if_dc.c revision 134285
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/dc/if_dc.c 134285 2004-08-25 03:37:25Z rwatson $");
35
36/*
37 * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38 * series chips and several workalikes including the following:
39 *
40 * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41 * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42 * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43 * ASIX Electronics AX88140A (www.asix.com.tw)
44 * ASIX Electronics AX88141 (www.asix.com.tw)
45 * ADMtek AL981 (www.admtek.com.tw)
46 * ADMtek AN985 (www.admtek.com.tw)
47 * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48 * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49 * Accton EN1217 (www.accton.com)
50 * Xircom X3201 (www.xircom.com)
51 * Abocom FE2500
52 * Conexant LANfinity (www.conexant.com)
53 * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
54 *
55 * Datasheets for the 21143 are available at developer.intel.com.
56 * Datasheets for the clone parts can be found at their respective sites.
57 * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
58 * The PNIC II is essentially a Macronix 98715A chip; the only difference
59 * worth noting is that its multicast hash table is only 128 bits wide
60 * instead of 512.
61 *
62 * Written by Bill Paul <wpaul@ee.columbia.edu>
63 * Electrical Engineering Department
64 * Columbia University, New York City
65 */
66/*
67 * The Intel 21143 is the successor to the DEC 21140. It is basically
68 * the same as the 21140 but with a few new features. The 21143 supports
69 * three kinds of media attachments:
70 *
71 * o MII port, for 10Mbps and 100Mbps support and NWAY
72 *   autonegotiation provided by an external PHY.
73 * o SYM port, for symbol mode 100Mbps support.
74 * o 10baseT port.
75 * o AUI/BNC port.
76 *
77 * The 100Mbps SYM port and 10baseT port can be used together in
78 * combination with the internal NWAY support to create a 10/100
79 * autosensing configuration.
80 *
81 * Note that not all tulip workalikes are handled in this driver: we only
82 * deal with those which are relatively well behaved. The Winbond is
83 * handled separately due to its different register offsets and the
84 * special handling needed for its various bugs. The PNIC is handled
85 * here, but I'm not thrilled about it.
86 *
87 * All of the workalike chips use some form of MII transceiver support
88 * with the exception of the Macronix chips, which also have a SYM port.
89 * The ASIX AX88140A is also documented to have a SYM port, but all
90 * the cards I've seen use an MII transceiver, probably because the
91 * AX88140A doesn't support internal NWAY.
92 */
93
94#include <sys/param.h>
95#include <sys/endian.h>
96#include <sys/systm.h>
97#include <sys/sockio.h>
98#include <sys/mbuf.h>
99#include <sys/malloc.h>
100#include <sys/kernel.h>
101#include <sys/module.h>
102#include <sys/socket.h>
103#include <sys/sysctl.h>
104
105#include <net/if.h>
106#include <net/if_arp.h>
107#include <net/ethernet.h>
108#include <net/if_dl.h>
109#include <net/if_media.h>
110#include <net/if_types.h>
111#include <net/if_vlan_var.h>
112
113#include <net/bpf.h>
114
115#include <machine/bus_pio.h>
116#include <machine/bus_memio.h>
117#include <machine/bus.h>
118#include <machine/resource.h>
119#include <sys/bus.h>
120#include <sys/rman.h>
121
122#include <dev/mii/mii.h>
123#include <dev/mii/miivar.h>
124
125#include <dev/pci/pcireg.h>
126#include <dev/pci/pcivar.h>
127
128#define DC_USEIOSPACE
129#ifdef __alpha__
130#define SRM_MEDIA
131#endif
132
133#include <pci/if_dcreg.h>
134
135#ifdef __sparc64__
136#include <dev/ofw/openfirm.h>
137#include <machine/ofw_machdep.h>
138#endif
139
140MODULE_DEPEND(dc, pci, 1, 1, 1);
141MODULE_DEPEND(dc, ether, 1, 1, 1);
142MODULE_DEPEND(dc, miibus, 1, 1, 1);
143
144/* "controller miibus0" required.  See GENERIC if you get errors here. */
145#include "miibus_if.h"
146
147/*
148 * Various supported device vendors/types and their names.
149 */
150static struct dc_type dc_devs[] = {
151	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
152		"Intel 21143 10/100BaseTX" },
153	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
154		"Davicom DM9009 10/100BaseTX" },
155	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
156		"Davicom DM9100 10/100BaseTX" },
157	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
158		"Davicom DM9102 10/100BaseTX" },
159	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
160		"Davicom DM9102A 10/100BaseTX" },
161	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
162		"ADMtek AL981 10/100BaseTX" },
163	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
164		"ADMtek AN985 10/100BaseTX" },
165	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
166		"ADMtek ADM9511 10/100BaseTX" },
167	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
168		"ADMtek ADM9513 10/100BaseTX" },
169	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
170		"Netgear FA511 10/100BaseTX" },
171	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
172		"ASIX AX88140A 10/100BaseTX" },
173	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
174		"ASIX AX88141 10/100BaseTX" },
175	{ DC_VENDORID_MX, DC_DEVICEID_98713,
176		"Macronix 98713 10/100BaseTX" },
177	{ DC_VENDORID_MX, DC_DEVICEID_98713,
178		"Macronix 98713A 10/100BaseTX" },
179	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
180		"Compex RL100-TX 10/100BaseTX" },
181	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
182		"Compex RL100-TX 10/100BaseTX" },
183	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
184		"Macronix 98715/98715A 10/100BaseTX" },
185	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
186		"Macronix 98715AEC-C 10/100BaseTX" },
187	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
188		"Macronix 98725 10/100BaseTX" },
189	{ DC_VENDORID_MX, DC_DEVICEID_98727,
190		"Macronix 98727/98732 10/100BaseTX" },
191	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
192		"LC82C115 PNIC II 10/100BaseTX" },
193	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
194		"82c168 PNIC 10/100BaseTX" },
195	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
196		"82c169 PNIC 10/100BaseTX" },
197	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
198		"Accton EN1217 10/100BaseTX" },
199	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
200		"Accton EN2242 MiniPCI 10/100BaseTX" },
201	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
202	  	"Xircom X3201 10/100BaseTX" },
203	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
204		"Abocom FE2500 10/100BaseTX" },
205	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX,
206		"Abocom FE2500MX 10/100BaseTX" },
207	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
208		"Conexant LANfinity MiniPCI 10/100BaseTX" },
209	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
210		"Hawking CB102 CardBus 10/100" },
211	{ DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
212		"PlaneX FNW-3602-T CardBus 10/100" },
213	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
214		"3Com OfficeConnect 10/100B" },
215	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
216		"Microsoft MN-120 CardBus 10/100" },
217	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
218		"Microsoft MN-130 10/100" },
219	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
220		"Microsoft MN-130 10/100" },
221	{ 0, 0, NULL }
222};
223
224static int dc_probe		(device_t);
225static int dc_attach		(device_t);
226static int dc_detach		(device_t);
227static int dc_suspend		(device_t);
228static int dc_resume		(device_t);
229static struct dc_type *dc_devtype	(device_t);
230static int dc_newbuf		(struct dc_softc *, int, int);
231static int dc_encap		(struct dc_softc *, struct mbuf **);
232static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
233static int dc_rx_resync		(struct dc_softc *);
234static void dc_rxeof		(struct dc_softc *);
235static void dc_txeof		(struct dc_softc *);
236static void dc_tick		(void *);
237static void dc_tx_underrun	(struct dc_softc *);
238static void dc_intr		(void *);
239static void dc_start		(struct ifnet *);
240static int dc_ioctl		(struct ifnet *, u_long, caddr_t);
241static void dc_init		(void *);
242static void dc_stop		(struct dc_softc *);
243static void dc_watchdog		(struct ifnet *);
244static void dc_shutdown		(device_t);
245static int dc_ifmedia_upd	(struct ifnet *);
246static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
247
248static void dc_delay		(struct dc_softc *);
249static void dc_eeprom_idle	(struct dc_softc *);
250static void dc_eeprom_putbyte	(struct dc_softc *, int);
251static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
252static void dc_eeprom_getword_pnic
253				(struct dc_softc *, int, u_int16_t *);
254static void dc_eeprom_getword_xircom
255				(struct dc_softc *, int, u_int16_t *);
256static void dc_eeprom_width	(struct dc_softc *);
257static void dc_read_eeprom	(struct dc_softc *, caddr_t, int, int, int);
258
259static void dc_mii_writebit	(struct dc_softc *, int);
260static int dc_mii_readbit	(struct dc_softc *);
261static void dc_mii_sync		(struct dc_softc *);
262static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
263static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
264static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
265static int dc_miibus_readreg	(device_t, int, int);
266static int dc_miibus_writereg	(device_t, int, int, int);
267static void dc_miibus_statchg	(device_t);
268static void dc_miibus_mediainit	(device_t);
269
270static void dc_setcfg		(struct dc_softc *, int);
271static uint32_t dc_mchash_le	(struct dc_softc *, const uint8_t *);
272static uint32_t dc_mchash_be	(const uint8_t *);
273static void dc_setfilt_21143	(struct dc_softc *);
274static void dc_setfilt_asix	(struct dc_softc *);
275static void dc_setfilt_admtek	(struct dc_softc *);
276static void dc_setfilt_xircom	(struct dc_softc *);
277
278static void dc_setfilt		(struct dc_softc *);
279
280static void dc_reset		(struct dc_softc *);
281static int dc_list_rx_init	(struct dc_softc *);
282static int dc_list_tx_init	(struct dc_softc *);
283
284static void dc_read_srom	(struct dc_softc *, int);
285static void dc_parse_21143_srom	(struct dc_softc *);
286static void dc_decode_leaf_sia	(struct dc_softc *, struct dc_eblock_sia *);
287static void dc_decode_leaf_mii	(struct dc_softc *, struct dc_eblock_mii *);
288static void dc_decode_leaf_sym	(struct dc_softc *, struct dc_eblock_sym *);
289static void dc_apply_fixup	(struct dc_softc *, int);
290
291static void dc_dma_map_txbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
292				    int);
293static void dc_dma_map_rxbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
294				    int);
295
296#ifdef DC_USEIOSPACE
297#define DC_RES			SYS_RES_IOPORT
298#define DC_RID			DC_PCI_CFBIO
299#else
300#define DC_RES			SYS_RES_MEMORY
301#define DC_RID			DC_PCI_CFBMA
302#endif
303
304static device_method_t dc_methods[] = {
305	/* Device interface */
306	DEVMETHOD(device_probe,		dc_probe),
307	DEVMETHOD(device_attach,	dc_attach),
308	DEVMETHOD(device_detach,	dc_detach),
309	DEVMETHOD(device_suspend,	dc_suspend),
310	DEVMETHOD(device_resume,	dc_resume),
311	DEVMETHOD(device_shutdown,	dc_shutdown),
312
313	/* bus interface */
314	DEVMETHOD(bus_print_child,	bus_generic_print_child),
315	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
316
317	/* MII interface */
318	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
319	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
320	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
321	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
322
323	{ 0, 0 }
324};
325
326static driver_t dc_driver = {
327	"dc",
328	dc_methods,
329	sizeof(struct dc_softc)
330};
331
332static devclass_t dc_devclass;
333#ifdef __i386__
334static int dc_quick = 1;
335SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
336    "do not m_devget() in dc driver");
337#endif
338
339DRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
340DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
341DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
342
343#define DC_SETBIT(sc, reg, x)				\
344	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
345
346#define DC_CLRBIT(sc, reg, x)				\
347	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
348
349#define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
350#define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
351
352#define IS_MPSAFE 	0
353
354static void
355dc_delay(struct dc_softc *sc)
356{
357	int idx;
358
359	for (idx = (300 / 33) + 1; idx > 0; idx--)
360		CSR_READ_4(sc, DC_BUSCTL);
361}
362
363static void
364dc_eeprom_width(struct dc_softc *sc)
365{
366	int i;
367
368	/* Force EEPROM to idle state. */
369	dc_eeprom_idle(sc);
370
371	/* Enter EEPROM access mode. */
372	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
373	dc_delay(sc);
374	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
375	dc_delay(sc);
376	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
377	dc_delay(sc);
378	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
379	dc_delay(sc);
380
381	for (i = 3; i--;) {
382		if (6 & (1 << i))
383			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
384		else
385			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
386		dc_delay(sc);
387		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
388		dc_delay(sc);
389		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
390		dc_delay(sc);
391	}
392
393	for (i = 1; i <= 12; i++) {
394		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
395		dc_delay(sc);
396		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
397			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
398			dc_delay(sc);
399			break;
400		}
401		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
402		dc_delay(sc);
403	}
404
405	/* Turn off EEPROM access mode. */
406	dc_eeprom_idle(sc);
407
408	if (i < 4 || i > 12)
409		sc->dc_romwidth = 6;
410	else
411		sc->dc_romwidth = i;
412
413	/* Enter EEPROM access mode. */
414	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
415	dc_delay(sc);
416	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
417	dc_delay(sc);
418	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
419	dc_delay(sc);
420	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
421	dc_delay(sc);
422
423	/* Turn off EEPROM access mode. */
424	dc_eeprom_idle(sc);
425}
426
427static void
428dc_eeprom_idle(struct dc_softc *sc)
429{
430	int i;
431
432	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
433	dc_delay(sc);
434	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
435	dc_delay(sc);
436	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
437	dc_delay(sc);
438	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
439	dc_delay(sc);
440
441	for (i = 0; i < 25; i++) {
442		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
443		dc_delay(sc);
444		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
445		dc_delay(sc);
446	}
447
448	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
449	dc_delay(sc);
450	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
451	dc_delay(sc);
452	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
453}
454
455/*
456 * Send a read command and address to the EEPROM, check for ACK.
