if_dc.c revision 148948
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/dc/if_dc.c 148948 2005-08-10 20:33:46Z jhb $");
35
36/*
37 * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38 * series chips and several workalikes including the following:
39 *
40 * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41 * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42 * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43 * ASIX Electronics AX88140A (www.asix.com.tw)
44 * ASIX Electronics AX88141 (www.asix.com.tw)
45 * ADMtek AL981 (www.admtek.com.tw)
46 * ADMtek AN985 (www.admtek.com.tw)
47 * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48 * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49 * Accton EN1217 (www.accton.com)
50 * Xircom X3201 (www.xircom.com)
51 * Abocom FE2500
52 * Conexant LANfinity (www.conexant.com)
53 * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54 *
55 * Datasheets for the 21143 are available at developer.intel.com.
56 * Datasheets for the clone parts can be found at their respective sites.
57 * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58 * The PNIC II is essentially a Macronix 98715A chip; the only difference
59 * worth noting is that its multicast hash table is only 128 bits wide
60 * instead of 512.
61 *
62 * Written by Bill Paul <wpaul@ee.columbia.edu>
63 * Electrical Engineering Department
64 * Columbia University, New York City
65 */
66/*
67 * The Intel 21143 is the successor to the DEC 21140. It is basically
68 * the same as the 21140 but with a few new features. The 21143 supports
69 * three kinds of media attachments:
70 *
71 * o MII port, for 10Mbps and 100Mbps support and NWAY
72 *   autonegotiation provided by an external PHY.
73 * o SYM port, for symbol mode 100Mbps support.
74 * o 10baseT port.
75 * o AUI/BNC port.
76 *
77 * The 100Mbps SYM port and 10baseT port can be used together in
78 * combination with the internal NWAY support to create a 10/100
79 * autosensing configuration.
80 *
81 * Note that not all tulip workalikes are handled in this driver: we only
82 * deal with those which are relatively well behaved. The Winbond is
83 * handled separately due to its different register offsets and the
84 * special handling needed for its various bugs. The PNIC is handled
85 * here, but I'm not thrilled about it.
86 *
87 * All of the workalike chips use some form of MII transceiver support
88 * with the exception of the Macronix chips, which also have a SYM port.
89 * The ASIX AX88140A is also documented to have a SYM port, but all
90 * the cards I've seen use an MII transceiver, probably because the
91 * AX88140A doesn't support internal NWAY.
92 */
93
94#include <sys/param.h>
95#include <sys/endian.h>
96#include <sys/systm.h>
97#include <sys/sockio.h>
98#include <sys/mbuf.h>
99#include <sys/malloc.h>
100#include <sys/kernel.h>
101#include <sys/module.h>
102#include <sys/socket.h>
103#include <sys/sysctl.h>
104
105#include <net/if.h>
106#include <net/if_arp.h>
107#include <net/ethernet.h>
108#include <net/if_dl.h>
109#include <net/if_media.h>
110#include <net/if_types.h>
111#include <net/if_vlan_var.h>
112
113#include <net/bpf.h>
114
115#include <machine/bus.h>
116#include <machine/resource.h>
117#include <sys/bus.h>
118#include <sys/rman.h>
119
120#include <dev/mii/mii.h>
121#include <dev/mii/miivar.h>
122
123#include <dev/pci/pcireg.h>
124#include <dev/pci/pcivar.h>
125
126#define DC_USEIOSPACE
127#ifdef __alpha__
128#define SRM_MEDIA
129#endif
130
131#include <pci/if_dcreg.h>
132
133#ifdef __sparc64__
134#include <dev/ofw/openfirm.h>
135#include <machine/ofw_machdep.h>
136#endif
137
138MODULE_DEPEND(dc, pci, 1, 1, 1);
139MODULE_DEPEND(dc, ether, 1, 1, 1);
140MODULE_DEPEND(dc, miibus, 1, 1, 1);
141
142/* "controller miibus0" required.  See GENERIC if you get errors here. */
143#include "miibus_if.h"
144
145/*
146 * Various supported device vendors/types and their names.
147 */
148static struct dc_type dc_devs[] = {
149	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
150		"Intel 21143 10/100BaseTX" },
151	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
152		"Davicom DM9009 10/100BaseTX" },
153	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
154		"Davicom DM9100 10/100BaseTX" },
155	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
156		"Davicom DM9102 10/100BaseTX" },
157	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
158		"Davicom DM9102A 10/100BaseTX" },
159	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
160		"ADMtek AL981 10/100BaseTX" },
161	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
162		"ADMtek AN985 10/100BaseTX" },
163	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
164		"ADMtek ADM9511 10/100BaseTX" },
165	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
166		"ADMtek ADM9513 10/100BaseTX" },
167	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
168		"Netgear FA511 10/100BaseTX" },
169	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
170		"ASIX AX88140A 10/100BaseTX" },
171	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
172		"ASIX AX88141 10/100BaseTX" },
173	{ DC_VENDORID_MX, DC_DEVICEID_98713,
174		"Macronix 98713 10/100BaseTX" },
175	{ DC_VENDORID_MX, DC_DEVICEID_98713,
176		"Macronix 98713A 10/100BaseTX" },
177	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
178		"Compex RL100-TX 10/100BaseTX" },
179	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
180		"Compex RL100-TX 10/100BaseTX" },
181	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
182		"Macronix 98715/98715A 10/100BaseTX" },
183	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
184		"Macronix 98715AEC-C 10/100BaseTX" },
185	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
186		"Macronix 98725 10/100BaseTX" },
187	{ DC_VENDORID_MX, DC_DEVICEID_98727,
188		"Macronix 98727/98732 10/100BaseTX" },
189	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
190		"LC82C115 PNIC II 10/100BaseTX" },
191	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
192		"82c168 PNIC 10/100BaseTX" },
193	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
194		"82c169 PNIC 10/100BaseTX" },
195	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
196		"Accton EN1217 10/100BaseTX" },
197	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
198		"Accton EN2242 MiniPCI 10/100BaseTX" },
199	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
200	  	"Xircom X3201 10/100BaseTX" },
201	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
202		"Abocom FE2500 10/100BaseTX" },
203	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX,
204		"Abocom FE2500MX 10/100BaseTX" },
205	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
206		"Conexant LANfinity MiniPCI 10/100BaseTX" },
207	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
208		"Hawking CB102 CardBus 10/100" },
209	{ DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
210		"PlaneX FNW-3602-T CardBus 10/100" },
211	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
212		"3Com OfficeConnect 10/100B" },
213	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
214		"Microsoft MN-120 CardBus 10/100" },
215	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
216		"Microsoft MN-130 10/100" },
217	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
218		"Microsoft MN-130 10/100" },
219	{ 0, 0, NULL }
220};
221
222static int dc_probe(device_t);
223static int dc_attach(device_t);
224static int dc_detach(device_t);
225static int dc_suspend(device_t);
226static int dc_resume(device_t);
227static struct dc_type *dc_devtype(device_t);
228static int dc_newbuf(struct dc_softc *, int, int);
229static int dc_encap(struct dc_softc *, struct mbuf **);
230static void dc_pnic_rx_bug_war(struct dc_softc *, int);
231static int dc_rx_resync(struct dc_softc *);
232static void dc_rxeof(struct dc_softc *);
233static void dc_txeof(struct dc_softc *);
234static void dc_tick(void *);
235static void dc_tx_underrun(struct dc_softc *);
236static void dc_intr(void *);
237static void dc_start(struct ifnet *);
238static int dc_ioctl(struct ifnet *, u_long, caddr_t);
239static void dc_init(void *);
240static void dc_stop(struct dc_softc *);
241static void dc_watchdog(struct ifnet *);
242static void dc_shutdown(device_t);
243static int dc_ifmedia_upd(struct ifnet *);
244static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
245
246static void dc_delay(struct dc_softc *);
247static void dc_eeprom_idle(struct dc_softc *);
248static void dc_eeprom_putbyte(struct dc_softc *, int);
249static void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
250static void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
251static void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
252static void dc_eeprom_width(struct dc_softc *);
253static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
254
255static void dc_mii_writebit(struct dc_softc *, int);
256static int dc_mii_readbit(struct dc_softc *);
257static void dc_mii_sync(struct dc_softc *);
258static void dc_mii_send(struct dc_softc *, u_int32_t, int);
259static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
260static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
261static int dc_miibus_readreg(device_t, int, int);
262static int dc_miibus_writereg(device_t, int, int, int);
263static void dc_miibus_statchg(device_t);
264static void dc_miibus_mediainit(device_t);
265
266static void dc_setcfg(struct dc_softc *, int);
267static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
268static uint32_t dc_mchash_be(const uint8_t *);
269static void dc_setfilt_21143(struct dc_softc *);
270static void dc_setfilt_asix(struct dc_softc *);
271static void dc_setfilt_admtek(struct dc_softc *);
272static void dc_setfilt_xircom(struct dc_softc *);
273
274static void dc_setfilt(struct dc_softc *);
275
276static void dc_reset(struct dc_softc *);
277static int dc_list_rx_init(struct dc_softc *);
278static int dc_list_tx_init(struct dc_softc *);
279
280static void dc_read_srom(struct dc_softc *, int);
281static void dc_parse_21143_srom(struct dc_softc *);
282static void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
283static void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
284static void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
285static void dc_apply_fixup(struct dc_softc *, int);
286
287static void dc_dma_map_txbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
288static void dc_dma_map_rxbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
289
290#ifdef DC_USEIOSPACE
291#define DC_RES			SYS_RES_IOPORT
292#define DC_RID			DC_PCI_CFBIO
293#else
294#define DC_RES			SYS_RES_MEMORY
295#define DC_RID			DC_PCI_CFBMA
296#endif
297
298static device_method_t dc_methods[] = {
299	/* Device interface */
300	DEVMETHOD(device_probe,		dc_probe),
301	DEVMETHOD(device_attach,	dc_attach),
302	DEVMETHOD(device_detach,	dc_detach),
303	DEVMETHOD(device_suspend,	dc_suspend),
304	DEVMETHOD(device_resume,	dc_resume),
305	DEVMETHOD(device_shutdown,	dc_shutdown),
306
307	/* bus interface */
308	DEVMETHOD(bus_print_child,	bus_generic_print_child),
309	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
310
311	/* MII interface */
312	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
313	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
314	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
315	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
316
317	{ 0, 0 }
318};
319
320static driver_t dc_driver = {
321	"dc",
322	dc_methods,
323	sizeof(struct dc_softc)
324};
325
326static devclass_t dc_devclass;
327#ifdef __i386__
328static int dc_quick = 1;
329SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
330    "do not m_devget() in dc driver");
331#endif
332
333DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
334DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
335DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
336
337#define DC_SETBIT(sc, reg, x)				\
338	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
339
340#define DC_CLRBIT(sc, reg, x)				\
341	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
342
343#define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
344#define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
345
346#define IS_MPSAFE 	0
347
348static void
349dc_delay(struct dc_softc *sc)
350{
351	int idx;
352
353	for (idx = (300 / 33) + 1; idx > 0; idx--)
354		CSR_READ_4(sc, DC_BUSCTL);
355}
356
357static void
358dc_eeprom_width(struct dc_softc *sc)
359{
360	int i;
361
362	/* Force EEPROM to idle state. */
363	dc_eeprom_idle(sc);
364
365	/* Enter EEPROM access mode. */
366	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
367	dc_delay(sc);
368	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
369	dc_delay(sc);
370	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
371	dc_delay(sc);
372	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
373	dc_delay(sc);
374
375	for (i = 3; i--;) {
376		if (6 & (1 << i))
377			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
378		else
379			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
380		dc_delay(sc);
381		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
382		dc_delay(sc);
383		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
384		dc_delay(sc);
385	}
386
387	for (i = 1; i <= 12; i++) {
388		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
389		dc_delay(sc);
390		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
391			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
392			dc_delay(sc);
393			break;
394		}
395		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
396		dc_delay(sc);
397	}
398
399	/* Turn off EEPROM access mode. */
400	dc_eeprom_idle(sc);
401
402	if (i < 4 || i > 12)
403		sc->dc_romwidth = 6;
404	else
405		sc->dc_romwidth = i;
406
407	/* Enter EEPROM access mode. */
408	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
409	dc_delay(sc);
410	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
411	dc_delay(sc);
412	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
413	dc_delay(sc);
414	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
415	dc_delay(sc);
416
417	/* Turn off EEPROM access mode. */
418	dc_eeprom_idle(sc);
419}
420
421static void
422dc_eeprom_idle(struct dc_softc *sc)
423{
424	int i;
425
426	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
427	dc_delay(sc);
428	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
429	dc_delay(sc);
430	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
431	dc_delay(sc);
432	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
433	dc_delay(sc);
434
435	for (i = 0; i < 25; i++) {
436		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
437		dc_delay(sc);
438		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
439		dc_delay(sc);
440	}
441
442	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
443	dc_delay(sc);
444	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
445	dc_delay(sc);
446	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
447}
448
449/*
450 * Send a read command and address to the EEPROM, check for ACK.
451 */
452static void
453dc_eeprom_putbyte(struct dc_softc *sc, int addr)
454{
455	int d, i;
456
457	d = DC_EECMD_READ >> 6;
458	for (i = 3; i--; ) {
459		if (d & (1 << i))
460			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
461		else
462			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
463		dc_delay(sc);
464		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
465		dc_delay(sc);
466		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
467		dc_delay(sc);
468	}
469
470	/*
471	 * Feed in each bit and strobe the clock.
472	 */
473	for (i = sc->dc_romwidth; i--;) {
474		if (addr & (1 << i)) {
475			SIO_SET(DC_SIO_EE_DATAIN);
476		} else {
477			SIO_CLR(DC_SIO_EE_DATAIN);
478		}
479		dc_delay(sc);
480		SIO_SET(DC_SIO_EE_CLK);
481		dc_delay(sc);
482		SIO_CLR(DC_SIO_EE_CLK);
483		dc_delay(sc);
484	}
485}
486
487/*
488 * Read a word of data stored in the EEPROM at address 'addr.'
