if_dc.c revision 129878
162587Sitojun/*
262587Sitojun * Copyright (c) 1997, 1998, 1999
362587Sitojun *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
453541Sshin *
553541Sshin * Redistribution and use in source and binary forms, with or without
653541Sshin * modification, are permitted provided that the following conditions
753541Sshin * are met:
853541Sshin * 1. Redistributions of source code must retain the above copyright
953541Sshin *    notice, this list of conditions and the following disclaimer.
1053541Sshin * 2. Redistributions in binary form must reproduce the above copyright
1153541Sshin *    notice, this list of conditions and the following disclaimer in the
1253541Sshin *    documentation and/or other materials provided with the distribution.
1353541Sshin * 3. All advertising materials mentioning features or use of this software
1453541Sshin *    must display the following acknowledgement:
1553541Sshin *	This product includes software developed by Bill Paul.
1653541Sshin * 4. Neither the name of the author nor the names of any co-contributors
1753541Sshin *    may be used to endorse or promote products derived from this software
1853541Sshin *    without specific prior written permission.
1953541Sshin *
2053541Sshin * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
2153541Sshin * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2253541Sshin * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2353541Sshin * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
2453541Sshin * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
2553541Sshin * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
2653541Sshin * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
2753541Sshin * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
2853541Sshin * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
2953541Sshin * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
3053541Sshin * THE POSSIBILITY OF SUCH DAMAGE.
3153541Sshin */
3253541Sshin
3353541Sshin#include <sys/cdefs.h>
3453541Sshin__FBSDID("$FreeBSD: head/sys/dev/dc/if_dc.c 129878 2004-05-30 20:00:41Z phk $");
3553541Sshin
3653541Sshin/*
3753541Sshin * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
3853541Sshin * series chips and several workalikes including the following:
3953541Sshin *
4053541Sshin * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
4153541Sshin * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
4253541Sshin * Lite-On 82c168/82c169 PNIC (www.litecom.com)
4353541Sshin * ASIX Electronics AX88140A (www.asix.com.tw)
4453541Sshin * ASIX Electronics AX88141 (www.asix.com.tw)
4553541Sshin * ADMtek AL981 (www.admtek.com.tw)
4653541Sshin * ADMtek AN985 (www.admtek.com.tw)
4753541Sshin * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
4853541Sshin * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
4953541Sshin * Accton EN1217 (www.accton.com)
5053541Sshin * Xircom X3201 (www.xircom.com)
5153541Sshin * Abocom FE2500
5253541Sshin * Conexant LANfinity (www.conexant.com)
5353541Sshin * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
5453541Sshin *
5553541Sshin * Datasheets for the 21143 are available at developer.intel.com.
5653541Sshin * Datasheets for the clone parts can be found at their respective sites.
5753541Sshin * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
5853541Sshin * The PNIC II is essentially a Macronix 98715A chip; the only difference
5953541Sshin * worth noting is that its multicast hash table is only 128 bits wide
6053541Sshin * instead of 512.
6153541Sshin *
6253541Sshin * Written by Bill Paul <wpaul@ee.columbia.edu>
6353541Sshin * Electrical Engineering Department
6453541Sshin * Columbia University, New York City
6553541Sshin */
6653541Sshin/*
6753541Sshin * The Intel 21143 is the successor to the DEC 21140. It is basically
6853541Sshin * the same as the 21140 but with a few new features. The 21143 supports
6953541Sshin * three kinds of media attachments:
7053541Sshin *
7153541Sshin * o MII port, for 10Mbps and 100Mbps support and NWAY
7253541Sshin *   autonegotiation provided by an external PHY.
7353541Sshin * o SYM port, for symbol mode 100Mbps support.
7453541Sshin * o 10baseT port.
7553541Sshin * o AUI/BNC port.
7653541Sshin *
7753541Sshin * The 100Mbps SYM port and 10baseT port can be used together in
7853541Sshin * combination with the internal NWAY support to create a 10/100
7953541Sshin * autosensing configuration.
8053541Sshin *
8153541Sshin * Note that not all tulip workalikes are handled in this driver: we only
8253541Sshin * deal with those which are relatively well behaved. The Winbond is
8353541Sshin * handled separately due to its different register offsets and the
8453541Sshin * special handling needed for its various bugs. The PNIC is handled
8553541Sshin * here, but I'm not thrilled about it.
8653541Sshin *
8753541Sshin * All of the workalike chips use some form of MII transceiver support
8853541Sshin * with the exception of the Macronix chips, which also have a SYM port.
8953541Sshin * The ASIX AX88140A is also documented to have a SYM port, but all
9053541Sshin * the cards I've seen use an MII transceiver, probably because the
9153541Sshin * AX88140A doesn't support internal NWAY.
9262587Sitojun */
9353541Sshin
9453541Sshin#include <sys/param.h>
9562587Sitojun#include <sys/endian.h>
9653541Sshin#include <sys/systm.h>
9753541Sshin#include <sys/sockio.h>
9853541Sshin#include <sys/mbuf.h>
9953541Sshin#include <sys/malloc.h>
10053541Sshin#include <sys/kernel.h>
10153541Sshin#include <sys/module.h>
10253541Sshin#include <sys/socket.h>
10353541Sshin#include <sys/sysctl.h>
10462587Sitojun
10553541Sshin#include <net/if.h>
10653541Sshin#include <net/if_arp.h>
10753541Sshin#include <net/ethernet.h>
10853541Sshin#include <net/if_dl.h>
10953541Sshin#include <net/if_media.h>
11053541Sshin#include <net/if_types.h>
11162587Sitojun#include <net/if_vlan_var.h>
11253541Sshin
11353541Sshin#include <net/bpf.h>
11453541Sshin
11553541Sshin#include <machine/bus_pio.h>
11653541Sshin#include <machine/bus_memio.h>
11753541Sshin#include <machine/bus.h>
11853541Sshin#include <machine/resource.h>
11953541Sshin#include <sys/bus.h>
12053541Sshin#include <sys/rman.h>
12153541Sshin
12253541Sshin#include <dev/mii/mii.h>
12353541Sshin#include <dev/mii/miivar.h>
12453541Sshin
12553541Sshin#include <dev/pci/pcireg.h>
12653541Sshin#include <dev/pci/pcivar.h>
12753541Sshin
12853541Sshin#define DC_USEIOSPACE
12953541Sshin#ifdef __alpha__
13053541Sshin#define SRM_MEDIA
13153541Sshin#endif
13253541Sshin
13353541Sshin#include <pci/if_dcreg.h>
13453541Sshin
13553541Sshin#ifdef __sparc64__
13653541Sshin#include <dev/ofw/openfirm.h>
13753541Sshin#include <machine/ofw_machdep.h>
13853541Sshin#endif
13953541Sshin
14053541SshinMODULE_DEPEND(dc, pci, 1, 1, 1);
14153541SshinMODULE_DEPEND(dc, ether, 1, 1, 1);
14253541SshinMODULE_DEPEND(dc, miibus, 1, 1, 1);
14353541Sshin
14453541Sshin/* "controller miibus0" required.  See GENERIC if you get errors here. */
14553541Sshin#include "miibus_if.h"
14653541Sshin
14753541Sshin/*
14853541Sshin * Various supported device vendors/types and their names.
14953541Sshin */
15053541Sshinstatic struct dc_type dc_devs[] = {
15153541Sshin	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
15253541Sshin		"Intel 21143 10/100BaseTX" },
15353541Sshin	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
15453541Sshin		"Davicom DM9009 10/100BaseTX" },
15553541Sshin	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
15653541Sshin		"Davicom DM9100 10/100BaseTX" },
15753541Sshin	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
15853541Sshin		"Davicom DM9102 10/100BaseTX" },
15953541Sshin	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
16053541Sshin		"Davicom DM9102A 10/100BaseTX" },
16153541Sshin	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
16253541Sshin		"ADMtek AL981 10/100BaseTX" },
16353541Sshin	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
16453541Sshin		"ADMtek AN985 10/100BaseTX" },
16553541Sshin	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
16653541Sshin		"ADMtek ADM9511 10/100BaseTX" },
16753541Sshin	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
16853541Sshin		"ADMtek ADM9513 10/100BaseTX" },
16953541Sshin 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
17053541Sshin 		"Netgear FA511 10/100BaseTX" },
17153541Sshin	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
17253541Sshin		"ASIX AX88140A 10/100BaseTX" },
17353541Sshin	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
17453541Sshin		"ASIX AX88141 10/100BaseTX" },
17553541Sshin	{ DC_VENDORID_MX, DC_DEVICEID_98713,
17653541Sshin		"Macronix 98713 10/100BaseTX" },
17753541Sshin	{ DC_VENDORID_MX, DC_DEVICEID_98713,
17853541Sshin		"Macronix 98713A 10/100BaseTX" },
17953541Sshin	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
18053541Sshin		"Compex RL100-TX 10/100BaseTX" },
18153541Sshin	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
18253541Sshin		"Compex RL100-TX 10/100BaseTX" },
18353541Sshin	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
18453541Sshin		"Macronix 98715/98715A 10/100BaseTX" },
18553541Sshin	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
18653541Sshin		"Macronix 98715AEC-C 10/100BaseTX" },
18753541Sshin	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
18853541Sshin		"Macronix 98725 10/100BaseTX" },
18953541Sshin	{ DC_VENDORID_MX, DC_DEVICEID_98727,
19053541Sshin		"Macronix 98727/98732 10/100BaseTX" },
19153541Sshin	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
19253541Sshin		"LC82C115 PNIC II 10/100BaseTX" },
19353541Sshin	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
19453541Sshin		"82c168 PNIC 10/100BaseTX" },
19553541Sshin	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
19653541Sshin		"82c169 PNIC 10/100BaseTX" },
19753541Sshin	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
19853541Sshin		"Accton EN1217 10/100BaseTX" },
19953541Sshin	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
20053541Sshin		"Accton EN2242 MiniPCI 10/100BaseTX" },
20153541Sshin	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
20253541Sshin	  	"Xircom X3201 10/100BaseTX" },
20353541Sshin	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
20453541Sshin		"Abocom FE2500 10/100BaseTX" },
20553541Sshin	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX,
20653541Sshin		"Abocom FE2500MX 10/100BaseTX" },
20753541Sshin	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
20853541Sshin		"Conexant LANfinity MiniPCI 10/100BaseTX" },
20953541Sshin	{ DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX,
21053541Sshin		"Hawking CB102 CardBus 10/100" },
21153541Sshin	{ DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T,
21253541Sshin		"PlaneX FNW-3602-T CardBus 10/100" },
21353541Sshin	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
21453541Sshin		"3Com OfficeConnect 10/100B" },
21553541Sshin	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120,
21653541Sshin		"Microsoft MN-120 CardBus 10/100" },
21753541Sshin	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130,
21853541Sshin		"Microsoft MN-130 10/100" },
21953541Sshin	{ DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130_FAKE,
22053541Sshin		"Microsoft MN-130 10/100" },
22153541Sshin	{ 0, 0, NULL }
22253541Sshin};
22353541Sshin
22453541Sshinstatic int dc_probe		(device_t);
22553541Sshinstatic int dc_attach		(device_t);
22653541Sshinstatic int dc_detach		(device_t);
22753541Sshinstatic int dc_suspend		(device_t);
22853541Sshinstatic int dc_resume		(device_t);
22953541Sshin#ifndef BURN_BRIDGES
23053541Sshinstatic void dc_acpi		(device_t);
23153541Sshin#endif
23253541Sshinstatic struct dc_type *dc_devtype	(device_t);
23353541Sshinstatic int dc_newbuf		(struct dc_softc *, int, int);
23453541Sshinstatic int dc_encap		(struct dc_softc *, struct mbuf **);
23553541Sshinstatic void dc_pnic_rx_bug_war	(struct dc_softc *, int);
23653541Sshinstatic int dc_rx_resync		(struct dc_softc *);
23753541Sshinstatic void dc_rxeof		(struct dc_softc *);
23853541Sshinstatic void dc_txeof		(struct dc_softc *);
23953541Sshinstatic void dc_tick		(void *);
24053541Sshinstatic void dc_tx_underrun	(struct dc_softc *);
24153541Sshinstatic void dc_intr		(void *);
24253541Sshinstatic void dc_start		(struct ifnet *);
24353541Sshinstatic int dc_ioctl		(struct ifnet *, u_long, caddr_t);
24462604Sitojunstatic void dc_init		(void *);
24562604Sitojunstatic void dc_stop		(struct dc_softc *);
24653541Sshinstatic void dc_watchdog		(struct ifnet *);
24753541Sshinstatic void dc_shutdown		(device_t);
24862604Sitojunstatic int dc_ifmedia_upd	(struct ifnet *);
24953541Sshinstatic void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
25053541Sshin
25153541Sshinstatic void dc_delay		(struct dc_softc *);
25253541Sshinstatic void dc_eeprom_idle	(struct dc_softc *);
25362604Sitojunstatic void dc_eeprom_putbyte	(struct dc_softc *, int);
25453541Sshinstatic void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
25553541Sshinstatic void dc_eeprom_getword_pnic
25653541Sshin				(struct dc_softc *, int, u_int16_t *);
25753541Sshinstatic void dc_eeprom_getword_xircom
25862604Sitojun				(struct dc_softc *, int, u_int16_t *);
25953541Sshinstatic void dc_eeprom_width	(struct dc_softc *);
26053541Sshinstatic void dc_read_eeprom	(struct dc_softc *, caddr_t, int, int, int);
26153541Sshin
26253541Sshinstatic void dc_mii_writebit	(struct dc_softc *, int);
26353541Sshinstatic int dc_mii_readbit	(struct dc_softc *);
26453541Sshinstatic void dc_mii_sync		(struct dc_softc *);
26553541Sshinstatic void dc_mii_send		(struct dc_softc *, u_int32_t, int);
26653541Sshinstatic int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
26753541Sshinstatic int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
26853541Sshinstatic int dc_miibus_readreg	(device_t, int, int);
26953541Sshinstatic int dc_miibus_writereg	(device_t, int, int, int);
27053541Sshinstatic void dc_miibus_statchg	(device_t);
27153541Sshinstatic void dc_miibus_mediainit	(device_t);
27253541Sshin
27353541Sshinstatic void dc_setcfg		(struct dc_softc *, int);
27453541Sshinstatic uint32_t dc_mchash_le	(struct dc_softc *, const uint8_t *);
27553541Sshinstatic uint32_t dc_mchash_be	(const uint8_t *);
27653541Sshinstatic void dc_setfilt_21143	(struct dc_softc *);
27753541Sshinstatic void dc_setfilt_asix	(struct dc_softc *);
27853541Sshinstatic void dc_setfilt_admtek	(struct dc_softc *);
27953541Sshinstatic void dc_setfilt_xircom	(struct dc_softc *);
28053541Sshin
28153541Sshinstatic void dc_setfilt		(struct dc_softc *);
28253541Sshin
28353541Sshinstatic void dc_reset		(struct dc_softc *);
28453541Sshinstatic int dc_list_rx_init	(struct dc_softc *);
28553541Sshinstatic int dc_list_tx_init	(struct dc_softc *);
28653541Sshin
28753541Sshinstatic void dc_read_srom	(struct dc_softc *, int);
28853541Sshinstatic void dc_parse_21143_srom	(struct dc_softc *);
28953541Sshinstatic void dc_decode_leaf_sia	(struct dc_softc *, struct dc_eblock_sia *);
29053541Sshinstatic void dc_decode_leaf_mii	(struct dc_softc *, struct dc_eblock_mii *);
29153541Sshinstatic void dc_decode_leaf_sym	(struct dc_softc *, struct dc_eblock_sym *);