457 */
458static void
459dc_eeprom_putbyte(struct dc_softc *sc, int addr)
460{
461	int d, i;
462
463	d = DC_EECMD_READ >> 6;
464	for (i = 3; i--; ) {
465		if (d & (1 << i))
466			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
467		else
468			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
469		dc_delay(sc);
470		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
471		dc_delay(sc);
472		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
473		dc_delay(sc);
474	}
475
476	/*
477	 * Feed in each bit and strobe the clock.
478	 */
479	for (i = sc->dc_romwidth; i--;) {
480		if (addr & (1 << i)) {
481			SIO_SET(DC_SIO_EE_DATAIN);
482		} else {
483			SIO_CLR(DC_SIO_EE_DATAIN);
484		}
485		dc_delay(sc);
486		SIO_SET(DC_SIO_EE_CLK);
487		dc_delay(sc);
488		SIO_CLR(DC_SIO_EE_CLK);
489		dc_delay(sc);
490	}
491}
492
493/*
494 * Read a word of data stored in the EEPROM at address 'addr.'
495 * The PNIC 82c168/82c169 has its own non-standard way to read
496 * the EEPROM.
497 */
498static void
499dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
500{
501	int i;
502	u_int32_t r;
503
504	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
505
506	for (i = 0; i < DC_TIMEOUT; i++) {
507		DELAY(1);
508		r = CSR_READ_4(sc, DC_SIO);
509		if (!(r & DC_PN_SIOCTL_BUSY)) {
510			*dest = (u_int16_t)(r & 0xFFFF);
511			return;
512		}
513	}
514}
515
516/*
517 * Read a word of data stored in the EEPROM at address 'addr.'
518 * The Xircom X3201 has its own non-standard way to read
519 * the EEPROM, too.
520 */
521static void
522dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
523{
524
525	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
526
527	addr *= 2;
528	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
529	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
530	addr += 1;
531	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
532	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
533
534	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
535}
536
537/*
538 * Read a word of data stored in the EEPROM at address 'addr.'
539 */
540static void
541dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
542{
543	int i;
544	u_int16_t word = 0;
545
546	/* Force EEPROM to idle state. */
547	dc_eeprom_idle(sc);
548
549	/* Enter EEPROM access mode. */
550	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
551	dc_delay(sc);
552	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
553	dc_delay(sc);
554	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
555	dc_delay(sc);
556	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
557	dc_delay(sc);
558
559	/*
560	 * Send address of word we want to read.
561	 */
562	dc_eeprom_putbyte(sc, addr);
563
564	/*
565	 * Start reading bits from EEPROM.
566	 */
567	for (i = 0x8000; i; i >>= 1) {
568		SIO_SET(DC_SIO_EE_CLK);
569		dc_delay(sc);
570		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
571			word |= i;
572		dc_delay(sc);
573		SIO_CLR(DC_SIO_EE_CLK);
574		dc_delay(sc);
575	}
576
577	/* Turn off EEPROM access mode. */
578	dc_eeprom_idle(sc);
579
580	*dest = word;
581}
582
583/*
584 * Read a sequence of words from the EEPROM.
585 */
586static void
587dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
588{
589	int i;
590	u_int16_t word = 0, *ptr;
591
592	for (i = 0; i < cnt; i++) {
593		if (DC_IS_PNIC(sc))
594			dc_eeprom_getword_pnic(sc, off + i, &word);
595		else if (DC_IS_XIRCOM(sc))
596			dc_eeprom_getword_xircom(sc, off + i, &word);
597		else
598			dc_eeprom_getword(sc, off + i, &word);
599		ptr = (u_int16_t *)(dest + (i * 2));
600		if (swap)
601			*ptr = ntohs(word);
602		else
603			*ptr = word;
604	}
605}
606
607/*
608 * The following two routines are taken from the Macronix 98713
609 * Application Notes pp.19-21.
610 */
611/*
612 * Write a bit to the MII bus.
613 */
614static void
615dc_mii_writebit(struct dc_softc *sc, int bit)
616{
617
618	if (bit)
619		CSR_WRITE_4(sc, DC_SIO,
620		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
621	else
622		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
623
624	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
625	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
626}
627
628/*
629 * Read a bit from the MII bus.
630 */
631static int
632dc_mii_readbit(struct dc_softc *sc)
633{
634
635	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
636	CSR_READ_4(sc, DC_SIO);
637	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
638	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
639	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
640		return (1);
641
642	return (0);
643}
644
645/*
646 * Sync the PHYs by setting data bit and strobing the clock 32 times.
647 */
648static void
649dc_mii_sync(struct dc_softc *sc)
650{
651	int i;
652
653	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
654
655	for (i = 0; i < 32; i++)
656		dc_mii_writebit(sc, 1);
657}
658
659/*
660 * Clock a series of bits through the MII.
661 */
662static void
663dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
664{
665	int i;
666
667	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
668		dc_mii_writebit(sc, bits & i);
669}
670
671/*
672 * Read an PHY register through the MII.
673 */
674static int
675dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
676{
677	int i, ack;
678
679	DC_LOCK(sc);
680
681	/*
682	 * Set up frame for RX.
683	 */
684	frame->mii_stdelim = DC_MII_STARTDELIM;
685	frame->mii_opcode = DC_MII_READOP;
686	frame->mii_turnaround = 0;
687	frame->mii_data = 0;
688
689	/*
690	 * Sync the PHYs.
691	 */
692	dc_mii_sync(sc);
693
694	/*
695	 * Send command/address info.
696	 */
697	dc_mii_send(sc, frame->mii_stdelim, 2);
698	dc_mii_send(sc, frame->mii_opcode, 2);
699	dc_mii_send(sc, frame->mii_phyaddr, 5);
700	dc_mii_send(sc, frame->mii_regaddr, 5);
701
702#ifdef notdef
703	/* Idle bit */
704	dc_mii_writebit(sc, 1);
705	dc_mii_writebit(sc, 0);
706#endif
707
708	/* Check for ack. */
709	ack = dc_mii_readbit(sc);
710
711	/*
712	 * Now try reading data bits. If the ack failed, we still
713	 * need to clock through 16 cycles to keep the PHY(s) in sync.
714	 */
715	if (ack) {
716		for (i = 0; i < 16; i++)
717			dc_mii_readbit(sc);
718		goto fail;
719	}
720
721	for (i = 0x8000; i; i >>= 1) {
722		if (!ack) {
723			if (dc_mii_readbit(sc))
724				frame->mii_data |= i;
725		}
726	}
727
728fail:
729
730	dc_mii_writebit(sc, 0);
731	dc_mii_writebit(sc, 0);
732
733	DC_UNLOCK(sc);
734
735	if (ack)
736		return (1);
737	return (0);
738}
739
740/*
741 * Write to a PHY register through the MII.
742 */
743static int
744dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
745{
746
747	DC_LOCK(sc);
748	/*
749	 * Set up frame for TX.
750	 */
751
752	frame->mii_stdelim = DC_MII_STARTDELIM;
753	frame->mii_opcode = DC_MII_WRITEOP;
754	frame->mii_turnaround = DC_MII_TURNAROUND;
755
756	/*
757	 * Sync the PHYs.
758	 */
759	dc_mii_sync(sc);
760
761	dc_mii_send(sc, frame->mii_stdelim, 2);
762	dc_mii_send(sc, frame->mii_opcode, 2);
763	dc_mii_send(sc, frame->mii_phyaddr, 5);
764	dc_mii_send(sc, frame->mii_regaddr, 5);
765	dc_mii_send(sc, frame->mii_turnaround, 2);
766	dc_mii_send(sc, frame->mii_data, 16);
767
768	/* Idle bit. */
769	dc_mii_writebit(sc, 0);
770	dc_mii_writebit(sc, 0);
771
772	DC_UNLOCK(sc);
773
774	return (0);
775}
776
777static int
778dc_miibus_readreg(device_t dev, int phy, int reg)
779{
780	struct dc_mii_frame frame;
781	struct dc_softc	 *sc;
782	int i, rval, phy_reg = 0;
783
784	sc = device_get_softc(dev);
785	bzero(&frame, sizeof(frame));
786
787	/*
788	 * Note: both the AL981 and AN985 have internal PHYs,
789	 * however the AL981 provides direct access to the PHY
790	 * registers while the AN985 uses a serial MII interface.
791	 * The AN985's MII interface is also buggy in that you
792	 * can read from any MII address (0 to 31), but only address 1
793	 * behaves normally. To deal with both cases, we pretend
794	 * that the PHY is at MII address 1.
795	 */
796	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
797		return (0);
798
799	/*
800	 * Note: the ukphy probes of the RS7112 report a PHY at
801	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
802	 * so we only respond to correct one.
803	 */
804	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
805		return (0);
806
807	if (sc->dc_pmode != DC_PMODE_MII) {
808		if (phy == (MII_NPHY - 1)) {
809			switch (reg) {
810			case MII_BMSR:
811			/*
812			 * Fake something to make the probe
813			 * code think there's a PHY here.
814			 */
815				return (BMSR_MEDIAMASK);
816				break;
817			case MII_PHYIDR1:
818				if (DC_IS_PNIC(sc))
819					return (DC_VENDORID_LO);
820				return (DC_VENDORID_DEC);
821				break;
822			case MII_PHYIDR2:
823				if (DC_IS_PNIC(sc))
824					return (DC_DEVICEID_82C168);
825				return (DC_DEVICEID_21143);
826				break;
827			default:
828				return (0);
829				break;
830			}
831		} else
832			return (0);
833	}
834
835	if (DC_IS_PNIC(sc)) {
836		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
837		    (phy << 23) | (reg << 18));
838		for (i = 0; i < DC_TIMEOUT; i++) {
839			DELAY(1);
840			rval = CSR_READ_4(sc, DC_PN_MII);
841			if (!(rval & DC_PN_MII_BUSY)) {
842				rval &= 0xFFFF;
843				return (rval == 0xFFFF ? 0 : rval);
844			}
845		}
846		return (0);
847	}
848
849	if (DC_IS_COMET(sc)) {
850		switch (reg) {
851		case MII_BMCR:
852			phy_reg = DC_AL_BMCR;
853			break;
854		case MII_BMSR:
855			phy_reg = DC_AL_BMSR;
856			break;
857		case MII_PHYIDR1:
858			phy_reg = DC_AL_VENID;
859			break;
860		case MII_PHYIDR2:
861			phy_reg = DC_AL_DEVID;
862			break;
863		case MII_ANAR:
864			phy_reg = DC_AL_ANAR;
865			break;
866		case MII_ANLPAR:
867			phy_reg = DC_AL_LPAR;
868			break;
869		case MII_ANER:
870			phy_reg = DC_AL_ANER;
871			break;
872		default:
873			printf("dc%d: phy_read: bad phy register %x\n",
874			    sc->dc_unit, reg);
875			return (0);
876			break;
877		}
878
879		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
880
881		if (rval == 0xFFFF)
882			return (0);
883		return (rval);
884	}
885
886	frame.mii_phyaddr = phy;
887	frame.mii_regaddr = reg;
888	if (sc->dc_type == DC_TYPE_98713) {
889		phy_reg = CSR_READ_4(sc, DC_NETCFG);
890		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
891	}
892	dc_mii_readreg(sc, &frame);
893	if (sc->dc_type == DC_TYPE_98713)
894		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
895
896	return (frame.mii_data);
897}
898
899static int
900dc_miibus_writereg(device_t dev, int phy, int reg, int data)
901{
902	struct dc_softc *sc;
903	struct dc_mii_frame frame;
904	int i, phy_reg = 0;
905
906	sc = device_get_softc(dev);
907	bzero(&frame, sizeof(frame));
908
909	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
910		return (0);
911
912	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
913		return (0);
914
915	if (DC_IS_PNIC(sc)) {
916		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
917		    (phy << 23) | (reg << 10) | data);
918		for (i = 0; i < DC_TIMEOUT; i++) {
919			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
920				break;
921		}
922		return (0);
923	}
924
925	if (DC_IS_COMET(sc)) {
926		switch (reg) {
927		case MII_BMCR:
928			phy_reg = DC_AL_BMCR;
929			break;
930		case MII_BMSR:
931			phy_reg = DC_AL_BMSR;
932			break;
933		case MII_PHYIDR1:
934			phy_reg = DC_AL_VENID;
935			break;
936		case MII_PHYIDR2:
937			phy_reg = DC_AL_DEVID;
938			break;
939		case MII_ANAR:
940			phy_reg = DC_AL_ANAR;
941			break;
942		case MII_ANLPAR:
943			phy_reg = DC_AL_LPAR;
944			break;
945		case MII_ANER:
946			phy_reg = DC_AL_ANER;
947			break;
948		default:
949			printf("dc%d: phy_write: bad phy register %x\n",
950			    sc->dc_unit, reg);
951			return (0);
952			break;
953		}
954
955		CSR_WRITE_4(sc, phy_reg, data);
956		return (0);
957	}
958
959	frame.mii_phyaddr = phy;
960	frame.mii_regaddr = reg;
961	frame.mii_data = data;
962
963	if (sc->dc_type == DC_TYPE_98713) {
964		phy_reg = CSR_READ_4(sc, DC_NETCFG);
965		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
966	}
967	dc_mii_writereg(sc, &frame);
968	if (sc->dc_type == DC_TYPE_98713)
969		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
970
971	return (0);
972}
973
974static void
975dc_miibus_statchg(device_t dev)
976{
977	struct dc_softc *sc;
978	struct mii_data *mii;
979	struct ifmedia *ifm;
980
981	sc = device_get_softc(dev);
982	if (DC_IS_ADMTEK(sc))
983		return;
984
985	mii = device_get_softc(sc->dc_miibus);
986	ifm = &mii->mii_media;
987	if (DC_IS_DAVICOM(sc) &&
988	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
989		dc_setcfg(sc, ifm->ifm_media);
990		sc->dc_if_media = ifm->ifm_media;
991	} else {
992		dc_setcfg(sc, mii->mii_media_active);
993		sc->dc_if_media = mii->mii_media_active;
994	}
995}
996
997/*
998 * Special support for DM9102A cards with HomePNA PHYs. Note:
999 * with the Davicom DM9102A/DM9801 eval board that I have, it seems
1000 * to be impossible to talk to the management interface of the DM9801
1001 * PHY (its MDIO pin is not connected to anything). Consequently,
1002 * the driver has to just 'know' about the additional mode and deal
1003 * with it itself. *sigh*
1004 */
1005static void
1006dc_miibus_mediainit(device_t dev)
1007{
1008	struct dc_softc *sc;
1009	struct mii_data *mii;
1010	struct ifmedia *ifm;
1011	int rev;
1012
1013	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1014
1015	sc = device_get_softc(dev);
1016	mii = device_get_softc(sc->dc_miibus);
1017	ifm = &mii->mii_media;
1018
1019	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1020		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1021}
1022
1023#define DC_BITS_512	9
1024#define DC_BITS_128	7
1025#define DC_BITS_64	6
1026
1027static uint32_t
1028dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1029{
1030	uint32_t crc;
1031
1032	/* Compute CRC for the address value. */
1033	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1034
1035	/*
1036	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1037	 * chips is only 128 bits wide.