489 * The PNIC 82c168/82c169 has its own non-standard way to read
490 * the EEPROM.
491 */
492static void
493dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
494{
495	int i;
496	u_int32_t r;
497
498	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
499
500	for (i = 0; i < DC_TIMEOUT; i++) {
501		DELAY(1);
502		r = CSR_READ_4(sc, DC_SIO);
503		if (!(r & DC_PN_SIOCTL_BUSY)) {
504			*dest = (u_int16_t)(r & 0xFFFF);
505			return;
506		}
507	}
508}
509
510/*
511 * Read a word of data stored in the EEPROM at address 'addr.'
512 * The Xircom X3201 has its own non-standard way to read
513 * the EEPROM, too.
514 */
515static void
516dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
517{
518
519	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
520
521	addr *= 2;
522	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
523	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
524	addr += 1;
525	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
526	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
527
528	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
529}
530
531/*
532 * Read a word of data stored in the EEPROM at address 'addr.'
533 */
534static void
535dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
536{
537	int i;
538	u_int16_t word = 0;
539
540	/* Force EEPROM to idle state. */
541	dc_eeprom_idle(sc);
542
543	/* Enter EEPROM access mode. */
544	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
545	dc_delay(sc);
546	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
547	dc_delay(sc);
548	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
549	dc_delay(sc);
550	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
551	dc_delay(sc);
552
553	/*
554	 * Send address of word we want to read.
555	 */
556	dc_eeprom_putbyte(sc, addr);
557
558	/*
559	 * Start reading bits from EEPROM.
560	 */
561	for (i = 0x8000; i; i >>= 1) {
562		SIO_SET(DC_SIO_EE_CLK);
563		dc_delay(sc);
564		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
565			word |= i;
566		dc_delay(sc);
567		SIO_CLR(DC_SIO_EE_CLK);
568		dc_delay(sc);
569	}
570
571	/* Turn off EEPROM access mode. */
572	dc_eeprom_idle(sc);
573
574	*dest = word;
575}
576
577/*
578 * Read a sequence of words from the EEPROM.
579 */
580static void
581dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
582{
583	int i;
584	u_int16_t word = 0, *ptr;
585
586	for (i = 0; i < cnt; i++) {
587		if (DC_IS_PNIC(sc))
588			dc_eeprom_getword_pnic(sc, off + i, &word);
589		else if (DC_IS_XIRCOM(sc))
590			dc_eeprom_getword_xircom(sc, off + i, &word);
591		else
592			dc_eeprom_getword(sc, off + i, &word);
593		ptr = (u_int16_t *)(dest + (i * 2));
594		if (be)
595			*ptr = be16toh(word);
596		else
597			*ptr = le16toh(word);
598	}
599}
600
601/*
602 * The following two routines are taken from the Macronix 98713
603 * Application Notes pp.19-21.
604 */
605/*
606 * Write a bit to the MII bus.
607 */
608static void
609dc_mii_writebit(struct dc_softc *sc, int bit)
610{
611
612	if (bit)
613		CSR_WRITE_4(sc, DC_SIO,
614		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
615	else
616		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
617
618	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
619	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
620}
621
622/*
623 * Read a bit from the MII bus.
624 */
625static int
626dc_mii_readbit(struct dc_softc *sc)
627{
628
629	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
630	CSR_READ_4(sc, DC_SIO);
631	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
632	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
633	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
634		return (1);
635
636	return (0);
637}
638
639/*
640 * Sync the PHYs by setting data bit and strobing the clock 32 times.
641 */
642static void
643dc_mii_sync(struct dc_softc *sc)
644{
645	int i;
646
647	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
648
649	for (i = 0; i < 32; i++)
650		dc_mii_writebit(sc, 1);
651}
652
653/*
654 * Clock a series of bits through the MII.
655 */
656static void
657dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
658{
659	int i;
660
661	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
662		dc_mii_writebit(sc, bits & i);
663}
664
665/*
666 * Read an PHY register through the MII.
667 */
668static int
669dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
670{
671	int i, ack;
672
673	DC_LOCK(sc);
674
675	/*
676	 * Set up frame for RX.
677	 */
678	frame->mii_stdelim = DC_MII_STARTDELIM;
679	frame->mii_opcode = DC_MII_READOP;
680	frame->mii_turnaround = 0;
681	frame->mii_data = 0;
682
683	/*
684	 * Sync the PHYs.
685	 */
686	dc_mii_sync(sc);
687
688	/*
689	 * Send command/address info.
690	 */
691	dc_mii_send(sc, frame->mii_stdelim, 2);
692	dc_mii_send(sc, frame->mii_opcode, 2);
693	dc_mii_send(sc, frame->mii_phyaddr, 5);
694	dc_mii_send(sc, frame->mii_regaddr, 5);
695
696#ifdef notdef
697	/* Idle bit */
698	dc_mii_writebit(sc, 1);
699	dc_mii_writebit(sc, 0);
700#endif
701
702	/* Check for ack. */
703	ack = dc_mii_readbit(sc);
704
705	/*
706	 * Now try reading data bits. If the ack failed, we still
707	 * need to clock through 16 cycles to keep the PHY(s) in sync.
708	 */
709	if (ack) {
710		for (i = 0; i < 16; i++)
711			dc_mii_readbit(sc);
712		goto fail;
713	}
714
715	for (i = 0x8000; i; i >>= 1) {
716		if (!ack) {
717			if (dc_mii_readbit(sc))
718				frame->mii_data |= i;
719		}
720	}
721
722fail:
723
724	dc_mii_writebit(sc, 0);
725	dc_mii_writebit(sc, 0);
726
727	DC_UNLOCK(sc);
728
729	if (ack)
730		return (1);
731	return (0);
732}
733
734/*
735 * Write to a PHY register through the MII.
736 */
737static int
738dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
739{
740
741	DC_LOCK(sc);
742	/*
743	 * Set up frame for TX.
744	 */
745
746	frame->mii_stdelim = DC_MII_STARTDELIM;
747	frame->mii_opcode = DC_MII_WRITEOP;
748	frame->mii_turnaround = DC_MII_TURNAROUND;
749
750	/*
751	 * Sync the PHYs.
752	 */
753	dc_mii_sync(sc);
754
755	dc_mii_send(sc, frame->mii_stdelim, 2);
756	dc_mii_send(sc, frame->mii_opcode, 2);
757	dc_mii_send(sc, frame->mii_phyaddr, 5);
758	dc_mii_send(sc, frame->mii_regaddr, 5);
759	dc_mii_send(sc, frame->mii_turnaround, 2);
760	dc_mii_send(sc, frame->mii_data, 16);
761
762	/* Idle bit. */
763	dc_mii_writebit(sc, 0);
764	dc_mii_writebit(sc, 0);
765
766	DC_UNLOCK(sc);
767
768	return (0);
769}
770
771static int
772dc_miibus_readreg(device_t dev, int phy, int reg)
773{
774	struct dc_mii_frame frame;
775	struct dc_softc	 *sc;
776	int i, rval, phy_reg = 0;
777
778	sc = device_get_softc(dev);
779	bzero(&frame, sizeof(frame));
780
781	/*
782	 * Note: both the AL981 and AN985 have internal PHYs,
783	 * however the AL981 provides direct access to the PHY
784	 * registers while the AN985 uses a serial MII interface.
785	 * The AN985's MII interface is also buggy in that you
786	 * can read from any MII address (0 to 31), but only address 1
787	 * behaves normally. To deal with both cases, we pretend
788	 * that the PHY is at MII address 1.
789	 */
790	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
791		return (0);
792
793	/*
794	 * Note: the ukphy probes of the RS7112 report a PHY at
795	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
796	 * so we only respond to correct one.
797	 */
798	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
799		return (0);
800
801	if (sc->dc_pmode != DC_PMODE_MII) {
802		if (phy == (MII_NPHY - 1)) {
803			switch (reg) {
804			case MII_BMSR:
805			/*
806			 * Fake something to make the probe
807			 * code think there's a PHY here.
808			 */
809				return (BMSR_MEDIAMASK);
810				break;
811			case MII_PHYIDR1:
812				if (DC_IS_PNIC(sc))
813					return (DC_VENDORID_LO);
814				return (DC_VENDORID_DEC);
815				break;
816			case MII_PHYIDR2:
817				if (DC_IS_PNIC(sc))
818					return (DC_DEVICEID_82C168);
819				return (DC_DEVICEID_21143);
820				break;
821			default:
822				return (0);
823				break;
824			}
825		} else
826			return (0);
827	}
828
829	if (DC_IS_PNIC(sc)) {
830		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
831		    (phy << 23) | (reg << 18));
832		for (i = 0; i < DC_TIMEOUT; i++) {
833			DELAY(1);
834			rval = CSR_READ_4(sc, DC_PN_MII);
835			if (!(rval & DC_PN_MII_BUSY)) {
836				rval &= 0xFFFF;
837				return (rval == 0xFFFF ? 0 : rval);
838			}
839		}
840		return (0);
841	}
842
843	if (DC_IS_COMET(sc)) {
844		switch (reg) {
845		case MII_BMCR:
846			phy_reg = DC_AL_BMCR;
847			break;
848		case MII_BMSR:
849			phy_reg = DC_AL_BMSR;
850			break;
851		case MII_PHYIDR1:
852			phy_reg = DC_AL_VENID;
853			break;
854		case MII_PHYIDR2:
855			phy_reg = DC_AL_DEVID;
856			break;
857		case MII_ANAR:
858			phy_reg = DC_AL_ANAR;
859			break;
860		case MII_ANLPAR:
861			phy_reg = DC_AL_LPAR;
862			break;
863		case MII_ANER:
864			phy_reg = DC_AL_ANER;
865			break;
866		default:
867			device_printf(dev, "phy_read: bad phy register %x\n",
868			    reg);
869			return (0);
870			break;
871		}
872
873		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
874
875		if (rval == 0xFFFF)
876			return (0);
877		return (rval);
878	}
879
880	frame.mii_phyaddr = phy;
881	frame.mii_regaddr = reg;
882	if (sc->dc_type == DC_TYPE_98713) {
883		phy_reg = CSR_READ_4(sc, DC_NETCFG);
884		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
885	}
886	dc_mii_readreg(sc, &frame);
887	if (sc->dc_type == DC_TYPE_98713)
888		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
889
890	return (frame.mii_data);
891}
892
893static int
894dc_miibus_writereg(device_t dev, int phy, int reg, int data)
895{
896	struct dc_softc *sc;
897	struct dc_mii_frame frame;
898	int i, phy_reg = 0;
899
900	sc = device_get_softc(dev);
901	bzero(&frame, sizeof(frame));
902
903	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
904		return (0);
905
906	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
907		return (0);
908
909	if (DC_IS_PNIC(sc)) {
910		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
911		    (phy << 23) | (reg << 10) | data);
912		for (i = 0; i < DC_TIMEOUT; i++) {
913			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
914				break;
915		}
916		return (0);
917	}
918
919	if (DC_IS_COMET(sc)) {
920		switch (reg) {
921		case MII_BMCR:
922			phy_reg = DC_AL_BMCR;
923			break;
924		case MII_BMSR:
925			phy_reg = DC_AL_BMSR;
926			break;
927		case MII_PHYIDR1:
928			phy_reg = DC_AL_VENID;
929			break;
930		case MII_PHYIDR2:
931			phy_reg = DC_AL_DEVID;
932			break;
933		case MII_ANAR:
934			phy_reg = DC_AL_ANAR;
935			break;
936		case MII_ANLPAR:
937			phy_reg = DC_AL_LPAR;
938			break;
939		case MII_ANER:
940			phy_reg = DC_AL_ANER;
941			break;
942		default:
943			device_printf(dev, "phy_write: bad phy register %x\n",
944			    reg);
945			return (0);
946			break;
947		}
948
949		CSR_WRITE_4(sc, phy_reg, data);
950		return (0);
951	}
952
953	frame.mii_phyaddr = phy;
954	frame.mii_regaddr = reg;
955	frame.mii_data = data;
956
957	if (sc->dc_type == DC_TYPE_98713) {
958		phy_reg = CSR_READ_4(sc, DC_NETCFG);
959		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
960	}
961	dc_mii_writereg(sc, &frame);
962	if (sc->dc_type == DC_TYPE_98713)
963		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
964
965	return (0);
966}
967
968static void
969dc_miibus_statchg(device_t dev)
970{
971	struct dc_softc *sc;
972	struct mii_data *mii;
973	struct ifmedia *ifm;
974
975	sc = device_get_softc(dev);
976	if (DC_IS_ADMTEK(sc))
977		return;
978
979	mii = device_get_softc(sc->dc_miibus);
980	ifm = &mii->mii_media;
981	if (DC_IS_DAVICOM(sc) &&
982	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
983		dc_setcfg(sc, ifm->ifm_media);
984		sc->dc_if_media = ifm->ifm_media;
985	} else {
986		dc_setcfg(sc, mii->mii_media_active);
987		sc->dc_if_media = mii->mii_media_active;
988	}
989}
990
991/*
992 * Special support for DM9102A cards with HomePNA PHYs. Note:
993 * with the Davicom DM9102A/DM9801 eval board that I have, it seems
994 * to be impossible to talk to the management interface of the DM9801
995 * PHY (its MDIO pin is not connected to anything). Consequently,
996 * the driver has to just 'know' about the additional mode and deal
997 * with it itself. *sigh*
998 */
999static void
1000dc_miibus_mediainit(device_t dev)
1001{
1002	struct dc_softc *sc;
1003	struct mii_data *mii;
1004	struct ifmedia *ifm;
1005	int rev;
1006
1007	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1008
1009	sc = device_get_softc(dev);
1010	mii = device_get_softc(sc->dc_miibus);
1011	ifm = &mii->mii_media;
1012
1013	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1014		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1015}
1016
1017#define DC_BITS_512	9
1018#define DC_BITS_128	7
1019#define DC_BITS_64	6
1020
1021static uint32_t
1022dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1023{
1024	uint32_t crc;
1025
1026	/* Compute CRC for the address value. */
1027	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1028
1029	/*
1030	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1031	 * chips is only 128 bits wide.