29253541Sshinstatic void dc_apply_fixup	(struct dc_softc *, int);
29353541Sshin
29453541Sshinstatic void dc_dma_map_txbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
29553541Sshin				    int);
29653541Sshinstatic void dc_dma_map_rxbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
29753541Sshin				    int);
29853541Sshin
29953541Sshin#ifdef DC_USEIOSPACE
30053541Sshin#define DC_RES			SYS_RES_IOPORT
30153541Sshin#define DC_RID			DC_PCI_CFBIO
30253541Sshin#else
30353541Sshin#define DC_RES			SYS_RES_MEMORY
30453541Sshin#define DC_RID			DC_PCI_CFBMA
30553541Sshin#endif
30653541Sshin
30753541Sshinstatic device_method_t dc_methods[] = {
30853541Sshin	/* Device interface */
30953541Sshin	DEVMETHOD(device_probe,		dc_probe),
31053541Sshin	DEVMETHOD(device_attach,	dc_attach),
31153541Sshin	DEVMETHOD(device_detach,	dc_detach),
31253541Sshin	DEVMETHOD(device_suspend,	dc_suspend),
31353541Sshin	DEVMETHOD(device_resume,	dc_resume),
31453541Sshin	DEVMETHOD(device_shutdown,	dc_shutdown),
31553541Sshin
31653541Sshin	/* bus interface */
31753541Sshin	DEVMETHOD(bus_print_child,	bus_generic_print_child),
31853541Sshin	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
31953541Sshin
32053541Sshin	/* MII interface */
32153541Sshin	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
32253541Sshin	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
32353541Sshin	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
32453541Sshin	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
32553541Sshin
32653541Sshin	{ 0, 0 }
32753541Sshin};
32853541Sshin
32953541Sshinstatic driver_t dc_driver = {
33053541Sshin	"dc",
33153541Sshin	dc_methods,
33253541Sshin	sizeof(struct dc_softc)
33353541Sshin};
33453541Sshin
33553541Sshinstatic devclass_t dc_devclass;
33653541Sshin#ifdef __i386__
33753541Sshinstatic int dc_quick = 1;
33853541SshinSYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW, &dc_quick, 0,
33953541Sshin    "do not m_devget() in dc driver");
34053541Sshin#endif
34153541Sshin
34253541SshinDRIVER_MODULE(dc, cardbus, dc_driver, dc_devclass, 0, 0);
34353541SshinDRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
34453541SshinDRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
34553541Sshin
34653541Sshin#define DC_SETBIT(sc, reg, x)				\
34753541Sshin	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
34853541Sshin
34953541Sshin#define DC_CLRBIT(sc, reg, x)				\
35053541Sshin	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
35153541Sshin
35253541Sshin#define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
35353541Sshin#define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
35453541Sshin
35553541Sshin#define IS_MPSAFE 	0
35653541Sshin
35753541Sshinstatic void
35853541Sshindc_delay(struct dc_softc *sc)
35953541Sshin{
36053541Sshin	int idx;
36153541Sshin
36253541Sshin	for (idx = (300 / 33) + 1; idx > 0; idx--)
36353541Sshin		CSR_READ_4(sc, DC_BUSCTL);
36453541Sshin}
36553541Sshin
36653541Sshinstatic void
36753541Sshindc_eeprom_width(struct dc_softc *sc)
36853541Sshin{
36953541Sshin	int i;
37053541Sshin
37153541Sshin	/* Force EEPROM to idle state. */
37253541Sshin	dc_eeprom_idle(sc);
37353541Sshin
37453541Sshin	/* Enter EEPROM access mode. */
37553541Sshin	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
37653541Sshin	dc_delay(sc);
37753541Sshin	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
37853541Sshin	dc_delay(sc);
37953541Sshin	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
38053541Sshin	dc_delay(sc);
38153541Sshin	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
38253541Sshin	dc_delay(sc);
38353541Sshin
38453541Sshin	for (i = 3; i--;) {
38553541Sshin		if (6 & (1 << i))
38653541Sshin			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
38753541Sshin		else
38853541Sshin			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
38953541Sshin		dc_delay(sc);
39053541Sshin		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
39153541Sshin		dc_delay(sc);
39253541Sshin		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
39353541Sshin		dc_delay(sc);
39453541Sshin	}
39553541Sshin
39653541Sshin	for (i = 1; i <= 12; i++) {
39753541Sshin		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
39853541Sshin		dc_delay(sc);
39953541Sshin		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
40053541Sshin			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
40153541Sshin			dc_delay(sc);
40253541Sshin			break;
40353541Sshin		}
40453541Sshin		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
40553541Sshin		dc_delay(sc);
40653541Sshin	}
40753541Sshin
40853541Sshin	/* Turn off EEPROM access mode. */
40953541Sshin	dc_eeprom_idle(sc);
41053541Sshin
41153541Sshin	if (i < 4 || i > 12)
41253541Sshin		sc->dc_romwidth = 6;
41353541Sshin	else
41453541Sshin		sc->dc_romwidth = i;
41553541Sshin
41653541Sshin	/* Enter EEPROM access mode. */
41753541Sshin	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
41853541Sshin	dc_delay(sc);
41953541Sshin	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
42053541Sshin	dc_delay(sc);
42153541Sshin	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
42253541Sshin	dc_delay(sc);
42353541Sshin	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
42453541Sshin	dc_delay(sc);
42553541Sshin
42653541Sshin	/* Turn off EEPROM access mode. */
42753541Sshin	dc_eeprom_idle(sc);
42853541Sshin}
42953541Sshin
43053541Sshinstatic void
43153541Sshindc_eeprom_idle(struct dc_softc *sc)
43253541Sshin{
43353541Sshin	int i;
43453541Sshin
43553541Sshin	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
43653541Sshin	dc_delay(sc);
43753541Sshin	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
43853541Sshin	dc_delay(sc);
43953541Sshin	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
44053541Sshin	dc_delay(sc);
44153541Sshin	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
44253541Sshin	dc_delay(sc);
44353541Sshin
44453541Sshin	for (i = 0; i < 25; i++) {
44553541Sshin		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
44653541Sshin		dc_delay(sc);
44753541Sshin		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
44853541Sshin		dc_delay(sc);
44953541Sshin	}
45053541Sshin
45153541Sshin	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
45253541Sshin	dc_delay(sc);
45353541Sshin	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
45453541Sshin	dc_delay(sc);
45553541Sshin	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
45653541Sshin}
45753541Sshin
45862587Sitojun/*
45962587Sitojun * Send a read command and address to the EEPROM, check for ACK.
46062587Sitojun */
46162587Sitojunstatic void
46262587Sitojundc_eeprom_putbyte(struct dc_softc *sc, int addr)
46362587Sitojun{
46462587Sitojun	int d, i;
46562587Sitojun
46662587Sitojun	d = DC_EECMD_READ >> 6;
46762587Sitojun	for (i = 3; i--; ) {
46862587Sitojun		if (d & (1 << i))
46962587Sitojun			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
47062587Sitojun		else
47162587Sitojun			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
47262587Sitojun		dc_delay(sc);
47362587Sitojun		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
47462587Sitojun		dc_delay(sc);
47562587Sitojun		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
47653541Sshin		dc_delay(sc);
47753541Sshin	}
47853541Sshin
47953541Sshin	/*
48053541Sshin	 * Feed in each bit and strobe the clock.
48153541Sshin	 */
48253541Sshin	for (i = sc->dc_romwidth; i--;) {
48353541Sshin		if (addr & (1 << i)) {
48453541Sshin			SIO_SET(DC_SIO_EE_DATAIN);
48553541Sshin		} else {
48653541Sshin			SIO_CLR(DC_SIO_EE_DATAIN);
48753541Sshin		}
48853541Sshin		dc_delay(sc);
48953541Sshin		SIO_SET(DC_SIO_EE_CLK);
49053541Sshin		dc_delay(sc);
49153541Sshin		SIO_CLR(DC_SIO_EE_CLK);
49253541Sshin		dc_delay(sc);
49353541Sshin	}
49453541Sshin}
49553541Sshin
49653541Sshin/*
49753541Sshin * Read a word of data stored in the EEPROM at address 'addr.'
498 * The PNIC 82c168/82c169 has its own non-standard way to read
499 * the EEPROM.
500 */
501static void
502dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
503{
504	int i;
505	u_int32_t r;
506
507	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
508
509	for (i = 0; i < DC_TIMEOUT; i++) {
510		DELAY(1);
511		r = CSR_READ_4(sc, DC_SIO);
512		if (!(r & DC_PN_SIOCTL_BUSY)) {
513			*dest = (u_int16_t)(r & 0xFFFF);
514			return;
515		}
516	}
517}
518
519/*
520 * Read a word of data stored in the EEPROM at address 'addr.'
521 * The Xircom X3201 has its own non-standard way to read
522 * the EEPROM, too.
523 */
524static void
525dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
526{
527
528	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
529
530	addr *= 2;
531	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
532	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
533	addr += 1;
534	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
535	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
536
537	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
538}
539
540/*
541 * Read a word of data stored in the EEPROM at address 'addr.'
542 */
543static void
544dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
545{
546	int i;
547	u_int16_t word = 0;
548
549	/* Force EEPROM to idle state. */
550	dc_eeprom_idle(sc);
551
552	/* Enter EEPROM access mode. */
553	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
554	dc_delay(sc);
555	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
556	dc_delay(sc);
557	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
558	dc_delay(sc);
559	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
560	dc_delay(sc);
561
562	/*
563	 * Send address of word we want to read.
564	 */
565	dc_eeprom_putbyte(sc, addr);
566
567	/*
568	 * Start reading bits from EEPROM.
569	 */
570	for (i = 0x8000; i; i >>= 1) {
571		SIO_SET(DC_SIO_EE_CLK);
572		dc_delay(sc);
573		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
574			word |= i;
575		dc_delay(sc);
576		SIO_CLR(DC_SIO_EE_CLK);
577		dc_delay(sc);
578	}
579
580	/* Turn off EEPROM access mode. */
581	dc_eeprom_idle(sc);
582
583	*dest = word;
584}
585
586/*
587 * Read a sequence of words from the EEPROM.
588 */
589static void
590dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
591{
592	int i;
593	u_int16_t word = 0, *ptr;
594
595	for (i = 0; i < cnt; i++) {
596		if (DC_IS_PNIC(sc))
597			dc_eeprom_getword_pnic(sc, off + i, &word);
598		else if (DC_IS_XIRCOM(sc))
599			dc_eeprom_getword_xircom(sc, off + i, &word);
600		else
601			dc_eeprom_getword(sc, off + i, &word);
602		ptr = (u_int16_t *)(dest + (i * 2));
603		if (swap)
604			*ptr = ntohs(word);
605		else
606			*ptr = word;
607	}
608}
609
610/*
611 * The following two routines are taken from the Macronix 98713
612 * Application Notes pp.19-21.
613 */
614/*
615 * Write a bit to the MII bus.
616 */
617static void
618dc_mii_writebit(struct dc_softc *sc, int bit)
619{
620
621	if (bit)
622		CSR_WRITE_4(sc, DC_SIO,
623		    DC_SIO_ROMCTL_WRITE | DC_SIO_MII_DATAOUT);
624	else
625		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
626
627	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
628	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
629}
630
631/*
632 * Read a bit from the MII bus.
633 */
634static int
635dc_mii_readbit(struct dc_softc *sc)
636{
637
638	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR);
639	CSR_READ_4(sc, DC_SIO);
640	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
641	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
642	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
643		return (1);
644
645	return (0);
646}
647
648/*
649 * Sync the PHYs by setting data bit and strobing the clock 32 times.
650 */
651static void
652dc_mii_sync(struct dc_softc *sc)
653{
654	int i;
655
656	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
657
658	for (i = 0; i < 32; i++)
659		dc_mii_writebit(sc, 1);
660}
661
662/*
663 * Clock a series of bits through the MII.
664 */
665static void
666dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
667{
668	int i;
669
670	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
671		dc_mii_writebit(sc, bits & i);
672}
673
674/*
675 * Read an PHY register through the MII.
676 */
677static int
678dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
679{
680	int i, ack;
681
682	DC_LOCK(sc);
683
684	/*
685	 * Set up frame for RX.
686	 */
687	frame->mii_stdelim = DC_MII_STARTDELIM;
688	frame->mii_opcode = DC_MII_READOP;
689	frame->mii_turnaround = 0;
690	frame->mii_data = 0;
691
692	/*
693	 * Sync the PHYs.
694	 */
695	dc_mii_sync(sc);
696
697	/*
698	 * Send command/address info.
699	 */
700	dc_mii_send(sc, frame->mii_stdelim, 2);
701	dc_mii_send(sc, frame->mii_opcode, 2);
702	dc_mii_send(sc, frame->mii_phyaddr, 5);
703	dc_mii_send(sc, frame->mii_regaddr, 5);
704
705#ifdef notdef
706	/* Idle bit */
707	dc_mii_writebit(sc, 1);
708	dc_mii_writebit(sc, 0);
709#endif
710
711	/* Check for ack. */
712	ack = dc_mii_readbit(sc);
713
714	/*
715	 * Now try reading data bits. If the ack failed, we still
716	 * need to clock through 16 cycles to keep the PHY(s) in sync.
717	 */
718	if (ack) {
719		for (i = 0; i < 16; i++)
720			dc_mii_readbit(sc);
721		goto fail;
722	}
723
724	for (i = 0x8000; i; i >>= 1) {
725		if (!ack) {
726			if (dc_mii_readbit(sc))
727				frame->mii_data |= i;
728		}
729	}
730
731fail:
732
733	dc_mii_writebit(sc, 0);
734	dc_mii_writebit(sc, 0);
735
736	DC_UNLOCK(sc);
737
738	if (ack)
739		return (1);
740	return (0);
741}
742
743/*
744 * Write to a PHY register through the MII.
745 */
746static int
747dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
748{
749
750	DC_LOCK(sc);
751	/*
752	 * Set up frame for TX.
753	 */
754
755	frame->mii_stdelim = DC_MII_STARTDELIM;
756	frame->mii_opcode = DC_MII_WRITEOP;
757	frame->mii_turnaround = DC_MII_TURNAROUND;
758
759	/*
760	 * Sync the PHYs.
761	 */
762	dc_mii_sync(sc);
763
764	dc_mii_send(sc, frame->mii_stdelim, 2);
765	dc_mii_send(sc, frame->mii_opcode, 2);
766	dc_mii_send(sc, frame->mii_phyaddr, 5);
767	dc_mii_send(sc, frame->mii_regaddr, 5);
768	dc_mii_send(sc, frame->mii_turnaround, 2);
769	dc_mii_send(sc, frame->mii_data, 16);
770
771	/* Idle bit. */
772	dc_mii_writebit(sc, 0);
773	dc_mii_writebit(sc, 0);
774
775	DC_UNLOCK(sc);
776
777	return (0);
778}
779
780static int
781dc_miibus_readreg(device_t dev, int phy, int reg)
782{
783	struct dc_mii_frame frame;
784	struct dc_softc	 *sc;
785	int i, rval, phy_reg = 0;
786
787	sc = device_get_softc(dev);
788	bzero(&frame, sizeof(frame));
789
790	/*
791	 * Note: both the AL981 and AN985 have internal PHYs,
792	 * however the AL981 provides direct access to the PHY
793	 * registers while the AN985 uses a serial MII interface.
794	 * The AN985's MII interface is also buggy in that you
795	 * can read from any MII address (0 to 31), but only address 1
796	 * behaves normally. To deal with both cases, we pretend
797	 * that the PHY is at MII address 1.
798	 */
799	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
800		return (0);
801
802	/*
803	 * Note: the ukphy probes of the RS7112 report a PHY at
804	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
805	 * so we only respond to correct one.