1038	 */
1039	if (sc->dc_flags & DC_128BIT_HASH)
1040		return (crc & ((1 << DC_BITS_128) - 1));
1041
1042	/* The hash table on the MX98715BEC is only 64 bits wide. */
1043	if (sc->dc_flags & DC_64BIT_HASH)
1044		return (crc & ((1 << DC_BITS_64) - 1));
1045
1046	/* Xircom's hash filtering table is different (read: weird) */
1047	/* Xircom uses the LEAST significant bits */
1048	if (DC_IS_XIRCOM(sc)) {
1049		if ((crc & 0x180) == 0x180)
1050			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1051		else
1052			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1053			    (12 << 4));
1054	}
1055
1056	return (crc & ((1 << DC_BITS_512) - 1));
1057}
1058
1059/*
1060 * Calculate CRC of a multicast group address, return the lower 6 bits.
1061 */
1062static uint32_t
1063dc_mchash_be(const uint8_t *addr)
1064{
1065	uint32_t crc;
1066
1067	/* Compute CRC for the address value. */
1068	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1069
1070	/* Return the filter bit position. */
1071	return ((crc >> 26) & 0x0000003F);
1072}
1073
1074/*
1075 * 21143-style RX filter setup routine. Filter programming is done by
1076 * downloading a special setup frame into the TX engine. 21143, Macronix,
1077 * PNIC, PNIC II and Davicom chips are programmed this way.
1078 *
1079 * We always program the chip using 'hash perfect' mode, i.e. one perfect
1080 * address (our node address) and a 512-bit hash filter for multicast
1081 * frames. We also sneak the broadcast address into the hash filter since
1082 * we need that too.
1083 */
1084static void
1085dc_setfilt_21143(struct dc_softc *sc)
1086{
1087	struct dc_desc *sframe;
1088	u_int32_t h, *sp;
1089	struct ifmultiaddr *ifma;
1090	struct ifnet *ifp;
1091	int i;
1092
1093	ifp = &sc->arpcom.ac_if;
1094
1095	i = sc->dc_cdata.dc_tx_prod;
1096	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1097	sc->dc_cdata.dc_tx_cnt++;
1098	sframe = &sc->dc_ldata->dc_tx_list[i];
1099	sp = sc->dc_cdata.dc_sbuf;
1100	bzero(sp, DC_SFRAME_LEN);
1101
1102	sframe->dc_data = htole32(sc->dc_saddr);
1103	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1104	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1105
1106	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1107
1108	/* If we want promiscuous mode, set the allframes bit. */
1109	if (ifp->if_flags & IFF_PROMISC)
1110		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1111	else
1112		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1113
1114	if (ifp->if_flags & IFF_ALLMULTI)
1115		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1116	else
1117		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1118
1119	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1120		if (ifma->ifma_addr->sa_family != AF_LINK)
1121			continue;
1122		h = dc_mchash_le(sc,
1123		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1124		sp[h >> 4] |= htole32(1 << (h & 0xF));
1125	}
1126
1127	if (ifp->if_flags & IFF_BROADCAST) {
1128		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1129		sp[h >> 4] |= htole32(1 << (h & 0xF));
1130	}
1131
1132	/* Set our MAC address */
1133	sp[39] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1134	sp[40] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1135	sp[41] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1136
1137	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1138	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1139
1140	/*
1141	 * The PNIC takes an exceedingly long time to process its
1142	 * setup frame; wait 10ms after posting the setup frame
1143	 * before proceeding, just so it has time to swallow its
1144	 * medicine.
1145	 */
1146	DELAY(10000);
1147
1148	ifp->if_timer = 5;
1149}
1150
1151static void
1152dc_setfilt_admtek(struct dc_softc *sc)
1153{
1154	struct ifnet *ifp;
1155	struct ifmultiaddr *ifma;
1156	int h = 0;
1157	u_int32_t hashes[2] = { 0, 0 };
1158
1159	ifp = &sc->arpcom.ac_if;
1160
1161	/* Init our MAC address. */
1162	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1163	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1164
1165	/* If we want promiscuous mode, set the allframes bit. */
1166	if (ifp->if_flags & IFF_PROMISC)
1167		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1168	else
1169		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1170
1171	if (ifp->if_flags & IFF_ALLMULTI)
1172		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1173	else
1174		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1175
1176	/* First, zot all the existing hash bits. */
1177	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1178	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1179
1180	/*
1181	 * If we're already in promisc or allmulti mode, we
1182	 * don't have to bother programming the multicast filter.
1183	 */
1184	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1185		return;
1186
1187	/* Now program new ones. */
1188	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1189		if (ifma->ifma_addr->sa_family != AF_LINK)
1190			continue;
1191		if (DC_IS_CENTAUR(sc))
1192			h = dc_mchash_le(sc,
1193			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1194		else
1195			h = dc_mchash_be(
1196			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1197		if (h < 32)
1198			hashes[0] |= (1 << h);
1199		else
1200			hashes[1] |= (1 << (h - 32));
1201	}
1202
1203	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1204	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1205}
1206
1207static void
1208dc_setfilt_asix(struct dc_softc *sc)
1209{
1210	struct ifnet *ifp;
1211	struct ifmultiaddr *ifma;
1212	int h = 0;
1213	u_int32_t hashes[2] = { 0, 0 };
1214
1215	ifp = &sc->arpcom.ac_if;
1216
1217	/* Init our MAC address */
1218	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1219	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1220	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1221	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1222	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1223	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1224
1225	/* If we want promiscuous mode, set the allframes bit. */
1226	if (ifp->if_flags & IFF_PROMISC)
1227		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1228	else
1229		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1230
1231	if (ifp->if_flags & IFF_ALLMULTI)
1232		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1233	else
1234		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1235
1236	/*
1237	 * The ASIX chip has a special bit to enable reception
1238	 * of broadcast frames.
1239	 */
1240	if (ifp->if_flags & IFF_BROADCAST)
1241		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1242	else
1243		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1244
1245	/* first, zot all the existing hash bits */
1246	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1247	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1248	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1249	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1250
1251	/*
1252	 * If we're already in promisc or allmulti mode, we
1253	 * don't have to bother programming the multicast filter.
1254	 */
1255	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1256		return;
1257
1258	/* now program new ones */
1259	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1260		if (ifma->ifma_addr->sa_family != AF_LINK)
1261			continue;
1262		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1263		if (h < 32)
1264			hashes[0] |= (1 << h);
1265		else
1266			hashes[1] |= (1 << (h - 32));
1267	}
1268
1269	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1270	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1271	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1272	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1273}
1274
1275static void
1276dc_setfilt_xircom(struct dc_softc *sc)
1277{
1278	struct ifnet *ifp;
1279	struct ifmultiaddr *ifma;
1280	struct dc_desc *sframe;
1281	u_int32_t h, *sp;
1282	int i;
1283
1284	ifp = &sc->arpcom.ac_if;
1285	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1286
1287	i = sc->dc_cdata.dc_tx_prod;
1288	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1289	sc->dc_cdata.dc_tx_cnt++;
1290	sframe = &sc->dc_ldata->dc_tx_list[i];
1291	sp = sc->dc_cdata.dc_sbuf;
1292	bzero(sp, DC_SFRAME_LEN);
1293
1294	sframe->dc_data = htole32(sc->dc_saddr);
1295	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1296	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1297
1298	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1299
1300	/* If we want promiscuous mode, set the allframes bit. */
1301	if (ifp->if_flags & IFF_PROMISC)
1302		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1303	else
1304		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1305
1306	if (ifp->if_flags & IFF_ALLMULTI)
1307		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1308	else
1309		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1310
1311	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1312		if (ifma->ifma_addr->sa_family != AF_LINK)
1313			continue;
1314		h = dc_mchash_le(sc,
1315		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1316		sp[h >> 4] |= htole32(1 << (h & 0xF));
1317	}
1318
1319	if (ifp->if_flags & IFF_BROADCAST) {
1320		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1321		sp[h >> 4] |= htole32(1 << (h & 0xF));
1322	}
1323
1324	/* Set our MAC address */
1325	sp[0] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1326	sp[1] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1327	sp[2] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1328
1329	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1330	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1331	ifp->if_flags |= IFF_RUNNING;
1332	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1333	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1334
1335	/*
1336	 * Wait some time...
1337	 */
1338	DELAY(1000);
1339
1340	ifp->if_timer = 5;
1341}
1342
1343static void
1344dc_setfilt(struct dc_softc *sc)
1345{
1346
1347	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1348	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1349		dc_setfilt_21143(sc);
1350
1351	if (DC_IS_ASIX(sc))
1352		dc_setfilt_asix(sc);
1353
1354	if (DC_IS_ADMTEK(sc))
1355		dc_setfilt_admtek(sc);
1356
1357	if (DC_IS_XIRCOM(sc))
1358		dc_setfilt_xircom(sc);
1359}
1360
1361/*
1362 * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1363 * the netconfig register, we first have to put the transmit and/or
1364 * receive logic in the idle state.
1365 */
1366static void
1367dc_setcfg(struct dc_softc *sc, int media)
1368{
1369	int i, restart = 0, watchdogreg;
1370	u_int32_t isr;
1371
1372	if (IFM_SUBTYPE(media) == IFM_NONE)
1373		return;
1374
1375	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1376		restart = 1;
1377		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1378
1379		for (i = 0; i < DC_TIMEOUT; i++) {
1380			isr = CSR_READ_4(sc, DC_ISR);
1381			if (isr & DC_ISR_TX_IDLE &&
1382			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1383			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1384				break;
1385			DELAY(10);
1386		}
1387
1388		if (i == DC_TIMEOUT)
1389			printf("dc%d: failed to force tx and "
1390				"rx to idle state\n", sc->dc_unit);
1391	}
1392
1393	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1394		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1395		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1396		if (sc->dc_pmode == DC_PMODE_MII) {
1397			if (DC_IS_INTEL(sc)) {
1398			/* There's a write enable bit here that reads as 1. */
1399				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1400				watchdogreg &= ~DC_WDOG_CTLWREN;
1401				watchdogreg |= DC_WDOG_JABBERDIS;
1402				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1403			} else {
1404				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1405			}
1406			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1407			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1408			if (sc->dc_type == DC_TYPE_98713)
1409				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1410				    DC_NETCFG_SCRAMBLER));
1411			if (!DC_IS_DAVICOM(sc))
1412				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1413			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1414			if (DC_IS_INTEL(sc))
1415				dc_apply_fixup(sc, IFM_AUTO);
1416		} else {
1417			if (DC_IS_PNIC(sc)) {
1418				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1419				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1420				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1421			}
1422			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1423			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1424			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1425			if (DC_IS_INTEL(sc))
1426				dc_apply_fixup(sc,
1427				    (media & IFM_GMASK) == IFM_FDX ?
1428				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1429		}
1430	}
1431
1432	if (IFM_SUBTYPE(media) == IFM_10_T) {
1433		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1434		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1435		if (sc->dc_pmode == DC_PMODE_MII) {
1436			/* There's a write enable bit here that reads as 1. */
1437			if (DC_IS_INTEL(sc)) {
1438				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1439				watchdogreg &= ~DC_WDOG_CTLWREN;
1440				watchdogreg |= DC_WDOG_JABBERDIS;
1441				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1442			} else {
1443				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1444			}
1445			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1446			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1447			if (sc->dc_type == DC_TYPE_98713)
1448				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1449			if (!DC_IS_DAVICOM(sc))
1450				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1451			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1452			if (DC_IS_INTEL(sc))
1453				dc_apply_fixup(sc, IFM_AUTO);
1454		} else {
1455			if (DC_IS_PNIC(sc)) {
1456				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1457				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1458				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1459			}
1460			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1461			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1462			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1463			if (DC_IS_INTEL(sc)) {
1464				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1465				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1466				if ((media & IFM_GMASK) == IFM_FDX)
1467					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1468				else
1469					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1470				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1471				DC_CLRBIT(sc, DC_10BTCTRL,
1472				    DC_TCTL_AUTONEGENBL);
1473				dc_apply_fixup(sc,
1474				    (media & IFM_GMASK) == IFM_FDX ?
1475				    IFM_10_T | IFM_FDX : IFM_10_T);
1476				DELAY(20000);
1477			}
1478		}
1479	}
1480
1481	/*
1482	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1483	 * PHY and we want HomePNA mode, set the portsel bit to turn
1484	 * on the external MII port.