1032	 */
1033	if (sc->dc_flags & DC_128BIT_HASH)
1034		return (crc & ((1 << DC_BITS_128) - 1));
1035
1036	/* The hash table on the MX98715BEC is only 64 bits wide. */
1037	if (sc->dc_flags & DC_64BIT_HASH)
1038		return (crc & ((1 << DC_BITS_64) - 1));
1039
1040	/* Xircom's hash filtering table is different (read: weird) */
1041	/* Xircom uses the LEAST significant bits */
1042	if (DC_IS_XIRCOM(sc)) {
1043		if ((crc & 0x180) == 0x180)
1044			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1045		else
1046			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1047			    (12 << 4));
1048	}
1049
1050	return (crc & ((1 << DC_BITS_512) - 1));
1051}
1052
1053/*
1054 * Calculate CRC of a multicast group address, return the lower 6 bits.
1055 */
1056static uint32_t
1057dc_mchash_be(const uint8_t *addr)
1058{
1059	uint32_t crc;
1060
1061	/* Compute CRC for the address value. */
1062	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1063
1064	/* Return the filter bit position. */
1065	return ((crc >> 26) & 0x0000003F);
1066}
1067
1068/*
1069 * 21143-style RX filter setup routine. Filter programming is done by
1070 * downloading a special setup frame into the TX engine. 21143, Macronix,
1071 * PNIC, PNIC II and Davicom chips are programmed this way.
1072 *
1073 * We always program the chip using 'hash perfect' mode, i.e. one perfect
1074 * address (our node address) and a 512-bit hash filter for multicast
1075 * frames. We also sneak the broadcast address into the hash filter since
1076 * we need that too.
1077 */
1078static void
1079dc_setfilt_21143(struct dc_softc *sc)
1080{
1081	struct dc_desc *sframe;
1082	u_int32_t h, *sp;
1083	struct ifmultiaddr *ifma;
1084	struct ifnet *ifp;
1085	int i;
1086
1087	ifp = sc->dc_ifp;
1088
1089	i = sc->dc_cdata.dc_tx_prod;
1090	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1091	sc->dc_cdata.dc_tx_cnt++;
1092	sframe = &sc->dc_ldata->dc_tx_list[i];
1093	sp = sc->dc_cdata.dc_sbuf;
1094	bzero(sp, DC_SFRAME_LEN);
1095
1096	sframe->dc_data = htole32(sc->dc_saddr);
1097	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1098	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1099
1100	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1101
1102	/* If we want promiscuous mode, set the allframes bit. */
1103	if (ifp->if_flags & IFF_PROMISC)
1104		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1105	else
1106		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1107
1108	if (ifp->if_flags & IFF_ALLMULTI)
1109		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1110	else
1111		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1112
1113	IF_ADDR_LOCK(ifp);
1114	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1115		if (ifma->ifma_addr->sa_family != AF_LINK)
1116			continue;
1117		h = dc_mchash_le(sc,
1118		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1119		sp[h >> 4] |= htole32(1 << (h & 0xF));
1120	}
1121	IF_ADDR_UNLOCK(ifp);
1122
1123	if (ifp->if_flags & IFF_BROADCAST) {
1124		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1125		sp[h >> 4] |= htole32(1 << (h & 0xF));
1126	}
1127
1128	/* Set our MAC address */
1129	sp[39] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[0]);
1130	sp[40] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[1]);
1131	sp[41] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[2]);
1132
1133	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1134	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1135
1136	/*
1137	 * The PNIC takes an exceedingly long time to process its
1138	 * setup frame; wait 10ms after posting the setup frame
1139	 * before proceeding, just so it has time to swallow its
1140	 * medicine.
1141	 */
1142	DELAY(10000);
1143
1144	ifp->if_timer = 5;
1145}
1146
1147static void
1148dc_setfilt_admtek(struct dc_softc *sc)
1149{
1150	struct ifnet *ifp;
1151	struct ifmultiaddr *ifma;
1152	int h = 0;
1153	u_int32_t hashes[2] = { 0, 0 };
1154
1155	ifp = sc->dc_ifp;
1156
1157	/* Init our MAC address. */
1158	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[0]));
1159	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[4]));
1160
1161	/* If we want promiscuous mode, set the allframes bit. */
1162	if (ifp->if_flags & IFF_PROMISC)
1163		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1164	else
1165		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1166
1167	if (ifp->if_flags & IFF_ALLMULTI)
1168		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1169	else
1170		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1171
1172	/* First, zot all the existing hash bits. */
1173	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1174	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1175
1176	/*
1177	 * If we're already in promisc or allmulti mode, we
1178	 * don't have to bother programming the multicast filter.
1179	 */
1180	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1181		return;
1182
1183	/* Now program new ones. */
1184	IF_ADDR_LOCK(ifp);
1185	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1186		if (ifma->ifma_addr->sa_family != AF_LINK)
1187			continue;
1188		if (DC_IS_CENTAUR(sc))
1189			h = dc_mchash_le(sc,
1190			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1191		else
1192			h = dc_mchash_be(
1193			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1194		if (h < 32)
1195			hashes[0] |= (1 << h);
1196		else
1197			hashes[1] |= (1 << (h - 32));
1198	}
1199	IF_ADDR_UNLOCK(ifp);
1200
1201	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1202	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1203}
1204
1205static void
1206dc_setfilt_asix(struct dc_softc *sc)
1207{
1208	struct ifnet *ifp;
1209	struct ifmultiaddr *ifma;
1210	int h = 0;
1211	u_int32_t hashes[2] = { 0, 0 };
1212
1213	ifp = sc->dc_ifp;
1214
1215	/* Init our MAC address */
1216	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1217	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1218	    *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[0]));
1219	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1220	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1221	    *(u_int32_t *)(&IFP2ENADDR(sc->dc_ifp)[4]));
1222
1223	/* If we want promiscuous mode, set the allframes bit. */
1224	if (ifp->if_flags & IFF_PROMISC)
1225		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1226	else
1227		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1228
1229	if (ifp->if_flags & IFF_ALLMULTI)
1230		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1231	else
1232		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1233
1234	/*
1235	 * The ASIX chip has a special bit to enable reception
1236	 * of broadcast frames.
1237	 */
1238	if (ifp->if_flags & IFF_BROADCAST)
1239		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1240	else
1241		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1242
1243	/* first, zot all the existing hash bits */
1244	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1245	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1246	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1247	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1248
1249	/*
1250	 * If we're already in promisc or allmulti mode, we
1251	 * don't have to bother programming the multicast filter.
1252	 */
1253	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1254		return;
1255
1256	/* now program new ones */
1257	IF_ADDR_LOCK(ifp);
1258	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1259		if (ifma->ifma_addr->sa_family != AF_LINK)
1260			continue;
1261		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1262		if (h < 32)
1263			hashes[0] |= (1 << h);
1264		else
1265			hashes[1] |= (1 << (h - 32));
1266	}
1267	IF_ADDR_UNLOCK(ifp);
1268
1269	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1270	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1271	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1272	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1273}
1274
1275static void
1276dc_setfilt_xircom(struct dc_softc *sc)
1277{
1278	struct ifnet *ifp;
1279	struct ifmultiaddr *ifma;
1280	struct dc_desc *sframe;
1281	u_int32_t h, *sp;
1282	int i;
1283
1284	ifp = sc->dc_ifp;
1285	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1286
1287	i = sc->dc_cdata.dc_tx_prod;
1288	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1289	sc->dc_cdata.dc_tx_cnt++;
1290	sframe = &sc->dc_ldata->dc_tx_list[i];
1291	sp = sc->dc_cdata.dc_sbuf;
1292	bzero(sp, DC_SFRAME_LEN);
1293
1294	sframe->dc_data = htole32(sc->dc_saddr);
1295	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1296	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1297
1298	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1299
1300	/* If we want promiscuous mode, set the allframes bit. */
1301	if (ifp->if_flags & IFF_PROMISC)
1302		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1303	else
1304		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1305
1306	if (ifp->if_flags & IFF_ALLMULTI)
1307		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1308	else
1309		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1310
1311	IF_ADDR_LOCK(ifp);
1312	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1313		if (ifma->ifma_addr->sa_family != AF_LINK)
1314			continue;
1315		h = dc_mchash_le(sc,
1316		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1317		sp[h >> 4] |= htole32(1 << (h & 0xF));
1318	}
1319	IF_ADDR_UNLOCK(ifp);
1320
1321	if (ifp->if_flags & IFF_BROADCAST) {
1322		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1323		sp[h >> 4] |= htole32(1 << (h & 0xF));
1324	}
1325
1326	/* Set our MAC address */
1327	sp[0] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[0]);
1328	sp[1] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[1]);
1329	sp[2] = DC_SP_MAC(((u_int16_t *)IFP2ENADDR(sc->dc_ifp))[2]);
1330
1331	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1332	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1333	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1334	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1335	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1336
1337	/*
1338	 * Wait some time...
1339	 */
1340	DELAY(1000);
1341
1342	ifp->if_timer = 5;
1343}
1344
1345static void
1346dc_setfilt(struct dc_softc *sc)
1347{
1348
1349	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1350	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1351		dc_setfilt_21143(sc);
1352
1353	if (DC_IS_ASIX(sc))
1354		dc_setfilt_asix(sc);
1355
1356	if (DC_IS_ADMTEK(sc))
1357		dc_setfilt_admtek(sc);
1358
1359	if (DC_IS_XIRCOM(sc))
1360		dc_setfilt_xircom(sc);
1361}
1362
1363/*
1364 * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1365 * the netconfig register, we first have to put the transmit and/or
1366 * receive logic in the idle state.
1367 */
1368static void
1369dc_setcfg(struct dc_softc *sc, int media)
1370{
1371	int i, restart = 0, watchdogreg;
1372	u_int32_t isr;
1373
1374	if (IFM_SUBTYPE(media) == IFM_NONE)
1375		return;
1376
1377	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1378		restart = 1;
1379		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1380
1381		for (i = 0; i < DC_TIMEOUT; i++) {
1382			isr = CSR_READ_4(sc, DC_ISR);
1383			if (isr & DC_ISR_TX_IDLE &&
1384			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1385			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1386				break;
1387			DELAY(10);
1388		}
1389
1390		if (i == DC_TIMEOUT)
1391			if_printf(sc->dc_ifp,
1392			    "failed to force tx and rx to idle state\n");
1393	}
1394
1395	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1396		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1397		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1398		if (sc->dc_pmode == DC_PMODE_MII) {
1399			if (DC_IS_INTEL(sc)) {
1400			/* There's a write enable bit here that reads as 1. */
1401				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1402				watchdogreg &= ~DC_WDOG_CTLWREN;
1403				watchdogreg |= DC_WDOG_JABBERDIS;
1404				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1405			} else {
1406				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1407			}
1408			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1409			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1410			if (sc->dc_type == DC_TYPE_98713)
1411				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1412				    DC_NETCFG_SCRAMBLER));
1413			if (!DC_IS_DAVICOM(sc))
1414				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1415			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1416			if (DC_IS_INTEL(sc))
1417				dc_apply_fixup(sc, IFM_AUTO);
1418		} else {
1419			if (DC_IS_PNIC(sc)) {
1420				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1421				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1422				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1423			}
1424			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1425			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1426			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1427			if (DC_IS_INTEL(sc))
1428				dc_apply_fixup(sc,
1429				    (media & IFM_GMASK) == IFM_FDX ?
1430				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1431		}
1432	}
1433
1434	if (IFM_SUBTYPE(media) == IFM_10_T) {
1435		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1436		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1437		if (sc->dc_pmode == DC_PMODE_MII) {
1438			/* There's a write enable bit here that reads as 1. */
1439			if (DC_IS_INTEL(sc)) {
1440				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1441				watchdogreg &= ~DC_WDOG_CTLWREN;
1442				watchdogreg |= DC_WDOG_JABBERDIS;
1443				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1444			} else {
1445				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1446			}
1447			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1448			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1449			if (sc->dc_type == DC_TYPE_98713)
1450				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1451			if (!DC_IS_DAVICOM(sc))
1452				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1453			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1454			if (DC_IS_INTEL(sc))
1455				dc_apply_fixup(sc, IFM_AUTO);
1456		} else {
1457			if (DC_IS_PNIC(sc)) {
1458				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1459				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1460				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1461			}
1462			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1463			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1464			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1465			if (DC_IS_INTEL(sc)) {
1466				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1467				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1468				if ((media & IFM_GMASK) == IFM_FDX)
1469					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1470				else
1471					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1472				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1473				DC_CLRBIT(sc, DC_10BTCTRL,
1474				    DC_TCTL_AUTONEGENBL);
1475				dc_apply_fixup(sc,
1476				    (media & IFM_GMASK) == IFM_FDX ?
1477				    IFM_10_T | IFM_FDX : IFM_10_T);
1478				DELAY(20000);
1479			}
1480		}
1481	}
1482
1483	/*
1484	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1485	 * PHY and we want HomePNA mode, set the portsel bit to turn
1486	 * on the external MII port.
