808static void
2809dc_txeof(struct dc_softc *sc)
2810{
2811	struct dc_desc *cur_tx = NULL;
2812	struct ifnet *ifp;
2813	int idx;
2814	u_int32_t ctl, txstat;
2815
2816	ifp = sc->dc_ifp;
2817
2818	/*
2819	 * Go through our tx list and free mbufs for those
2820	 * frames that have been transmitted.
2821	 */
2822	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2823	idx = sc->dc_cdata.dc_tx_cons;
2824	while (idx != sc->dc_cdata.dc_tx_prod) {
2825
2826		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2827		txstat = le32toh(cur_tx->dc_status);
2828		ctl = le32toh(cur_tx->dc_ctl);
2829
2830		if (txstat & DC_TXSTAT_OWN)
2831			break;
2832
2833		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2834			if (ctl & DC_TXCTL_SETUP) {
2835				/*
2836				 * Yes, the PNIC is so brain damaged
2837				 * that it will sometimes generate a TX
2838				 * underrun error while DMAing the RX
2839				 * filter setup frame. If we detect this,
2840				 * we have to send the setup frame again,
2841				 * or else the filter won't be programmed
2842				 * correctly.
2843				 */
2844				if (DC_IS_PNIC(sc)) {
2845					if (txstat & DC_TXSTAT_ERRSUM)
2846						dc_setfilt(sc);
2847				}
2848				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2849			}
2850			sc->dc_cdata.dc_tx_cnt--;
2851			DC_INC(idx, DC_TX_LIST_CNT);
2852			continue;
2853		}
2854
2855		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2856			/*
2857			 * XXX: Why does my Xircom taunt me so?
2858			 * For some reason it likes setting the CARRLOST flag
2859			 * even when the carrier is there. wtf?!?
2860			 * Who knows, but Conexant chips have the
2861			 * same problem. Maybe they took lessons
2862			 * from Xircom.
2863			 */
2864			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2865			    sc->dc_pmode == DC_PMODE_MII &&
2866			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2867			    DC_TXSTAT_NOCARRIER)))
2868				txstat &= ~DC_TXSTAT_ERRSUM;
2869		} else {
2870			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2871			    sc->dc_pmode == DC_PMODE_MII &&
2872			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2873			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2874				txstat &= ~DC_TXSTAT_ERRSUM;
2875		}
2876
2877		if (txstat & DC_TXSTAT_ERRSUM) {
2878			ifp->if_oerrors++;
2879			if (txstat & DC_TXSTAT_EXCESSCOLL)
2880				ifp->if_collisions++;
2881			if (txstat & DC_TXSTAT_LATECOLL)
2882				ifp->if_collisions++;
2883			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2884				dc_init_locked(sc);
2885				return;
2886			}
2887		}
2888
2889		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2890
2891		ifp->if_opackets++;
2892		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2893			bus_dmamap_sync(sc->dc_mtag,
2894			    sc->dc_cdata.dc_tx_map[idx],
2895			    BUS_DMASYNC_POSTWRITE);
2896			bus_dmamap_unload(sc->dc_mtag,
2897			    sc->dc_cdata.dc_tx_map[idx]);
2898			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2899			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2900		}
2901
2902		sc->dc_cdata.dc_tx_cnt--;
2903		DC_INC(idx, DC_TX_LIST_CNT);
2904	}
2905	sc->dc_cdata.dc_tx_cons = idx;
2906
2907	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_RSVD)
2908		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2909
2910	if (sc->dc_cdata.dc_tx_cnt == 0)
2911		sc->dc_wdog_timer = 0;
2912}
2913
2914static void
2915dc_tick(void *xsc)
2916{
2917	struct dc_softc *sc;
2918	struct mii_data *mii;
2919	struct ifnet *ifp;
2920	u_int32_t r;
2921
2922	sc = xsc;
2923	DC_LOCK_ASSERT(sc);
2924	ifp = sc->dc_ifp;
2925	mii = device_get_softc(sc->dc_miibus);
2926
2927	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2928		if (sc->dc_flags & DC_21143_NWAY) {
2929			r = CSR_READ_4(sc, DC_10BTSTAT);
2930			if (IFM_SUBTYPE(mii->mii_media_active) ==
2931			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2932				sc->dc_link = 0;
2933				mii_mediachg(mii);
2934			}
2935			if (IFM_SUBTYPE(mii->mii_media_active) ==
2936			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2937				sc->dc_link = 0;
2938				mii_mediachg(mii);
2939			}
2940			if (sc->dc_link == 0)
2941				mii_tick(mii);
2942		} else {
2943			/*
2944			 * For NICs which never report DC_RXSTATE_WAIT, we
2945			 * have to bite the bullet...