1485	 */
1486	if (DC_IS_DAVICOM(sc)) {
1487		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1488			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1489			sc->dc_link = 1;
1490		} else {
1491			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1492		}
1493	}
1494
1495	if ((media & IFM_GMASK) == IFM_FDX) {
1496		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1497		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1498			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1499	} else {
1500		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1501		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1502			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1503	}
1504
1505	if (restart)
1506		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1507}
1508
1509static void
1510dc_reset(struct dc_softc *sc)
1511{
1512	int i;
1513
1514	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1515
1516	for (i = 0; i < DC_TIMEOUT; i++) {
1517		DELAY(10);
1518		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1519			break;
1520	}
1521
1522	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1523	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1524		DELAY(10000);
1525		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1526		i = 0;
1527	}
1528
1529	if (i == DC_TIMEOUT)
1530		printf("dc%d: reset never completed!\n", sc->dc_unit);
1531
1532	/* Wait a little while for the chip to get its brains in order. */
1533	DELAY(1000);
1534
1535	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1536	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1537	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1538
1539	/*
1540	 * Bring the SIA out of reset. In some cases, it looks
1541	 * like failing to unreset the SIA soon enough gets it
1542	 * into a state where it will never come out of reset
1543	 * until we reset the whole chip again.
1544	 */
1545	if (DC_IS_INTEL(sc)) {
1546		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1547		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1548		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1549	}
1550}
1551
1552static struct dc_type *
1553dc_devtype(device_t dev)
1554{
1555	struct dc_type *t;
1556	u_int32_t rev;
1557
1558	t = dc_devs;
1559
1560	while (t->dc_name != NULL) {
1561		if ((pci_get_vendor(dev) == t->dc_vid) &&
1562		    (pci_get_device(dev) == t->dc_did)) {
1563			/* Check the PCI revision */
1564			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1565			if (t->dc_did == DC_DEVICEID_98713 &&
1566			    rev >= DC_REVISION_98713A)
1567				t++;
1568			if (t->dc_did == DC_DEVICEID_98713_CP &&
1569			    rev >= DC_REVISION_98713A)
1570				t++;
1571			if (t->dc_did == DC_DEVICEID_987x5 &&
1572			    rev >= DC_REVISION_98715AEC_C)
1573				t++;
1574			if (t->dc_did == DC_DEVICEID_987x5 &&
1575			    rev >= DC_REVISION_98725)
1576				t++;
1577			if (t->dc_did == DC_DEVICEID_AX88140A &&
1578			    rev >= DC_REVISION_88141)
1579				t++;
1580			if (t->dc_did == DC_DEVICEID_82C168 &&
1581			    rev >= DC_REVISION_82C169)
1582				t++;
1583			if (t->dc_did == DC_DEVICEID_DM9102 &&
1584			    rev >= DC_REVISION_DM9102A)
1585				t++;
1586			/*
1587			 * The Microsoft MN-130 has a device ID of 0x0002,
1588			 * which happens to be the same as the PNIC 82c168.
1589			 * To keep dc_attach() from getting confused, we
1590			 * pretend its ID is something different.
1591			 * XXX: ideally, dc_attach() should be checking
1592			 * vendorid+deviceid together to avoid such
1593			 * collisions.
1594			 */
1595			if (t->dc_vid == DC_VENDORID_MICROSOFT &&
1596			    t->dc_did == DC_DEVICEID_MSMN130)
1597				t++;
1598			return (t);
1599		}
1600		t++;
1601	}
1602
1603	return (NULL);
1604}
1605
1606/*
1607 * Probe for a 21143 or clone chip. Check the PCI vendor and device
1608 * IDs against our list and return a device name if we find a match.
1609 * We do a little bit of extra work to identify the exact type of
1610 * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1611 * but different revision IDs. The same is true for 98715/98715A
1612 * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1613 * cases, the exact chip revision affects driver behavior.
1614 */
1615static int
1616dc_probe(device_t dev)
1617{
1618	struct dc_type *t;
1619
1620	t = dc_devtype(dev);
1621
1622	if (t != NULL) {
1623		device_set_desc(dev, t->dc_name);
1624		return (0);
1625	}
1626
1627	return (ENXIO);
1628}
1629
1630static void
1631dc_apply_fixup(struct dc_softc *sc, int media)
1632{
1633	struct dc_mediainfo *m;
1634	u_int8_t *p;
1635	int i;
1636	u_int32_t reg;
1637
1638	m = sc->dc_mi;
1639
1640	while (m != NULL) {
1641		if (m->dc_media == media)
1642			break;
1643		m = m->dc_next;
1644	}
1645
1646	if (m == NULL)
1647		return;
1648
1649	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1650		reg = (p[0] | (p[1] << 8)) << 16;
1651		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1652	}
1653
1654	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1655		reg = (p[0] | (p[1] << 8)) << 16;
1656		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1657	}
1658}
1659
1660static void
1661dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1662{
1663	struct dc_mediainfo *m;
1664
1665	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1666	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1667	case DC_SIA_CODE_10BT:
1668		m->dc_media = IFM_10_T;
1669		break;
1670	case DC_SIA_CODE_10BT_FDX:
1671		m->dc_media = IFM_10_T | IFM_FDX;
1672		break;
1673	case DC_SIA_CODE_10B2:
1674		m->dc_media = IFM_10_2;
1675		break;
1676	case DC_SIA_CODE_10B5:
1677		m->dc_media = IFM_10_5;
1678		break;
1679	default:
1680		break;
1681	}
1682
1683	/*
1684	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1685	 * Things apparently already work for cards that do
1686	 * supply Media Specific Data.
1687	 */
1688	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1689		m->dc_gp_len = 2;
1690		m->dc_gp_ptr =
1691		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1692	} else {
1693		m->dc_gp_len = 2;
1694		m->dc_gp_ptr =
1695		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1696	}
1697
1698	m->dc_next = sc->dc_mi;
1699	sc->dc_mi = m;
1700
1701	sc->dc_pmode = DC_PMODE_SIA;
1702}
1703
1704static void
1705dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1706{
1707	struct dc_mediainfo *m;
1708
1709	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1710	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1711		m->dc_media = IFM_100_TX;
1712
1713	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1714		m->dc_media = IFM_100_TX | IFM_FDX;
1715
1716	m->dc_gp_len = 2;
1717	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1718
1719	m->dc_next = sc->dc_mi;
1720	sc->dc_mi = m;
1721
1722	sc->dc_pmode = DC_PMODE_SYM;
1723}
1724
1725static void
1726dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1727{
1728	struct dc_mediainfo *m;
1729	u_int8_t *p;
1730
1731	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1732	/* We abuse IFM_AUTO to represent MII. */
1733	m->dc_media = IFM_AUTO;
1734	m->dc_gp_len = l->dc_gpr_len;
1735
1736	p = (u_int8_t *)l;
1737	p += sizeof(struct dc_eblock_mii);
1738	m->dc_gp_ptr = p;
1739	p += 2 * l->dc_gpr_len;
1740	m->dc_reset_len = *p;
1741	p++;
1742	m->dc_reset_ptr = p;
1743
1744	m->dc_next = sc->dc_mi;
1745	sc->dc_mi = m;
1746}
1747
1748static void
1749dc_read_srom(struct dc_softc *sc, int bits)
1750{
1751	int size;
1752
1753	size = 2 << bits;
1754	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1755	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1756}
1757
1758static void
1759dc_parse_21143_srom(struct dc_softc *sc)
1760{
1761	struct dc_leaf_hdr *lhdr;
1762	struct dc_eblock_hdr *hdr;
1763	int have_mii, i, loff;
1764	char *ptr;
1765
1766	have_mii = 0;
1767	loff = sc->dc_srom[27];
1768	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1769
1770	ptr = (char *)lhdr;
1771	ptr += sizeof(struct dc_leaf_hdr) - 1;
1772	/*
1773	 * Look if we got a MII media block.
1774	 */
1775	for (i = 0; i < lhdr->dc_mcnt; i++) {
1776		hdr = (struct dc_eblock_hdr *)ptr;
1777		if (hdr->dc_type == DC_EBLOCK_MII)
1778		    have_mii++;
1779
1780		ptr += (hdr->dc_len & 0x7F);
1781		ptr++;
1782	}
1783
1784	/*
1785	 * Do the same thing again. Only use SIA and SYM media
1786	 * blocks if no MII media block is available.
1787	 */
1788	ptr = (char *)lhdr;
1789	ptr += sizeof(struct dc_leaf_hdr) - 1;
1790	for (i = 0; i < lhdr->dc_mcnt; i++) {
1791		hdr = (struct dc_eblock_hdr *)ptr;
1792		switch (hdr->dc_type) {
1793		case DC_EBLOCK_MII:
1794			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1795			break;
1796		case DC_EBLOCK_SIA:
1797			if (! have_mii)
1798				dc_decode_leaf_sia(sc,
1799				    (struct dc_eblock_sia *)hdr);
1800			break;
1801		case DC_EBLOCK_SYM:
1802			if (! have_mii)
1803				dc_decode_leaf_sym(sc,
1804				    (struct dc_eblock_sym *)hdr);
1805			break;
1806		default:
1807			/* Don't care. Yet. */
1808			break;
1809		}
1810		ptr += (hdr->dc_len & 0x7F);
1811		ptr++;
1812	}
1813}
1814
1815static void
1816dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1817{
1818	u_int32_t *paddr;
1819
1820	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1821	paddr = arg;
1822	*paddr = segs->ds_addr;
1823}
1824
1825/*
1826 * Attach the interface. Allocate softc structures, do ifmedia
1827 * setup and ethernet/BPF attach.
1828 */
1829static int
1830dc_attach(device_t dev)
1831{
1832	int tmp = 0;
1833	u_char eaddr[ETHER_ADDR_LEN];
1834	u_int32_t command;
1835	struct dc_softc *sc;
1836	struct ifnet *ifp;
1837	u_int32_t revision;
1838	int unit, error = 0, rid, mac_offset;
1839	int i;
1840	u_int8_t *mac;
1841
1842	sc = device_get_softc(dev);
1843	unit = device_get_unit(dev);
1844
1845	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1846	    MTX_DEF | MTX_RECURSE);
1847
1848	/*
1849	 * Map control/status registers.
1850	 */
1851	pci_enable_busmaster(dev);
1852
1853	rid = DC_RID;
1854	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1855
1856	if (sc->dc_res == NULL) {
1857		printf("dc%d: couldn't map ports/memory\n", unit);
1858		error = ENXIO;
1859		goto fail;
1860	}
1861
1862	sc->dc_btag = rman_get_bustag(sc->dc_res);
1863	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1864
1865	/* Allocate interrupt. */
1866	rid = 0;
1867	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1868	    RF_SHAREABLE | RF_ACTIVE);
1869
1870	if (sc->dc_irq == NULL) {
1871		printf("dc%d: couldn't map interrupt\n", unit);
1872		error = ENXIO;
1873		goto fail;
1874	}
1875
1876	/* Need this info to decide on a chip type. */
1877	sc->dc_info = dc_devtype(dev);
1878	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1879
1880	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1881	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1882	   sc->dc_info->dc_did != DC_DEVICEID_X3201)
1883		dc_eeprom_width(sc);
1884
1885	switch (sc->dc_info->dc_did) {
1886	case DC_DEVICEID_21143:
1887		sc->dc_type = DC_TYPE_21143;
1888		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1889		sc->dc_flags |= DC_REDUCED_MII_POLL;
1890		/* Save EEPROM contents so we can parse them later. */
1891		dc_read_srom(sc, sc->dc_romwidth);
1892		break;
1893	case DC_DEVICEID_DM9009:
1894	case DC_DEVICEID_DM9100:
1895	case DC_DEVICEID_DM9102:
1896		sc->dc_type = DC_TYPE_DM9102;
1897		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1898		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1899		sc->dc_flags |= DC_TX_ALIGN;
1900		sc->dc_pmode = DC_PMODE_MII;
1901		/* Increase the latency timer value. */
1902		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1903		command &= 0xFFFF00FF;
1904		command |= 0x00008000;
1905		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1906		break;
1907	case DC_DEVICEID_AL981:
1908		sc->dc_type = DC_TYPE_AL981;
1909		sc->dc_flags |= DC_TX_USE_TX_INTR;
1910		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1911		sc->dc_pmode = DC_PMODE_MII;
1912		dc_read_srom(sc, sc->dc_romwidth);
1913		break;
1914	case DC_DEVICEID_AN985:
1915	case DC_DEVICEID_ADM9511:
1916	case DC_DEVICEID_ADM9513:
1917	case DC_DEVICEID_FA511:
1918	case DC_DEVICEID_FE2500:
1919	case DC_DEVICEID_EN2242:
1920	case DC_DEVICEID_HAWKING_PN672TX:
1921	case DC_DEVICEID_3CSOHOB:
1922	case DC_DEVICEID_MSMN120:
1923	case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
1924		sc->dc_type = DC_TYPE_AN985;
1925		sc->dc_flags |= DC_64BIT_HASH;
1926		sc->dc_flags |= DC_TX_USE_TX_INTR;
1927		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1928		sc->dc_pmode = DC_PMODE_MII;
1929		/* Don't read SROM for - auto-loaded on reset */
1930		break;
1931	case DC_DEVICEID_98713:
1932	case DC_DEVICEID_98713_CP:
1933		if (revision < DC_REVISION_98713A) {
1934			sc->dc_type = DC_TYPE_98713;
1935		}
1936		if (revision >= DC_REVISION_98713A) {
1937			sc->dc_type = DC_TYPE_98713A;
1938			sc->dc_flags |= DC_21143_NWAY;
1939		}
1940		sc->dc_flags |= DC_REDUCED_MII_POLL;
1941		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1942		break;
1943	case DC_DEVICEID_987x5:
1944	case DC_DEVICEID_EN1217:
1945		/*
1946		 * Macronix MX98715AEC-C/D/E parts have only a
1947		 * 128-bit hash table. We need to deal with these
1948		 * in the same manner as the PNIC II so that we
1949		 * get the right number of bits out of the
1950		 * CRC routine.