806	 */
807	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
808		return (0);
809
810	if (sc->dc_pmode != DC_PMODE_MII) {
811		if (phy == (MII_NPHY - 1)) {
812			switch (reg) {
813			case MII_BMSR:
814			/*
815			 * Fake something to make the probe
816			 * code think there's a PHY here.
817			 */
818				return (BMSR_MEDIAMASK);
819				break;
820			case MII_PHYIDR1:
821				if (DC_IS_PNIC(sc))
822					return (DC_VENDORID_LO);
823				return (DC_VENDORID_DEC);
824				break;
825			case MII_PHYIDR2:
826				if (DC_IS_PNIC(sc))
827					return (DC_DEVICEID_82C168);
828				return (DC_DEVICEID_21143);
829				break;
830			default:
831				return (0);
832				break;
833			}
834		} else
835			return (0);
836	}
837
838	if (DC_IS_PNIC(sc)) {
839		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
840		    (phy << 23) | (reg << 18));
841		for (i = 0; i < DC_TIMEOUT; i++) {
842			DELAY(1);
843			rval = CSR_READ_4(sc, DC_PN_MII);
844			if (!(rval & DC_PN_MII_BUSY)) {
845				rval &= 0xFFFF;
846				return (rval == 0xFFFF ? 0 : rval);
847			}
848		}
849		return (0);
850	}
851
852	if (DC_IS_COMET(sc)) {
853		switch (reg) {
854		case MII_BMCR:
855			phy_reg = DC_AL_BMCR;
856			break;
857		case MII_BMSR:
858			phy_reg = DC_AL_BMSR;
859			break;
860		case MII_PHYIDR1:
861			phy_reg = DC_AL_VENID;
862			break;
863		case MII_PHYIDR2:
864			phy_reg = DC_AL_DEVID;
865			break;
866		case MII_ANAR:
867			phy_reg = DC_AL_ANAR;
868			break;
869		case MII_ANLPAR:
870			phy_reg = DC_AL_LPAR;
871			break;
872		case MII_ANER:
873			phy_reg = DC_AL_ANER;
874			break;
875		default:
876			printf("dc%d: phy_read: bad phy register %x\n",
877			    sc->dc_unit, reg);
878			return (0);
879			break;
880		}
881
882		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
883
884		if (rval == 0xFFFF)
885			return (0);
886		return (rval);
887	}
888
889	frame.mii_phyaddr = phy;
890	frame.mii_regaddr = reg;
891	if (sc->dc_type == DC_TYPE_98713) {
892		phy_reg = CSR_READ_4(sc, DC_NETCFG);
893		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
894	}
895	dc_mii_readreg(sc, &frame);
896	if (sc->dc_type == DC_TYPE_98713)
897		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
898
899	return (frame.mii_data);
900}
901
902static int
903dc_miibus_writereg(device_t dev, int phy, int reg, int data)
904{
905	struct dc_softc *sc;
906	struct dc_mii_frame frame;
907	int i, phy_reg = 0;
908
909	sc = device_get_softc(dev);
910	bzero(&frame, sizeof(frame));
911
912	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
913		return (0);
914
915	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
916		return (0);
917
918	if (DC_IS_PNIC(sc)) {
919		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
920		    (phy << 23) | (reg << 10) | data);
921		for (i = 0; i < DC_TIMEOUT; i++) {
922			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
923				break;
924		}
925		return (0);
926	}
927
928	if (DC_IS_COMET(sc)) {
929		switch (reg) {
930		case MII_BMCR:
931			phy_reg = DC_AL_BMCR;
932			break;
933		case MII_BMSR:
934			phy_reg = DC_AL_BMSR;
935			break;
936		case MII_PHYIDR1:
937			phy_reg = DC_AL_VENID;
938			break;
939		case MII_PHYIDR2:
940			phy_reg = DC_AL_DEVID;
941			break;
942		case MII_ANAR:
943			phy_reg = DC_AL_ANAR;
944			break;
945		case MII_ANLPAR:
946			phy_reg = DC_AL_LPAR;
947			break;
948		case MII_ANER:
949			phy_reg = DC_AL_ANER;
950			break;
951		default:
952			printf("dc%d: phy_write: bad phy register %x\n",
953			    sc->dc_unit, reg);
954			return (0);
955			break;
956		}
957
958		CSR_WRITE_4(sc, phy_reg, data);
959		return (0);
960	}
961
962	frame.mii_phyaddr = phy;
963	frame.mii_regaddr = reg;
964	frame.mii_data = data;
965
966	if (sc->dc_type == DC_TYPE_98713) {
967		phy_reg = CSR_READ_4(sc, DC_NETCFG);
968		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
969	}
970	dc_mii_writereg(sc, &frame);
971	if (sc->dc_type == DC_TYPE_98713)
972		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
973
974	return (0);
975}
976
977static void
978dc_miibus_statchg(device_t dev)
979{
980	struct dc_softc *sc;
981	struct mii_data *mii;
982	struct ifmedia *ifm;
983
984	sc = device_get_softc(dev);
985	if (DC_IS_ADMTEK(sc))
986		return;
987
988	mii = device_get_softc(sc->dc_miibus);
989	ifm = &mii->mii_media;
990	if (DC_IS_DAVICOM(sc) &&
991	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
992		dc_setcfg(sc, ifm->ifm_media);
993		sc->dc_if_media = ifm->ifm_media;
994	} else {
995		dc_setcfg(sc, mii->mii_media_active);
996		sc->dc_if_media = mii->mii_media_active;
997	}
998}
999
1000/*
1001 * Special support for DM9102A cards with HomePNA PHYs. Note:
1002 * with the Davicom DM9102A/DM9801 eval board that I have, it seems
1003 * to be impossible to talk to the management interface of the DM9801
1004 * PHY (its MDIO pin is not connected to anything). Consequently,
1005 * the driver has to just 'know' about the additional mode and deal
1006 * with it itself. *sigh*
1007 */
1008static void
1009dc_miibus_mediainit(device_t dev)
1010{
1011	struct dc_softc *sc;
1012	struct mii_data *mii;
1013	struct ifmedia *ifm;
1014	int rev;
1015
1016	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1017
1018	sc = device_get_softc(dev);
1019	mii = device_get_softc(sc->dc_miibus);
1020	ifm = &mii->mii_media;
1021
1022	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1023		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1024}
1025
1026#define DC_POLY		0xEDB88320
1027#define DC_BITS_512	9
1028#define DC_BITS_128	7
1029#define DC_BITS_64	6
1030
1031static uint32_t
1032dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
1033{
1034	uint32_t crc;
1035	int idx, bit;
1036	uint8_t data;
1037
1038	/* Compute CRC for the address value. */
1039	crc = 0xFFFFFFFF; /* initial value */
1040
1041	for (idx = 0; idx < 6; idx++) {
1042		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1043			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
1044	}
1045
1046	/*
1047	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1048	 * chips is only 128 bits wide.
1049	 */
1050	if (sc->dc_flags & DC_128BIT_HASH)
1051		return (crc & ((1 << DC_BITS_128) - 1));
1052
1053	/* The hash table on the MX98715BEC is only 64 bits wide. */
1054	if (sc->dc_flags & DC_64BIT_HASH)
1055		return (crc & ((1 << DC_BITS_64) - 1));
1056
1057	/* Xircom's hash filtering table is different (read: weird) */
1058	/* Xircom uses the LEAST significant bits */
1059	if (DC_IS_XIRCOM(sc)) {
1060		if ((crc & 0x180) == 0x180)
1061			return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
1062		else
1063			return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
1064			    (12 << 4));
1065	}
1066
1067	return (crc & ((1 << DC_BITS_512) - 1));
1068}
1069
1070/*
1071 * Calculate CRC of a multicast group address, return the lower 6 bits.
1072 */
1073static uint32_t
1074dc_mchash_be(const uint8_t *addr)
1075{
1076	uint32_t crc, carry;
1077	int idx, bit;
1078	uint8_t data;
1079
1080	/* Compute CRC for the address value. */
1081	crc = 0xFFFFFFFF; /* initial value */
1082
1083	for (idx = 0; idx < 6; idx++) {
1084		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
1085			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1086			data >>= 1;
1087			crc <<= 1;
1088			if (carry)
1089				crc = (crc ^ 0x04c11db6) | carry;
1090		}
1091	}
1092
1093	/* Return the filter bit position. */
1094	return ((crc >> 26) & 0x0000003F);
1095}
1096
1097/*
1098 * 21143-style RX filter setup routine. Filter programming is done by
1099 * downloading a special setup frame into the TX engine. 21143, Macronix,
1100 * PNIC, PNIC II and Davicom chips are programmed this way.
1101 *
1102 * We always program the chip using 'hash perfect' mode, i.e. one perfect
1103 * address (our node address) and a 512-bit hash filter for multicast
1104 * frames. We also sneak the broadcast address into the hash filter since
1105 * we need that too.
1106 */
1107static void
1108dc_setfilt_21143(struct dc_softc *sc)
1109{
1110	struct dc_desc *sframe;
1111	u_int32_t h, *sp;
1112	struct ifmultiaddr *ifma;
1113	struct ifnet *ifp;
1114	int i;
1115
1116	ifp = &sc->arpcom.ac_if;
1117
1118	i = sc->dc_cdata.dc_tx_prod;
1119	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1120	sc->dc_cdata.dc_tx_cnt++;
1121	sframe = &sc->dc_ldata->dc_tx_list[i];
1122	sp = sc->dc_cdata.dc_sbuf;
1123	bzero(sp, DC_SFRAME_LEN);
1124
1125	sframe->dc_data = htole32(sc->dc_saddr);
1126	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1127	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1128
1129	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1130
1131	/* If we want promiscuous mode, set the allframes bit. */
1132	if (ifp->if_flags & IFF_PROMISC)
1133		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1134	else
1135		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1136
1137	if (ifp->if_flags & IFF_ALLMULTI)
1138		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1139	else
1140		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1141
1142	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1143		if (ifma->ifma_addr->sa_family != AF_LINK)
1144			continue;
1145		h = dc_mchash_le(sc,
1146		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1147		sp[h >> 4] |= htole32(1 << (h & 0xF));
1148	}
1149
1150	if (ifp->if_flags & IFF_BROADCAST) {
1151		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1152		sp[h >> 4] |= htole32(1 << (h & 0xF));
1153	}
1154
1155	/* Set our MAC address */
1156	sp[39] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1157	sp[40] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1158	sp[41] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1159
1160	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1161	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1162
1163	/*
1164	 * The PNIC takes an exceedingly long time to process its
1165	 * setup frame; wait 10ms after posting the setup frame
1166	 * before proceeding, just so it has time to swallow its
1167	 * medicine.
1168	 */
1169	DELAY(10000);
1170
1171	ifp->if_timer = 5;
1172}
1173
1174static void
1175dc_setfilt_admtek(struct dc_softc *sc)
1176{
1177	struct ifnet *ifp;
1178	struct ifmultiaddr *ifma;
1179	int h = 0;
1180	u_int32_t hashes[2] = { 0, 0 };
1181
1182	ifp = &sc->arpcom.ac_if;
1183
1184	/* Init our MAC address. */
1185	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1186	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1187
1188	/* If we want promiscuous mode, set the allframes bit. */
1189	if (ifp->if_flags & IFF_PROMISC)
1190		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1191	else
1192		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1193
1194	if (ifp->if_flags & IFF_ALLMULTI)
1195		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1196	else
1197		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1198
1199	/* First, zot all the existing hash bits. */
1200	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1201	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1202
1203	/*
1204	 * If we're already in promisc or allmulti mode, we
1205	 * don't have to bother programming the multicast filter.
1206	 */
1207	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1208		return;
1209
1210	/* Now program new ones. */
1211	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1212		if (ifma->ifma_addr->sa_family != AF_LINK)
1213			continue;
1214		if (DC_IS_CENTAUR(sc))
1215			h = dc_mchash_le(sc,
1216			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1217		else
1218			h = dc_mchash_be(
1219			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1220		if (h < 32)
1221			hashes[0] |= (1 << h);
1222		else
1223			hashes[1] |= (1 << (h - 32));
1224	}
1225
1226	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1227	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1228}
1229
1230static void
1231dc_setfilt_asix(struct dc_softc *sc)
1232{
1233	struct ifnet *ifp;
1234	struct ifmultiaddr *ifma;
1235	int h = 0;
1236	u_int32_t hashes[2] = { 0, 0 };
1237
1238	ifp = &sc->arpcom.ac_if;
1239
1240	/* Init our MAC address */
1241	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1242	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1243	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1244	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1245	CSR_WRITE_4(sc, DC_AX_FILTDATA,
1246	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1247
1248	/* If we want promiscuous mode, set the allframes bit. */
1249	if (ifp->if_flags & IFF_PROMISC)
1250		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1251	else
1252		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1253
1254	if (ifp->if_flags & IFF_ALLMULTI)
1255		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1256	else
1257		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1258
1259	/*
1260	 * The ASIX chip has a special bit to enable reception
1261	 * of broadcast frames.
1262	 */
1263	if (ifp->if_flags & IFF_BROADCAST)
1264		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1265	else
1266		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1267
1268	/* first, zot all the existing hash bits */
1269	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1270	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1271	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1272	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1273
1274	/*
1275	 * If we're already in promisc or allmulti mode, we
1276	 * don't have to bother programming the multicast filter.
1277	 */
1278	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
1279		return;
1280
1281	/* now program new ones */
1282	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1283		if (ifma->ifma_addr->sa_family != AF_LINK)
1284			continue;
1285		h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1286		if (h < 32)
1287			hashes[0] |= (1 << h);
1288		else
1289			hashes[1] |= (1 << (h - 32));
1290	}
1291
1292	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1293	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1294	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1295	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1296}
1297
1298static void
1299dc_setfilt_xircom(struct dc_softc *sc)
1300{
1301	struct ifnet *ifp;
1302	struct ifmultiaddr *ifma;
1303	struct dc_desc *sframe;
1304	u_int32_t h, *sp;
1305	int i;
1306
1307	ifp = &sc->arpcom.ac_if;
1308	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1309
1310	i = sc->dc_cdata.dc_tx_prod;
1311	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1312	sc->dc_cdata.dc_tx_cnt++;
1313	sframe = &sc->dc_ldata->dc_tx_list[i];
1314	sp = sc->dc_cdata.dc_sbuf;
1315	bzero(sp, DC_SFRAME_LEN);
1316
1317	sframe->dc_data = htole32(sc->dc_saddr);
1318	sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
1319	    DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
1320
1321	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
1322
1323	/* If we want promiscuous mode, set the allframes bit. */
1324	if (ifp->if_flags & IFF_PROMISC)
1325		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1326	else
1327		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1328
1329	if (ifp->if_flags & IFF_ALLMULTI)
1330		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1331	else
1332		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1333
1334	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1335		if (ifma->ifma_addr->sa_family != AF_LINK)
1336			continue;
1337		h = dc_mchash_le(sc,
1338		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1339		sp[h >> 4] |= htole32(1 << (h & 0xF));
1340	}
1341
1342	if (ifp->if_flags & IFF_BROADCAST) {
1343		h = dc_mchash_le(sc, ifp->if_broadcastaddr);
1344		sp[h >> 4] |= htole32(1 << (h & 0xF));
1345	}
1346
1347	/* Set our MAC address */
1348	sp[0] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1349	sp[1] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1350	sp[2] = DC_SP_MAC(((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1351
1352	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1353	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1354	ifp->if_flags |= IFF_RUNNING;
1355	sframe->dc_status = htole32(DC_TXSTAT_OWN);
1356	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1357
1358	/*
1359	 * Wait some time...