1487	 */
1488	if (DC_IS_DAVICOM(sc)) {
1489		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1490			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1491			sc->dc_link = 1;
1492		} else {
1493			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1494		}
1495	}
1496
1497	if ((media & IFM_GMASK) == IFM_FDX) {
1498		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1499		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1500			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1501	} else {
1502		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1503		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1504			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1505	}
1506
1507	if (restart)
1508		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1509}
1510
1511static void
1512dc_reset(struct dc_softc *sc)
1513{
1514	int i;
1515
1516	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1517
1518	for (i = 0; i < DC_TIMEOUT; i++) {
1519		DELAY(10);
1520		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1521			break;
1522	}
1523
1524	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1525	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1526		DELAY(10000);
1527		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1528		i = 0;
1529	}
1530
1531	if (i == DC_TIMEOUT)
1532		if_printf(sc->dc_ifp, "reset never completed!\n");
1533
1534	/* Wait a little while for the chip to get its brains in order. */
1535	DELAY(1000);
1536
1537	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1538	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1539	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1540
1541	/*
1542	 * Bring the SIA out of reset. In some cases, it looks
1543	 * like failing to unreset the SIA soon enough gets it
1544	 * into a state where it will never come out of reset
1545	 * until we reset the whole chip again.
1546	 */
1547	if (DC_IS_INTEL(sc)) {
1548		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1549		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1550		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1551	}
1552}
1553
1554static struct dc_type *
1555dc_devtype(device_t dev)
1556{
1557	struct dc_type *t;
1558	u_int32_t rev;
1559
1560	t = dc_devs;
1561
1562	while (t->dc_name != NULL) {
1563		if ((pci_get_vendor(dev) == t->dc_vid) &&
1564		    (pci_get_device(dev) == t->dc_did)) {
1565			/* Check the PCI revision */
1566			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1567			if (t->dc_did == DC_DEVICEID_98713 &&
1568			    rev >= DC_REVISION_98713A)
1569				t++;
1570			if (t->dc_did == DC_DEVICEID_98713_CP &&
1571			    rev >= DC_REVISION_98713A)
1572				t++;
1573			if (t->dc_did == DC_DEVICEID_987x5 &&
1574			    rev >= DC_REVISION_98715AEC_C)
1575				t++;
1576			if (t->dc_did == DC_DEVICEID_987x5 &&
1577			    rev >= DC_REVISION_98725)
1578				t++;
1579			if (t->dc_did == DC_DEVICEID_AX88140A &&
1580			    rev >= DC_REVISION_88141)
1581				t++;
1582			if (t->dc_did == DC_DEVICEID_82C168 &&
1583			    rev >= DC_REVISION_82C169)
1584				t++;
1585			if (t->dc_did == DC_DEVICEID_DM9102 &&
1586			    rev >= DC_REVISION_DM9102A)
1587				t++;
1588			/*
1589			 * The Microsoft MN-130 has a device ID of 0x0002,
1590			 * which happens to be the same as the PNIC 82c168.
1591			 * To keep dc_attach() from getting confused, we
1592			 * pretend its ID is something different.
1593			 * XXX: ideally, dc_attach() should be checking
1594			 * vendorid+deviceid together to avoid such
1595			 * collisions.
1596			 */
1597			if (t->dc_vid == DC_VENDORID_MICROSOFT &&
1598			    t->dc_did == DC_DEVICEID_MSMN130)
1599				t++;
1600			return (t);
1601		}
1602		t++;
1603	}
1604
1605	return (NULL);
1606}
1607
1608/*
1609 * Probe for a 21143 or clone chip. Check the PCI vendor and device
1610 * IDs against our list and return a device name if we find a match.
1611 * We do a little bit of extra work to identify the exact type of
1612 * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1613 * but different revision IDs. The same is true for 98715/98715A
1614 * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1615 * cases, the exact chip revision affects driver behavior.
1616 */
1617static int
1618dc_probe(device_t dev)
1619{
1620	struct dc_type *t;
1621
1622	t = dc_devtype(dev);
1623
1624	if (t != NULL) {
1625		device_set_desc(dev, t->dc_name);
1626		return (BUS_PROBE_DEFAULT);
1627	}
1628
1629	return (ENXIO);
1630}
1631
1632static void
1633dc_apply_fixup(struct dc_softc *sc, int media)
1634{
1635	struct dc_mediainfo *m;
1636	u_int8_t *p;
1637	int i;
1638	u_int32_t reg;
1639
1640	m = sc->dc_mi;
1641
1642	while (m != NULL) {
1643		if (m->dc_media == media)
1644			break;
1645		m = m->dc_next;
1646	}
1647
1648	if (m == NULL)
1649		return;
1650
1651	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1652		reg = (p[0] | (p[1] << 8)) << 16;
1653		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1654	}
1655
1656	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1657		reg = (p[0] | (p[1] << 8)) << 16;
1658		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1659	}
1660}
1661
1662static void
1663dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1664{
1665	struct dc_mediainfo *m;
1666
1667	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1668	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1669	case DC_SIA_CODE_10BT:
1670		m->dc_media = IFM_10_T;
1671		break;
1672	case DC_SIA_CODE_10BT_FDX:
1673		m->dc_media = IFM_10_T | IFM_FDX;
1674		break;
1675	case DC_SIA_CODE_10B2:
1676		m->dc_media = IFM_10_2;
1677		break;
1678	case DC_SIA_CODE_10B5:
1679		m->dc_media = IFM_10_5;
1680		break;
1681	default:
1682		break;
1683	}
1684
1685	/*
1686	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1687	 * Things apparently already work for cards that do
1688	 * supply Media Specific Data.
1689	 */
1690	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1691		m->dc_gp_len = 2;
1692		m->dc_gp_ptr =
1693		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1694	} else {
1695		m->dc_gp_len = 2;
1696		m->dc_gp_ptr =
1697		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1698	}
1699
1700	m->dc_next = sc->dc_mi;
1701	sc->dc_mi = m;
1702
1703	sc->dc_pmode = DC_PMODE_SIA;
1704}
1705
1706static void
1707dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1708{
1709	struct dc_mediainfo *m;
1710
1711	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1712	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1713		m->dc_media = IFM_100_TX;
1714
1715	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1716		m->dc_media = IFM_100_TX | IFM_FDX;
1717
1718	m->dc_gp_len = 2;
1719	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1720
1721	m->dc_next = sc->dc_mi;
1722	sc->dc_mi = m;
1723
1724	sc->dc_pmode = DC_PMODE_SYM;
1725}
1726
1727static void
1728dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1729{
1730	struct dc_mediainfo *m;
1731	u_int8_t *p;
1732
1733	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1734	/* We abuse IFM_AUTO to represent MII. */
1735	m->dc_media = IFM_AUTO;
1736	m->dc_gp_len = l->dc_gpr_len;
1737
1738	p = (u_int8_t *)l;
1739	p += sizeof(struct dc_eblock_mii);
1740	m->dc_gp_ptr = p;
1741	p += 2 * l->dc_gpr_len;
1742	m->dc_reset_len = *p;
1743	p++;
1744	m->dc_reset_ptr = p;
1745
1746	m->dc_next = sc->dc_mi;
1747	sc->dc_mi = m;
1748}
1749
1750static void
1751dc_read_srom(struct dc_softc *sc, int bits)
1752{
1753	int size;
1754
1755	size = 2 << bits;
1756	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1757	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1758}
1759
1760static void
1761dc_parse_21143_srom(struct dc_softc *sc)
1762{
1763	struct dc_leaf_hdr *lhdr;
1764	struct dc_eblock_hdr *hdr;
1765	int have_mii, i, loff;
1766	char *ptr;
1767
1768	have_mii = 0;
1769	loff = sc->dc_srom[27];
1770	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1771
1772	ptr = (char *)lhdr;
1773	ptr += sizeof(struct dc_leaf_hdr) - 1;
1774	/*
1775	 * Look if we got a MII media block.
1776	 */
1777	for (i = 0; i < lhdr->dc_mcnt; i++) {
1778		hdr = (struct dc_eblock_hdr *)ptr;
1779		if (hdr->dc_type == DC_EBLOCK_MII)
1780		    have_mii++;
1781
1782		ptr += (hdr->dc_len & 0x7F);
1783		ptr++;
1784	}
1785
1786	/*
1787	 * Do the same thing again. Only use SIA and SYM media
1788	 * blocks if no MII media block is available.
1789	 */
1790	ptr = (char *)lhdr;
1791	ptr += sizeof(struct dc_leaf_hdr) - 1;
1792	for (i = 0; i < lhdr->dc_mcnt; i++) {
1793		hdr = (struct dc_eblock_hdr *)ptr;
1794		switch (hdr->dc_type) {
1795		case DC_EBLOCK_MII:
1796			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1797			break;
1798		case DC_EBLOCK_SIA:
1799			if (! have_mii)
1800				dc_decode_leaf_sia(sc,
1801				    (struct dc_eblock_sia *)hdr);
1802			break;
1803		case DC_EBLOCK_SYM:
1804			if (! have_mii)
1805				dc_decode_leaf_sym(sc,
1806				    (struct dc_eblock_sym *)hdr);
1807			break;
1808		default:
1809			/* Don't care. Yet. */
1810			break;
1811		}
1812		ptr += (hdr->dc_len & 0x7F);
1813		ptr++;
1814	}
1815}
1816
1817static void
1818dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1819{
1820	u_int32_t *paddr;
1821
1822	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1823	paddr = arg;
1824	*paddr = segs->ds_addr;
1825}
1826
1827/*
1828 * Attach the interface. Allocate softc structures, do ifmedia
1829 * setup and ethernet/BPF attach.
1830 */
1831static int
1832dc_attach(device_t dev)
1833{
1834	int tmp = 0;
1835	u_char eaddr[ETHER_ADDR_LEN];
1836	u_int32_t command;
1837	struct dc_softc *sc;
1838	struct ifnet *ifp;
1839	u_int32_t revision;
1840	int error = 0, rid, mac_offset;
1841	int i;
1842	u_int8_t *mac;
1843
1844	sc = device_get_softc(dev);
1845
1846	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1847	    MTX_DEF | MTX_RECURSE);
1848
1849	/*
1850	 * Map control/status registers.
1851	 */
1852	pci_enable_busmaster(dev);
1853
1854	rid = DC_RID;
1855	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1856
1857	if (sc->dc_res == NULL) {
1858		device_printf(dev, "couldn't map ports/memory\n");
1859		error = ENXIO;
1860		goto fail;
1861	}
1862
1863	sc->dc_btag = rman_get_bustag(sc->dc_res);
1864	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1865
1866	/* Allocate interrupt. */
1867	rid = 0;
1868	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1869	    RF_SHAREABLE | RF_ACTIVE);
1870
1871	if (sc->dc_irq == NULL) {
1872		device_printf(dev, "couldn't map interrupt\n");
1873		error = ENXIO;
1874		goto fail;
1875	}
1876
1877	/* Need this info to decide on a chip type. */
1878	sc->dc_info = dc_devtype(dev);
1879	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1880
1881	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1882	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1883	   sc->dc_info->dc_did != DC_DEVICEID_X3201)
1884		dc_eeprom_width(sc);
1885
1886	switch (sc->dc_info->dc_did) {
1887	case DC_DEVICEID_21143:
1888		sc->dc_type = DC_TYPE_21143;
1889		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1890		sc->dc_flags |= DC_REDUCED_MII_POLL;
1891		/* Save EEPROM contents so we can parse them later. */
1892		dc_read_srom(sc, sc->dc_romwidth);
1893		break;
1894	case DC_DEVICEID_DM9009:
1895	case DC_DEVICEID_DM9100:
1896	case DC_DEVICEID_DM9102:
1897		sc->dc_type = DC_TYPE_DM9102;
1898		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1899		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1900		sc->dc_flags |= DC_TX_ALIGN;
1901		sc->dc_pmode = DC_PMODE_MII;
1902		/* Increase the latency timer value. */
1903		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1904		command &= 0xFFFF00FF;
1905		command |= 0x00008000;
1906		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1907		break;
1908	case DC_DEVICEID_AL981:
1909		sc->dc_type = DC_TYPE_AL981;
1910		sc->dc_flags |= DC_TX_USE_TX_INTR;
1911		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1912		sc->dc_pmode = DC_PMODE_MII;
1913		dc_read_srom(sc, sc->dc_romwidth);
1914		break;
1915	case DC_DEVICEID_AN985:
1916	case DC_DEVICEID_ADM9511:
1917	case DC_DEVICEID_ADM9513:
1918	case DC_DEVICEID_FA511:
1919	case DC_DEVICEID_FE2500:
1920	case DC_DEVICEID_EN2242:
1921	case DC_DEVICEID_HAWKING_PN672TX:
1922	case DC_DEVICEID_3CSOHOB:
1923	case DC_DEVICEID_MSMN120:
1924	case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
1925		sc->dc_type = DC_TYPE_AN985;
1926		sc->dc_flags |= DC_64BIT_HASH;
1927		sc->dc_flags |= DC_TX_USE_TX_INTR;
1928		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1929		sc->dc_pmode = DC_PMODE_MII;
1930		/* Don't read SROM for - auto-loaded on reset */
1931		break;
1932	case DC_DEVICEID_98713:
1933	case DC_DEVICEID_98713_CP:
1934		if (revision < DC_REVISION_98713A) {
1935			sc->dc_type = DC_TYPE_98713;
1936		}
1937		if (revision >= DC_REVISION_98713A) {
1938			sc->dc_type = DC_TYPE_98713A;
1939			sc->dc_flags |= DC_21143_NWAY;
1940		}
1941		sc->dc_flags |= DC_REDUCED_MII_POLL;
1942		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1943		break;
1944	case DC_DEVICEID_987x5:
1945	case DC_DEVICEID_EN1217:
1946		/*
1947		 * Macronix MX98715AEC-C/D/E parts have only a
1948		 * 128-bit hash table. We need to deal with these
1949		 * in the same manner as the PNIC II so that we
1950		 * get the right number of bits out of the
1951		 * CRC routine.