1951		 */
1952		if (revision >= DC_REVISION_98715AEC_C &&
1953		    revision < DC_REVISION_98725)
1954			sc->dc_flags |= DC_128BIT_HASH;
1955		sc->dc_type = DC_TYPE_987x5;
1956		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1957		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1958		break;
1959	case DC_DEVICEID_98727:
1960		sc->dc_type = DC_TYPE_987x5;
1961		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1962		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1963		break;
1964	case DC_DEVICEID_82C115:
1965		sc->dc_type = DC_TYPE_PNICII;
1966		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
1967		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
1968		break;
1969	case DC_DEVICEID_82C168:
1970		sc->dc_type = DC_TYPE_PNIC;
1971		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
1972		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1973		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1974		if (revision < DC_REVISION_82C169)
1975			sc->dc_pmode = DC_PMODE_SYM;
1976		break;
1977	case DC_DEVICEID_AX88140A:
1978		sc->dc_type = DC_TYPE_ASIX;
1979		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
1980		sc->dc_flags |= DC_REDUCED_MII_POLL;
1981		sc->dc_pmode = DC_PMODE_MII;
1982		break;
1983	case DC_DEVICEID_X3201:
1984		sc->dc_type = DC_TYPE_XIRCOM;
1985		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1986				DC_TX_ALIGN;
1987		/*
1988		 * We don't actually need to coalesce, but we're doing
1989		 * it to obtain a double word aligned buffer.
1990		 * The DC_TX_COALESCE flag is required.
1991		 */
1992		sc->dc_pmode = DC_PMODE_MII;
1993		break;
1994	case DC_DEVICEID_RS7112:
1995		sc->dc_type = DC_TYPE_CONEXANT;
1996		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1997		sc->dc_flags |= DC_REDUCED_MII_POLL;
1998		sc->dc_pmode = DC_PMODE_MII;
1999		dc_read_srom(sc, sc->dc_romwidth);
2000		break;
2001	default:
2002		printf("dc%d: unknown device: %x\n", sc->dc_unit,
2003		    sc->dc_info->dc_did);
2004		break;
2005	}
2006
2007	/* Save the cache line size. */
2008	if (DC_IS_DAVICOM(sc))
2009		sc->dc_cachesize = 0;
2010	else
2011		sc->dc_cachesize = pci_read_config(dev,
2012		    DC_PCI_CFLT, 4) & 0xFF;
2013
2014	/* Reset the adapter. */
2015	dc_reset(sc);
2016
2017	/* Take 21143 out of snooze mode */
2018	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2019		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2020		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2021		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2022	}
2023
2024	/*
2025	 * Try to learn something about the supported media.
2026	 * We know that ASIX and ADMtek and Davicom devices
2027	 * will *always* be using MII media, so that's a no-brainer.
2028	 * The tricky ones are the Macronix/PNIC II and the
2029	 * Intel 21143.
2030	 */
2031	if (DC_IS_INTEL(sc))
2032		dc_parse_21143_srom(sc);
2033	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2034		if (sc->dc_type == DC_TYPE_98713)
2035			sc->dc_pmode = DC_PMODE_MII;
2036		else
2037			sc->dc_pmode = DC_PMODE_SYM;
2038	} else if (!sc->dc_pmode)
2039		sc->dc_pmode = DC_PMODE_MII;
2040
2041	/*
2042	 * Get station address from the EEPROM.
2043	 */
2044	switch(sc->dc_type) {
2045	case DC_TYPE_98713:
2046	case DC_TYPE_98713A:
2047	case DC_TYPE_987x5:
2048	case DC_TYPE_PNICII:
2049		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2050		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2051		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2052		break;
2053	case DC_TYPE_PNIC:
2054		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2055		break;
2056	case DC_TYPE_DM9102:
2057		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2058#ifdef __sparc64__
2059		/*
2060		 * If this is an onboard dc(4) the station address read from
2061		 * the EEPROM is all zero and we have to get it from the fcode.
2062		 */
2063		for (i = 0; i < ETHER_ADDR_LEN; i++)
2064			if (eaddr[i] != 0x00)
2065				break;
2066		if (i >= ETHER_ADDR_LEN)
2067			OF_getetheraddr(dev, eaddr);
2068#endif
2069		break;
2070	case DC_TYPE_21143:
2071	case DC_TYPE_ASIX:
2072		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2073		break;
2074	case DC_TYPE_AL981:
2075	case DC_TYPE_AN985:
2076		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
2077		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
2078		break;
2079	case DC_TYPE_CONEXANT:
2080		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2081		    ETHER_ADDR_LEN);
2082		break;
2083	case DC_TYPE_XIRCOM:
2084		/* The MAC comes from the CIS. */
2085		mac = pci_get_ether(dev);
2086		if (!mac) {
2087			device_printf(dev, "No station address in CIS!\n");
2088			error = ENXIO;
2089			goto fail;
2090		}
2091		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2092		break;
2093	default:
2094		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2095		break;
2096	}
2097
2098	sc->dc_unit = unit;
2099	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
2100
2101	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2102	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2103	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
2104	    sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
2105	if (error) {
2106		printf("dc%d: failed to allocate busdma tag\n", unit);
2107		error = ENXIO;
2108		goto fail;
2109	}
2110	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2111	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2112	if (error) {
2113		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2114		error = ENXIO;
2115		goto fail;
2116	}
2117	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2118	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2119	    BUS_DMA_NOWAIT);
2120	if (error) {
2121		printf("dc%d: cannot get address of the descriptors\n", unit);
2122		error = ENXIO;
2123		goto fail;
2124	}
2125
2126	/*
2127	 * Allocate a busdma tag and DMA safe memory for the multicast
2128	 * setup frame.
2129	 */
2130	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2131	    BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
2132	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
2133	if (error) {
2134		printf("dc%d: failed to allocate busdma tag\n", unit);
2135		error = ENXIO;
2136		goto fail;
2137	}
2138	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2139	    BUS_DMA_NOWAIT, &sc->dc_smap);
2140	if (error) {
2141		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2142		error = ENXIO;
2143		goto fail;
2144	}
2145	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2146	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2147	if (error) {
2148		printf("dc%d: cannot get address of the descriptors\n", unit);
2149		error = ENXIO;
2150		goto fail;
2151	}
2152
2153	/* Allocate a busdma tag for mbufs. */
2154	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2155	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * DC_TX_LIST_CNT,
2156	    DC_TX_LIST_CNT, MCLBYTES, 0, NULL, NULL, &sc->dc_mtag);
2157	if (error) {
2158		printf("dc%d: failed to allocate busdma tag\n", unit);
2159		error = ENXIO;
2160		goto fail;
2161	}
2162
2163	/* Create the TX/RX busdma maps. */
2164	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2165		error = bus_dmamap_create(sc->dc_mtag, 0,
2166		    &sc->dc_cdata.dc_tx_map[i]);
2167		if (error) {
2168			printf("dc%d: failed to init TX ring\n", unit);
2169			error = ENXIO;
2170			goto fail;
2171		}
2172	}
2173	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2174		error = bus_dmamap_create(sc->dc_mtag, 0,
2175		    &sc->dc_cdata.dc_rx_map[i]);
2176		if (error) {
2177			printf("dc%d: failed to init RX ring\n", unit);
2178			error = ENXIO;
2179			goto fail;
2180		}
2181	}
2182	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2183	if (error) {
2184		printf("dc%d: failed to init RX ring\n", unit);
2185		error = ENXIO;
2186		goto fail;
2187	}
2188
2189	ifp = &sc->arpcom.ac_if;
2190	ifp->if_softc = sc;
2191	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2192	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2193	ifp->if_mtu = ETHERMTU;
2194	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2195	    IFF_NEEDSGIANT;
2196	ifp->if_ioctl = dc_ioctl;
2197	ifp->if_start = dc_start;
2198	ifp->if_watchdog = dc_watchdog;
2199	ifp->if_init = dc_init;
2200	ifp->if_baudrate = 10000000;
2201	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
2202
2203	/*
2204	 * Do MII setup. If this is a 21143, check for a PHY on the
2205	 * MII bus after applying any necessary fixups to twiddle the
2206	 * GPIO bits. If we don't end up finding a PHY, restore the
2207	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2208	 * driver instead.
2209	 */
2210	if (DC_IS_INTEL(sc)) {
2211		dc_apply_fixup(sc, IFM_AUTO);
2212		tmp = sc->dc_pmode;
2213		sc->dc_pmode = DC_PMODE_MII;
2214	}
2215
2216	error = mii_phy_probe(dev, &sc->dc_miibus,
2217	    dc_ifmedia_upd, dc_ifmedia_sts);
2218
2219	if (error && DC_IS_INTEL(sc)) {
2220		sc->dc_pmode = tmp;
2221		if (sc->dc_pmode != DC_PMODE_SIA)
2222			sc->dc_pmode = DC_PMODE_SYM;
2223		sc->dc_flags |= DC_21143_NWAY;
2224		mii_phy_probe(dev, &sc->dc_miibus,
2225		    dc_ifmedia_upd, dc_ifmedia_sts);
2226		/*
2227		 * For non-MII cards, we need to have the 21143
2228		 * drive the LEDs. Except there are some systems
2229		 * like the NEC VersaPro NoteBook PC which have no
2230		 * LEDs, and twiddling these bits has adverse effects
2231		 * on them. (I.e. you suddenly can't get a link.)
2232		 */
2233		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2234			sc->dc_flags |= DC_TULIP_LEDS;
2235		error = 0;
2236	}
2237
2238	if (error) {
2239		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2240		goto fail;
2241	}
2242
2243	if (DC_IS_XIRCOM(sc)) {
2244		/*
2245		 * setup General Purpose Port mode and data so the tulip
2246		 * can talk to the MII.
2247		 */
2248		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2249			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2250		DELAY(10);
2251		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2252			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2253		DELAY(10);
2254	}
2255
2256	if (DC_IS_ADMTEK(sc)) {
2257		/*
2258		 * Set automatic TX underrun recovery for the ADMtek chips
2259		 */
2260		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2261	}
2262
2263	/*
2264	 * Tell the upper layer(s) we support long frames.
2265	 */
2266	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2267	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2268#ifdef DEVICE_POLLING
2269	ifp->if_capabilities |= IFCAP_POLLING;
2270#endif
2271	ifp->if_capenable = ifp->if_capabilities;
2272
2273	callout_init(&sc->dc_stat_ch, IS_MPSAFE ? CALLOUT_MPSAFE : 0);
2274
2275#ifdef SRM_MEDIA
2276	sc->dc_srm_media = 0;
2277
2278	/* Remember the SRM console media setting */
2279	if (DC_IS_INTEL(sc)) {
2280		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2281		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2282		switch ((command >> 8) & 0xff) {
2283		case 3:
2284			sc->dc_srm_media = IFM_10_T;
2285			break;
2286		case 4:
2287			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2288			break;
2289		case 5:
2290			sc->dc_srm_media = IFM_100_TX;
2291			break;
2292		case 6:
2293			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2294			break;
2295		}
2296		if (sc->dc_srm_media)
2297			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2298	}
2299#endif
2300
2301	/*
2302	 * Call MI attach routine.
2303	 */
2304	ether_ifattach(ifp, eaddr);
2305
2306	/* Hook interrupt last to avoid having to lock softc */
2307	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
2308	    (IS_MPSAFE ? INTR_MPSAFE : 0),
2309	    dc_intr, sc, &sc->dc_intrhand);
2310
2311	if (error) {
2312		printf("dc%d: couldn't set up irq\n", unit);
2313		ether_ifdetach(ifp);
2314		goto fail;
2315	}
2316
2317fail:
2318	if (error)
2319		dc_detach(dev);
2320	return (error);
2321}
2322
2323/*
2324 * Shutdown hardware and free up resources. This can be called any
2325 * time after the mutex has been initialized. It is called in both
2326 * the error case in attach and the normal detach case so it needs
2327 * to be careful about only freeing resources that have actually been
2328 * allocated.
2329 */
2330static int
2331dc_detach(device_t dev)
2332{
2333	struct dc_softc *sc;
2334	struct ifnet *ifp;
2335	struct dc_mediainfo *m;
2336	int i;
2337
2338	sc = device_get_softc(dev);
2339	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2340	DC_LOCK(sc);
2341
2342	ifp = &sc->arpcom.ac_if;
2343
2344	/* These should only be active if attach succeeded */
2345	if (device_is_attached(dev)) {
2346		dc_stop(sc);
2347		ether_ifdetach(ifp);
2348	}
2349	if (sc->dc_miibus)
2350		device_delete_child(dev, sc->dc_miibus);
2351	bus_generic_detach(dev);
2352
2353	if (sc->dc_intrhand)
2354		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2355	if (sc->dc_irq)
2356		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2357	if (sc->dc_res)
2358		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2359
2360	if (sc->dc_cdata.dc_sbuf != NULL)
2361		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2362	if (sc->dc_ldata != NULL)
2363		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2364	for (i = 0; i < DC_TX_LIST_CNT; i++)
2365		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_tx_map[i]);
2366	for (i = 0; i < DC_RX_LIST_CNT; i++)
2367		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2368	bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2369	if (sc->dc_stag)
2370		bus_dma_tag_destroy(sc->dc_stag);
2371	if (sc->dc_mtag)
2372		bus_dma_tag_destroy(sc->dc_mtag);
2373	if (sc->dc_ltag)
2374		bus_dma_tag_destroy(sc->dc_ltag);
2375
2376	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2377
2378	while (sc->dc_mi != NULL) {
2379		m = sc->dc_mi->dc_next;
2380		free(sc->dc_mi, M_DEVBUF);
2381		sc->dc_mi = m;
2382	}
2383	free(sc->dc_srom, M_DEVBUF);
2384
2385	DC_UNLOCK(sc);
2386	mtx_destroy(&sc->dc_mtx);
2387
2388	return (0);
2389}
2390
2391/*
2392 * Initialize the transmit descriptors.