1360	 */
1361	DELAY(1000);
1362
1363	ifp->if_timer = 5;
1364}
1365
1366static void
1367dc_setfilt(struct dc_softc *sc)
1368{
1369
1370	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1371	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1372		dc_setfilt_21143(sc);
1373
1374	if (DC_IS_ASIX(sc))
1375		dc_setfilt_asix(sc);
1376
1377	if (DC_IS_ADMTEK(sc))
1378		dc_setfilt_admtek(sc);
1379
1380	if (DC_IS_XIRCOM(sc))
1381		dc_setfilt_xircom(sc);
1382}
1383
1384/*
1385 * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
1386 * the netconfig register, we first have to put the transmit and/or
1387 * receive logic in the idle state.
1388 */
1389static void
1390dc_setcfg(struct dc_softc *sc, int media)
1391{
1392	int i, restart = 0, watchdogreg;
1393	u_int32_t isr;
1394
1395	if (IFM_SUBTYPE(media) == IFM_NONE)
1396		return;
1397
1398	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
1399		restart = 1;
1400		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
1401
1402		for (i = 0; i < DC_TIMEOUT; i++) {
1403			isr = CSR_READ_4(sc, DC_ISR);
1404			if (isr & DC_ISR_TX_IDLE &&
1405			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1406			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1407				break;
1408			DELAY(10);
1409		}
1410
1411		if (i == DC_TIMEOUT)
1412			printf("dc%d: failed to force tx and "
1413				"rx to idle state\n", sc->dc_unit);
1414	}
1415
1416	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1417		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1418		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1419		if (sc->dc_pmode == DC_PMODE_MII) {
1420			if (DC_IS_INTEL(sc)) {
1421			/* There's a write enable bit here that reads as 1. */
1422				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1423				watchdogreg &= ~DC_WDOG_CTLWREN;
1424				watchdogreg |= DC_WDOG_JABBERDIS;
1425				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1426			} else {
1427				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1428			}
1429			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1430			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1431			if (sc->dc_type == DC_TYPE_98713)
1432				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1433				    DC_NETCFG_SCRAMBLER));
1434			if (!DC_IS_DAVICOM(sc))
1435				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1436			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1437			if (DC_IS_INTEL(sc))
1438				dc_apply_fixup(sc, IFM_AUTO);
1439		} else {
1440			if (DC_IS_PNIC(sc)) {
1441				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1442				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1443				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1444			}
1445			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1446			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1447			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1448			if (DC_IS_INTEL(sc))
1449				dc_apply_fixup(sc,
1450				    (media & IFM_GMASK) == IFM_FDX ?
1451				    IFM_100_TX | IFM_FDX : IFM_100_TX);
1452		}
1453	}
1454
1455	if (IFM_SUBTYPE(media) == IFM_10_T) {
1456		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1457		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1458		if (sc->dc_pmode == DC_PMODE_MII) {
1459			/* There's a write enable bit here that reads as 1. */
1460			if (DC_IS_INTEL(sc)) {
1461				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1462				watchdogreg &= ~DC_WDOG_CTLWREN;
1463				watchdogreg |= DC_WDOG_JABBERDIS;
1464				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1465			} else {
1466				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1467			}
1468			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
1469			    DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
1470			if (sc->dc_type == DC_TYPE_98713)
1471				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1472			if (!DC_IS_DAVICOM(sc))
1473				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1474			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1475			if (DC_IS_INTEL(sc))
1476				dc_apply_fixup(sc, IFM_AUTO);
1477		} else {
1478			if (DC_IS_PNIC(sc)) {
1479				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1480				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1481				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1482			}
1483			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1484			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1485			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1486			if (DC_IS_INTEL(sc)) {
1487				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1488				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1489				if ((media & IFM_GMASK) == IFM_FDX)
1490					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1491				else
1492					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1493				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1494				DC_CLRBIT(sc, DC_10BTCTRL,
1495				    DC_TCTL_AUTONEGENBL);
1496				dc_apply_fixup(sc,
1497				    (media & IFM_GMASK) == IFM_FDX ?
1498				    IFM_10_T | IFM_FDX : IFM_10_T);
1499				DELAY(20000);
1500			}
1501		}
1502	}
1503
1504	/*
1505	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1506	 * PHY and we want HomePNA mode, set the portsel bit to turn
1507	 * on the external MII port.
1508	 */
1509	if (DC_IS_DAVICOM(sc)) {
1510		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1511			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1512			sc->dc_link = 1;
1513		} else {
1514			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1515		}
1516	}
1517
1518	if ((media & IFM_GMASK) == IFM_FDX) {
1519		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1520		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1521			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1522	} else {
1523		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1524		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1525			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1526	}
1527
1528	if (restart)
1529		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
1530}
1531
1532static void
1533dc_reset(struct dc_softc *sc)
1534{
1535	int i;
1536
1537	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1538
1539	for (i = 0; i < DC_TIMEOUT; i++) {
1540		DELAY(10);
1541		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1542			break;
1543	}
1544
1545	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
1546	    DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
1547		DELAY(10000);
1548		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1549		i = 0;
1550	}
1551
1552	if (i == DC_TIMEOUT)
1553		printf("dc%d: reset never completed!\n", sc->dc_unit);
1554
1555	/* Wait a little while for the chip to get its brains in order. */
1556	DELAY(1000);
1557
1558	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1559	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1560	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1561
1562	/*
1563	 * Bring the SIA out of reset. In some cases, it looks
1564	 * like failing to unreset the SIA soon enough gets it
1565	 * into a state where it will never come out of reset
1566	 * until we reset the whole chip again.
1567	 */
1568	if (DC_IS_INTEL(sc)) {
1569		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1570		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1571		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1572	}
1573}
1574
1575static struct dc_type *
1576dc_devtype(device_t dev)
1577{
1578	struct dc_type *t;
1579	u_int32_t rev;
1580
1581	t = dc_devs;
1582
1583	while (t->dc_name != NULL) {
1584		if ((pci_get_vendor(dev) == t->dc_vid) &&
1585		    (pci_get_device(dev) == t->dc_did)) {
1586			/* Check the PCI revision */
1587			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1588			if (t->dc_did == DC_DEVICEID_98713 &&
1589			    rev >= DC_REVISION_98713A)
1590				t++;
1591			if (t->dc_did == DC_DEVICEID_98713_CP &&
1592			    rev >= DC_REVISION_98713A)
1593				t++;
1594			if (t->dc_did == DC_DEVICEID_987x5 &&
1595			    rev >= DC_REVISION_98715AEC_C)
1596				t++;
1597			if (t->dc_did == DC_DEVICEID_987x5 &&
1598			    rev >= DC_REVISION_98725)
1599				t++;
1600			if (t->dc_did == DC_DEVICEID_AX88140A &&
1601			    rev >= DC_REVISION_88141)
1602				t++;
1603			if (t->dc_did == DC_DEVICEID_82C168 &&
1604			    rev >= DC_REVISION_82C169)
1605				t++;
1606			if (t->dc_did == DC_DEVICEID_DM9102 &&
1607			    rev >= DC_REVISION_DM9102A)
1608				t++;
1609			/*
1610			 * The Microsoft MN-130 has a device ID of 0x0002,
1611			 * which happens to be the same as the PNIC 82c168.
1612			 * To keep dc_attach() from getting confused, we
1613			 * pretend its ID is something different.
1614			 * XXX: ideally, dc_attach() should be checking
1615			 * vendorid+deviceid together to avoid such
1616			 * collisions.
1617			 */
1618			if (t->dc_vid == DC_VENDORID_MICROSOFT &&
1619			    t->dc_did == DC_DEVICEID_MSMN130)
1620				t++;
1621			return (t);
1622		}
1623		t++;
1624	}
1625
1626	return (NULL);
1627}
1628
1629/*
1630 * Probe for a 21143 or clone chip. Check the PCI vendor and device
1631 * IDs against our list and return a device name if we find a match.
1632 * We do a little bit of extra work to identify the exact type of
1633 * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1634 * but different revision IDs. The same is true for 98715/98715A
1635 * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1636 * cases, the exact chip revision affects driver behavior.
1637 */
1638static int
1639dc_probe(device_t dev)
1640{
1641	struct dc_type *t;
1642
1643	t = dc_devtype(dev);
1644
1645	if (t != NULL) {
1646		device_set_desc(dev, t->dc_name);
1647		return (0);
1648	}
1649
1650	return (ENXIO);
1651}
1652
1653#ifndef BURN_BRIDGES
1654static void
1655dc_acpi(device_t dev)
1656{
1657	int unit;
1658	u_int32_t iobase, membase, irq;
1659
1660	unit = device_get_unit(dev);
1661
1662	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1663		/* Save important PCI config data. */
1664		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1665		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1666		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1667
1668		/* Reset the power state. */
1669		printf("dc%d: chip is in D%d power mode "
1670		    "-- setting to D0\n", unit,
1671		    pci_get_powerstate(dev));
1672		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1673
1674		/* Restore PCI config data. */
1675		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1676		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1677		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1678	}
1679}
1680#endif
1681
1682static void
1683dc_apply_fixup(struct dc_softc *sc, int media)
1684{
1685	struct dc_mediainfo *m;
1686	u_int8_t *p;
1687	int i;
1688	u_int32_t reg;
1689
1690	m = sc->dc_mi;
1691
1692	while (m != NULL) {
1693		if (m->dc_media == media)
1694			break;
1695		m = m->dc_next;
1696	}
1697
1698	if (m == NULL)
1699		return;
1700
1701	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1702		reg = (p[0] | (p[1] << 8)) << 16;
1703		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1704	}
1705
1706	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1707		reg = (p[0] | (p[1] << 8)) << 16;
1708		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1709	}
1710}
1711
1712static void
1713dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1714{
1715	struct dc_mediainfo *m;
1716
1717	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1718	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
1719	case DC_SIA_CODE_10BT:
1720		m->dc_media = IFM_10_T;
1721		break;
1722	case DC_SIA_CODE_10BT_FDX:
1723		m->dc_media = IFM_10_T | IFM_FDX;
1724		break;
1725	case DC_SIA_CODE_10B2:
1726		m->dc_media = IFM_10_2;
1727		break;
1728	case DC_SIA_CODE_10B5:
1729		m->dc_media = IFM_10_5;
1730		break;
1731	default:
1732		break;
1733	}
1734
1735	/*
1736	 * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
1737	 * Things apparently already work for cards that do
1738	 * supply Media Specific Data.
1739	 */
1740	if (l->dc_sia_code & DC_SIA_CODE_EXT) {
1741		m->dc_gp_len = 2;
1742		m->dc_gp_ptr =
1743		(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1744	} else {
1745		m->dc_gp_len = 2;
1746		m->dc_gp_ptr =
1747		(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1748	}
1749
1750	m->dc_next = sc->dc_mi;
1751	sc->dc_mi = m;
1752
1753	sc->dc_pmode = DC_PMODE_SIA;
1754}
1755
1756static void
1757dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1758{
1759	struct dc_mediainfo *m;
1760
1761	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1762	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1763		m->dc_media = IFM_100_TX;
1764
1765	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1766		m->dc_media = IFM_100_TX | IFM_FDX;
1767
1768	m->dc_gp_len = 2;
1769	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1770
1771	m->dc_next = sc->dc_mi;
1772	sc->dc_mi = m;
1773
1774	sc->dc_pmode = DC_PMODE_SYM;
1775}
1776
1777static void
1778dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1779{
1780	struct dc_mediainfo *m;
1781	u_int8_t *p;
1782
1783	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
1784	/* We abuse IFM_AUTO to represent MII. */
1785	m->dc_media = IFM_AUTO;
1786	m->dc_gp_len = l->dc_gpr_len;
1787
1788	p = (u_int8_t *)l;
1789	p += sizeof(struct dc_eblock_mii);
1790	m->dc_gp_ptr = p;
1791	p += 2 * l->dc_gpr_len;
1792	m->dc_reset_len = *p;
1793	p++;
1794	m->dc_reset_ptr = p;
1795
1796	m->dc_next = sc->dc_mi;
1797	sc->dc_mi = m;
1798}
1799
1800static void
1801dc_read_srom(struct dc_softc *sc, int bits)
1802{
1803	int size;
1804
1805	size = 2 << bits;
1806	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1807	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1808}
1809
1810static void
1811dc_parse_21143_srom(struct dc_softc *sc)
1812{
1813	struct dc_leaf_hdr *lhdr;
1814	struct dc_eblock_hdr *hdr;
1815	int have_mii, i, loff;
1816	char *ptr;
1817
1818	have_mii = 0;
1819	loff = sc->dc_srom[27];
1820	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1821
1822	ptr = (char *)lhdr;
1823	ptr += sizeof(struct dc_leaf_hdr) - 1;
1824	/*
1825	 * Look if we got a MII media block.
1826	 */
1827	for (i = 0; i < lhdr->dc_mcnt; i++) {
1828		hdr = (struct dc_eblock_hdr *)ptr;
1829		if (hdr->dc_type == DC_EBLOCK_MII)
1830		    have_mii++;
1831
1832		ptr += (hdr->dc_len & 0x7F);
1833		ptr++;
1834	}
1835
1836	/*
1837	 * Do the same thing again. Only use SIA and SYM media
1838	 * blocks if no MII media block is available.
1839	 */
1840	ptr = (char *)lhdr;
1841	ptr += sizeof(struct dc_leaf_hdr) - 1;
1842	for (i = 0; i < lhdr->dc_mcnt; i++) {
1843		hdr = (struct dc_eblock_hdr *)ptr;
1844		switch (hdr->dc_type) {
1845		case DC_EBLOCK_MII:
1846			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1847			break;
1848		case DC_EBLOCK_SIA:
1849			if (! have_mii)
1850				dc_decode_leaf_sia(sc,
1851				    (struct dc_eblock_sia *)hdr);
1852			break;
1853		case DC_EBLOCK_SYM:
1854			if (! have_mii)
1855				dc_decode_leaf_sym(sc,
1856				    (struct dc_eblock_sym *)hdr);
1857			break;
1858		default:
1859			/* Don't care. Yet. */
1860			break;
1861		}
1862		ptr += (hdr->dc_len & 0x7F);
1863		ptr++;
1864	}
1865}
1866
1867static void
1868dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1869{
1870	u_int32_t *paddr;
1871
1872	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1873	paddr = arg;
1874	*paddr = segs->ds_addr;
1875}
1876
1877/*
1878 * Attach the interface. Allocate softc structures, do ifmedia
1879 * setup and ethernet/BPF attach.
1880 */
1881static int
1882dc_attach(device_t dev)
1883{
1884	int tmp = 0;
1885	u_char eaddr[ETHER_ADDR_LEN];
1886	u_int32_t command;
1887	struct dc_softc *sc;
1888	struct ifnet *ifp;
1889	u_int32_t revision;
1890	int unit, error = 0, rid, mac_offset;
1891	int i;
1892	u_int8_t *mac;
1893
1894	sc = device_get_softc(dev);
1895	unit = device_get_unit(dev);
1896
1897	mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1898	    MTX_DEF | MTX_RECURSE);
1899#ifndef BURN_BRIDGES
1900	/*
1901	 * Handle power management nonsense.
1902	 */
1903	dc_acpi(dev);
1904#endif
1905	/*
1906	 * Map control/status registers.