2946			 */
2947			if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
2948			    DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
2949			    sc->dc_cdata.dc_tx_cnt == 0) {
2950				mii_tick(mii);
2951				if (!(mii->mii_media_status & IFM_ACTIVE))
2952					sc->dc_link = 0;
2953			}
2954		}
2955	} else
2956		mii_tick(mii);
2957
2958	/*
2959	 * When the init routine completes, we expect to be able to send
2960	 * packets right away, and in fact the network code will send a
2961	 * gratuitous ARP the moment the init routine marks the interface
2962	 * as running. However, even though the MAC may have been initialized,
2963	 * there may be a delay of a few seconds before the PHY completes
2964	 * autonegotiation and the link is brought up. Any transmissions
2965	 * made during that delay will be lost. Dealing with this is tricky:
2966	 * we can't just pause in the init routine while waiting for the
2967	 * PHY to come ready since that would bring the whole system to
2968	 * a screeching halt for several seconds.
2969	 *
2970	 * What we do here is prevent the TX start routine from sending
2971	 * any packets until a link has been established. After the
2972	 * interface has been initialized, the tick routine will poll
2973	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2974	 * that time, packets will stay in the send queue, and once the
2975	 * link comes up, they will be flushed out to the wire.
2976	 */
2977	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2978	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2979		sc->dc_link++;
2980		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2981			dc_start_locked(ifp);
2982	}
2983
2984	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2985		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2986	else
2987		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2988}
2989
2990/*
2991 * A transmit underrun has occurred.  Back off the transmit threshold,
2992 * or switch to store and forward mode if we have to.
2993 */
2994static void
2995dc_tx_underrun(struct dc_softc *sc)
2996{
2997	u_int32_t isr;
2998	int i;
2999
3000	if (DC_IS_DAVICOM(sc))
3001		dc_init_locked(sc);
3002
3003	if (DC_IS_INTEL(sc)) {
3004		/*
3005		 * The real 21143 requires that the transmitter be idle
3006		 * in order to change the transmit threshold or store
3007		 * and forward state.
3008		 */
3009		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3010
3011		for (i = 0; i < DC_TIMEOUT; i++) {
3012			isr = CSR_READ_4(sc, DC_ISR);
3013			if (isr & DC_ISR_TX_IDLE)
3014				break;
3015			DELAY(10);
3016		}
3017		if (i == DC_TIMEOUT) {
3018			device_printf(sc->dc_dev,
3019			    "%s: failed to force tx to idle state\n",
3020			    __func__);
3021			dc_init_locked(sc);
3022		}
3023	}
3024
3025	device_printf(sc->dc_dev, "TX underrun -- ");
3026	sc->dc_txthresh += DC_TXTHRESH_INC;
3027	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3028		printf("using store and forward mode\n");
3029		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3030	} else {
3031		printf("increasing TX threshold\n");
3032		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3033		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3034	}
3035
3036	if (DC_IS_INTEL(sc))
3037		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3038}
3039
3040#ifdef DEVICE_POLLING
3041static poll_handler_t dc_poll;
3042
3043static int
3044dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3045{
3046	struct dc_softc *sc = ifp->if_softc;
3047	int rx_npkts = 0;
3048
3049	DC_LOCK(sc);
3050
3051	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3052		DC_UNLOCK(sc);
3053		return (rx_npkts);