2393 */
2394static int
2395dc_list_tx_init(struct dc_softc *sc)
2396{
2397	struct dc_chain_data *cd;
2398	struct dc_list_data *ld;
2399	int i, nexti;
2400
2401	cd = &sc->dc_cdata;
2402	ld = sc->dc_ldata;
2403	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2404		if (i == DC_TX_LIST_CNT - 1)
2405			nexti = 0;
2406		else
2407			nexti = i + 1;
2408		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2409		cd->dc_tx_chain[i] = NULL;
2410		ld->dc_tx_list[i].dc_data = 0;
2411		ld->dc_tx_list[i].dc_ctl = 0;
2412	}
2413
2414	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2415	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2416	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2417	return (0);
2418}
2419
2420
2421/*
2422 * Initialize the RX descriptors and allocate mbufs for them. Note that
2423 * we arrange the descriptors in a closed ring, so that the last descriptor
2424 * points back to the first.
2425 */
2426static int
2427dc_list_rx_init(struct dc_softc *sc)
2428{
2429	struct dc_chain_data *cd;
2430	struct dc_list_data *ld;
2431	int i, nexti;
2432
2433	cd = &sc->dc_cdata;
2434	ld = sc->dc_ldata;
2435
2436	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2437		if (dc_newbuf(sc, i, 1) != 0)
2438			return (ENOBUFS);
2439		if (i == DC_RX_LIST_CNT - 1)
2440			nexti = 0;
2441		else
2442			nexti = i + 1;
2443		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2444	}
2445
2446	cd->dc_rx_prod = 0;
2447	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2448	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2449	return (0);
2450}
2451
2452static void
2453dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2454	void *arg;
2455	bus_dma_segment_t *segs;
2456	int nseg;
2457	bus_size_t mapsize;
2458	int error;
2459{
2460	struct dc_softc *sc;
2461	struct dc_desc *c;
2462
2463	sc = arg;
2464	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2465	if (error) {
2466		sc->dc_cdata.dc_rx_err = error;
2467		return;
2468	}
2469
2470	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2471	sc->dc_cdata.dc_rx_err = 0;
2472	c->dc_data = htole32(segs->ds_addr);
2473}
2474
2475/*
2476 * Initialize an RX descriptor and attach an MBUF cluster.
2477 */
2478static int
2479dc_newbuf(struct dc_softc *sc, int i, int alloc)
2480{
2481	struct mbuf *m_new;
2482	bus_dmamap_t tmp;
2483	int error;
2484
2485	if (alloc) {
2486		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2487		if (m_new == NULL)
2488			return (ENOBUFS);
2489	} else {
2490		m_new = sc->dc_cdata.dc_rx_chain[i];
2491		m_new->m_data = m_new->m_ext.ext_buf;
2492	}
2493	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2494	m_adj(m_new, sizeof(u_int64_t));
2495
2496	/*
2497	 * If this is a PNIC chip, zero the buffer. This is part
2498	 * of the workaround for the receive bug in the 82c168 and
2499	 * 82c169 chips.
2500	 */
2501	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2502		bzero(mtod(m_new, char *), m_new->m_len);
2503
2504	/* No need to remap the mbuf if we're reusing it. */
2505	if (alloc) {
2506		sc->dc_cdata.dc_rx_cur = i;
2507		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2508		    m_new, dc_dma_map_rxbuf, sc, 0);
2509		if (error) {
2510			m_freem(m_new);
2511			return (error);
2512		}
2513		if (sc->dc_cdata.dc_rx_err != 0) {
2514			m_freem(m_new);
2515			return (sc->dc_cdata.dc_rx_err);
2516		}
2517		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2518		tmp = sc->dc_cdata.dc_rx_map[i];
2519		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2520		sc->dc_sparemap = tmp;
2521		sc->dc_cdata.dc_rx_chain[i] = m_new;
2522	}
2523
2524	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2525	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2526	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2527	    BUS_DMASYNC_PREREAD);
2528	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2529	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2530	return (0);
2531}
2532
2533/*
2534 * Grrrrr.
2535 * The PNIC chip has a terrible bug in it that manifests itself during
2536 * periods of heavy activity. The exact mode of failure if difficult to
2537 * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2538 * will happen on slow machines. The bug is that sometimes instead of
2539 * uploading one complete frame during reception, it uploads what looks
2540 * like the entire contents of its FIFO memory. The frame we want is at
2541 * the end of the whole mess, but we never know exactly how much data has
2542 * been uploaded, so salvaging the frame is hard.
2543 *
2544 * There is only one way to do it reliably, and it's disgusting.
2545 * Here's what we know:
2546 *
2547 * - We know there will always be somewhere between one and three extra
2548 *   descriptors uploaded.
2549 *
2550 * - We know the desired received frame will always be at the end of the
2551 *   total data upload.
2552 *
2553 * - We know the size of the desired received frame because it will be
2554 *   provided in the length field of the status word in the last descriptor.
2555 *
2556 * Here's what we do:
2557 *
2558 * - When we allocate buffers for the receive ring, we bzero() them.
2559 *   This means that we know that the buffer contents should be all
2560 *   zeros, except for data uploaded by the chip.
2561 *
2562 * - We also force the PNIC chip to upload frames that include the
2563 *   ethernet CRC at the end.
2564 *
2565 * - We gather all of the bogus frame data into a single buffer.
2566 *
2567 * - We then position a pointer at the end of this buffer and scan
2568 *   backwards until we encounter the first non-zero byte of data.
2569 *   This is the end of the received frame. We know we will encounter
2570 *   some data at the end of the frame because the CRC will always be
2571 *   there, so even if the sender transmits a packet of all zeros,
2572 *   we won't be fooled.
2573 *
2574 * - We know the size of the actual received frame, so we subtract
2575 *   that value from the current pointer location. This brings us
2576 *   to the start of the actual received packet.
2577 *
2578 * - We copy this into an mbuf and pass it on, along with the actual
2579 *   frame length.
2580 *
2581 * The performance hit is tremendous, but it beats dropping frames all
2582 * the time.
2583 */
2584
2585#define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2586static void
2587dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2588{
2589	struct dc_desc *cur_rx;
2590	struct dc_desc *c = NULL;
2591	struct mbuf *m = NULL;
2592	unsigned char *ptr;
2593	int i, total_len;
2594	u_int32_t rxstat = 0;
2595
2596	i = sc->dc_pnic_rx_bug_save;
2597	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2598	ptr = sc->dc_pnic_rx_buf;
2599	bzero(ptr, DC_RXLEN * 5);
2600
2601	/* Copy all the bytes from the bogus buffers. */
2602	while (1) {
2603		c = &sc->dc_ldata->dc_rx_list[i];
2604		rxstat = le32toh(c->dc_status);
2605		m = sc->dc_cdata.dc_rx_chain[i];
2606		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2607		ptr += DC_RXLEN;
2608		/* If this is the last buffer, break out. */
2609		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2610			break;
2611		dc_newbuf(sc, i, 0);
2612		DC_INC(i, DC_RX_LIST_CNT);
2613	}
2614
2615	/* Find the length of the actual receive frame. */
2616	total_len = DC_RXBYTES(rxstat);
2617
2618	/* Scan backwards until we hit a non-zero byte. */
2619	while (*ptr == 0x00)
2620		ptr--;
2621
2622	/* Round off. */
2623	if ((uintptr_t)(ptr) & 0x3)
2624		ptr -= 1;
2625
2626	/* Now find the start of the frame. */
2627	ptr -= total_len;
2628	if (ptr < sc->dc_pnic_rx_buf)
2629		ptr = sc->dc_pnic_rx_buf;
2630
2631	/*
2632	 * Now copy the salvaged frame to the last mbuf and fake up
2633	 * the status word to make it look like a successful
2634	 * frame reception.
2635	 */
2636	dc_newbuf(sc, i, 0);
2637	bcopy(ptr, mtod(m, char *), total_len);
2638	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2639}
2640
2641/*
2642 * This routine searches the RX ring for dirty descriptors in the
2643 * event that the rxeof routine falls out of sync with the chip's
2644 * current descriptor pointer. This may happen sometimes as a result
2645 * of a "no RX buffer available" condition that happens when the chip
2646 * consumes all of the RX buffers before the driver has a chance to
2647 * process the RX ring. This routine may need to be called more than
2648 * once to bring the driver back in sync with the chip, however we
2649 * should still be getting RX DONE interrupts to drive the search
2650 * for new packets in the RX ring, so we should catch up eventually.
2651 */
2652static int
2653dc_rx_resync(struct dc_softc *sc)
2654{
2655	struct dc_desc *cur_rx;
2656	int i, pos;
2657
2658	pos = sc->dc_cdata.dc_rx_prod;
2659
2660	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2661		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2662		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2663			break;
2664		DC_INC(pos, DC_RX_LIST_CNT);
2665	}
2666
2667	/* If the ring really is empty, then just return. */
2668	if (i == DC_RX_LIST_CNT)
2669		return (0);
2670
2671	/* We've fallen behing the chip: catch it. */
2672	sc->dc_cdata.dc_rx_prod = pos;
2673
2674	return (EAGAIN);
2675}
2676
2677/*
2678 * A frame has been uploaded: pass the resulting mbuf chain up to
2679 * the higher level protocols.
2680 */
2681static void
2682dc_rxeof(struct dc_softc *sc)
2683{
2684	struct mbuf *m;
2685	struct ifnet *ifp;
2686	struct dc_desc *cur_rx;
2687	int i, total_len = 0;
2688	u_int32_t rxstat;
2689
2690	DC_LOCK_ASSERT(sc);
2691
2692	ifp = &sc->arpcom.ac_if;
2693	i = sc->dc_cdata.dc_rx_prod;
2694
2695	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2696	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2697	    DC_RXSTAT_OWN)) {
2698#ifdef DEVICE_POLLING
2699		if (ifp->if_flags & IFF_POLLING) {
2700			if (sc->rxcycles <= 0)
2701				break;
2702			sc->rxcycles--;
2703		}
2704#endif
2705		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2706		rxstat = le32toh(cur_rx->dc_status);
2707		m = sc->dc_cdata.dc_rx_chain[i];
2708		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2709		    BUS_DMASYNC_POSTREAD);
2710		total_len = DC_RXBYTES(rxstat);
2711
2712		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2713			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2714				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2715					sc->dc_pnic_rx_bug_save = i;
2716				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2717					DC_INC(i, DC_RX_LIST_CNT);
2718					continue;
2719				}
2720				dc_pnic_rx_bug_war(sc, i);
2721				rxstat = le32toh(cur_rx->dc_status);
2722				total_len = DC_RXBYTES(rxstat);
2723			}
2724		}
2725
2726		/*
2727		 * If an error occurs, update stats, clear the
2728		 * status word and leave the mbuf cluster in place:
2729		 * it should simply get re-used next time this descriptor
2730		 * comes up in the ring.  However, don't report long
2731		 * frames as errors since they could be vlans.
2732		 */
2733		if ((rxstat & DC_RXSTAT_RXERR)) {
2734			if (!(rxstat & DC_RXSTAT_GIANT) ||
2735			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2736				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2737				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2738				ifp->if_ierrors++;
2739				if (rxstat & DC_RXSTAT_COLLSEEN)
2740					ifp->if_collisions++;
2741				dc_newbuf(sc, i, 0);
2742				if (rxstat & DC_RXSTAT_CRCERR) {
2743					DC_INC(i, DC_RX_LIST_CNT);
2744					continue;
2745				} else {
2746					dc_init(sc);
2747					return;
2748				}
2749			}
2750		}
2751
2752		/* No errors; receive the packet. */
2753		total_len -= ETHER_CRC_LEN;
2754#ifdef __i386__
2755		/*
2756		 * On the x86 we do not have alignment problems, so try to
2757		 * allocate a new buffer for the receive ring, and pass up
2758		 * the one where the packet is already, saving the expensive
2759		 * copy done in m_devget().
2760		 * If we are on an architecture with alignment problems, or
2761		 * if the allocation fails, then use m_devget and leave the
2762		 * existing buffer in the receive ring.
2763		 */
2764		if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
2765			m->m_pkthdr.rcvif = ifp;
2766			m->m_pkthdr.len = m->m_len = total_len;
2767			DC_INC(i, DC_RX_LIST_CNT);
2768		} else
2769#endif
2770		{
2771			struct mbuf *m0;
2772
2773			m0 = m_devget(mtod(m, char *), total_len,
2774				ETHER_ALIGN, ifp, NULL);
2775			dc_newbuf(sc, i, 0);
2776			DC_INC(i, DC_RX_LIST_CNT);
2777			if (m0 == NULL) {
2778				ifp->if_ierrors++;
2779				continue;
2780			}
2781			m = m0;
2782		}
2783
2784		ifp->if_ipackets++;
2785		DC_UNLOCK(sc);
2786		(*ifp->if_input)(ifp, m);
2787		DC_LOCK(sc);
2788	}
2789
2790	sc->dc_cdata.dc_rx_prod = i;
2791}
2792
2793/*
2794 * A frame was downloaded to the chip. It's safe for us to clean up
2795 * the list buffers.
2796 */
2797
2798static void
2799dc_txeof(struct dc_softc *sc)
2800{
2801	struct dc_desc *cur_tx = NULL;
2802	struct ifnet *ifp;
2803	int idx;
2804	u_int32_t ctl, txstat;
2805
2806	ifp = &sc->arpcom.ac_if;
2807
2808	/*
2809	 * Go through our tx list and free mbufs for those
2810	 * frames that have been transmitted.
2811	 */
2812	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2813	idx = sc->dc_cdata.dc_tx_cons;
2814	while (idx != sc->dc_cdata.dc_tx_prod) {
2815
2816		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2817		txstat = le32toh(cur_tx->dc_status);
2818		ctl = le32toh(cur_tx->dc_ctl);
2819
2820		if (txstat & DC_TXSTAT_OWN)
2821			break;
2822
2823		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2824			if (ctl & DC_TXCTL_SETUP) {
2825				/*
2826				 * Yes, the PNIC is so brain damaged
2827				 * that it will sometimes generate a TX
2828				 * underrun error while DMAing the RX
2829				 * filter setup frame. If we detect this,
2830				 * we have to send the setup frame again,
2831				 * or else the filter won't be programmed
2832				 * correctly.