1907	 */
1908	pci_enable_busmaster(dev);
1909
1910	rid = DC_RID;
1911	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1912
1913	if (sc->dc_res == NULL) {
1914		printf("dc%d: couldn't map ports/memory\n", unit);
1915		error = ENXIO;
1916		goto fail;
1917	}
1918
1919	sc->dc_btag = rman_get_bustag(sc->dc_res);
1920	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1921
1922	/* Allocate interrupt. */
1923	rid = 0;
1924	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1925	    RF_SHAREABLE | RF_ACTIVE);
1926
1927	if (sc->dc_irq == NULL) {
1928		printf("dc%d: couldn't map interrupt\n", unit);
1929		error = ENXIO;
1930		goto fail;
1931	}
1932
1933	/* Need this info to decide on a chip type. */
1934	sc->dc_info = dc_devtype(dev);
1935	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1936
1937	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1938	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1939	   sc->dc_info->dc_did != DC_DEVICEID_X3201)
1940		dc_eeprom_width(sc);
1941
1942	switch (sc->dc_info->dc_did) {
1943	case DC_DEVICEID_21143:
1944		sc->dc_type = DC_TYPE_21143;
1945		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1946		sc->dc_flags |= DC_REDUCED_MII_POLL;
1947		/* Save EEPROM contents so we can parse them later. */
1948		dc_read_srom(sc, sc->dc_romwidth);
1949		break;
1950	case DC_DEVICEID_DM9009:
1951	case DC_DEVICEID_DM9100:
1952	case DC_DEVICEID_DM9102:
1953		sc->dc_type = DC_TYPE_DM9102;
1954		sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
1955		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
1956		sc->dc_flags |= DC_TX_ALIGN;
1957		sc->dc_pmode = DC_PMODE_MII;
1958		/* Increase the latency timer value. */
1959		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1960		command &= 0xFFFF00FF;
1961		command |= 0x00008000;
1962		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1963		break;
1964	case DC_DEVICEID_AL981:
1965		sc->dc_type = DC_TYPE_AL981;
1966		sc->dc_flags |= DC_TX_USE_TX_INTR;
1967		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1968		sc->dc_pmode = DC_PMODE_MII;
1969		dc_read_srom(sc, sc->dc_romwidth);
1970		break;
1971	case DC_DEVICEID_AN985:
1972	case DC_DEVICEID_ADM9511:
1973	case DC_DEVICEID_ADM9513:
1974	case DC_DEVICEID_FA511:
1975	case DC_DEVICEID_FE2500:
1976	case DC_DEVICEID_EN2242:
1977	case DC_DEVICEID_HAWKING_PN672TX:
1978	case DC_DEVICEID_3CSOHOB:
1979	case DC_DEVICEID_MSMN120:
1980	case DC_DEVICEID_MSMN130_FAKE: /* XXX avoid collision with PNIC*/
1981		sc->dc_type = DC_TYPE_AN985;
1982		sc->dc_flags |= DC_64BIT_HASH;
1983		sc->dc_flags |= DC_TX_USE_TX_INTR;
1984		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1985		sc->dc_pmode = DC_PMODE_MII;
1986		/* Don't read SROM for - auto-loaded on reset */
1987		break;
1988	case DC_DEVICEID_98713:
1989	case DC_DEVICEID_98713_CP:
1990		if (revision < DC_REVISION_98713A) {
1991			sc->dc_type = DC_TYPE_98713;
1992		}
1993		if (revision >= DC_REVISION_98713A) {
1994			sc->dc_type = DC_TYPE_98713A;
1995			sc->dc_flags |= DC_21143_NWAY;
1996		}
1997		sc->dc_flags |= DC_REDUCED_MII_POLL;
1998		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
1999		break;
2000	case DC_DEVICEID_987x5:
2001	case DC_DEVICEID_EN1217:
2002		/*
2003		 * Macronix MX98715AEC-C/D/E parts have only a
2004		 * 128-bit hash table. We need to deal with these
2005		 * in the same manner as the PNIC II so that we
2006		 * get the right number of bits out of the
2007		 * CRC routine.
2008		 */
2009		if (revision >= DC_REVISION_98715AEC_C &&
2010		    revision < DC_REVISION_98725)
2011			sc->dc_flags |= DC_128BIT_HASH;
2012		sc->dc_type = DC_TYPE_987x5;
2013		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2014		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2015		break;
2016	case DC_DEVICEID_98727:
2017		sc->dc_type = DC_TYPE_987x5;
2018		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
2019		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2020		break;
2021	case DC_DEVICEID_82C115:
2022		sc->dc_type = DC_TYPE_PNICII;
2023		sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
2024		sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
2025		break;
2026	case DC_DEVICEID_82C168:
2027		sc->dc_type = DC_TYPE_PNIC;
2028		sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
2029		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
2030		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
2031		if (revision < DC_REVISION_82C169)
2032			sc->dc_pmode = DC_PMODE_SYM;
2033		break;
2034	case DC_DEVICEID_AX88140A:
2035		sc->dc_type = DC_TYPE_ASIX;
2036		sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
2037		sc->dc_flags |= DC_REDUCED_MII_POLL;
2038		sc->dc_pmode = DC_PMODE_MII;
2039		break;
2040	case DC_DEVICEID_X3201:
2041		sc->dc_type = DC_TYPE_XIRCOM;
2042		sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
2043				DC_TX_ALIGN;
2044		/*
2045		 * We don't actually need to coalesce, but we're doing
2046		 * it to obtain a double word aligned buffer.
2047		 * The DC_TX_COALESCE flag is required.
2048		 */
2049		sc->dc_pmode = DC_PMODE_MII;
2050		break;
2051	case DC_DEVICEID_RS7112:
2052		sc->dc_type = DC_TYPE_CONEXANT;
2053		sc->dc_flags |= DC_TX_INTR_ALWAYS;
2054		sc->dc_flags |= DC_REDUCED_MII_POLL;
2055		sc->dc_pmode = DC_PMODE_MII;
2056		dc_read_srom(sc, sc->dc_romwidth);
2057		break;
2058	default:
2059		printf("dc%d: unknown device: %x\n", sc->dc_unit,
2060		    sc->dc_info->dc_did);
2061		break;
2062	}
2063
2064	/* Save the cache line size. */
2065	if (DC_IS_DAVICOM(sc))
2066		sc->dc_cachesize = 0;
2067	else
2068		sc->dc_cachesize = pci_read_config(dev,
2069		    DC_PCI_CFLT, 4) & 0xFF;
2070
2071	/* Reset the adapter. */
2072	dc_reset(sc);
2073
2074	/* Take 21143 out of snooze mode */
2075	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2076		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2077		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2078		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2079	}
2080
2081	/*
2082	 * Try to learn something about the supported media.
2083	 * We know that ASIX and ADMtek and Davicom devices
2084	 * will *always* be using MII media, so that's a no-brainer.
2085	 * The tricky ones are the Macronix/PNIC II and the
2086	 * Intel 21143.
2087	 */
2088	if (DC_IS_INTEL(sc))
2089		dc_parse_21143_srom(sc);
2090	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2091		if (sc->dc_type == DC_TYPE_98713)
2092			sc->dc_pmode = DC_PMODE_MII;
2093		else
2094			sc->dc_pmode = DC_PMODE_SYM;
2095	} else if (!sc->dc_pmode)
2096		sc->dc_pmode = DC_PMODE_MII;
2097
2098	/*
2099	 * Get station address from the EEPROM.
2100	 */
2101	switch(sc->dc_type) {
2102	case DC_TYPE_98713:
2103	case DC_TYPE_98713A:
2104	case DC_TYPE_987x5:
2105	case DC_TYPE_PNICII:
2106		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2107		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2108		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2109		break;
2110	case DC_TYPE_PNIC:
2111		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2112		break;
2113	case DC_TYPE_DM9102:
2114		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2115#ifdef __sparc64__
2116		/*
2117		 * If this is an onboard dc(4) the station address read from
2118		 * the EEPROM is all zero and we have to get it from the fcode.
2119		 */
2120		for (i = 0; i < ETHER_ADDR_LEN; i++)
2121			if (eaddr[i] != 0x00)
2122				break;
2123		if (i >= ETHER_ADDR_LEN && OF_getetheraddr2(dev, eaddr) == -1)
2124			OF_getetheraddr(dev, eaddr);
2125#endif
2126		break;
2127	case DC_TYPE_21143:
2128	case DC_TYPE_ASIX:
2129		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2130		break;
2131	case DC_TYPE_AL981:
2132	case DC_TYPE_AN985:
2133		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0);
2134		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1);
2135		break;
2136	case DC_TYPE_CONEXANT:
2137		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
2138		    ETHER_ADDR_LEN);
2139		break;
2140	case DC_TYPE_XIRCOM:
2141		/* The MAC comes from the CIS. */
2142		mac = pci_get_ether(dev);
2143		if (!mac) {
2144			device_printf(dev, "No station address in CIS!\n");
2145			error = ENXIO;
2146			goto fail;
2147		}
2148		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2149		break;
2150	default:
2151		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2152		break;
2153	}
2154
2155	sc->dc_unit = unit;
2156	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
2157
2158	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
2159	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2160	    BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct dc_list_data), 1,
2161	    sizeof(struct dc_list_data), 0, NULL, NULL, &sc->dc_ltag);
2162	if (error) {
2163		printf("dc%d: failed to allocate busdma tag\n", unit);
2164		error = ENXIO;
2165		goto fail;
2166	}
2167	error = bus_dmamem_alloc(sc->dc_ltag, (void **)&sc->dc_ldata,
2168	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->dc_lmap);
2169	if (error) {
2170		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2171		error = ENXIO;
2172		goto fail;
2173	}
2174	error = bus_dmamap_load(sc->dc_ltag, sc->dc_lmap, sc->dc_ldata,
2175	    sizeof(struct dc_list_data), dc_dma_map_addr, &sc->dc_laddr,
2176	    BUS_DMA_NOWAIT);
2177	if (error) {
2178		printf("dc%d: cannot get address of the descriptors\n", unit);
2179		error = ENXIO;
2180		goto fail;
2181	}
2182
2183	/*
2184	 * Allocate a busdma tag and DMA safe memory for the multicast
2185	 * setup frame.
2186	 */
2187	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2188	    BUS_SPACE_MAXADDR, NULL, NULL, DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1,
2189	    DC_SFRAME_LEN + DC_MIN_FRAMELEN, 0, NULL, NULL, &sc->dc_stag);
2190	if (error) {
2191		printf("dc%d: failed to allocate busdma tag\n", unit);
2192		error = ENXIO;
2193		goto fail;
2194	}
2195	error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
2196	    BUS_DMA_NOWAIT, &sc->dc_smap);
2197	if (error) {
2198		printf("dc%d: failed to allocate DMA safe memory\n", unit);
2199		error = ENXIO;
2200		goto fail;
2201	}
2202	error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
2203	    DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
2204	if (error) {
2205		printf("dc%d: cannot get address of the descriptors\n", unit);
2206		error = ENXIO;
2207		goto fail;
2208	}
2209
2210	/* Allocate a busdma tag for mbufs. */
2211	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT,
2212	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * DC_TX_LIST_CNT,
2213	    DC_TX_LIST_CNT, MCLBYTES, 0, NULL, NULL, &sc->dc_mtag);
2214	if (error) {
2215		printf("dc%d: failed to allocate busdma tag\n", unit);
2216		error = ENXIO;
2217		goto fail;
2218	}
2219
2220	/* Create the TX/RX busdma maps. */
2221	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2222		error = bus_dmamap_create(sc->dc_mtag, 0,
2223		    &sc->dc_cdata.dc_tx_map[i]);
2224		if (error) {
2225			printf("dc%d: failed to init TX ring\n", unit);
2226			error = ENXIO;
2227			goto fail;
2228		}
2229	}
2230	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2231		error = bus_dmamap_create(sc->dc_mtag, 0,
2232		    &sc->dc_cdata.dc_rx_map[i]);
2233		if (error) {
2234			printf("dc%d: failed to init RX ring\n", unit);
2235			error = ENXIO;
2236			goto fail;
2237		}
2238	}
2239	error = bus_dmamap_create(sc->dc_mtag, 0, &sc->dc_sparemap);
2240	if (error) {
2241		printf("dc%d: failed to init RX ring\n", unit);
2242		error = ENXIO;
2243		goto fail;
2244	}
2245
2246	ifp = &sc->arpcom.ac_if;
2247	ifp->if_softc = sc;
2248	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2249	/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
2250	ifp->if_mtu = ETHERMTU;
2251	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2252	ifp->if_ioctl = dc_ioctl;
2253	ifp->if_start = dc_start;
2254	ifp->if_watchdog = dc_watchdog;
2255	ifp->if_init = dc_init;
2256	ifp->if_baudrate = 10000000;
2257	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
2258
2259	/*
2260	 * Do MII setup. If this is a 21143, check for a PHY on the
2261	 * MII bus after applying any necessary fixups to twiddle the
2262	 * GPIO bits. If we don't end up finding a PHY, restore the
2263	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2264	 * driver instead.
2265	 */
2266	if (DC_IS_INTEL(sc)) {
2267		dc_apply_fixup(sc, IFM_AUTO);
2268		tmp = sc->dc_pmode;
2269		sc->dc_pmode = DC_PMODE_MII;
2270	}
2271
2272	error = mii_phy_probe(dev, &sc->dc_miibus,
2273	    dc_ifmedia_upd, dc_ifmedia_sts);
2274
2275	if (error && DC_IS_INTEL(sc)) {
2276		sc->dc_pmode = tmp;
2277		if (sc->dc_pmode != DC_PMODE_SIA)
2278			sc->dc_pmode = DC_PMODE_SYM;
2279		sc->dc_flags |= DC_21143_NWAY;
2280		mii_phy_probe(dev, &sc->dc_miibus,
2281		    dc_ifmedia_upd, dc_ifmedia_sts);
2282		/*
2283		 * For non-MII cards, we need to have the 21143
2284		 * drive the LEDs. Except there are some systems
2285		 * like the NEC VersaPro NoteBook PC which have no
2286		 * LEDs, and twiddling these bits has adverse effects
2287		 * on them. (I.e. you suddenly can't get a link.)
2288		 */
2289		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2290			sc->dc_flags |= DC_TULIP_LEDS;
2291		error = 0;
2292	}
2293
2294	if (error) {
2295		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2296		goto fail;
2297	}
2298
2299	if (DC_IS_XIRCOM(sc)) {
2300		/*
2301		 * setup General Purpose Port mode and data so the tulip
2302		 * can talk to the MII.
2303		 */
2304		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2305			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2306		DELAY(10);
2307		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2308			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2309		DELAY(10);
2310	}
2311
2312	if (DC_IS_ADMTEK(sc)) {
2313		/*
2314		 * Set automatic TX underrun recovery for the ADMtek chips
2315		 */
2316		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2317	}
2318
2319	/*
2320	 * Tell the upper layer(s) we support long frames.
2321	 */
2322	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2323	ifp->if_capabilities |= IFCAP_VLAN_MTU;
2324#ifdef DEVICE_POLLING
2325	ifp->if_capabilities |= IFCAP_POLLING;
2326#endif
2327	ifp->if_capenable = ifp->if_capabilities;
2328
2329	callout_init(&sc->dc_stat_ch, IS_MPSAFE ? CALLOUT_MPSAFE : 0);
2330
2331#ifdef SRM_MEDIA
2332	sc->dc_srm_media = 0;
2333
2334	/* Remember the SRM console media setting */
2335	if (DC_IS_INTEL(sc)) {
2336		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2337		command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
2338		switch ((command >> 8) & 0xff) {
2339		case 3:
2340			sc->dc_srm_media = IFM_10_T;
2341			break;
2342		case 4:
2343			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2344			break;
2345		case 5:
2346			sc->dc_srm_media = IFM_100_TX;
2347			break;
2348		case 6:
2349			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2350			break;
2351		}
2352		if (sc->dc_srm_media)
2353			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2354	}
2355#endif
2356
2357	/*
2358	 * Call MI attach routine.