3054	}
3055
3056	sc->rxcycles = count;
3057	rx_npkts = dc_rxeof(sc);
3058	dc_txeof(sc);
3059	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3060	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3061		dc_start_locked(ifp);
3062
3063	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3064		u_int32_t	status;
3065
3066		status = CSR_READ_4(sc, DC_ISR);
3067		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3068			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3069			DC_ISR_BUS_ERR);
3070		if (!status) {
3071			DC_UNLOCK(sc);
3072			return (rx_npkts);
3073		}
3074		/* ack what we have */
3075		CSR_WRITE_4(sc, DC_ISR, status);
3076
3077		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3078			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3079			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3080
3081			if (dc_rx_resync(sc))
3082				dc_rxeof(sc);
3083		}
3084		/* restart transmit unit if necessary */
3085		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3086			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3087
3088		if (status & DC_ISR_TX_UNDERRUN)
3089			dc_tx_underrun(sc);
3090
3091		if (status & DC_ISR_BUS_ERR) {
3092			if_printf(ifp, "%s: bus error\n", __func__);
3093			dc_reset(sc);
3094			dc_init_locked(sc);
3095		}
3096	}
3097	DC_UNLOCK(sc);
3098	return (rx_npkts);
3099}
3100#endif /* DEVICE_POLLING */
3101
3102static void
3103dc_intr(void *arg)
3104{
3105	struct dc_softc *sc;
3106	struct ifnet *ifp;
3107	u_int32_t status;
3108
3109	sc = arg;
3110
3111	if (sc->suspended)
3112		return;
3113
3114	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3115		return;
3116
3117	DC_LOCK(sc);
3118	ifp = sc->dc_ifp;
3119#ifdef DEVICE_POLLING
3120	if (ifp->if_capenable & IFCAP_POLLING) {
3121		DC_UNLOCK(sc);
3122		return;
3123	}
3124#endif
3125
3126	/* Suppress unwanted interrupts */
3127	if (!(ifp->if_flags & IFF_UP)) {
3128		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3129			dc_stop(sc);
3130		DC_UNLOCK(sc);
3131		return;
3132	}
3133
3134	/* Disable interrupts. */
3135	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3136
3137	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
3138	    status != 0xFFFFFFFF &&
3139	    (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3140
3141		CSR_WRITE_4(sc, DC_ISR, status);
3142
3143		if (status & DC_ISR_RX_OK) {
3144			int		curpkts;
3145			curpkts = ifp->if_ipackets;
3146			dc_rxeof(sc);
3147			if (curpkts == ifp->if_ipackets) {
3148				while (dc_rx_resync(sc))
3149					dc_rxeof(sc);
3150			}
3151		}
3152
3153		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3154			dc_txeof(sc);
3155
3156		if (status & DC_ISR_TX_IDLE) {
3157			dc_txeof(sc);
3158			if (sc->dc_cdata.dc_tx_cnt) {
3159				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3160				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3161			}
3162		}
3163
3164		if (status & DC_ISR_TX_UNDERRUN)
3165			dc_tx_underrun(sc);
3166
3167		if ((status & DC_ISR_RX_WATDOGTIMEO)
3168		    || (status & DC_ISR_RX_NOBUF)) {
3169			int		curpkts;
3170			curpkts = ifp->if_ipackets;
3171			dc_rxeof(sc);
3172			if (curpkts == ifp->if_ipackets) {
3173				while (dc_rx_resync(sc))
3174					dc_rxeof(sc);
3175			}
3176		}
3177
3178		if (status & DC_ISR_BUS_ERR) {
3179			dc_reset(sc);
3180			dc_init_locked(sc);
3181		}
3182	}
3183
3184	/* Re-enable interrupts. */
3185	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3186
3187	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3188		dc_start_locked(ifp);
3189
3190	DC_UNLOCK(sc);
3191}
3192
3193/*
3194 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3195 * pointers to the fragment pointers.