1952		 */
1953		if (revision >= DC_REVISION_98715AEC_C &&
1954		    revision < DC_REVISION_98725)
1955			sc->dc_flags |= DC_128BIT_HASH;
1956		sc->dc_type = DC_TYPE_987x5;
1957		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1958		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1959		break;
1960	case DC_DEVICEID_98727:
1961		sc->dc_type = DC_TYPE_987x5;
1962		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1963		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1964		break;
1965	case DC_DEVICEID_82C115:
1966		sc->dc_type = DC_TYPE_PNICII;
1967		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1968		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1969		break;
1970	case DC_DEVICEID_82C168:
1971		sc->dc_type = DC_TYPE_PNIC;
1972		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1973		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1974		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1975		if (revision < DC_REVISION_82C169)
1976			sc->dc_pmode = DC_PMODE_SYM;
1977		break;
1978	case DC_DEVICEID_AX88140A:
1979		sc->dc_type = DC_TYPE_ASIX;
1980		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1981		sc->dc_flags |= DC_REDUCED_MII_POLL;
1982		sc->dc_pmode = DC_PMODE_MII;
1983		break;
1984	case DC_DEVICEID_X3201:
1985		sc->dc_type = DC_TYPE_XIRCOM;
1986		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1987				DC_TX_ALIGN;
1988		/*
1989		 * We don't actually need to coalesce, but we're doing
1990		 * it to obtain a double word aligned buffer.
1991		 * The DC_TX_COALESCE flag is required.
1992		 */
1993		sc->dc_pmode = DC_PMODE_MII;
1994		break;
1995	case DC_DEVICEID_RS7112:
1996		sc->dc_type = DC_TYPE_CONEXANT;
1997		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1998		sc->dc_flags |= DC_REDUCED_MII_POLL;
1999		sc->dc_pmode = DC_PMODE_MII;
2000		dc_read_srom(sc, sc->dc_romwidth);
2001		break;
2002	default:
2003		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
2004		break;
2005	}
2006
2007	/* Save the cache line size. */
2008	if (DC_IS_DAVICOM(sc))
2009		sc->dc_cachesize = 0;
2010	else
2011		sc->dc_cachesize = pci_read_config(dev,
2012		    DC_PCI_CFLT, 4) & 0xFF;
2013
2014	/* Reset the adapter. */
2015	dc_reset(sc);
2016
2017	/* Take 21143 out of snooze mode */
2018	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2019		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2020		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2021		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2022	}
2023
2024	/*
2025	 * Try to learn something about the supported media.
2026	 * We know that ASIX and ADMtek and Davicom devices
2027	 * will *always* be using MII media, so that's a no-brainer.
2028	 * The tricky ones are the Macronix/PNIC II and the
2029	 * Intel 21143.
2030	 */
2031	if (DC_IS_INTEL(sc))
2032		dc_parse_21143_srom(sc);
2033	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2034		if (sc->dc_type == DC_TYPE_98713)
2035			sc->dc_pmode = DC_PMODE_MII;
2036		else
2037			sc->dc_pmode = DC_PMODE_SYM;
2038	} else if (!sc->dc_pmode)
2039		sc->dc_pmode = DC_PMODE_MII;
2040
2041	/*
2042	 * Get station address from the EEPROM.
2043	 */
2044	switch(sc->dc_type) {
2045	case DC_TYPE_98713:
2046	case DC_TYPE_98713A:
2047	case DC_TYPE_987x5:
2048	case DC_TYPE_PNICII:
2049		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2050		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2051		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2052		break;
2053	case DC_TYPE_PNIC:
2054		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2055		break;
2056	case DC_TYPE_DM9102:
2057		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2058#ifdef __sparc64__
2059		/*
2060		 * If this is an onboard dc(4) the station address read from
2061		 * the EEPROM is all zero and we have to get it from the fcode.
2062		 */
2063		for (i = 0; i < ETHER_ADDR_LEN; i++)
2064			if (eaddr[i] != 0x00)
2065				break;
2066		if (i >= ETHER_ADDR_LEN)
2067			OF_getetheraddr(dev, eaddr);
2068#endif
2069		break;
2070	case DC_TYPE_21143:
2071	case DC_TYPE_ASIX:
2072		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2073		break;
2074	case DC_TYPE_AL981:
2075	case DC_TYPE_AN985:
2076		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
2077		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
2078		break;
2079	case DC_TYPE_CONEXANT:
2080		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2081		    ETHER_ADDR_LEN);
2082		break;
2083	case DC_TYPE_XIRCOM:
2084		/* The MAC comes from the CIS. */
2085		mac = pci_get_ether(dev);
2086		if (!mac) {
2087			device_printf(dev, "No station address in CIS!\n");
2088			error = ENXIO;
2089			goto fail;
2090		}
2091		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2092		break;
2093	default:
2094		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2095		break;
2096	}
2097
2098	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2099	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2100	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
2101	    sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
2102	if (error) {
2103		device_printf(dev, "failed to allocate busdma tag\n");
2104		error = ENXIO;
2105		goto fail;
2106	}
2107	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2108	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2109	if (error) {
2110		device_printf(dev, "failed to allocate DMA safe memory\n");
2111		error = ENXIO;
2112		goto fail;
2113	}
2114	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2115	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2116	    BUS_DMA_NOWAIT);
2117	if (error) {
2118		device_printf(dev, "cannot get address of the descriptors\n");
2119		error = ENXIO;
2120		goto fail;
2121	}
2122
2123	/*
2124	 * Allocate a busdma tag and DMA safe memory for the multicast
2125	 * setup frame.
2126	 */
2127	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2128	    BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
2129	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
2130	if (error) {
2131		device_printf(dev, "failed to allocate busdma tag\n");
2132		error = ENXIO;
2133		goto fail;
2134	}
2135	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2136	    BUS_DMA_NOWAIT, &sc->dc_smap);
2137	if (error) {
2138		device_printf(dev, "failed to allocate DMA safe memory\n");
2139		error = ENXIO;
2140		goto fail;
2141	}
2142	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2143	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2144	if (error) {
2145		device_printf(dev, "cannot get address of the descriptors\n");
2146		error = ENXIO;
2147		goto fail;
2148	}
2149
2150	/* Allocate a busdma tag for mbufs. */
2151	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
2152	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, DC_TX_LIST_CNT, MCLBYTES,
2153	    0, NULL, NULL, &sc->dc_mtag);
2154	if (error) {
2155		device_printf(dev, "failed to allocate busdma tag\n");
2156		error = ENXIO;
2157		goto fail;
2158	}
2159
2160	/* Create the TX/RX busdma maps. */
2161	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2162		error = bus_dmamap_create(sc->dc_mtag, 0,
2163		    &sc->dc_cdata.dc_tx_map[i]);
2164		if (error) {
2165			device_printf(dev, "failed to init TX ring\n");
2166			error = ENXIO;
2167			goto fail;
2168		}
2169	}
2170	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2171		error = bus_dmamap_create(sc->dc_mtag, 0,
2172		    &sc->dc_cdata.dc_rx_map[i]);
2173		if (error) {
2174			device_printf(dev, "failed to init RX ring\n");
2175			error = ENXIO;
2176			goto fail;
2177		}
2178	}
2179	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2180	if (error) {
2181		device_printf(dev, "failed to init RX ring\n");
2182		error = ENXIO;
2183		goto fail;
2184	}
2185
2186	ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
2187	if (ifp == NULL) {
2188		device_printf(dev, "can not if_alloc()\n");
2189		error = ENOSPC;
2190		goto fail;
2191	}
2192	ifp->if_softc = sc;
2193	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2194	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2195	ifp->if_mtu = ETHERMTU;
2196	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2197	if (!IS_MPSAFE)
2198		ifp->if_flags |= IFF_NEEDSGIANT;
2199	ifp->if_ioctl = dc_ioctl;
2200	ifp->if_start = dc_start;
2201	ifp->if_watchdog = dc_watchdog;
2202	ifp->if_init = dc_init;
2203	ifp->if_baudrate = 10000000;
2204	IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2205	ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
2206	IFQ_SET_READY(&ifp->if_snd);
2207
2208	/*
2209	 * Do MII setup. If this is a 21143, check for a PHY on the
2210	 * MII bus after applying any necessary fixups to twiddle the
2211	 * GPIO bits. If we don't end up finding a PHY, restore the
2212	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2213	 * driver instead.
2214	 */
2215	if (DC_IS_INTEL(sc)) {
2216		dc_apply_fixup(sc, IFM_AUTO);
2217		tmp = sc->dc_pmode;
2218		sc->dc_pmode = DC_PMODE_MII;
2219	}
2220
2221	/*
2222	 * Setup General Purpose port mode and data so the tulip can talk
2223	 * to the MII.  This needs to be done before mii_phy_probe so that
2224	 * we can actually see them.
2225	 */
2226	if (DC_IS_XIRCOM(sc)) {
2227		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2228		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2229		DELAY(10);
2230		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2231		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2232		DELAY(10);
2233	}
2234
2235	error = mii_phy_probe(dev, &sc->dc_miibus,
2236	    dc_ifmedia_upd, dc_ifmedia_sts);
2237
2238	if (error && DC_IS_INTEL(sc)) {
2239		sc->dc_pmode = tmp;
2240		if (sc->dc_pmode != DC_PMODE_SIA)
2241			sc->dc_pmode = DC_PMODE_SYM;
2242		sc->dc_flags |= DC_21143_NWAY;
2243		mii_phy_probe(dev, &sc->dc_miibus,
2244		    dc_ifmedia_upd, dc_ifmedia_sts);
2245		/*
2246		 * For non-MII cards, we need to have the 21143
2247		 * drive the LEDs. Except there are some systems
2248		 * like the NEC VersaPro NoteBook PC which have no
2249		 * LEDs, and twiddling these bits has adverse effects
2250		 * on them. (I.e. you suddenly can't get a link.)
2251		 */
2252		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2253			sc->dc_flags |= DC_TULIP_LEDS;
2254		error = 0;
2255	}
2256
2257	if (error) {
2258		device_printf(dev, "MII without any PHY!\n");
2259		goto fail;
2260	}
2261
2262	if (DC_IS_ADMTEK(sc)) {
2263		/*
2264		 * Set automatic TX underrun recovery for the ADMtek chips
2265		 */
2266		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2267	}
2268
2269	/*
2270	 * Tell the upper layer(s) we support long frames.
2271	 */
2272	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2273	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2274#ifdef DEVICE_POLLING
2275	ifp->if_capabilities |= IFCAP_POLLING;
2276#endif
2277	ifp->if_capenable = ifp->if_capabilities;
2278
2279	callout_init(&sc->dc_stat_ch, IS_MPSAFE ? CALLOUT_MPSAFE : 0);
2280
2281#ifdef SRM_MEDIA
2282	sc->dc_srm_media = 0;
2283
2284	/* Remember the SRM console media setting */
2285	if (DC_IS_INTEL(sc)) {
2286		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2287		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2288		switch ((command >> 8) & 0xff) {
2289		case 3:
2290			sc->dc_srm_media = IFM_10_T;
2291			break;
2292		case 4:
2293			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2294			break;
2295		case 5:
2296			sc->dc_srm_media = IFM_100_TX;
2297			break;
2298		case 6:
2299			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2300			break;
2301		}
2302		if (sc->dc_srm_media)
2303			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2304	}
2305#endif
2306
2307	/*
2308	 * Call MI attach routine.
2309	 */
2310	ether_ifattach(ifp, eaddr);
2311
2312	/* Hook interrupt last to avoid having to lock softc */
2313	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
2314	    (IS_MPSAFE ? INTR_MPSAFE : 0),
2315	    dc_intr, sc, &sc->dc_intrhand);
2316
2317	if (error) {
2318		device_printf(dev, "couldn't set up irq\n");
2319		ether_ifdetach(ifp);
2320		if_free(ifp);
2321		goto fail;
2322	}
2323
2324fail:
2325	if (error)
2326		dc_detach(dev);
2327	return (error);
2328}
2329
2330/*
2331 * Shutdown hardware and free up resources. This can be called any
2332 * time after the mutex has been initialized. It is called in both
2333 * the error case in attach and the normal detach case so it needs
2334 * to be careful about only freeing resources that have actually been
2335 * allocated.
2336 */
2337static int
2338dc_detach(device_t dev)
2339{
2340	struct dc_softc *sc;
2341	struct ifnet *ifp;
2342	struct dc_mediainfo *m;
2343	int i;
2344
2345	sc = device_get_softc(dev);
2346	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2347	DC_LOCK(sc);
2348
2349	ifp = sc->dc_ifp;
2350
2351	/* These should only be active if attach succeeded */
2352	if (device_is_attached(dev)) {
2353		dc_stop(sc);
2354		ether_ifdetach(ifp);
2355		if_free(ifp);
2356	}
2357	if (sc->dc_miibus)
2358		device_delete_child(dev, sc->dc_miibus);
2359	bus_generic_detach(dev);
2360
2361	if (sc->dc_intrhand)
2362		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2363	if (sc->dc_irq)
2364		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2365	if (sc->dc_res)
2366		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2367
2368	if (sc->dc_cdata.dc_sbuf != NULL)
2369		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2370	if (sc->dc_ldata != NULL)
2371		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2372	for (i = 0; i < DC_TX_LIST_CNT; i++)
2373		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_tx_map[i]);
2374	for (i = 0; i < DC_RX_LIST_CNT; i++)
2375		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2376	bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2377	if (sc->dc_stag)
2378		bus_dma_tag_destroy(sc->dc_stag);
2379	if (sc->dc_mtag)
2380		bus_dma_tag_destroy(sc->dc_mtag);
2381	if (sc->dc_ltag)
2382		bus_dma_tag_destroy(sc->dc_ltag);
2383
2384	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2385
2386	while (sc->dc_mi != NULL) {
2387		m = sc->dc_mi->dc_next;
2388		free(sc->dc_mi, M_DEVBUF);
2389		sc->dc_mi = m;
2390	}
2391	free(sc->dc_srom, M_DEVBUF);
2392
2393	DC_UNLOCK(sc);
2394	mtx_destroy(&sc->dc_mtx);
2395
2396	return (0);
2397}
2398
2399/*
2400 * Initialize the transmit descriptors.