2359	 */
2360	ether_ifattach(ifp, eaddr);
2361
2362	/* Hook interrupt last to avoid having to lock softc */
2363	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
2364	    (IS_MPSAFE ? INTR_MPSAFE : 0),
2365	    dc_intr, sc, &sc->dc_intrhand);
2366
2367	if (error) {
2368		printf("dc%d: couldn't set up irq\n", unit);
2369		ether_ifdetach(ifp);
2370		goto fail;
2371	}
2372
2373fail:
2374	if (error)
2375		dc_detach(dev);
2376	return (error);
2377}
2378
2379/*
2380 * Shutdown hardware and free up resources. This can be called any
2381 * time after the mutex has been initialized. It is called in both
2382 * the error case in attach and the normal detach case so it needs
2383 * to be careful about only freeing resources that have actually been
2384 * allocated.
2385 */
2386static int
2387dc_detach(device_t dev)
2388{
2389	struct dc_softc *sc;
2390	struct ifnet *ifp;
2391	struct dc_mediainfo *m;
2392	int i;
2393
2394	sc = device_get_softc(dev);
2395	KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
2396	DC_LOCK(sc);
2397
2398	ifp = &sc->arpcom.ac_if;
2399
2400	/* These should only be active if attach succeeded */
2401	if (device_is_attached(dev)) {
2402		dc_stop(sc);
2403		ether_ifdetach(ifp);
2404	}
2405	if (sc->dc_miibus)
2406		device_delete_child(dev, sc->dc_miibus);
2407	bus_generic_detach(dev);
2408
2409	if (sc->dc_intrhand)
2410		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2411	if (sc->dc_irq)
2412		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2413	if (sc->dc_res)
2414		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2415
2416	if (sc->dc_cdata.dc_sbuf != NULL)
2417		bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf, sc->dc_smap);
2418	if (sc->dc_ldata != NULL)
2419		bus_dmamem_free(sc->dc_ltag, sc->dc_ldata, sc->dc_lmap);
2420	for (i = 0; i < DC_TX_LIST_CNT; i++)
2421		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_tx_map[i]);
2422	for (i = 0; i < DC_RX_LIST_CNT; i++)
2423		bus_dmamap_destroy(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2424	bus_dmamap_destroy(sc->dc_mtag, sc->dc_sparemap);
2425	if (sc->dc_stag)
2426		bus_dma_tag_destroy(sc->dc_stag);
2427	if (sc->dc_mtag)
2428		bus_dma_tag_destroy(sc->dc_mtag);
2429	if (sc->dc_ltag)
2430		bus_dma_tag_destroy(sc->dc_ltag);
2431
2432	free(sc->dc_pnic_rx_buf, M_DEVBUF);
2433
2434	while (sc->dc_mi != NULL) {
2435		m = sc->dc_mi->dc_next;
2436		free(sc->dc_mi, M_DEVBUF);
2437		sc->dc_mi = m;
2438	}
2439	free(sc->dc_srom, M_DEVBUF);
2440
2441	DC_UNLOCK(sc);
2442	mtx_destroy(&sc->dc_mtx);
2443
2444	return (0);
2445}
2446
2447/*
2448 * Initialize the transmit descriptors.
2449 */
2450static int
2451dc_list_tx_init(struct dc_softc *sc)
2452{
2453	struct dc_chain_data *cd;
2454	struct dc_list_data *ld;
2455	int i, nexti;
2456
2457	cd = &sc->dc_cdata;
2458	ld = sc->dc_ldata;
2459	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2460		if (i == DC_TX_LIST_CNT - 1)
2461			nexti = 0;
2462		else
2463			nexti = i + 1;
2464		ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
2465		cd->dc_tx_chain[i] = NULL;
2466		ld->dc_tx_list[i].dc_data = 0;
2467		ld->dc_tx_list[i].dc_ctl = 0;
2468	}
2469
2470	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2471	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2472	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2473	return (0);
2474}
2475
2476
2477/*
2478 * Initialize the RX descriptors and allocate mbufs for them. Note that
2479 * we arrange the descriptors in a closed ring, so that the last descriptor
2480 * points back to the first.
2481 */
2482static int
2483dc_list_rx_init(struct dc_softc *sc)
2484{
2485	struct dc_chain_data *cd;
2486	struct dc_list_data *ld;
2487	int i, nexti;
2488
2489	cd = &sc->dc_cdata;
2490	ld = sc->dc_ldata;
2491
2492	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2493		if (dc_newbuf(sc, i, 1) != 0)
2494			return (ENOBUFS);
2495		if (i == DC_RX_LIST_CNT - 1)
2496			nexti = 0;
2497		else
2498			nexti = i + 1;
2499		ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
2500	}
2501
2502	cd->dc_rx_prod = 0;
2503	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2504	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2505	return (0);
2506}
2507
2508static void
2509dc_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
2510	void *arg;
2511	bus_dma_segment_t *segs;
2512	int nseg;
2513	bus_size_t mapsize;
2514	int error;
2515{
2516	struct dc_softc *sc;
2517	struct dc_desc *c;
2518
2519	sc = arg;
2520	c = &sc->dc_ldata->dc_rx_list[sc->dc_cdata.dc_rx_cur];
2521	if (error) {
2522		sc->dc_cdata.dc_rx_err = error;
2523		return;
2524	}
2525
2526	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
2527	sc->dc_cdata.dc_rx_err = 0;
2528	c->dc_data = htole32(segs->ds_addr);
2529}
2530
2531/*
2532 * Initialize an RX descriptor and attach an MBUF cluster.
2533 */
2534static int
2535dc_newbuf(struct dc_softc *sc, int i, int alloc)
2536{
2537	struct mbuf *m_new;
2538	bus_dmamap_t tmp;
2539	int error;
2540
2541	if (alloc) {
2542		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2543		if (m_new == NULL)
2544			return (ENOBUFS);
2545	} else {
2546		m_new = sc->dc_cdata.dc_rx_chain[i];
2547		m_new->m_data = m_new->m_ext.ext_buf;
2548	}
2549	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2550	m_adj(m_new, sizeof(u_int64_t));
2551
2552	/*
2553	 * If this is a PNIC chip, zero the buffer. This is part
2554	 * of the workaround for the receive bug in the 82c168 and
2555	 * 82c169 chips.
2556	 */
2557	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2558		bzero(mtod(m_new, char *), m_new->m_len);
2559
2560	/* No need to remap the mbuf if we're reusing it. */
2561	if (alloc) {
2562		sc->dc_cdata.dc_rx_cur = i;
2563		error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_sparemap,
2564		    m_new, dc_dma_map_rxbuf, sc, 0);
2565		if (error) {
2566			m_freem(m_new);
2567			return (error);
2568		}
2569		if (sc->dc_cdata.dc_rx_err != 0) {
2570			m_freem(m_new);
2571			return (sc->dc_cdata.dc_rx_err);
2572		}
2573		bus_dmamap_unload(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i]);
2574		tmp = sc->dc_cdata.dc_rx_map[i];
2575		sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
2576		sc->dc_sparemap = tmp;
2577		sc->dc_cdata.dc_rx_chain[i] = m_new;
2578	}
2579
2580	sc->dc_ldata->dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
2581	sc->dc_ldata->dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
2582	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2583	    BUS_DMASYNC_PREREAD);
2584	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
2585	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2586	return (0);
2587}
2588
2589/*
2590 * Grrrrr.
2591 * The PNIC chip has a terrible bug in it that manifests itself during
2592 * periods of heavy activity. The exact mode of failure if difficult to
2593 * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2594 * will happen on slow machines. The bug is that sometimes instead of
2595 * uploading one complete frame during reception, it uploads what looks
2596 * like the entire contents of its FIFO memory. The frame we want is at
2597 * the end of the whole mess, but we never know exactly how much data has
2598 * been uploaded, so salvaging the frame is hard.
2599 *
2600 * There is only one way to do it reliably, and it's disgusting.
2601 * Here's what we know:
2602 *
2603 * - We know there will always be somewhere between one and three extra
2604 *   descriptors uploaded.
2605 *
2606 * - We know the desired received frame will always be at the end of the
2607 *   total data upload.
2608 *
2609 * - We know the size of the desired received frame because it will be
2610 *   provided in the length field of the status word in the last descriptor.
2611 *
2612 * Here's what we do:
2613 *
2614 * - When we allocate buffers for the receive ring, we bzero() them.
2615 *   This means that we know that the buffer contents should be all
2616 *   zeros, except for data uploaded by the chip.
2617 *
2618 * - We also force the PNIC chip to upload frames that include the
2619 *   ethernet CRC at the end.
2620 *
2621 * - We gather all of the bogus frame data into a single buffer.
2622 *
2623 * - We then position a pointer at the end of this buffer and scan
2624 *   backwards until we encounter the first non-zero byte of data.
2625 *   This is the end of the received frame. We know we will encounter
2626 *   some data at the end of the frame because the CRC will always be
2627 *   there, so even if the sender transmits a packet of all zeros,
2628 *   we won't be fooled.
2629 *
2630 * - We know the size of the actual received frame, so we subtract
2631 *   that value from the current pointer location. This brings us
2632 *   to the start of the actual received packet.
2633 *
2634 * - We copy this into an mbuf and pass it on, along with the actual
2635 *   frame length.
2636 *
2637 * The performance hit is tremendous, but it beats dropping frames all
2638 * the time.
2639 */
2640
2641#define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
2642static void
2643dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2644{
2645	struct dc_desc *cur_rx;
2646	struct dc_desc *c = NULL;
2647	struct mbuf *m = NULL;
2648	unsigned char *ptr;
2649	int i, total_len;
2650	u_int32_t rxstat = 0;
2651
2652	i = sc->dc_pnic_rx_bug_save;
2653	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2654	ptr = sc->dc_pnic_rx_buf;
2655	bzero(ptr, DC_RXLEN * 5);
2656
2657	/* Copy all the bytes from the bogus buffers. */
2658	while (1) {
2659		c = &sc->dc_ldata->dc_rx_list[i];
2660		rxstat = le32toh(c->dc_status);
2661		m = sc->dc_cdata.dc_rx_chain[i];
2662		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2663		ptr += DC_RXLEN;
2664		/* If this is the last buffer, break out. */
2665		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2666			break;
2667		dc_newbuf(sc, i, 0);
2668		DC_INC(i, DC_RX_LIST_CNT);
2669	}
2670
2671	/* Find the length of the actual receive frame. */
2672	total_len = DC_RXBYTES(rxstat);
2673
2674	/* Scan backwards until we hit a non-zero byte. */
2675	while (*ptr == 0x00)
2676		ptr--;
2677
2678	/* Round off. */
2679	if ((uintptr_t)(ptr) & 0x3)
2680		ptr -= 1;
2681
2682	/* Now find the start of the frame. */
2683	ptr -= total_len;
2684	if (ptr < sc->dc_pnic_rx_buf)
2685		ptr = sc->dc_pnic_rx_buf;
2686
2687	/*
2688	 * Now copy the salvaged frame to the last mbuf and fake up
2689	 * the status word to make it look like a successful
2690	 * frame reception.
2691	 */
2692	dc_newbuf(sc, i, 0);
2693	bcopy(ptr, mtod(m, char *), total_len);
2694	cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
2695}
2696
2697/*
2698 * This routine searches the RX ring for dirty descriptors in the
2699 * event that the rxeof routine falls out of sync with the chip's
2700 * current descriptor pointer. This may happen sometimes as a result
2701 * of a "no RX buffer available" condition that happens when the chip
2702 * consumes all of the RX buffers before the driver has a chance to
2703 * process the RX ring. This routine may need to be called more than
2704 * once to bring the driver back in sync with the chip, however we
2705 * should still be getting RX DONE interrupts to drive the search
2706 * for new packets in the RX ring, so we should catch up eventually.
2707 */
2708static int
2709dc_rx_resync(struct dc_softc *sc)
2710{
2711	struct dc_desc *cur_rx;
2712	int i, pos;
2713
2714	pos = sc->dc_cdata.dc_rx_prod;
2715
2716	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2717		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2718		if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
2719			break;
2720		DC_INC(pos, DC_RX_LIST_CNT);
2721	}
2722
2723	/* If the ring really is empty, then just return. */
2724	if (i == DC_RX_LIST_CNT)
2725		return (0);
2726
2727	/* We've fallen behing the chip: catch it. */
2728	sc->dc_cdata.dc_rx_prod = pos;
2729
2730	return (EAGAIN);
2731}
2732
2733/*
2734 * A frame has been uploaded: pass the resulting mbuf chain up to
2735 * the higher level protocols.
2736 */
2737static void
2738dc_rxeof(struct dc_softc *sc)
2739{
2740	struct mbuf *m;
2741	struct ifnet *ifp;
2742	struct dc_desc *cur_rx;
2743	int i, total_len = 0;
2744	u_int32_t rxstat;
2745
2746	DC_LOCK_ASSERT(sc);
2747
2748	ifp = &sc->arpcom.ac_if;
2749	i = sc->dc_cdata.dc_rx_prod;
2750
2751	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2752	while (!(le32toh(sc->dc_ldata->dc_rx_list[i].dc_status) &
2753	    DC_RXSTAT_OWN)) {
2754#ifdef DEVICE_POLLING
2755		if (ifp->if_flags & IFF_POLLING) {
2756			if (sc->rxcycles <= 0)
2757				break;
2758			sc->rxcycles--;
2759		}
2760#endif
2761		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2762		rxstat = le32toh(cur_rx->dc_status);
2763		m = sc->dc_cdata.dc_rx_chain[i];
2764		bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_rx_map[i],
2765		    BUS_DMASYNC_POSTREAD);
2766		total_len = DC_RXBYTES(rxstat);
2767
2768		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2769			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2770				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2771					sc->dc_pnic_rx_bug_save = i;
2772				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2773					DC_INC(i, DC_RX_LIST_CNT);
2774					continue;
2775				}
2776				dc_pnic_rx_bug_war(sc, i);
2777				rxstat = le32toh(cur_rx->dc_status);
2778				total_len = DC_RXBYTES(rxstat);
2779			}
2780		}
2781
2782		/*
2783		 * If an error occurs, update stats, clear the
2784		 * status word and leave the mbuf cluster in place:
2785		 * it should simply get re-used next time this descriptor
2786		 * comes up in the ring.  However, don't report long
2787		 * frames as errors since they could be vlans.
2788		 */
2789		if ((rxstat & DC_RXSTAT_RXERR)) {
2790			if (!(rxstat & DC_RXSTAT_GIANT) ||
2791			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2792				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2793				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2794				ifp->if_ierrors++;
2795				if (rxstat & DC_RXSTAT_COLLSEEN)
2796					ifp->if_collisions++;
2797				dc_newbuf(sc, i, 0);
2798				if (rxstat & DC_RXSTAT_CRCERR) {
2799					DC_INC(i, DC_RX_LIST_CNT);
2800					continue;
2801				} else {
2802					dc_init(sc);
2803					return;
2804				}
2805			}
2806		}
2807
2808		/* No errors; receive the packet. */
2809		total_len -= ETHER_CRC_LEN;
2810#ifdef __i386__
2811		/*
2812		 * On the x86 we do not have alignment problems, so try to
2813		 * allocate a new buffer for the receive ring, and pass up
2814		 * the one where the packet is already, saving the expensive
2815		 * copy done in m_devget().
2816		 * If we are on an architecture with alignment problems, or
2817		 * if the allocation fails, then use m_devget and leave the
2818		 * existing buffer in the receive ring.