3196 */
3197static int
3198dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3199{
3200	bus_dma_segment_t segs[DC_MAXFRAGS];
3201	struct dc_desc *f;
3202	struct mbuf *m;
3203	int cur, defragged, error, first, frag, i, idx, nseg;
3204
3205	/*
3206	 * If there's no way we can send any packets, return now.
3207	 */
3208	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_RSVD)
3209		return (ENOBUFS);
3210
3211	m = NULL;
3212	defragged = 0;
3213	if (sc->dc_flags & DC_TX_COALESCE &&
3214	    ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
3215		m = m_defrag(*m_head, M_DONTWAIT);
3216		defragged = 1;
3217	} else {
3218		/*
3219		 * Count the number of frags in this chain to see if we
3220		 * need to m_collapse.  Since the descriptor list is shared
3221		 * by all packets, we'll m_collapse long chains so that they
3222		 * do not use up the entire list, even if they would fit.
3223		 */
3224		i = 0;
3225		for (m = *m_head; m != NULL; m = m->m_next)
3226			i++;
3227		if (i > DC_TX_LIST_CNT / 4 ||
3228		    DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
3229		    DC_TX_LIST_RSVD) {
3230			m = m_collapse(*m_head, M_DONTWAIT, DC_MAXFRAGS);
3231			defragged = 1;
3232		}
3233	}
3234	if (defragged != 0) {
3235		if (m == NULL) {
3236			m_freem(*m_head);
3237			*m_head = NULL;
3238			return (ENOBUFS);
3239		}
3240		*m_head = m;
3241	}
3242
3243	idx = sc->dc_cdata.dc_tx_prod;
3244	error = bus_dmamap_load_mbuf_sg(sc->dc_mtag,
3245	    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3246	if (error == EFBIG) {
3247		if (defragged != 0 || (m = m_collapse(*m_head, M_DONTWAIT,
3248		    DC_MAXFRAGS)) == NULL) {
3249			m_freem(*m_head);
3250			*m_head = NULL;
3251			return (defragged != 0 ? error : ENOBUFS);
3252		}
3253		*m_head = m;
3254		error = bus_dmamap_load_mbuf_sg(sc->dc_mtag,
3255		    sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
3256		if (error != 0) {
3257			m_freem(*m_head);
3258			*m_head = NULL;
3259			return (error);
3260		}
3261	} else if (error != 0)
3262		return (error);
3263	KASSERT(nseg <= DC_MAXFRAGS,
3264	    ("%s: wrong number of segments (%d)", __func__, nseg));
3265	if (nseg == 0) {
3266		m_freem(*m_head);
3267		*m_head = NULL;
3268		return (EIO);
3269	}
3270
3271	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3272	for (i = 0; i < nseg; i++) {
3273		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3274		    (frag == (DC_TX_LIST_CNT - 1)) &&
3275		    (first != sc->dc_cdata.dc_tx_first)) {
3276			bus_dmamap_unload(sc->dc_mtag,
3277			    sc->dc_cdata.dc_tx_map[first]);
3278			m_freem(*m_head);
3279			*m_head = NULL;
3280			return (ENOBUFS);
3281		}
3282
3283		f = &sc->dc_ldata->dc_tx_list[frag];
3284		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3285		if (i == 0) {
3286			f->dc_status = 0;
3287			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3288		} else
3289			f->dc_status = htole32(DC_TXSTAT_OWN);
3290		f->dc_data = htole32(segs[i].ds_addr);
3291		cur = frag;
3292		DC_INC(frag, DC_TX_LIST_CNT);
3293	}
3294
3295	sc->dc_cdata.dc_tx_prod = frag;
3296	sc->dc_cdata.dc_tx_cnt += nseg;
3297	sc->dc_cdata.dc_tx_chain[cur] = *m_head;
3298	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3299	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3300		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3301		    htole32(DC_TXCTL_FINT);
3302	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3303		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3304	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3305		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3306	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3307
3308	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3309	    BUS_DMASYNC_PREWRITE);
3310	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3311	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3312	return (0);
3313}
3314
3315static void
3316dc_start(struct ifnet *ifp)
3317{
3318	struct dc_softc *sc;
3319
3320	sc = ifp->if_softc;
3321	DC_LOCK(sc);
3322	dc_start_locked(ifp);
3323	DC_UNLOCK(sc);
3324}
3325
3326/*
3327 * Main transmit routine
3328 * To avoid having to do mbuf copies, we put pointers to the mbuf data
3329 * regions directly in the transmit lists.  We also save a copy of the
3330 * pointers since the transmit list fragment pointers are physical
3331 * addresses.