2401 */
2402static int
2403dc_list_tx_init(struct dc_softc *sc)
2404{
2405	struct dc_chain_data *cd;
2406	struct dc_list_data *ld;
2407	int i, nexti;
2408
2409	cd = &sc->dc_cdata;
2410	ld = sc->dc_ldata;
2411	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2412		if (i == DC_TX_LIST_CNT - 1)
2413			nexti = 0;
2414		else
2415			nexti = i + 1;
2416		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2417		cd->dc_tx_chain[i] = NULL;
2418		ld->dc_tx_list[i].dc_data = 0;
2419		ld->dc_tx_list[i].dc_ctl = 0;
2420	}
2421
2422	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2423	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2424	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2425	return (0);
2426}
2427
2428
2429/*
2430 * Initialize the RX descriptors and allocate mbufs for them. Note that
2431 * we arrange the descriptors in a closed ring, so that the last descriptor
2432 * points back to the first.
2433 */
2434static int
2435dc_list_rx_init(struct dc_softc *sc)
2436{
2437	struct dc_chain_data *cd;
2438	struct dc_list_data *ld;
2439	int i, nexti;
2440
2441	cd = &sc->dc_cdata;
2442	ld = sc->dc_ldata;
2443
2444	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2445		if (dc_newbuf(sc, i, 1) != 0)
2446			return (ENOBUFS);
2447		if (i == DC_RX_LIST_CNT - 1)
2448			nexti = 0;
2449		else
2450			nexti = i + 1;
2451		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2452	}
2453
2454	cd->dc_rx_prod = 0;
2455	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2456	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2457	return (0);
2458}
2459
2460static void
2461dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2462	void *arg;
2463	bus_dma_segment_t *segs;
2464	int nseg;
2465	bus_size_t mapsize;
2466	int error;
2467{
2468	struct dc_softc *sc;
2469	struct dc_desc *c;
2470
2471	sc = arg;
2472	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2473	if (error) {
2474		sc->dc_cdata.dc_rx_err = error;
2475		return;
2476	}
2477
2478	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2479	sc->dc_cdata.dc_rx_err = 0;
2480	c->dc_data = htole32(segs->ds_addr);
2481}
2482
2483/*
2484 * Initialize an RX descriptor and attach an MBUF cluster.
2485 */
2486static int
2487dc_newbuf(struct dc_softc *sc, int i, int alloc)
2488{
2489	struct mbuf *m_new;
2490	bus_dmamap_t tmp;
2491	int error;
2492
2493	if (alloc) {
2494		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2495		if (m_new == NULL)
2496			return (ENOBUFS);
2497	} else {
2498		m_new = sc->dc_cdata.dc_rx_chain[i];
2499		m_new->m_data = m_new->m_ext.ext_buf;
2500	}
2501	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2502	m_adj(m_new, sizeof(u_int64_t));
2503
2504	/*
2505	 * If this is a PNIC chip, zero the buffer. This is part
2506	 * of the workaround for the receive bug in the 82c168 and
2507	 * 82c169 chips.
2508	 */
2509	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2510		bzero(mtod(m_new, char *), m_new->m_len);
2511
2512	/* No need to remap the mbuf if we're reusing it. */
2513	if (alloc) {
2514		sc->dc_cdata.dc_rx_cur = i;
2515		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2516		    m_new, dc_dma_map_rxbuf, sc, 0);
2517		if (error) {
2518			m_freem(m_new);
2519			return (error);
2520		}
2521		if (sc->dc_cdata.dc_rx_err != 0) {
2522			m_freem(m_new);
2523			return (sc->dc_cdata.dc_rx_err);
2524		}
2525		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2526		tmp = sc->dc_cdata.dc_rx_map[i];
2527		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2528		sc->dc_sparemap = tmp;
2529		sc->dc_cdata.dc_rx_chain[i] = m_new;
2530	}
2531
2532	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2533	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2534	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2535	    BUS_DMASYNC_PREREAD);
2536	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2537	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2538	return (0);
2539}
2540
2541/*
2542 * Grrrrr.
2543 * The PNIC chip has a terrible bug in it that manifests itself during
2544 * periods of heavy activity. The exact mode of failure if difficult to
2545 * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2546 * will happen on slow machines. The bug is that sometimes instead of
2547 * uploading one complete frame during reception, it uploads what looks
2548 * like the entire contents of its FIFO memory. The frame we want is at
2549 * the end of the whole mess, but we never know exactly how much data has
2550 * been uploaded, so salvaging the frame is hard.
2551 *
2552 * There is only one way to do it reliably, and it's disgusting.
2553 * Here's what we know:
2554 *
2555 * - We know there will always be somewhere between one and three extra
2556 *   descriptors uploaded.
2557 *
2558 * - We know the desired received frame will always be at the end of the
2559 *   total data upload.
2560 *
2561 * - We know the size of the desired received frame because it will be
2562 *   provided in the length field of the status word in the last descriptor.
2563 *
2564 * Here's what we do:
2565 *
2566 * - When we allocate buffers for the receive ring, we bzero() them.
2567 *   This means that we know that the buffer contents should be all
2568 *   zeros, except for data uploaded by the chip.
2569 *
2570 * - We also force the PNIC chip to upload frames that include the
2571 *   ethernet CRC at the end.
2572 *
2573 * - We gather all of the bogus frame data into a single buffer.
2574 *
2575 * - We then position a pointer at the end of this buffer and scan
2576 *   backwards until we encounter the first non-zero byte of data.
2577 *   This is the end of the received frame. We know we will encounter
2578 *   some data at the end of the frame because the CRC will always be
2579 *   there, so even if the sender transmits a packet of all zeros,
2580 *   we won't be fooled.
2581 *
2582 * - We know the size of the actual received frame, so we subtract
2583 *   that value from the current pointer location. This brings us
2584 *   to the start of the actual received packet.
2585 *
2586 * - We copy this into an mbuf and pass it on, along with the actual
2587 *   frame length.
2588 *
2589 * The performance hit is tremendous, but it beats dropping frames all
2590 * the time.
2591 */
2592
2593#define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2594static void
2595dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2596{
2597	struct dc_desc *cur_rx;
2598	struct dc_desc *c = NULL;
2599	struct mbuf *m = NULL;
2600	unsigned char *ptr;
2601	int i, total_len;
2602	u_int32_t rxstat = 0;
2603
2604	i = sc->dc_pnic_rx_bug_save;
2605	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2606	ptr = sc->dc_pnic_rx_buf;
2607	bzero(ptr, DC_RXLEN * 5);
2608
2609	/* Copy all the bytes from the bogus buffers. */
2610	while (1) {
2611		c = &sc->dc_ldata->dc_rx_list[i];
2612		rxstat = le32toh(c->dc_status);
2613		m = sc->dc_cdata.dc_rx_chain[i];
2614		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2615		ptr += DC_RXLEN;
2616		/* If this is the last buffer, break out. */
2617		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2618			break;
2619		dc_newbuf(sc, i, 0);
2620		DC_INC(i, DC_RX_LIST_CNT);
2621	}
2622
2623	/* Find the length of the actual receive frame. */
2624	total_len = DC_RXBYTES(rxstat);
2625
2626	/* Scan backwards until we hit a non-zero byte. */
2627	while (*ptr == 0x00)
2628		ptr--;
2629
2630	/* Round off. */
2631	if ((uintptr_t)(ptr) & 0x3)
2632		ptr -= 1;
2633
2634	/* Now find the start of the frame. */
2635	ptr -= total_len;
2636	if (ptr < sc->dc_pnic_rx_buf)
2637		ptr = sc->dc_pnic_rx_buf;
2638
2639	/*
2640	 * Now copy the salvaged frame to the last mbuf and fake up
2641	 * the status word to make it look like a successful
2642	 * frame reception.
2643	 */
2644	dc_newbuf(sc, i, 0);
2645	bcopy(ptr, mtod(m, char *), total_len);
2646	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2647}
2648
2649/*
2650 * This routine searches the RX ring for dirty descriptors in the
2651 * event that the rxeof routine falls out of sync with the chip's
2652 * current descriptor pointer. This may happen sometimes as a result
2653 * of a "no RX buffer available" condition that happens when the chip
2654 * consumes all of the RX buffers before the driver has a chance to
2655 * process the RX ring. This routine may need to be called more than
2656 * once to bring the driver back in sync with the chip, however we
2657 * should still be getting RX DONE interrupts to drive the search
2658 * for new packets in the RX ring, so we should catch up eventually.
2659 */
2660static int
2661dc_rx_resync(struct dc_softc *sc)
2662{
2663	struct dc_desc *cur_rx;
2664	int i, pos;
2665
2666	pos = sc->dc_cdata.dc_rx_prod;
2667
2668	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2669		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2670		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2671			break;
2672		DC_INC(pos, DC_RX_LIST_CNT);
2673	}
2674
2675	/* If the ring really is empty, then just return. */
2676	if (i == DC_RX_LIST_CNT)
2677		return (0);
2678
2679	/* We've fallen behing the chip: catch it. */
2680	sc->dc_cdata.dc_rx_prod = pos;
2681
2682	return (EAGAIN);
2683}
2684
2685/*
2686 * A frame has been uploaded: pass the resulting mbuf chain up to
2687 * the higher level protocols.
2688 */
2689static void
2690dc_rxeof(struct dc_softc *sc)
2691{
2692	struct mbuf *m;
2693	struct ifnet *ifp;
2694	struct dc_desc *cur_rx;
2695	int i, total_len = 0;
2696	u_int32_t rxstat;
2697
2698	DC_LOCK_ASSERT(sc);
2699
2700	ifp = sc->dc_ifp;
2701	i = sc->dc_cdata.dc_rx_prod;
2702
2703	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2704	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2705	    DC_RXSTAT_OWN)) {
2706#ifdef DEVICE_POLLING
2707		if (ifp->if_flags & IFF_POLLING) {
2708			if (sc->rxcycles <= 0)
2709				break;
2710			sc->rxcycles--;
2711		}
2712#endif
2713		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2714		rxstat = le32toh(cur_rx->dc_status);
2715		m = sc->dc_cdata.dc_rx_chain[i];
2716		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2717		    BUS_DMASYNC_POSTREAD);
2718		total_len = DC_RXBYTES(rxstat);
2719
2720		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2721			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2722				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2723					sc->dc_pnic_rx_bug_save = i;
2724				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2725					DC_INC(i, DC_RX_LIST_CNT);
2726					continue;
2727				}
2728				dc_pnic_rx_bug_war(sc, i);
2729				rxstat = le32toh(cur_rx->dc_status);
2730				total_len = DC_RXBYTES(rxstat);
2731			}
2732		}
2733
2734		/*
2735		 * If an error occurs, update stats, clear the
2736		 * status word and leave the mbuf cluster in place:
2737		 * it should simply get re-used next time this descriptor
2738		 * comes up in the ring.  However, don't report long
2739		 * frames as errors since they could be vlans.
2740		 */
2741		if ((rxstat & DC_RXSTAT_RXERR)) {
2742			if (!(rxstat & DC_RXSTAT_GIANT) ||
2743			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2744				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2745				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2746				ifp->if_ierrors++;
2747				if (rxstat & DC_RXSTAT_COLLSEEN)
2748					ifp->if_collisions++;
2749				dc_newbuf(sc, i, 0);
2750				if (rxstat & DC_RXSTAT_CRCERR) {
2751					DC_INC(i, DC_RX_LIST_CNT);
2752					continue;
2753				} else {
2754					dc_init(sc);
2755					return;
2756				}
2757			}
2758		}
2759
2760		/* No errors; receive the packet. */
2761		total_len -= ETHER_CRC_LEN;
2762#ifdef __i386__
2763		/*
2764		 * On the x86 we do not have alignment problems, so try to
2765		 * allocate a new buffer for the receive ring, and pass up
2766		 * the one where the packet is already, saving the expensive
2767		 * copy done in m_devget().
2768		 * If we are on an architecture with alignment problems, or
2769		 * if the allocation fails, then use m_devget and leave the
2770		 * existing buffer in the receive ring.
2771		 */
2772		if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
2773			m->m_pkthdr.rcvif = ifp;
2774			m->m_pkthdr.len = m->m_len = total_len;
2775			DC_INC(i, DC_RX_LIST_CNT);
2776		} else
2777#endif
2778		{
2779			struct mbuf *m0;
2780
2781			m0 = m_devget(mtod(m, char *), total_len,
2782				ETHER_ALIGN, ifp, NULL);
2783			dc_newbuf(sc, i, 0);
2784			DC_INC(i, DC_RX_LIST_CNT);
2785			if (m0 == NULL) {
2786				ifp->if_ierrors++;
2787				continue;
2788			}
2789			m = m0;
2790		}
2791
2792		ifp->if_ipackets++;
2793		DC_UNLOCK(sc);
2794		(*ifp->if_input)(ifp, m);
2795		DC_LOCK(sc);
2796	}
2797
2798	sc->dc_cdata.dc_rx_prod = i;
2799}
2800
2801/*
2802 * A frame was downloaded to the chip. It's safe for us to clean up
2803 * the list buffers.
2804 */
2805
2806static void
2807dc_txeof(struct dc_softc *sc)
2808{
2809	struct dc_desc *cur_tx = NULL;
2810	struct ifnet *ifp;
2811	int idx;
2812	u_int32_t ctl, txstat;
2813
2814	ifp = sc->dc_ifp;
2815
2816	/*
2817	 * Go through our tx list and free mbufs for those
2818	 * frames that have been transmitted.