2819		 */
2820		if (dc_quick && dc_newbuf(sc, i, 1) == 0) {
2821			m->m_pkthdr.rcvif = ifp;
2822			m->m_pkthdr.len = m->m_len = total_len;
2823			DC_INC(i, DC_RX_LIST_CNT);
2824		} else
2825#endif
2826		{
2827			struct mbuf *m0;
2828
2829			m0 = m_devget(mtod(m, char *), total_len,
2830				ETHER_ALIGN, ifp, NULL);
2831			dc_newbuf(sc, i, 0);
2832			DC_INC(i, DC_RX_LIST_CNT);
2833			if (m0 == NULL) {
2834				ifp->if_ierrors++;
2835				continue;
2836			}
2837			m = m0;
2838		}
2839
2840		ifp->if_ipackets++;
2841		DC_UNLOCK(sc);
2842		(*ifp->if_input)(ifp, m);
2843		DC_LOCK(sc);
2844	}
2845
2846	sc->dc_cdata.dc_rx_prod = i;
2847}
2848
2849/*
2850 * A frame was downloaded to the chip. It's safe for us to clean up
2851 * the list buffers.
2852 */
2853
2854static void
2855dc_txeof(struct dc_softc *sc)
2856{
2857	struct dc_desc *cur_tx = NULL;
2858	struct ifnet *ifp;
2859	int idx;
2860	u_int32_t ctl, txstat;
2861
2862	ifp = &sc->arpcom.ac_if;
2863
2864	/*
2865	 * Go through our tx list and free mbufs for those
2866	 * frames that have been transmitted.
2867	 */
2868	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap, BUS_DMASYNC_POSTREAD);
2869	idx = sc->dc_cdata.dc_tx_cons;
2870	while (idx != sc->dc_cdata.dc_tx_prod) {
2871
2872		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2873		txstat = le32toh(cur_tx->dc_status);
2874		ctl = le32toh(cur_tx->dc_ctl);
2875
2876		if (txstat & DC_TXSTAT_OWN)
2877			break;
2878
2879		if (!(ctl & DC_TXCTL_LASTFRAG) || ctl & DC_TXCTL_SETUP) {
2880			if (ctl & DC_TXCTL_SETUP) {
2881				/*
2882				 * Yes, the PNIC is so brain damaged
2883				 * that it will sometimes generate a TX
2884				 * underrun error while DMAing the RX
2885				 * filter setup frame. If we detect this,
2886				 * we have to send the setup frame again,
2887				 * or else the filter won't be programmed
2888				 * correctly.
2889				 */
2890				if (DC_IS_PNIC(sc)) {
2891					if (txstat & DC_TXSTAT_ERRSUM)
2892						dc_setfilt(sc);
2893				}
2894				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2895			}
2896			sc->dc_cdata.dc_tx_cnt--;
2897			DC_INC(idx, DC_TX_LIST_CNT);
2898			continue;
2899		}
2900
2901		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2902			/*
2903			 * XXX: Why does my Xircom taunt me so?
2904			 * For some reason it likes setting the CARRLOST flag
2905			 * even when the carrier is there. wtf?!?
2906			 * Who knows, but Conexant chips have the
2907			 * same problem. Maybe they took lessons
2908			 * from Xircom.
2909			 */
2910			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2911			    sc->dc_pmode == DC_PMODE_MII &&
2912			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2913			    DC_TXSTAT_NOCARRIER)))
2914				txstat &= ~DC_TXSTAT_ERRSUM;
2915		} else {
2916			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2917			    sc->dc_pmode == DC_PMODE_MII &&
2918			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
2919			    DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
2920				txstat &= ~DC_TXSTAT_ERRSUM;
2921		}
2922
2923		if (txstat & DC_TXSTAT_ERRSUM) {
2924			ifp->if_oerrors++;
2925			if (txstat & DC_TXSTAT_EXCESSCOLL)
2926				ifp->if_collisions++;
2927			if (txstat & DC_TXSTAT_LATECOLL)
2928				ifp->if_collisions++;
2929			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2930				dc_init(sc);
2931				return;
2932			}
2933		}
2934
2935		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2936
2937		ifp->if_opackets++;
2938		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2939			bus_dmamap_sync(sc->dc_mtag,
2940			    sc->dc_cdata.dc_tx_map[idx],
2941			    BUS_DMASYNC_POSTWRITE);
2942			bus_dmamap_unload(sc->dc_mtag,
2943			    sc->dc_cdata.dc_tx_map[idx]);
2944			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2945			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2946		}
2947
2948		sc->dc_cdata.dc_tx_cnt--;
2949		DC_INC(idx, DC_TX_LIST_CNT);
2950	}
2951
2952	if (idx != sc->dc_cdata.dc_tx_cons) {
2953	    	/* Some buffers have been freed. */
2954		sc->dc_cdata.dc_tx_cons = idx;
2955		ifp->if_flags &= ~IFF_OACTIVE;
2956	}
2957	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2958}
2959
2960static void
2961dc_tick(void *xsc)
2962{
2963	struct dc_softc *sc;
2964	struct mii_data *mii;
2965	struct ifnet *ifp;
2966	u_int32_t r;
2967
2968	sc = xsc;
2969	DC_LOCK(sc);
2970	ifp = &sc->arpcom.ac_if;
2971	mii = device_get_softc(sc->dc_miibus);
2972
2973	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2974		if (sc->dc_flags & DC_21143_NWAY) {
2975			r = CSR_READ_4(sc, DC_10BTSTAT);
2976			if (IFM_SUBTYPE(mii->mii_media_active) ==
2977			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2978				sc->dc_link = 0;
2979				mii_mediachg(mii);
2980			}
2981			if (IFM_SUBTYPE(mii->mii_media_active) ==
2982			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2983				sc->dc_link = 0;
2984				mii_mediachg(mii);
2985			}
2986			if (sc->dc_link == 0)
2987				mii_tick(mii);
2988		} else {
2989			r = CSR_READ_4(sc, DC_ISR);
2990			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2991			    sc->dc_cdata.dc_tx_cnt == 0) {
2992				mii_tick(mii);
2993				if (!(mii->mii_media_status & IFM_ACTIVE))
2994					sc->dc_link = 0;
2995			}
2996		}
2997	} else
2998		mii_tick(mii);
2999
3000	/*
3001	 * When the init routine completes, we expect to be able to send
3002	 * packets right away, and in fact the network code will send a
3003	 * gratuitous ARP the moment the init routine marks the interface
3004	 * as running. However, even though the MAC may have been initialized,
3005	 * there may be a delay of a few seconds before the PHY completes
3006	 * autonegotiation and the link is brought up. Any transmissions
3007	 * made during that delay will be lost. Dealing with this is tricky:
3008	 * we can't just pause in the init routine while waiting for the
3009	 * PHY to come ready since that would bring the whole system to
3010	 * a screeching halt for several seconds.
3011	 *
3012	 * What we do here is prevent the TX start routine from sending
3013	 * any packets until a link has been established. After the
3014	 * interface has been initialized, the tick routine will poll
3015	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
3016	 * that time, packets will stay in the send queue, and once the
3017	 * link comes up, they will be flushed out to the wire.
3018	 */
3019	if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
3020	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3021		sc->dc_link++;
3022		if (ifp->if_snd.ifq_head != NULL)
3023			dc_start(ifp);
3024	}
3025
3026	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
3027		callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3028	else
3029		callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3030
3031	DC_UNLOCK(sc);
3032}
3033
3034/*
3035 * A transmit underrun has occurred.  Back off the transmit threshold,
3036 * or switch to store and forward mode if we have to.
3037 */
3038static void
3039dc_tx_underrun(struct dc_softc *sc)
3040{
3041	u_int32_t isr;
3042	int i;
3043
3044	if (DC_IS_DAVICOM(sc))
3045		dc_init(sc);
3046
3047	if (DC_IS_INTEL(sc)) {
3048		/*
3049		 * The real 21143 requires that the transmitter be idle
3050		 * in order to change the transmit threshold or store
3051		 * and forward state.
3052		 */
3053		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3054
3055		for (i = 0; i < DC_TIMEOUT; i++) {
3056			isr = CSR_READ_4(sc, DC_ISR);
3057			if (isr & DC_ISR_TX_IDLE)
3058				break;
3059			DELAY(10);
3060		}
3061		if (i == DC_TIMEOUT) {
3062			printf("dc%d: failed to force tx to idle state\n",
3063			    sc->dc_unit);
3064			dc_init(sc);
3065		}
3066	}
3067
3068	printf("dc%d: TX underrun -- ", sc->dc_unit);
3069	sc->dc_txthresh += DC_TXTHRESH_INC;
3070	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3071		printf("using store and forward mode\n");
3072		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3073	} else {
3074		printf("increasing TX threshold\n");
3075		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3076		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3077	}
3078
3079	if (DC_IS_INTEL(sc))
3080		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3081}
3082
3083#ifdef DEVICE_POLLING
3084static poll_handler_t dc_poll;
3085
3086static void
3087dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3088{
3089	struct dc_softc *sc = ifp->if_softc;
3090
3091	if (!(ifp->if_capenable & IFCAP_POLLING)) {
3092		ether_poll_deregister(ifp);
3093		cmd = POLL_DEREGISTER;
3094	}
3095	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
3096		/* Re-enable interrupts. */
3097		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3098		return;
3099	}
3100	DC_LOCK(sc);
3101	sc->rxcycles = count;
3102	dc_rxeof(sc);
3103	dc_txeof(sc);
3104	if (ifp->if_snd.ifq_head != NULL && !(ifp->if_flags & IFF_OACTIVE))
3105		dc_start(ifp);
3106
3107	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
3108		u_int32_t	status;
3109
3110		status = CSR_READ_4(sc, DC_ISR);
3111		status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
3112			DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
3113			DC_ISR_BUS_ERR);
3114		if (!status) {
3115			DC_UNLOCK(sc);
3116			return;
3117		}
3118		/* ack what we have */
3119		CSR_WRITE_4(sc, DC_ISR, status);
3120
3121		if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
3122			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
3123			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
3124
3125			if (dc_rx_resync(sc))
3126				dc_rxeof(sc);
3127		}
3128		/* restart transmit unit if necessary */
3129		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
3130			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3131
3132		if (status & DC_ISR_TX_UNDERRUN)
3133			dc_tx_underrun(sc);
3134
3135		if (status & DC_ISR_BUS_ERR) {
3136			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
3137			dc_reset(sc);
3138			dc_init(sc);
3139		}
3140	}
3141	DC_UNLOCK(sc);
3142}
3143#endif /* DEVICE_POLLING */
3144
3145static void
3146dc_intr(void *arg)
3147{
3148	struct dc_softc *sc;
3149	struct ifnet *ifp;
3150	u_int32_t status;
3151
3152	sc = arg;
3153
3154	if (sc->suspended)
3155		return;
3156
3157	if ((CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
3158		return;
3159
3160	DC_LOCK(sc);
3161	ifp = &sc->arpcom.ac_if;
3162#ifdef DEVICE_POLLING
3163	if (ifp->if_flags & IFF_POLLING)
3164		goto done;
3165	if ((ifp->if_capenable & IFCAP_POLLING) &&
3166	    ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
3167		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3168		goto done;
3169	}
3170#endif
3171
3172	/* Suppress unwanted interrupts */
3173	if (!(ifp->if_flags & IFF_UP)) {
3174		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
3175			dc_stop(sc);
3176		DC_UNLOCK(sc);
3177		return;
3178	}
3179
3180	/* Disable interrupts. */
3181	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3182
3183	while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
3184	      && status != 0xFFFFFFFF) {
3185
3186		CSR_WRITE_4(sc, DC_ISR, status);
3187
3188		if (status & DC_ISR_RX_OK) {
3189			int		curpkts;
3190			curpkts = ifp->if_ipackets;
3191			dc_rxeof(sc);
3192			if (curpkts == ifp->if_ipackets) {
3193				while (dc_rx_resync(sc))
3194					dc_rxeof(sc);
3195			}
3196		}
3197
3198		if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
3199			dc_txeof(sc);
3200
3201		if (status & DC_ISR_TX_IDLE) {
3202			dc_txeof(sc);
3203			if (sc->dc_cdata.dc_tx_cnt) {
3204				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3205				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3206			}
3207		}
3208
3209		if (status & DC_ISR_TX_UNDERRUN)
3210			dc_tx_underrun(sc);
3211
3212		if ((status & DC_ISR_RX_WATDOGTIMEO)
3213		    || (status & DC_ISR_RX_NOBUF)) {
3214			int		curpkts;
3215			curpkts = ifp->if_ipackets;
3216			dc_rxeof(sc);
3217			if (curpkts == ifp->if_ipackets) {
3218				while (dc_rx_resync(sc))
3219					dc_rxeof(sc);
3220			}
3221		}
3222
3223		if (status & DC_ISR_BUS_ERR) {
3224			dc_reset(sc);
3225			dc_init(sc);
3226		}
3227	}
3228
3229	/* Re-enable interrupts. */
3230	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3231
3232	if (ifp->if_snd.ifq_head != NULL)
3233		dc_start(ifp);
3234
3235#ifdef DEVICE_POLLING
3236done:
3237#endif
3238
3239	DC_UNLOCK(sc);
3240}
3241
3242static void
3243dc_dma_map_txbuf(arg, segs, nseg, mapsize, error)
3244	void *arg;
3245	bus_dma_segment_t *segs;
3246	int nseg;
3247	bus_size_t mapsize;
3248	int error;
3249{
3250	struct dc_softc *sc;
3251	struct dc_desc *f;
3252	int cur, first, frag, i;
3253
3254	sc = arg;
3255	if (error) {
3256		sc->dc_cdata.dc_tx_err = error;
3257		return;
3258	}
3259
3260	first = cur = frag = sc->dc_cdata.dc_tx_prod;
3261	for (i = 0; i < nseg; i++) {
3262		if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3263		    (frag == (DC_TX_LIST_CNT - 1)) &&
3264		    (first != sc->dc_cdata.dc_tx_first)) {
3265			bus_dmamap_unload(sc->dc_mtag,
3266			    sc->dc_cdata.dc_tx_map[first]);
3267			sc->dc_cdata.dc_tx_err = ENOBUFS;
3268			return;
3269		}
3270
3271		f = &sc->dc_ldata->dc_tx_list[frag];
3272		f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
3273		if (i == 0) {
3274			f->dc_status = 0;
3275			f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
3276		} else
3277			f->dc_status = htole32(DC_TXSTAT_OWN);
3278		f->dc_data = htole32(segs[i].ds_addr);
3279		cur = frag;
3280		DC_INC(frag, DC_TX_LIST_CNT);
3281	}
3282
3283	sc->dc_cdata.dc_tx_err = 0;
3284	sc->dc_cdata.dc_tx_prod = frag;
3285	sc->dc_cdata.dc_tx_cnt += nseg;
3286	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
3287	sc->dc_cdata.dc_tx_chain[cur] = sc->dc_cdata.dc_tx_mapping;
3288	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3289		sc->dc_ldata->dc_tx_list[first].dc_ctl |=
3290		    htole32(DC_TXCTL_FINT);
3291	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3292		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3293	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3294		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
3295	sc->dc_ldata->dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
3296}
3297
3298/*
3299 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3300 * pointers to the fragment pointers.
3301 */
3302static int
3303dc_encap(struct dc_softc *sc, struct mbuf **m_head)
3304{
3305	struct mbuf *m;
3306	int error, idx, chainlen = 0;
3307
3308	/*
3309	 * If there's no way we can send any packets, return now.
3310	 */
3311	if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt < 6)
3312		return (ENOBUFS);
3313
3314	/*
3315	 * Count the number of frags in this chain to see if
3316	 * we need to m_defrag.  Since the descriptor list is shared
3317	 * by all packets, we'll m_defrag long chains so that they
3318	 * do not use up the entire list, even if they would fit.