3332 */
3333static void
3334dc_start_locked(struct ifnet *ifp)
3335{
3336	struct dc_softc *sc;
3337	struct mbuf *m_head = NULL;
3338	unsigned int queued = 0;
3339	int idx;
3340
3341	sc = ifp->if_softc;
3342
3343	DC_LOCK_ASSERT(sc);
3344
3345	if (!sc->dc_link && ifp->if_snd.ifq_len < 10)
3346		return;
3347
3348	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
3349		return;
3350
3351	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3352
3353	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3354		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3355		if (m_head == NULL)
3356			break;
3357
3358		if (dc_encap(sc, &m_head)) {
3359			if (m_head == NULL)
3360				break;
3361			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3362			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3363			break;
3364		}
3365		idx = sc->dc_cdata.dc_tx_prod;
3366
3367		queued++;
3368		/*
3369		 * If there's a BPF listener, bounce a copy of this frame
3370		 * to him.
3371		 */
3372		BPF_MTAP(ifp, m_head);
3373
3374		if (sc->dc_flags & DC_TX_ONE) {
3375			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3376			break;
3377		}
3378	}
3379
3380	if (queued > 0) {
3381		/* Transmit */
3382		if (!(sc->dc_flags & DC_TX_POLL))
3383			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3384
3385		/*
3386		 * Set a timeout in case the chip goes out to lunch.
3387		 */
3388		sc->dc_wdog_timer = 5;
3389	}
3390}
3391
3392static void
3393dc_init(void *xsc)
3394{
3395	struct dc_softc *sc = xsc;
3396
3397	DC_LOCK(sc);
3398	dc_init_locked(sc);
3399	DC_UNLOCK(sc);
3400}
3401
3402static void
3403dc_init_locked(struct dc_softc *sc)
3404{
3405	struct ifnet *ifp = sc->dc_ifp;
3406	struct mii_data *mii;
3407
3408	DC_LOCK_ASSERT(sc);
3409
3410	mii = device_get_softc(sc->dc_miibus);
3411
3412	/*
3413	 * Cancel pending I/O and free all RX/TX buffers.
3414	 */
3415	dc_stop(sc);
3416	dc_reset(sc);
3417
3418	/*
3419	 * Set cache alignment and burst length.
3420	 */
3421	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3422		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3423	else
3424		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3425	/*
3426	 * Evenly share the bus between receive and transmit process.
3427	 */
3428	if (DC_IS_INTEL(sc))
3429		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3430	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3431		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3432	} else {
3433		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3434	}
3435	if (sc->dc_flags & DC_TX_POLL)
3436		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3437	switch(sc->dc_cachesize) {
3438	case 32:
3439		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3440		break;
3441	case 16:
3442		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3443		break;
3444	case 8:
3445		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3446		break;
3447	case 0:
3448	default:
3449		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3450		break;
3451	}
3452
3453	if (sc->dc_flags & DC_TX_STORENFWD)
3454		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3455	else {
3456		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3457			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3458		} else {
3459			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3460			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3461		}
3462	}
3463
3464	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3465	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3466
3467	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3468		/*
3469		 * The app notes for the 98713 and 98715A say that
3470		 * in order to have the chips operate properly, a magic
3471		 * number must be written to CSR16. Macronix does not
3472		 * document the meaning of these bits so there's no way
3473		 * to know exactly what they do. The 98713 has a magic
3474		 * number all its own; the rest all use a different one.