2819	 */
2820	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2821	idx = sc->dc_cdata.dc_tx_cons;
2822	while (idx != sc->dc_cdata.dc_tx_prod) {
2823
2824		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2825		txstat = le32toh(cur_tx->dc_status);
2826		ctl = le32toh(cur_tx->dc_ctl);
2827
2828		if (txstat & DC_TXSTAT_OWN)
2829			break;
2830
2831		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2832			if (ctl & DC_TXCTL_SETUP) {
2833				/*
2834				 * Yes, the PNIC is so brain damaged
2835				 * that it will sometimes generate a TX
2836				 * underrun error while DMAing the RX
2837				 * filter setup frame. If we detect this,
2838				 * we have to send the setup frame again,
2839				 * or else the filter won't be programmed
2840				 * correctly.
2841				 */
2842				if (DC_IS_PNIC(sc)) {
2843					if (txstat & DC_TXSTAT_ERRSUM)
2844						dc_setfilt(sc);
2845				}
2846				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2847			}
2848			sc->dc_cdata.dc_tx_cnt--;
2849			DC_INC(idx, DC_TX_LIST_CNT);
2850			continue;
2851		}
2852
2853		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2854			/*
2855			 * XXX: Why does my Xircom taunt me so?
2856			 * For some reason it likes setting the CARRLOST flag
2857			 * even when the carrier is there. wtf?!?
2858			 * Who knows, but Conexant chips have the
2859			 * same problem. Maybe they took lessons
2860			 * from Xircom.
2861			 */
2862			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2863			    sc->dc_pmode == DC_PMODE_MII &&
2864			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2865			    DC_TXSTAT_NOCARRIER)))
2866				txstat &= ~DC_TXSTAT_ERRSUM;
2867		} else {
2868			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2869			    sc->dc_pmode == DC_PMODE_MII &&
2870			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2871			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2872				txstat &= ~DC_TXSTAT_ERRSUM;
2873		}
2874
2875		if (txstat & DC_TXSTAT_ERRSUM) {
2876			ifp->if_oerrors++;
2877			if (txstat & DC_TXSTAT_EXCESSCOLL)
2878				ifp->if_collisions++;
2879			if (txstat & DC_TXSTAT_LATECOLL)
2880				ifp->if_collisions++;
2881			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2882				dc_init(sc);
2883				return;
2884			}
2885		}
2886
2887		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2888
2889		ifp->if_opackets++;
2890		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2891			bus_dmamap_sync(sc->dc_mtag,
2892			    sc->dc_cdata.dc_tx_map[idx],
2893			    BUS_DMASYNC_POSTWRITE);
2894			bus_dmamap_unload(sc->dc_mtag,
2895			    sc->dc_cdata.dc_tx_map[idx]);
2896			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2897			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2898		}
2899
2900		sc->dc_cdata.dc_tx_cnt--;
2901		DC_INC(idx, DC_TX_LIST_CNT);
2902	}
2903
2904	if (idx != sc->dc_cdata.dc_tx_cons) {
2905	    	/* Some buffers have been freed. */
2906		sc->dc_cdata.dc_tx_cons = idx;
2907		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2908	}
2909	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2910}
2911
2912static void
2913dc_tick(void *xsc)
2914{
2915	struct dc_softc *sc;
2916	struct mii_data *mii;
2917	struct ifnet *ifp;
2918	u_int32_t r;
2919
2920	sc = xsc;
2921	DC_LOCK(sc);
2922	ifp = sc->dc_ifp;
2923	mii = device_get_softc(sc->dc_miibus);
2924
2925	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2926		if (sc->dc_flags & DC_21143_NWAY) {
2927			r = CSR_READ_4(sc, DC_10BTSTAT);
2928			if (IFM_SUBTYPE(mii->mii_media_active) ==
2929			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2930				sc->dc_link = 0;
2931				mii_mediachg(mii);
2932			}
2933			if (IFM_SUBTYPE(mii->mii_media_active) ==
2934			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2935				sc->dc_link = 0;
2936				mii_mediachg(mii);
2937			}
2938			if (sc->dc_link == 0)
2939				mii_tick(mii);
2940		} else {
2941			r = CSR_READ_4(sc, DC_ISR);
2942			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2943			    sc->dc_cdata.dc_tx_cnt == 0) {
2944				mii_tick(mii);
2945				if (!(mii->mii_media_status & IFM_ACTIVE))
2946					sc->dc_link = 0;
2947			}
2948		}
2949	} else
2950		mii_tick(mii);
2951
2952	/*
2953	 * When the init routine completes, we expect to be able to send
2954	 * packets right away, and in fact the network code will send a
2955	 * gratuitous ARP the moment the init routine marks the interface
2956	 * as running. However, even though the MAC may have been initialized,
2957	 * there may be a delay of a few seconds before the PHY completes
2958	 * autonegotiation and the link is brought up. Any transmissions
2959	 * made during that delay will be lost. Dealing with this is tricky:
2960	 * we can't just pause in the init routine while waiting for the
2961	 * PHY to come ready since that would bring the whole system to
2962	 * a screeching halt for several seconds.
2963	 *
2964	 * What we do here is prevent the TX start routine from sending
2965	 * any packets until a link has been established. After the
2966	 * interface has been initialized, the tick routine will poll
2967	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2968	 * that time, packets will stay in the send queue, and once the
2969	 * link comes up, they will be flushed out to the wire.
2970	 */
2971	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2972	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2973		sc->dc_link++;
2974		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2975			dc_start(ifp);
2976	}
2977
2978	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2979		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2980	else
2981		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2982
2983	DC_UNLOCK(sc);
2984}
2985
2986/*
2987 * A transmit underrun has occurred.  Back off the transmit threshold,
2988 * or switch to store and forward mode if we have to.
2989 */
2990static void
2991dc_tx_underrun(struct dc_softc *sc)
2992{
2993	u_int32_t isr;
2994	int i;
2995
2996	if (DC_IS_DAVICOM(sc))
2997		dc_init(sc);
2998
2999	if (DC_IS_INTEL(sc)) {
3000		/*
3001		 * The real 21143 requires that the transmitter be idle
3002		 * in order to change the transmit threshold or store
3003		 * and forward state.
3004		 */
3005		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3006
3007		for (i = 0; i < DC_TIMEOUT; i++) {
3008			isr = CSR_READ_4(sc, DC_ISR);
3009			if (isr & DC_ISR_TX_IDLE)
3010				break;
3011			DELAY(10);
3012		}
3013		if (i == DC_TIMEOUT) {
3014			if_printf(sc->dc_ifp,
3015			    "failed to force tx to idle state\n");
3016			dc_init(sc);
3017		}
3018	}
3019
3020	if_printf(sc->dc_ifp, "TX underrun -- ");
3021	sc->dc_txthresh += DC_TXTHRESH_INC;
3022	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3023		printf("using store and forward mode\n");
3024		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3025	} else {
3026		printf("increasing TX threshold\n");
3027		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3028		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3029	}
3030
3031	if (DC_IS_INTEL(sc))
3032		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3033}
3034
3035#ifdef DEVICE_POLLING
3036static poll_handler_t dc_poll;
3037
3038static void
3039dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3040{
3041	struct dc_softc *sc = ifp->if_softc;
3042
3043	if (!(ifp->if_capenable & IFCAP_POLLING)) {
3044		ether_poll_deregister(ifp);
3045		cmd = POLL_DEREGISTER;
3046	}
3047	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
3048		/* Re-enable interrupts. */
3049		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3050		return;
3051	}
3052	DC_LOCK(sc);
3053	sc->rxcycles = count;
3054	dc_rxeof(sc);
3055	dc_txeof(sc);
3056	if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
3057	    !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
3058		dc_start(ifp);
3059
3060	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3061		u_int32_t	status;
3062
3063		status = CSR_READ_4(sc, DC_ISR);
3064		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3065			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3066			DC_ISR_BUS_ERR);
3067		if (!status) {
3068			DC_UNLOCK(sc);
3069			return;
3070		}
3071		/* ack what we have */
3072		CSR_WRITE_4(sc, DC_ISR, status);
3073
3074		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3075			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3076			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3077
3078			if (dc_rx_resync(sc))
3079				dc_rxeof(sc);
3080		}
3081		/* restart transmit unit if necessary */
3082		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3083			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3084
3085		if (status & DC_ISR_TX_UNDERRUN)
3086			dc_tx_underrun(sc);
3087
3088		if (status & DC_ISR_BUS_ERR) {
3089			if_printf(ifp, "dc_poll: bus error\n");
3090			dc_reset(sc);
3091			dc_init(sc);
3092		}
3093	}
3094	DC_UNLOCK(sc);
3095}
3096#endif /* DEVICE_POLLING */
3097
3098static void
3099dc_intr(void *arg)
3100{
3101	struct dc_softc *sc;
3102	struct ifnet *ifp;
3103	u_int32_t status;
3104
3105	sc = arg;
3106
3107	if (sc->suspended)
3108		return;
3109
3110	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3111		return;
3112
3113	DC_LOCK(sc);
3114	ifp = sc->dc_ifp;
3115#ifdef DEVICE_POLLING
3116	if (ifp->if_flags & IFF_POLLING)
3117		goto done;
3118	if ((ifp->if_capenable & IFCAP_POLLING) &&
3119	    ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
3120		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3121		goto done;
3122	}
3123#endif
3124
3125	/* Suppress unwanted interrupts */
3126	if (!(ifp->if_flags & IFF_UP)) {
3127		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3128			dc_stop(sc);
3129		DC_UNLOCK(sc);
3130		return;
3131	}
3132
3133	/* Disable interrupts. */
3134	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3135
3136	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
3137	      && status != 0xFFFFFFFF) {
3138
3139		CSR_WRITE_4(sc, DC_ISR, status);
3140
3141		if (status & DC_ISR_RX_OK) {
3142			int		curpkts;
3143			curpkts = ifp->if_ipackets;
3144			dc_rxeof(sc);
3145			if (curpkts == ifp->if_ipackets) {
3146				while (dc_rx_resync(sc))
3147					dc_rxeof(sc);
3148			}
3149		}
3150
3151		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3152			dc_txeof(sc);
3153
3154		if (status & DC_ISR_TX_IDLE) {
3155			dc_txeof(sc);
3156			if (sc->dc_cdata.dc_tx_cnt) {
3157				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3158				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3159			}
3160		}
3161
3162		if (status & DC_ISR_TX_UNDERRUN)
3163			dc_tx_underrun(sc);
3164
3165		if ((status & DC_ISR_RX_WATDOGTIMEO)
3166		    || (status & DC_ISR_RX_NOBUF)) {
3167			int		curpkts;
3168			curpkts = ifp->if_ipackets;
3169			dc_rxeof(sc);
3170			if (curpkts == ifp->if_ipackets) {
3171				while (dc_rx_resync(sc))
3172					dc_rxeof(sc);
3173			}
3174		}
3175
3176		if (status & DC_ISR_BUS_ERR) {
3177			dc_reset(sc);
3178			dc_init(sc);
3179		}
3180	}
3181
3182	/* Re-enable interrupts. */
3183	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3184
3185	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3186		dc_start(ifp);
3187
3188#ifdef DEVICE_POLLING
3189done:
3190#endif
3191
3192	DC_UNLOCK(sc);
3193}
3194
3195static void
3196dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3197	void *arg;
3198	bus_dma_segment_t *segs;
3199	int nseg;
3200	bus_size_t mapsize;
3201	int error;
3202{
3203	struct dc_softc *sc;
3204	struct dc_desc *f;
3205	int cur, first, frag, i;
3206
3207	sc = arg;
3208	if (error) {
3209		sc->dc_cdata.dc_tx_err = error;
3210		return;
3211	}
3212
3213	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3214	for (i = 0; i < nseg; i++) {
3215		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3216		    (frag == (DC_TX_LIST_CNT - 1)) &&
3217		    (first != sc->dc_cdata.dc_tx_first)) {
3218			bus_dmamap_unload(sc->dc_mtag,
3219			    sc->dc_cdata.dc_tx_map[first]);
3220			sc->dc_cdata.dc_tx_err = ENOBUFS;
3221			return;
3222		}
3223
3224		f = &sc->dc_ldata->dc_tx_list[frag];
3225		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3226		if (i == 0) {
3227			f->dc_status = 0;
3228			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3229		} else
3230			f->dc_status = htole32(DC_TXSTAT_OWN);
3231		f->dc_data = htole32(segs[i].ds_addr);
3232		cur = frag;
3233		DC_INC(frag, DC_TX_LIST_CNT);
3234	}
3235
3236	sc->dc_cdata.dc_tx_err = 0;
3237	sc->dc_cdata.dc_tx_prod = frag;
3238	sc->dc_cdata.dc_tx_cnt += nseg;
3239	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3240	sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping;
3241	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3242		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3243		    htole32(DC_TXCTL_FINT);
3244	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3245		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3246	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3247		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3248	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3249}
3250
3251/*
3252 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3253 * pointers to the fragment pointers.
3254 */
3255static int
3256dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3257{
3258	struct mbuf *m;
3259	int error, idx, chainlen = 0;
3260
3261	/*
3262	 * If there's no way we can send any packets, return now.
3263	 */
3264	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3265		return (ENOBUFS);
3266
3267	/*
3268	 * Count the number of frags in this chain to see if
3269	 * we need to m_defrag.  Since the descriptor list is shared
3270	 * by all packets, we'll m_defrag long chains so that they
3271	 * do not use up the entire list, even if they would fit.
3272	 */
3273	for (m = *m_head; m != NULL; m = m->m_next)
3274		chainlen++;
3275
3276	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3277	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3278		m = m_defrag(*m_head, M_DONTWAIT);
3279		if (m == NULL)
3280			return (ENOBUFS);
3281		*m_head = m;
3282	}
3283
3284	/*
3285	 * Start packing the mbufs in this chain into
3286	 * the fragment pointers. Stop when we run out
3287	 * of fragments or hit the end of the mbuf chain.