3319	 */
3320	for (m = *m_head; m != NULL; m = m->m_next)
3321		chainlen++;
3322
3323	if ((chainlen > DC_TX_LIST_CNT / 4) ||
3324	    ((DC_TX_LIST_CNT - (chainlen + sc->dc_cdata.dc_tx_cnt)) < 6)) {
3325		m = m_defrag(*m_head, M_DONTWAIT);
3326		if (m == NULL)
3327			return (ENOBUFS);
3328		*m_head = m;
3329	}
3330
3331	/*
3332	 * Start packing the mbufs in this chain into
3333	 * the fragment pointers. Stop when we run out
3334	 * of fragments or hit the end of the mbuf chain.
3335	 */
3336	idx = sc->dc_cdata.dc_tx_prod;
3337	sc->dc_cdata.dc_tx_mapping = *m_head;
3338	error = bus_dmamap_load_mbuf(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3339	    *m_head, dc_dma_map_txbuf, sc, 0);
3340	if (error)
3341		return (error);
3342	if (sc->dc_cdata.dc_tx_err != 0)
3343		return (sc->dc_cdata.dc_tx_err);
3344	bus_dmamap_sync(sc->dc_mtag, sc->dc_cdata.dc_tx_map[idx],
3345	    BUS_DMASYNC_PREWRITE);
3346	bus_dmamap_sync(sc->dc_ltag, sc->dc_lmap,
3347	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
3348	return (0);
3349}
3350
3351/*
3352 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3353 * to the mbuf data regions directly in the transmit lists. We also save a
3354 * copy of the pointers since the transmit list fragment pointers are
3355 * physical addresses.
3356 */
3357
3358static void
3359dc_start(struct ifnet *ifp)
3360{
3361	struct dc_softc *sc;
3362	struct mbuf *m_head = NULL, *m;
3363	int idx;
3364
3365	sc = ifp->if_softc;
3366
3367	DC_LOCK(sc);
3368
3369	if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
3370		DC_UNLOCK(sc);
3371		return;
3372	}
3373
3374	if (ifp->if_flags & IFF_OACTIVE) {
3375		DC_UNLOCK(sc);
3376		return;
3377	}
3378
3379	idx = sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
3380
3381	while (sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3382		IF_DEQUEUE(&ifp->if_snd, m_head);
3383		if (m_head == NULL)
3384			break;
3385
3386		if (sc->dc_flags & DC_TX_COALESCE &&
3387		    (m_head->m_next != NULL ||
3388		     sc->dc_flags & DC_TX_ALIGN)) {
3389			m = m_defrag(m_head, M_DONTWAIT);
3390			if (m == NULL) {
3391				IF_PREPEND(&ifp->if_snd, m_head);
3392				ifp->if_flags |= IFF_OACTIVE;
3393				break;
3394			} else {
3395				m_head = m;
3396			}
3397		}
3398
3399		if (dc_encap(sc, &m_head)) {
3400			IF_PREPEND(&ifp->if_snd, m_head);
3401			ifp->if_flags |= IFF_OACTIVE;
3402			break;
3403		}
3404		idx = sc->dc_cdata.dc_tx_prod;
3405
3406		/*
3407		 * If there's a BPF listener, bounce a copy of this frame
3408		 * to him.
3409		 */
3410		BPF_MTAP(ifp, m_head);
3411
3412		if (sc->dc_flags & DC_TX_ONE) {
3413			ifp->if_flags |= IFF_OACTIVE;
3414			break;
3415		}
3416	}
3417
3418	/* Transmit */
3419	if (!(sc->dc_flags & DC_TX_POLL))
3420		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3421
3422	/*
3423	 * Set a timeout in case the chip goes out to lunch.
3424	 */
3425	ifp->if_timer = 5;
3426
3427	DC_UNLOCK(sc);
3428}
3429
3430static void
3431dc_init(void *xsc)
3432{
3433	struct dc_softc *sc = xsc;
3434	struct ifnet *ifp = &sc->arpcom.ac_if;
3435	struct mii_data *mii;
3436
3437	DC_LOCK(sc);
3438
3439	mii = device_get_softc(sc->dc_miibus);
3440
3441	/*
3442	 * Cancel pending I/O and free all RX/TX buffers.
3443	 */
3444	dc_stop(sc);
3445	dc_reset(sc);
3446
3447	/*
3448	 * Set cache alignment and burst length.
3449	 */
3450	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3451		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3452	else
3453		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
3454	/*
3455	 * Evenly share the bus between receive and transmit process.
3456	 */
3457	if (DC_IS_INTEL(sc))
3458		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3459	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3460		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3461	} else {
3462		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3463	}
3464	if (sc->dc_flags & DC_TX_POLL)
3465		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3466	switch(sc->dc_cachesize) {
3467	case 32:
3468		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3469		break;
3470	case 16:
3471		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3472		break;
3473	case 8:
3474		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3475		break;
3476	case 0:
3477	default:
3478		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3479		break;
3480	}
3481
3482	if (sc->dc_flags & DC_TX_STORENFWD)
3483		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3484	else {
3485		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3486			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3487		} else {
3488			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3489			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3490		}
3491	}
3492
3493	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3494	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3495
3496	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3497		/*
3498		 * The app notes for the 98713 and 98715A say that
3499		 * in order to have the chips operate properly, a magic
3500		 * number must be written to CSR16. Macronix does not
3501		 * document the meaning of these bits so there's no way
3502		 * to know exactly what they do. The 98713 has a magic
3503		 * number all its own; the rest all use a different one.
3504		 */
3505		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3506		if (sc->dc_type == DC_TYPE_98713)
3507			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3508		else
3509			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3510	}
3511
3512	if (DC_IS_XIRCOM(sc)) {
3513		/*
3514		 * setup General Purpose Port mode and data so the tulip
3515		 * can talk to the MII.
3516		 */
3517		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3518			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3519		DELAY(10);
3520		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3521			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3522		DELAY(10);
3523	}
3524
3525	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3526	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3527
3528	/* Init circular RX list. */
3529	if (dc_list_rx_init(sc) == ENOBUFS) {
3530		printf("dc%d: initialization failed: no "
3531		    "memory for rx buffers\n", sc->dc_unit);
3532		dc_stop(sc);
3533		DC_UNLOCK(sc);
3534		return;
3535	}
3536
3537	/*
3538	 * Init TX descriptors.
3539	 */
3540	dc_list_tx_init(sc);
3541
3542	/*
3543	 * Load the address of the RX list.
3544	 */
3545	CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
3546	CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
3547
3548	/*
3549	 * Enable interrupts.
3550	 */
3551#ifdef DEVICE_POLLING
3552	/*
3553	 * ... but only if we are not polling, and make sure they are off in
3554	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3555	 * after a reset.
3556	 */
3557	if (ifp->if_flags & IFF_POLLING)
3558		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3559	else
3560#endif
3561	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3562	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3563
3564	/* Enable transmitter. */
3565	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3566
3567	/*
3568	 * If this is an Intel 21143 and we're not using the
3569	 * MII port, program the LED control pins so we get
3570	 * link and activity indications.
3571	 */
3572	if (sc->dc_flags & DC_TULIP_LEDS) {
3573		CSR_WRITE_4(sc, DC_WATCHDOG,
3574		    DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
3575		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3576	}
3577
3578	/*
3579	 * Load the RX/multicast filter. We do this sort of late
3580	 * because the filter programming scheme on the 21143 and
3581	 * some clones requires DMAing a setup frame via the TX
3582	 * engine, and we need the transmitter enabled for that.
3583	 */
3584	dc_setfilt(sc);
3585
3586	/* Enable receiver. */
3587	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3588	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3589
3590	mii_mediachg(mii);
3591	dc_setcfg(sc, sc->dc_if_media);
3592
3593	ifp->if_flags |= IFF_RUNNING;
3594	ifp->if_flags &= ~IFF_OACTIVE;
3595
3596	/* Don't start the ticker if this is a homePNA link. */
3597	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3598		sc->dc_link = 1;
3599	else {
3600		if (sc->dc_flags & DC_21143_NWAY)
3601			callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
3602		else
3603			callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
3604	}
3605
3606#ifdef SRM_MEDIA
3607	if(sc->dc_srm_media) {
3608		struct ifreq ifr;
3609
3610		ifr.ifr_media = sc->dc_srm_media;
3611		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3612		sc->dc_srm_media = 0;
3613	}
3614#endif
3615	DC_UNLOCK(sc);
3616}
3617
3618/*
3619 * Set media options.
3620 */
3621static int
3622dc_ifmedia_upd(struct ifnet *ifp)
3623{
3624	struct dc_softc *sc;
3625	struct mii_data *mii;
3626	struct ifmedia *ifm;
3627
3628	sc = ifp->if_softc;
3629	mii = device_get_softc(sc->dc_miibus);
3630	mii_mediachg(mii);
3631	ifm = &mii->mii_media;
3632
3633	if (DC_IS_DAVICOM(sc) &&
3634	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3635		dc_setcfg(sc, ifm->ifm_media);
3636	else
3637		sc->dc_link = 0;
3638
3639	return (0);
3640}
3641
3642/*
3643 * Report current media status.
3644 */
3645static void
3646dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3647{
3648	struct dc_softc *sc;
3649	struct mii_data *mii;
3650	struct ifmedia *ifm;
3651
3652	sc = ifp->if_softc;
3653	mii = device_get_softc(sc->dc_miibus);
3654	mii_pollstat(mii);
3655	ifm = &mii->mii_media;
3656	if (DC_IS_DAVICOM(sc)) {
3657		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3658			ifmr->ifm_active = ifm->ifm_media;
3659			ifmr->ifm_status = 0;
3660			return;
3661		}
3662	}
3663	ifmr->ifm_active = mii->mii_media_active;
3664	ifmr->ifm_status = mii->mii_media_status;
3665}
3666
3667static int
3668dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3669{
3670	struct dc_softc *sc = ifp->if_softc;
3671	struct ifreq *ifr = (struct ifreq *)data;
3672	struct mii_data *mii;
3673	int error = 0;
3674
3675	DC_LOCK(sc);
3676
3677	switch (command) {
3678	case SIOCSIFFLAGS:
3679		if (ifp->if_flags & IFF_UP) {
3680			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3681				(IFF_PROMISC | IFF_ALLMULTI);
3682
3683			if (ifp->if_flags & IFF_RUNNING) {
3684				if (need_setfilt)
3685					dc_setfilt(sc);
3686			} else {
3687				sc->dc_txthresh = 0;
3688				dc_init(sc);
3689			}
3690		} else {
3691			if (ifp->if_flags & IFF_RUNNING)
3692				dc_stop(sc);
3693		}
3694		sc->dc_if_flags = ifp->if_flags;
3695		error = 0;
3696		break;
3697	case SIOCADDMULTI:
3698	case SIOCDELMULTI:
3699		dc_setfilt(sc);
3700		error = 0;
3701		break;
3702	case SIOCGIFMEDIA:
3703	case SIOCSIFMEDIA:
3704		mii = device_get_softc(sc->dc_miibus);
3705		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3706#ifdef SRM_MEDIA
3707		if (sc->dc_srm_media)
3708			sc->dc_srm_media = 0;
3709#endif
3710		break;
3711	case SIOCSIFCAP:
3712		ifp->if_capenable &= ~IFCAP_POLLING;
3713		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
3714		break;
3715	default:
3716		error = ether_ioctl(ifp, command, data);
3717		break;
3718	}
3719
3720	DC_UNLOCK(sc);
3721
3722	return (error);
3723}
3724
3725static void
3726dc_watchdog(struct ifnet *ifp)
3727{
3728	struct dc_softc *sc;
3729
3730	sc = ifp->if_softc;
3731
3732	DC_LOCK(sc);
3733
3734	ifp->if_oerrors++;
3735	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3736
3737	dc_stop(sc);
3738	dc_reset(sc);
3739	dc_init(sc);
3740
3741	if (ifp->if_snd.ifq_head != NULL)
3742		dc_start(ifp);
3743
3744	DC_UNLOCK(sc);
3745}
3746
3747/*
3748 * Stop the adapter and free any mbufs allocated to the
3749 * RX and TX lists.
3750 */
3751static void
3752dc_stop(struct dc_softc *sc)
3753{
3754	struct ifnet *ifp;
3755	struct dc_list_data *ld;
3756	struct dc_chain_data *cd;
3757	int i;
3758	u_int32_t ctl;
3759
3760	DC_LOCK(sc);
3761
3762	ifp = &sc->arpcom.ac_if;
3763	ifp->if_timer = 0;
3764	ld = sc->dc_ldata;
3765	cd = &sc->dc_cdata;
3766
3767	callout_stop(&sc->dc_stat_ch);
3768
3769	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3770#ifdef DEVICE_POLLING
3771	ether_poll_deregister(ifp);
3772#endif
3773
3774	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
3775	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3776	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3777	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3778	sc->dc_link = 0;
3779
3780	/*
3781	 * Free data in the RX lists.
3782	 */
3783	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3784		if (cd->dc_rx_chain[i] != NULL) {
3785			m_freem(cd->dc_rx_chain[i]);
3786			cd->dc_rx_chain[i] = NULL;
3787		}
3788	}
3789	bzero(&ld->dc_rx_list, sizeof(ld->dc_rx_list));
3790
3791	/*
3792	 * Free the TX list buffers.
3793	 */
3794	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3795		if (cd->dc_tx_chain[i] != NULL) {
3796			ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
3797			if ((ctl & DC_TXCTL_SETUP) ||
3798			    !(ctl & DC_TXCTL_LASTFRAG)) {
3799				cd->dc_tx_chain[i] = NULL;
3800				continue;
3801			}
3802			bus_dmamap_unload(sc->dc_mtag, cd->dc_tx_map[i]);
3803			m_freem(cd->dc_tx_chain[i]);
3804			cd->dc_tx_chain[i] = NULL;
3805		}
3806	}
3807	bzero(&ld->dc_tx_list, sizeof(ld->dc_tx_list));
3808
3809	DC_UNLOCK(sc);
3810}
3811
3812/*
3813 * Device suspend routine.  Stop the interface and save some PCI
3814 * settings in case the BIOS doesn't restore them properly on
3815 * resume.
3816 */
3817static int
3818dc_suspend(device_t dev)
3819{
3820	struct dc_softc *sc;
3821	int i, s;
3822
3823	s = splimp();
3824
3825	sc = device_get_softc(dev);
3826
3827	dc_stop(sc);
3828
3829	for (i = 0; i < 5; i++)
3830		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
3831	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3832	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3833	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3834	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3835
3836	sc->suspended = 1;
3837
3838	splx(s);
3839	return (0);
3840}
3841
3842/*
3843 * Device resume routine.  Restore some PCI settings in case the BIOS
3844 * doesn't, re-enable busmastering, and restart the interface if
3845 * appropriate.
3846 */
3847static int
3848dc_resume(device_t dev)
3849{
3850	struct dc_softc *sc;
3851	struct ifnet *ifp;
3852	int i, s;
3853
3854	s = splimp();
3855
3856	sc = device_get_softc(dev);
3857	ifp = &sc->arpcom.ac_if;
3858#ifndef BURN_BRIDGES
3859	dc_acpi(dev);
3860#endif
3861	/* better way to do this? */
3862	for (i = 0; i < 5; i++)
3863		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
3864	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3865	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3866	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3867	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3868
3869	/* reenable busmastering */
3870	pci_enable_busmaster(dev);
3871	pci_enable_io(dev, DC_RES);
3872
3873	/* reinitialize interface if necessary */
3874	if (ifp->if_flags & IFF_UP)
3875		dc_init(sc);
3876
3877	sc->suspended = 0;
3878
3879	splx(s);
3880	return (0);
3881}
3882
3883/*
3884 * Stop all chip I/O so that the kernel's probe routines don't
3885 * get confused by errant DMAs when rebooting.
3886 */
3887static void
3888dc_shutdown(device_t dev)
3889{
3890	struct dc_softc *sc;
3891
3892	sc = device_get_softc(dev);
3893
3894	dc_stop(sc);
3895}
3896