3475		 */
3476		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3477		if (sc->dc_type == DC_TYPE_98713)
3478			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3479		else
3480			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3481	}
3482
3483	if (DC_IS_XIRCOM(sc)) {
3484		/*
3485		 * setup General Purpose Port mode and data so the tulip
3486		 * can talk to the MII.
3487		 */
3488		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3489			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3490		DELAY(10);
3491		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3492			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3493		DELAY(10);
3494	}
3495
3496	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3497	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3498
3499	/* Init circular RX list. */
3500	if (dc_list_rx_init(sc) == ENOBUFS) {
3501		device_printf(sc->dc_dev,
3502		    "initialization failed: no memory for rx buffers\n");
3503		dc_stop(sc);
3504		return;
3505	}
3506
3507	/*
3508	 * Init TX descriptors.
3509	 */
3510	dc_list_tx_init(sc);
3511
3512	/*
3513	 * Load the address of the RX list.
3514	 */
3515	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3516	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3517
3518	/*
3519	 * Enable interrupts.
3520	 */
3521#ifdef DEVICE_POLLING
3522	/*
3523	 * ... but only if we are not polling, and make sure they are off in
3524	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3525	 * after a reset.
3526	 */
3527	if (ifp->if_capenable & IFCAP_POLLING)
3528		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3529	else
3530#endif
3531	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3532	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3533
3534	/* Enable transmitter. */
3535	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3536
3537	/*
3538	 * If this is an Intel 21143 and we're not using the
3539	 * MII port, program the LED control pins so we get
3540	 * link and activity indications.
3541	 */
3542	if (sc->dc_flags & DC_TULIP_LEDS) {
3543		CSR_WRITE_4(sc, DC_WATCHDOG,
3544		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3545		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3546	}
3547
3548	/*
3549	 * Load the RX/multicast filter. We do this sort of late
3550	 * because the filter programming scheme on the 21143 and
3551	 * some clones requires DMAing a setup frame via the TX
3552	 * engine, and we need the transmitter enabled for that.
3553	 */
3554	dc_setfilt(sc);
3555
3556	/* Enable receiver. */
3557	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3558	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3559
3560	mii_mediachg(mii);
3561	dc_setcfg(sc, sc->dc_if_media);
3562
3563	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3564	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3565
3566	/* Don't start the ticker if this is a homePNA link. */
3567	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3568		sc->dc_link = 1;
3569	else {
3570		if (sc->dc_flags & DC_21143_NWAY)
3571			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3572		else
3573			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3574	}
3575
3576	sc->dc_wdog_timer = 0;
3577	callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3578}
3579
3580/*
3581 * Set media options.
3582 */
3583static int
3584dc_ifmedia_upd(struct ifnet *ifp)
3585{
3586	struct dc_softc *sc;
3587	struct mii_data *mii;
3588	struct ifmedia *ifm;
3589
3590	sc = ifp->if_softc;
3591	mii = device_get_softc(sc->dc_miibus);
3592	DC_LOCK(sc);
3593	mii_mediachg(mii);
3594	ifm = &mii->mii_media;
3595
3596	if (DC_IS_DAVICOM(sc) &&
3597	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3598		dc_setcfg(sc, ifm->ifm_media);
3599	else
3600		sc->dc_link = 0;
3601	DC_UNLOCK(sc);
3602
3603	return (0);
3604}
3605
3606/*
3607 * Report current media status.