2833				 */
2834				if (DC_IS_PNIC(sc)) {
2835					if (txstat & DC_TXSTAT_ERRSUM)
2836						dc_setfilt(sc);
2837				}
2838				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2839			}
2840			sc->dc_cdata.dc_tx_cnt--;
2841			DC_INC(idx, DC_TX_LIST_CNT);
2842			continue;
2843		}
2844
2845		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2846			/*
2847			 * XXX: Why does my Xircom taunt me so?
2848			 * For some reason it likes setting the CARRLOST flag
2849			 * even when the carrier is there. wtf?!?
2850			 * Who knows, but Conexant chips have the
2851			 * same problem. Maybe they took lessons
2852			 * from Xircom.
2853			 */
2854			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2855			    sc->dc_pmode == DC_PMODE_MII &&
2856			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2857			    DC_TXSTAT_NOCARRIER)))
2858				txstat &= ~DC_TXSTAT_ERRSUM;
2859		} else {
2860			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2861			    sc->dc_pmode == DC_PMODE_MII &&
2862			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2863			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2864				txstat &= ~DC_TXSTAT_ERRSUM;
2865		}
2866
2867		if (txstat & DC_TXSTAT_ERRSUM) {
2868			ifp->if_oerrors++;
2869			if (txstat & DC_TXSTAT_EXCESSCOLL)
2870				ifp->if_collisions++;
2871			if (txstat & DC_TXSTAT_LATECOLL)
2872				ifp->if_collisions++;
2873			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2874				dc_init(sc);
2875				return;
2876			}
2877		}
2878
2879		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2880
2881		ifp->if_opackets++;
2882		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2883			bus_dmamap_sync(sc->dc_mtag,
2884			    sc->dc_cdata.dc_tx_map[idx],
2885			    BUS_DMASYNC_POSTWRITE);
2886			bus_dmamap_unload(sc->dc_mtag,
2887			    sc->dc_cdata.dc_tx_map[idx]);
2888			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2889			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2890		}
2891
2892		sc->dc_cdata.dc_tx_cnt--;
2893		DC_INC(idx, DC_TX_LIST_CNT);
2894	}
2895
2896	if (idx != sc->dc_cdata.dc_tx_cons) {
2897	    	/* Some buffers have been freed. */
2898		sc->dc_cdata.dc_tx_cons = idx;
2899		ifp->if_flags &= ~IFF_OACTIVE;
2900	}
2901	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2902}
2903
2904static void
2905dc_tick(void *xsc)
2906{
2907	struct dc_softc *sc;
2908	struct mii_data *mii;
2909	struct ifnet *ifp;
2910	u_int32_t r;
2911
2912	sc = xsc;
2913	DC_LOCK(sc);
2914	ifp = &sc->arpcom.ac_if;
2915	mii = device_get_softc(sc->dc_miibus);
2916
2917	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2918		if (sc->dc_flags & DC_21143_NWAY) {
2919			r = CSR_READ_4(sc, DC_10BTSTAT);
2920			if (IFM_SUBTYPE(mii->mii_media_active) ==
2921			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2922				sc->dc_link = 0;
2923				mii_mediachg(mii);
2924			}
2925			if (IFM_SUBTYPE(mii->mii_media_active) ==
2926			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2927				sc->dc_link = 0;
2928				mii_mediachg(mii);
2929			}
2930			if (sc->dc_link == 0)
2931				mii_tick(mii);
2932		} else {
2933			r = CSR_READ_4(sc, DC_ISR);
2934			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2935			    sc->dc_cdata.dc_tx_cnt == 0) {
2936				mii_tick(mii);
2937				if (!(mii->mii_media_status & IFM_ACTIVE))
2938					sc->dc_link = 0;
2939			}
2940		}
2941	} else
2942		mii_tick(mii);
2943
2944	/*
2945	 * When the init routine completes, we expect to be able to send
2946	 * packets right away, and in fact the network code will send a
2947	 * gratuitous ARP the moment the init routine marks the interface
2948	 * as running. However, even though the MAC may have been initialized,
2949	 * there may be a delay of a few seconds before the PHY completes
2950	 * autonegotiation and the link is brought up. Any transmissions
2951	 * made during that delay will be lost. Dealing with this is tricky:
2952	 * we can't just pause in the init routine while waiting for the
2953	 * PHY to come ready since that would bring the whole system to
2954	 * a screeching halt for several seconds.
2955	 *
2956	 * What we do here is prevent the TX start routine from sending
2957	 * any packets until a link has been established. After the
2958	 * interface has been initialized, the tick routine will poll
2959	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2960	 * that time, packets will stay in the send queue, and once the
2961	 * link comes up, they will be flushed out to the wire.
2962	 */
2963	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
2964	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2965		sc->dc_link++;
2966		if (ifp->if_snd.ifq_head != NULL)
2967			dc_start(ifp);
2968	}
2969
2970	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2971		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
2972	else
2973		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
2974
2975	DC_UNLOCK(sc);
2976}
2977
2978/*
2979 * A transmit underrun has occurred.  Back off the transmit threshold,
2980 * or switch to store and forward mode if we have to.
2981 */
2982static void
2983dc_tx_underrun(struct dc_softc *sc)
2984{
2985	u_int32_t isr;
2986	int i;
2987
2988	if (DC_IS_DAVICOM(sc))
2989		dc_init(sc);
2990
2991	if (DC_IS_INTEL(sc)) {
2992		/*
2993		 * The real 21143 requires that the transmitter be idle
2994		 * in order to change the transmit threshold or store
2995		 * and forward state.
2996		 */
2997		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2998
2999		for (i = 0; i < DC_TIMEOUT; i++) {
3000			isr = CSR_READ_4(sc, DC_ISR);
3001			if (isr & DC_ISR_TX_IDLE)
3002				break;
3003			DELAY(10);
3004		}
3005		if (i == DC_TIMEOUT) {
3006			printf("dc%d: failed to force tx to idle state\n",
3007			    sc->dc_unit);
3008			dc_init(sc);
3009		}
3010	}
3011
3012	printf("dc%d: TX underrun -- ", sc->dc_unit);
3013	sc->dc_txthresh += DC_TXTHRESH_INC;
3014	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3015		printf("using store and forward mode\n");
3016		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3017	} else {
3018		printf("increasing TX threshold\n");
3019		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3020		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3021	}
3022
3023	if (DC_IS_INTEL(sc))
3024		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3025}
3026
3027#ifdef DEVICE_POLLING
3028static poll_handler_t dc_poll;
3029
3030static void
3031dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3032{
3033	struct dc_softc *sc = ifp->if_softc;
3034
3035	if (!(ifp->if_capenable & IFCAP_POLLING)) {
3036		ether_poll_deregister(ifp);
3037		cmd = POLL_DEREGISTER;
3038	}
3039	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
3040		/* Re-enable interrupts. */
3041		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3042		return;
3043	}
3044	DC_LOCK(sc);
3045	sc->rxcycles = count;
3046	dc_rxeof(sc);
3047	dc_txeof(sc);
3048	if (ifp->if_snd.ifq_head != NULL && !(ifp->if_flags & IFF_OACTIVE))
3049		dc_start(ifp);
3050
3051	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3052		u_int32_t	status;
3053
3054		status = CSR_READ_4(sc, DC_ISR);
3055		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3056			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3057			DC_ISR_BUS_ERR);
3058		if (!status) {
3059			DC_UNLOCK(sc);
3060			return;
3061		}
3062		/* ack what we have */
3063		CSR_WRITE_4(sc, DC_ISR, status);
3064
3065		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3066			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3067			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3068
3069			if (dc_rx_resync(sc))
3070				dc_rxeof(sc);
3071		}
3072		/* restart transmit unit if necessary */
3073		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3074			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3075
3076		if (status & DC_ISR_TX_UNDERRUN)
3077			dc_tx_underrun(sc);
3078
3079		if (status & DC_ISR_BUS_ERR) {
3080			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
3081			dc_reset(sc);
3082			dc_init(sc);
3083		}
3084	}
3085	DC_UNLOCK(sc);
3086}
3087#endif /* DEVICE_POLLING */
3088
3089static void
3090dc_intr(void *arg)
3091{
3092	struct dc_softc *sc;
3093	struct ifnet *ifp;
3094	u_int32_t status;
3095
3096	sc = arg;
3097
3098	if (sc->suspended)
3099		return;
3100
3101	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3102		return;
3103
3104	DC_LOCK(sc);
3105	ifp = &sc->arpcom.ac_if;
3106#ifdef DEVICE_POLLING
3107	if (ifp->if_flags & IFF_POLLING)
3108		goto done;
3109	if ((ifp->if_capenable & IFCAP_POLLING) &&
3110	    ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
3111		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3112		goto done;
3113	}
3114#endif
3115
3116	/* Suppress unwanted interrupts */
3117	if (!(ifp->if_flags & IFF_UP)) {
3118		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3119			dc_stop(sc);
3120		DC_UNLOCK(sc);
3121		return;
3122	}
3123
3124	/* Disable interrupts. */
3125	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3126
3127	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
3128	      && status != 0xFFFFFFFF) {
3129
3130		CSR_WRITE_4(sc, DC_ISR, status);
3131
3132		if (status & DC_ISR_RX_OK) {
3133			int		curpkts;
3134			curpkts = ifp->if_ipackets;
3135			dc_rxeof(sc);
3136			if (curpkts == ifp->if_ipackets) {
3137				while (dc_rx_resync(sc))
3138					dc_rxeof(sc);
3139			}
3140		}
3141
3142		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3143			dc_txeof(sc);
3144
3145		if (status & DC_ISR_TX_IDLE) {
3146			dc_txeof(sc);
3147			if (sc->dc_cdata.dc_tx_cnt) {
3148				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3149				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3150			}
3151		}
3152
3153		if (status & DC_ISR_TX_UNDERRUN)
3154			dc_tx_underrun(sc);
3155
3156		if ((status & DC_ISR_RX_WATDOGTIMEO)
3157		    || (status & DC_ISR_RX_NOBUF)) {
3158			int		curpkts;
3159			curpkts = ifp->if_ipackets;
3160			dc_rxeof(sc);
3161			if (curpkts == ifp->if_ipackets) {
3162				while (dc_rx_resync(sc))
3163					dc_rxeof(sc);
3164			}
3165		}
3166
3167		if (status & DC_ISR_BUS_ERR) {
3168			dc_reset(sc);
3169			dc_init(sc);
3170		}
3171	}
3172
3173	/* Re-enable interrupts. */
3174	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3175
3176	if (ifp->if_snd.ifq_head != NULL)
3177		dc_start(ifp);
3178
3179#ifdef DEVICE_POLLING
3180done:
3181#endif
3182
3183	DC_UNLOCK(sc);
3184}
3185
3186static void
3187dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3188	void *arg;
3189	bus_dma_segment_t *segs;
3190	int nseg;
3191	bus_size_t mapsize;
3192	int error;
3193{
3194	struct dc_softc *sc;
3195	struct dc_desc *f;
3196	int cur, first, frag, i;
3197
3198	sc = arg;
3199	if (error) {
3200		sc->dc_cdata.dc_tx_err = error;
3201		return;
3202	}
3203
3204	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3205	for (i = 0; i < nseg; i++) {
3206		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3207		    (frag == (DC_TX_LIST_CNT - 1)) &&
3208		    (first != sc->dc_cdata.dc_tx_first)) {
3209			bus_dmamap_unload(sc->dc_mtag,
3210			    sc->dc_cdata.dc_tx_map[first]);
3211			sc->dc_cdata.dc_tx_err = ENOBUFS;
3212			return;
3213		}
3214
3215		f = &sc->dc_ldata->dc_tx_list[frag];
3216		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3217		if (i == 0) {
3218			f->dc_status = 0;
3219			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3220		} else
3221			f->dc_status = htole32(DC_TXSTAT_OWN);
3222		f->dc_data = htole32(segs[i].ds_addr);
3223		cur = frag;
3224		DC_INC(frag, DC_TX_LIST_CNT);
3225	}
3226
3227	sc->dc_cdata.dc_tx_err = 0;
3228	sc->dc_cdata.dc_tx_prod = frag;
3229	sc->dc_cdata.dc_tx_cnt += nseg;
3230	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3231	sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping;
3232	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3233		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3234		    htole32(DC_TXCTL_FINT);
3235	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3236		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3237	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3238		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3239	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3240}
3241
3242/*
3243 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3244 * pointers to the fragment pointers.
3245 */
3246static int
3247dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3248{
3249	struct mbuf *m;
3250	int error, idx, chainlen = 0;
3251
3252	/*
3253	 * If there's no way we can send any packets, return now.
3254	 */
3255	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3256		return (ENOBUFS);
3257
3258	/*
3259	 * Count the number of frags in this chain to see if
3260	 * we need to m_defrag.  Since the descriptor list is shared
3261	 * by all packets, we'll m_defrag long chains so that they
3262	 * do not use up the entire list, even if they would fit.
3263	 */
3264	for (m = *m_head; m != NULL; m = m->m_next)
3265		chainlen++;
3266
3267	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3268	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3269		m = m_defrag(*m_head, M_DONTWAIT);
3270		if (m == NULL)
3271			return (ENOBUFS);
3272		*m_head = m;
3273	}
3274
3275	/*
3276	 * Start packing the mbufs in this chain into
3277	 * the fragment pointers. Stop when we run out
3278	 * of fragments or hit the end of the mbuf chain.
3279	 */
3280	idx = sc->dc_cdata.dc_tx_prod;
3281	sc->dc_cdata.dc_tx_mapping = *m_head;
3282	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3283	    *m_head, dc_dma_map_txbuf, sc, 0);
3284	if (error)
3285		return (error);
3286	if (sc->dc_cdata.dc_tx_err != 0)
3287		return (sc->dc_cdata.dc_tx_err);
3288	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3289	    BUS_DMASYNC_PREWRITE);
3290	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3291	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3292	return (0);
3293}
3294
3295/*
3296 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3297 * to the mbuf data regions directly in the transmit lists. We also save a
3298 * copy of the pointers since the transmit list fragment pointers are
3299 * physical addresses.