3288	 */
3289	idx = sc->dc_cdata.dc_tx_prod;
3290	sc->dc_cdata.dc_tx_mapping = *m_head;
3291	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3292	    *m_head, dc_dma_map_txbuf, sc, 0);
3293	if (error)
3294		return (error);
3295	if (sc->dc_cdata.dc_tx_err != 0)
3296		return (sc->dc_cdata.dc_tx_err);
3297	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3298	    BUS_DMASYNC_PREWRITE);
3299	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3300	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3301	return (0);
3302}
3303
3304/*
3305 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3306 * to the mbuf data regions directly in the transmit lists. We also save a
3307 * copy of the pointers since the transmit list fragment pointers are
3308 * physical addresses.
3309 */
3310
3311static void
3312dc_start(struct ifnet *ifp)
3313{
3314	struct dc_softc *sc;
3315	struct mbuf *m_head = NULL, *m;
3316	unsigned int queued = 0;
3317	int idx;
3318
3319	sc = ifp->if_softc;
3320
3321	DC_LOCK(sc);
3322
3323	if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
3324		DC_UNLOCK(sc);
3325		return;
3326	}
3327
3328	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
3329		DC_UNLOCK(sc);
3330		return;
3331	}
3332
3333	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3334
3335	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3336		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3337		if (m_head == NULL)
3338			break;
3339
3340		if (sc->dc_flags & DC_TX_COALESCE &&
3341		    (m_head->m_next != NULL ||
3342		     sc->dc_flags & DC_TX_ALIGN)) {
3343			m = m_defrag(m_head, M_DONTWAIT);
3344			if (m == NULL) {
3345				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3346				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3347				break;
3348			} else {
3349				m_head = m;
3350			}
3351		}
3352
3353		if (dc_encap(sc, &m_head)) {
3354			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3355			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3356			break;
3357		}
3358		idx = sc->dc_cdata.dc_tx_prod;
3359
3360		queued++;
3361		/*
3362		 * If there's a BPF listener, bounce a copy of this frame
3363		 * to him.
3364		 */
3365		BPF_MTAP(ifp, m_head);
3366
3367		if (sc->dc_flags & DC_TX_ONE) {
3368			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3369			break;
3370		}
3371	}
3372
3373	if (queued > 0) {
3374		/* Transmit */
3375		if (!(sc->dc_flags & DC_TX_POLL))
3376			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3377
3378		/*
3379		 * Set a timeout in case the chip goes out to lunch.
3380		 */
3381		ifp->if_timer = 5;
3382	}
3383
3384	DC_UNLOCK(sc);
3385}
3386
3387static void
3388dc_init(void *xsc)
3389{
3390	struct dc_softc *sc = xsc;
3391	struct ifnet *ifp = sc->dc_ifp;
3392	struct mii_data *mii;
3393
3394	DC_LOCK(sc);
3395
3396	mii = device_get_softc(sc->dc_miibus);
3397
3398	/*
3399	 * Cancel pending I/O and free all RX/TX buffers.
3400	 */
3401	dc_stop(sc);
3402	dc_reset(sc);
3403
3404	/*
3405	 * Set cache alignment and burst length.
3406	 */
3407	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3408		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3409	else
3410		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3411	/*
3412	 * Evenly share the bus between receive and transmit process.
3413	 */
3414	if (DC_IS_INTEL(sc))
3415		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3416	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3417		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3418	} else {
3419		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3420	}
3421	if (sc->dc_flags & DC_TX_POLL)
3422		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3423	switch(sc->dc_cachesize) {
3424	case 32:
3425		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3426		break;
3427	case 16:
3428		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3429		break;
3430	case 8:
3431		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3432		break;
3433	case 0:
3434	default:
3435		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3436		break;
3437	}
3438
3439	if (sc->dc_flags & DC_TX_STORENFWD)
3440		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3441	else {
3442		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3443			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3444		} else {
3445			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3446			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3447		}
3448	}
3449
3450	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3451	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3452
3453	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3454		/*
3455		 * The app notes for the 98713 and 98715A say that
3456		 * in order to have the chips operate properly, a magic
3457		 * number must be written to CSR16. Macronix does not
3458		 * document the meaning of these bits so there's no way
3459		 * to know exactly what they do. The 98713 has a magic
3460		 * number all its own; the rest all use a different one.
3461		 */
3462		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3463		if (sc->dc_type == DC_TYPE_98713)
3464			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3465		else
3466			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3467	}
3468
3469	if (DC_IS_XIRCOM(sc)) {
3470		/*
3471		 * setup General Purpose Port mode and data so the tulip
3472		 * can talk to the MII.
3473		 */
3474		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3475			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3476		DELAY(10);
3477		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3478			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3479		DELAY(10);
3480	}
3481
3482	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3483	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3484
3485	/* Init circular RX list. */
3486	if (dc_list_rx_init(sc) == ENOBUFS) {
3487		if_printf(ifp,
3488		    "initialization failed: no memory for rx buffers\n");
3489		dc_stop(sc);
3490		DC_UNLOCK(sc);
3491		return;
3492	}
3493
3494	/*
3495	 * Init TX descriptors.
3496	 */
3497	dc_list_tx_init(sc);
3498
3499	/*
3500	 * Load the address of the RX list.
3501	 */
3502	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3503	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3504
3505	/*
3506	 * Enable interrupts.
3507	 */
3508#ifdef DEVICE_POLLING
3509	/*
3510	 * ... but only if we are not polling, and make sure they are off in
3511	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3512	 * after a reset.
3513	 */
3514	if (ifp->if_flags & IFF_POLLING)
3515		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3516	else
3517#endif
3518	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3519	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3520
3521	/* Enable transmitter. */
3522	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3523
3524	/*
3525	 * If this is an Intel 21143 and we're not using the
3526	 * MII port, program the LED control pins so we get
3527	 * link and activity indications.
3528	 */
3529	if (sc->dc_flags & DC_TULIP_LEDS) {
3530		CSR_WRITE_4(sc, DC_WATCHDOG,
3531		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3532		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3533	}
3534
3535	/*
3536	 * Load the RX/multicast filter. We do this sort of late
3537	 * because the filter programming scheme on the 21143 and
3538	 * some clones requires DMAing a setup frame via the TX
3539	 * engine, and we need the transmitter enabled for that.
3540	 */
3541	dc_setfilt(sc);
3542
3543	/* Enable receiver. */
3544	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3545	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3546
3547	mii_mediachg(mii);
3548	dc_setcfg(sc, sc->dc_if_media);
3549
3550	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3551	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3552
3553	/* Don't start the ticker if this is a homePNA link. */
3554	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3555		sc->dc_link = 1;
3556	else {
3557		if (sc->dc_flags & DC_21143_NWAY)
3558			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3559		else
3560			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3561	}
3562
3563#ifdef SRM_MEDIA
3564	if(sc->dc_srm_media) {
3565		struct ifreq ifr;
3566
3567		ifr.ifr_media = sc->dc_srm_media;
3568		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3569		sc->dc_srm_media = 0;
3570	}
3571#endif
3572	DC_UNLOCK(sc);
3573}
3574
3575/*
3576 * Set media options.
3577 */
3578static int
3579dc_ifmedia_upd(struct ifnet *ifp)
3580{
3581	struct dc_softc *sc;
3582	struct mii_data *mii;
3583	struct ifmedia *ifm;
3584
3585	sc = ifp->if_softc;
3586	mii = device_get_softc(sc->dc_miibus);
3587	mii_mediachg(mii);
3588	ifm = &mii->mii_media;
3589
3590	if (DC_IS_DAVICOM(sc) &&
3591	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3592		dc_setcfg(sc, ifm->ifm_media);
3593	else
3594		sc->dc_link = 0;
3595
3596	return (0);
3597}
3598
3599/*
3600 * Report current media status.
3601 */
3602static void
3603dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3604{
3605	struct dc_softc *sc;
3606	struct mii_data *mii;
3607	struct ifmedia *ifm;
3608
3609	sc = ifp->if_softc;
3610	mii = device_get_softc(sc->dc_miibus);
3611	mii_pollstat(mii);
3612	ifm = &mii->mii_media;
3613	if (DC_IS_DAVICOM(sc)) {
3614		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3615			ifmr->ifm_active = ifm->ifm_media;
3616			ifmr->ifm_status = 0;
3617			return;
3618		}
3619	}
3620	ifmr->ifm_active = mii->mii_media_active;
3621	ifmr->ifm_status = mii->mii_media_status;
3622}
3623
3624static int
3625dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3626{
3627	struct dc_softc *sc = ifp->if_softc;
3628	struct ifreq *ifr = (struct ifreq *)data;
3629	struct mii_data *mii;
3630	int error = 0;
3631
3632	DC_LOCK(sc);
3633
3634	switch (command) {
3635	case SIOCSIFFLAGS:
3636		if (ifp->if_flags & IFF_UP) {
3637			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3638				(IFF_PROMISC | IFF_ALLMULTI);
3639
3640			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3641				if (need_setfilt)
3642					dc_setfilt(sc);
3643			} else {
3644				sc->dc_txthresh = 0;
3645				dc_init(sc);
3646			}
3647		} else {
3648			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3649				dc_stop(sc);
3650		}
3651		sc->dc_if_flags = ifp->if_flags;
3652		error = 0;
3653		break;
3654	case SIOCADDMULTI:
3655	case SIOCDELMULTI:
3656		dc_setfilt(sc);
3657		error = 0;
3658		break;
3659	case SIOCGIFMEDIA:
3660	case SIOCSIFMEDIA:
3661		mii = device_get_softc(sc->dc_miibus);
3662		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3663#ifdef SRM_MEDIA
3664		if (sc->dc_srm_media)
3665			sc->dc_srm_media = 0;
3666#endif
3667		break;
3668	case SIOCSIFCAP:
3669		ifp->if_capenable &= ~IFCAP_POLLING;
3670		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
3671		break;
3672	default:
3673		error = ether_ioctl(ifp, command, data);
3674		break;
3675	}
3676
3677	DC_UNLOCK(sc);
3678
3679	return (error);
3680}
3681
3682static void
3683dc_watchdog(struct ifnet *ifp)
3684{
3685	struct dc_softc *sc;
3686
3687	sc = ifp->if_softc;
3688
3689	DC_LOCK(sc);
3690
3691	ifp->if_oerrors++;
3692	if_printf(ifp, "watchdog timeout\n");
3693
3694	dc_stop(sc);
3695	dc_reset(sc);
3696	dc_init(sc);
3697
3698	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3699		dc_start(ifp);
3700
3701	DC_UNLOCK(sc);
3702}
3703
3704/*
3705 * Stop the adapter and free any mbufs allocated to the
3706 * RX and TX lists.
3707 */
3708static void
3709dc_stop(struct dc_softc *sc)
3710{
3711	struct ifnet *ifp;
3712	struct dc_list_data *ld;
3713	struct dc_chain_data *cd;
3714	int i;
3715	u_int32_t ctl;
3716
3717	DC_LOCK(sc);
3718
3719	ifp = sc->dc_ifp;
3720	ifp->if_timer = 0;
3721	ld = sc->dc_ldata;
3722	cd = &sc->dc_cdata;
3723
3724	callout_stop(&sc->dc_stat_ch);
3725
3726	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3727#ifdef DEVICE_POLLING
3728	ether_poll_deregister(ifp);
3729#endif
3730
3731	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3732	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3733	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3734	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3735	sc->dc_link = 0;
3736
3737	/*
3738	 * Free data in the RX lists.
3739	 */
3740	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3741		if (cd->dc_rx_chain[i] != NULL) {
3742			m_freem(cd->dc_rx_chain[i]);
3743			cd->dc_rx_chain[i] = NULL;
3744		}
3745	}
3746	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3747
3748	/*
3749	 * Free the TX list buffers.
3750	 */
3751	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3752		if (cd->dc_tx_chain[i] != NULL) {
3753			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3754			if ((ctl & DC_TXCTL_SETUP) ||
3755			    !(ctl & DC_TXCTL_LASTFRAG)) {
3756				cd->dc_tx_chain[i] = NULL;
3757				continue;
3758			}
3759			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3760			m_freem(cd->dc_tx_chain[i]);
3761			cd->dc_tx_chain[i] = NULL;
3762		}
3763	}
3764	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3765
3766	DC_UNLOCK(sc);
3767}
3768
3769/*
3770 * Device suspend routine.  Stop the interface and save some PCI
3771 * settings in case the BIOS doesn't restore them properly on
3772 * resume.
3773 */
3774static int
3775dc_suspend(device_t dev)
3776{
3777	struct dc_softc *sc;
3778	int s;
3779
3780	s = splimp();
3781
3782	sc = device_get_softc(dev);
3783	dc_stop(sc);
3784	sc->suspended = 1;
3785
3786	splx(s);
3787	return (0);
3788}
3789
3790/*
3791 * Device resume routine.  Restore some PCI settings in case the BIOS
3792 * doesn't, re-enable busmastering, and restart the interface if
3793 * appropriate.
3794 */
3795static int
3796dc_resume(device_t dev)
3797{
3798	struct dc_softc *sc;
3799	struct ifnet *ifp;
3800	int s;
3801
3802	s = splimp();
3803
3804	sc = device_get_softc(dev);
3805	ifp = sc->dc_ifp;
3806
3807	/* reinitialize interface if necessary */
3808	if (ifp->if_flags & IFF_UP)
3809		dc_init(sc);
3810
3811	sc->suspended = 0;
3812
3813	splx(s);
3814	return (0);
3815}
3816
3817/*
3818 * Stop all chip I/O so that the kernel's probe routines don't
3819 * get confused by errant DMAs when rebooting.
3820 */
3821static void
3822dc_shutdown(device_t dev)
3823{
3824	struct dc_softc *sc;
3825
3826	sc = device_get_softc(dev);
3827
3828	dc_stop(sc);
3829}
3830