3608 */
3609static void
3610dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3611{
3612	struct dc_softc *sc;
3613	struct mii_data *mii;
3614	struct ifmedia *ifm;
3615
3616	sc = ifp->if_softc;
3617	mii = device_get_softc(sc->dc_miibus);
3618	DC_LOCK(sc);
3619	mii_pollstat(mii);
3620	ifm = &mii->mii_media;
3621	if (DC_IS_DAVICOM(sc)) {
3622		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3623			ifmr->ifm_active = ifm->ifm_media;
3624			ifmr->ifm_status = 0;
3625			DC_UNLOCK(sc);
3626			return;
3627		}
3628	}
3629	ifmr->ifm_active = mii->mii_media_active;
3630	ifmr->ifm_status = mii->mii_media_status;
3631	DC_UNLOCK(sc);
3632}
3633
3634static int
3635dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3636{
3637	struct dc_softc *sc = ifp->if_softc;
3638	struct ifreq *ifr = (struct ifreq *)data;
3639	struct mii_data *mii;
3640	int error = 0;
3641
3642	switch (command) {
3643	case SIOCSIFFLAGS:
3644		DC_LOCK(sc);
3645		if (ifp->if_flags & IFF_UP) {
3646			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3647				(IFF_PROMISC | IFF_ALLMULTI);
3648
3649			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3650				if (need_setfilt)
3651					dc_setfilt(sc);
3652			} else {
3653				sc->dc_txthresh = 0;
3654				dc_init_locked(sc);
3655			}
3656		} else {
3657			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3658				dc_stop(sc);
3659		}
3660		sc->dc_if_flags = ifp->if_flags;
3661		DC_UNLOCK(sc);
3662		error = 0;
3663		break;
3664	case SIOCADDMULTI:
3665	case SIOCDELMULTI:
3666		DC_LOCK(sc);
3667		dc_setfilt(sc);
3668		DC_UNLOCK(sc);
3669		error = 0;
3670		break;
3671	case SIOCGIFMEDIA:
3672	case SIOCSIFMEDIA:
3673		mii = device_get_softc(sc->dc_miibus);
3674		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3675		break;
3676	case SIOCSIFCAP:
3677#ifdef DEVICE_POLLING
3678		if (ifr->ifr_reqcap & IFCAP_POLLING &&
3679		    !(ifp->if_capenable & IFCAP_POLLING)) {
3680			error = ether_poll_register(dc_poll, ifp);
3681			if (error)
3682				return(error);
3683			DC_LOCK(sc);
3684			/* Disable interrupts */
3685			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3686			ifp->if_capenable |= IFCAP_POLLING;
3687			DC_UNLOCK(sc);
3688			return (error);
3689		}
3690		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
3691		    ifp->if_capenable & IFCAP_POLLING) {
3692			error = ether_poll_deregister(ifp);
3693			/* Enable interrupts. */
3694			DC_LOCK(sc);
3695			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3696			ifp->if_capenable &= ~IFCAP_POLLING;
3697			DC_UNLOCK(sc);
3698			return (error);
3699		}
3700#endif /* DEVICE_POLLING */
3701		break;
3702	default:
3703		error = ether_ioctl(ifp, command, data);
3704		break;
3705	}
3706
3707	return (error);
3708}
3709
3710static void
3711dc_watchdog(void *xsc)
3712{
3713	struct dc_softc *sc = xsc;
3714	struct ifnet *ifp;
3715
3716	DC_LOCK_ASSERT(sc);
3717
3718	if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
3719		callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
3720		return;
3721	}
3722
3723	ifp = sc->dc_ifp;
3724	ifp->if_oerrors++;
3725	device_printf(sc->dc_dev, "watchdog timeout\n");
3726
3727	dc_stop(sc);
3728	dc_reset(sc);
3729	dc_init_locked(sc);
3730
3731	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3732		dc_start_locked(ifp);
3733}
3734
3735/*
3736 * Stop the adapter and free any mbufs allocated to the
3737 * RX and TX lists.
3738 */
3739static void
3740dc_stop(struct dc_softc *sc)
3741{
3742	struct ifnet *ifp;
3743	struct dc_list_data *ld;
3744	struct dc_chain_data *cd;
3745	int i;
3746	u_int32_t ctl;
3747
3748	DC_LOCK_ASSERT(sc);
3749
3750	ifp = sc->dc_ifp;
3751	ld = sc->dc_ldata;
3752	cd = &sc->dc_cdata;
3753
3754	callout_stop(&sc->dc_stat_ch);
3755	callout_stop(&sc->dc_wdog_ch);
3756	sc->dc_wdog_timer = 0;
3757
3758	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3759
3760	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3761	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3762	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3763	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3764	sc->dc_link = 0;
3765
3766	/*
3767	 * Free data in the RX lists.