3300 */
3301
3302static void
3303dc_start(struct ifnet *ifp)
3304{
3305	struct dc_softc *sc;
3306	struct mbuf *m_head = NULL, *m;
3307	int idx;
3308
3309	sc = ifp->if_softc;
3310
3311	DC_LOCK(sc);
3312
3313	if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
3314		DC_UNLOCK(sc);
3315		return;
3316	}
3317
3318	if (ifp->if_flags & IFF_OACTIVE) {
3319		DC_UNLOCK(sc);
3320		return;
3321	}
3322
3323	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3324
3325	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3326		IF_DEQUEUE(&ifp->if_snd, m_head);
3327		if (m_head == NULL)
3328			break;
3329
3330		if (sc->dc_flags & DC_TX_COALESCE &&
3331		    (m_head->m_next != NULL ||
3332		     sc->dc_flags & DC_TX_ALIGN)) {
3333			m = m_defrag(m_head, M_DONTWAIT);
3334			if (m == NULL) {
3335				IF_PREPEND(&ifp->if_snd, m_head);
3336				ifp->if_flags |= IFF_OACTIVE;
3337				break;
3338			} else {
3339				m_head = m;
3340			}
3341		}
3342
3343		if (dc_encap(sc, &m_head)) {
3344			IF_PREPEND(&ifp->if_snd, m_head);
3345			ifp->if_flags |= IFF_OACTIVE;
3346			break;
3347		}
3348		idx = sc->dc_cdata.dc_tx_prod;
3349
3350		/*
3351		 * If there's a BPF listener, bounce a copy of this frame
3352		 * to him.
3353		 */
3354		BPF_MTAP(ifp, m_head);
3355
3356		if (sc->dc_flags & DC_TX_ONE) {
3357			ifp->if_flags |= IFF_OACTIVE;
3358			break;
3359		}
3360	}
3361
3362	/* Transmit */
3363	if (!(sc->dc_flags & DC_TX_POLL))
3364		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3365
3366	/*
3367	 * Set a timeout in case the chip goes out to lunch.
3368	 */
3369	ifp->if_timer = 5;
3370
3371	DC_UNLOCK(sc);
3372}
3373
3374static void
3375dc_init(void *xsc)
3376{
3377	struct dc_softc *sc = xsc;
3378	struct ifnet *ifp = &sc->arpcom.ac_if;
3379	struct mii_data *mii;
3380
3381	DC_LOCK(sc);
3382
3383	mii = device_get_softc(sc->dc_miibus);
3384
3385	/*
3386	 * Cancel pending I/O and free all RX/TX buffers.
3387	 */
3388	dc_stop(sc);
3389	dc_reset(sc);
3390
3391	/*
3392	 * Set cache alignment and burst length.
3393	 */
3394	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3395		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3396	else
3397		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3398	/*
3399	 * Evenly share the bus between receive and transmit process.
3400	 */
3401	if (DC_IS_INTEL(sc))
3402		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3403	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3404		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3405	} else {
3406		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3407	}
3408	if (sc->dc_flags & DC_TX_POLL)
3409		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3410	switch(sc->dc_cachesize) {
3411	case 32:
3412		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3413		break;
3414	case 16:
3415		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3416		break;
3417	case 8:
3418		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3419		break;
3420	case 0:
3421	default:
3422		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3423		break;
3424	}
3425
3426	if (sc->dc_flags & DC_TX_STORENFWD)
3427		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3428	else {
3429		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3430			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3431		} else {
3432			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3433			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3434		}
3435	}
3436
3437	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3438	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3439
3440	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3441		/*
3442		 * The app notes for the 98713 and 98715A say that
3443		 * in order to have the chips operate properly, a magic
3444		 * number must be written to CSR16. Macronix does not
3445		 * document the meaning of these bits so there's no way
3446		 * to know exactly what they do. The 98713 has a magic
3447		 * number all its own; the rest all use a different one.
3448		 */
3449		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3450		if (sc->dc_type == DC_TYPE_98713)
3451			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3452		else
3453			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3454	}
3455
3456	if (DC_IS_XIRCOM(sc)) {
3457		/*
3458		 * setup General Purpose Port mode and data so the tulip
3459		 * can talk to the MII.
3460		 */
3461		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3462			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3463		DELAY(10);
3464		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3465			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3466		DELAY(10);
3467	}
3468
3469	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3470	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3471
3472	/* Init circular RX list. */
3473	if (dc_list_rx_init(sc) == ENOBUFS) {
3474		printf("dc%d: initialization failed: no "
3475		    "memory for rx buffers\n", sc->dc_unit);
3476		dc_stop(sc);
3477		DC_UNLOCK(sc);
3478		return;
3479	}
3480
3481	/*
3482	 * Init TX descriptors.
3483	 */
3484	dc_list_tx_init(sc);
3485
3486	/*
3487	 * Load the address of the RX list.
3488	 */
3489	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3490	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3491
3492	/*
3493	 * Enable interrupts.
3494	 */
3495#ifdef DEVICE_POLLING
3496	/*
3497	 * ... but only if we are not polling, and make sure they are off in
3498	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3499	 * after a reset.
3500	 */
3501	if (ifp->if_flags & IFF_POLLING)
3502		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3503	else
3504#endif
3505	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3506	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3507
3508	/* Enable transmitter. */
3509	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3510
3511	/*
3512	 * If this is an Intel 21143 and we're not using the
3513	 * MII port, program the LED control pins so we get
3514	 * link and activity indications.
3515	 */
3516	if (sc->dc_flags & DC_TULIP_LEDS) {
3517		CSR_WRITE_4(sc, DC_WATCHDOG,
3518		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3519		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3520	}
3521
3522	/*
3523	 * Load the RX/multicast filter. We do this sort of late
3524	 * because the filter programming scheme on the 21143 and
3525	 * some clones requires DMAing a setup frame via the TX
3526	 * engine, and we need the transmitter enabled for that.
3527	 */
3528	dc_setfilt(sc);
3529
3530	/* Enable receiver. */
3531	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3532	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3533
3534	mii_mediachg(mii);
3535	dc_setcfg(sc, sc->dc_if_media);
3536
3537	ifp->if_flags |= IFF_RUNNING;
3538	ifp->if_flags &= ~IFF_OACTIVE;
3539
3540	/* Don't start the ticker if this is a homePNA link. */
3541	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3542		sc->dc_link = 1;
3543	else {
3544		if (sc->dc_flags & DC_21143_NWAY)
3545			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3546		else
3547			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3548	}
3549
3550#ifdef SRM_MEDIA
3551	if(sc->dc_srm_media) {
3552		struct ifreq ifr;
3553
3554		ifr.ifr_media = sc->dc_srm_media;
3555		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3556		sc->dc_srm_media = 0;
3557	}
3558#endif
3559	DC_UNLOCK(sc);
3560}
3561
3562/*
3563 * Set media options.
3564 */
3565static int
3566dc_ifmedia_upd(struct ifnet *ifp)
3567{
3568	struct dc_softc *sc;
3569	struct mii_data *mii;
3570	struct ifmedia *ifm;
3571
3572	sc = ifp->if_softc;
3573	mii = device_get_softc(sc->dc_miibus);
3574	mii_mediachg(mii);
3575	ifm = &mii->mii_media;
3576
3577	if (DC_IS_DAVICOM(sc) &&
3578	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3579		dc_setcfg(sc, ifm->ifm_media);
3580	else
3581		sc->dc_link = 0;
3582
3583	return (0);
3584}
3585
3586/*
3587 * Report current media status.
3588 */
3589static void
3590dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3591{
3592	struct dc_softc *sc;
3593	struct mii_data *mii;
3594	struct ifmedia *ifm;
3595
3596	sc = ifp->if_softc;
3597	mii = device_get_softc(sc->dc_miibus);
3598	mii_pollstat(mii);
3599	ifm = &mii->mii_media;
3600	if (DC_IS_DAVICOM(sc)) {
3601		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3602			ifmr->ifm_active = ifm->ifm_media;
3603			ifmr->ifm_status = 0;
3604			return;
3605		}
3606	}
3607	ifmr->ifm_active = mii->mii_media_active;
3608	ifmr->ifm_status = mii->mii_media_status;
3609}
3610
3611static int
3612dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3613{
3614	struct dc_softc *sc = ifp->if_softc;
3615	struct ifreq *ifr = (struct ifreq *)data;
3616	struct mii_data *mii;
3617	int error = 0;
3618
3619	DC_LOCK(sc);
3620
3621	switch (command) {
3622	case SIOCSIFFLAGS:
3623		if (ifp->if_flags & IFF_UP) {
3624			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3625				(IFF_PROMISC | IFF_ALLMULTI);
3626
3627			if (ifp->if_flags & IFF_RUNNING) {
3628				if (need_setfilt)
3629					dc_setfilt(sc);
3630			} else {
3631				sc->dc_txthresh = 0;
3632				dc_init(sc);
3633			}
3634		} else {
3635			if (ifp->if_flags & IFF_RUNNING)
3636				dc_stop(sc);
3637		}
3638		sc->dc_if_flags = ifp->if_flags;
3639		error = 0;
3640		break;
3641	case SIOCADDMULTI:
3642	case SIOCDELMULTI:
3643		dc_setfilt(sc);
3644		error = 0;
3645		break;
3646	case SIOCGIFMEDIA:
3647	case SIOCSIFMEDIA:
3648		mii = device_get_softc(sc->dc_miibus);
3649		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3650#ifdef SRM_MEDIA
3651		if (sc->dc_srm_media)
3652			sc->dc_srm_media = 0;
3653#endif
3654		break;
3655	case SIOCSIFCAP:
3656		ifp->if_capenable &= ~IFCAP_POLLING;
3657		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
3658		break;
3659	default:
3660		error = ether_ioctl(ifp, command, data);
3661		break;
3662	}
3663
3664	DC_UNLOCK(sc);
3665
3666	return (error);
3667}
3668
3669static void
3670dc_watchdog(struct ifnet *ifp)
3671{
3672	struct dc_softc *sc;
3673
3674	sc = ifp->if_softc;
3675
3676	DC_LOCK(sc);
3677
3678	ifp->if_oerrors++;
3679	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3680
3681	dc_stop(sc);
3682	dc_reset(sc);
3683	dc_init(sc);
3684
3685	if (ifp->if_snd.ifq_head != NULL)
3686		dc_start(ifp);
3687
3688	DC_UNLOCK(sc);
3689}
3690
3691/*
3692 * Stop the adapter and free any mbufs allocated to the
3693 * RX and TX lists.
3694 */
3695static void
3696dc_stop(struct dc_softc *sc)
3697{
3698	struct ifnet *ifp;
3699	struct dc_list_data *ld;
3700	struct dc_chain_data *cd;
3701	int i;
3702	u_int32_t ctl;
3703
3704	DC_LOCK(sc);
3705
3706	ifp = &sc->arpcom.ac_if;
3707	ifp->if_timer = 0;
3708	ld = sc->dc_ldata;
3709	cd = &sc->dc_cdata;
3710
3711	callout_stop(&sc->dc_stat_ch);
3712
3713	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3714#ifdef DEVICE_POLLING
3715	ether_poll_deregister(ifp);
3716#endif
3717
3718	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3719	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3720	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3721	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3722	sc->dc_link = 0;
3723
3724	/*
3725	 * Free data in the RX lists.
3726	 */
3727	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3728		if (cd->dc_rx_chain[i] != NULL) {
3729			m_freem(cd->dc_rx_chain[i]);
3730			cd->dc_rx_chain[i] = NULL;
3731		}
3732	}
3733	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3734
3735	/*
3736	 * Free the TX list buffers.
3737	 */
3738	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3739		if (cd->dc_tx_chain[i] != NULL) {
3740			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3741			if ((ctl & DC_TXCTL_SETUP) ||
3742			    !(ctl & DC_TXCTL_LASTFRAG)) {
3743				cd->dc_tx_chain[i] = NULL;
3744				continue;
3745			}
3746			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3747			m_freem(cd->dc_tx_chain[i]);
3748			cd->dc_tx_chain[i] = NULL;
3749		}
3750	}
3751	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3752
3753	DC_UNLOCK(sc);
3754}
3755
3756/*
3757 * Device suspend routine.  Stop the interface and save some PCI
3758 * settings in case the BIOS doesn't restore them properly on
3759 * resume.
3760 */
3761static int
3762dc_suspend(device_t dev)
3763{
3764	struct dc_softc *sc;
3765	int s;
3766
3767	s = splimp();
3768
3769	sc = device_get_softc(dev);
3770	dc_stop(sc);
3771	sc->suspended = 1;
3772
3773	splx(s);
3774	return (0);
3775}
3776
3777/*
3778 * Device resume routine.  Restore some PCI settings in case the BIOS
3779 * doesn't, re-enable busmastering, and restart the interface if
3780 * appropriate.
3781 */
3782static int
3783dc_resume(device_t dev)
3784{
3785	struct dc_softc *sc;
3786	struct ifnet *ifp;
3787	int s;
3788
3789	s = splimp();
3790
3791	sc = device_get_softc(dev);
3792	ifp = &sc->arpcom.ac_if;
3793
3794	/* reinitialize interface if necessary */
3795	if (ifp->if_flags & IFF_UP)
3796		dc_init(sc);
3797
3798	sc->suspended = 0;
3799
3800	splx(s);
3801	return (0);
3802}
3803
3804/*
3805 * Stop all chip I/O so that the kernel's probe routines don't
3806 * get confused by errant DMAs when rebooting.
3807 */
3808static void
3809dc_shutdown(device_t dev)
3810{
3811	struct dc_softc *sc;
3812
3813	sc = device_get_softc(dev);
3814
3815	dc_stop(sc);
3816}
3817