3768	 */
3769	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3770		if (cd->dc_rx_chain[i] != NULL) {
3771			m_freem(cd->dc_rx_chain[i]);
3772			cd->dc_rx_chain[i] = NULL;
3773		}
3774	}
3775	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3776
3777	/*
3778	 * Free the TX list buffers.
3779	 */
3780	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3781		if (cd->dc_tx_chain[i] != NULL) {
3782			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3783			if ((ctl & DC_TXCTL_SETUP) ||
3784			    !(ctl & DC_TXCTL_LASTFRAG)) {
3785				cd->dc_tx_chain[i] = NULL;
3786				continue;
3787			}
3788			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3789			m_freem(cd->dc_tx_chain[i]);
3790			cd->dc_tx_chain[i] = NULL;
3791		}
3792	}
3793	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3794}
3795
3796/*
3797 * Device suspend routine.  Stop the interface and save some PCI
3798 * settings in case the BIOS doesn't restore them properly on
3799 * resume.
3800 */
3801static int
3802dc_suspend(device_t dev)
3803{
3804	struct dc_softc *sc;
3805
3806	sc = device_get_softc(dev);
3807	DC_LOCK(sc);
3808	dc_stop(sc);
3809	sc->suspended = 1;
3810	DC_UNLOCK(sc);
3811
3812	return (0);
3813}
3814
3815/*
3816 * Device resume routine.  Restore some PCI settings in case the BIOS
3817 * doesn't, re-enable busmastering, and restart the interface if
3818 * appropriate.
3819 */
3820static int
3821dc_resume(device_t dev)
3822{
3823	struct dc_softc *sc;
3824	struct ifnet *ifp;
3825
3826	sc = device_get_softc(dev);
3827	ifp = sc->dc_ifp;
3828
3829	/* reinitialize interface if necessary */
3830	DC_LOCK(sc);
3831	if (ifp->if_flags & IFF_UP)
3832		dc_init_locked(sc);
3833
3834	sc->suspended = 0;
3835	DC_UNLOCK(sc);
3836
3837	return (0);
3838}
3839
3840/*
3841 * Stop all chip I/O so that the kernel's probe routines don't
3842 * get confused by errant DMAs when rebooting.
3843 */
3844static int
3845dc_shutdown(device_t dev)
3846{
3847	struct dc_softc *sc;
3848
3849	sc = device_get_softc(dev);
3850
3851	DC_LOCK(sc);
3852	dc_stop(sc);
3853	DC_UNLOCK(sc);
3854
3855	return (0);
3856}
3857
3858static int
3859dc_check_multiport(struct dc_softc *sc)
3860{
3861	struct dc_softc *dsc;
3862	devclass_t dc;
3863	device_t child;
3864	uint8_t *eaddr;
3865	int unit;
3866
3867	dc = devclass_find("dc");
3868	for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
3869		child = devclass_get_device(dc, unit);
3870		if (child == NULL)
3871			continue;
3872		if (child == sc->dc_dev)
3873			continue;
3874		if (device_get_parent(child) != device_get_parent(sc->dc_dev))
3875			continue;
3876		if (unit > device_get_unit(sc->dc_dev))
3877			continue;
3878		dsc = device_get_softc(child);
3879		device_printf(sc->dc_dev, "Using station address of %s as base",
3880		    device_get_nameunit(child));
3881		bcopy(dsc->dc_eaddr, sc->dc_eaddr, ETHER_ADDR_LEN);
3882		eaddr = (uint8_t *)sc->dc_eaddr;
3883		eaddr[5]++;
3884		return (0);
3885	}
3886	return (ENOENT);
3887}
3888